1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/blockjob.h" 29 #include "block/block_int.h" 30 #include "qemu/cutils.h" 31 #include "qapi/error.h" 32 #include "qemu/error-report.h" 33 34 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 35 36 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child, 37 int64_t offset, 38 QEMUIOVector *qiov, 39 BdrvRequestFlags flags, 40 BlockCompletionFunc *cb, 41 void *opaque, 42 bool is_write); 43 static void coroutine_fn bdrv_co_do_rw(void *opaque); 44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 45 int64_t offset, int count, BdrvRequestFlags flags); 46 47 static void bdrv_parent_drained_begin(BlockDriverState *bs) 48 { 49 BdrvChild *c; 50 51 QLIST_FOREACH(c, &bs->parents, next_parent) { 52 if (c->role->drained_begin) { 53 c->role->drained_begin(c); 54 } 55 } 56 } 57 58 static void bdrv_parent_drained_end(BlockDriverState *bs) 59 { 60 BdrvChild *c; 61 62 QLIST_FOREACH(c, &bs->parents, next_parent) { 63 if (c->role->drained_end) { 64 c->role->drained_end(c); 65 } 66 } 67 } 68 69 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 70 { 71 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 72 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 73 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 74 src->opt_mem_alignment); 75 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 76 src->min_mem_alignment); 77 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 78 } 79 80 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 81 { 82 BlockDriver *drv = bs->drv; 83 Error *local_err = NULL; 84 85 memset(&bs->bl, 0, sizeof(bs->bl)); 86 87 if (!drv) { 88 return; 89 } 90 91 /* Default alignment based on whether driver has byte interface */ 92 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512; 93 94 /* Take some limits from the children as a default */ 95 if (bs->file) { 96 bdrv_refresh_limits(bs->file->bs, &local_err); 97 if (local_err) { 98 error_propagate(errp, local_err); 99 return; 100 } 101 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 102 } else { 103 bs->bl.min_mem_alignment = 512; 104 bs->bl.opt_mem_alignment = getpagesize(); 105 106 /* Safe default since most protocols use readv()/writev()/etc */ 107 bs->bl.max_iov = IOV_MAX; 108 } 109 110 if (bs->backing) { 111 bdrv_refresh_limits(bs->backing->bs, &local_err); 112 if (local_err) { 113 error_propagate(errp, local_err); 114 return; 115 } 116 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 117 } 118 119 /* Then let the driver override it */ 120 if (drv->bdrv_refresh_limits) { 121 drv->bdrv_refresh_limits(bs, errp); 122 } 123 } 124 125 /** 126 * The copy-on-read flag is actually a reference count so multiple users may 127 * use the feature without worrying about clobbering its previous state. 128 * Copy-on-read stays enabled until all users have called to disable it. 129 */ 130 void bdrv_enable_copy_on_read(BlockDriverState *bs) 131 { 132 bs->copy_on_read++; 133 } 134 135 void bdrv_disable_copy_on_read(BlockDriverState *bs) 136 { 137 assert(bs->copy_on_read > 0); 138 bs->copy_on_read--; 139 } 140 141 /* Check if any requests are in-flight (including throttled requests) */ 142 bool bdrv_requests_pending(BlockDriverState *bs) 143 { 144 BdrvChild *child; 145 146 if (!QLIST_EMPTY(&bs->tracked_requests)) { 147 return true; 148 } 149 150 QLIST_FOREACH(child, &bs->children, next) { 151 if (bdrv_requests_pending(child->bs)) { 152 return true; 153 } 154 } 155 156 return false; 157 } 158 159 static void bdrv_drain_recurse(BlockDriverState *bs) 160 { 161 BdrvChild *child; 162 163 if (bs->drv && bs->drv->bdrv_drain) { 164 bs->drv->bdrv_drain(bs); 165 } 166 QLIST_FOREACH(child, &bs->children, next) { 167 bdrv_drain_recurse(child->bs); 168 } 169 } 170 171 typedef struct { 172 Coroutine *co; 173 BlockDriverState *bs; 174 QEMUBH *bh; 175 bool done; 176 } BdrvCoDrainData; 177 178 static void bdrv_drain_poll(BlockDriverState *bs) 179 { 180 bool busy = true; 181 182 while (busy) { 183 /* Keep iterating */ 184 busy = bdrv_requests_pending(bs); 185 busy |= aio_poll(bdrv_get_aio_context(bs), busy); 186 } 187 } 188 189 static void bdrv_co_drain_bh_cb(void *opaque) 190 { 191 BdrvCoDrainData *data = opaque; 192 Coroutine *co = data->co; 193 194 qemu_bh_delete(data->bh); 195 bdrv_drain_poll(data->bs); 196 data->done = true; 197 qemu_coroutine_enter(co); 198 } 199 200 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs) 201 { 202 BdrvCoDrainData data; 203 204 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 205 * other coroutines run if they were queued from 206 * qemu_co_queue_run_restart(). */ 207 208 assert(qemu_in_coroutine()); 209 data = (BdrvCoDrainData) { 210 .co = qemu_coroutine_self(), 211 .bs = bs, 212 .done = false, 213 .bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_drain_bh_cb, &data), 214 }; 215 qemu_bh_schedule(data.bh); 216 217 qemu_coroutine_yield(); 218 /* If we are resumed from some other event (such as an aio completion or a 219 * timer callback), it is a bug in the caller that should be fixed. */ 220 assert(data.done); 221 } 222 223 void bdrv_drained_begin(BlockDriverState *bs) 224 { 225 if (!bs->quiesce_counter++) { 226 aio_disable_external(bdrv_get_aio_context(bs)); 227 bdrv_parent_drained_begin(bs); 228 } 229 230 bdrv_io_unplugged_begin(bs); 231 bdrv_drain_recurse(bs); 232 if (qemu_in_coroutine()) { 233 bdrv_co_yield_to_drain(bs); 234 } else { 235 bdrv_drain_poll(bs); 236 } 237 bdrv_io_unplugged_end(bs); 238 } 239 240 void bdrv_drained_end(BlockDriverState *bs) 241 { 242 assert(bs->quiesce_counter > 0); 243 if (--bs->quiesce_counter > 0) { 244 return; 245 } 246 247 bdrv_parent_drained_end(bs); 248 aio_enable_external(bdrv_get_aio_context(bs)); 249 } 250 251 /* 252 * Wait for pending requests to complete on a single BlockDriverState subtree, 253 * and suspend block driver's internal I/O until next request arrives. 254 * 255 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 256 * AioContext. 257 * 258 * Only this BlockDriverState's AioContext is run, so in-flight requests must 259 * not depend on events in other AioContexts. In that case, use 260 * bdrv_drain_all() instead. 261 */ 262 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 263 { 264 assert(qemu_in_coroutine()); 265 bdrv_drained_begin(bs); 266 bdrv_drained_end(bs); 267 } 268 269 void bdrv_drain(BlockDriverState *bs) 270 { 271 bdrv_drained_begin(bs); 272 bdrv_drained_end(bs); 273 } 274 275 /* 276 * Wait for pending requests to complete across all BlockDriverStates 277 * 278 * This function does not flush data to disk, use bdrv_flush_all() for that 279 * after calling this function. 280 */ 281 void bdrv_drain_all(void) 282 { 283 /* Always run first iteration so any pending completion BHs run */ 284 bool busy = true; 285 BlockDriverState *bs; 286 BdrvNextIterator it; 287 BlockJob *job = NULL; 288 GSList *aio_ctxs = NULL, *ctx; 289 290 while ((job = block_job_next(job))) { 291 AioContext *aio_context = blk_get_aio_context(job->blk); 292 293 aio_context_acquire(aio_context); 294 block_job_pause(job); 295 aio_context_release(aio_context); 296 } 297 298 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 299 AioContext *aio_context = bdrv_get_aio_context(bs); 300 301 aio_context_acquire(aio_context); 302 bdrv_parent_drained_begin(bs); 303 bdrv_io_unplugged_begin(bs); 304 bdrv_drain_recurse(bs); 305 aio_context_release(aio_context); 306 307 if (!g_slist_find(aio_ctxs, aio_context)) { 308 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context); 309 } 310 } 311 312 /* Note that completion of an asynchronous I/O operation can trigger any 313 * number of other I/O operations on other devices---for example a 314 * coroutine can submit an I/O request to another device in response to 315 * request completion. Therefore we must keep looping until there was no 316 * more activity rather than simply draining each device independently. 317 */ 318 while (busy) { 319 busy = false; 320 321 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) { 322 AioContext *aio_context = ctx->data; 323 324 aio_context_acquire(aio_context); 325 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 326 if (aio_context == bdrv_get_aio_context(bs)) { 327 if (bdrv_requests_pending(bs)) { 328 busy = true; 329 aio_poll(aio_context, busy); 330 } 331 } 332 } 333 busy |= aio_poll(aio_context, false); 334 aio_context_release(aio_context); 335 } 336 } 337 338 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 339 AioContext *aio_context = bdrv_get_aio_context(bs); 340 341 aio_context_acquire(aio_context); 342 bdrv_io_unplugged_end(bs); 343 bdrv_parent_drained_end(bs); 344 aio_context_release(aio_context); 345 } 346 g_slist_free(aio_ctxs); 347 348 job = NULL; 349 while ((job = block_job_next(job))) { 350 AioContext *aio_context = blk_get_aio_context(job->blk); 351 352 aio_context_acquire(aio_context); 353 block_job_resume(job); 354 aio_context_release(aio_context); 355 } 356 } 357 358 /** 359 * Remove an active request from the tracked requests list 360 * 361 * This function should be called when a tracked request is completing. 