xref: /openbmc/qemu/block/io.c (revision e09484ef)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "qemu/cutils.h"
31 #include "qapi/error.h"
32 #include "qemu/error-report.h"
33 
34 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
35 
36 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
37                                           int64_t offset,
38                                           QEMUIOVector *qiov,
39                                           BdrvRequestFlags flags,
40                                           BlockCompletionFunc *cb,
41                                           void *opaque,
42                                           bool is_write);
43 static void coroutine_fn bdrv_co_do_rw(void *opaque);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45     int64_t offset, int count, BdrvRequestFlags flags);
46 
47 static void bdrv_parent_drained_begin(BlockDriverState *bs)
48 {
49     BdrvChild *c;
50 
51     QLIST_FOREACH(c, &bs->parents, next_parent) {
52         if (c->role->drained_begin) {
53             c->role->drained_begin(c);
54         }
55     }
56 }
57 
58 static void bdrv_parent_drained_end(BlockDriverState *bs)
59 {
60     BdrvChild *c;
61 
62     QLIST_FOREACH(c, &bs->parents, next_parent) {
63         if (c->role->drained_end) {
64             c->role->drained_end(c);
65         }
66     }
67 }
68 
69 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
70 {
71     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
72     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
73     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
74                                  src->opt_mem_alignment);
75     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
76                                  src->min_mem_alignment);
77     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
78 }
79 
80 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
81 {
82     BlockDriver *drv = bs->drv;
83     Error *local_err = NULL;
84 
85     memset(&bs->bl, 0, sizeof(bs->bl));
86 
87     if (!drv) {
88         return;
89     }
90 
91     /* Default alignment based on whether driver has byte interface */
92     bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
93 
94     /* Take some limits from the children as a default */
95     if (bs->file) {
96         bdrv_refresh_limits(bs->file->bs, &local_err);
97         if (local_err) {
98             error_propagate(errp, local_err);
99             return;
100         }
101         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
102     } else {
103         bs->bl.min_mem_alignment = 512;
104         bs->bl.opt_mem_alignment = getpagesize();
105 
106         /* Safe default since most protocols use readv()/writev()/etc */
107         bs->bl.max_iov = IOV_MAX;
108     }
109 
110     if (bs->backing) {
111         bdrv_refresh_limits(bs->backing->bs, &local_err);
112         if (local_err) {
113             error_propagate(errp, local_err);
114             return;
115         }
116         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
117     }
118 
119     /* Then let the driver override it */
120     if (drv->bdrv_refresh_limits) {
121         drv->bdrv_refresh_limits(bs, errp);
122     }
123 }
124 
125 /**
126  * The copy-on-read flag is actually a reference count so multiple users may
127  * use the feature without worrying about clobbering its previous state.
128  * Copy-on-read stays enabled until all users have called to disable it.
129  */
130 void bdrv_enable_copy_on_read(BlockDriverState *bs)
131 {
132     bs->copy_on_read++;
133 }
134 
135 void bdrv_disable_copy_on_read(BlockDriverState *bs)
136 {
137     assert(bs->copy_on_read > 0);
138     bs->copy_on_read--;
139 }
140 
141 /* Check if any requests are in-flight (including throttled requests) */
142 bool bdrv_requests_pending(BlockDriverState *bs)
143 {
144     BdrvChild *child;
145 
146     if (!QLIST_EMPTY(&bs->tracked_requests)) {
147         return true;
148     }
149 
150     QLIST_FOREACH(child, &bs->children, next) {
151         if (bdrv_requests_pending(child->bs)) {
152             return true;
153         }
154     }
155 
156     return false;
157 }
158 
159 static void bdrv_drain_recurse(BlockDriverState *bs)
160 {
161     BdrvChild *child;
162 
163     if (bs->drv && bs->drv->bdrv_drain) {
164         bs->drv->bdrv_drain(bs);
165     }
166     QLIST_FOREACH(child, &bs->children, next) {
167         bdrv_drain_recurse(child->bs);
168     }
169 }
170 
171 typedef struct {
172     Coroutine *co;
173     BlockDriverState *bs;
174     QEMUBH *bh;
175     bool done;
176 } BdrvCoDrainData;
177 
178 static void bdrv_drain_poll(BlockDriverState *bs)
179 {
180     bool busy = true;
181 
182     while (busy) {
183         /* Keep iterating */
184         busy = bdrv_requests_pending(bs);
185         busy |= aio_poll(bdrv_get_aio_context(bs), busy);
186     }
187 }
188 
189 static void bdrv_co_drain_bh_cb(void *opaque)
190 {
191     BdrvCoDrainData *data = opaque;
192     Coroutine *co = data->co;
193 
194     qemu_bh_delete(data->bh);
195     bdrv_drain_poll(data->bs);
196     data->done = true;
197     qemu_coroutine_enter(co);
198 }
199 
200 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
201 {
202     BdrvCoDrainData data;
203 
204     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
205      * other coroutines run if they were queued from
206      * qemu_co_queue_run_restart(). */
207 
208     assert(qemu_in_coroutine());
209     data = (BdrvCoDrainData) {
210         .co = qemu_coroutine_self(),
211         .bs = bs,
212         .done = false,
213         .bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_drain_bh_cb, &data),
214     };
215     qemu_bh_schedule(data.bh);
216 
217     qemu_coroutine_yield();
218     /* If we are resumed from some other event (such as an aio completion or a
219      * timer callback), it is a bug in the caller that should be fixed. */
220     assert(data.done);
221 }
222 
223 void bdrv_drained_begin(BlockDriverState *bs)
224 {
225     if (!bs->quiesce_counter++) {
226         aio_disable_external(bdrv_get_aio_context(bs));
227         bdrv_parent_drained_begin(bs);
228     }
229 
230     bdrv_io_unplugged_begin(bs);
231     bdrv_drain_recurse(bs);
232     if (qemu_in_coroutine()) {
233         bdrv_co_yield_to_drain(bs);
234     } else {
235         bdrv_drain_poll(bs);
236     }
237     bdrv_io_unplugged_end(bs);
238 }
239 
240 void bdrv_drained_end(BlockDriverState *bs)
241 {
242     assert(bs->quiesce_counter > 0);
243     if (--bs->quiesce_counter > 0) {
244         return;
245     }
246 
247     bdrv_parent_drained_end(bs);
248     aio_enable_external(bdrv_get_aio_context(bs));
249 }
250 
251 /*
252  * Wait for pending requests to complete on a single BlockDriverState subtree,
253  * and suspend block driver's internal I/O until next request arrives.
254  *
255  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
256  * AioContext.
257  *
258  * Only this BlockDriverState's AioContext is run, so in-flight requests must
259  * not depend on events in other AioContexts.  In that case, use
260  * bdrv_drain_all() instead.
261  */
262 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
263 {
264     assert(qemu_in_coroutine());
265     bdrv_drained_begin(bs);
266     bdrv_drained_end(bs);
267 }
268 
269 void bdrv_drain(BlockDriverState *bs)
270 {
271     bdrv_drained_begin(bs);
272     bdrv_drained_end(bs);
273 }
274 
275 /*
276  * Wait for pending requests to complete across all BlockDriverStates
277  *
278  * This function does not flush data to disk, use bdrv_flush_all() for that
279  * after calling this function.
280  */
281 void bdrv_drain_all(void)
282 {
283     /* Always run first iteration so any pending completion BHs run */
284     bool busy = true;
285     BlockDriverState *bs;
286     BdrvNextIterator it;
287     BlockJob *job = NULL;
288     GSList *aio_ctxs = NULL, *ctx;
289 
290     while ((job = block_job_next(job))) {
291         AioContext *aio_context = blk_get_aio_context(job->blk);
292 
293         aio_context_acquire(aio_context);
294         block_job_pause(job);
295         aio_context_release(aio_context);
296     }
297 
298     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
299         AioContext *aio_context = bdrv_get_aio_context(bs);
300 
301         aio_context_acquire(aio_context);
302         bdrv_parent_drained_begin(bs);
303         bdrv_io_unplugged_begin(bs);
304         bdrv_drain_recurse(bs);
305         aio_context_release(aio_context);
306 
307         if (!g_slist_find(aio_ctxs, aio_context)) {
308             aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
309         }
310     }
311 
312     /* Note that completion of an asynchronous I/O operation can trigger any
313      * number of other I/O operations on other devices---for example a
314      * coroutine can submit an I/O request to another device in response to
315      * request completion.  Therefore we must keep looping until there was no
316      * more activity rather than simply draining each device independently.
317      */
318     while (busy) {
319         busy = false;
320 
321         for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
322             AioContext *aio_context = ctx->data;
323 
324             aio_context_acquire(aio_context);
325             for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
326                 if (aio_context == bdrv_get_aio_context(bs)) {
327                     if (bdrv_requests_pending(bs)) {
328                         busy = true;
329                         aio_poll(aio_context, busy);
330                     }
331                 }
332             }
333             busy |= aio_poll(aio_context, false);
334             aio_context_release(aio_context);
335         }
336     }
337 
338     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
339         AioContext *aio_context = bdrv_get_aio_context(bs);
340 
341         aio_context_acquire(aio_context);
342         bdrv_io_unplugged_end(bs);
343         bdrv_parent_drained_end(bs);
344         aio_context_release(aio_context);
345     }
346     g_slist_free(aio_ctxs);
347 
348     job = NULL;
349     while ((job = block_job_next(job))) {
350         AioContext *aio_context = blk_get_aio_context(job->blk);
351 
352         aio_context_acquire(aio_context);
353         block_job_resume(job);
354         aio_context_release(aio_context);
355     }
356 }
357 
358 /**
359  * Remove an active request from the tracked requests list
360  *
361  * This function should be called when a tracked request is completing.
