1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/write-threshold.h" 34 #include "qemu/cutils.h" 35 #include "qapi/error.h" 36 #include "qemu/error-report.h" 37 #include "qemu/main-loop.h" 38 #include "sysemu/replay.h" 39 40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 42 43 static void bdrv_parent_cb_resize(BlockDriverState *bs); 44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 45 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 46 47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 48 bool ignore_bds_parents) 49 { 50 BdrvChild *c, *next; 51 52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 53 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 54 continue; 55 } 56 bdrv_parent_drained_begin_single(c, false); 57 } 58 } 59 60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 61 int *drained_end_counter) 62 { 63 assert(c->parent_quiesce_counter > 0); 64 c->parent_quiesce_counter--; 65 if (c->klass->drained_end) { 66 c->klass->drained_end(c, drained_end_counter); 67 } 68 } 69 70 void bdrv_parent_drained_end_single(BdrvChild *c) 71 { 72 int drained_end_counter = 0; 73 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 74 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0); 75 } 76 77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 78 bool ignore_bds_parents, 79 int *drained_end_counter) 80 { 81 BdrvChild *c; 82 83 QLIST_FOREACH(c, &bs->parents, next_parent) { 84 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 85 continue; 86 } 87 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 88 } 89 } 90 91 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 92 { 93 if (c->klass->drained_poll) { 94 return c->klass->drained_poll(c); 95 } 96 return false; 97 } 98 99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 100 bool ignore_bds_parents) 101 { 102 BdrvChild *c, *next; 103 bool busy = false; 104 105 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 106 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 107 continue; 108 } 109 busy |= bdrv_parent_drained_poll_single(c); 110 } 111 112 return busy; 113 } 114 115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 116 { 117 c->parent_quiesce_counter++; 118 if (c->klass->drained_begin) { 119 c->klass->drained_begin(c); 120 } 121 if (poll) { 122 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 123 } 124 } 125 126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 127 { 128 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 129 src->pdiscard_alignment); 130 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 131 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 132 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 133 src->max_hw_transfer); 134 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 135 src->opt_mem_alignment); 136 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 137 src->min_mem_alignment); 138 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 139 } 140 141 typedef struct BdrvRefreshLimitsState { 142 BlockDriverState *bs; 143 BlockLimits old_bl; 144 } BdrvRefreshLimitsState; 145 146 static void bdrv_refresh_limits_abort(void *opaque) 147 { 148 BdrvRefreshLimitsState *s = opaque; 149 150 s->bs->bl = s->old_bl; 151 } 152 153 static TransactionActionDrv bdrv_refresh_limits_drv = { 154 .abort = bdrv_refresh_limits_abort, 155 .clean = g_free, 156 }; 157 158 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 159 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 160 { 161 ERRP_GUARD(); 162 BlockDriver *drv = bs->drv; 163 BdrvChild *c; 164 bool have_limits; 165 166 if (tran) { 167 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 168 *s = (BdrvRefreshLimitsState) { 169 .bs = bs, 170 .old_bl = bs->bl, 171 }; 172 tran_add(tran, &bdrv_refresh_limits_drv, s); 173 } 174 175 memset(&bs->bl, 0, sizeof(bs->bl)); 176 177 if (!drv) { 178 return; 179 } 180 181 /* Default alignment based on whether driver has byte interface */ 182 bs->bl.request_alignment = (drv->bdrv_co_preadv || 183 drv->bdrv_aio_preadv || 184 drv->bdrv_co_preadv_part) ? 1 : 512; 185 186 /* Take some limits from the children as a default */ 187 have_limits = false; 188 QLIST_FOREACH(c, &bs->children, next) { 189 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 190 { 191 bdrv_refresh_limits(c->bs, tran, errp); 192 if (*errp) { 193 return; 194 } 195 bdrv_merge_limits(&bs->bl, &c->bs->bl); 196 have_limits = true; 197 } 198 } 199 200 if (!have_limits) { 201 bs->bl.min_mem_alignment = 512; 202 bs->bl.opt_mem_alignment = qemu_real_host_page_size; 203 204 /* Safe default since most protocols use readv()/writev()/etc */ 205 bs->bl.max_iov = IOV_MAX; 206 } 207 208 /* Then let the driver override it */ 209 if (drv->bdrv_refresh_limits) { 210 drv->bdrv_refresh_limits(bs, errp); 211 if (*errp) { 212 return; 213 } 214 } 215 216 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 217 error_setg(errp, "Driver requires too large request alignment"); 218 } 219 } 220 221 /** 222 * The copy-on-read flag is actually a reference count so multiple users may 223 * use the feature without worrying about clobbering its previous state. 224 * Copy-on-read stays enabled until all users have called to disable it. 225 */ 226 void bdrv_enable_copy_on_read(BlockDriverState *bs) 227 { 228 qatomic_inc(&bs->copy_on_read); 229 } 230 231 void bdrv_disable_copy_on_read(BlockDriverState *bs) 232 { 233 int old = qatomic_fetch_dec(&bs->copy_on_read); 234 assert(old >= 1); 235 } 236 237 typedef struct { 238 Coroutine *co; 239 BlockDriverState *bs; 240 bool done; 241 bool begin; 242 bool recursive; 243 bool poll; 244 BdrvChild *parent; 245 bool ignore_bds_parents; 246 int *drained_end_counter; 247 } BdrvCoDrainData; 248 249 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 250 { 251 BdrvCoDrainData *data = opaque; 252 BlockDriverState *bs = data->bs; 253 254 if (data->begin) { 255 bs->drv->bdrv_co_drain_begin(bs); 256 } else { 257 bs->drv->bdrv_co_drain_end(bs); 258 } 259 260 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 261 qatomic_mb_set(&data->done, true); 262 if (!data->begin) { 263 qatomic_dec(data->drained_end_counter); 264 } 265 bdrv_dec_in_flight(bs); 266 267 g_free(data); 268 } 269 270 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 271 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 272 int *drained_end_counter) 273 { 274 BdrvCoDrainData *data; 275 276 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 277 (!begin && !bs->drv->bdrv_co_drain_end)) { 278 return; 279 } 280 281 data = g_new(BdrvCoDrainData, 1); 282 *data = (BdrvCoDrainData) { 283 .bs = bs, 284 .done = false, 285 .begin = begin, 286 .drained_end_counter = drained_end_counter, 287 }; 288 289 if (!begin) { 290 qatomic_inc(drained_end_counter); 291 } 292 293 /* Make sure the driver callback completes during the polling phase for 294 * drain_begin. */ 295 bdrv_inc_in_flight(bs); 296 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 297 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 298 } 299 300 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 301 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 302 BdrvChild *ignore_parent, bool ignore_bds_parents) 303 { 304 BdrvChild *child, *next; 305 306 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 307 return true; 308 } 309 310 if (qatomic_read(&bs->in_flight)) { 311 return true; 312 } 313 314 if (recursive) { 315 assert(!ignore_bds_parents); 316 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 317 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 318 return true; 319 } 320 } 321 } 322 323 return false; 324 } 325 326 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 327 BdrvChild *ignore_parent) 328 { 329 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 330 } 331 332 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 333 BdrvChild *parent, bool ignore_bds_parents, 334 bool poll); 335 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 336 BdrvChild *parent, bool ignore_bds_parents, 337 int *drained_end_counter); 338 339 static void bdrv_co_drain_bh_cb(void *opaque) 340 { 341 BdrvCoDrainData *data = opaque; 342 Coroutine *co = data->co; 343 BlockDriverState *bs = data->bs; 344 345 if (bs) { 346 AioContext *ctx = bdrv_get_aio_context(bs); 347 aio_context_acquire(ctx); 348 bdrv_dec_in_flight(bs); 349 if (data->begin) { 350 assert(!data->drained_end_counter); 351 bdrv_do_drained_begin(bs, data->recursive, data->parent, 352 data->ignore_bds_parents, data->poll); 353 } else { 354 assert(!data->poll); 355 bdrv_do_drained_end(bs, data->recursive, data->parent, 356 data->ignore_bds_parents, 357 data->drained_end_counter); 358 } 359 aio_context_release(ctx); 360 } else { 361 assert(data->begin); 362 bdrv_drain_all_begin(); 363 } 364 365 data->done = true; 366 aio_co_wake(co); 367 } 368 369 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 370 bool begin, bool recursive, 371 BdrvChild *parent, 372 bool ignore_bds_parents, 373 bool poll, 374 int *drained_end_counter) 375 { 376 BdrvCoDrainData data; 377 Coroutine *self = qemu_coroutine_self(); 378 AioContext *ctx = bdrv_get_aio_context(bs); 379 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 380 381 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 382 * other coroutines run if they were queued by aio_co_enter(). */ 383 384 assert(qemu_in_coroutine()); 385 data = (BdrvCoDrainData) { 386 .co = self, 387 .bs = bs, 388 .done = false, 389 .begin = begin, 390 .recursive = recursive, 391 .parent = parent, 392 .ignore_bds_parents = ignore_bds_parents, 393 .poll = poll, 394 .drained_end_counter = drained_end_counter, 395 }; 396 397 if (bs) { 398 bdrv_inc_in_flight(bs); 399 } 400 401 /* 402 * Temporarily drop the lock across yield or we would get deadlocks. 403 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 404 * 405 * When we yield below, the lock for the current context will be 406 * released, so if this is actually the lock that protects bs, don't drop 407 * it a second time. 408 */ 409 if (ctx != co_ctx) { 410 aio_context_release(ctx); 411 } 412 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data); 413 414 qemu_coroutine_yield(); 415 /* If we are resumed from some other event (such as an aio completion or a 416 * timer callback), it is a bug in the caller that should be fixed. */ 417 assert(data.done); 418 419 /* Reaquire the AioContext of bs if we dropped it */ 420 if (ctx != co_ctx) { 421 aio_context_acquire(ctx); 422 } 423 } 424 425 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 426 BdrvChild *parent, bool ignore_bds_parents) 427 { 428 assert(!qemu_in_coroutine()); 429 430 /* Stop things in parent-to-child order */ 431 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 432 aio_disable_external(bdrv_get_aio_context(bs)); 433 } 434 435 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 436 bdrv_drain_invoke(bs, true, NULL); 437 } 438 439 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 440 BdrvChild *parent, bool ignore_bds_parents, 441 bool poll) 442 { 443 BdrvChild *child, *next; 444 445 if (qemu_in_coroutine()) { 446 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 447 poll, NULL); 448 return; 449 } 450 451 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 452 453 if (recursive) { 454 assert(!ignore_bds_parents); 455 bs->recursive_quiesce_counter++; 456 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 457 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 458 false); 459 } 460 } 461 462 /* 463 * Wait for drained requests to finish. 464 * 465 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 466 * call is needed so things in this AioContext can make progress even 467 * though we don't return to the main AioContext loop - this automatically 468 * includes other nodes in the same AioContext and therefore all child 469 * nodes. 470 */ 471 if (poll) { 472 assert(!ignore_bds_parents); 473 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 474 } 475 } 476 477 void bdrv_drained_begin(BlockDriverState *bs) 478 { 479 bdrv_do_drained_begin(bs, false, NULL, false, true); 480 } 481 482 void bdrv_subtree_drained_begin(BlockDriverState *bs) 483 { 484 bdrv_do_drained_begin(bs, true, NULL, false, true); 485 } 486 487 /** 488 * This function does not poll, nor must any of its recursively called 489 * functions. The *drained_end_counter pointee will be incremented 490 * once for every background operation scheduled, and decremented once 491 * the operation settles. Therefore, the pointer must remain valid 492 * until the pointee reaches 0. That implies that whoever sets up the 493 * pointee has to poll until it is 0. 