362 */ 363 static void tracked_request_end(BdrvTrackedRequest *req) 364 { 365 if (req->serialising) { 366 req->bs->serialising_in_flight--; 367 } 368 369 QLIST_REMOVE(req, list); 370 qemu_co_queue_restart_all(&req->wait_queue); 371 } 372 373 /** 374 * Add an active request to the tracked requests list 375 */ 376 static void tracked_request_begin(BdrvTrackedRequest *req, 377 BlockDriverState *bs, 378 int64_t offset, 379 unsigned int bytes, 380 enum BdrvTrackedRequestType type) 381 { 382 *req = (BdrvTrackedRequest){ 383 .bs = bs, 384 .offset = offset, 385 .bytes = bytes, 386 .type = type, 387 .co = qemu_coroutine_self(), 388 .serialising = false, 389 .overlap_offset = offset, 390 .overlap_bytes = bytes, 391 }; 392 393 qemu_co_queue_init(&req->wait_queue); 394 395 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 396 } 397 398 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 399 { 400 int64_t overlap_offset = req->offset & ~(align - 1); 401 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 402 - overlap_offset; 403 404 if (!req->serialising) { 405 req->bs->serialising_in_flight++; 406 req->serialising = true; 407 } 408 409 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 410 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 411 } 412 413 /** 414 * Round a region to cluster boundaries (sector-based) 415 */ 416 void bdrv_round_sectors_to_clusters(BlockDriverState *bs, 417 int64_t sector_num, int nb_sectors, 418 int64_t *cluster_sector_num, 419 int *cluster_nb_sectors) 420 { 421 BlockDriverInfo bdi; 422 423 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 424 *cluster_sector_num = sector_num; 425 *cluster_nb_sectors = nb_sectors; 426 } else { 427 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 428 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 429 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 430 nb_sectors, c); 431 } 432 } 433 434 /** 435 * Round a region to cluster boundaries 436 */ 437 void bdrv_round_to_clusters(BlockDriverState *bs, 438 int64_t offset, unsigned int bytes, 439 int64_t *cluster_offset, 440 unsigned int *cluster_bytes) 441 { 442 BlockDriverInfo bdi; 443 444 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 445 *cluster_offset = offset; 446 *cluster_bytes = bytes; 447 } else { 448 int64_t c = bdi.cluster_size; 449 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 450 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 451 } 452 } 453 454 static int bdrv_get_cluster_size(BlockDriverState *bs) 455 { 456 BlockDriverInfo bdi; 457 int ret; 458 459 ret = bdrv_get_info(bs, &bdi); 460 if (ret < 0 || bdi.cluster_size == 0) { 461 return bs->bl.request_alignment; 462 } else { 463 return bdi.cluster_size; 464 } 465 } 466 467 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 468 int64_t offset, unsigned int bytes) 469 { 470 /* aaaa bbbb */ 471 if (offset >= req->overlap_offset + req->overlap_bytes) { 472 return false; 473 } 474 /* bbbb aaaa */ 475 if (req->overlap_offset >= offset + bytes) { 476 return false; 477 } 478 return true; 479 } 480 481 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 482 { 483 BlockDriverState *bs = self->bs; 484 BdrvTrackedRequest *req; 485 bool retry; 486 bool waited = false; 487 488 if (!bs->serialising_in_flight) { 489 return false; 490 } 491 492 do { 493 retry = false; 494 QLIST_FOREACH(req, &bs->tracked_requests, list) { 495 if (req == self || (!req->serialising && !self->serialising)) { 496 continue; 497 } 498 if (tracked_request_overlaps(req, self->overlap_offset, 499 self->overlap_bytes)) 500 { 501 /* Hitting this means there was a reentrant request, for 502 * example, a block driver issuing nested requests. This must 503 * never happen since it means deadlock. 504 */ 505 assert(qemu_coroutine_self() != req->co); 506 507 /* If the request is already (indirectly) waiting for us, or 508 * will wait for us as soon as it wakes up, then just go on 509 * (instead of producing a deadlock in the former case). */ 510 if (!req->waiting_for) { 511 self->waiting_for = req; 512 qemu_co_queue_wait(&req->wait_queue); 513 self->waiting_for = NULL; 514 retry = true; 515 waited = true; 516 break; 517 } 518 } 519 } 520 } while (retry); 521 522 return waited; 523 } 524 525 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 526 size_t size) 527 { 528 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 529 return -EIO; 530 } 531 532 if (!bdrv_is_inserted(bs)) { 533 return -ENOMEDIUM; 534 } 535 536 if (offset < 0) { 537 return -EIO; 538 } 539 540 return 0; 541 } 542 543 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 544 int nb_sectors) 545 { 546 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 547 return -EIO; 548 } 549 550 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 551 nb_sectors * BDRV_SECTOR_SIZE); 552 } 553 554 typedef struct RwCo { 555 BdrvChild *child; 556 int64_t offset; 557 QEMUIOVector *qiov; 558 bool is_write; 559 int ret; 560 BdrvRequestFlags flags; 561 } RwCo; 562 563 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 564 { 565 RwCo *rwco = opaque; 566 567 if (!rwco->is_write) { 568 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 569 rwco->qiov->size, rwco->qiov, 570 rwco->flags); 571 } else { 572 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 573 rwco->qiov->size, rwco->qiov, 574 rwco->flags); 575 } 576 } 577 578 /* 579 * Process a vectored synchronous request using coroutines 580 */ 581 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 582 QEMUIOVector *qiov, bool is_write, 583 BdrvRequestFlags flags) 584 { 585 Coroutine *co; 586 RwCo rwco = { 587 .child = child, 588 .offset = offset, 589 .qiov = qiov, 590 .is_write = is_write, 591 .ret = NOT_DONE, 592 .flags = flags, 593 }; 594 595 if (qemu_in_coroutine()) { 596 /* Fast-path if already in coroutine context */ 597 bdrv_rw_co_entry(&rwco); 598 } else { 599 AioContext *aio_context = bdrv_get_aio_context(child->bs); 600 601 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 602 qemu_coroutine_enter(co); 603 while (rwco.ret == NOT_DONE) { 604 aio_poll(aio_context, true); 605 } 606 } 607 return rwco.ret; 608 } 609 610 /* 611 * Process a synchronous request using coroutines 612 */ 613 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, 614 int nb_sectors, bool is_write, BdrvRequestFlags flags) 615 { 616 QEMUIOVector qiov; 617 struct iovec iov = { 618 .iov_base = (void *)buf, 619 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 620 }; 621 622 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 623 return -EINVAL; 624 } 625 626 qemu_iovec_init_external(&qiov, &iov, 1); 627 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, 628 &qiov, is_write, flags); 629 } 630 631 /* return < 0 if error. See bdrv_write() for the return codes */ 632 int bdrv_read(BdrvChild *child, int64_t sector_num, 633 uint8_t *buf, int nb_sectors) 634 { 635 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); 636 } 637 638 /* Return < 0 if error. Important errors are: 639 -EIO generic I/O error (may happen for all errors) 640 -ENOMEDIUM No media inserted. 641 -EINVAL Invalid sector number or nb_sectors 642 -EACCES Trying to write a read-only device 643 */ 644 int bdrv_write(BdrvChild *child, int64_t sector_num, 645 const uint8_t *buf, int nb_sectors) 646 { 647 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 648 } 649 650 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 651 int count, BdrvRequestFlags flags) 652 { 653 QEMUIOVector qiov; 654 struct iovec iov = { 655 .iov_base = NULL, 656 .iov_len = count, 657 }; 658 659 qemu_iovec_init_external(&qiov, &iov, 1); 660 return bdrv_prwv_co(child, offset, &qiov, true, 661 BDRV_REQ_ZERO_WRITE | flags); 662 } 663 664 /* 665 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 666 * The operation is sped up by checking the block status and only writing 667 * zeroes to the device if they currently do not return zeroes. Optional 668 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 669 * BDRV_REQ_FUA). 670 * 671 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 672 */ 673 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 674 { 675 int64_t target_sectors, ret, nb_sectors, sector_num = 0; 676 BlockDriverState *bs = child->bs; 677 BlockDriverState *file; 678 int n; 679 680 target_sectors = bdrv_nb_sectors(bs); 681 if (target_sectors < 0) { 682 return target_sectors; 683 } 684 685 for (;;) { 686 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS); 687 if (nb_sectors <= 0) { 688 return 0; 689 } 690 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file); 691 if (ret < 0) { 692 error_report("error getting block status at sector %" PRId64 ": %s", 693 sector_num, strerror(-ret)); 694 return ret; 695 } 696 if (ret & BDRV_BLOCK_ZERO) { 697 sector_num += n; 698 continue; 699 } 700 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS, 701 n << BDRV_SECTOR_BITS, flags); 702 if (ret < 0) { 703 error_report("error writing zeroes at sector %" PRId64 ": %s", 704 sector_num, strerror(-ret)); 705 return ret; 706 } 707 sector_num += n; 708 } 709 } 710 711 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 712 { 713 int ret; 714 715 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 716 if (ret < 0) { 717 return ret; 718 } 719 720 return qiov->size; 721 } 722 723 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 724 { 725 QEMUIOVector qiov; 726 struct iovec iov = { 727 .iov_base = (void *)buf, 728 .iov_len = bytes, 729 }; 730 731 if (bytes < 0) { 732 return -EINVAL; 733 } 734 735 qemu_iovec_init_external(&qiov, &iov, 1); 736 return bdrv_preadv(child, offset, &qiov); 737 } 738 739 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 740 { 741 int ret; 742 743 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 744 if (ret < 0) { 745 return ret; 746 } 747 748 return qiov->size; 749 } 750 751 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 752 { 753 QEMUIOVector qiov; 754 struct iovec iov = { 755 .iov_base = (void *) buf, 756 .iov_len = bytes, 757 }; 758 759 if (bytes < 0) { 760 return -EINVAL; 761 } 762 763 qemu_iovec_init_external(&qiov, &iov, 1); 764 return bdrv_pwritev(child, offset, &qiov); 765 } 766 767 /* 768 * Writes to the file and ensures that no writes are reordered across this 769 * request (acts as a barrier) 770 * 771 * Returns 0 on success, -errno in error cases. 