362  */
363 static void tracked_request_end(BdrvTrackedRequest *req)
364 {
365     if (req->serialising) {
366         req->bs->serialising_in_flight--;
367     }
368 
369     QLIST_REMOVE(req, list);
370     qemu_co_queue_restart_all(&req->wait_queue);
371 }
372 
373 /**
374  * Add an active request to the tracked requests list
375  */
376 static void tracked_request_begin(BdrvTrackedRequest *req,
377                                   BlockDriverState *bs,
378                                   int64_t offset,
379                                   unsigned int bytes,
380                                   enum BdrvTrackedRequestType type)
381 {
382     *req = (BdrvTrackedRequest){
383         .bs = bs,
384         .offset         = offset,
385         .bytes          = bytes,
386         .type           = type,
387         .co             = qemu_coroutine_self(),
388         .serialising    = false,
389         .overlap_offset = offset,
390         .overlap_bytes  = bytes,
391     };
392 
393     qemu_co_queue_init(&req->wait_queue);
394 
395     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
396 }
397 
398 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
399 {
400     int64_t overlap_offset = req->offset & ~(align - 1);
401     unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
402                                - overlap_offset;
403 
404     if (!req->serialising) {
405         req->bs->serialising_in_flight++;
406         req->serialising = true;
407     }
408 
409     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
410     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
411 }
412 
413 /**
414  * Round a region to cluster boundaries (sector-based)
415  */
416 void bdrv_round_sectors_to_clusters(BlockDriverState *bs,
417                                     int64_t sector_num, int nb_sectors,
418                                     int64_t *cluster_sector_num,
419                                     int *cluster_nb_sectors)
420 {
421     BlockDriverInfo bdi;
422 
423     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
424         *cluster_sector_num = sector_num;
425         *cluster_nb_sectors = nb_sectors;
426     } else {
427         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
428         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
429         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
430                                             nb_sectors, c);
431     }
432 }
433 
434 /**
435  * Round a region to cluster boundaries
436  */
437 void bdrv_round_to_clusters(BlockDriverState *bs,
438                             int64_t offset, unsigned int bytes,
439                             int64_t *cluster_offset,
440                             unsigned int *cluster_bytes)
441 {
442     BlockDriverInfo bdi;
443 
444     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
445         *cluster_offset = offset;
446         *cluster_bytes = bytes;
447     } else {
448         int64_t c = bdi.cluster_size;
449         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
450         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
451     }
452 }
453 
454 static int bdrv_get_cluster_size(BlockDriverState *bs)
455 {
456     BlockDriverInfo bdi;
457     int ret;
458 
459     ret = bdrv_get_info(bs, &bdi);
460     if (ret < 0 || bdi.cluster_size == 0) {
461         return bs->bl.request_alignment;
462     } else {
463         return bdi.cluster_size;
464     }
465 }
466 
467 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
468                                      int64_t offset, unsigned int bytes)
469 {
470     /*        aaaa   bbbb */
471     if (offset >= req->overlap_offset + req->overlap_bytes) {
472         return false;
473     }
474     /* bbbb   aaaa        */
475     if (req->overlap_offset >= offset + bytes) {
476         return false;
477     }
478     return true;
479 }
480 
481 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
482 {
483     BlockDriverState *bs = self->bs;
484     BdrvTrackedRequest *req;
485     bool retry;
486     bool waited = false;
487 
488     if (!bs->serialising_in_flight) {
489         return false;
490     }
491 
492     do {
493         retry = false;
494         QLIST_FOREACH(req, &bs->tracked_requests, list) {
495             if (req == self || (!req->serialising && !self->serialising)) {
496                 continue;
497             }
498             if (tracked_request_overlaps(req, self->overlap_offset,
499                                          self->overlap_bytes))
500             {
501                 /* Hitting this means there was a reentrant request, for
502                  * example, a block driver issuing nested requests.  This must
503                  * never happen since it means deadlock.
504                  */
505                 assert(qemu_coroutine_self() != req->co);
506 
507                 /* If the request is already (indirectly) waiting for us, or
508                  * will wait for us as soon as it wakes up, then just go on
509                  * (instead of producing a deadlock in the former case). */
510                 if (!req->waiting_for) {
511                     self->waiting_for = req;
512                     qemu_co_queue_wait(&req->wait_queue);
513                     self->waiting_for = NULL;
514                     retry = true;
515                     waited = true;
516                     break;
517                 }
518             }
519         }
520     } while (retry);
521 
522     return waited;
523 }
524 
525 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
526                                    size_t size)
527 {
528     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
529         return -EIO;
530     }
531 
532     if (!bdrv_is_inserted(bs)) {
533         return -ENOMEDIUM;
534     }
535 
536     if (offset < 0) {
537         return -EIO;
538     }
539 
540     return 0;
541 }
542 
543 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
544                               int nb_sectors)
545 {
546     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
547         return -EIO;
548     }
549 
550     return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
551                                    nb_sectors * BDRV_SECTOR_SIZE);
552 }
553 
554 typedef struct RwCo {
555     BdrvChild *child;
556     int64_t offset;
557     QEMUIOVector *qiov;
558     bool is_write;
559     int ret;
560     BdrvRequestFlags flags;
561 } RwCo;
562 
563 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
564 {
565     RwCo *rwco = opaque;
566 
567     if (!rwco->is_write) {
568         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
569                                    rwco->qiov->size, rwco->qiov,
570                                    rwco->flags);
571     } else {
572         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
573                                     rwco->qiov->size, rwco->qiov,
574                                     rwco->flags);
575     }
576 }
577 
578 /*
579  * Process a vectored synchronous request using coroutines
580  */
581 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
582                         QEMUIOVector *qiov, bool is_write,
583                         BdrvRequestFlags flags)
584 {
585     Coroutine *co;
586     RwCo rwco = {
587         .child = child,
588         .offset = offset,
589         .qiov = qiov,
590         .is_write = is_write,
591         .ret = NOT_DONE,
592         .flags = flags,
593     };
594 
595     if (qemu_in_coroutine()) {
596         /* Fast-path if already in coroutine context */
597         bdrv_rw_co_entry(&rwco);
598     } else {
599         AioContext *aio_context = bdrv_get_aio_context(child->bs);
600 
601         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
602         qemu_coroutine_enter(co);
603         while (rwco.ret == NOT_DONE) {
604             aio_poll(aio_context, true);
605         }
606     }
607     return rwco.ret;
608 }
609 
610 /*
611  * Process a synchronous request using coroutines
612  */
613 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
614                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
615 {
616     QEMUIOVector qiov;
617     struct iovec iov = {
618         .iov_base = (void *)buf,
619         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
620     };
621 
622     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
623         return -EINVAL;
624     }
625 
626     qemu_iovec_init_external(&qiov, &iov, 1);
627     return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
628                         &qiov, is_write, flags);
629 }
630 
631 /* return < 0 if error. See bdrv_write() for the return codes */
632 int bdrv_read(BdrvChild *child, int64_t sector_num,
633               uint8_t *buf, int nb_sectors)
634 {
635     return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
636 }
637 
638 /* Return < 0 if error. Important errors are:
639   -EIO         generic I/O error (may happen for all errors)
640   -ENOMEDIUM   No media inserted.
641   -EINVAL      Invalid sector number or nb_sectors
642   -EACCES      Trying to write a read-only device
643 */
644 int bdrv_write(BdrvChild *child, int64_t sector_num,
645                const uint8_t *buf, int nb_sectors)
646 {
647     return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
648 }
649 
650 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
651                        int count, BdrvRequestFlags flags)
652 {
653     QEMUIOVector qiov;
654     struct iovec iov = {
655         .iov_base = NULL,
656         .iov_len = count,
657     };
658 
659     qemu_iovec_init_external(&qiov, &iov, 1);
660     return bdrv_prwv_co(child, offset, &qiov, true,
661                         BDRV_REQ_ZERO_WRITE | flags);
662 }
663 
664 /*
665  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
666  * The operation is sped up by checking the block status and only writing
667  * zeroes to the device if they currently do not return zeroes. Optional
668  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
669  * BDRV_REQ_FUA).
670  *
671  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
672  */
673 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
674 {
675     int64_t target_sectors, ret, nb_sectors, sector_num = 0;
676     BlockDriverState *bs = child->bs;
677     BlockDriverState *file;
678     int n;
679 
680     target_sectors = bdrv_nb_sectors(bs);
681     if (target_sectors < 0) {
682         return target_sectors;
683     }
684 
685     for (;;) {
686         nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
687         if (nb_sectors <= 0) {
688             return 0;
689         }
690         ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
691         if (ret < 0) {
692             error_report("error getting block status at sector %" PRId64 ": %s",
693                          sector_num, strerror(-ret));
694             return ret;
695         }
696         if (ret & BDRV_BLOCK_ZERO) {
697             sector_num += n;
698             continue;
699         }
700         ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
701                                  n << BDRV_SECTOR_BITS, flags);
702         if (ret < 0) {
703             error_report("error writing zeroes at sector %" PRId64 ": %s",
704                          sector_num, strerror(-ret));
705             return ret;
706         }
707         sector_num += n;
708     }
709 }
710 
711 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
712 {
713     int ret;
714 
715     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
716     if (ret < 0) {
717         return ret;
718     }
719 
720     return qiov->size;
721 }
722 
723 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
724 {
725     QEMUIOVector qiov;
726     struct iovec iov = {
727         .iov_base = (void *)buf,
728         .iov_len = bytes,
729     };
730 
731     if (bytes < 0) {
732         return -EINVAL;
733     }
734 
735     qemu_iovec_init_external(&qiov, &iov, 1);
736     return bdrv_preadv(child, offset, &qiov);
737 }
738 
739 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
740 {
741     int ret;
742 
743     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
744     if (ret < 0) {
745         return ret;
746     }
747 
748     return qiov->size;
749 }
750 
751 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
752 {
753     QEMUIOVector qiov;
754     struct iovec iov = {
755         .iov_base   = (void *) buf,
756         .iov_len    = bytes,
757     };
758 
759     if (bytes < 0) {
760         return -EINVAL;
761     }
762 
763     qemu_iovec_init_external(&qiov, &iov, 1);
764     return bdrv_pwritev(child, offset, &qiov);
765 }
766 
767 /*
768  * Writes to the file and ensures that no writes are reordered across this
769  * request (acts as a barrier)
770  *
771  * Returns 0 on success, -errno in error cases.
