1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/blockjob.h" 29 #include "block/blockjob_int.h" 30 #include "block/block_int.h" 31 #include "qemu/cutils.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 36 37 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child, 38 int64_t offset, 39 QEMUIOVector *qiov, 40 BdrvRequestFlags flags, 41 BlockCompletionFunc *cb, 42 void *opaque, 43 bool is_write); 44 static void coroutine_fn bdrv_co_do_rw(void *opaque); 45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 46 int64_t offset, int count, BdrvRequestFlags flags); 47 48 void bdrv_parent_drained_begin(BlockDriverState *bs) 49 { 50 BdrvChild *c; 51 52 QLIST_FOREACH(c, &bs->parents, next_parent) { 53 if (c->role->drained_begin) { 54 c->role->drained_begin(c); 55 } 56 } 57 } 58 59 void bdrv_parent_drained_end(BlockDriverState *bs) 60 { 61 BdrvChild *c; 62 63 QLIST_FOREACH(c, &bs->parents, next_parent) { 64 if (c->role->drained_end) { 65 c->role->drained_end(c); 66 } 67 } 68 } 69 70 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 71 { 72 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 73 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 74 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 75 src->opt_mem_alignment); 76 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 77 src->min_mem_alignment); 78 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 79 } 80 81 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 82 { 83 BlockDriver *drv = bs->drv; 84 Error *local_err = NULL; 85 86 memset(&bs->bl, 0, sizeof(bs->bl)); 87 88 if (!drv) { 89 return; 90 } 91 92 /* Default alignment based on whether driver has byte interface */ 93 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512; 94 95 /* Take some limits from the children as a default */ 96 if (bs->file) { 97 bdrv_refresh_limits(bs->file->bs, &local_err); 98 if (local_err) { 99 error_propagate(errp, local_err); 100 return; 101 } 102 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 103 } else { 104 bs->bl.min_mem_alignment = 512; 105 bs->bl.opt_mem_alignment = getpagesize(); 106 107 /* Safe default since most protocols use readv()/writev()/etc */ 108 bs->bl.max_iov = IOV_MAX; 109 } 110 111 if (bs->backing) { 112 bdrv_refresh_limits(bs->backing->bs, &local_err); 113 if (local_err) { 114 error_propagate(errp, local_err); 115 return; 116 } 117 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 118 } 119 120 /* Then let the driver override it */ 121 if (drv->bdrv_refresh_limits) { 122 drv->bdrv_refresh_limits(bs, errp); 123 } 124 } 125 126 /** 127 * The copy-on-read flag is actually a reference count so multiple users may 128 * use the feature without worrying about clobbering its previous state. 129 * Copy-on-read stays enabled until all users have called to disable it. 130 */ 131 void bdrv_enable_copy_on_read(BlockDriverState *bs) 132 { 133 atomic_inc(&bs->copy_on_read); 134 } 135 136 void bdrv_disable_copy_on_read(BlockDriverState *bs) 137 { 138 int old = atomic_fetch_dec(&bs->copy_on_read); 139 assert(old >= 1); 140 } 141 142 /* Check if any requests are in-flight (including throttled requests) */ 143 bool bdrv_requests_pending(BlockDriverState *bs) 144 { 145 BdrvChild *child; 146 147 if (atomic_read(&bs->in_flight)) { 148 return true; 149 } 150 151 QLIST_FOREACH(child, &bs->children, next) { 152 if (bdrv_requests_pending(child->bs)) { 153 return true; 154 } 155 } 156 157 return false; 158 } 159 160 static bool bdrv_drain_recurse(BlockDriverState *bs) 161 { 162 BdrvChild *child, *tmp; 163 bool waited; 164 165 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0); 166 167 if (bs->drv && bs->drv->bdrv_drain) { 168 bs->drv->bdrv_drain(bs); 169 } 170 171 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) { 172 BlockDriverState *bs = child->bs; 173 bool in_main_loop = 174 qemu_get_current_aio_context() == qemu_get_aio_context(); 175 assert(bs->refcnt > 0); 176 if (in_main_loop) { 177 /* In case the recursive bdrv_drain_recurse processes a 178 * block_job_defer_to_main_loop BH and modifies the graph, 179 * let's hold a reference to bs until we are done. 180 * 181 * IOThread doesn't have such a BH, and it is not safe to call 182 * bdrv_unref without BQL, so skip doing it there. 183 */ 184 bdrv_ref(bs); 185 } 186 waited |= bdrv_drain_recurse(bs); 187 if (in_main_loop) { 188 bdrv_unref(bs); 189 } 190 } 191 192 return waited; 193 } 194 195 typedef struct { 196 Coroutine *co; 197 BlockDriverState *bs; 198 bool done; 199 } BdrvCoDrainData; 200 201 static void bdrv_co_drain_bh_cb(void *opaque) 202 { 203 BdrvCoDrainData *data = opaque; 204 Coroutine *co = data->co; 205 BlockDriverState *bs = data->bs; 206 207 bdrv_dec_in_flight(bs); 208 bdrv_drained_begin(bs); 209 data->done = true; 210 aio_co_wake(co); 211 } 212 213 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs) 214 { 215 BdrvCoDrainData data; 216 217 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 218 * other coroutines run if they were queued from 219 * qemu_co_queue_run_restart(). */ 220 221 assert(qemu_in_coroutine()); 222 data = (BdrvCoDrainData) { 223 .co = qemu_coroutine_self(), 224 .bs = bs, 225 .done = false, 226 }; 227 bdrv_inc_in_flight(bs); 228 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 229 bdrv_co_drain_bh_cb, &data); 230 231 qemu_coroutine_yield(); 232 /* If we are resumed from some other event (such as an aio completion or a 233 * timer callback), it is a bug in the caller that should be fixed. */ 234 assert(data.done); 235 } 236 237 void bdrv_drained_begin(BlockDriverState *bs) 238 { 239 if (qemu_in_coroutine()) { 240 bdrv_co_yield_to_drain(bs); 241 return; 242 } 243 244 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 245 aio_disable_external(bdrv_get_aio_context(bs)); 246 bdrv_parent_drained_begin(bs); 247 } 248 249 bdrv_drain_recurse(bs); 250 } 251 252 void bdrv_drained_end(BlockDriverState *bs) 253 { 254 assert(bs->quiesce_counter > 0); 255 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) { 256 return; 257 } 258 259 bdrv_parent_drained_end(bs); 260 aio_enable_external(bdrv_get_aio_context(bs)); 261 } 262 263 /* 264 * Wait for pending requests to complete on a single BlockDriverState subtree, 265 * and suspend block driver's internal I/O until next request arrives. 266 * 267 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 268 * AioContext. 269 * 270 * Only this BlockDriverState's AioContext is run, so in-flight requests must 271 * not depend on events in other AioContexts. In that case, use 272 * bdrv_drain_all() instead. 273 */ 274 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 275 { 276 assert(qemu_in_coroutine()); 277 bdrv_drained_begin(bs); 278 bdrv_drained_end(bs); 279 } 280 281 void bdrv_drain(BlockDriverState *bs) 282 { 283 bdrv_drained_begin(bs); 284 bdrv_drained_end(bs); 285 } 286 287 /* 288 * Wait for pending requests to complete across all BlockDriverStates 289 * 290 * This function does not flush data to disk, use bdrv_flush_all() for that 291 * after calling this function. 292 * 293 * This pauses all block jobs and disables external clients. It must 294 * be paired with bdrv_drain_all_end(). 295 * 296 * NOTE: no new block jobs or BlockDriverStates can be created between 297 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 298 */ 299 void bdrv_drain_all_begin(void) 300 { 301 /* Always run first iteration so any pending completion BHs run */ 302 bool waited = true; 303 BlockDriverState *bs; 304 BdrvNextIterator it; 305 GSList *aio_ctxs = NULL, *ctx; 306 307 block_job_pause_all(); 308 309 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 310 AioContext *aio_context = bdrv_get_aio_context(bs); 311 312 aio_context_acquire(aio_context); 313 bdrv_parent_drained_begin(bs); 314 aio_disable_external(aio_context); 315 aio_context_release(aio_context); 316 317 if (!g_slist_find(aio_ctxs, aio_context)) { 318 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context); 319 } 320 } 321 322 /* Note that completion of an asynchronous I/O operation can trigger any 323 * number of other I/O operations on other devices---for example a 324 * coroutine can submit an I/O request to another device in response to 325 * request completion. Therefore we must keep looping until there was no 326 * more activity rather than simply draining each device independently. 327 */ 328 while (waited) { 329 waited = false; 330 331 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) { 332 AioContext *aio_context = ctx->data; 333 334 aio_context_acquire(aio_context); 335 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 336 if (aio_context == bdrv_get_aio_context(bs)) { 337 waited |= bdrv_drain_recurse(bs); 338 } 339 } 340 aio_context_release(aio_context); 341 } 342 } 343 344 g_slist_free(aio_ctxs); 345 } 346 347 void bdrv_drain_all_end(void) 348 { 349 BlockDriverState *bs; 350 BdrvNextIterator it; 351 352 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 353 AioContext *aio_context = bdrv_get_aio_context(bs); 354 355 aio_context_acquire(aio_context); 356 aio_enable_external(aio_context); 357 bdrv_parent_drained_end(bs); 358 aio_context_release(aio_context); 359 } 360 361 block_job_resume_all(); 362 } 363 364 void bdrv_drain_all(void) 365 { 366 bdrv_drain_all_begin(); 367 bdrv_drain_all_end(); 368 } 369 370 /** 371 * Remove an active request from the tracked requests list 372 * 373 * This function should be called when a tracked request is completing. 