772 */ 773 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 774 const void *buf, int count) 775 { 776 int ret; 777 778 ret = bdrv_pwrite(child, offset, buf, count); 779 if (ret < 0) { 780 return ret; 781 } 782 783 ret = bdrv_flush(child->bs); 784 if (ret < 0) { 785 return ret; 786 } 787 788 return 0; 789 } 790 791 typedef struct CoroutineIOCompletion { 792 Coroutine *coroutine; 793 int ret; 794 } CoroutineIOCompletion; 795 796 static void bdrv_co_io_em_complete(void *opaque, int ret) 797 { 798 CoroutineIOCompletion *co = opaque; 799 800 co->ret = ret; 801 qemu_coroutine_enter(co->coroutine); 802 } 803 804 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 805 uint64_t offset, uint64_t bytes, 806 QEMUIOVector *qiov, int flags) 807 { 808 BlockDriver *drv = bs->drv; 809 int64_t sector_num; 810 unsigned int nb_sectors; 811 812 assert(!(flags & ~BDRV_REQ_MASK)); 813 814 if (drv->bdrv_co_preadv) { 815 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 816 } 817 818 sector_num = offset >> BDRV_SECTOR_BITS; 819 nb_sectors = bytes >> BDRV_SECTOR_BITS; 820 821 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 822 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 823 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 824 825 if (drv->bdrv_co_readv) { 826 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 827 } else { 828 BlockAIOCB *acb; 829 CoroutineIOCompletion co = { 830 .coroutine = qemu_coroutine_self(), 831 }; 832 833 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors, 834 bdrv_co_io_em_complete, &co); 835 if (acb == NULL) { 836 return -EIO; 837 } else { 838 qemu_coroutine_yield(); 839 return co.ret; 840 } 841 } 842 } 843 844 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 845 uint64_t offset, uint64_t bytes, 846 QEMUIOVector *qiov, int flags) 847 { 848 BlockDriver *drv = bs->drv; 849 int64_t sector_num; 850 unsigned int nb_sectors; 851 int ret; 852 853 assert(!(flags & ~BDRV_REQ_MASK)); 854 855 if (drv->bdrv_co_pwritev) { 856 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 857 flags & bs->supported_write_flags); 858 flags &= ~bs->supported_write_flags; 859 goto emulate_flags; 860 } 861 862 sector_num = offset >> BDRV_SECTOR_BITS; 863 nb_sectors = bytes >> BDRV_SECTOR_BITS; 864 865 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 866 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 867 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 868 869 if (drv->bdrv_co_writev_flags) { 870 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov, 871 flags & bs->supported_write_flags); 872 flags &= ~bs->supported_write_flags; 873 } else if (drv->bdrv_co_writev) { 874 assert(!bs->supported_write_flags); 875 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 876 } else { 877 BlockAIOCB *acb; 878 CoroutineIOCompletion co = { 879 .coroutine = qemu_coroutine_self(), 880 }; 881 882 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors, 883 bdrv_co_io_em_complete, &co); 884 if (acb == NULL) { 885 ret = -EIO; 886 } else { 887 qemu_coroutine_yield(); 888 ret = co.ret; 889 } 890 } 891 892 emulate_flags: 893 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 894 ret = bdrv_co_flush(bs); 895 } 896 897 return ret; 898 } 899 900 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 901 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 902 { 903 /* Perform I/O through a temporary buffer so that users who scribble over 904 * their read buffer while the operation is in progress do not end up 905 * modifying the image file. This is critical for zero-copy guest I/O 906 * where anything might happen inside guest memory. 907 */ 908 void *bounce_buffer; 909 910 BlockDriver *drv = bs->drv; 911 struct iovec iov; 912 QEMUIOVector bounce_qiov; 913 int64_t cluster_offset; 914 unsigned int cluster_bytes; 915 size_t skip_bytes; 916 int ret; 917 918 /* Cover entire cluster so no additional backing file I/O is required when 919 * allocating cluster in the image file. 920 */ 921 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 922 923 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 924 cluster_offset, cluster_bytes); 925 926 iov.iov_len = cluster_bytes; 927 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len); 928 if (bounce_buffer == NULL) { 929 ret = -ENOMEM; 930 goto err; 931 } 932 933 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 934 935 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes, 936 &bounce_qiov, 0); 937 if (ret < 0) { 938 goto err; 939 } 940 941 if (drv->bdrv_co_pwrite_zeroes && 942 buffer_is_zero(bounce_buffer, iov.iov_len)) { 943 /* FIXME: Should we (perhaps conditionally) be setting 944 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 945 * that still correctly reads as zero? */ 946 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0); 947 } else { 948 /* This does not change the data on the disk, it is not necessary 949 * to flush even in cache=writethrough mode. 950 */ 951 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes, 952 &bounce_qiov, 0); 953 } 954 955 if (ret < 0) { 956 /* It might be okay to ignore write errors for guest requests. If this 957 * is a deliberate copy-on-read then we don't want to ignore the error. 958 * Simply report it in all cases. 959 */ 960 goto err; 961 } 962 963 skip_bytes = offset - cluster_offset; 964 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes); 965 966 err: 967 qemu_vfree(bounce_buffer); 968 return ret; 969 } 970 971 /* 972 * Forwards an already correctly aligned request to the BlockDriver. This 973 * handles copy on read, zeroing after EOF, and fragmentation of large 974 * reads; any other features must be implemented by the caller. 975 */ 976 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs, 977 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 978 int64_t align, QEMUIOVector *qiov, int flags) 979 { 980 int64_t total_bytes, max_bytes; 981 int ret = 0; 982 uint64_t bytes_remaining = bytes; 983 int max_transfer; 984 985 assert(is_power_of_2(align)); 986 assert((offset & (align - 1)) == 0); 987 assert((bytes & (align - 1)) == 0); 988 assert(!qiov || bytes == qiov->size); 989 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 990 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 991 align); 992 993 /* TODO: We would need a per-BDS .supported_read_flags and 994 * potential fallback support, if we ever implement any read flags 995 * to pass through to drivers. For now, there aren't any 996 * passthrough flags. */ 997 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 998 999 /* Handle Copy on Read and associated serialisation */ 1000 if (flags & BDRV_REQ_COPY_ON_READ) { 1001 /* If we touch the same cluster it counts as an overlap. This 1002 * guarantees that allocating writes will be serialized and not race 1003 * with each other for the same cluster. For example, in copy-on-read 1004 * it ensures that the CoR read and write operations are atomic and 1005 * guest writes cannot interleave between them. */ 1006 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1007 } 1008 1009 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1010 wait_serialising_requests(req); 1011 } 1012 1013 if (flags & BDRV_REQ_COPY_ON_READ) { 1014 int64_t start_sector = offset >> BDRV_SECTOR_BITS; 1015 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1016 unsigned int nb_sectors = end_sector - start_sector; 1017 int pnum; 1018 1019 ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum); 1020 if (ret < 0) { 1021 goto out; 1022 } 1023 1024 if (!ret || pnum != nb_sectors) { 1025 ret = bdrv_co_do_copy_on_readv(bs, offset, bytes, qiov); 1026 goto out; 1027 } 1028 } 1029 1030 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1031 total_bytes = bdrv_getlength(bs); 1032 if (total_bytes < 0) { 1033 ret = total_bytes; 1034 goto out; 1035 } 1036 1037 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1038 if (bytes <= max_bytes && bytes <= max_transfer) { 1039 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1040 goto out; 1041 } 1042 1043 while (bytes_remaining) { 1044 int num; 1045 1046 if (max_bytes) { 1047 QEMUIOVector local_qiov; 1048 1049 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1050 assert(num); 1051 qemu_iovec_init(&local_qiov, qiov->niov); 1052 