772  */
773 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
774                      const void *buf, int count)
775 {
776     int ret;
777 
778     ret = bdrv_pwrite(child, offset, buf, count);
779     if (ret < 0) {
780         return ret;
781     }
782 
783     ret = bdrv_flush(child->bs);
784     if (ret < 0) {
785         return ret;
786     }
787 
788     return 0;
789 }
790 
791 typedef struct CoroutineIOCompletion {
792     Coroutine *coroutine;
793     int ret;
794 } CoroutineIOCompletion;
795 
796 static void bdrv_co_io_em_complete(void *opaque, int ret)
797 {
798     CoroutineIOCompletion *co = opaque;
799 
800     co->ret = ret;
801     qemu_coroutine_enter(co->coroutine);
802 }
803 
804 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
805                                            uint64_t offset, uint64_t bytes,
806                                            QEMUIOVector *qiov, int flags)
807 {
808     BlockDriver *drv = bs->drv;
809     int64_t sector_num;
810     unsigned int nb_sectors;
811 
812     assert(!(flags & ~BDRV_REQ_MASK));
813 
814     if (drv->bdrv_co_preadv) {
815         return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
816     }
817 
818     sector_num = offset >> BDRV_SECTOR_BITS;
819     nb_sectors = bytes >> BDRV_SECTOR_BITS;
820 
821     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
822     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
823     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
824 
825     if (drv->bdrv_co_readv) {
826         return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
827     } else {
828         BlockAIOCB *acb;
829         CoroutineIOCompletion co = {
830             .coroutine = qemu_coroutine_self(),
831         };
832 
833         acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
834                                       bdrv_co_io_em_complete, &co);
835         if (acb == NULL) {
836             return -EIO;
837         } else {
838             qemu_coroutine_yield();
839             return co.ret;
840         }
841     }
842 }
843 
844 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
845                                             uint64_t offset, uint64_t bytes,
846                                             QEMUIOVector *qiov, int flags)
847 {
848     BlockDriver *drv = bs->drv;
849     int64_t sector_num;
850     unsigned int nb_sectors;
851     int ret;
852 
853     assert(!(flags & ~BDRV_REQ_MASK));
854 
855     if (drv->bdrv_co_pwritev) {
856         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
857                                    flags & bs->supported_write_flags);
858         flags &= ~bs->supported_write_flags;
859         goto emulate_flags;
860     }
861 
862     sector_num = offset >> BDRV_SECTOR_BITS;
863     nb_sectors = bytes >> BDRV_SECTOR_BITS;
864 
865     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
866     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
867     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
868 
869     if (drv->bdrv_co_writev_flags) {
870         ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
871                                         flags & bs->supported_write_flags);
872         flags &= ~bs->supported_write_flags;
873     } else if (drv->bdrv_co_writev) {
874         assert(!bs->supported_write_flags);
875         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
876     } else {
877         BlockAIOCB *acb;
878         CoroutineIOCompletion co = {
879             .coroutine = qemu_coroutine_self(),
880         };
881 
882         acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
883                                        bdrv_co_io_em_complete, &co);
884         if (acb == NULL) {
885             ret = -EIO;
886         } else {
887             qemu_coroutine_yield();
888             ret = co.ret;
889         }
890     }
891 
892 emulate_flags:
893     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
894         ret = bdrv_co_flush(bs);
895     }
896 
897     return ret;
898 }
899 
900 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
901         int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
902 {
903     /* Perform I/O through a temporary buffer so that users who scribble over
904      * their read buffer while the operation is in progress do not end up
905      * modifying the image file.  This is critical for zero-copy guest I/O
906      * where anything might happen inside guest memory.
907      */
908     void *bounce_buffer;
909 
910     BlockDriver *drv = bs->drv;
911     struct iovec iov;
912     QEMUIOVector bounce_qiov;
913     int64_t cluster_offset;
914     unsigned int cluster_bytes;
915     size_t skip_bytes;
916     int ret;
917 
918     /* Cover entire cluster so no additional backing file I/O is required when
919      * allocating cluster in the image file.
920      */
921     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
922 
923     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
924                                    cluster_offset, cluster_bytes);
925 
926     iov.iov_len = cluster_bytes;
927     iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
928     if (bounce_buffer == NULL) {
929         ret = -ENOMEM;
930         goto err;
931     }
932 
933     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
934 
935     ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
936                              &bounce_qiov, 0);
937     if (ret < 0) {
938         goto err;
939     }
940 
941     if (drv->bdrv_co_pwrite_zeroes &&
942         buffer_is_zero(bounce_buffer, iov.iov_len)) {
943         /* FIXME: Should we (perhaps conditionally) be setting
944          * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
945          * that still correctly reads as zero? */
946         ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
947     } else {
948         /* This does not change the data on the disk, it is not necessary
949          * to flush even in cache=writethrough mode.
950          */
951         ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
952                                   &bounce_qiov, 0);
953     }
954 
955     if (ret < 0) {
956         /* It might be okay to ignore write errors for guest requests.  If this
957          * is a deliberate copy-on-read then we don't want to ignore the error.
958          * Simply report it in all cases.
959          */
960         goto err;
961     }
962 
963     skip_bytes = offset - cluster_offset;
964     qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
965 
966 err:
967     qemu_vfree(bounce_buffer);
968     return ret;
969 }
970 
971 /*
972  * Forwards an already correctly aligned request to the BlockDriver. This
973  * handles copy on read, zeroing after EOF, and fragmentation of large
974  * reads; any other features must be implemented by the caller.
975  */
976 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
977     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
978     int64_t align, QEMUIOVector *qiov, int flags)
979 {
980     int64_t total_bytes, max_bytes;
981     int ret = 0;
982     uint64_t bytes_remaining = bytes;
983     int max_transfer;
984 
985     assert(is_power_of_2(align));
986     assert((offset & (align - 1)) == 0);
987     assert((bytes & (align - 1)) == 0);
988     assert(!qiov || bytes == qiov->size);
989     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
990     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
991                                    align);
992 
993     /* TODO: We would need a per-BDS .supported_read_flags and
994      * potential fallback support, if we ever implement any read flags
995      * to pass through to drivers.  For now, there aren't any
996      * passthrough flags.  */
997     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
998 
999     /* Handle Copy on Read and associated serialisation */
1000     if (flags & BDRV_REQ_COPY_ON_READ) {
1001         /* If we touch the same cluster it counts as an overlap.  This
1002          * guarantees that allocating writes will be serialized and not race
1003          * with each other for the same cluster.  For example, in copy-on-read
1004          * it ensures that the CoR read and write operations are atomic and
1005          * guest writes cannot interleave between them. */
1006         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1007     }
1008 
1009     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1010         wait_serialising_requests(req);
1011     }
1012 
1013     if (flags & BDRV_REQ_COPY_ON_READ) {
1014         int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1015         int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1016         unsigned int nb_sectors = end_sector - start_sector;
1017         int pnum;
1018 
1019         ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum);
1020         if (ret < 0) {
1021             goto out;
1022         }
1023 
1024         if (!ret || pnum != nb_sectors) {
1025             ret = bdrv_co_do_copy_on_readv(bs, offset, bytes, qiov);
1026             goto out;
1027         }
1028     }
1029 
1030     /* Forward the request to the BlockDriver, possibly fragmenting it */
1031     total_bytes = bdrv_getlength(bs);
1032     if (total_bytes < 0) {
1033         ret = total_bytes;
1034         goto out;
1035     }
1036 
1037     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1038     if (bytes <= max_bytes && bytes <= max_transfer) {
1039         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1040         goto out;
1041     }
1042 
1043     while (bytes_remaining) {
1044         int num;
1045 
1046         if (max_bytes) {
1047             QEMUIOVector local_qiov;
1048 
1049             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1050             assert(num);
1051             qemu_iovec_init(&local_qiov, qiov->niov);
1052             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1053 
1054             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1055                                      num, &local_qiov, 0);
1056             max_bytes -= num;
1057             qemu_iovec_destroy(&local_qiov);
1058         } else {
1059             num = bytes_remaining;
1060             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1061                                     bytes_remaining);
1062         }
1063         if (ret < 0) {
1064             goto out;
1065         }
1066         bytes_remaining -= num;
1067     }
1068 
1069 out:
1070     return ret < 0 ? ret : 0;
1071 }
1072 
1073 /*
1074  * Handle a read request in coroutine context
1075  */
1076 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1077     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1078     BdrvRequestFlags flags)
1079 {
1080     BlockDriverState *bs = child->bs;
1081     BlockDriver *drv = bs->drv;
1082     BdrvTrackedRequest req;
1083 
1084     uint64_t align = bs->bl.request_alignment;
1085     uint8_t *head_buf = NULL;
1086     uint8_t *tail_buf = NULL;
1087     QEMUIOVector local_qiov;
1088     bool use_local_qiov = false;
1089     int ret;
1090 
1091     if (!drv) {
1092         return -ENOMEDIUM;
1093     }
1094 
1095     ret = bdrv_check_byte_request(bs, offset, bytes);
1096     if (ret < 0) {
1097         return ret;
1098     }
1099 
1100     /* Don't do copy-on-read if we read data before write operation */
1101     if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
1102         flags |= BDRV_REQ_COPY_ON_READ;
1103     }
1104 
1105     /* Align read if necessary by padding qiov */
1106     if (offset & (align - 1)) {
1107         head_buf = qemu_blockalign(bs, align);
1108         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1109         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1110         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1111         use_local_qiov = true;
1112 
1113         bytes += offset & (align - 1);
1114         offset = offset & ~(align - 1);
1115     }
1116 
1117     if ((offset + bytes) & (align - 1)) {
1118         if (!use_local_qiov) {
1119             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1120             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1121             use_local_qiov = true;
1122         }
1123         tail_buf = qemu_blockalign(bs, align);
1124         qemu_iovec_add(&local_qiov, tail_buf,
1125                        align - ((offset + bytes) & (align - 1)));
1126 
1127         bytes = ROUND_UP(bytes, align);
1128     }
1129 
1130     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1131     ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
1132                               use_local_qiov ? &local_qiov : qiov,
1133                               flags);
1134     tracked_request_end(&req);
1135 
1136     if (use_local_qiov) {
1137         qemu_iovec_destroy(&local_qiov);
1138         qemu_vfree(head_buf);