374 */ 375 static void tracked_request_end(BdrvTrackedRequest *req) 376 { 377 if (req->serialising) { 378 atomic_dec(&req->bs->serialising_in_flight); 379 } 380 381 qemu_co_mutex_lock(&req->bs->reqs_lock); 382 QLIST_REMOVE(req, list); 383 qemu_co_queue_restart_all(&req->wait_queue); 384 qemu_co_mutex_unlock(&req->bs->reqs_lock); 385 } 386 387 /** 388 * Add an active request to the tracked requests list 389 */ 390 static void tracked_request_begin(BdrvTrackedRequest *req, 391 BlockDriverState *bs, 392 int64_t offset, 393 unsigned int bytes, 394 enum BdrvTrackedRequestType type) 395 { 396 *req = (BdrvTrackedRequest){ 397 .bs = bs, 398 .offset = offset, 399 .bytes = bytes, 400 .type = type, 401 .co = qemu_coroutine_self(), 402 .serialising = false, 403 .overlap_offset = offset, 404 .overlap_bytes = bytes, 405 }; 406 407 qemu_co_queue_init(&req->wait_queue); 408 409 qemu_co_mutex_lock(&bs->reqs_lock); 410 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 411 qemu_co_mutex_unlock(&bs->reqs_lock); 412 } 413 414 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 415 { 416 int64_t overlap_offset = req->offset & ~(align - 1); 417 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 418 - overlap_offset; 419 420 if (!req->serialising) { 421 atomic_inc(&req->bs->serialising_in_flight); 422 req->serialising = true; 423 } 424 425 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 426 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 427 } 428 429 /** 430 * Round a region to cluster boundaries (sector-based) 431 */ 432 void bdrv_round_sectors_to_clusters(BlockDriverState *bs, 433 int64_t sector_num, int nb_sectors, 434 int64_t *cluster_sector_num, 435 int *cluster_nb_sectors) 436 { 437 BlockDriverInfo bdi; 438 439 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 440 *cluster_sector_num = sector_num; 441 *cluster_nb_sectors = nb_sectors; 442 } else { 443 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 444 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 445 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 446 nb_sectors, c); 447 } 448 } 449 450 /** 451 * Round a region to cluster boundaries 452 */ 453 void bdrv_round_to_clusters(BlockDriverState *bs, 454 int64_t offset, unsigned int bytes, 455 int64_t *cluster_offset, 456 unsigned int *cluster_bytes) 457 { 458 BlockDriverInfo bdi; 459 460 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 461 *cluster_offset = offset; 462 *cluster_bytes = bytes; 463 } else { 464 int64_t c = bdi.cluster_size; 465 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 466 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 467 } 468 } 469 470 static int bdrv_get_cluster_size(BlockDriverState *bs) 471 { 472 BlockDriverInfo bdi; 473 int ret; 474 475 ret = bdrv_get_info(bs, &bdi); 476 if (ret < 0 || bdi.cluster_size == 0) { 477 return bs->bl.request_alignment; 478 } else { 479 return bdi.cluster_size; 480 } 481 } 482 483 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 484 int64_t offset, unsigned int bytes) 485 { 486 /* aaaa bbbb */ 487 if (offset >= req->overlap_offset + req->overlap_bytes) { 488 return false; 489 } 490 /* bbbb aaaa */ 491 if (req->overlap_offset >= offset + bytes) { 492 return false; 493 } 494 return true; 495 } 496 497 void bdrv_inc_in_flight(BlockDriverState *bs) 498 { 499 atomic_inc(&bs->in_flight); 500 } 501 502 static void dummy_bh_cb(void *opaque) 503 { 504 } 505 506 void bdrv_wakeup(BlockDriverState *bs) 507 { 508 /* The barrier (or an atomic op) is in the caller. */ 509 if (atomic_read(&bs->wakeup)) { 510 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL); 511 } 512 } 513 514 void bdrv_dec_in_flight(BlockDriverState *bs) 515 { 516 atomic_dec(&bs->in_flight); 517 bdrv_wakeup(bs); 518 } 519 520 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 521 { 522 BlockDriverState *bs = self->bs; 523 BdrvTrackedRequest *req; 524 bool retry; 525 bool waited = false; 526 527 if (!atomic_read(&bs->serialising_in_flight)) { 528 return false; 529 } 530 531 do { 532 retry = false; 533 qemu_co_mutex_lock(&bs->reqs_lock); 534 QLIST_FOREACH(req, &bs->tracked_requests, list) { 535 if (req == self || (!req->serialising && !self->serialising)) { 536 continue; 537 } 538 if (tracked_request_overlaps(req, self->overlap_offset, 539 self->overlap_bytes)) 540 { 541 /* Hitting this means there was a reentrant request, for 542 * example, a block driver issuing nested requests. This must 543 * never happen since it means deadlock. 544 */ 545 assert(qemu_coroutine_self() != req->co); 546 547 /* If the request is already (indirectly) waiting for us, or 548 * will wait for us as soon as it wakes up, then just go on 549 * (instead of producing a deadlock in the former case). */ 550 if (!req->waiting_for) { 551 self->waiting_for = req; 552 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 553 self->waiting_for = NULL; 554 retry = true; 555 waited = true; 556 break; 557 } 558 } 559 } 560 qemu_co_mutex_unlock(&bs->reqs_lock); 561 } while (retry); 562 563 return waited; 564 } 565 566 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 567 size_t size) 568 { 569 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 570 return -EIO; 571 } 572 573 if (!bdrv_is_inserted(bs)) { 574 return -ENOMEDIUM; 575 } 576 577 if (offset < 0) { 578 return -EIO; 579 } 580 581 return 0; 582 } 583 584 typedef struct RwCo { 585 BdrvChild *child; 586 int64_t offset; 587 QEMUIOVector *qiov; 588 bool is_write; 589 int ret; 590 BdrvRequestFlags flags; 591 } RwCo; 592 593 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 594 { 595 RwCo *rwco = opaque; 596 597 if (!rwco->is_write) { 598 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 599 rwco->qiov->size, rwco->qiov, 600 rwco->flags); 601 } else { 602 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 603 rwco->qiov->size, rwco->qiov, 604 rwco->flags); 605 } 606 } 607 608 /* 609 * Process a vectored synchronous request using coroutines 610 */ 611 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 612 QEMUIOVector *qiov, bool is_write, 613 BdrvRequestFlags flags) 614 { 615 Coroutine *co; 616 RwCo rwco = { 617 .child = child, 618 .offset = offset, 619 .qiov = qiov, 620 .is_write = is_write, 621 .ret = NOT_DONE, 622 .flags = flags, 623 }; 624 625 if (qemu_in_coroutine()) { 626 /* Fast-path if already in coroutine context */ 627 bdrv_rw_co_entry(&rwco); 628 } else { 629 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 630 bdrv_coroutine_enter(child->bs, co); 631 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 632 } 633 return rwco.ret; 634 } 635 636 /* 637 * Process a synchronous request using coroutines 638 */ 639 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, 640 int nb_sectors, bool is_write, BdrvRequestFlags flags) 641 { 642 QEMUIOVector qiov; 643 struct iovec iov = { 644 .iov_base = (void *)buf, 645 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 646 }; 647 648 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 649 return -EINVAL; 650 } 651 652 qemu_iovec_init_external(&qiov, &iov, 1); 653 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, 654 &qiov, is_write, flags); 655 } 656 657 /* return < 0 if error. See bdrv_write() for the return codes */ 658 int bdrv_read(BdrvChild *child, int64_t sector_num, 659 uint8_t *buf, int nb_sectors) 660 { 661 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); 662 } 663 664 /* Return < 0 if error. Important errors are: 665 -EIO generic I/O error (may happen for all errors) 666 -ENOMEDIUM No media inserted. 667 -EINVAL Invalid sector number or nb_sectors 668 -EACCES Trying to write a read-only device 669 */ 670 int bdrv_write(BdrvChild *child, int64_t sector_num, 671 const uint8_t *buf, int nb_sectors) 672 { 673 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 674 } 675 676 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 677 int count, BdrvRequestFlags flags) 678 { 679 QEMUIOVector qiov; 680 struct iovec iov = { 681 .iov_base = NULL, 682 .iov_len = count, 683 }; 684 685 qemu_iovec_init_external(&qiov, &iov, 1); 686 return bdrv_prwv_co(child, offset, &qiov, true, 687 BDRV_REQ_ZERO_WRITE | flags); 688 } 689 690 /* 691 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 692 * The operation is sped up by checking the block status and only writing 693 * zeroes to the device if they currently do not return zeroes. Optional 694 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 695 * BDRV_REQ_FUA). 