494 * 495 * We use atomic operations to access *drained_end_counter, because 496 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 497 * @bs may contain nodes in different AioContexts, 498 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 499 * regardless of which AioContext they are in. 500 */ 501 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 502 BdrvChild *parent, bool ignore_bds_parents, 503 int *drained_end_counter) 504 { 505 BdrvChild *child; 506 int old_quiesce_counter; 507 508 assert(drained_end_counter != NULL); 509 510 if (qemu_in_coroutine()) { 511 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 512 false, drained_end_counter); 513 return; 514 } 515 assert(bs->quiesce_counter > 0); 516 517 /* Re-enable things in child-to-parent order */ 518 bdrv_drain_invoke(bs, false, drained_end_counter); 519 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 520 drained_end_counter); 521 522 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 523 if (old_quiesce_counter == 1) { 524 aio_enable_external(bdrv_get_aio_context(bs)); 525 } 526 527 if (recursive) { 528 assert(!ignore_bds_parents); 529 bs->recursive_quiesce_counter--; 530 QLIST_FOREACH(child, &bs->children, next) { 531 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 532 drained_end_counter); 533 } 534 } 535 } 536 537 void bdrv_drained_end(BlockDriverState *bs) 538 { 539 int drained_end_counter = 0; 540 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 541 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 542 } 543 544 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 545 { 546 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 547 } 548 549 void bdrv_subtree_drained_end(BlockDriverState *bs) 550 { 551 int drained_end_counter = 0; 552 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 553 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 554 } 555 556 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 557 { 558 int i; 559 560 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 561 bdrv_do_drained_begin(child->bs, true, child, false, true); 562 } 563 } 564 565 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 566 { 567 int drained_end_counter = 0; 568 int i; 569 570 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 571 bdrv_do_drained_end(child->bs, true, child, false, 572 &drained_end_counter); 573 } 574 575 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0); 576 } 577 578 /* 579 * Wait for pending requests to complete on a single BlockDriverState subtree, 580 * and suspend block driver's internal I/O until next request arrives. 581 * 582 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 583 * AioContext. 584 */ 585 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 586 { 587 assert(qemu_in_coroutine()); 588 bdrv_drained_begin(bs); 589 bdrv_drained_end(bs); 590 } 591 592 void bdrv_drain(BlockDriverState *bs) 593 { 594 bdrv_drained_begin(bs); 595 bdrv_drained_end(bs); 596 } 597 598 static void bdrv_drain_assert_idle(BlockDriverState *bs) 599 { 600 BdrvChild *child, *next; 601 602 assert(qatomic_read(&bs->in_flight) == 0); 603 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 604 bdrv_drain_assert_idle(child->bs); 605 } 606 } 607 608 unsigned int bdrv_drain_all_count = 0; 609 610 static bool bdrv_drain_all_poll(void) 611 { 612 BlockDriverState *bs = NULL; 613 bool result = false; 614 615 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 616 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 617 while ((bs = bdrv_next_all_states(bs))) { 618 AioContext *aio_context = bdrv_get_aio_context(bs); 619 aio_context_acquire(aio_context); 620 result |= bdrv_drain_poll(bs, false, NULL, true); 621 aio_context_release(aio_context); 622 } 623 624 return result; 625 } 626 627 /* 628 * Wait for pending requests to complete across all BlockDriverStates 629 * 630 * This function does not flush data to disk, use bdrv_flush_all() for that 631 * after calling this function. 632 * 633 * This pauses all block jobs and disables external clients. It must 634 * be paired with bdrv_drain_all_end(). 635 * 636 * NOTE: no new block jobs or BlockDriverStates can be created between 637 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 638 */ 639 void bdrv_drain_all_begin(void) 640 { 641 BlockDriverState *bs = NULL; 642 643 if (qemu_in_coroutine()) { 644 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 645 return; 646 } 647 648 /* 649 * bdrv queue is managed by record/replay, 650 * waiting for finishing the I/O requests may 651 * be infinite 652 */ 653 if (replay_events_enabled()) { 654 return; 655 } 656 657 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 658 * loop AioContext, so make sure we're in the main context. */ 659 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 660 assert(bdrv_drain_all_count < INT_MAX); 661 bdrv_drain_all_count++; 662 663 /* Quiesce all nodes, without polling in-flight requests yet. The graph 664 * cannot change during this loop. */ 665 while ((bs = bdrv_next_all_states(bs))) { 666 AioContext *aio_context = bdrv_get_aio_context(bs); 667 668 aio_context_acquire(aio_context); 669 bdrv_do_drained_begin(bs, false, NULL, true, false); 670 aio_context_release(aio_context); 671 } 672 673 /* Now poll the in-flight requests */ 674 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 675 676 while ((bs = bdrv_next_all_states(bs))) { 677 bdrv_drain_assert_idle(bs); 678 } 679 } 680 681 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 682 { 683 int drained_end_counter = 0; 684 685 g_assert(bs->quiesce_counter > 0); 686 g_assert(!bs->refcnt); 687 688 while (bs->quiesce_counter) { 689 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 690 } 691 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 692 } 693 694 void bdrv_drain_all_end(void) 695 { 696 BlockDriverState *bs = NULL; 697 int drained_end_counter = 0; 698 699 /* 700 * bdrv queue is managed by record/replay, 701 * waiting for finishing the I/O requests may 702 * be endless 703 */ 704 if (replay_events_enabled()) { 705 return; 706 } 707 708 while ((bs = bdrv_next_all_states(bs))) { 709 AioContext *aio_context = bdrv_get_aio_context(bs); 710 711 aio_context_acquire(aio_context); 712 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 713 aio_context_release(aio_context); 714 } 715 716 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 717 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0); 718 719 assert(bdrv_drain_all_count > 0); 720 bdrv_drain_all_count--; 721 } 722 723 void bdrv_drain_all(void) 724 { 725 bdrv_drain_all_begin(); 726 bdrv_drain_all_end(); 727 } 728 729 /** 730 * Remove an active request from the tracked requests list 731 * 732 * This function should be called when a tracked request is completing. 733 */ 734 static void tracked_request_end(BdrvTrackedRequest *req) 735 { 736 if (req->serialising) { 737 qatomic_dec(&req->bs->serialising_in_flight); 738 } 739 740 qemu_co_mutex_lock(&req->bs->reqs_lock); 741 QLIST_REMOVE(req, list); 742 qemu_co_queue_restart_all(&req->wait_queue); 743 qemu_co_mutex_unlock(&req->bs->reqs_lock); 744 } 745 746 /** 747 * Add an active request to the tracked requests list 748 */ 749 static void tracked_request_begin(BdrvTrackedRequest *req, 750 BlockDriverState *bs, 751 int64_t offset, 752 int64_t bytes, 753 enum BdrvTrackedRequestType type) 754 { 755 bdrv_check_request(offset, bytes, &error_abort); 756 757 *req = (BdrvTrackedRequest){ 758 .bs = bs, 759 .offset = offset, 760 .bytes = bytes, 761 .type = type, 762 .co = qemu_coroutine_self(), 763 .serialising = false, 764 .overlap_offset = offset, 765 .overlap_bytes = bytes, 766 }; 767 768 qemu_co_queue_init(&req->wait_queue); 769 770 qemu_co_mutex_lock(&bs->reqs_lock); 771 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 772 qemu_co_mutex_unlock(&bs->reqs_lock); 773 } 774 775 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 776 int64_t offset, int64_t bytes) 777 { 778 bdrv_check_request(offset, bytes, &error_abort); 779 780 /* aaaa bbbb */ 781 if (offset >= req->overlap_offset + req->overlap_bytes) { 782 return false; 783 } 784 /* bbbb aaaa */ 785 if (req->overlap_offset >= offset + bytes) { 786 return false; 787 } 788 return true; 789 } 790 791 /* Called with self->bs->reqs_lock held */ 792 static BdrvTrackedRequest * 793 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 794 { 795 BdrvTrackedRequest *req; 796 797 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 798 if (req == self || (!req->serialising && !self->serialising)) { 799 continue; 800 } 801 if (tracked_request_overlaps(req, self->overlap_offset, 802 self->overlap_bytes)) 803 { 804 /* 805 * Hitting this means there was a reentrant request, for 806 * example, a block driver issuing nested requests. This must 807 * never happen since it means deadlock. 808 */ 809 assert(qemu_coroutine_self() != req->co); 810 811 /* 812 * If the request is already (indirectly) waiting for us, or 813 * will wait for us as soon as it wakes up, then just go on 814 * (instead of producing a deadlock in the former case). 815 */ 816 if (!req->waiting_for) { 817 return req; 818 } 819 } 820 } 821 822 return NULL; 823 } 824 825 /* Called with self->bs->reqs_lock held */ 826 static bool coroutine_fn 827 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 828 { 829 BdrvTrackedRequest *req; 830 bool waited = false; 831 832 while ((req = bdrv_find_conflicting_request(self))) { 833 self->waiting_for = req; 834 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 835 self->waiting_for = NULL; 836 waited = true; 837 } 838 839 return waited; 840 } 841 842 /* Called with req->bs->reqs_lock held */ 843 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 844 uint64_t align) 845 { 846 int64_t overlap_offset = req->offset & ~(align - 1); 847 int64_t overlap_bytes = 848 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 849 850 bdrv_check_request(req->offset, req->bytes, &error_abort); 851 852 if (!req->serialising) { 853 qatomic_inc(&req->bs->serialising_in_flight); 854 req->serialising = true; 855 } 856 857 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 858 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 859 } 860 861 /** 862 * Return the tracked request on @bs for the current coroutine, or 863 * NULL if there is none. 864 */ 865 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 866 { 867 BdrvTrackedRequest *req; 868 Coroutine *self = qemu_coroutine_self(); 869 870 QLIST_FOREACH(req, &bs->tracked_requests, list) { 871 if (req->co == self) { 872 return req; 873 } 874 } 875 876 return NULL; 877 } 878 879 /** 880 * Round a region to cluster boundaries 881 */ 882 void bdrv_round_to_clusters(BlockDriverState *bs, 883 int64_t offset, int64_t bytes, 884 int64_t *cluster_offset, 885 int64_t *cluster_bytes) 886 { 887 BlockDriverInfo bdi; 888 889 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 890 *cluster_offset = offset; 891 *cluster_bytes = bytes; 892 } else { 893 int64_t c = bdi.cluster_size; 894 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 895 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 896 } 897 } 898 899 static int bdrv_get_cluster_size(BlockDriverState *bs) 900 { 901 BlockDriverInfo bdi; 902 int ret; 903 904 ret = bdrv_get_info(bs, &bdi); 905 if (ret < 0 || bdi.cluster_size == 0) { 906 return bs->bl.request_alignment; 907 } else { 908 return bdi.cluster_size; 909 } 910 } 911 912 void bdrv_inc_in_flight(BlockDriverState *bs) 913 { 914 qatomic_inc(&bs->in_flight); 915 } 916 917 void bdrv_wakeup(BlockDriverState *bs) 918 { 919 aio_wait_kick(); 920 } 921 922 void bdrv_dec_in_flight(BlockDriverState *bs) 923 { 924 qatomic_dec(&bs->in_flight); 925 bdrv_wakeup(bs); 926 } 927 928 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 929 { 930 BlockDriverState *bs = self->bs; 931 bool waited = false; 932 933 if (!qatomic_read(&bs->serialising_in_flight)) { 934 return false; 935 } 936 937 qemu_co_mutex_lock(&bs->reqs_lock); 938 waited = bdrv_wait_serialising_requests_locked(self); 939 qemu_co_mutex_unlock(&bs->reqs_lock); 940 941 return waited; 942 } 943 944 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 945 uint64_t align) 946 { 947 bool waited; 948 949 qemu_co_mutex_lock(&req->bs->reqs_lock); 950 951 tracked_request_set_serialising(req, align); 952 waited = bdrv_wait_serialising_requests_locked(req); 953 954 qemu_co_mutex_unlock(&req->bs->reqs_lock); 955 956 return