1139         qemu_vfree(tail_buf);
1140     }
1141 
1142     return ret;
1143 }
1144 
1145 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1146     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1147     BdrvRequestFlags flags)
1148 {
1149     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1150         return -EINVAL;
1151     }
1152 
1153     return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1154                           nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1155 }
1156 
1157 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1158                                int nb_sectors, QEMUIOVector *qiov)
1159 {
1160     trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1161 
1162     return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1163 }
1164 
1165 /* Maximum buffer for write zeroes fallback, in bytes */
1166 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1167 
1168 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1169     int64_t offset, int count, BdrvRequestFlags flags)
1170 {
1171     BlockDriver *drv = bs->drv;
1172     QEMUIOVector qiov;
1173     struct iovec iov = {0};
1174     int ret = 0;
1175     bool need_flush = false;
1176     int head = 0;
1177     int tail = 0;
1178 
1179     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1180     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1181                         bs->bl.request_alignment);
1182 
1183     assert(alignment % bs->bl.request_alignment == 0);
1184     head = offset % alignment;
1185     tail = (offset + count) % alignment;
1186     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1187     assert(max_write_zeroes >= bs->bl.request_alignment);
1188 
1189     while (count > 0 && !ret) {
1190         int num = count;
1191 
1192         /* Align request.  Block drivers can expect the "bulk" of the request
1193          * to be aligned, and that unaligned requests do not cross cluster
1194          * boundaries.
1195          */
1196         if (head) {
1197             /* Make a small request up to the first aligned sector.  */
1198             num = MIN(count, alignment - head);
1199             head = 0;
1200         } else if (tail && num > alignment) {
1201             /* Shorten the request to the last aligned sector.  */
1202             num -= tail;
1203         }
1204 
1205         /* limit request size */
1206         if (num > max_write_zeroes) {
1207             num = max_write_zeroes;
1208         }
1209 
1210         ret = -ENOTSUP;
1211         /* First try the efficient write zeroes operation */
1212         if (drv->bdrv_co_pwrite_zeroes) {
1213             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1214                                              flags & bs->supported_zero_flags);
1215             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1216                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1217                 need_flush = true;
1218             }
1219         } else {
1220             assert(!bs->supported_zero_flags);
1221         }
1222 
1223         if (ret == -ENOTSUP) {
1224             /* Fall back to bounce buffer if write zeroes is unsupported */
1225             int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1226                                             MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1227             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1228 
1229             if ((flags & BDRV_REQ_FUA) &&
1230                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1231                 /* No need for bdrv_driver_pwrite() to do a fallback
1232                  * flush on each chunk; use just one at the end */
1233                 write_flags &= ~BDRV_REQ_FUA;
1234                 need_flush = true;
1235             }
1236             num = MIN(num, max_transfer);
1237             iov.iov_len = num;
1238             if (iov.iov_base == NULL) {
1239                 iov.iov_base = qemu_try_blockalign(bs, num);
1240                 if (iov.iov_base == NULL) {
1241                     ret = -ENOMEM;
1242                     goto fail;
1243                 }
1244                 memset(iov.iov_base, 0, num);
1245             }
1246             qemu_iovec_init_external(&qiov, &iov, 1);
1247 
1248             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1249 
1250             /* Keep bounce buffer around if it is big enough for all
1251              * all future requests.
1252              */
1253             if (num < max_transfer) {
1254                 qemu_vfree(iov.iov_base);
1255                 iov.iov_base = NULL;
1256             }
1257         }
1258 
1259         offset += num;
1260         count -= num;
1261     }
1262 
1263 fail:
1264     if (ret == 0 && need_flush) {
1265         ret = bdrv_co_flush(bs);
1266     }
1267     qemu_vfree(iov.iov_base);
1268     return ret;
1269 }
1270 
1271 /*
1272  * Forwards an already correctly aligned write request to the BlockDriver,
1273  * after possibly fragmenting it.
1274  */
1275 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1276     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1277     int64_t align, QEMUIOVector *qiov, int flags)
1278 {
1279     BlockDriver *drv = bs->drv;
1280     bool waited;
1281     int ret;
1282 
1283     int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1284     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1285     uint64_t bytes_remaining = bytes;
1286     int max_transfer;
1287 
1288     assert(is_power_of_2(align));
1289     assert((offset & (align - 1)) == 0);
1290     assert((bytes & (align - 1)) == 0);
1291     assert(!qiov || bytes == qiov->size);
1292     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1293     assert(!(flags & ~BDRV_REQ_MASK));
1294     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1295                                    align);
1296 
1297     waited = wait_serialising_requests(req);
1298     assert(!waited || !req->serialising);
1299     assert(req->overlap_offset <= offset);
1300     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1301 
1302     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1303 
1304     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1305         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1306         qemu_iovec_is_zero(qiov)) {
1307         flags |= BDRV_REQ_ZERO_WRITE;
1308         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1309             flags |= BDRV_REQ_MAY_UNMAP;
1310         }
1311     }
1312 
1313     if (ret < 0) {
1314         /* Do nothing, write notifier decided to fail this request */
1315     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1316         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1317         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1318     } else if (bytes <= max_transfer) {
1319         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1320         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1321     } else {
1322         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1323         while (bytes_remaining) {
1324             int num = MIN(bytes_remaining, max_transfer);
1325             QEMUIOVector local_qiov;
1326             int local_flags = flags;
1327 
1328             assert(num);
1329             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1330                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1331                 /* If FUA is going to be emulated by flush, we only
1332                  * need to flush on the last iteration */
1333                 local_flags &= ~BDRV_REQ_FUA;
1334             }
1335             qemu_iovec_init(&local_qiov, qiov->niov);
1336             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1337 
1338             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1339                                       num, &local_qiov, local_flags);
1340             qemu_iovec_destroy(&local_qiov);
1341             if (ret < 0) {
1342                 break;
1343             }
1344             bytes_remaining -= num;
1345         }
1346     }
1347     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1348 
1349     ++bs->write_gen;
1350     bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1351 
1352     if (bs->wr_highest_offset < offset + bytes) {
1353         bs->wr_highest_offset = offset + bytes;
1354     }
1355 
1356     if (ret >= 0) {
1357         bs->total_sectors = MAX(bs->total_sectors, end_sector);
1358         ret = 0;
1359     }
1360 
1361     return ret;
1362 }
1363 
1364 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1365                                                 int64_t offset,
1366                                                 unsigned int bytes,
1367                                                 BdrvRequestFlags flags,
1368                                                 BdrvTrackedRequest *req)
1369 {
1370     uint8_t *buf = NULL;
1371     QEMUIOVector local_qiov;
1372     struct iovec iov;
1373     uint64_t align = bs->bl.request_alignment;
1374     unsigned int head_padding_bytes, tail_padding_bytes;
1375     int ret = 0;
1376 
1377     head_padding_bytes = offset & (align - 1);
1378     tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1379 
1380 
1381     assert(flags & BDRV_REQ_ZERO_WRITE);
1382     if (head_padding_bytes || tail_padding_bytes) {
1383         buf = qemu_blockalign(bs, align);
1384         iov = (struct iovec) {
1385             .iov_base   = buf,
1386             .iov_len    = align,
1387         };
1388         qemu_iovec_init_external(&local_qiov, &iov, 1);
1389     }
1390     if (head_padding_bytes) {
1391         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1392 
1393         /* RMW the unaligned part before head. */
1394         mark_request_serialising(req, align);
1395         wait_serialising_requests(req);
1396         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1397         ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1398                                   align, &local_qiov, 0);
1399         if (ret < 0) {
1400             goto fail;
1401         }
1402         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1403 
1404         memset(buf + head_padding_bytes, 0, zero_bytes);
1405         ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1406                                    align, &local_qiov,
1407                                    flags & ~BDRV_REQ_ZERO_WRITE);
1408         if (ret < 0) {
1409             goto fail;
1410         }
1411         offset += zero_bytes;
1412         bytes -= zero_bytes;
1413     }
1414 
1415     assert(!bytes || (offset & (align - 1)) == 0);
1416     if (bytes >= align) {
1417         /* Write the aligned part in the middle. */
1418         uint64_t aligned_bytes = bytes & ~(align - 1);
1419         ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes, align,
1420                                    NULL, flags);
1421         if (ret < 0) {
1422             goto fail;
1423         }
1424         bytes -= aligned_bytes;
1425         offset += aligned_bytes;
1426     }
1427 
1428     assert(!bytes || (offset & (align - 1)) == 0);
1429     if (bytes) {
1430         assert(align == tail_padding_bytes + bytes);
1431         /* RMW the unaligned part after tail. */
1432         mark_request_serialising(req, align);
1433         wait_serialising_requests(req);
1434         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1435         ret = bdrv_aligned_preadv(bs, req, offset, align,
1436                                   align, &local_qiov, 0);
1437         if (ret < 0) {
1438             goto fail;
1439         }
1440         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1441 
1442         memset(buf, 0, bytes);
1443         ret = bdrv_aligned_pwritev(bs, req, offset, align, align,
1444                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1445     }
1446 fail:
1447     qemu_vfree(buf);
1448     return ret;
1449 
1450 }
1451 
1452 /*
1453  * Handle a write request in coroutine context
1454  */
1455 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1456     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1457     BdrvRequestFlags flags)
1458 {
1459     BlockDriverState *bs = child->bs;
1460     BdrvTrackedRequest req;
1461     uint64_t align = bs->bl.request_alignment;
1462     uint8_t *head_buf = NULL;
1463     uint8_t *tail_buf = NULL;
1464     QEMUIOVector local_qiov;
1465     bool use_local_qiov = false;
1466     int ret;
1467 
1468     if (!bs->drv) {
1469         return -ENOMEDIUM;
1470     }
1471     if (bs->read_only) {
1472         return -EPERM;
1473     }
1474     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1475 
1476     ret = bdrv_check_byte_request(bs, offset, bytes);
1477     if (ret < 0) {
1478         return ret;
1479     }
1480 
1481     /*
1482      * Align write if necessary by performing a read-modify-write cycle.