696 * 697 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 698 */ 699 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 700 { 701 int64_t target_sectors, ret, nb_sectors, sector_num = 0; 702 BlockDriverState *bs = child->bs; 703 BlockDriverState *file; 704 int n; 705 706 target_sectors = bdrv_nb_sectors(bs); 707 if (target_sectors < 0) { 708 return target_sectors; 709 } 710 711 for (;;) { 712 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS); 713 if (nb_sectors <= 0) { 714 return 0; 715 } 716 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file); 717 if (ret < 0) { 718 error_report("error getting block status at sector %" PRId64 ": %s", 719 sector_num, strerror(-ret)); 720 return ret; 721 } 722 if (ret & BDRV_BLOCK_ZERO) { 723 sector_num += n; 724 continue; 725 } 726 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS, 727 n << BDRV_SECTOR_BITS, flags); 728 if (ret < 0) { 729 error_report("error writing zeroes at sector %" PRId64 ": %s", 730 sector_num, strerror(-ret)); 731 return ret; 732 } 733 sector_num += n; 734 } 735 } 736 737 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 738 { 739 int ret; 740 741 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 742 if (ret < 0) { 743 return ret; 744 } 745 746 return qiov->size; 747 } 748 749 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 750 { 751 QEMUIOVector qiov; 752 struct iovec iov = { 753 .iov_base = (void *)buf, 754 .iov_len = bytes, 755 }; 756 757 if (bytes < 0) { 758 return -EINVAL; 759 } 760 761 qemu_iovec_init_external(&qiov, &iov, 1); 762 return bdrv_preadv(child, offset, &qiov); 763 } 764 765 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 766 { 767 int ret; 768 769 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 770 if (ret < 0) { 771 return ret; 772 } 773 774 return qiov->size; 775 } 776 777 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 778 { 779 QEMUIOVector qiov; 780 struct iovec iov = { 781 .iov_base = (void *) buf, 782 .iov_len = bytes, 783 }; 784 785 if (bytes < 0) { 786 return -EINVAL; 787 } 788 789 qemu_iovec_init_external(&qiov, &iov, 1); 790 return bdrv_pwritev(child, offset, &qiov); 791 } 792 793 /* 794 * Writes to the file and ensures that no writes are reordered across this 795 * request (acts as a barrier) 796 * 797 * Returns 0 on success, -errno in error cases. 798 */ 799 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 800 const void *buf, int count) 801 { 802 int ret; 803 804 ret = bdrv_pwrite(child, offset, buf, count); 805 if (ret < 0) { 806 return ret; 807 } 808 809 ret = bdrv_flush(child->bs); 810 if (ret < 0) { 811 return ret; 812 } 813 814 return 0; 815 } 816 817 typedef struct CoroutineIOCompletion { 818 Coroutine *coroutine; 819 int ret; 820 } CoroutineIOCompletion; 821 822 static void bdrv_co_io_em_complete(void *opaque, int ret) 823 { 824 CoroutineIOCompletion *co = opaque; 825 826 co->ret = ret; 827 aio_co_wake(co->coroutine); 828 } 829 830 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 831 uint64_t offset, uint64_t bytes, 832 QEMUIOVector *qiov, int flags) 833 { 834 BlockDriver *drv = bs->drv; 835 int64_t sector_num; 836 unsigned int nb_sectors; 837 838 assert(!(flags & ~BDRV_REQ_MASK)); 839 840 if (drv->bdrv_co_preadv) { 841 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 842 } 843 844 sector_num = offset >> BDRV_SECTOR_BITS; 845 nb_sectors = bytes >> BDRV_SECTOR_BITS; 846 847 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 848 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 849 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 850 851 if (drv->bdrv_co_readv) { 852 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 853 } else { 854 BlockAIOCB *acb; 855 CoroutineIOCompletion co = { 856 .coroutine = qemu_coroutine_self(), 857 }; 858 859 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors, 860 bdrv_co_io_em_complete, &co); 861 if (acb == NULL) { 862 return -EIO; 863 } else { 864 qemu_coroutine_yield(); 865 return co.ret; 866 } 867 } 868 } 869 870 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 871 uint64_t offset, uint64_t bytes, 872 QEMUIOVector *qiov, int flags) 873 { 874 BlockDriver *drv = bs->drv; 875 int64_t sector_num; 876 unsigned int nb_sectors; 877 int ret; 878 879 assert(!(flags & ~BDRV_REQ_MASK)); 880 881 if (drv->bdrv_co_pwritev) { 882 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 883 flags & bs->supported_write_flags); 884 flags &= ~bs->supported_write_flags; 885 goto emulate_flags; 886 } 887 888 sector_num = offset >> BDRV_SECTOR_BITS; 889 nb_sectors = bytes >> BDRV_SECTOR_BITS; 890 891 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 892 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 893 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 894 895 if (drv->bdrv_co_writev_flags) { 896 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov, 897 flags & bs->supported_write_flags); 898 flags &= ~bs->supported_write_flags; 899 } else if (drv->bdrv_co_writev) { 900 assert(!bs->supported_write_flags); 901 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 902 } else { 903 BlockAIOCB *acb; 904 CoroutineIOCompletion co = { 905 .coroutine = qemu_coroutine_self(), 906 }; 907 908 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors, 909 bdrv_co_io_em_complete, &co); 910 if (acb == NULL) { 911 ret = -EIO; 912 } else { 913 qemu_coroutine_yield(); 914 ret = co.ret; 915 } 916 } 917 918 emulate_flags: 919 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 920 ret = bdrv_co_flush(bs); 921 } 922 923 return ret; 924 } 925 926 static int coroutine_fn 927 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 928 uint64_t bytes, QEMUIOVector *qiov) 929 { 930 BlockDriver *drv = bs->drv; 931 932 if (!drv->bdrv_co_pwritev_compressed) { 933 return -ENOTSUP; 934 } 935 936 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 937 } 938 939 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 940 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 941 { 942 BlockDriverState *bs = child->bs; 943 944 /* Perform I/O through a temporary buffer so that users who scribble over 945 * their read buffer while the operation is in progress do not end up 946 * modifying the image file. This is critical for zero-copy guest I/O 947 * where anything might happen inside guest memory. 948 */ 949 void *bounce_buffer; 950 951 BlockDriver *drv = bs->drv; 952 struct iovec iov; 953 QEMUIOVector bounce_qiov; 954 int64_t cluster_offset; 955 unsigned int cluster_bytes; 956 size_t skip_bytes; 957 int ret; 958 959 /* FIXME We cannot require callers to have write permissions when all they 960 * are doing is a read request. If we did things right, write permissions 961 * would be obtained anyway, but internally by the copy-on-read code. As 962 * long as it is implemented here rather than in a separat filter driver, 963 * the copy-on-read code doesn't have its own BdrvChild, however, for which 964 * it could request permissions. Therefore we have to bypass the permission 965 * system for the moment. */ 966 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 967 968 /* Cover entire cluster so no additional backing file I/O is required when 969 * allocating cluster in the image file. 970 */ 971 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 972 973 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 974 cluster_offset, cluster_bytes); 975 976 iov.iov_len = cluster_bytes; 977 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len); 978 if (bounce_buffer == NULL) { 979 ret = -ENOMEM; 980 goto err; 981 } 982 983 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 984 985 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes, 986 &bounce_qiov, 0); 987 if (ret < 0) { 988 goto err; 989 } 990 991 if (drv->bdrv_co_pwrite_zeroes && 992 buffer_is_zero(bounce_buffer, iov.iov_len)) { 993 /* FIXME: Should we (perhaps conditionally) be setting 994 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 995 * that still correctly reads as zero? */ 996 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0); 997 } else { 998 /* This does not change the data on the disk, it is not necessary 999 * to flush even in cache=writethrough mode. 1000 */ 1001 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes, 1002 &bounce_qiov, 0); 1003 } 1004 1005 if (ret < 0) { 1006 /* It might be okay to ignore write errors for guest requests. If this 1007 * is a deliberate copy-on-read then we don't want to ignore the error. 1008 * Simply report it in all cases. 1009 */ 1010 goto err; 1011 } 1012 1013 skip_bytes = offset - cluster_offset; 1014 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes); 1015 1016 err: 1017 qemu_vfree(bounce_buffer); 1018 return ret; 1019 } 1020 1021 /* 1022 * Forwards an already correctly aligned request to the BlockDriver. This 1023 * handles copy on read, zeroing after EOF, and fragmentation of large 1024 * reads; any other features must be implemented by the caller. 