waited; 957 } 958 959 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 960 QEMUIOVector *qiov, size_t qiov_offset, 961 Error **errp) 962 { 963 /* 964 * Check generic offset/bytes correctness 965 */ 966 967 if (offset < 0) { 968 error_setg(errp, "offset is negative: %" PRIi64, offset); 969 return -EIO; 970 } 971 972 if (bytes < 0) { 973 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 974 return -EIO; 975 } 976 977 if (bytes > BDRV_MAX_LENGTH) { 978 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 979 bytes, BDRV_MAX_LENGTH); 980 return -EIO; 981 } 982 983 if (offset > BDRV_MAX_LENGTH) { 984 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 985 offset, BDRV_MAX_LENGTH); 986 return -EIO; 987 } 988 989 if (offset > BDRV_MAX_LENGTH - bytes) { 990 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 991 "exceeds maximum(%" PRIi64 ")", offset, bytes, 992 BDRV_MAX_LENGTH); 993 return -EIO; 994 } 995 996 if (!qiov) { 997 return 0; 998 } 999 1000 /* 1001 * Check qiov and qiov_offset 1002 */ 1003 1004 if (qiov_offset > qiov->size) { 1005 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 1006 qiov_offset, qiov->size); 1007 return -EIO; 1008 } 1009 1010 if (bytes > qiov->size - qiov_offset) { 1011 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 1012 "vector size(%zu)", bytes, qiov_offset, qiov->size); 1013 return -EIO; 1014 } 1015 1016 return 0; 1017 } 1018 1019 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 1020 { 1021 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 1022 } 1023 1024 static int bdrv_check_request32(int64_t offset, int64_t bytes, 1025 QEMUIOVector *qiov, size_t qiov_offset) 1026 { 1027 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 1028 if (ret < 0) { 1029 return ret; 1030 } 1031 1032 if (bytes > BDRV_REQUEST_MAX_BYTES) { 1033 return -EIO; 1034 } 1035 1036 return 0; 1037 } 1038 1039 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 1040 int64_t bytes, BdrvRequestFlags flags) 1041 { 1042 return bdrv_pwritev(child, offset, bytes, NULL, 1043 BDRV_REQ_ZERO_WRITE | flags); 1044 } 1045 1046 /* 1047 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 1048 * The operation is sped up by checking the block status and only writing 1049 * zeroes to the device if they currently do not return zeroes. Optional 1050 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 1051 * BDRV_REQ_FUA). 1052 * 1053 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 1054 */ 1055 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 1056 { 1057 int ret; 1058 int64_t target_size, bytes, offset = 0; 1059 BlockDriverState *bs = child->bs; 1060 1061 target_size = bdrv_getlength(bs); 1062 if (target_size < 0) { 1063 return target_size; 1064 } 1065 1066 for (;;) { 1067 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 1068 if (bytes <= 0) { 1069 return 0; 1070 } 1071 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 1072 if (ret < 0) { 1073 return ret; 1074 } 1075 if (ret & BDRV_BLOCK_ZERO) { 1076 offset += bytes; 1077 continue; 1078 } 1079 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 1080 if (ret < 0) { 1081 return ret; 1082 } 1083 offset += bytes; 1084 } 1085 } 1086 1087 /* See bdrv_pwrite() for the return codes */ 1088 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes) 1089 { 1090 int ret; 1091 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1092 1093 if (bytes < 0) { 1094 return -EINVAL; 1095 } 1096 1097 ret = bdrv_preadv(child, offset, bytes, &qiov, 0); 1098 1099 return ret < 0 ? ret : bytes; 1100 } 1101 1102 /* Return no. of bytes on success or < 0 on error. Important errors are: 1103 -EIO generic I/O error (may happen for all errors) 1104 -ENOMEDIUM No media inserted. 1105 -EINVAL Invalid offset or number of bytes 1106 -EACCES Trying to write a read-only device 1107 */ 1108 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, 1109 int64_t bytes) 1110 { 1111 int ret; 1112 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1113 1114 if (bytes < 0) { 1115 return -EINVAL; 1116 } 1117 1118 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0); 1119 1120 return ret < 0 ? ret : bytes; 1121 } 1122 1123 /* 1124 * Writes to the file and ensures that no writes are reordered across this 1125 * request (acts as a barrier) 1126 * 1127 * Returns 0 on success, -errno in error cases. 1128 */ 1129 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1130 const void *buf, int64_t count) 1131 { 1132 int ret; 1133 1134 ret = bdrv_pwrite(child, offset, buf, count); 1135 if (ret < 0) { 1136 return ret; 1137 } 1138 1139 ret = bdrv_flush(child->bs); 1140 if (ret < 0) { 1141 return ret; 1142 } 1143 1144 return 0; 1145 } 1146 1147 typedef struct CoroutineIOCompletion { 1148 Coroutine *coroutine; 1149 int ret; 1150 } CoroutineIOCompletion; 1151 1152 static void bdrv_co_io_em_complete(void *opaque, int ret) 1153 { 1154 CoroutineIOCompletion *co = opaque; 1155 1156 co->ret = ret; 1157 aio_co_wake(co->coroutine); 1158 } 1159 1160 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1161 int64_t offset, int64_t bytes, 1162 QEMUIOVector *qiov, 1163 size_t qiov_offset, int flags) 1164 { 1165 BlockDriver *drv = bs->drv; 1166 int64_t sector_num; 1167 unsigned int nb_sectors; 1168 QEMUIOVector local_qiov; 1169 int ret; 1170 1171 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1172 assert(!(flags & ~BDRV_REQ_MASK)); 1173 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1174 1175 if (!drv) { 1176 return -ENOMEDIUM; 1177 } 1178 1179 if (drv->bdrv_co_preadv_part) { 1180 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1181 flags); 1182 } 1183 1184 if (qiov_offset > 0 || bytes != qiov->size) { 1185 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1186 qiov = &local_qiov; 1187 } 1188 1189 if (drv->bdrv_co_preadv) { 1190 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1191 goto out; 1192 } 1193 1194 if (drv->bdrv_aio_preadv) { 1195 BlockAIOCB *acb; 1196 CoroutineIOCompletion co = { 1197 .coroutine = qemu_coroutine_self(), 1198 }; 1199 1200 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1201 bdrv_co_io_em_complete, &co); 1202 if (acb == NULL) { 1203 ret = -EIO; 1204 goto out; 1205 } else { 1206 qemu_coroutine_yield(); 1207 ret = co.ret; 1208 goto out; 1209 } 1210 } 1211 1212 sector_num = offset >> BDRV_SECTOR_BITS; 1213 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1214 1215 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1216 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1217 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1218 assert(drv->bdrv_co_readv); 1219 1220 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1221 1222 out: 1223 if (qiov == &local_qiov) { 1224 qemu_iovec_destroy(&local_qiov); 1225 } 1226 1227 return ret; 1228 } 1229 1230 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1231 int64_t offset, int64_t bytes, 1232 QEMUIOVector *qiov, 1233 size_t qiov_offset, 1234 BdrvRequestFlags flags) 1235 { 1236 BlockDriver *drv = bs->drv; 1237 int64_t sector_num; 1238 unsigned int nb_sectors; 1239 QEMUIOVector local_qiov; 1240 int ret; 1241 1242 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1243 assert(!(flags & ~BDRV_REQ_MASK)); 1244 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1245 1246 if (!drv) { 1247 return -ENOMEDIUM; 1248 } 1249 1250 if (drv->bdrv_co_pwritev_part) { 1251 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1252 flags & bs->supported_write_flags); 1253 flags &= ~bs->supported_write_flags; 1254 goto emulate_flags; 1255 } 1256 1257 if (qiov_offset > 0 || bytes != qiov->size) { 1258 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1259 qiov = &local_qiov; 1260 } 1261 1262 if (drv->bdrv_co_pwritev) { 1263 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1264 flags & bs->supported_write_flags); 1265 flags &= ~bs->supported_write_flags; 1266 goto emulate_flags; 1267 } 1268 1269 if (drv->bdrv_aio_pwritev) { 1270 BlockAIOCB *acb; 1271 CoroutineIOCompletion co = { 1272 .coroutine = qemu_coroutine_self(), 1273 }; 1274 1275 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1276 flags & bs->supported_write_flags, 1277 bdrv_co_io_em_complete, &co); 1278 flags &= ~bs->supported_write_flags; 1279 if (acb == NULL) { 1280 ret = -EIO; 1281 } else { 1282 qemu_coroutine_yield(); 1283 ret = co.ret; 1284 } 1285 goto emulate_flags; 1286 } 1287 1288 sector_num = offset >> BDRV_SECTOR_BITS; 1289 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1290 1291 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1292 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1293 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1294 1295 assert(drv->bdrv_co_writev); 1296 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1297 flags & bs->supported_write_flags); 1298 flags &= ~bs->supported_write_flags; 1299 1300 emulate_flags: 1301 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1302 ret = bdrv_co_flush(bs); 1303 } 1304 1305 if (qiov == &local_qiov) { 1306 qemu_iovec_destroy(&local_qiov); 1307 } 1308 1309 return ret; 1310 } 1311 1312 static int coroutine_fn 1313 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1314 int64_t bytes, QEMUIOVector *qiov, 1315 size_t qiov_offset) 1316 { 1317 BlockDriver *drv = bs->drv; 1318 QEMUIOVector local_qiov; 1319 int ret; 1320 1321 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1322 1323 if (!drv) { 1324 return -ENOMEDIUM; 1325 } 1326 1327 if (!block_driver_can_compress(drv)) { 1328 return -ENOTSUP; 1329 } 1330 1331 if (drv->bdrv_co_pwritev_compressed_part) { 1332 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1333 qiov, qiov_offset); 1334 } 1335 1336 if (qiov_offset == 0) { 1337 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1338 } 1339 1340 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1341 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1342 qemu_iovec_destroy(&local_qiov); 1343 1344 return ret; 1345 } 1346 1347 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1348 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1349 size_t qiov_offset, int flags) 1350 { 1351 BlockDriverState *bs = child->bs; 1352 1353 /* Perform I/O through a temporary buffer so that users who scribble over 1354 * their read buffer while the operation is in progress do not end up 1355 * modifying the image file. This is critical for zero-copy guest I/O 1356 * where anything might happen inside guest memory. 1357 */ 1358 void *bounce_buffer = NULL; 1359 1360 BlockDriver *drv = bs->drv; 1361 int64_t cluster_offset; 1362 int64_t cluster_bytes; 1363 int64_t skip_bytes; 1364 int ret; 1365 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1366 BDRV_REQUEST_MAX_BYTES); 1367 int64_t progress = 0; 1368 bool skip_write; 1369 1370 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1371 1372 if (!drv) { 1373 return -ENOMEDIUM; 1374 } 1375 1376 /* 1377 * Do not write anything when the BDS is inactive. That is not 1378 * allowed, and it would not help. 1379 */ 1380 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1381 1382 /* FIXME We cannot require callers to have write permissions when all they 1383 * are doing is a read request. If we did things right, write permissions 1384 * would be obtained anyway, but internally by the copy-on-read code. As 1385 * long as it is implemented here rather than in a separate filter driver, 1386 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1387 * it could request permissions. Therefore we have to bypass the permission 1388 * system for the moment. */ 1389 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1390 1391 /* Cover entire cluster so no additional backing file I/O is required when 1392 * allocating cluster in the image file. Note that this value may exceed 1393 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1394 * is one reason we loop rather than doing it all at once. 1395 */ 1396 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1397 skip_bytes = offset - cluster_offset; 1398 1399 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1400 cluster_offset, cluster_bytes); 1401 1402 while (cluster_bytes) { 1403 int64_t pnum; 1404 1405 if (skip_write) { 1406 ret = 1; /* "already allocated", so nothing will be copied */ 1407 pnum = MIN(cluster_bytes, max_transfer); 1408 } else { 1409 ret = bdrv_is_allocated(bs, cluster_offset, 1410 MIN(cluster_bytes, max_transfer), &pnum); 1411 if (ret < 0) { 1412 /* 1413 * Safe to treat errors in querying allocation as if 1414 * unallocated; we'll probably fail again soon on the 1415 * read, but at least that will set a decent errno. 