1483      * Pad qiov with the read parts and be sure to have a tracked request not
1484      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1485      */
1486     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1487 
1488     if (!qiov) {
1489         ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1490         goto out;
1491     }
1492 
1493     if (offset & (align - 1)) {
1494         QEMUIOVector head_qiov;
1495         struct iovec head_iov;
1496 
1497         mark_request_serialising(&req, align);
1498         wait_serialising_requests(&req);
1499 
1500         head_buf = qemu_blockalign(bs, align);
1501         head_iov = (struct iovec) {
1502             .iov_base   = head_buf,
1503             .iov_len    = align,
1504         };
1505         qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1506 
1507         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1508         ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1509                                   align, &head_qiov, 0);
1510         if (ret < 0) {
1511             goto fail;
1512         }
1513         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1514 
1515         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1516         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1517         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1518         use_local_qiov = true;
1519 
1520         bytes += offset & (align - 1);
1521         offset = offset & ~(align - 1);
1522 
1523         /* We have read the tail already if the request is smaller
1524          * than one aligned block.
1525          */
1526         if (bytes < align) {
1527             qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1528             bytes = align;
1529         }
1530     }
1531 
1532     if ((offset + bytes) & (align - 1)) {
1533         QEMUIOVector tail_qiov;
1534         struct iovec tail_iov;
1535         size_t tail_bytes;
1536         bool waited;
1537 
1538         mark_request_serialising(&req, align);
1539         waited = wait_serialising_requests(&req);
1540         assert(!waited || !use_local_qiov);
1541 
1542         tail_buf = qemu_blockalign(bs, align);
1543         tail_iov = (struct iovec) {
1544             .iov_base   = tail_buf,
1545             .iov_len    = align,
1546         };
1547         qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1548 
1549         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1550         ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1551                                   align, &tail_qiov, 0);
1552         if (ret < 0) {
1553             goto fail;
1554         }
1555         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1556 
1557         if (!use_local_qiov) {
1558             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1559             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1560             use_local_qiov = true;
1561         }
1562 
1563         tail_bytes = (offset + bytes) & (align - 1);
1564         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1565 
1566         bytes = ROUND_UP(bytes, align);
1567     }
1568 
1569     ret = bdrv_aligned_pwritev(bs, &req, offset, bytes, align,
1570                                use_local_qiov ? &local_qiov : qiov,
1571                                flags);
1572 
1573 fail:
1574 
1575     if (use_local_qiov) {
1576         qemu_iovec_destroy(&local_qiov);
1577     }
1578     qemu_vfree(head_buf);
1579     qemu_vfree(tail_buf);
1580 out:
1581     tracked_request_end(&req);
1582     return ret;
1583 }
1584 
1585 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1586     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1587     BdrvRequestFlags flags)
1588 {
1589     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1590         return -EINVAL;
1591     }
1592 
1593     return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1594                            nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1595 }
1596 
1597 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1598     int nb_sectors, QEMUIOVector *qiov)
1599 {
1600     trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1601 
1602     return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1603 }
1604 
1605 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1606                                        int count, BdrvRequestFlags flags)
1607 {
1608     trace_bdrv_co_pwrite_zeroes(child->bs, offset, count, flags);
1609 
1610     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1611         flags &= ~BDRV_REQ_MAY_UNMAP;
1612     }
1613 
1614     return bdrv_co_pwritev(child, offset, count, NULL,
1615                            BDRV_REQ_ZERO_WRITE | flags);
1616 }
1617 
1618 typedef struct BdrvCoGetBlockStatusData {
1619     BlockDriverState *bs;
1620     BlockDriverState *base;
1621     BlockDriverState **file;
1622     int64_t sector_num;
1623     int nb_sectors;
1624     int *pnum;
1625     int64_t ret;
1626     bool done;
1627 } BdrvCoGetBlockStatusData;
1628 
1629 /*
1630  * Returns the allocation status of the specified sectors.
1631  * Drivers not implementing the functionality are assumed to not support
1632  * backing files, hence all their sectors are reported as allocated.
1633  *
1634  * If 'sector_num' is beyond the end of the disk image the return value is 0
1635  * and 'pnum' is set to 0.
1636  *
1637  * 'pnum' is set to the number of sectors (including and immediately following
1638  * the specified sector) that are known to be in the same
1639  * allocated/unallocated state.
1640  *
1641  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
1642  * beyond the end of the disk image it will be clamped.
1643  *
1644  * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1645  * points to the BDS which the sector range is allocated in.
1646  */
1647 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1648                                                      int64_t sector_num,
1649                                                      int nb_sectors, int *pnum,
1650                                                      BlockDriverState **file)
1651 {
1652     int64_t total_sectors;
1653     int64_t n;
1654     int64_t ret, ret2;
1655 
1656     total_sectors = bdrv_nb_sectors(bs);
1657     if (total_sectors < 0) {
1658         return total_sectors;
1659     }
1660 
1661     if (sector_num >= total_sectors) {
1662         *pnum = 0;
1663         return 0;
1664     }
1665 
1666     n = total_sectors - sector_num;
1667     if (n < nb_sectors) {
1668         nb_sectors = n;
1669     }
1670 
1671     if (!bs->drv->bdrv_co_get_block_status) {
1672         *pnum = nb_sectors;
1673         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1674         if (bs->drv->protocol_name) {
1675             ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1676         }
1677         return ret;
1678     }
1679 
1680     *file = NULL;
1681     ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1682                                             file);
1683     if (ret < 0) {
1684         *pnum = 0;
1685         return ret;
1686     }
1687 
1688     if (ret & BDRV_BLOCK_RAW) {
1689         assert(ret & BDRV_BLOCK_OFFSET_VALID);
1690         return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1691                                      *pnum, pnum, file);
1692     }
1693 
1694     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1695         ret |= BDRV_BLOCK_ALLOCATED;
1696     } else {
1697         if (bdrv_unallocated_blocks_are_zero(bs)) {
1698             ret |= BDRV_BLOCK_ZERO;
1699         } else if (bs->backing) {
1700             BlockDriverState *bs2 = bs->backing->bs;
1701             int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1702             if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1703                 ret |= BDRV_BLOCK_ZERO;
1704             }
1705         }
1706     }
1707 
1708     if (*file && *file != bs &&
1709         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1710         (ret & BDRV_BLOCK_OFFSET_VALID)) {
1711         BlockDriverState *file2;
1712         int file_pnum;
1713 
1714         ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1715                                         *pnum, &file_pnum, &file2);
1716         if (ret2 >= 0) {
1717             /* Ignore errors.  This is just providing extra information, it
1718              * is useful but not necessary.
1719              */
1720             if (!file_pnum) {
1721                 /* !file_pnum indicates an offset at or beyond the EOF; it is
1722                  * perfectly valid for the format block driver to point to such
1723                  * offsets, so catch it and mark everything as zero */
1724                 ret |= BDRV_BLOCK_ZERO;
1725             } else {
1726                 /* Limit request to the range reported by the protocol driver */
1727                 *pnum = file_pnum;
1728                 ret |= (ret2 & BDRV_BLOCK_ZERO);
1729             }
1730         }
1731     }
1732 
1733     return ret;
1734 }
1735 
1736 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1737         BlockDriverState *base,
1738         int64_t sector_num,
1739         int nb_sectors,
1740         int *pnum,
1741         BlockDriverState **file)
1742 {
1743     BlockDriverState *p;
1744     int64_t ret = 0;
1745 
1746     assert(bs != base);
1747     for (p = bs; p != base; p = backing_bs(p)) {
1748         ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1749         if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1750             break;
1751         }
1752         /* [sector_num, pnum] unallocated on this layer, which could be only
1753          * the first part of [sector_num, nb_sectors].  */
1754         nb_sectors = MIN(nb_sectors, *pnum);
1755     }
1756     return ret;
1757 }
1758 
1759 /* Coroutine wrapper for bdrv_get_block_status_above() */
1760 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1761 {
1762     BdrvCoGetBlockStatusData *data = opaque;
1763 
1764     data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1765                                                data->sector_num,
1766                                                data->nb_sectors,
1767                                                data->pnum,
1768                                                data->file);
1769     data->done = true;
1770 }
1771 
1772 /*
1773  * Synchronous wrapper around bdrv_co_get_block_status_above().