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1053 1054 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1055 num, &local_qiov, 0); 1056 max_bytes -= num; 1057 qemu_iovec_destroy(&local_qiov); 1058 } else { 1059 num = bytes_remaining; 1060 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1061 bytes_remaining); 1062 } 1063 if (ret < 0) { 1064 goto out; 1065 } 1066 bytes_remaining -= num; 1067 } 1068 1069 out: 1070 return ret < 0 ? ret : 0; 1071 } 1072 1073 /* 1074 * Handle a read request in coroutine context 1075 */ 1076 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1077 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1078 BdrvRequestFlags flags) 1079 { 1080 BlockDriverState *bs = child->bs; 1081 BlockDriver *drv = bs->drv; 1082 BdrvTrackedRequest req; 1083 1084 uint64_t align = bs->bl.request_alignment; 1085 uint8_t *head_buf = NULL; 1086 uint8_t *tail_buf = NULL; 1087 QEMUIOVector local_qiov; 1088 bool use_local_qiov = false; 1089 int ret; 1090 1091 if (!drv) { 1092 return -ENOMEDIUM; 1093 } 1094 1095 ret = bdrv_check_byte_request(bs, offset, bytes); 1096 if (ret < 0) { 1097 return ret; 1098 } 1099 1100 /* Don't do copy-on-read if we read data before write operation */ 1101 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) { 1102 flags |= BDRV_REQ_COPY_ON_READ; 1103 } 1104 1105 /* Align read if necessary by padding qiov */ 1106 if (offset & (align - 1)) { 1107 head_buf = qemu_blockalign(bs, align); 1108 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1109 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1110 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1111 use_local_qiov = true; 1112 1113 bytes += offset & (align - 1); 1114 offset = offset & ~(align - 1); 1115 } 1116 1117 if ((offset + bytes) & (align - 1)) { 1118 if (!use_local_qiov) { 1119 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1120 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1121 use_local_qiov = true; 1122 } 1123 tail_buf = qemu_blockalign(bs, align); 1124 qemu_iovec_add(&local_qiov, tail_buf, 1125 align - ((offset + bytes) & (align - 1))); 1126 1127 bytes = ROUND_UP(bytes, align); 1128 } 1129 1130 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1131 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align, 1132 use_local_qiov ? &local_qiov : qiov, 1133 flags); 1134 tracked_request_end(&req); 1135 1136 if (use_local_qiov) { 1137 qemu_iovec_destroy(&local_qiov); 1138 qemu_vfree(head_buf); 1139 qemu_vfree(tail_buf); 1140 } 1141 1142 return ret; 1143 } 1144 1145 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child, 1146 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1147 BdrvRequestFlags flags) 1148 { 1149 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1150 return -EINVAL; 1151 } 1152 1153 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS, 1154 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1155 } 1156 1157 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num, 1158 int nb_sectors, QEMUIOVector *qiov) 1159 { 1160 trace_bdrv_co_readv(child->bs, sector_num, nb_sectors); 1161 1162 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0); 1163 } 1164 1165 /* Maximum buffer for write zeroes fallback, in bytes */ 1166 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 1167 1168 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1169 int64_t offset, int count, BdrvRequestFlags flags) 1170 { 1171 BlockDriver *drv = bs->drv; 1172 QEMUIOVector qiov; 1173 struct iovec iov = {0}; 1174 int ret = 0; 1175 bool need_flush = false; 1176 int head = 0; 1177 int tail = 0; 1178 1179 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1180 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1181 bs->bl.request_alignment); 1182 1183 assert(alignment % bs->bl.request_alignment == 0); 1184 head = offset % alignment; 1185 tail = (offset + count) % alignment; 1186 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1187 assert(max_write_zeroes >= bs->bl.request_alignment); 1188 1189 while (count > 0 && !ret) { 1190 int num = count; 1191 1192 /* Align request. Block drivers can expect the "bulk" of the request 1193 * to be aligned, and that unaligned requests do not cross cluster 1194 * boundaries. 1195 */ 1196 if (head) { 1197 /* Make a small request up to the first aligned sector. */ 1198 num = MIN(count, alignment - head); 1199 head = 0; 1200 } else if (tail && num > alignment) { 1201 /* Shorten the request to the last aligned sector. */ 1202 num -= tail; 1203 } 1204 1205 /* limit request size */ 1206 if (num > max_write_zeroes) { 1207 num = max_write_zeroes; 1208 } 1209 1210 ret = -ENOTSUP; 1211 /* First try the efficient write zeroes operation */ 1212 if (drv->bdrv_co_pwrite_zeroes) { 1213 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1214 flags & bs->supported_zero_flags); 1215 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1216 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1217 need_flush = true; 1218 } 1219 } else { 1220 assert(!bs->supported_zero_flags); 1221 } 1222 1223 if (ret == -ENOTSUP) { 1224 /* Fall back to bounce buffer if write zeroes is unsupported */ 1225 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1226 MAX_WRITE_ZEROES_BOUNCE_BUFFER); 1227 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1228 1229 if ((flags & BDRV_REQ_FUA) && 1230 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1231 /* No need for bdrv_driver_pwrite() to do a fallback 1232 * flush on each chunk; use just one at the end */ 1233 write_flags &= ~BDRV_REQ_FUA; 1234 need_flush = true; 1235 } 1236 num = MIN(num, max_transfer); 1237 iov.iov_len = num; 1238 if (iov.iov_base == NULL) { 1239 iov.iov_base = qemu_try_blockalign(bs, num); 1240 if (iov.iov_base == NULL) { 1241 ret = -ENOMEM; 1242 goto fail; 1243 } 1244 memset(iov.iov_base, 0, num); 1245 } 1246 qemu_iovec_init_external(&qiov, &iov, 1); 1247 1248 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1249 1250 /* Keep bounce buffer around if it is big enough for all 1251 * all future requests. 1252 */ 1253 if (num < max_transfer) { 1254 qemu_vfree(iov.iov_base); 1255 iov.iov_base = NULL; 1256 } 1257 } 1258 1259 offset += num; 1260 count -= num; 1261 } 1262 1263 fail: 1264 if (ret == 0 && need_flush) { 1265 ret = bdrv_co_flush(bs); 1266 } 1267 qemu_vfree(iov.iov_base); 1268 return ret; 1269 } 1270 1271 /* 1272 * Forwards an already correctly aligned write request to the BlockDriver, 1273 * after possibly fragmenting it. 1274 */ 1275 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs, 1276 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1277 int64_t align, QEMUIOVector *qiov, int flags) 1278 { 1279 BlockDriver *drv = bs->drv; 1280 bool waited; 1281 int ret; 1282 1283 int64_t start_sector = offset >> BDRV_SECTOR_BITS; 1284 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1285 uint64_t bytes_remaining = bytes; 1286 int max_transfer; 1287 1288 assert(is_power_of_2(align)); 1289 assert((offset & (align - 1)) == 0); 1290 assert((bytes & (align - 1)) == 0); 1291 assert(!qiov || bytes == qiov->size); 1292 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1293 assert(!(flags & ~BDRV_REQ_MASK)); 1294 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1295 align); 1296 1297 waited = wait_serialising_requests(req); 1298 assert(!waited || !req->serialising); 1299 assert(req->overlap_offset <= offset); 1300 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1301 1302 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); 1303 1304 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1305 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1306 qemu_iovec_is_zero(qiov)) { 1307 flags |= BDRV_REQ_ZERO_WRITE; 1308 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1309 flags |= BDRV_REQ_MAY_UNMAP; 1310 } 1311 } 1312 1313 if (ret < 0) { 1314 /* Do nothing, write notifier decided to fail this request */ 1315 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1316 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1317 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1318 } else if (bytes <= max_transfer) { 1319 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1320 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1321 } else { 1322 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1323 while (bytes_remaining) { 1324 int num = MIN(bytes_remaining, max_transfer); 1325 QEMUIOVector local_qiov; 1326 int local_flags = flags; 1327 1328 assert(num); 1329 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1330 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1331 /* If FUA is going to be emulated by flush, we only 1332 * need to flush on the last iteration */ 1333 local_flags &= ~BDRV_REQ_FUA; 1334 } 1335 qemu_iovec_init(&local_qiov, qiov->niov); 1336 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1337 1338 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1339 num, &local_qiov, local_flags); 1340 qemu_iovec_destroy(&local_qiov); 1341 if (ret < 0) { 1342 break; 1343 } 1344 bytes_remaining -= num; 1345 } 1346 } 1347 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1348 1349 ++bs->write_gen; 1350 bdrv_set_dirty(bs, start_sector, end_sector - start_sector); 1351 1352 if (bs->wr_highest_offset < offset + bytes) { 1353 