1416 */ 1417 pnum = MIN(cluster_bytes, max_transfer); 1418 } 1419 1420 /* Stop at EOF if the image ends in the middle of the cluster */ 1421 if (ret == 0 && pnum == 0) { 1422 assert(progress >= bytes); 1423 break; 1424 } 1425 1426 assert(skip_bytes < pnum); 1427 } 1428 1429 if (ret <= 0) { 1430 QEMUIOVector local_qiov; 1431 1432 /* Must copy-on-read; use the bounce buffer */ 1433 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1434 if (!bounce_buffer) { 1435 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1436 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1437 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1438 1439 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1440 if (!bounce_buffer) { 1441 ret = -ENOMEM; 1442 goto err; 1443 } 1444 } 1445 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1446 1447 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1448 &local_qiov, 0, 0); 1449 if (ret < 0) { 1450 goto err; 1451 } 1452 1453 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1454 if (drv->bdrv_co_pwrite_zeroes && 1455 buffer_is_zero(bounce_buffer, pnum)) { 1456 /* FIXME: Should we (perhaps conditionally) be setting 1457 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1458 * that still correctly reads as zero? */ 1459 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1460 BDRV_REQ_WRITE_UNCHANGED); 1461 } else { 1462 /* This does not change the data on the disk, it is not 1463 * necessary to flush even in cache=writethrough mode. 1464 */ 1465 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1466 &local_qiov, 0, 1467 BDRV_REQ_WRITE_UNCHANGED); 1468 } 1469 1470 if (ret < 0) { 1471 /* It might be okay to ignore write errors for guest 1472 * requests. If this is a deliberate copy-on-read 1473 * then we don't want to ignore the error. Simply 1474 * report it in all cases. 1475 */ 1476 goto err; 1477 } 1478 1479 if (!(flags & BDRV_REQ_PREFETCH)) { 1480 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1481 bounce_buffer + skip_bytes, 1482 MIN(pnum - skip_bytes, bytes - progress)); 1483 } 1484 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1485 /* Read directly into the destination */ 1486 ret = bdrv_driver_preadv(bs, offset + progress, 1487 MIN(pnum - skip_bytes, bytes - progress), 1488 qiov, qiov_offset + progress, 0); 1489 if (ret < 0) { 1490 goto err; 1491 } 1492 } 1493 1494 cluster_offset += pnum; 1495 cluster_bytes -= pnum; 1496 progress += pnum - skip_bytes; 1497 skip_bytes = 0; 1498 } 1499 ret = 0; 1500 1501 err: 1502 qemu_vfree(bounce_buffer); 1503 return ret; 1504 } 1505 1506 /* 1507 * Forwards an already correctly aligned request to the BlockDriver. This 1508 * handles copy on read, zeroing after EOF, and fragmentation of large 1509 * reads; any other features must be implemented by the caller. 1510 */ 1511 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1512 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1513 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1514 { 1515 BlockDriverState *bs = child->bs; 1516 int64_t total_bytes, max_bytes; 1517 int ret = 0; 1518 int64_t bytes_remaining = bytes; 1519 int max_transfer; 1520 1521 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1522 assert(is_power_of_2(align)); 1523 assert((offset & (align - 1)) == 0); 1524 assert((bytes & (align - 1)) == 0); 1525 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1526 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1527 align); 1528 1529 /* TODO: We would need a per-BDS .supported_read_flags and 1530 * potential fallback support, if we ever implement any read flags 1531 * to pass through to drivers. For now, there aren't any 1532 * passthrough flags. */ 1533 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH))); 1534 1535 /* Handle Copy on Read and associated serialisation */ 1536 if (flags & BDRV_REQ_COPY_ON_READ) { 1537 /* If we touch the same cluster it counts as an overlap. This 1538 * guarantees that allocating writes will be serialized and not race 1539 * with each other for the same cluster. For example, in copy-on-read 1540 * it ensures that the CoR read and write operations are atomic and 1541 * guest writes cannot interleave between them. */ 1542 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1543 } else { 1544 bdrv_wait_serialising_requests(req); 1545 } 1546 1547 if (flags & BDRV_REQ_COPY_ON_READ) { 1548 int64_t pnum; 1549 1550 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1551 flags &= ~BDRV_REQ_COPY_ON_READ; 1552 1553 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1554 if (ret < 0) { 1555 goto out; 1556 } 1557 1558 if (!ret || pnum != bytes) { 1559 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1560 qiov, qiov_offset, flags); 1561 goto out; 1562 } else if (flags & BDRV_REQ_PREFETCH) { 1563 goto out; 1564 } 1565 } 1566 1567 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1568 total_bytes = bdrv_getlength(bs); 1569 if (total_bytes < 0) { 1570 ret = total_bytes; 1571 goto out; 1572 } 1573 1574 assert(!(flags & ~bs->supported_read_flags)); 1575 1576 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1577 if (bytes <= max_bytes && bytes <= max_transfer) { 1578 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1579 goto out; 1580 } 1581 1582 while (bytes_remaining) { 1583 int64_t num; 1584 1585 if (max_bytes) { 1586 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1587 assert(num); 1588 1589 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1590 num, qiov, 1591 qiov_offset + bytes - bytes_remaining, 1592 flags); 1593 max_bytes -= num; 1594 } else { 1595 num = bytes_remaining; 1596 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1597 0, bytes_remaining); 1598 } 1599 if (ret < 0) { 1600 goto out; 1601 } 1602 bytes_remaining -= num; 1603 } 1604 1605 out: 1606 return ret < 0 ? ret : 0; 1607 } 1608 1609 /* 1610 * Request padding 1611 * 1612 * |<---- align ----->| |<----- align ---->| 1613 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1614 * | | | | | | 1615 * -*----------$-------*-------- ... --------*-----$------------*--- 1616 * | | | | | | 1617 * | offset | | end | 1618 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1619 * [buf ... ) [tail_buf ) 1620 * 1621 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1622 * is placed at the beginning of @buf and @tail at the @end. 1623 * 1624 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1625 * around tail, if tail exists. 1626 * 1627 * @merge_reads is true for small requests, 1628 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1629 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1630 */ 1631 typedef struct BdrvRequestPadding { 1632 uint8_t *buf; 1633 size_t buf_len; 1634 uint8_t *tail_buf; 1635 size_t head; 1636 size_t tail; 1637 bool merge_reads; 1638 QEMUIOVector local_qiov; 1639 } BdrvRequestPadding; 1640 1641 static bool bdrv_init_padding(BlockDriverState *bs, 1642 int64_t offset, int64_t bytes, 1643 BdrvRequestPadding *pad) 1644 { 1645 int64_t align = bs->bl.request_alignment; 1646 int64_t sum; 1647 1648 bdrv_check_request(offset, bytes, &error_abort); 1649 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1650 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1651 1652 memset(pad, 0, sizeof(*pad)); 1653 1654 pad->head = offset & (align - 1); 1655 pad->tail = ((offset + bytes) & (align - 1)); 1656 if (pad->tail) { 1657 pad->tail = align - pad->tail; 1658 } 1659 1660 if (!pad->head && !pad->tail) { 1661 return false; 1662 } 1663 1664 assert(bytes); /* Nothing good in aligning zero-length requests */ 1665 1666 sum = pad->head + bytes + pad->tail; 1667 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1668 pad->buf = qemu_blockalign(bs, pad->buf_len); 1669 pad->merge_reads = sum == pad->buf_len; 1670 if (pad->tail) { 1671 pad->tail_buf = pad->buf + pad->buf_len - align; 1672 } 1673 1674 return true; 1675 } 1676 1677 static int bdrv_padding_rmw_read(BdrvChild *child, 1678 BdrvTrackedRequest *req, 1679 BdrvRequestPadding *pad, 1680 bool zero_middle) 1681 { 1682 QEMUIOVector local_qiov; 1683 BlockDriverState *bs = child->bs; 1684 uint64_t align = bs->bl.request_alignment; 1685 int ret; 1686 1687 assert(req->serialising && pad->buf); 1688 1689 if (pad->head || pad->merge_reads) { 1690 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1691 1692 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1693 1694 if (pad->head) { 1695 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1696 } 1697 if (pad->merge_reads && pad->tail) { 1698 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1699 } 1700 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1701 align, &local_qiov, 0, 0); 1702 if (ret < 0) { 1703 return ret; 1704 } 1705 if (pad->head) { 1706 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1707 } 1708 if (pad->merge_reads && pad->tail) { 1709 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1710 } 1711 1712 if (pad->merge_reads) { 1713 goto zero_mem; 1714 } 1715 } 1716 1717 if (pad->tail) { 1718 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1719 1720 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1721 ret = bdrv_aligned_preadv( 1722 child, req, 1723 req->overlap_offset + req->overlap_bytes - align, 1724 align, align, &local_qiov, 0, 0); 1725 if (ret < 0) { 1726 return ret; 1727 } 1728 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1729 } 1730 1731 zero_mem: 1732 if (zero_middle) { 1733 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1734 } 1735 1736 return 0; 1737 } 1738 1739 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1740 { 1741 if (pad->buf) { 1742 qemu_vfree(pad->buf); 1743 qemu_iovec_destroy(&pad->local_qiov); 1744 } 1745 memset(pad, 0, sizeof(*pad)); 1746 } 1747 1748 /* 1749 * bdrv_pad_request 1750 * 1751 * Exchange request parameters with padded request if needed. Don't include RMW 1752 * read of padding, bdrv_padding_rmw_read() should be called separately if 1753 * needed. 1754 * 1755 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1756 * - on function start they represent original request 1757 * - on failure or when padding is not needed they are unchanged 1758 * - on success when padding is needed they represent padded request 1759 */ 1760 static int bdrv_pad_request(BlockDriverState *bs, 1761 QEMUIOVector **qiov, size_t *qiov_offset, 1762 int64_t *offset, int64_t *bytes, 1763 BdrvRequestPadding *pad, bool *padded) 1764 { 1765 int ret; 1766 1767 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1768 1769 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1770 if (padded) { 1771 *padded = false; 1772 } 1773 return 0; 1774 } 1775 1776 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1777 *qiov, *qiov_offset, *bytes, 1778 pad->buf + pad->buf_len - pad->tail, 1779 pad->tail); 1780 if (ret < 0) { 1781 bdrv_padding_destroy(pad); 1782 return ret; 1783 } 1784 *bytes += pad->head + pad->tail; 1785 *offset -= pad->head; 1786 *qiov = &pad->local_qiov; 1787 *qiov_offset = 0; 1788 if (padded) { 1789 *padded = true; 1790 } 1791 1792 return 0; 1793 } 1794 1795 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1796 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1797 BdrvRequestFlags flags) 1798 { 1799 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1800 } 1801 1802 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1803 int64_t offset, int64_t bytes, 1804 QEMUIOVector *qiov, size_t qiov_offset, 1805 BdrvRequestFlags flags) 1806 { 1807 BlockDriverState *bs = child->bs; 1808 BdrvTrackedRequest req; 1809 BdrvRequestPadding pad; 1810 int ret; 1811 1812 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1813 1814 if (!bdrv_is_inserted(bs)) { 1815 return -ENOMEDIUM; 1816 } 1817 1818 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1819 if (ret < 0) { 1820 return ret; 1821 } 1822 1823 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1824 /* 1825 * Aligning zero request is nonsense. Even if driver has special meaning 1826 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1827 * it to driver due to request_alignment. 1828 * 1829 * Still, no reason to return an error if someone do unaligned 1830 * zero-length read occasionally. 