1774  *
1775  * See bdrv_co_get_block_status_above() for details.
1776  */
1777 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1778                                     BlockDriverState *base,
1779                                     int64_t sector_num,
1780                                     int nb_sectors, int *pnum,
1781                                     BlockDriverState **file)
1782 {
1783     Coroutine *co;
1784     BdrvCoGetBlockStatusData data = {
1785         .bs = bs,
1786         .base = base,
1787         .file = file,
1788         .sector_num = sector_num,
1789         .nb_sectors = nb_sectors,
1790         .pnum = pnum,
1791         .done = false,
1792     };
1793 
1794     if (qemu_in_coroutine()) {
1795         /* Fast-path if already in coroutine context */
1796         bdrv_get_block_status_above_co_entry(&data);
1797     } else {
1798         AioContext *aio_context = bdrv_get_aio_context(bs);
1799 
1800         co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1801                                    &data);
1802         qemu_coroutine_enter(co);
1803         while (!data.done) {
1804             aio_poll(aio_context, true);
1805         }
1806     }
1807     return data.ret;
1808 }
1809 
1810 int64_t bdrv_get_block_status(BlockDriverState *bs,
1811                               int64_t sector_num,
1812                               int nb_sectors, int *pnum,
1813                               BlockDriverState **file)
1814 {
1815     return bdrv_get_block_status_above(bs, backing_bs(bs),
1816                                        sector_num, nb_sectors, pnum, file);
1817 }
1818 
1819 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1820                                    int nb_sectors, int *pnum)
1821 {
1822     BlockDriverState *file;
1823     int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1824                                         &file);
1825     if (ret < 0) {
1826         return ret;
1827     }
1828     return !!(ret & BDRV_BLOCK_ALLOCATED);
1829 }
1830 
1831 /*
1832  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1833  *
1834  * Return true if the given sector is allocated in any image between
1835  * BASE and TOP (inclusive).  BASE can be NULL to check if the given
1836  * sector is allocated in any image of the chain.  Return false otherwise.
1837  *
1838  * 'pnum' is set to the number of sectors (including and immediately following
1839  *  the specified sector) that are known to be in the same
1840  *  allocated/unallocated state.
1841  *
1842  */
1843 int bdrv_is_allocated_above(BlockDriverState *top,
1844                             BlockDriverState *base,
1845                             int64_t sector_num,
1846                             int nb_sectors, int *pnum)
1847 {
1848     BlockDriverState *intermediate;
1849     int ret, n = nb_sectors;
1850 
1851     intermediate = top;
1852     while (intermediate && intermediate != base) {
1853         int pnum_inter;
1854         ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1855                                 &pnum_inter);
1856         if (ret < 0) {
1857             return ret;
1858         } else if (ret) {
1859             *pnum = pnum_inter;
1860             return 1;
1861         }
1862 
1863         /*
1864          * [sector_num, nb_sectors] is unallocated on top but intermediate
1865          * might have
1866          *
1867          * [sector_num+x, nr_sectors] allocated.
1868          */
1869         if (n > pnum_inter &&
1870             (intermediate == top ||
1871              sector_num + pnum_inter < intermediate->total_sectors)) {
1872             n = pnum_inter;
1873         }
1874 
1875         intermediate = backing_bs(intermediate);
1876     }
1877 
1878     *pnum = n;
1879     return 0;
1880 }
1881 
1882 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1883                           const uint8_t *buf, int nb_sectors)
1884 {
1885     BlockDriver *drv = bs->drv;
1886     int ret;
1887 
1888     if (!drv) {
1889         return -ENOMEDIUM;
1890     }
1891     if (!drv->bdrv_write_compressed) {
1892         return -ENOTSUP;
1893     }
1894     ret = bdrv_check_request(bs, sector_num, nb_sectors);
1895     if (ret < 0) {
1896         return ret;
1897     }
1898 
1899     assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1900 
1901     return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1902 }
1903 
1904 typedef struct BdrvVmstateCo {
1905     BlockDriverState    *bs;
1906     QEMUIOVector        *qiov;
1907     int64_t             pos;
1908     bool                is_read;
1909     int                 ret;
1910 } BdrvVmstateCo;
1911 
1912 static int coroutine_fn
1913 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1914                    bool is_read)
1915 {
1916     BlockDriver *drv = bs->drv;
1917 
1918     if (!drv) {
1919         return -ENOMEDIUM;
1920     } else if (drv->bdrv_load_vmstate) {
1921         return is_read ? drv->bdrv_load_vmstate(bs, qiov, pos)
1922                        : drv->bdrv_save_vmstate(bs, qiov, pos);
1923     } else if (bs->file) {
1924         return bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
1925     }
1926 
1927     return -ENOTSUP;
1928 }
1929 
1930 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
1931 {
1932     BdrvVmstateCo *co = opaque;
1933     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
1934 }
1935 
1936 static inline int
1937 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1938                 bool is_read)
1939 {
1940     if (qemu_in_coroutine()) {
1941         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
1942     } else {
1943         BdrvVmstateCo data = {
1944             .bs         = bs,
1945             .qiov       = qiov,
1946             .pos        = pos,
1947             .is_read    = is_read,
1948             .ret        = -EINPROGRESS,
1949         };
1950         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
1951 
1952         qemu_coroutine_enter(co);
1953         while (data.ret == -EINPROGRESS) {
1954             aio_poll(bdrv_get_aio_context(bs), true);
1955         }
1956         return data.ret;
1957     }
1958 }
1959 
1960 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1961                       int64_t pos, int size)
1962 {
1963     QEMUIOVector qiov;
1964     struct iovec iov = {
1965         .iov_base   = (void *) buf,
1966         .iov_len    = size,
1967     };
1968     int ret;
1969 
1970     qemu_iovec_init_external(&qiov, &iov, 1);
1971 
1972     ret = bdrv_writev_vmstate(bs, &qiov, pos);
1973     if (ret < 0) {
1974         return ret;
1975     }
1976 
1977     return size;
1978 }
1979 
1980 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1981 {
1982     return bdrv_rw_vmstate(bs, qiov, pos, false);
1983 }
1984 
1985 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1986                       int64_t pos, int size)
1987 {
1988     QEMUIOVector qiov;
1989     struct iovec iov = {
1990         .iov_base   = buf,
1991         .iov_len    = size,
1992     };
1993     int ret;
1994 
1995     qemu_iovec_init_external(&qiov, &iov, 1);
1996     ret = bdrv_readv_vmstate(bs, &qiov, pos);
1997     if (ret < 0) {
1998         return ret;
1999     }
2000 
2001     return size;
2002 }
2003 
2004 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2005 {
2006     return bdrv_rw_vmstate(bs, qiov, pos, true);
2007 }
2008 
2009 /**************************************************************/
2010 /* async I/Os */
2011 
2012 BlockAIOCB *bdrv_aio_readv(BdrvChild *child, int64_t sector_num,
2013                            QEMUIOVector *qiov, int nb_sectors,
2014                            BlockCompletionFunc *cb, void *opaque)
2015 {
2016     trace_bdrv_aio_readv(child->bs, sector_num, nb_sectors, opaque);
2017 
2018     assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2019     return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2020                                   0, cb, opaque, false);
2021 }
2022 
2023 BlockAIOCB *bdrv_aio_writev(BdrvChild *child, int64_t sector_num,
2024                             QEMUIOVector *qiov, int nb_sectors,
2025                             BlockCompletionFunc *cb, void *opaque)
2026 {
2027     trace_bdrv_aio_writev(child->bs, sector_num, nb_sectors, opaque);
2028 
2029     assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2030     return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2031                                   0, cb, opaque, true);
2032 }
2033 
2034 void bdrv_aio_cancel(BlockAIOCB *acb)
2035 {
2036     qemu_aio_ref(acb);
2037     bdrv_aio_cancel_async(acb);
2038     while (acb->refcnt > 1) {
2039         if (acb->aiocb_info->get_aio_context) {
2040             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2041         } else if (acb->bs) {
2042             aio_poll(bdrv_get_aio_context(acb->bs), true);
2043         } else {
2044             abort();
2045         }
2046     }
2047     qemu_aio_unref(acb);
2048 }
2049 
2050 /* Async version of aio cancel. The caller is not blocked if the acb implements
2051  * cancel_async, otherwise we do nothing and let the request normally complete.