bs->wr_highest_offset = offset + bytes; 1354 } 1355 1356 if (ret >= 0) { 1357 bs->total_sectors = MAX(bs->total_sectors, end_sector); 1358 ret = 0; 1359 } 1360 1361 return ret; 1362 } 1363 1364 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs, 1365 int64_t offset, 1366 unsigned int bytes, 1367 BdrvRequestFlags flags, 1368 BdrvTrackedRequest *req) 1369 { 1370 uint8_t *buf = NULL; 1371 QEMUIOVector local_qiov; 1372 struct iovec iov; 1373 uint64_t align = bs->bl.request_alignment; 1374 unsigned int head_padding_bytes, tail_padding_bytes; 1375 int ret = 0; 1376 1377 head_padding_bytes = offset & (align - 1); 1378 tail_padding_bytes = align - ((offset + bytes) & (align - 1)); 1379 1380 1381 assert(flags & BDRV_REQ_ZERO_WRITE); 1382 if (head_padding_bytes || tail_padding_bytes) { 1383 buf = qemu_blockalign(bs, align); 1384 iov = (struct iovec) { 1385 .iov_base = buf, 1386 .iov_len = align, 1387 }; 1388 qemu_iovec_init_external(&local_qiov, &iov, 1); 1389 } 1390 if (head_padding_bytes) { 1391 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1392 1393 /* RMW the unaligned part before head. */ 1394 mark_request_serialising(req, align); 1395 wait_serialising_requests(req); 1396 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1397 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align, 1398 align, &local_qiov, 0); 1399 if (ret < 0) { 1400 goto fail; 1401 } 1402 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1403 1404 memset(buf + head_padding_bytes, 0, zero_bytes); 1405 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align, 1406 align, &local_qiov, 1407 flags & ~BDRV_REQ_ZERO_WRITE); 1408 if (ret < 0) { 1409 goto fail; 1410 } 1411 offset += zero_bytes; 1412 bytes -= zero_bytes; 1413 } 1414 1415 assert(!bytes || (offset & (align - 1)) == 0); 1416 if (bytes >= align) { 1417 /* Write the aligned part in the middle. */ 1418 uint64_t aligned_bytes = bytes & ~(align - 1); 1419 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes, align, 1420 NULL, flags); 1421 if (ret < 0) { 1422 goto fail; 1423 } 1424 bytes -= aligned_bytes; 1425 offset += aligned_bytes; 1426 } 1427 1428 assert(!bytes || (offset & (align - 1)) == 0); 1429 if (bytes) { 1430 assert(align == tail_padding_bytes + bytes); 1431 /* RMW the unaligned part after tail. */ 1432 mark_request_serialising(req, align); 1433 wait_serialising_requests(req); 1434 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1435 ret = bdrv_aligned_preadv(bs, req, offset, align, 1436 align, &local_qiov, 0); 1437 if (ret < 0) { 1438 goto fail; 1439 } 1440 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1441 1442 memset(buf, 0, bytes); 1443 ret = bdrv_aligned_pwritev(bs, req, offset, align, align, 1444 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1445 } 1446 fail: 1447 qemu_vfree(buf); 1448 return ret; 1449 1450 } 1451 1452 /* 1453 * Handle a write request in coroutine context 1454 */ 1455 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1456 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1457 BdrvRequestFlags flags) 1458 { 1459 BlockDriverState *bs = child->bs; 1460 BdrvTrackedRequest req; 1461 uint64_t align = bs->bl.request_alignment; 1462 uint8_t *head_buf = NULL; 1463 uint8_t *tail_buf = NULL; 1464 QEMUIOVector local_qiov; 1465 bool use_local_qiov = false; 1466 int ret; 1467 1468 if (!bs->drv) { 1469 return -ENOMEDIUM; 1470 } 1471 if (bs->read_only) { 1472 return -EPERM; 1473 } 1474 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1475 1476 ret = bdrv_check_byte_request(bs, offset, bytes); 1477 if (ret < 0) { 1478 return ret; 1479 } 1480 1481 /* 1482 * Align write if necessary by performing a read-modify-write cycle. 1483 * Pad qiov with the read parts and be sure to have a tracked request not 1484 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1485 */ 1486 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1487 1488 if (!qiov) { 1489 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req); 1490 goto out; 1491 } 1492 1493 if (offset & (align - 1)) { 1494 QEMUIOVector head_qiov; 1495 struct iovec head_iov; 1496 1497 mark_request_serialising(&req, align); 1498 wait_serialising_requests(&req); 1499 1500 head_buf = qemu_blockalign(bs, align); 1501 head_iov = (struct iovec) { 1502 .iov_base = head_buf, 1503 .iov_len = align, 1504 }; 1505 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1506 1507 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1508 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align, 1509 align, &head_qiov, 0); 1510 if (ret < 0) { 1511 goto fail; 1512 } 1513 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1514 1515 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1516 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1517 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1518 use_local_qiov = true; 1519 1520 bytes += offset & (align - 1); 1521 offset = offset & ~(align - 1); 1522 1523 /* We have read the tail already if the request is smaller 1524 * than one aligned block. 1525 */ 1526 if (bytes < align) { 1527 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1528 bytes = align; 1529 } 1530 } 1531 1532 if ((offset + bytes) & (align - 1)) { 1533 QEMUIOVector tail_qiov; 1534 struct iovec tail_iov; 1535 size_t tail_bytes; 1536 bool waited; 1537 1538 mark_request_serialising(&req, align); 1539 waited = wait_serialising_requests(&req); 1540 assert(!waited || !use_local_qiov); 1541 1542 tail_buf = qemu_blockalign(bs, align); 1543 tail_iov = (struct iovec) { 1544 .iov_base = tail_buf, 1545 .iov_len = align, 1546 }; 1547 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1548 1549 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1550 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align, 1551 align, &tail_qiov, 0); 1552 if (ret < 0) { 1553 goto fail; 1554 } 1555 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1556 1557 if (!use_local_qiov) { 1558 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1559 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1560 use_local_qiov = true; 1561 } 1562 1563 tail_bytes = (offset + bytes) & (align - 1); 1564 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1565 1566 bytes = ROUND_UP(bytes, align); 1567 } 1568 1569 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes, align, 1570 use_local_qiov ? &local_qiov : qiov, 1571 flags); 1572 1573 fail: 1574 1575 if (use_local_qiov) { 1576 qemu_iovec_destroy(&local_qiov); 1577 } 1578 qemu_vfree(head_buf); 1579 qemu_vfree(tail_buf); 1580 out: 1581 tracked_request_end(&req); 1582 return ret; 1583 } 1584 1585 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child, 1586 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1587 BdrvRequestFlags flags) 1588 { 1589 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1590 return -EINVAL; 1591 } 1592 1593 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS, 1594 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1595 } 1596 1597 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num, 1598 int nb_sectors, QEMUIOVector *qiov) 1599 { 1600 trace_bdrv_co_writev(child->bs, sector_num, nb_sectors); 1601 1602 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0); 1603 } 1604 1605 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1606 int count, BdrvRequestFlags flags) 1607 { 1608 trace_bdrv_co_pwrite_zeroes(child->bs, offset, count, flags); 1609 1610 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1611 flags &= ~BDRV_REQ_MAY_UNMAP; 1612 } 1613 1614 return bdrv_co_pwritev(child, offset, count, NULL, 1615 BDRV_REQ_ZERO_WRITE | flags); 1616 } 1617 1618 typedef struct BdrvCoGetBlockStatusData { 1619 BlockDriverState *bs; 1620 BlockDriverState *base; 1621 BlockDriverState **file; 1622 int64_t sector_num; 1623 int nb_sectors; 1624 int *pnum; 1625 int64_t ret; 1626 bool done; 1627 } BdrvCoGetBlockStatusData; 1628 1629 /* 1630 * Returns the allocation status of the specified sectors. 1631 * Drivers not implementing the functionality are assumed to not support 1632 * backing files, hence all their sectors are reported as allocated. 1633 * 1634 * If 'sector_num' is beyond the end of the disk image the return value is 0 1635 * and 'pnum' is set to 0. 1636 * 1637 * 'pnum' is set to the number of sectors (including and immediately following 1638 * the specified sector) that are known to be in the same 1639 * allocated/unallocated state. 1640 * 1641 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 1642 * beyond the end of the disk image it will be clamped. 