1831 */ 1832 return 0; 1833 } 1834 1835 bdrv_inc_in_flight(bs); 1836 1837 /* Don't do copy-on-read if we read data before write operation */ 1838 if (qatomic_read(&bs->copy_on_read)) { 1839 flags |= BDRV_REQ_COPY_ON_READ; 1840 } 1841 1842 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 1843 NULL); 1844 if (ret < 0) { 1845 goto fail; 1846 } 1847 1848 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1849 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1850 bs->bl.request_alignment, 1851 qiov, qiov_offset, flags); 1852 tracked_request_end(&req); 1853 bdrv_padding_destroy(&pad); 1854 1855 fail: 1856 bdrv_dec_in_flight(bs); 1857 1858 return ret; 1859 } 1860 1861 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1862 int64_t offset, int64_t bytes, BdrvRequestFlags flags) 1863 { 1864 BlockDriver *drv = bs->drv; 1865 QEMUIOVector qiov; 1866 void *buf = NULL; 1867 int ret = 0; 1868 bool need_flush = false; 1869 int head = 0; 1870 int tail = 0; 1871 1872 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1873 INT64_MAX); 1874 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1875 bs->bl.request_alignment); 1876 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1877 1878 bdrv_check_request(offset, bytes, &error_abort); 1879 1880 if (!drv) { 1881 return -ENOMEDIUM; 1882 } 1883 1884 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1885 return -ENOTSUP; 1886 } 1887 1888 /* Invalidate the cached block-status data range if this write overlaps */ 1889 bdrv_bsc_invalidate_range(bs, offset, bytes); 1890 1891 assert(alignment % bs->bl.request_alignment == 0); 1892 head = offset % alignment; 1893 tail = (offset + bytes) % alignment; 1894 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1895 assert(max_write_zeroes >= bs->bl.request_alignment); 1896 1897 while (bytes > 0 && !ret) { 1898 int64_t num = bytes; 1899 1900 /* Align request. Block drivers can expect the "bulk" of the request 1901 * to be aligned, and that unaligned requests do not cross cluster 1902 * boundaries. 1903 */ 1904 if (head) { 1905 /* Make a small request up to the first aligned sector. For 1906 * convenience, limit this request to max_transfer even if 1907 * we don't need to fall back to writes. */ 1908 num = MIN(MIN(bytes, max_transfer), alignment - head); 1909 head = (head + num) % alignment; 1910 assert(num < max_write_zeroes); 1911 } else if (tail && num > alignment) { 1912 /* Shorten the request to the last aligned sector. */ 1913 num -= tail; 1914 } 1915 1916 /* limit request size */ 1917 if (num > max_write_zeroes) { 1918 num = max_write_zeroes; 1919 } 1920 1921 ret = -ENOTSUP; 1922 /* First try the efficient write zeroes operation */ 1923 if (drv->bdrv_co_pwrite_zeroes) { 1924 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1925 flags & bs->supported_zero_flags); 1926 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1927 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1928 need_flush = true; 1929 } 1930 } else { 1931 assert(!bs->supported_zero_flags); 1932 } 1933 1934 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1935 /* Fall back to bounce buffer if write zeroes is unsupported */ 1936 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1937 1938 if ((flags & BDRV_REQ_FUA) && 1939 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1940 /* No need for bdrv_driver_pwrite() to do a fallback 1941 * flush on each chunk; use just one at the end */ 1942 write_flags &= ~BDRV_REQ_FUA; 1943 need_flush = true; 1944 } 1945 num = MIN(num, max_transfer); 1946 if (buf == NULL) { 1947 buf = qemu_try_blockalign0(bs, num); 1948 if (buf == NULL) { 1949 ret = -ENOMEM; 1950 goto fail; 1951 } 1952 } 1953 qemu_iovec_init_buf(&qiov, buf, num); 1954 1955 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1956 1957 /* Keep bounce buffer around if it is big enough for all 1958 * all future requests. 1959 */ 1960 if (num < max_transfer) { 1961 qemu_vfree(buf); 1962 buf = NULL; 1963 } 1964 } 1965 1966 offset += num; 1967 bytes -= num; 1968 } 1969 1970 fail: 1971 if (ret == 0 && need_flush) { 1972 ret = bdrv_co_flush(bs); 1973 } 1974 qemu_vfree(buf); 1975 return ret; 1976 } 1977 1978 static inline int coroutine_fn 1979 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1980 BdrvTrackedRequest *req, int flags) 1981 { 1982 BlockDriverState *bs = child->bs; 1983 1984 bdrv_check_request(offset, bytes, &error_abort); 1985 1986 if (bdrv_is_read_only(bs)) { 1987 return -EPERM; 1988 } 1989 1990 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1991 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1992 assert(!(flags & ~BDRV_REQ_MASK)); 1993 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1994 1995 if (flags & BDRV_REQ_SERIALISING) { 1996 QEMU_LOCK_GUARD(&bs->reqs_lock); 1997 1998 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1999 2000 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 2001 return -EBUSY; 2002 } 2003 2004 bdrv_wait_serialising_requests_locked(req); 2005 } else { 2006 bdrv_wait_serialising_requests(req); 2007 } 2008 2009 assert(req->overlap_offset <= offset); 2010 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 2011 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 2012 child->perm & BLK_PERM_RESIZE); 2013 2014 switch (req->type) { 2015 case BDRV_TRACKED_WRITE: 2016 case BDRV_TRACKED_DISCARD: 2017 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 2018 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 2019 } else { 2020 assert(child->perm & BLK_PERM_WRITE); 2021 } 2022 bdrv_write_threshold_check_write(bs, offset, bytes); 2023 return 0; 2024 case BDRV_TRACKED_TRUNCATE: 2025 assert(child->perm & BLK_PERM_RESIZE); 2026 return 0; 2027 default: 2028 abort(); 2029 } 2030 } 2031 2032 static inline void coroutine_fn 2033 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2034 BdrvTrackedRequest *req, int ret) 2035 { 2036 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2037 BlockDriverState *bs = child->bs; 2038 2039 bdrv_check_request(offset, bytes, &error_abort); 2040 2041 qatomic_inc(&bs->write_gen); 2042 2043 /* 2044 * Discard cannot extend the image, but in error handling cases, such as 2045 * when reverting a qcow2 cluster allocation, the discarded range can pass 2046 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2047 * here. Instead, just skip it, since semantically a discard request 2048 * beyond EOF cannot expand the image anyway. 2049 */ 2050 if (ret == 0 && 2051 (req->type == BDRV_TRACKED_TRUNCATE || 2052 end_sector > bs->total_sectors) && 2053 req->type != BDRV_TRACKED_DISCARD) { 2054 bs->total_sectors = end_sector; 2055 bdrv_parent_cb_resize(bs); 2056 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2057 } 2058 if (req->bytes) { 2059 switch (req->type) { 2060 case BDRV_TRACKED_WRITE: 2061 stat64_max(&bs->wr_highest_offset, offset + bytes); 2062 /* fall through, to set dirty bits */ 2063 case BDRV_TRACKED_DISCARD: 2064 bdrv_set_dirty(bs, offset, bytes); 2065 break; 2066 default: 2067 break; 2068 } 2069 } 2070 } 2071 2072 /* 2073 * Forwards an already correctly aligned write request to the BlockDriver, 2074 * after possibly fragmenting it. 2075 */ 2076 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 2077 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 2078 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, 2079 BdrvRequestFlags flags) 2080 { 2081 BlockDriverState *bs = child->bs; 2082 BlockDriver *drv = bs->drv; 2083 int ret; 2084 2085 int64_t bytes_remaining = bytes; 2086 int max_transfer; 2087 2088 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2089 2090 if (!drv) { 2091 return -ENOMEDIUM; 2092 } 2093 2094 if (bdrv_has_readonly_bitmaps(bs)) { 2095 return -EPERM; 2096 } 2097 2098 assert(is_power_of_2(align)); 2099 assert((offset & (align - 1)) == 0); 2100 assert((bytes & (align - 1)) == 0); 2101 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2102 align); 2103 2104 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2105 2106 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2107 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2108 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2109 flags |= BDRV_REQ_ZERO_WRITE; 2110 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2111 flags |= BDRV_REQ_MAY_UNMAP; 2112 } 2113 } 2114 2115 if (ret < 0) { 2116 /* Do nothing, write notifier decided to fail this request */ 2117 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2118 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2119 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2120 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2121 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2122 qiov, qiov_offset); 2123 } else if (bytes <= max_transfer) { 2124 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2125 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2126 } else { 2127 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2128 while (bytes_remaining) { 2129 int num = MIN(bytes_remaining, max_transfer); 2130 int local_flags = flags; 2131 2132 assert(num); 2133 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2134 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2135 /* If FUA is going to be emulated by flush, we only 2136 * need to flush on the last iteration */ 2137 local_flags &= ~BDRV_REQ_FUA; 2138 } 2139 2140 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2141 num, qiov, 2142 qiov_offset + bytes - bytes_remaining, 2143 local_flags); 2144 if (ret < 0) { 2145 break; 2146 } 2147 bytes_remaining -= num; 2148 } 2149 } 2150 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 2151 2152 if (ret >= 0) { 2153 ret = 0; 2154 } 2155 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2156 2157 return ret; 2158 } 2159 2160 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 2161 int64_t offset, 2162 int64_t bytes, 2163 BdrvRequestFlags flags, 2164 BdrvTrackedRequest *req) 2165 { 2166 BlockDriverState *bs = child->bs; 2167 QEMUIOVector local_qiov; 2168 uint64_t align = bs->bl.request_alignment; 2169 int ret = 0; 2170 bool padding; 2171 BdrvRequestPadding pad; 2172 2173 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2174 if (padding) { 2175 bdrv_make_request_serialising(req, align); 2176 2177 bdrv_padding_rmw_read(child, req, &pad, true); 2178 2179 if (pad.head || pad.merge_reads) { 2180 int64_t aligned_offset = offset & ~(align - 1); 2181 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2182 2183 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2184 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2185 align, &local_qiov, 0, 2186 flags & ~BDRV_REQ_ZERO_WRITE); 2187 if (ret < 0 || pad.merge_reads) { 2188 /* Error or all work is done */ 2189 goto out; 2190 } 2191 offset += write_bytes - pad.head; 2192 bytes -= write_bytes - pad.head; 2193 } 2194 } 2195 2196 assert(!bytes || (offset & (align - 1)) == 0); 2197 if (bytes >= align) { 2198 /* Write the aligned part in the middle. */ 2199 int64_t aligned_bytes = bytes & ~(align - 1); 2200 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2201 NULL, 0, flags); 2202 if (ret < 0) { 2203 goto out; 2204 } 2205 bytes -= aligned_bytes; 2206 offset += aligned_bytes; 2207 } 2208 2209 assert(!bytes || (offset & (align - 1)) == 0); 2210 if (bytes) { 2211 assert(align == pad.tail + bytes); 2212 2213 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2214 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2215 &local_qiov, 0, 2216 flags & ~BDRV_REQ_ZERO_WRITE); 2217 } 2218 2219 out: 2220 bdrv_padding_destroy(&pad); 2221 2222 return ret; 2223 } 2224 2225 /* 2226 * Handle a write request in coroutine context 2227 */ 2228 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2229 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2230 BdrvRequestFlags flags) 2231 { 2232 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2233 } 2234 2235 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2236 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2237 BdrvRequestFlags flags) 2238 { 2239 BlockDriverState *bs = child->bs; 2240 BdrvTrackedRequest req; 2241 uint64_t align = bs->bl.request_alignment; 2242 BdrvRequestPadding pad; 2243 int ret; 2244 bool padded = false; 2245 2246 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2247 2248 if (!bdrv_is_inserted(bs)) { 2249 return -ENOMEDIUM; 2250 } 2251 2252 if (flags & BDRV_REQ_ZERO_WRITE) { 2253 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2254 } else { 2255 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2256 } 2257 if (ret < 0) { 2258 return ret; 2259 } 2260 2261 /* If the request is misaligned then we can't make it efficient */ 2262 if ((flags & BDRV_REQ_NO_FALLBACK) && 2263 !QEMU_IS_ALIGNED(offset | bytes, align)) 2264 { 2265 return -ENOTSUP; 2266 } 2267 2268 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2269 /* 2270 * Aligning zero request is nonsense. Even if driver has special meaning 2271 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2272 * it to driver due to request_alignment. 