2052  * In either case the completion callback must be called. */
2053 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2054 {
2055     if (acb->aiocb_info->cancel_async) {
2056         acb->aiocb_info->cancel_async(acb);
2057     }
2058 }
2059 
2060 /**************************************************************/
2061 /* async block device emulation */
2062 
2063 typedef struct BlockRequest {
2064     union {
2065         /* Used during read, write, trim */
2066         struct {
2067             int64_t offset;
2068             int bytes;
2069             int flags;
2070             QEMUIOVector *qiov;
2071         };
2072         /* Used during ioctl */
2073         struct {
2074             int req;
2075             void *buf;
2076         };
2077     };
2078     BlockCompletionFunc *cb;
2079     void *opaque;
2080 
2081     int error;
2082 } BlockRequest;
2083 
2084 typedef struct BlockAIOCBCoroutine {
2085     BlockAIOCB common;
2086     BdrvChild *child;
2087     BlockRequest req;
2088     bool is_write;
2089     bool need_bh;
2090     bool *done;
2091     QEMUBH* bh;
2092 } BlockAIOCBCoroutine;
2093 
2094 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2095     .aiocb_size         = sizeof(BlockAIOCBCoroutine),
2096 };
2097 
2098 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2099 {
2100     if (!acb->need_bh) {
2101         acb->common.cb(acb->common.opaque, acb->req.error);
2102         qemu_aio_unref(acb);
2103     }
2104 }
2105 
2106 static void bdrv_co_em_bh(void *opaque)
2107 {
2108     BlockAIOCBCoroutine *acb = opaque;
2109 
2110     assert(!acb->need_bh);
2111     qemu_bh_delete(acb->bh);
2112     bdrv_co_complete(acb);
2113 }
2114 
2115 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2116 {
2117     acb->need_bh = false;
2118     if (acb->req.error != -EINPROGRESS) {
2119         BlockDriverState *bs = acb->common.bs;
2120 
2121         acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2122         qemu_bh_schedule(acb->bh);
2123     }
2124 }
2125 
2126 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2127 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2128 {
2129     BlockAIOCBCoroutine *acb = opaque;
2130 
2131     if (!acb->is_write) {
2132         acb->req.error = bdrv_co_preadv(acb->child, acb->req.offset,
2133             acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2134     } else {
2135         acb->req.error = bdrv_co_pwritev(acb->child, acb->req.offset,
2136             acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2137     }
2138 
2139     bdrv_co_complete(acb);
2140 }
2141 
2142 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
2143                                           int64_t offset,
2144                                           QEMUIOVector *qiov,
2145                                           BdrvRequestFlags flags,
2146                                           BlockCompletionFunc *cb,
2147                                           void *opaque,
2148                                           bool is_write)
2149 {
2150     Coroutine *co;
2151     BlockAIOCBCoroutine *acb;
2152 
2153     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, child->bs, cb, opaque);
2154     acb->child = child;
2155     acb->need_bh = true;
2156     acb->req.error = -EINPROGRESS;
2157     acb->req.offset = offset;
2158     acb->req.qiov = qiov;
2159     acb->req.flags = flags;
2160     acb->is_write = is_write;
2161 
2162     co = qemu_coroutine_create(bdrv_co_do_rw, acb);
2163     qemu_coroutine_enter(co);
2164 
2165     bdrv_co_maybe_schedule_bh(acb);
2166     return &acb->common;
2167 }
2168 
2169 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2170 {
2171     BlockAIOCBCoroutine *acb = opaque;
2172     BlockDriverState *bs = acb->common.bs;
2173 
2174     acb->req.error = bdrv_co_flush(bs);
2175     bdrv_co_complete(acb);
2176 }
2177 
2178 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2179         BlockCompletionFunc *cb, void *opaque)
2180 {
2181     trace_bdrv_aio_flush(bs, opaque);
2182 
2183     Coroutine *co;
2184     BlockAIOCBCoroutine *acb;
2185 
2186     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2187     acb->need_bh = true;
2188     acb->req.error = -EINPROGRESS;
2189 
2190     co = qemu_coroutine_create(bdrv_aio_flush_co_entry, acb);
2191     qemu_coroutine_enter(co);
2192 
2193     bdrv_co_maybe_schedule_bh(acb);
2194     return &acb->common;
2195 }
2196 
2197 static void coroutine_fn bdrv_aio_pdiscard_co_entry(void *opaque)
2198 {
2199     BlockAIOCBCoroutine *acb = opaque;
2200     BlockDriverState *bs = acb->common.bs;
2201 
2202     acb->req.error = bdrv_co_pdiscard(bs, acb->req.offset, acb->req.bytes);
2203     bdrv_co_complete(acb);
2204 }
2205 
2206 BlockAIOCB *bdrv_aio_pdiscard(BlockDriverState *bs, int64_t offset, int count,
2207                               BlockCompletionFunc *cb, void *opaque)
2208 {
2209     Coroutine *co;
2210     BlockAIOCBCoroutine *acb;
2211 
2212     trace_bdrv_aio_pdiscard(bs, offset, count, opaque);
2213 
2214     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2215     acb->need_bh = true;
2216     acb->req.error = -EINPROGRESS;
2217     acb->req.offset = offset;
2218     acb->req.bytes = count;
2219     co = qemu_coroutine_create(bdrv_aio_pdiscard_co_entry, acb);
2220     qemu_coroutine_enter(co);
2221 
2222     bdrv_co_maybe_schedule_bh(acb);
2223     return &acb->common;
2224 }
2225 
2226 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2227                    BlockCompletionFunc *cb, void *opaque)
2228 {
2229     BlockAIOCB *acb;
2230 
2231     acb = g_malloc(aiocb_info->aiocb_size);
2232     acb->aiocb_info = aiocb_info;
2233     acb->bs = bs;
2234     acb->cb = cb;
2235     acb->opaque = opaque;
2236     acb->refcnt = 1;
2237     return acb;
2238 }
2239 
2240 void qemu_aio_ref(void *p)
2241 {
2242     BlockAIOCB *acb = p;
2243     acb->refcnt++;
2244 }
2245 
2246 void qemu_aio_unref(void *p)
2247 {
2248     BlockAIOCB *acb = p;
2249     assert(acb->refcnt > 0);
2250     if (--acb->refcnt == 0) {
2251         g_free(acb);
2252     }
2253 }
2254 
2255 /**************************************************************/
2256 /* Coroutine block device emulation */
2257 
2258 typedef struct FlushCo {
2259     BlockDriverState *bs;
2260     int ret;
2261 } FlushCo;
2262 
2263 
2264 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2265 {
2266     FlushCo *rwco = opaque;
2267 
2268     rwco->ret = bdrv_co_flush(rwco->bs);
2269 }
2270 
2271 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2272 {
2273     int ret;
2274     BdrvTrackedRequest req;
2275 
2276     if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2277         bdrv_is_sg(bs)) {
2278         return 0;
2279     }
2280 
2281     tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH);
2282 
2283     int current_gen = bs->write_gen;
2284 
2285     /* Wait until any previous flushes are completed */
2286     while (bs->active_flush_req != NULL) {
2287         qemu_co_queue_wait(&bs->flush_queue);
2288     }
2289 
2290     bs->active_flush_req = &req;
2291 
2292     /* Write back all layers by calling one driver function */
2293     if (bs->drv->bdrv_co_flush) {
2294         ret = bs->drv->bdrv_co_flush(bs);
2295         goto out;
2296     }
2297 
2298     /* Write back cached data to the OS even with cache=unsafe */
2299     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2300     if (bs->drv->bdrv_co_flush_to_os) {
2301         ret = bs->drv->bdrv_co_flush_to_os(bs);
2302         if (ret < 0) {
2303             goto out;
2304         }
2305     }
2306 
2307     /* But don't actually force it to the disk with cache=unsafe */
2308     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2309         goto flush_parent;
2310     }
2311 
2312     /* Check if we really need to flush anything */
2313     if (bs->flushed_gen == current_gen) {
2314         goto flush_parent;
2315     }
2316 
2317     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2318     if (bs->drv->bdrv_co_flush_to_disk) {
2319         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2320     } else if (bs->drv->bdrv_aio_flush) {
2321         BlockAIOCB *acb;
2322         CoroutineIOCompletion co = {
2323             .coroutine = qemu_coroutine_self(),
2324         };
2325 
2326         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2327         if (acb == NULL) {
2328             ret = -EIO;
2329         } else {
2330             qemu_coroutine_yield();
2331             ret = co.ret;
2332         }
2333     } else {
2334         /*
2335          * Some block drivers always operate in either writethrough or unsafe
2336          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2337          * know how the server works (because the behaviour is hardcoded or
2338          * depends on server-side configuration), so we can't ensure that
2339          * everything is safe on disk. Returning an error doesn't work because
2340          * that would break guests even if the server operates in writethrough
2341          * mode.
2342          *
2343          * Let's hope the user knows what he's doing.
2344          */
2345         ret = 0;
2346     }
2347 
2348     if (ret < 0) {
2349         goto out;
2350     }
2351 
2352     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2353      * in the case of cache=unsafe, so there are no useless flushes.