1025 */ 1026 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1027 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1028 int64_t align, QEMUIOVector *qiov, int flags) 1029 { 1030 BlockDriverState *bs = child->bs; 1031 int64_t total_bytes, max_bytes; 1032 int ret = 0; 1033 uint64_t bytes_remaining = bytes; 1034 int max_transfer; 1035 1036 assert(is_power_of_2(align)); 1037 assert((offset & (align - 1)) == 0); 1038 assert((bytes & (align - 1)) == 0); 1039 assert(!qiov || bytes == qiov->size); 1040 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1041 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1042 align); 1043 1044 /* TODO: We would need a per-BDS .supported_read_flags and 1045 * potential fallback support, if we ever implement any read flags 1046 * to pass through to drivers. For now, there aren't any 1047 * passthrough flags. */ 1048 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 1049 1050 /* Handle Copy on Read and associated serialisation */ 1051 if (flags & BDRV_REQ_COPY_ON_READ) { 1052 /* If we touch the same cluster it counts as an overlap. This 1053 * guarantees that allocating writes will be serialized and not race 1054 * with each other for the same cluster. For example, in copy-on-read 1055 * it ensures that the CoR read and write operations are atomic and 1056 * guest writes cannot interleave between them. */ 1057 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1058 } 1059 1060 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1061 wait_serialising_requests(req); 1062 } 1063 1064 if (flags & BDRV_REQ_COPY_ON_READ) { 1065 int64_t start_sector = offset >> BDRV_SECTOR_BITS; 1066 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1067 unsigned int nb_sectors = end_sector - start_sector; 1068 int pnum; 1069 1070 ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum); 1071 if (ret < 0) { 1072 goto out; 1073 } 1074 1075 if (!ret || pnum != nb_sectors) { 1076 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); 1077 goto out; 1078 } 1079 } 1080 1081 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1082 total_bytes = bdrv_getlength(bs); 1083 if (total_bytes < 0) { 1084 ret = total_bytes; 1085 goto out; 1086 } 1087 1088 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1089 if (bytes <= max_bytes && bytes <= max_transfer) { 1090 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1091 goto out; 1092 } 1093 1094 while (bytes_remaining) { 1095 int num; 1096 1097 if (max_bytes) { 1098 QEMUIOVector local_qiov; 1099 1100 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1101 assert(num); 1102 qemu_iovec_init(&local_qiov, qiov->niov); 1103 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1104 1105 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1106 num, &local_qiov, 0); 1107 max_bytes -= num; 1108 qemu_iovec_destroy(&local_qiov); 1109 } else { 1110 num = bytes_remaining; 1111 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1112 bytes_remaining); 1113 } 1114 if (ret < 0) { 1115 goto out; 1116 } 1117 bytes_remaining -= num; 1118 } 1119 1120 out: 1121 return ret < 0 ? ret : 0; 1122 } 1123 1124 /* 1125 * Handle a read request in coroutine context 1126 */ 1127 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1128 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1129 BdrvRequestFlags flags) 1130 { 1131 BlockDriverState *bs = child->bs; 1132 BlockDriver *drv = bs->drv; 1133 BdrvTrackedRequest req; 1134 1135 uint64_t align = bs->bl.request_alignment; 1136 uint8_t *head_buf = NULL; 1137 uint8_t *tail_buf = NULL; 1138 QEMUIOVector local_qiov; 1139 bool use_local_qiov = false; 1140 int ret; 1141 1142 if (!drv) { 1143 return -ENOMEDIUM; 1144 } 1145 1146 ret = bdrv_check_byte_request(bs, offset, bytes); 1147 if (ret < 0) { 1148 return ret; 1149 } 1150 1151 bdrv_inc_in_flight(bs); 1152 1153 /* Don't do copy-on-read if we read data before write operation */ 1154 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1155 flags |= BDRV_REQ_COPY_ON_READ; 1156 } 1157 1158 /* Align read if necessary by padding qiov */ 1159 if (offset & (align - 1)) { 1160 head_buf = qemu_blockalign(bs, align); 1161 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1162 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1163 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1164 use_local_qiov = true; 1165 1166 bytes += offset & (align - 1); 1167 offset = offset & ~(align - 1); 1168 } 1169 1170 if ((offset + bytes) & (align - 1)) { 1171 if (!use_local_qiov) { 1172 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1173 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1174 use_local_qiov = true; 1175 } 1176 tail_buf = qemu_blockalign(bs, align); 1177 qemu_iovec_add(&local_qiov, tail_buf, 1178 align - ((offset + bytes) & (align - 1))); 1179 1180 bytes = ROUND_UP(bytes, align); 1181 } 1182 1183 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1184 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1185 use_local_qiov ? &local_qiov : qiov, 1186 flags); 1187 tracked_request_end(&req); 1188 bdrv_dec_in_flight(bs); 1189 1190 if (use_local_qiov) { 1191 qemu_iovec_destroy(&local_qiov); 1192 qemu_vfree(head_buf); 1193 qemu_vfree(tail_buf); 1194 } 1195 1196 return ret; 1197 } 1198 1199 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child, 1200 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1201 BdrvRequestFlags flags) 1202 { 1203 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1204 return -EINVAL; 1205 } 1206 1207 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS, 1208 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1209 } 1210 1211 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num, 1212 int nb_sectors, QEMUIOVector *qiov) 1213 { 1214 trace_bdrv_co_readv(child->bs, sector_num, nb_sectors); 1215 1216 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0); 1217 } 1218 1219 /* Maximum buffer for write zeroes fallback, in bytes */ 1220 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 1221 1222 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1223 int64_t offset, int count, BdrvRequestFlags flags) 1224 { 1225 BlockDriver *drv = bs->drv; 1226 QEMUIOVector qiov; 1227 struct iovec iov = {0}; 1228 int ret = 0; 1229 bool need_flush = false; 1230 int head = 0; 1231 int tail = 0; 1232 1233 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1234 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1235 bs->bl.request_alignment); 1236 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1237 MAX_WRITE_ZEROES_BOUNCE_BUFFER); 1238 1239 assert(alignment % bs->bl.request_alignment == 0); 1240 head = offset % alignment; 1241 tail = (offset + count) % alignment; 1242 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1243 assert(max_write_zeroes >= bs->bl.request_alignment); 1244 1245 while (count > 0 && !ret) { 1246 int num = count; 1247 1248 /* Align request. Block drivers can expect the "bulk" of the request 1249 * to be aligned, and that unaligned requests do not cross cluster 1250 * boundaries. 1251 */ 1252 if (head) { 1253 /* Make a small request up to the first aligned sector. For 1254 * convenience, limit this request to max_transfer even if 1255 * we don't need to fall back to writes. */ 1256 num = MIN(MIN(count, max_transfer), alignment - head); 1257 head = (head + num) % alignment; 1258 assert(num < max_write_zeroes); 1259 } else if (tail && num > alignment) { 1260 /* Shorten the request to the last aligned sector. */ 1261 num -= tail; 1262 } 1263 1264 /* limit request size */ 1265 if (num > max_write_zeroes) { 1266 num = max_write_zeroes; 1267 } 1268 1269 ret = -ENOTSUP; 1270 /* First try the efficient write zeroes operation */ 1271 if (drv->bdrv_co_pwrite_zeroes) { 1272 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1273 flags & bs->supported_zero_flags); 1274 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1275 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1276 need_flush = true; 1277 } 1278 } else { 1279 assert(!bs->supported_zero_flags); 1280 } 1281 1282 if (ret == -ENOTSUP) { 1283 /* Fall back to bounce buffer if write zeroes is unsupported */ 1284 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1285 1286 if ((flags & BDRV_REQ_FUA) && 1287 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1288 /* No need for bdrv_driver_pwrite() to do a fallback 1289 * flush on each chunk; use just one at the end */ 1290 write_flags &= ~BDRV_REQ_FUA; 1291 need_flush = true; 1292 } 1293 num = MIN(num, max_transfer); 1294 iov.iov_len = num; 1295 if (iov.iov_base == NULL) { 1296 iov.iov_base = qemu_try_blockalign(bs, num); 1297 if (iov.iov_base == NULL) { 1298 ret = -ENOMEM; 1299 goto fail; 1300 } 1301 memset(iov.iov_base, 0, num); 1302 } 1303 qemu_iovec_init_external(&qiov, &iov, 1); 1304 1305 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1306 1307 /* Keep bounce buffer around if it is big enough for all 1308 * all future requests. 1309 */ 1310 if (num < max_transfer) { 1311 qemu_vfree(iov.iov_base); 1312 iov.iov_base = NULL; 1313 } 1314 } 1315 1316 offset += num; 1317 count -= num; 1318 } 1319 1320 fail: 1321 if (ret == 0 && need_flush) { 1322 ret = bdrv_co_flush(bs); 1323 } 1324 qemu_vfree(iov.iov_base); 1325 return ret; 1326 } 1327 1328 /* 1329 * Forwards an already correctly aligned write request to the BlockDriver, 1330 * after possibly fragmenting it. 1331 */ 1332 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1333 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1334 int64_t align, QEMUIOVector *qiov, int flags) 1335 { 1336 BlockDriverState *bs = child->bs; 1337 BlockDriver *drv = bs->drv; 1338 bool waited; 1339 int ret; 1340 1341 int64_t start_sector = offset >> BDRV_SECTOR_BITS; 1342 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1343 uint64_t bytes_remaining = bytes; 1344 int max_transfer; 1345 1346 assert(is_power_of_2(align)); 1347 assert((offset & (align - 1)) == 0); 1348 assert((bytes & (align - 1)) == 0); 1349 assert(!qiov || bytes == qiov->size); 1350 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1351 assert(!