1643 * 1644 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file' 1645 * points to the BDS which the sector range is allocated in. 1646 */ 1647 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs, 1648 int64_t sector_num, 1649 int nb_sectors, int *pnum, 1650 BlockDriverState **file) 1651 { 1652 int64_t total_sectors; 1653 int64_t n; 1654 int64_t ret, ret2; 1655 1656 total_sectors = bdrv_nb_sectors(bs); 1657 if (total_sectors < 0) { 1658 return total_sectors; 1659 } 1660 1661 if (sector_num >= total_sectors) { 1662 *pnum = 0; 1663 return 0; 1664 } 1665 1666 n = total_sectors - sector_num; 1667 if (n < nb_sectors) { 1668 nb_sectors = n; 1669 } 1670 1671 if (!bs->drv->bdrv_co_get_block_status) { 1672 *pnum = nb_sectors; 1673 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 1674 if (bs->drv->protocol_name) { 1675 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE); 1676 } 1677 return ret; 1678 } 1679 1680 *file = NULL; 1681 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum, 1682 file); 1683 if (ret < 0) { 1684 *pnum = 0; 1685 return ret; 1686 } 1687 1688 if (ret & BDRV_BLOCK_RAW) { 1689 assert(ret & BDRV_BLOCK_OFFSET_VALID); 1690 return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS, 1691 *pnum, pnum, file); 1692 } 1693 1694 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 1695 ret |= BDRV_BLOCK_ALLOCATED; 1696 } else { 1697 if (bdrv_unallocated_blocks_are_zero(bs)) { 1698 ret |= BDRV_BLOCK_ZERO; 1699 } else if (bs->backing) { 1700 BlockDriverState *bs2 = bs->backing->bs; 1701 int64_t nb_sectors2 = bdrv_nb_sectors(bs2); 1702 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) { 1703 ret |= BDRV_BLOCK_ZERO; 1704 } 1705 } 1706 } 1707 1708 if (*file && *file != bs && 1709 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 1710 (ret & BDRV_BLOCK_OFFSET_VALID)) { 1711 BlockDriverState *file2; 1712 int file_pnum; 1713 1714 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1715 *pnum, &file_pnum, &file2); 1716 if (ret2 >= 0) { 1717 /* Ignore errors. This is just providing extra information, it 1718 * is useful but not necessary. 1719 */ 1720 if (!file_pnum) { 1721 /* !file_pnum indicates an offset at or beyond the EOF; it is 1722 * perfectly valid for the format block driver to point to such 1723 * offsets, so catch it and mark everything as zero */ 1724 ret |= BDRV_BLOCK_ZERO; 1725 } else { 1726 /* Limit request to the range reported by the protocol driver */ 1727 *pnum = file_pnum; 1728 ret |= (ret2 & BDRV_BLOCK_ZERO); 1729 } 1730 } 1731 } 1732 1733 return ret; 1734 } 1735 1736 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs, 1737 BlockDriverState *base, 1738 int64_t sector_num, 1739 int nb_sectors, 1740 int *pnum, 1741 BlockDriverState **file) 1742 { 1743 BlockDriverState *p; 1744 int64_t ret = 0; 1745 1746 assert(bs != base); 1747 for (p = bs; p != base; p = backing_bs(p)) { 1748 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file); 1749 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) { 1750 break; 1751 } 1752 /* [sector_num, pnum] unallocated on this layer, which could be only 1753 * the first part of [sector_num, nb_sectors]. */ 1754 nb_sectors = MIN(nb_sectors, *pnum); 1755 } 1756 return ret; 1757 } 1758 1759 /* Coroutine wrapper for bdrv_get_block_status_above() */ 1760 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque) 1761 { 1762 BdrvCoGetBlockStatusData *data = opaque; 1763 1764 data->ret = bdrv_co_get_block_status_above(data->bs, data->base, 1765 data->sector_num, 1766 data->nb_sectors, 1767 data->pnum, 1768 data->file); 1769 data->done = true; 1770 } 1771 1772 /* 1773 * Synchronous wrapper around bdrv_co_get_block_status_above(). 1774 * 1775 * See bdrv_co_get_block_status_above() for details. 1776 */ 1777 int64_t bdrv_get_block_status_above(BlockDriverState *bs, 1778 BlockDriverState *base, 1779 int64_t sector_num, 1780 int nb_sectors, int *pnum, 1781 BlockDriverState **file) 1782 { 1783 Coroutine *co; 1784 BdrvCoGetBlockStatusData data = { 1785 .bs = bs, 1786 .base = base, 1787 .file = file, 1788 .sector_num = sector_num, 1789 .nb_sectors = nb_sectors, 1790 .pnum = pnum, 1791 .done = false, 1792 }; 1793 1794 if (qemu_in_coroutine()) { 1795 /* Fast-path if already in coroutine context */ 1796 bdrv_get_block_status_above_co_entry(&data); 1797 } else { 1798 AioContext *aio_context = bdrv_get_aio_context(bs); 1799 1800 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry, 1801 &data); 1802 qemu_coroutine_enter(co); 1803 while (!data.done) { 1804 aio_poll(aio_context, true); 1805 } 1806 } 1807 return data.ret; 1808 } 1809 1810 int64_t bdrv_get_block_status(BlockDriverState *bs, 1811 int64_t sector_num, 1812 int nb_sectors, int *pnum, 1813 BlockDriverState **file) 1814 { 1815 return bdrv_get_block_status_above(bs, backing_bs(bs), 1816 sector_num, nb_sectors, pnum, file); 1817 } 1818 1819 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, 1820 int nb_sectors, int *pnum) 1821 { 1822 BlockDriverState *file; 1823 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum, 1824 &file); 1825 if (ret < 0) { 1826 return ret; 1827 } 1828 return !!(ret & BDRV_BLOCK_ALLOCATED); 1829 } 1830 1831 /* 1832 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 1833 * 1834 * Return true if the given sector is allocated in any image between 1835 * BASE and TOP (inclusive). BASE can be NULL to check if the given 1836 * sector is allocated in any image of the chain. Return false otherwise. 1837 * 1838 * 'pnum' is set to the number of sectors (including and immediately following 1839 * the specified sector) that are known to be in the same 1840 * allocated/unallocated state. 1841 * 1842 */ 1843 int bdrv_is_allocated_above(BlockDriverState *top, 1844 BlockDriverState *base, 1845 int64_t sector_num, 1846 int nb_sectors, int *pnum) 1847 { 1848 BlockDriverState *intermediate; 1849 int ret, n = nb_sectors; 1850 1851 intermediate = top; 1852 while (intermediate && intermediate != base) { 1853 int pnum_inter; 1854 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors, 1855 &pnum_inter); 1856 if (ret < 0) { 1857 return ret; 1858 } else if (ret) { 1859 *pnum = pnum_inter; 1860 return 1; 1861 } 1862 1863 /* 1864 * [sector_num, nb_sectors] is unallocated on top but intermediate 1865 * might have 1866 * 1867 * [sector_num+x, nr_sectors] allocated. 1868 */ 1869 if (n > pnum_inter && 1870 (intermediate == top || 1871 sector_num + pnum_inter < intermediate->total_sectors)) { 1872 n = pnum_inter; 1873 } 1874 1875 intermediate = backing_bs(intermediate); 1876 } 1877 1878 *pnum = n; 1879 return 0; 1880 } 1881 1882 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 1883 const uint8_t *buf, int nb_sectors) 1884 { 1885 BlockDriver *drv = bs->drv; 1886 int ret; 1887 1888 if (!drv) { 1889 return -ENOMEDIUM; 1890 } 1891 if (!drv->bdrv_write_compressed) { 1892 return -ENOTSUP; 1893 } 1894 ret = bdrv_check_request(bs, sector_num, nb_sectors); 1895 if (ret < 0) { 1896 return ret; 1897 } 1898 1899 assert(QLIST_EMPTY(&bs->dirty_bitmaps)); 1900 1901 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 1902 } 1903 1904 typedef struct BdrvVmstateCo { 1905 BlockDriverState *bs; 1906 QEMUIOVector *qiov; 1907 int64_t pos; 1908 bool is_read; 1909 int ret; 1910 } BdrvVmstateCo; 1911 1912 static int coroutine_fn 1913 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 1914 bool is_read) 1915 { 1916 BlockDriver *drv = bs->drv; 1917 1918 if (!drv) { 1919 return -ENOMEDIUM; 1920 } else if (drv->bdrv_load_vmstate) { 1921 return is_read ? drv->bdrv_load_vmstate(bs, qiov, pos) 1922 : drv->bdrv_save_vmstate(bs, qiov, pos); 1923 } else if (bs->file) { 1924 return bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 1925 } 1926 1927 return -ENOTSUP; 1928 } 1929 1930 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 1931 { 1932 BdrvVmstateCo *co = opaque; 1933 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 1934 } 1935 1936 static inline int 1937 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 1938 bool is_read) 1939 { 1940 if (qemu_in_coroutine()) { 1941 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 1942 } else { 1943 BdrvVmstateCo data = { 1944 .bs = bs, 1945 .qiov = qiov, 1946 .pos = pos, 1947 .is_read = is_read, 1948 .ret = -EINPROGRESS, 1949 }; 1950 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 1951 1952 qemu_coroutine_enter(co); 1953 while (data.ret == -EINPROGRESS) { 1954 aio_poll(bdrv_get_aio_context(bs), true); 1955 } 1956 return data.ret; 1957 } 1958 } 1959 1960 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 1961 int64_t pos, int size) 1962 { 1963 QEMUIOVector qiov; 1964 struct iovec iov = { 1965 .iov_base = (void *) buf, 1966 .iov_len = size, 1967 }; 1968 int ret; 1969 1970 qemu_iovec_init_external(&qiov, &iov, 1); 1971 1972 ret = bdrv_writev_vmstate(bs, &qiov, pos); 1973 if (ret < 0) { 1974 return ret; 1975 } 1976 1977 return size; 1978 } 1979 1980 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 1981 { 1982 return bdrv_rw_vmstate(bs, qiov, pos, false); 1983 } 1984 1985 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 1986 int64_t pos, int size) 1987 { 1988 QEMUIOVector qiov; 1989 struct iovec iov = { 1990 .iov_base = buf, 1991 .iov_len = size, 1992 }; 1993 int ret; 1994 1995 qemu_iovec_init_external(&qiov, &iov, 1); 1996 ret = bdrv_readv_vmstate(bs, &qiov, pos); 1997 if (ret < 0) { 1998 return ret; 1999 } 2000 2001 return size; 2002 } 2003 2004 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2005 { 2006 return bdrv_rw_vmstate(bs, qiov, pos, true); 2007 } 2008 2009 /**************************************************************/ 2010 /* async I/Os */ 2011 2012 BlockAIOCB *bdrv_aio_readv(BdrvChild *child, int64_t sector_num, 2013 QEMUIOVector *qiov, int nb_sectors, 2014 BlockCompletionFunc *cb, void *opaque) 2015 { 2016 trace_bdrv_aio_readv(child->bs, sector_num, nb_sectors, opaque); 2017 2018 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size); 2019 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov, 2020 0, cb, opaque, false); 2021 } 2022 2023 BlockAIOCB *bdrv_aio_writev(BdrvChild *child, int64_t sector_num, 2024 QEMUIOVector *qiov, int nb_sectors, 2025 BlockCompletionFunc *cb, void *opaque) 2026 { 2027 trace_bdrv_aio_writev(child->bs, sector_num, nb_sectors, opaque); 2028 2029 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size); 2030 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov, 2031 0, cb, opaque, true); 2032 } 2033 2034 void bdrv_aio_cancel(BlockAIOCB *acb) 2035 { 2036 qemu_aio_ref(acb); 2037 bdrv_aio_cancel_async(acb); 2038 while (acb->refcnt > 1) { 2039 if (acb->aiocb_info->get_aio_context) { 2040 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2041 } else if (acb->bs) { 2042 aio_poll(bdrv_get_aio_context(acb->bs), true); 2043 } else { 2044 abort(); 2045 } 2046 } 2047 qemu_aio_unref(acb); 2048 } 2049 2050 /* Async version of aio cancel. The caller is not blocked if the acb implements 2051 * cancel_async, otherwise we do nothing and let the request normally complete. 