2354      */
2355 flush_parent:
2356     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2357 out:
2358     /* Notify any pending flushes that we have completed */
2359     bs->flushed_gen = current_gen;
2360     bs->active_flush_req = NULL;
2361     /* Return value is ignored - it's ok if wait queue is empty */
2362     qemu_co_queue_next(&bs->flush_queue);
2363 
2364     tracked_request_end(&req);
2365     return ret;
2366 }
2367 
2368 int bdrv_flush(BlockDriverState *bs)
2369 {
2370     Coroutine *co;
2371     FlushCo flush_co = {
2372         .bs = bs,
2373         .ret = NOT_DONE,
2374     };
2375 
2376     if (qemu_in_coroutine()) {
2377         /* Fast-path if already in coroutine context */
2378         bdrv_flush_co_entry(&flush_co);
2379     } else {
2380         AioContext *aio_context = bdrv_get_aio_context(bs);
2381 
2382         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2383         qemu_coroutine_enter(co);
2384         while (flush_co.ret == NOT_DONE) {
2385             aio_poll(aio_context, true);
2386         }
2387     }
2388 
2389     return flush_co.ret;
2390 }
2391 
2392 typedef struct DiscardCo {
2393     BlockDriverState *bs;
2394     int64_t offset;
2395     int count;
2396     int ret;
2397 } DiscardCo;
2398 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2399 {
2400     DiscardCo *rwco = opaque;
2401 
2402     rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->count);
2403 }
2404 
2405 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2406                                   int count)
2407 {
2408     BdrvTrackedRequest req;
2409     int max_pdiscard, ret;
2410     int head, align;
2411 
2412     if (!bs->drv) {
2413         return -ENOMEDIUM;
2414     }
2415 
2416     ret = bdrv_check_byte_request(bs, offset, count);
2417     if (ret < 0) {
2418         return ret;
2419     } else if (bs->read_only) {
2420         return -EPERM;
2421     }
2422     assert(!(bs->open_flags & BDRV_O_INACTIVE));
2423 
2424     /* Do nothing if disabled.  */
2425     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2426         return 0;
2427     }
2428 
2429     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2430         return 0;
2431     }
2432 
2433     /* Discard is advisory, so ignore any unaligned head or tail */
2434     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2435     assert(align % bs->bl.request_alignment == 0);
2436     head = offset % align;
2437     if (head) {
2438         head = MIN(count, align - head);
2439         count -= head;
2440         offset += head;
2441     }
2442     count = QEMU_ALIGN_DOWN(count, align);
2443     if (!count) {
2444         return 0;
2445     }
2446 
2447     tracked_request_begin(&req, bs, offset, count, BDRV_TRACKED_DISCARD);
2448 
2449     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2450     if (ret < 0) {
2451         goto out;
2452     }
2453 
2454     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2455                                    align);
2456     assert(max_pdiscard);
2457 
2458     while (count > 0) {
2459         int ret;
2460         int num = MIN(count, max_pdiscard);
2461 
2462         if (bs->drv->bdrv_co_pdiscard) {
2463             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2464         } else {
2465             BlockAIOCB *acb;
2466             CoroutineIOCompletion co = {
2467                 .coroutine = qemu_coroutine_self(),
2468             };
2469 
2470             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2471                                              bdrv_co_io_em_complete, &co);
2472             if (acb == NULL) {
2473                 ret = -EIO;
2474                 goto out;
2475             } else {
2476                 qemu_coroutine_yield();
2477                 ret = co.ret;
2478             }
2479         }
2480         if (ret && ret != -ENOTSUP) {
2481             goto out;
2482         }
2483 
2484         offset += num;
2485         count -= num;
2486     }
2487     ret = 0;
2488 out:
2489     ++bs->write_gen;
2490     bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2491                    req.bytes >> BDRV_SECTOR_BITS);
2492     tracked_request_end(&req);
2493     return ret;
2494 }
2495 
2496 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int count)
2497 {
2498     Coroutine *co;
2499     DiscardCo rwco = {
2500         .bs = bs,
2501         .offset = offset,
2502         .count = count,
2503         .ret = NOT_DONE,
2504     };
2505 
2506     if (qemu_in_coroutine()) {
2507         /* Fast-path if already in coroutine context */
2508         bdrv_pdiscard_co_entry(&rwco);
2509     } else {
2510         AioContext *aio_context = bdrv_get_aio_context(bs);
2511 
2512         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2513         qemu_coroutine_enter(co);
2514         while (rwco.ret == NOT_DONE) {
2515             aio_poll(aio_context, true);
2516         }
2517     }
2518 
2519     return rwco.ret;
2520 }
2521 
2522 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf)
2523 {
2524     BlockDriver *drv = bs->drv;
2525     BdrvTrackedRequest tracked_req;
2526     CoroutineIOCompletion co = {
2527         .coroutine = qemu_coroutine_self(),
2528     };
2529     BlockAIOCB *acb;
2530 
2531     tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL);
2532     if (!drv || !drv->bdrv_aio_ioctl) {
2533         co.ret = -ENOTSUP;
2534         goto out;
2535     }
2536 
2537     acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2538     if (!acb) {
2539         co.ret = -ENOTSUP;
2540         goto out;
2541     }
2542     qemu_coroutine_yield();
2543 out:
2544     tracked_request_end(&tracked_req);
2545     return co.ret;
2546 }
2547 
2548 typedef struct {
2549     BlockDriverState *bs;
2550     int req;
2551     void *buf;
2552     int ret;
2553 } BdrvIoctlCoData;
2554 
2555 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque)
2556 {
2557     BdrvIoctlCoData *data = opaque;
2558     data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf);
2559 }
2560 
2561 /* needed for generic scsi interface */
2562 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2563 {
2564     BdrvIoctlCoData data = {
2565         .bs = bs,
2566         .req = req,
2567         .buf = buf,
2568         .ret = -EINPROGRESS,
2569     };
2570 
2571     if (qemu_in_coroutine()) {
2572         /* Fast-path if already in coroutine context */
2573         bdrv_co_ioctl_entry(&data);
2574     } else {
2575         Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry, &data);
2576 
2577         qemu_coroutine_enter(co);
2578         while (data.ret == -EINPROGRESS) {
2579             aio_poll(bdrv_get_aio_context(bs), true);
2580         }
2581     }
2582     return data.ret;
2583 }
2584 
2585 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque)
2586 {
2587     BlockAIOCBCoroutine *acb = opaque;
2588     acb->req.error = bdrv_co_do_ioctl(acb->common.bs,
2589                                       acb->req.req, acb->req.buf);
2590     bdrv_co_complete(acb);
2591 }
2592 
2593 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2594         unsigned long int req, void *buf,
2595         BlockCompletionFunc *cb, void *opaque)
2596 {
2597     BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info,
2598                                             bs, cb, opaque);
2599     Coroutine *co;
2600 
2601     acb->need_bh = true;
2602     acb->req.error = -EINPROGRESS;
2603     acb->req.req = req;
2604     acb->req.buf = buf;
2605     co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry, acb);
2606     qemu_coroutine_enter(co);
2607 
2608     bdrv_co_maybe_schedule_bh(acb);
2609     return &acb->common;
2610 }
2611 
2612 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2613 {
2614     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2615 }
2616 
2617 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2618 {
2619     return memset(qemu_blockalign(bs, size), 0, size);
2620 }
2621 
2622 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2623 {
2624     size_t align = bdrv_opt_mem_align(bs);
2625 
2626     /* Ensure that NULL is never returned on success */
2627     assert(align > 0);
2628     if (size == 0) {
2629         size = align;
2630     }
2631 
2632     return qemu_try_memalign(align, size);
2633 }
2634 
2635 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2636 {
2637     void *mem = qemu_try_blockalign(bs, size);
2638 
2639     if (mem) {
2640         memset(mem, 0, size);
2641     }
2642 
2643     return mem;
2644 }
2645 
2646 /*
2647  * Check if all memory in this vector is sector aligned.
2648  */
2649 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2650 {
2651     int i;
2652     size_t alignment = bdrv_min_mem_align(bs);
2653 
2654     for (i = 0; i < qiov->niov; i++) {
2655         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2656             return false;
2657         }
2658         if (qiov->iov[i].iov_len % alignment) {
2659             return false;
2660         }
2661     }
2662 
2663     return true;
2664 }
2665 
2666 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2667                                     NotifierWithReturn *notifier)
2668 {
2669     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2670 }
2671 
2672 void bdrv_io_plug(BlockDriverState *bs)
2673 {
2674     BdrvChild *child;
2675 
2676     QLIST_FOREACH(child, &bs->children, next) {
2677         bdrv_io_plug(child->bs);
2678     }
2679 
2680     if (bs->io_plugged++ == 0 && bs->io_plug_disabled == 0) {
2681         BlockDriver *drv = bs->drv;
2682         if (drv && drv->bdrv_io_plug) {
2683             drv->bdrv_io_plug(bs);
2684         }
2685     }
2686 }
2687 
2688 void bdrv_io_unplug(BlockDriverState *bs)
2689 {
2690     BdrvChild *child;
2691 
2692     assert(bs->io_plugged);
2693     if (--bs->io_plugged == 0 && bs->io_plug_disabled == 0) {
2694         BlockDriver *drv = bs->drv;
2695         if (drv && drv->bdrv_io_unplug) {
2696             drv->bdrv_io_unplug(bs);
2697         }
2698     }
2699 
2700     QLIST_FOREACH(child, &bs->children, next) {
2701         bdrv_io_unplug(child->bs);
2702     }
2703 }
2704 
2705 void bdrv_io_unplugged_begin(BlockDriverState *bs)
2706 {
2707     BdrvChild *child;
2708 
2709     if (bs->io_plug_disabled++ == 0 && bs->io_plugged > 0) {
2710         BlockDriver *drv = bs->drv;
2711         if (drv && drv->bdrv_io_unplug) {
2712             drv->bdrv_io_unplug(bs);
2713         }
2714     }
2715 
2716     QLIST_FOREACH(child, &bs->children, next) {
2717         bdrv_io_unplugged_begin(child->bs);
2718     }
2719 }
2720 
2721 void bdrv_io_unplugged_end(BlockDriverState *bs)
2722 {
2723     BdrvChild *child;
2724 
2725     assert(bs->io_plug_disabled);
2726     QLIST_FOREACH(child, &bs->children, next) {
2727         bdrv_io_unplugged_end(child->bs);
2728     }
2729 
2730     if (--bs->io_plug_disabled == 0 && bs->io_plugged > 0) {
2731         BlockDriver *drv = bs->drv;
2732         if (drv && drv->bdrv_io_plug) {
2733             drv->bdrv_io_plug(bs);
2734         }
2735     }
2736 }
2737