(flags & ~BDRV_REQ_MASK)); 1352 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1353 align); 1354 1355 waited = wait_serialising_requests(req); 1356 assert(!waited || !req->serialising); 1357 assert(req->overlap_offset <= offset); 1358 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1359 assert(child->perm & BLK_PERM_WRITE); 1360 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1361 1362 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); 1363 1364 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1365 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1366 qemu_iovec_is_zero(qiov)) { 1367 flags |= BDRV_REQ_ZERO_WRITE; 1368 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1369 flags |= BDRV_REQ_MAY_UNMAP; 1370 } 1371 } 1372 1373 if (ret < 0) { 1374 /* Do nothing, write notifier decided to fail this request */ 1375 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1376 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1377 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1378 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1379 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1380 } else if (bytes <= max_transfer) { 1381 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1382 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1383 } else { 1384 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1385 while (bytes_remaining) { 1386 int num = MIN(bytes_remaining, max_transfer); 1387 QEMUIOVector local_qiov; 1388 int local_flags = flags; 1389 1390 assert(num); 1391 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1392 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1393 /* If FUA is going to be emulated by flush, we only 1394 * need to flush on the last iteration */ 1395 local_flags &= ~BDRV_REQ_FUA; 1396 } 1397 qemu_iovec_init(&local_qiov, qiov->niov); 1398 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1399 1400 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1401 num, &local_qiov, local_flags); 1402 qemu_iovec_destroy(&local_qiov); 1403 if (ret < 0) { 1404 break; 1405 } 1406 bytes_remaining -= num; 1407 } 1408 } 1409 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1410 1411 atomic_inc(&bs->write_gen); 1412 bdrv_set_dirty(bs, start_sector, end_sector - start_sector); 1413 1414 stat64_max(&bs->wr_highest_offset, offset + bytes); 1415 1416 if (ret >= 0) { 1417 bs->total_sectors = MAX(bs->total_sectors, end_sector); 1418 ret = 0; 1419 } 1420 1421 return ret; 1422 } 1423 1424 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1425 int64_t offset, 1426 unsigned int bytes, 1427 BdrvRequestFlags flags, 1428 BdrvTrackedRequest *req) 1429 { 1430 BlockDriverState *bs = child->bs; 1431 uint8_t *buf = NULL; 1432 QEMUIOVector local_qiov; 1433 struct iovec iov; 1434 uint64_t align = bs->bl.request_alignment; 1435 unsigned int head_padding_bytes, tail_padding_bytes; 1436 int ret = 0; 1437 1438 head_padding_bytes = offset & (align - 1); 1439 tail_padding_bytes = (align - (offset + bytes)) & (align - 1); 1440 1441 1442 assert(flags & BDRV_REQ_ZERO_WRITE); 1443 if (head_padding_bytes || tail_padding_bytes) { 1444 buf = qemu_blockalign(bs, align); 1445 iov = (struct iovec) { 1446 .iov_base = buf, 1447 .iov_len = align, 1448 }; 1449 qemu_iovec_init_external(&local_qiov, &iov, 1); 1450 } 1451 if (head_padding_bytes) { 1452 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1453 1454 /* RMW the unaligned part before head. */ 1455 mark_request_serialising(req, align); 1456 wait_serialising_requests(req); 1457 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1458 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1459 align, &local_qiov, 0); 1460 if (ret < 0) { 1461 goto fail; 1462 } 1463 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1464 1465 memset(buf + head_padding_bytes, 0, zero_bytes); 1466 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1467 align, &local_qiov, 1468 flags & ~BDRV_REQ_ZERO_WRITE); 1469 if (ret < 0) { 1470 goto fail; 1471 } 1472 offset += zero_bytes; 1473 bytes -= zero_bytes; 1474 } 1475 1476 assert(!bytes || (offset & (align - 1)) == 0); 1477 if (bytes >= align) { 1478 /* Write the aligned part in the middle. */ 1479 uint64_t aligned_bytes = bytes & ~(align - 1); 1480 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1481 NULL, flags); 1482 if (ret < 0) { 1483 goto fail; 1484 } 1485 bytes -= aligned_bytes; 1486 offset += aligned_bytes; 1487 } 1488 1489 assert(!bytes || (offset & (align - 1)) == 0); 1490 if (bytes) { 1491 assert(align == tail_padding_bytes + bytes); 1492 /* RMW the unaligned part after tail. */ 1493 mark_request_serialising(req, align); 1494 wait_serialising_requests(req); 1495 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1496 ret = bdrv_aligned_preadv(child, req, offset, align, 1497 align, &local_qiov, 0); 1498 if (ret < 0) { 1499 goto fail; 1500 } 1501 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1502 1503 memset(buf, 0, bytes); 1504 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1505 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1506 } 1507 fail: 1508 qemu_vfree(buf); 1509 return ret; 1510 1511 } 1512 1513 /* 1514 * Handle a write request in coroutine context 1515 */ 1516 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1517 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1518 BdrvRequestFlags flags) 1519 { 1520 BlockDriverState *bs = child->bs; 1521 BdrvTrackedRequest req; 1522 uint64_t align = bs->bl.request_alignment; 1523 uint8_t *head_buf = NULL; 1524 uint8_t *tail_buf = NULL; 1525 QEMUIOVector local_qiov; 1526 bool use_local_qiov = false; 1527 int ret; 1528 1529 if (!bs->drv) { 1530 return -ENOMEDIUM; 1531 } 1532 if (bs->read_only) { 1533 return -EPERM; 1534 } 1535 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1536 1537 ret = bdrv_check_byte_request(bs, offset, bytes); 1538 if (ret < 0) { 1539 return ret; 1540 } 1541 1542 bdrv_inc_in_flight(bs); 1543 /* 1544 * Align write if necessary by performing a read-modify-write cycle. 1545 * Pad qiov with the read parts and be sure to have a tracked request not 1546 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1547 */ 1548 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1549 1550 if (!qiov) { 1551 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1552 goto out; 1553 } 1554 1555 if (offset & (align - 1)) { 1556 QEMUIOVector head_qiov; 1557 struct iovec head_iov; 1558 1559 mark_request_serialising(&req, align); 1560 wait_serialising_requests(&req); 1561 1562 head_buf = qemu_blockalign(bs, align); 1563 head_iov = (struct iovec) { 1564 .iov_base = head_buf, 1565 .iov_len = align, 1566 }; 1567 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1568 1569 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1570 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1571 align, &head_qiov, 0); 1572 if (ret < 0) { 1573 goto fail; 1574 } 1575 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1576 1577 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1578 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1579 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1580 use_local_qiov = true; 1581 1582 bytes += offset & (align - 1); 1583 offset = offset & ~(align - 1); 1584 1585 /* We have read the tail already if the request is smaller 1586 * than one aligned block. 1587 */ 1588 if (bytes < align) { 1589 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1590 bytes = align; 1591 } 1592 } 1593 1594 if ((offset + bytes) & (align - 1)) { 1595 QEMUIOVector tail_qiov; 1596 struct iovec tail_iov; 1597 size_t tail_bytes; 1598 bool waited; 1599 1600 mark_request_serialising(&req, align); 1601 waited = wait_serialising_requests(&req); 1602 assert(!waited || !use_local_qiov); 1603 1604 tail_buf = qemu_blockalign(bs, align); 1605 tail_iov = (struct iovec) { 1606 .iov_base = tail_buf, 1607 .iov_len = align, 1608 }; 1609 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1610 1611 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1612 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1613 align, align, &tail_qiov, 0); 1614 if (ret < 0) { 1615 goto fail; 1616 } 1617 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1618 1619 if (!use_local_qiov) { 1620 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1621 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1622 use_local_qiov = true; 1623 } 1624 1625 tail_bytes = (offset + bytes) & (align - 1); 1626 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1627 1628 bytes = ROUND_UP(bytes, align); 1629 } 1630 1631 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1632 use_local_qiov ? &local_qiov : qiov, 1633 flags); 1634 1635 fail: 1636 1637 if (use_local_qiov) { 1638 qemu_iovec_destroy(&local_qiov); 