2052 * In either case the completion callback must be called. */ 2053 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2054 { 2055 if (acb->aiocb_info->cancel_async) { 2056 acb->aiocb_info->cancel_async(acb); 2057 } 2058 } 2059 2060 /**************************************************************/ 2061 /* async block device emulation */ 2062 2063 typedef struct BlockRequest { 2064 union { 2065 /* Used during read, write, trim */ 2066 struct { 2067 int64_t offset; 2068 int bytes; 2069 int flags; 2070 QEMUIOVector *qiov; 2071 }; 2072 /* Used during ioctl */ 2073 struct { 2074 int req; 2075 void *buf; 2076 }; 2077 }; 2078 BlockCompletionFunc *cb; 2079 void *opaque; 2080 2081 int error; 2082 } BlockRequest; 2083 2084 typedef struct BlockAIOCBCoroutine { 2085 BlockAIOCB common; 2086 BdrvChild *child; 2087 BlockRequest req; 2088 bool is_write; 2089 bool need_bh; 2090 bool *done; 2091 QEMUBH* bh; 2092 } BlockAIOCBCoroutine; 2093 2094 static const AIOCBInfo bdrv_em_co_aiocb_info = { 2095 .aiocb_size = sizeof(BlockAIOCBCoroutine), 2096 }; 2097 2098 static void bdrv_co_complete(BlockAIOCBCoroutine *acb) 2099 { 2100 if (!acb->need_bh) { 2101 acb->common.cb(acb->common.opaque, acb->req.error); 2102 qemu_aio_unref(acb); 2103 } 2104 } 2105 2106 static void bdrv_co_em_bh(void *opaque) 2107 { 2108 BlockAIOCBCoroutine *acb = opaque; 2109 2110 assert(!acb->need_bh); 2111 qemu_bh_delete(acb->bh); 2112 bdrv_co_complete(acb); 2113 } 2114 2115 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb) 2116 { 2117 acb->need_bh = false; 2118 if (acb->req.error != -EINPROGRESS) { 2119 BlockDriverState *bs = acb->common.bs; 2120 2121 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb); 2122 qemu_bh_schedule(acb->bh); 2123 } 2124 } 2125 2126 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 2127 static void coroutine_fn bdrv_co_do_rw(void *opaque) 2128 { 2129 BlockAIOCBCoroutine *acb = opaque; 2130 2131 if (!acb->is_write) { 2132 acb->req.error = bdrv_co_preadv(acb->child, acb->req.offset, 2133 acb->req.qiov->size, acb->req.qiov, acb->req.flags); 2134 } else { 2135 acb->req.error = bdrv_co_pwritev(acb->child, acb->req.offset, 2136 acb->req.qiov->size, acb->req.qiov, acb->req.flags); 2137 } 2138 2139 bdrv_co_complete(acb); 2140 } 2141 2142 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child, 2143 int64_t offset, 2144 QEMUIOVector *qiov, 2145 BdrvRequestFlags flags, 2146 BlockCompletionFunc *cb, 2147 void *opaque, 2148 bool is_write) 2149 { 2150 Coroutine *co; 2151 BlockAIOCBCoroutine *acb; 2152 2153 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, child->bs, cb, opaque); 2154 acb->child = child; 2155 acb->need_bh = true; 2156 acb->req.error = -EINPROGRESS; 2157 acb->req.offset = offset; 2158 acb->req.qiov = qiov; 2159 acb->req.flags = flags; 2160 acb->is_write = is_write; 2161 2162 co = qemu_coroutine_create(bdrv_co_do_rw, acb); 2163 qemu_coroutine_enter(co); 2164 2165 bdrv_co_maybe_schedule_bh(acb); 2166 return &acb->common; 2167 } 2168 2169 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 2170 { 2171 BlockAIOCBCoroutine *acb = opaque; 2172 BlockDriverState *bs = acb->common.bs; 2173 2174 acb->req.error = bdrv_co_flush(bs); 2175 bdrv_co_complete(acb); 2176 } 2177 2178 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs, 2179 BlockCompletionFunc *cb, void *opaque) 2180 { 2181 trace_bdrv_aio_flush(bs, opaque); 2182 2183 Coroutine *co; 2184 BlockAIOCBCoroutine *acb; 2185 2186 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2187 acb->need_bh = true; 2188 acb->req.error = -EINPROGRESS; 2189 2190 co = qemu_coroutine_create(bdrv_aio_flush_co_entry, acb); 2191 qemu_coroutine_enter(co); 2192 2193 bdrv_co_maybe_schedule_bh(acb); 2194 return &acb->common; 2195 } 2196 2197 static void coroutine_fn bdrv_aio_pdiscard_co_entry(void *opaque) 2198 { 2199 BlockAIOCBCoroutine *acb = opaque; 2200 BlockDriverState *bs = acb->common.bs; 2201 2202 acb->req.error = bdrv_co_pdiscard(bs, acb->req.offset, acb->req.bytes); 2203 bdrv_co_complete(acb); 2204 } 2205 2206 BlockAIOCB *bdrv_aio_pdiscard(BlockDriverState *bs, int64_t offset, int count, 2207 BlockCompletionFunc *cb, void *opaque) 2208 { 2209 Coroutine *co; 2210 BlockAIOCBCoroutine *acb; 2211 2212 trace_bdrv_aio_pdiscard(bs, offset, count, opaque); 2213 2214 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2215 acb->need_bh = true; 2216 acb->req.error = -EINPROGRESS; 2217 acb->req.offset = offset; 2218 acb->req.bytes = count; 2219 co = qemu_coroutine_create(bdrv_aio_pdiscard_co_entry, acb); 2220 qemu_coroutine_enter(co); 2221 2222 bdrv_co_maybe_schedule_bh(acb); 2223 return &acb->common; 2224 } 2225 2226 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 2227 BlockCompletionFunc *cb, void *opaque) 2228 { 2229 BlockAIOCB *acb; 2230 2231 acb = g_malloc(aiocb_info->aiocb_size); 2232 acb->aiocb_info = aiocb_info; 2233 acb->bs = bs; 2234 acb->cb = cb; 2235 acb->opaque = opaque; 2236 acb->refcnt = 1; 2237 return acb; 2238 } 2239 2240 void qemu_aio_ref(void *p) 2241 { 2242 BlockAIOCB *acb = p; 2243 acb->refcnt++; 2244 } 2245 2246 void qemu_aio_unref(void *p) 2247 { 2248 BlockAIOCB *acb = p; 2249 assert(acb->refcnt > 0); 2250 if (--acb->refcnt == 0) { 2251 g_free(acb); 2252 } 2253 } 2254 2255 /**************************************************************/ 2256 /* Coroutine block device emulation */ 2257 2258 typedef struct FlushCo { 2259 BlockDriverState *bs; 2260 int ret; 2261 } FlushCo; 2262 2263 2264 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2265 { 2266 FlushCo *rwco = opaque; 2267 2268 rwco->ret = bdrv_co_flush(rwco->bs); 2269 } 2270 2271 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2272 { 2273 int ret; 2274 BdrvTrackedRequest req; 2275 2276 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2277 bdrv_is_sg(bs)) { 2278 return 0; 2279 } 2280 2281 tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH); 2282 2283 int current_gen = bs->write_gen; 2284 2285 /* Wait until any previous flushes are completed */ 2286 while (bs->active_flush_req != NULL) { 2287 qemu_co_queue_wait(&bs->flush_queue); 2288 } 2289 2290 bs->active_flush_req = &req; 2291 2292 /* Write back all layers by calling one driver function */ 2293 if (bs->drv->bdrv_co_flush) { 2294 ret = bs->drv->bdrv_co_flush(bs); 2295 goto out; 2296 } 2297 2298 /* Write back cached data to the OS even with cache=unsafe */ 2299 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2300 if (bs->drv->bdrv_co_flush_to_os) { 2301 ret = bs->drv->bdrv_co_flush_to_os(bs); 2302 if (ret < 0) { 2303 goto out; 2304 } 2305 } 2306 2307 /* But don't actually force it to the disk with cache=unsafe */ 2308 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2309 goto flush_parent; 2310 } 2311 2312 /* Check if we really need to flush anything */ 2313 if (bs->flushed_gen == current_gen) { 2314 goto flush_parent; 2315 } 2316 2317 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2318 if (bs->drv->bdrv_co_flush_to_disk) { 2319 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2320 } else if (bs->drv->bdrv_aio_flush) { 2321 BlockAIOCB *acb; 2322 CoroutineIOCompletion co = { 2323 .coroutine = qemu_coroutine_self(), 2324 }; 2325 2326 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2327 if (acb == NULL) { 2328 ret = -EIO; 2329 } else { 2330 qemu_coroutine_yield(); 2331 ret = co.ret; 2332 } 2333 } else { 2334 /* 2335 * Some block drivers always operate in either writethrough or unsafe 2336 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2337 * know how the server works (because the behaviour is hardcoded or 2338 * depends on server-side configuration), so we can't ensure that 2339 * everything is safe on disk. Returning an error doesn't work because 2340 * that would break guests even if the server operates in writethrough 2341 * mode. 2342 * 2343 * Let's hope the user knows what he's doing. 2344 */ 2345 ret = 0; 2346 } 2347 2348 if (ret < 0) { 2349 goto out; 2350 } 2351 2352 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2353 * in the case of cache=unsafe, so there are no useless flushes. 