2273 * 2274 * Still, no reason to return an error if someone do unaligned 2275 * zero-length write occasionally. 2276 */ 2277 return 0; 2278 } 2279 2280 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2281 /* 2282 * Pad request for following read-modify-write cycle. 2283 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2284 * alignment only if there is no ZERO flag. 2285 */ 2286 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 2287 &padded); 2288 if (ret < 0) { 2289 return ret; 2290 } 2291 } 2292 2293 bdrv_inc_in_flight(bs); 2294 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2295 2296 if (flags & BDRV_REQ_ZERO_WRITE) { 2297 assert(!padded); 2298 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2299 goto out; 2300 } 2301 2302 if (padded) { 2303 /* 2304 * Request was unaligned to request_alignment and therefore 2305 * padded. We are going to do read-modify-write, and must 2306 * serialize the request to prevent interactions of the 2307 * widened region with other transactions. 2308 */ 2309 bdrv_make_request_serialising(&req, align); 2310 bdrv_padding_rmw_read(child, &req, &pad, false); 2311 } 2312 2313 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2314 qiov, qiov_offset, flags); 2315 2316 bdrv_padding_destroy(&pad); 2317 2318 out: 2319 tracked_request_end(&req); 2320 bdrv_dec_in_flight(bs); 2321 2322 return ret; 2323 } 2324 2325 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2326 int64_t bytes, BdrvRequestFlags flags) 2327 { 2328 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2329 2330 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2331 flags &= ~BDRV_REQ_MAY_UNMAP; 2332 } 2333 2334 return bdrv_co_pwritev(child, offset, bytes, NULL, 2335 BDRV_REQ_ZERO_WRITE | flags); 2336 } 2337 2338 /* 2339 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2340 */ 2341 int bdrv_flush_all(void) 2342 { 2343 BdrvNextIterator it; 2344 BlockDriverState *bs = NULL; 2345 int result = 0; 2346 2347 /* 2348 * bdrv queue is managed by record/replay, 2349 * creating new flush request for stopping 2350 * the VM may break the determinism 2351 */ 2352 if (replay_events_enabled()) { 2353 return result; 2354 } 2355 2356 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2357 AioContext *aio_context = bdrv_get_aio_context(bs); 2358 int ret; 2359 2360 aio_context_acquire(aio_context); 2361 ret = bdrv_flush(bs); 2362 if (ret < 0 && !result) { 2363 result = ret; 2364 } 2365 aio_context_release(aio_context); 2366 } 2367 2368 return result; 2369 } 2370 2371 /* 2372 * Returns the allocation status of the specified sectors. 2373 * Drivers not implementing the functionality are assumed to not support 2374 * backing files, hence all their sectors are reported as allocated. 2375 * 2376 * If 'want_zero' is true, the caller is querying for mapping 2377 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2378 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2379 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2380 * 2381 * If 'offset' is beyond the end of the disk image the return value is 2382 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2383 * 2384 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2385 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2386 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2387 * 2388 * 'pnum' is set to the number of bytes (including and immediately 2389 * following the specified offset) that are easily known to be in the 2390 * same allocated/unallocated state. Note that a second call starting 2391 * at the original offset plus returned pnum may have the same status. 2392 * The returned value is non-zero on success except at end-of-file. 2393 * 2394 * Returns negative errno on failure. Otherwise, if the 2395 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2396 * set to the host mapping and BDS corresponding to the guest offset. 2397 */ 2398 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2399 bool want_zero, 2400 int64_t offset, int64_t bytes, 2401 int64_t *pnum, int64_t *map, 2402 BlockDriverState **file) 2403 { 2404 int64_t total_size; 2405 int64_t n; /* bytes */ 2406 int ret; 2407 int64_t local_map = 0; 2408 BlockDriverState *local_file = NULL; 2409 int64_t aligned_offset, aligned_bytes; 2410 uint32_t align; 2411 bool has_filtered_child; 2412 2413 assert(pnum); 2414 *pnum = 0; 2415 total_size = bdrv_getlength(bs); 2416 if (total_size < 0) { 2417 ret = total_size; 2418 goto early_out; 2419 } 2420 2421 if (offset >= total_size) { 2422 ret = BDRV_BLOCK_EOF; 2423 goto early_out; 2424 } 2425 if (!bytes) { 2426 ret = 0; 2427 goto early_out; 2428 } 2429 2430 n = total_size - offset; 2431 if (n < bytes) { 2432 bytes = n; 2433 } 2434 2435 /* Must be non-NULL or bdrv_getlength() would have failed */ 2436 assert(bs->drv); 2437 has_filtered_child = bdrv_filter_child(bs); 2438 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2439 *pnum = bytes; 2440 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2441 if (offset + bytes == total_size) { 2442 ret |= BDRV_BLOCK_EOF; 2443 } 2444 if (bs->drv->protocol_name) { 2445 ret |= BDRV_BLOCK_OFFSET_VALID; 2446 local_map = offset; 2447 local_file = bs; 2448 } 2449 goto early_out; 2450 } 2451 2452 bdrv_inc_in_flight(bs); 2453 2454 /* Round out to request_alignment boundaries */ 2455 align = bs->bl.request_alignment; 2456 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2457 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2458 2459 if (bs->drv->bdrv_co_block_status) { 2460 /* 2461 * Use the block-status cache only for protocol nodes: Format 2462 * drivers are generally quick to inquire the status, but protocol 2463 * drivers often need to get information from outside of qemu, so 2464 * we do not have control over the actual implementation. There 2465 * have been cases where inquiring the status took an unreasonably 2466 * long time, and we can do nothing in qemu to fix it. 2467 * This is especially problematic for images with large data areas, 2468 * because finding the few holes in them and giving them special 2469 * treatment does not gain much performance. Therefore, we try to 2470 * cache the last-identified data region. 2471 * 2472 * Second, limiting ourselves to protocol nodes allows us to assume 2473 * the block status for data regions to be DATA | OFFSET_VALID, and 2474 * that the host offset is the same as the guest offset. 2475 * 2476 * Note that it is possible that external writers zero parts of 2477 * the cached regions without the cache being invalidated, and so 2478 * we may report zeroes as data. This is not catastrophic, 2479 * however, because reporting zeroes as data is fine. 2480 */ 2481 if (QLIST_EMPTY(&bs->children) && 2482 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2483 { 2484 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2485 local_file = bs; 2486 local_map = aligned_offset; 2487 } else { 2488 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2489 aligned_bytes, pnum, &local_map, 2490 &local_file); 2491 2492 /* 2493 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2494 * the cache is queried above. Technically, we do not need to check 2495 * it here; the worst that can happen is that we fill the cache for 2496 * non-protocol nodes, and then it is never used. However, filling 2497 * the cache requires an RCU update, so double check here to avoid 2498 * such an update if possible. 2499 */ 2500 if (ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2501 QLIST_EMPTY(&bs->children)) 2502 { 2503 /* 2504 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2505 * returned local_map value must be the same as the offset we 2506 * have passed (aligned_offset), and local_bs must be the node 2507 * itself. 2508 * Assert this, because we follow this rule when reading from 2509 * the cache (see the `local_file = bs` and 2510 * `local_map = aligned_offset` assignments above), and the 2511 * result the cache delivers must be the same as the driver 2512 * would deliver. 2513 */ 2514 assert(local_file == bs); 2515 assert(local_map == aligned_offset); 2516 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2517 } 2518 } 2519 } else { 2520 /* Default code for filters */ 2521 2522 local_file = bdrv_filter_bs(bs); 2523 assert(local_file); 2524 2525 *pnum = aligned_bytes; 2526 local_map = aligned_offset; 2527 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2528 } 2529 if (ret < 0) { 2530 *pnum = 0; 2531 goto out; 2532 } 2533 2534 /* 2535 * The driver's result must be a non-zero multiple of request_alignment. 2536 * Clamp pnum and adjust map to original request. 2537 */ 2538 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2539 align > offset - aligned_offset); 2540 if (ret & BDRV_BLOCK_RECURSE) { 2541 assert(ret & BDRV_BLOCK_DATA); 2542 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2543 assert(!(ret & BDRV_BLOCK_ZERO)); 2544 } 2545 2546 *pnum -= offset - aligned_offset; 2547 if (*pnum > bytes) { 2548 *pnum = bytes; 2549 } 2550 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2551 local_map += offset - aligned_offset; 2552 } 2553 2554 if (ret & BDRV_BLOCK_RAW) { 2555 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2556 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2557 *pnum, pnum, &local_map, &local_file); 2558 goto out; 2559 } 2560 2561 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2562 ret |= BDRV_BLOCK_ALLOCATED; 2563 } else if (bs->drv->supports_backing) { 2564 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2565 2566 if (!cow_bs) { 2567 ret |= BDRV_BLOCK_ZERO; 2568 } else if (want_zero) { 2569 int64_t size2 = bdrv_getlength(cow_bs); 2570 2571 if (size2 >= 0 && offset >= size2) { 2572 ret |= BDRV_BLOCK_ZERO; 2573 } 2574 } 2575 } 2576 2577 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2578 local_file && local_file != bs && 2579 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2580 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2581 int64_t file_pnum; 2582 int ret2; 2583 2584 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2585 *pnum, &file_pnum, NULL, NULL); 2586 if (ret2 >= 0) { 2587 /* Ignore errors. This is just providing extra information, it 2588 * is useful but not necessary. 2589 */ 2590 if (ret2 & BDRV_BLOCK_EOF && 2591 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2592 /* 2593 * It is valid for the format block driver to read 2594 * beyond the end of the underlying file's current 2595 * size; such areas read as zero. 2596 */ 2597 ret |= BDRV_BLOCK_ZERO; 2598 } else { 2599 /* Limit request to the range reported by the protocol driver */ 2600 *pnum = file_pnum; 2601 ret |= (ret2 & BDRV_BLOCK_ZERO); 2602 } 2603 } 2604 } 2605 2606 out: 2607 bdrv_dec_in_flight(bs); 2608 if (ret >= 0 && offset + *pnum == total_size) { 2609 ret |= BDRV_BLOCK_EOF; 2610 } 2611 early_out: 2612 if (file) { 2613 *file = local_file; 2614 } 2615 if (map) { 2616 *map = local_map; 2617 } 2618 return ret; 2619 } 2620 2621 int coroutine_fn 2622 bdrv_co_common_block_status_above(BlockDriverState *bs, 2623 BlockDriverState *base, 2624 bool include_base, 2625 bool want_zero, 2626 int64_t offset, 2627 int64_t bytes, 2628 int64_t *pnum, 2629 int64_t *map, 2630 BlockDriverState **file, 2631 int *depth) 2632 { 2633 int ret; 2634 BlockDriverState *p; 2635 int64_t eof = 0; 2636 int dummy; 2637 2638 assert(!include_base || base); /* Can't include NULL base */ 2639 2640 if (!depth) { 2641 depth = &dummy; 2642 } 2643 *depth = 0; 2644 2645 if (!include_base && bs == base) { 2646 *pnum = bytes; 2647 return 0; 2648 } 2649 2650 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2651 ++*depth; 2652 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2653 return ret; 2654 } 2655 2656 if (ret & BDRV_BLOCK_EOF) { 2657 eof = offset + *pnum; 2658 } 2659 2660 assert(*pnum <= bytes); 2661 bytes = *pnum; 2662 2663 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2664 p = bdrv_filter_or_cow_bs(p)) 2665 { 2666 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2667 file); 2668 ++*depth; 2669 if (ret < 0) { 2670 return ret; 2671 } 2672 if (*pnum == 0) { 2673 /* 2674 * The top layer deferred to this layer, and because this layer is 2675 * short, any zeroes that we synthesize beyond EOF behave as if they 2676 * were allocated at this layer. 2677 * 2678 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2679 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2680 * below. 