1639 } 1640 qemu_vfree(head_buf); 1641 qemu_vfree(tail_buf); 1642 out: 1643 tracked_request_end(&req); 1644 bdrv_dec_in_flight(bs); 1645 return ret; 1646 } 1647 1648 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child, 1649 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1650 BdrvRequestFlags flags) 1651 { 1652 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1653 return -EINVAL; 1654 } 1655 1656 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS, 1657 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1658 } 1659 1660 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num, 1661 int nb_sectors, QEMUIOVector *qiov) 1662 { 1663 trace_bdrv_co_writev(child->bs, sector_num, nb_sectors); 1664 1665 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0); 1666 } 1667 1668 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1669 int count, BdrvRequestFlags flags) 1670 { 1671 trace_bdrv_co_pwrite_zeroes(child->bs, offset, count, flags); 1672 1673 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1674 flags &= ~BDRV_REQ_MAY_UNMAP; 1675 } 1676 1677 return bdrv_co_pwritev(child, offset, count, NULL, 1678 BDRV_REQ_ZERO_WRITE | flags); 1679 } 1680 1681 /* 1682 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1683 */ 1684 int bdrv_flush_all(void) 1685 { 1686 BdrvNextIterator it; 1687 BlockDriverState *bs = NULL; 1688 int result = 0; 1689 1690 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 1691 AioContext *aio_context = bdrv_get_aio_context(bs); 1692 int ret; 1693 1694 aio_context_acquire(aio_context); 1695 ret = bdrv_flush(bs); 1696 if (ret < 0 && !result) { 1697 result = ret; 1698 } 1699 aio_context_release(aio_context); 1700 } 1701 1702 return result; 1703 } 1704 1705 1706 typedef struct BdrvCoGetBlockStatusData { 1707 BlockDriverState *bs; 1708 BlockDriverState *base; 1709 BlockDriverState **file; 1710 int64_t sector_num; 1711 int nb_sectors; 1712 int *pnum; 1713 int64_t ret; 1714 bool done; 1715 } BdrvCoGetBlockStatusData; 1716 1717 /* 1718 * Returns the allocation status of the specified sectors. 1719 * Drivers not implementing the functionality are assumed to not support 1720 * backing files, hence all their sectors are reported as allocated. 1721 * 1722 * If 'sector_num' is beyond the end of the disk image the return value is 0 1723 * and 'pnum' is set to 0. 1724 * 1725 * 'pnum' is set to the number of sectors (including and immediately following 1726 * the specified sector) that are known to be in the same 1727 * allocated/unallocated state. 1728 * 1729 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 1730 * beyond the end of the disk image it will be clamped. 1731 * 1732 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file' 1733 * points to the BDS which the sector range is allocated in. 1734 */ 1735 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs, 1736 int64_t sector_num, 1737 int nb_sectors, int *pnum, 1738 BlockDriverState **file) 1739 { 1740 int64_t total_sectors; 1741 int64_t n; 1742 int64_t ret, ret2; 1743 1744 total_sectors = bdrv_nb_sectors(bs); 1745 if (total_sectors < 0) { 1746 return total_sectors; 1747 } 1748 1749 if (sector_num >= total_sectors) { 1750 *pnum = 0; 1751 return 0; 1752 } 1753 1754 n = total_sectors - sector_num; 1755 if (n < nb_sectors) { 1756 nb_sectors = n; 1757 } 1758 1759 if (!bs->drv->bdrv_co_get_block_status) { 1760 *pnum = nb_sectors; 1761 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 1762 if (bs->drv->protocol_name) { 1763 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE); 1764 } 1765 return ret; 1766 } 1767 1768 *file = NULL; 1769 bdrv_inc_in_flight(bs); 1770 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum, 1771 file); 1772 if (ret < 0) { 1773 *pnum = 0; 1774 goto out; 1775 } 1776 1777 if (ret & BDRV_BLOCK_RAW) { 1778 assert(ret & BDRV_BLOCK_OFFSET_VALID); 1779 ret = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1780 *pnum, pnum, file); 1781 goto out; 1782 } 1783 1784 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 1785 ret |= BDRV_BLOCK_ALLOCATED; 1786 } else { 1787 if (bdrv_unallocated_blocks_are_zero(bs)) { 1788 ret |= BDRV_BLOCK_ZERO; 1789 } else if (bs->backing) { 1790 BlockDriverState *bs2 = bs->backing->bs; 1791 int64_t nb_sectors2 = bdrv_nb_sectors(bs2); 1792 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) { 1793 ret |= BDRV_BLOCK_ZERO; 1794 } 1795 } 1796 } 1797 1798 if (*file && *file != bs && 1799 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 1800 (ret & BDRV_BLOCK_OFFSET_VALID)) { 1801 BlockDriverState *file2; 1802 int file_pnum; 1803 1804 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1805 *pnum, &file_pnum, &file2); 1806 if (ret2 >= 0) { 1807 /* Ignore errors. This is just providing extra information, it 1808 * is useful but not necessary. 1809 */ 1810 if (!file_pnum) { 1811 /* !file_pnum indicates an offset at or beyond the EOF; it is 1812 * perfectly valid for the format block driver to point to such 1813 * offsets, so catch it and mark everything as zero */ 1814 ret |= BDRV_BLOCK_ZERO; 1815 } else { 1816 /* Limit request to the range reported by the protocol driver */ 1817 *pnum = file_pnum; 1818 ret |= (ret2 & BDRV_BLOCK_ZERO); 1819 } 1820 } 1821 } 1822 1823 out: 1824 bdrv_dec_in_flight(bs); 1825 return ret; 1826 } 1827 1828 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs, 1829 BlockDriverState *base, 1830 int64_t sector_num, 1831 int nb_sectors, 1832 int *pnum, 1833 BlockDriverState **file) 1834 { 1835 BlockDriverState *p; 1836 int64_t ret = 0; 1837 1838 assert(bs != base); 1839 for (p = bs; p != base; p = backing_bs(p)) { 1840 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file); 1841 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) { 1842 break; 1843 } 1844 /* [sector_num, pnum] unallocated on this layer, which could be only 1845 * the first part of [sector_num, nb_sectors]. */ 1846 nb_sectors = MIN(nb_sectors, *pnum); 1847 } 1848 return ret; 1849 } 1850 1851 /* Coroutine wrapper for bdrv_get_block_status_above() */ 1852 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque) 1853 { 1854 BdrvCoGetBlockStatusData *data = opaque; 1855 1856 data->ret = bdrv_co_get_block_status_above(data->bs, data->base, 1857 data->sector_num, 1858 data->nb_sectors, 1859 data->pnum, 1860 data->file); 1861 data->done = true; 1862 } 1863 1864 /* 1865 * Synchronous wrapper around bdrv_co_get_block_status_above(). 1866 * 1867 * See bdrv_co_get_block_status_above() for details. 1868 */ 1869 int64_t bdrv_get_block_status_above(BlockDriverState *bs, 1870 BlockDriverState *base, 1871 int64_t sector_num, 1872 int nb_sectors, int *pnum, 1873 BlockDriverState **file) 1874 { 1875 Coroutine *co; 1876 BdrvCoGetBlockStatusData data = { 1877 .bs = bs, 1878 .base = base, 1879 .file = file, 1880 .sector_num = sector_num, 1881 .nb_sectors = nb_sectors, 1882 .pnum = pnum, 1883 .done = false, 1884 }; 1885 1886 if (qemu_in_coroutine()) { 1887 /* Fast-path if already in coroutine context */ 1888 bdrv_get_block_status_above_co_entry(&data); 1889 } else { 1890 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry, 1891 &data); 1892 bdrv_coroutine_enter(bs, co); 1893 BDRV_POLL_WHILE(bs, !data.done); 1894 } 1895 return data.ret; 1896 } 1897 1898 int64_t bdrv_get_block_status(BlockDriverState *bs, 1899 int64_t sector_num, 1900 int nb_sectors, int *pnum, 1901 BlockDriverState **file) 1902 { 1903 return bdrv_get_block_status_above(bs, backing_bs(bs), 1904 sector_num, nb_sectors, pnum, file); 1905 } 1906 1907 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, 1908 int nb_sectors, int *pnum) 1909 { 1910 BlockDriverState *file; 1911 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum, 1912 &file); 1913 if (ret < 0) { 1914 return ret; 1915 } 1916 return !!(ret & BDRV_BLOCK_ALLOCATED); 1917 } 1918 1919 /* 1920 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 1921 * 1922 * Return true if the given sector is allocated in any image between 1923 * BASE and TOP (inclusive). BASE can be NULL to check if the given 1924 * sector is allocated in any image of the chain. Return false otherwise. 1925 * 1926 * 'pnum' is set to the number of sectors (including and immediately following 1927 * the specified sector) that are known to be in the same 1928 * allocated/unallocated state. 1929 * 1930 */ 1931 int bdrv_is_allocated_above(BlockDriverState *top, 1932 BlockDriverState *base, 1933 int64_t sector_num, 1934 int nb_sectors, int *pnum) 1935 { 1936 BlockDriverState *intermediate; 1937 int ret, n = nb_sectors; 1938 1939 intermediate = top; 1940 while (intermediate && intermediate != base) { 1941 int pnum_inter; 1942 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors, 1943 &pnum_inter); 1944 if (ret < 0) { 1945 return ret; 1946 } else if (ret) { 1947 *pnum = pnum_inter; 1948 return 1; 1949 } 1950 1951 /* 1952 * [sector_num, nb_sectors] is unallocated on top but intermediate 1953 * might have 1954 * 1955 * [sector_num+x, nr_sectors] allocated. 