2354 */ 2355 flush_parent: 2356 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2357 out: 2358 /* Notify any pending flushes that we have completed */ 2359 bs->flushed_gen = current_gen; 2360 bs->active_flush_req = NULL; 2361 /* Return value is ignored - it's ok if wait queue is empty */ 2362 qemu_co_queue_next(&bs->flush_queue); 2363 2364 tracked_request_end(&req); 2365 return ret; 2366 } 2367 2368 int bdrv_flush(BlockDriverState *bs) 2369 { 2370 Coroutine *co; 2371 FlushCo flush_co = { 2372 .bs = bs, 2373 .ret = NOT_DONE, 2374 }; 2375 2376 if (qemu_in_coroutine()) { 2377 /* Fast-path if already in coroutine context */ 2378 bdrv_flush_co_entry(&flush_co); 2379 } else { 2380 AioContext *aio_context = bdrv_get_aio_context(bs); 2381 2382 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2383 qemu_coroutine_enter(co); 2384 while (flush_co.ret == NOT_DONE) { 2385 aio_poll(aio_context, true); 2386 } 2387 } 2388 2389 return flush_co.ret; 2390 } 2391 2392 typedef struct DiscardCo { 2393 BlockDriverState *bs; 2394 int64_t offset; 2395 int count; 2396 int ret; 2397 } DiscardCo; 2398 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2399 { 2400 DiscardCo *rwco = opaque; 2401 2402 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->count); 2403 } 2404 2405 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset, 2406 int count) 2407 { 2408 BdrvTrackedRequest req; 2409 int max_pdiscard, ret; 2410 int head, align; 2411 2412 if (!bs->drv) { 2413 return -ENOMEDIUM; 2414 } 2415 2416 ret = bdrv_check_byte_request(bs, offset, count); 2417 if (ret < 0) { 2418 return ret; 2419 } else if (bs->read_only) { 2420 return -EPERM; 2421 } 2422 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2423 2424 /* Do nothing if disabled. */ 2425 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2426 return 0; 2427 } 2428 2429 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2430 return 0; 2431 } 2432 2433 /* Discard is advisory, so ignore any unaligned head or tail */ 2434 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2435 assert(align % bs->bl.request_alignment == 0); 2436 head = offset % align; 2437 if (head) { 2438 head = MIN(count, align - head); 2439 count -= head; 2440 offset += head; 2441 } 2442 count = QEMU_ALIGN_DOWN(count, align); 2443 if (!count) { 2444 return 0; 2445 } 2446 2447 tracked_request_begin(&req, bs, offset, count, BDRV_TRACKED_DISCARD); 2448 2449 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req); 2450 if (ret < 0) { 2451 goto out; 2452 } 2453 2454 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2455 align); 2456 assert(max_pdiscard); 2457 2458 while (count > 0) { 2459 int ret; 2460 int num = MIN(count, max_pdiscard); 2461 2462 if (bs->drv->bdrv_co_pdiscard) { 2463 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2464 } else { 2465 BlockAIOCB *acb; 2466 CoroutineIOCompletion co = { 2467 .coroutine = qemu_coroutine_self(), 2468 }; 2469 2470 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2471 bdrv_co_io_em_complete, &co); 2472 if (acb == NULL) { 2473 ret = -EIO; 2474 goto out; 2475 } else { 2476 qemu_coroutine_yield(); 2477 ret = co.ret; 2478 } 2479 } 2480 if (ret && ret != -ENOTSUP) { 2481 goto out; 2482 } 2483 2484 offset += num; 2485 count -= num; 2486 } 2487 ret = 0; 2488 out: 2489 ++bs->write_gen; 2490 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS, 2491 req.bytes >> BDRV_SECTOR_BITS); 2492 tracked_request_end(&req); 2493 return ret; 2494 } 2495 2496 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int count) 2497 { 2498 Coroutine *co; 2499 DiscardCo rwco = { 2500 .bs = bs, 2501 .offset = offset, 2502 .count = count, 2503 .ret = NOT_DONE, 2504 }; 2505 2506 if (qemu_in_coroutine()) { 2507 /* Fast-path if already in coroutine context */ 2508 bdrv_pdiscard_co_entry(&rwco); 2509 } else { 2510 AioContext *aio_context = bdrv_get_aio_context(bs); 2511 2512 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2513 qemu_coroutine_enter(co); 2514 while (rwco.ret == NOT_DONE) { 2515 aio_poll(aio_context, true); 2516 } 2517 } 2518 2519 return rwco.ret; 2520 } 2521 2522 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf) 2523 { 2524 BlockDriver *drv = bs->drv; 2525 BdrvTrackedRequest tracked_req; 2526 CoroutineIOCompletion co = { 2527 .coroutine = qemu_coroutine_self(), 2528 }; 2529 BlockAIOCB *acb; 2530 2531 tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL); 2532 if (!drv || !drv->bdrv_aio_ioctl) { 2533 co.ret = -ENOTSUP; 2534 goto out; 2535 } 2536 2537 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2538 if (!acb) { 2539 co.ret = -ENOTSUP; 2540 goto out; 2541 } 2542 qemu_coroutine_yield(); 2543 out: 2544 tracked_request_end(&tracked_req); 2545 return co.ret; 2546 } 2547 2548 typedef struct { 2549 BlockDriverState *bs; 2550 int req; 2551 void *buf; 2552 int ret; 2553 } BdrvIoctlCoData; 2554 2555 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque) 2556 { 2557 BdrvIoctlCoData *data = opaque; 2558 data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf); 2559 } 2560 2561 /* needed for generic scsi interface */ 2562 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 2563 { 2564 BdrvIoctlCoData data = { 2565 .bs = bs, 2566 .req = req, 2567 .buf = buf, 2568 .ret = -EINPROGRESS, 2569 }; 2570 2571 if (qemu_in_coroutine()) { 2572 /* Fast-path if already in coroutine context */ 2573 bdrv_co_ioctl_entry(&data); 2574 } else { 2575 Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry, &data); 2576 2577 qemu_coroutine_enter(co); 2578 while (data.ret == -EINPROGRESS) { 2579 aio_poll(bdrv_get_aio_context(bs), true); 2580 } 2581 } 2582 return data.ret; 2583 } 2584 2585 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque) 2586 { 2587 BlockAIOCBCoroutine *acb = opaque; 2588 acb->req.error = bdrv_co_do_ioctl(acb->common.bs, 2589 acb->req.req, acb->req.buf); 2590 bdrv_co_complete(acb); 2591 } 2592 2593 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 2594 unsigned long int req, void *buf, 2595 BlockCompletionFunc *cb, void *opaque) 2596 { 2597 BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info, 2598 bs, cb, opaque); 2599 Coroutine *co; 2600 2601 acb->need_bh = true; 2602 acb->req.error = -EINPROGRESS; 2603 acb->req.req = req; 2604 acb->req.buf = buf; 2605 co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry, acb); 2606 qemu_coroutine_enter(co); 2607 2608 bdrv_co_maybe_schedule_bh(acb); 2609 return &acb->common; 2610 } 2611 2612 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2613 { 2614 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2615 } 2616 2617 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2618 { 2619 return memset(qemu_blockalign(bs, size), 0, size); 2620 } 2621 2622 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2623 { 2624 size_t align = bdrv_opt_mem_align(bs); 2625 2626 /* Ensure that NULL is never returned on success */ 2627 assert(align > 0); 2628 if (size == 0) { 2629 size = align; 2630 } 2631 2632 return qemu_try_memalign(align, size); 2633 } 2634 2635 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2636 { 2637 void *mem = qemu_try_blockalign(bs, size); 2638 2639 if (mem) { 2640 memset(mem, 0, size); 2641 } 2642 2643 return mem; 2644 } 2645 2646 /* 2647 * Check if all memory in this vector is sector aligned. 2648 */ 2649 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2650 { 2651 int i; 2652 size_t alignment = bdrv_min_mem_align(bs); 2653 2654 for (i = 0; i < qiov->niov; i++) { 2655 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2656 return false; 2657 } 2658 if (qiov->iov[i].iov_len % alignment) { 2659 return false; 2660 } 2661 } 2662 2663 return true; 2664 } 2665 2666 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2667 NotifierWithReturn *notifier) 2668 { 2669 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2670 } 2671 2672 void bdrv_io_plug(BlockDriverState *bs) 2673 { 2674 BdrvChild *child; 2675 2676 QLIST_FOREACH(child, &bs->children, next) { 2677 bdrv_io_plug(child->bs); 2678 } 2679 2680 if (bs->io_plugged++ == 0 && bs->io_plug_disabled == 0) { 2681 BlockDriver *drv = bs->drv; 2682 if (drv && drv->bdrv_io_plug) { 2683 drv->bdrv_io_plug(bs); 2684 } 2685 } 2686 } 2687 2688 void bdrv_io_unplug(BlockDriverState *bs) 2689 { 2690 BdrvChild *child; 2691 2692 assert(bs->io_plugged); 2693 if (--bs->io_plugged == 0 && bs->io_plug_disabled == 0) { 2694 BlockDriver *drv = bs->drv; 2695 if (drv && drv->bdrv_io_unplug) { 2696 drv->bdrv_io_unplug(bs); 2697 } 2698 } 2699 2700 QLIST_FOREACH(child, &bs->children, next) { 2701 bdrv_io_unplug(child->bs); 2702 } 2703 } 2704 2705 void bdrv_io_unplugged_begin(BlockDriverState *bs) 2706 { 2707 BdrvChild *child; 2708 2709 if (bs->io_plug_disabled++ == 0 && bs->io_plugged > 0) { 2710 BlockDriver *drv = bs->drv; 2711 if (drv && drv->bdrv_io_unplug) { 2712 drv->bdrv_io_unplug(bs); 2713 } 2714 } 2715 2716 QLIST_FOREACH(child, &bs->children, next) { 2717 bdrv_io_unplugged_begin(child->bs); 2718 } 2719 } 2720 2721 void bdrv_io_unplugged_end(BlockDriverState *bs) 2722 { 2723 BdrvChild *child; 2724 2725 assert(bs->io_plug_disabled); 2726 QLIST_FOREACH(child, &bs->children, next) { 2727 bdrv_io_unplugged_end(child->bs); 2728 } 2729 2730 if (--bs->io_plug_disabled == 0 && bs->io_plugged > 0) { 2731 BlockDriver *drv = bs->drv; 2732 if (drv && drv->bdrv_io_plug) { 2733 drv->bdrv_io_plug(bs); 2734 } 2735 } 2736 } 2737