2681 */ 2682 assert(ret & BDRV_BLOCK_EOF); 2683 *pnum = bytes; 2684 if (file) { 2685 *file = p; 2686 } 2687 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2688 break; 2689 } 2690 if (ret & BDRV_BLOCK_ALLOCATED) { 2691 /* 2692 * We've found the node and the status, we must break. 2693 * 2694 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2695 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2696 * below. 2697 */ 2698 ret &= ~BDRV_BLOCK_EOF; 2699 break; 2700 } 2701 2702 if (p == base) { 2703 assert(include_base); 2704 break; 2705 } 2706 2707 /* 2708 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2709 * let's continue the diving. 2710 */ 2711 assert(*pnum <= bytes); 2712 bytes = *pnum; 2713 } 2714 2715 if (offset + *pnum == eof) { 2716 ret |= BDRV_BLOCK_EOF; 2717 } 2718 2719 return ret; 2720 } 2721 2722 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2723 int64_t offset, int64_t bytes, int64_t *pnum, 2724 int64_t *map, BlockDriverState **file) 2725 { 2726 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2727 pnum, map, file, NULL); 2728 } 2729 2730 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2731 int64_t *pnum, int64_t *map, BlockDriverState **file) 2732 { 2733 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2734 offset, bytes, pnum, map, file); 2735 } 2736 2737 /* 2738 * Check @bs (and its backing chain) to see if the range defined 2739 * by @offset and @bytes is known to read as zeroes. 2740 * Return 1 if that is the case, 0 otherwise and -errno on error. 2741 * This test is meant to be fast rather than accurate so returning 0 2742 * does not guarantee non-zero data. 2743 */ 2744 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2745 int64_t bytes) 2746 { 2747 int ret; 2748 int64_t pnum = bytes; 2749 2750 if (!bytes) { 2751 return 1; 2752 } 2753 2754 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset, 2755 bytes, &pnum, NULL, NULL, NULL); 2756 2757 if (ret < 0) { 2758 return ret; 2759 } 2760 2761 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2762 } 2763 2764 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2765 int64_t bytes, int64_t *pnum) 2766 { 2767 int ret; 2768 int64_t dummy; 2769 2770 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2771 bytes, pnum ? pnum : &dummy, NULL, 2772 NULL, NULL); 2773 if (ret < 0) { 2774 return ret; 2775 } 2776 return !!(ret & BDRV_BLOCK_ALLOCATED); 2777 } 2778 2779 /* 2780 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2781 * 2782 * Return a positive depth if (a prefix of) the given range is allocated 2783 * in any image between BASE and TOP (BASE is only included if include_base 2784 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2785 * BASE can be NULL to check if the given offset is allocated in any 2786 * image of the chain. Return 0 otherwise, or negative errno on 2787 * failure. 2788 * 2789 * 'pnum' is set to the number of bytes (including and immediately 2790 * following the specified offset) that are known to be in the same 2791 * allocated/unallocated state. Note that a subsequent call starting 2792 * at 'offset + *pnum' may return the same allocation status (in other 2793 * words, the result is not necessarily the maximum possible range); 2794 * but 'pnum' will only be 0 when end of file is reached. 2795 */ 2796 int bdrv_is_allocated_above(BlockDriverState *top, 2797 BlockDriverState *base, 2798 bool include_base, int64_t offset, 2799 int64_t bytes, int64_t *pnum) 2800 { 2801 int depth; 2802 int ret = bdrv_common_block_status_above(top, base, include_base, false, 2803 offset, bytes, pnum, NULL, NULL, 2804 &depth); 2805 if (ret < 0) { 2806 return ret; 2807 } 2808 2809 if (ret & BDRV_BLOCK_ALLOCATED) { 2810 return depth; 2811 } 2812 return 0; 2813 } 2814 2815 int coroutine_fn 2816 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2817 { 2818 BlockDriver *drv = bs->drv; 2819 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2820 int ret; 2821 2822 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2823 if (ret < 0) { 2824 return ret; 2825 } 2826 2827 if (!drv) { 2828 return -ENOMEDIUM; 2829 } 2830 2831 bdrv_inc_in_flight(bs); 2832 2833 if (drv->bdrv_load_vmstate) { 2834 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2835 } else if (child_bs) { 2836 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2837 } else { 2838 ret = -ENOTSUP; 2839 } 2840 2841 bdrv_dec_in_flight(bs); 2842 2843 return ret; 2844 } 2845 2846 int coroutine_fn 2847 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2848 { 2849 BlockDriver *drv = bs->drv; 2850 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2851 int ret; 2852 2853 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2854 if (ret < 0) { 2855 return ret; 2856 } 2857 2858 if (!drv) { 2859 return -ENOMEDIUM; 2860 } 2861 2862 bdrv_inc_in_flight(bs); 2863 2864 if (drv->bdrv_save_vmstate) { 2865 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2866 } else if (child_bs) { 2867 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2868 } else { 2869 ret = -ENOTSUP; 2870 } 2871 2872 bdrv_dec_in_flight(bs); 2873 2874 return ret; 2875 } 2876 2877 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2878 int64_t pos, int size) 2879 { 2880 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2881 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2882 2883 return ret < 0 ? ret : size; 2884 } 2885 2886 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2887 int64_t pos, int size) 2888 { 2889 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2890 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2891 2892 return ret < 0 ? ret : size; 2893 } 2894 2895 /**************************************************************/ 2896 /* async I/Os */ 2897 2898 void bdrv_aio_cancel(BlockAIOCB *acb) 2899 { 2900 qemu_aio_ref(acb); 2901 bdrv_aio_cancel_async(acb); 2902 while (acb->refcnt > 1) { 2903 if (acb->aiocb_info->get_aio_context) { 2904 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2905 } else if (acb->bs) { 2906 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2907 * assert that we're not using an I/O thread. Thread-safe 2908 * code should use bdrv_aio_cancel_async exclusively. 2909 */ 2910 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2911 aio_poll(bdrv_get_aio_context(acb->bs), true); 2912 } else { 2913 abort(); 2914 } 2915 } 2916 qemu_aio_unref(acb); 2917 } 2918 2919 /* Async version of aio cancel. The caller is not blocked if the acb implements 2920 * cancel_async, otherwise we do nothing and let the request normally complete. 2921 * In either case the completion callback must be called. */ 2922 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2923 { 2924 if (acb->aiocb_info->cancel_async) { 2925 acb->aiocb_info->cancel_async(acb); 2926 } 2927 } 2928 2929 /**************************************************************/ 2930 /* Coroutine block device emulation */ 2931 2932 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2933 { 2934 BdrvChild *primary_child = bdrv_primary_child(bs); 2935 BdrvChild *child; 2936 int current_gen; 2937 int ret = 0; 2938 2939 bdrv_inc_in_flight(bs); 2940 2941 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2942 bdrv_is_sg(bs)) { 2943 goto early_exit; 2944 } 2945 2946 qemu_co_mutex_lock(&bs->reqs_lock); 2947 current_gen = qatomic_read(&bs->write_gen); 2948 2949 /* Wait until any previous flushes are completed */ 2950 while (bs->active_flush_req) { 2951 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2952 } 2953 2954 /* Flushes reach this point in nondecreasing current_gen order. */ 2955 bs->active_flush_req = true; 2956 qemu_co_mutex_unlock(&bs->reqs_lock); 2957 2958 /* Write back all layers by calling one driver function */ 2959 if (bs->drv->bdrv_co_flush) { 2960 ret = bs->drv->bdrv_co_flush(bs); 2961 goto out; 2962 } 2963 2964 /* Write back cached data to the OS even with cache=unsafe */ 2965 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 2966 if (bs->drv->bdrv_co_flush_to_os) { 2967 ret = bs->drv->bdrv_co_flush_to_os(bs); 2968 if (ret < 0) { 2969 goto out; 2970 } 2971 } 2972 2973 /* But don't actually force it to the disk with cache=unsafe */ 2974 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2975 goto flush_children; 2976 } 2977 2978 /* Check if we really need to flush anything */ 2979 if (bs->flushed_gen == current_gen) { 2980 goto flush_children; 2981 } 2982 2983 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 2984 if (!bs->drv) { 2985 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2986 * (even in case of apparent success) */ 2987 ret = -ENOMEDIUM; 2988 goto out; 2989 } 2990 if (bs->drv->bdrv_co_flush_to_disk) { 2991 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2992 } else if (bs->drv->bdrv_aio_flush) { 2993 BlockAIOCB *acb; 2994 CoroutineIOCompletion co = { 2995 .coroutine = qemu_coroutine_self(), 2996 }; 2997 2998 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2999 if (acb == NULL) { 3000 ret = -EIO; 3001 } else { 3002 qemu_coroutine_yield(); 3003 ret = co.ret; 3004 } 3005 } else { 3006 /* 3007 * Some block drivers always operate in either writethrough or unsafe 3008 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3009 * know how the server works (because the behaviour is hardcoded or 3010 * depends on server-side configuration), so we can't ensure that 3011 * everything is safe on disk. Returning an error doesn't work because 3012 * that would break guests even if the server operates in writethrough 3013 * mode. 3014 * 3015 * Let's hope the user knows what he's doing. 3016 */ 3017 ret = 0; 3018 } 3019 3020 if (ret < 0) { 3021 goto out; 3022 } 3023 3024 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3025 * in the case of cache=unsafe, so there are no useless flushes. 3026 */ 3027 flush_children: 3028 ret = 0; 3029 QLIST_FOREACH(child, &bs->children, next) { 3030 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3031 int this_child_ret = bdrv_co_flush(child->bs); 3032 if (!ret) { 3033 ret = this_child_ret; 3034 } 3035 } 3036 } 3037 3038 out: 3039 /* Notify any pending flushes that we have completed */ 3040 if (ret == 0) { 3041 bs->flushed_gen = current_gen; 3042 } 3043 3044 qemu_co_mutex_lock(&bs->reqs_lock); 3045 bs->active_flush_req = false; 3046 /* Return value is ignored - it's ok if wait queue is empty */ 3047 qemu_co_queue_next(&bs->flush_queue); 3048 qemu_co_mutex_unlock(&bs->reqs_lock); 3049 3050 early_exit: 3051 bdrv_dec_in_flight(bs); 3052 return ret; 3053 } 3054 3055 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3056 int64_t bytes) 3057 { 3058 BdrvTrackedRequest req; 3059 int ret; 3060 int64_t max_pdiscard; 3061 int head, tail, align; 3062 BlockDriverState *bs = child->bs; 3063 3064 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 3065 return -ENOMEDIUM; 3066 } 3067 3068 if (bdrv_has_readonly_bitmaps(bs)) { 3069 return -EPERM; 3070 } 3071 3072 ret = bdrv_check_request(offset, bytes, NULL); 3073 if (ret < 0) { 3074 return ret; 3075 } 3076 3077 /* Do nothing if disabled. */ 3078 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3079 return 0; 3080 } 3081 3082 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 3083 return 0; 3084 } 3085 3086 /* Invalidate the cached block-status data range if this discard overlaps */ 3087 bdrv_bsc_invalidate_range(bs, offset, bytes); 3088 3089 /* Discard is advisory, but some devices track and coalesce 3090 * unaligned requests, so we must pass everything down rather than 3091 * round here. Still, most devices will just silently ignore 3092 * unaligned requests (by returning -ENOTSUP), so we must fragment 3093 * the request accordingly. */ 3094 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3095 assert(align % bs->bl.request_alignment == 0); 3096 head = offset % align; 3097 tail = (offset + bytes) % align; 3098 3099 bdrv_inc_in_flight(bs); 3100 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3101 3102 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3103 if (ret < 0) { 3104 goto out; 3105 } 3106 3107 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3108 align); 3109 assert(max_pdiscard >= bs->bl.request_alignment); 3110 3111 while (bytes > 0) { 3112 int64_t num = bytes; 3113 3114 if (head) { 3115 /* Make small requests to get to alignment boundaries. */ 3116 num = MIN(bytes, align - head); 3117 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3118 num %= bs->bl.request_alignment; 3119 } 3120 head = (head + num) % align; 3121 assert(num < max_pdiscard); 3122 } else if (tail) { 3123 if (num > align) { 3124 /* Shorten the request to the last aligned cluster. */ 3125 num -= tail; 3126 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3127 tail > bs->bl.request_alignment) { 3128 tail %= bs->bl.request_alignment; 3129 num -= tail; 3130 } 3131 } 3132 /* limit request size */ 3133 if (num > max_pdiscard) { 3134 num = max_pdiscard; 3135 } 3136 3137 if (!bs->drv) { 3138 ret = -ENOMEDIUM; 3139 goto out; 3140 } 3141 if (bs->drv->bdrv_co_pdiscard) { 3142 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3143 } else { 3144 BlockAIOCB *acb; 3145 CoroutineIOCompletion co = { 3146 .coroutine = qemu_coroutine_self(), 3147 }; 3148 3149 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3150 bdrv_co_io_em_complete, &co); 3151 if (acb == NULL) { 3152 ret = -EIO; 3153 goto out; 3154 } else { 3155 qemu_coroutine_yield(); 3156 ret = co.ret; 3157 } 3158 } 3159 if (ret && ret != -ENOTSUP) { 3160 goto out; 3161 } 3162 3163 offset += num; 3164 bytes -= num; 3165 } 3166 ret = 0; 3167 out: 3168 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3169 tracked_request_end(&req); 3170 bdrv_dec_in_flight(bs); 3171 return ret; 3172 } 3173 3174 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3175 { 3176 BlockDriver *drv = bs->drv; 3177 CoroutineIOCompletion co = { 3178 .coroutine = qemu_coroutine_self(), 3179 }; 3180 BlockAIOCB *acb; 3181 3182 bdrv_inc_in_flight(bs); 3183 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3184 co.ret = -ENOTSUP; 3185 goto out; 3186 } 3187 3188 if (drv->bdrv_co_ioctl) { 3189 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3190 } else { 3191 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3192 if (!acb) { 3193 co.ret = -ENOTSUP; 3194 goto out; 3195 } 3196 qemu_coroutine_yield(); 3197 } 3198 out: 3199 bdrv_dec_in_flight(bs); 3200 return co.ret; 3201 } 3202 3203 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3204 { 3205 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3206 } 3207 3208 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3209 { 3210 return memset(qemu_blockalign(bs, size), 0, size); 3211 } 3212 3213 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3214 { 3215 size_t align = bdrv_opt_mem_align(bs); 3216 3217 /* Ensure that NULL is never returned on success */ 3218 assert(align > 0); 3219 if (size == 0) { 3220 size = align; 3221 } 3222 3223 return qemu_try_memalign(align, size); 3224 } 3225 3226 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3227 { 3228 void *mem = qemu_try_blockalign(bs, size); 3229 3230 if (mem) { 3231 memset(mem, 0, size); 3232 } 3233 3234 return mem; 3235 } 3236 3237 /* 3238 * Check if all memory in this vector is sector aligned. 3239 */ 3240 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 3241 { 3242 int i; 3243 size_t alignment = bdrv_min_mem_align(bs); 3244 3245 for (i = 0; i < qiov->niov; i++) { 3246 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 3247 return false; 3248 } 3249 if (qiov->iov[i].iov_len % alignment) { 3250 return false; 3251 } 3252 } 3253 3254 return true; 3255 } 3256 3257 void bdrv_io_plug(BlockDriverState *bs) 3258 { 3259 BdrvChild *child; 3260 3261 QLIST_FOREACH(child, &bs->children, next) { 3262 bdrv_io_plug(child->bs); 3263 } 3264 3265 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3266 BlockDriver *drv = bs->drv; 3267 if (drv && drv->bdrv_io_plug) { 3268 drv->bdrv_io_plug(bs); 3269 } 3270 } 3271 } 3272 3273 void bdrv_io_unplug(BlockDriverState *bs) 3274 { 3275 BdrvChild *child; 3276 3277 assert(bs->io_plugged); 3278 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3279 BlockDriver *drv = bs->drv; 3280 if (drv && drv->bdrv_io_unplug) { 3281 drv->bdrv_io_unplug(bs); 3282 } 3283 } 3284 3285 QLIST_FOREACH(child, &bs->children, next) { 3286 bdrv_io_unplug(child->bs); 3287 } 3288 } 3289 3290 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 3291 { 3292 BdrvChild *child; 3293 3294 if (bs->drv && bs->drv->bdrv_register_buf) { 3295 bs->drv->bdrv_register_buf(bs, host, size); 3296 } 3297 QLIST_FOREACH(child, &bs->children, next) { 3298 bdrv_register_buf(child->bs, host, size); 3299 } 3300 } 3301 3302 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 3303 { 3304 BdrvChild *child; 3305 3306 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3307 bs->drv->bdrv_unregister_buf(bs, host); 3308 } 3309 QLIST_FOREACH(child, &bs->children, next) { 3310 bdrv_unregister_buf(child->bs, host); 3311 } 3312 } 3313 3314 static int coroutine_fn bdrv_co_copy_range_internal( 3315 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3316 int64_t dst_offset, int64_t bytes, 3317 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3318 bool recurse_src) 3319 { 3320 BdrvTrackedRequest req; 3321 int ret; 3322 3323 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3324 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3325 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3326 3327 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) { 3328 return -ENOMEDIUM; 3329 } 3330 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3331 if (ret) { 3332 return ret; 3333 } 3334 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3335 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3336 } 3337 3338 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) { 3339 return -ENOMEDIUM; 3340 } 3341 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3342 if (ret) { 3343 return ret; 3344 } 3345 3346 if (!src->bs->drv->bdrv_co_copy_range_from 3347 || !dst->bs->drv->bdrv_co_copy_range_to 3348 || src->bs->encrypted || dst->bs->encrypted) { 3349 return -ENOTSUP; 3350 } 3351 3352 if (recurse_src) { 3353 bdrv_inc_in_flight(src->bs); 3354 tracked_request_begin(&req, src->bs, src_offset, bytes, 3355 BDRV_TRACKED_READ); 3356 3357 /* BDRV_REQ_SERIALISING is only for write operation */ 3358 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3359 bdrv_wait_serialising_requests(&req); 3360 3361 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3362 src, src_offset, 3363 dst, dst_offset, 3364 bytes, 3365 read_flags, write_flags); 3366 3367 tracked_request_end(&req); 3368 bdrv_dec_in_flight(src->bs); 3369 } else { 3370 bdrv_inc_in_flight(dst->bs); 3371 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3372 BDRV_TRACKED_WRITE); 3373 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3374 write_flags); 3375 if (!ret) { 3376 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3377 src, src_offset, 3378 dst, dst_offset, 3379 bytes, 3380 read_flags, write_flags); 3381 } 3382 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3383 tracked_request_end(&req); 3384 bdrv_dec_in_flight(dst->bs); 3385 } 3386 3387 return ret; 3388 } 3389 3390 /* Copy range from @src to @dst. 3391 * 3392 * See the comment of bdrv_co_copy_range for the parameter and return value 3393 * semantics. */ 3394 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3395 BdrvChild *dst, int64_t dst_offset, 3396 int64_t bytes, 3397 BdrvRequestFlags read_flags, 3398 BdrvRequestFlags write_flags) 3399 { 3400 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3401 read_flags, write_flags); 3402 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3403 bytes, read_flags, write_flags, true); 3404 } 3405 3406 /* Copy range from @src to @dst. 3407 * 3408 * See the comment of bdrv_co_copy_range for the parameter and return value 3409 * semantics. */ 3410 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3411 BdrvChild *dst, int64_t dst_offset, 3412 int64_t bytes, 3413 BdrvRequestFlags read_flags, 3414 BdrvRequestFlags write_flags) 3415 { 3416 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3417 read_flags, write_flags); 3418 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3419 bytes, read_flags, write_flags, false); 3420 } 3421 3422 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3423 BdrvChild *dst, int64_t dst_offset, 3424 int64_t bytes, BdrvRequestFlags read_flags, 3425 BdrvRequestFlags write_flags) 3426 { 3427 return bdrv_co_copy_range_from(src, src_offset, 3428 dst, dst_offset, 3429 bytes, read_flags, write_flags); 3430 } 3431 3432 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3433 { 3434 BdrvChild *c; 3435 QLIST_FOREACH(c, &bs->parents, next_parent) { 3436 if (c->klass->resize) { 3437 c->klass->resize(c); 3438 } 3439 } 3440 } 3441 3442 /** 3443 * Truncate file to 'offset' bytes (needed only for file protocols) 3444 * 3445 * If 'exact' is true, the file must be resized to exactly the given 3446 * 'offset'. Otherwise, it is sufficient for the node to be at least 3447 * 'offset' bytes in length. 3448 */ 3449 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3450 PreallocMode prealloc, BdrvRequestFlags flags, 3451 Error **errp) 3452 { 3453 BlockDriverState *bs = child->bs; 3454 BdrvChild *filtered, *backing; 3455 BlockDriver *drv = bs->drv; 3456 BdrvTrackedRequest req; 3457 int64_t old_size, new_bytes; 3458 int ret; 3459 3460 3461 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3462 if (!drv) { 3463 error_setg(errp, "No medium inserted"); 3464 return -ENOMEDIUM; 3465 } 3466 if (offset < 0) { 3467 error_setg(errp, "Image size cannot be negative"); 3468 return -EINVAL; 3469 } 3470 3471 ret = bdrv_check_request(offset, 0, errp); 3472 if (ret < 0) { 3473 return ret; 3474 } 3475 3476 old_size = bdrv_getlength(bs); 3477 if (old_size < 0) { 3478 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3479 return old_size; 3480 } 3481 3482 if (bdrv_is_read_only(bs)) { 3483 error_setg(errp, "Image is read-only"); 3484 return -EACCES; 3485 } 3486 3487 if (offset > old_size) { 3488 new_bytes = offset - old_size; 3489 } else { 3490 new_bytes = 0; 3491 } 3492 3493 bdrv_inc_in_flight(bs); 3494 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3495 BDRV_TRACKED_TRUNCATE); 3496 3497 /* If we are growing the image and potentially using preallocation for the 3498 * new area, we need to make sure that no write requests are made to it 3499 * concurrently or they might be overwritten by preallocation. */ 3500 if (new_bytes) { 3501 bdrv_make_request_serialising(&req, 1); 3502 } 3503 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3504 0); 3505 if (ret < 0) { 3506 error_setg_errno(errp, -ret, 3507 "Failed to prepare request for truncation"); 3508 goto out; 3509 } 3510 3511 filtered = bdrv_filter_child(bs); 3512 backing = bdrv_cow_child(bs); 3513 3514 /* 3515 * If the image has a backing file that is large enough that it would 3516 * provide data for the new area, we cannot leave it unallocated because 3517 * then the backing file content would become visible. Instead, zero-fill 3518 * the new area. 3519 * 3520 * Note that if the image has a backing file, but was opened without the 3521 * backing file, taking care of keeping things consistent with that backing 3522 * file is the user's responsibility. 3523 */ 3524 if (new_bytes && backing) { 3525 int64_t backing_len; 3526 3527 backing_len = bdrv_getlength(backing->bs); 3528 if (backing_len < 0) { 3529 ret = backing_len; 3530 error_setg_errno(errp, -ret, "Could not get backing file size"); 3531 goto out; 3532 } 3533 3534 if (backing_len > old_size) { 3535 flags |= BDRV_REQ_ZERO_WRITE; 3536 } 3537 } 3538 3539 if (drv->bdrv_co_truncate) { 3540 if (flags & ~bs->supported_truncate_flags) { 3541 error_setg(errp, "Block driver does not support requested flags"); 3542 ret = -ENOTSUP; 3543 goto out; 3544 } 3545 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3546 } else if (filtered) { 3547 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3548 } else { 3549 error_setg(errp, "Image format driver does not support resize"); 3550 ret = -ENOTSUP; 3551 goto out; 3552 } 3553 if (ret < 0) { 3554 goto out; 3555 } 3556 3557 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3558 if (ret < 0) { 3559 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3560 } else { 3561 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3562 } 3563 /* It's possible that truncation succeeded but refresh_total_sectors 3564 * failed, but the latter doesn't affect how we should finish the request. 3565 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3566 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3567 3568 out: 3569 tracked_request_end(&req); 3570 bdrv_dec_in_flight(bs); 3571 3572 return ret; 3573 } 3574 3575 void bdrv_cancel_in_flight(BlockDriverState *bs) 3576 { 3577 if (!bs || !bs->drv) { 3578 return; 3579 } 3580 3581 if (bs->drv->bdrv_cancel_in_flight) { 3582 bs->drv->bdrv_cancel_in_flight(bs); 3583 } 3584 } 3585