1956 */ 1957 if (n > pnum_inter && 1958 (intermediate == top || 1959 sector_num + pnum_inter < intermediate->total_sectors)) { 1960 n = pnum_inter; 1961 } 1962 1963 intermediate = backing_bs(intermediate); 1964 } 1965 1966 *pnum = n; 1967 return 0; 1968 } 1969 1970 typedef struct BdrvVmstateCo { 1971 BlockDriverState *bs; 1972 QEMUIOVector *qiov; 1973 int64_t pos; 1974 bool is_read; 1975 int ret; 1976 } BdrvVmstateCo; 1977 1978 static int coroutine_fn 1979 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 1980 bool is_read) 1981 { 1982 BlockDriver *drv = bs->drv; 1983 1984 if (!drv) { 1985 return -ENOMEDIUM; 1986 } else if (drv->bdrv_load_vmstate) { 1987 return is_read ? drv->bdrv_load_vmstate(bs, qiov, pos) 1988 : drv->bdrv_save_vmstate(bs, qiov, pos); 1989 } else if (bs->file) { 1990 return bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 1991 } 1992 1993 return -ENOTSUP; 1994 } 1995 1996 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 1997 { 1998 BdrvVmstateCo *co = opaque; 1999 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2000 } 2001 2002 static inline int 2003 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2004 bool is_read) 2005 { 2006 if (qemu_in_coroutine()) { 2007 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2008 } else { 2009 BdrvVmstateCo data = { 2010 .bs = bs, 2011 .qiov = qiov, 2012 .pos = pos, 2013 .is_read = is_read, 2014 .ret = -EINPROGRESS, 2015 }; 2016 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2017 2018 bdrv_coroutine_enter(bs, co); 2019 while (data.ret == -EINPROGRESS) { 2020 aio_poll(bdrv_get_aio_context(bs), true); 2021 } 2022 return data.ret; 2023 } 2024 } 2025 2026 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2027 int64_t pos, int size) 2028 { 2029 QEMUIOVector qiov; 2030 struct iovec iov = { 2031 .iov_base = (void *) buf, 2032 .iov_len = size, 2033 }; 2034 int ret; 2035 2036 qemu_iovec_init_external(&qiov, &iov, 1); 2037 2038 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2039 if (ret < 0) { 2040 return ret; 2041 } 2042 2043 return size; 2044 } 2045 2046 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2047 { 2048 return bdrv_rw_vmstate(bs, qiov, pos, false); 2049 } 2050 2051 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2052 int64_t pos, int size) 2053 { 2054 QEMUIOVector qiov; 2055 struct iovec iov = { 2056 .iov_base = buf, 2057 .iov_len = size, 2058 }; 2059 int ret; 2060 2061 qemu_iovec_init_external(&qiov, &iov, 1); 2062 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2063 if (ret < 0) { 2064 return ret; 2065 } 2066 2067 return size; 2068 } 2069 2070 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2071 { 2072 return bdrv_rw_vmstate(bs, qiov, pos, true); 2073 } 2074 2075 /**************************************************************/ 2076 /* async I/Os */ 2077 2078 BlockAIOCB *bdrv_aio_readv(BdrvChild *child, int64_t sector_num, 2079 QEMUIOVector *qiov, int nb_sectors, 2080 BlockCompletionFunc *cb, void *opaque) 2081 { 2082 trace_bdrv_aio_readv(child->bs, sector_num, nb_sectors, opaque); 2083 2084 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size); 2085 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov, 2086 0, cb, opaque, false); 2087 } 2088 2089 BlockAIOCB *bdrv_aio_writev(BdrvChild *child, int64_t sector_num, 2090 QEMUIOVector *qiov, int nb_sectors, 2091 BlockCompletionFunc *cb, void *opaque) 2092 { 2093 trace_bdrv_aio_writev(child->bs, sector_num, nb_sectors, opaque); 2094 2095 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size); 2096 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov, 2097 0, cb, opaque, true); 2098 } 2099 2100 void bdrv_aio_cancel(BlockAIOCB *acb) 2101 { 2102 qemu_aio_ref(acb); 2103 bdrv_aio_cancel_async(acb); 2104 while (acb->refcnt > 1) { 2105 if (acb->aiocb_info->get_aio_context) { 2106 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2107 } else if (acb->bs) { 2108 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2109 * assert that we're not using an I/O thread. Thread-safe 2110 * code should use bdrv_aio_cancel_async exclusively. 2111 */ 2112 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2113 aio_poll(bdrv_get_aio_context(acb->bs), true); 2114 } else { 2115 abort(); 2116 } 2117 } 2118 qemu_aio_unref(acb); 2119 } 2120 2121 /* Async version of aio cancel. The caller is not blocked if the acb implements 2122 * cancel_async, otherwise we do nothing and let the request normally complete. 2123 * In either case the completion callback must be called. */ 2124 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2125 { 2126 if (acb->aiocb_info->cancel_async) { 2127 acb->aiocb_info->cancel_async(acb); 2128 } 2129 } 2130 2131 /**************************************************************/ 2132 /* async block device emulation */ 2133 2134 typedef struct BlockRequest { 2135 union { 2136 /* Used during read, write, trim */ 2137 struct { 2138 int64_t offset; 2139 int bytes; 2140 int flags; 2141 QEMUIOVector *qiov; 2142 }; 2143 /* Used during ioctl */ 2144 struct { 2145 int req; 2146 void *buf; 2147 }; 2148 }; 2149 BlockCompletionFunc *cb; 2150 void *opaque; 2151 2152 int error; 2153 } BlockRequest; 2154 2155 typedef struct BlockAIOCBCoroutine { 2156 BlockAIOCB common; 2157 BdrvChild *child; 2158 BlockRequest req; 2159 bool is_write; 2160 bool need_bh; 2161 bool *done; 2162 } BlockAIOCBCoroutine; 2163 2164 static const AIOCBInfo bdrv_em_co_aiocb_info = { 2165 .aiocb_size = sizeof(BlockAIOCBCoroutine), 2166 }; 2167 2168 static void bdrv_co_complete(BlockAIOCBCoroutine *acb) 2169 { 2170 if (!acb->need_bh) { 2171 bdrv_dec_in_flight(acb->common.bs); 2172 acb->common.cb(acb->common.opaque, acb->req.error); 2173 qemu_aio_unref(acb); 2174 } 2175 } 2176 2177 static void bdrv_co_em_bh(void *opaque) 2178 { 2179 BlockAIOCBCoroutine *acb = opaque; 2180 2181 assert(!acb->need_bh); 2182 bdrv_co_complete(acb); 2183 } 2184 2185 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb) 2186 { 2187 acb->need_bh = false; 2188 if (acb->req.error != -EINPROGRESS) { 2189 BlockDriverState *bs = acb->common.bs; 2190 2191 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb); 2192 } 2193 } 2194 2195 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 2196 static void coroutine_fn bdrv_co_do_rw(void *opaque) 2197 { 2198 BlockAIOCBCoroutine *acb = opaque; 2199 2200 if (!acb->is_write) { 2201 acb->req.error = bdrv_co_preadv(acb->child, acb->req.offset, 2202 acb->req.qiov->size, acb->req.qiov, acb->req.flags); 2203 } else { 2204 acb->req.error = bdrv_co_pwritev(acb->child, acb->req.offset, 2205 acb->req.qiov->size, acb->req.qiov, acb->req.flags); 2206 } 2207 2208 bdrv_co_complete(acb); 2209 } 2210 2211 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child, 2212 int64_t offset, 2213 QEMUIOVector *qiov, 2214 BdrvRequestFlags flags, 2215 BlockCompletionFunc *cb, 2216 void *opaque, 2217 bool is_write) 2218 { 2219 Coroutine *co; 2220 BlockAIOCBCoroutine *acb; 2221 2222 /* Matched by bdrv_co_complete's bdrv_dec_in_flight. */ 2223 bdrv_inc_in_flight(child->bs); 2224 2225 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, child->bs, cb, opaque); 2226 acb->child = child; 2227 acb->need_bh = true; 2228 acb->req.error = -EINPROGRESS; 2229 acb->req.offset = offset; 2230 acb->req.qiov = qiov; 2231 acb->req.flags = flags; 2232 acb->is_write = is_write; 2233 2234 co = qemu_coroutine_create(bdrv_co_do_rw, acb); 2235 bdrv_coroutine_enter(child->bs, co); 2236 2237 bdrv_co_maybe_schedule_bh(acb); 2238 return &acb->common; 2239 } 2240 2241 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 2242 { 2243 BlockAIOCBCoroutine *acb = opaque; 2244 BlockDriverState *bs = acb->common.bs; 2245 2246 acb->req.error = bdrv_co_flush(bs); 2247 bdrv_co_complete(acb); 2248 } 2249 2250 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs, 2251 BlockCompletionFunc *cb, void *opaque) 2252 { 2253 trace_bdrv_aio_flush(bs, opaque); 2254 2255 Coroutine *co; 2256 BlockAIOCBCoroutine *acb; 2257 2258 /* Matched by bdrv_co_complete's bdrv_dec_in_flight. */ 2259 bdrv_inc_in_flight(bs); 2260 2261 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2262 acb->need_bh = true; 2263 acb->req.error = -EINPROGRESS; 2264 2265 co = qemu_coroutine_create(bdrv_aio_flush_co_entry, acb); 2266 bdrv_coroutine_enter(bs, co); 2267 2268 bdrv_co_maybe_schedule_bh(acb); 2269 return &acb->common; 2270 } 2271 2272 /**************************************************************/ 2273 /* Coroutine block device emulation */ 2274 2275 typedef struct FlushCo { 2276 BlockDriverState *bs; 2277 int ret; 2278 } FlushCo; 2279 2280 2281 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2282 { 2283 FlushCo *rwco = opaque; 2284 2285 rwco->ret = bdrv_co_flush(rwco->bs); 2286 } 2287 2288 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2289 { 2290 int current_gen; 2291 int ret = 0; 2292 2293 bdrv_inc_in_flight(bs); 2294 2295 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2296 bdrv_is_sg(bs)) { 2297 goto early_exit; 2298 } 2299 2300 qemu_co_mutex_lock(&bs->reqs_lock); 2301 current_gen = atomic_read(&bs->write_gen); 2302 2303 /* Wait until any previous flushes are completed */ 2304 while (bs->active_flush_req) { 2305 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2306 } 2307 2308 /* Flushes reach this point in nondecreasing current_gen order. */ 2309 bs->active_flush_req = true; 2310 qemu_co_mutex_unlock(&bs->reqs_lock); 2311 2312 /* Write back all layers by calling one driver function */ 2313 if (bs->drv->bdrv_co_flush) { 2314 ret = bs->drv->bdrv_co_flush(bs); 2315 goto out; 2316 } 2317 2318 /* Write back cached data to the OS even with cache=unsafe */ 2319 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2320 if (bs->drv->bdrv_co_flush_to_os) { 2321 ret = bs->drv->bdrv_co_flush_to_os(bs); 2322 if (ret < 0) { 2323 goto out; 2324 } 2325 } 2326 2327 /* But don't actually force it to the disk with cache=unsafe */ 2328 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2329 goto flush_parent; 2330 } 2331 2332 /* Check if we really need to flush anything */ 2333 if (bs->flushed_gen == current_gen) { 2334 goto flush_parent; 2335 } 2336 2337 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2338 if (bs->drv->bdrv_co_flush_to_disk) { 2339 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2340 } else if (bs->drv->bdrv_aio_flush) { 2341 BlockAIOCB *acb; 2342 CoroutineIOCompletion co = { 2343 .coroutine = qemu_coroutine_self(), 2344 }; 2345 2346 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2347 if (acb == NULL) { 2348 ret = -EIO; 2349 } else { 2350 qemu_coroutine_yield(); 2351 ret = co.ret; 2352 } 2353 } else { 2354 /* 2355 * Some block drivers always operate in either writethrough or unsafe 2356 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2357 * know how the server works (because the behaviour is hardcoded or 2358 * depends on server-side configuration), so we can't ensure that 2359 * everything is safe on disk. Returning an error doesn't work because 2360 * that would break guests even if the server operates in writethrough 2361 * mode. 2362 * 2363 * Let's hope the user knows what he's doing. 2364 */ 2365 ret = 0; 2366 } 2367 2368 if (ret < 0) { 2369 goto out; 2370 } 2371 2372 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2373 * in the case of cache=unsafe, so there are no useless flushes. 2374 */ 2375 flush_parent: 2376 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2377 out: 2378 /* Notify any pending flushes that we have completed */ 2379 if (ret == 0) { 2380 bs->flushed_gen = current_gen; 2381 } 2382 2383 qemu_co_mutex_lock(&bs->reqs_lock); 2384 bs->active_flush_req = false; 2385 /* Return value is ignored - it's ok if wait queue is empty */ 2386 qemu_co_queue_next(&bs->flush_queue); 2387 qemu_co_mutex_unlock(&bs->reqs_lock); 2388 2389 early_exit: 2390 bdrv_dec_in_flight(bs); 2391 return ret; 2392 } 2393 2394 int bdrv_flush(BlockDriverState *bs) 2395 { 2396 Coroutine *co; 2397 FlushCo flush_co = { 2398 .bs = bs, 2399 .ret = NOT_DONE, 2400 }; 2401 2402 if (qemu_in_coroutine()) { 2403 /* Fast-path if already in coroutine context */ 2404 bdrv_flush_co_entry(&flush_co); 2405 } else { 2406 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2407 bdrv_coroutine_enter(bs, co); 2408 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2409 } 2410 2411 return flush_co.ret; 2412 } 2413 2414 typedef struct DiscardCo { 2415 BlockDriverState *bs; 2416 int64_t offset; 2417 int count; 2418 int ret; 2419 } DiscardCo; 2420 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2421 { 2422 DiscardCo *rwco = opaque; 2423 2424 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->count); 2425 } 2426 2427 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset, 2428 int count) 2429 { 2430 BdrvTrackedRequest req; 2431 int max_pdiscard, ret; 2432 int head, tail, align; 2433 2434 if (!bs->drv) { 2435 return -ENOMEDIUM; 2436 } 2437 2438 ret = bdrv_check_byte_request(bs, offset, count); 2439 if (ret < 0) { 2440 return ret; 2441 } else if (bs->read_only) { 2442 return -EPERM; 2443 } 2444 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2445 2446 /* Do nothing if disabled. */ 2447 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2448 return 0; 2449 } 2450 2451 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2452 return 0; 2453 } 2454 2455 /* Discard is advisory, but some devices track and coalesce 2456 * unaligned requests, so we must pass everything down rather than 2457 * round here. Still, most devices will just silently ignore 2458 * unaligned requests (by returning -ENOTSUP), so we must fragment 2459 * the request accordingly. */ 2460 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2461 assert(align % bs->bl.request_alignment == 0); 2462 head = offset % align; 2463 tail = (offset + count) % align; 2464 2465 bdrv_inc_in_flight(bs); 2466 tracked_request_begin(&req, bs, offset, count, BDRV_TRACKED_DISCARD); 2467 2468 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req); 2469 if (ret < 0) { 2470 goto out; 2471 } 2472 2473 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2474 align); 2475 assert(max_pdiscard >= bs->bl.request_alignment); 2476 2477 while (count > 0) { 2478 int ret; 2479 int num = count; 2480 2481 if (head) { 2482 /* Make small requests to get to alignment boundaries. */ 2483 num = MIN(count, align - head); 2484 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2485 num %= bs->bl.request_alignment; 2486 } 2487 head = (head + num) % align; 2488 assert(num < max_pdiscard); 2489 } else if (tail) { 2490 if (num > align) { 2491 /* Shorten the request to the last aligned cluster. */ 2492 num -= tail; 2493 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2494 tail > bs->bl.request_alignment) { 2495 tail %= bs->bl.request_alignment; 2496 num -= tail; 2497 } 2498 } 2499 /* limit request size */ 2500 if (num > max_pdiscard) { 2501 num = max_pdiscard; 2502 } 2503 2504 if (bs->drv->bdrv_co_pdiscard) { 2505 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2506 } else { 2507 BlockAIOCB *acb; 2508 CoroutineIOCompletion co = { 2509 .coroutine = qemu_coroutine_self(), 2510 }; 2511 2512 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2513 bdrv_co_io_em_complete, &co); 2514 if (acb == NULL) { 2515 ret = -EIO; 2516 goto out; 2517 } else { 2518 qemu_coroutine_yield(); 2519 ret = co.ret; 2520 } 2521 } 2522 if (ret && ret != -ENOTSUP) { 2523 goto out; 2524 } 2525 2526 offset += num; 2527 count -= num; 2528 } 2529 ret = 0; 2530 out: 2531 atomic_inc(&bs->write_gen); 2532 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS, 2533 req.bytes >> BDRV_SECTOR_BITS); 2534 tracked_request_end(&req); 2535 bdrv_dec_in_flight(bs); 2536 return ret; 2537 } 2538 2539 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int count) 2540 { 2541 Coroutine *co; 2542 DiscardCo rwco = { 2543 .bs = bs, 2544 .offset = offset, 2545 .count = count, 2546 .ret = NOT_DONE, 2547 }; 2548 2549 if (qemu_in_coroutine()) { 2550 /* Fast-path if already in coroutine context */ 2551 bdrv_pdiscard_co_entry(&rwco); 2552 } else { 2553 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2554 bdrv_coroutine_enter(bs, co); 2555 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE); 2556 } 2557 2558 return rwco.ret; 2559 } 2560 2561 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2562 { 2563 BlockDriver *drv = bs->drv; 2564 CoroutineIOCompletion co = { 2565 .coroutine = qemu_coroutine_self(), 2566 }; 2567 BlockAIOCB *acb; 2568 2569 bdrv_inc_in_flight(bs); 2570 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2571 co.ret = -ENOTSUP; 2572 goto out; 2573 } 2574 2575 if (drv->bdrv_co_ioctl) { 2576 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2577 } else { 2578 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2579 if (!acb) { 2580 co.ret = -ENOTSUP; 2581 goto out; 2582 } 2583 qemu_coroutine_yield(); 2584 } 2585 out: 2586 bdrv_dec_in_flight(bs); 2587 return co.ret; 2588 } 2589 2590 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2591 { 2592 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2593 } 2594 2595 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2596 { 2597 return memset(qemu_blockalign(bs, size), 0, size); 2598 } 2599 2600 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2601 { 2602 size_t align = bdrv_opt_mem_align(bs); 2603 2604 /* Ensure that NULL is never returned on success */ 2605 assert(align > 0); 2606 if (size == 0) { 2607 size = align; 2608 } 2609 2610 return qemu_try_memalign(align, size); 2611 } 2612 2613 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2614 { 2615 void *mem = qemu_try_blockalign(bs, size); 2616 2617 if (mem) { 2618 memset(mem, 0, size); 2619 } 2620 2621 return mem; 2622 } 2623 2624 /* 2625 * Check if all memory in this vector is sector aligned. 2626 */ 2627 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2628 { 2629 int i; 2630 size_t alignment = bdrv_min_mem_align(bs); 2631 2632 for (i = 0; i < qiov->niov; i++) { 2633 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2634 return false; 2635 } 2636 if (qiov->iov[i].iov_len % alignment) { 2637 return false; 2638 } 2639 } 2640 2641 return true; 2642 } 2643 2644 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2645 NotifierWithReturn *notifier) 2646 { 2647 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2648 } 2649 2650 void bdrv_io_plug(BlockDriverState *bs) 2651 { 2652 BdrvChild *child; 2653 2654 QLIST_FOREACH(child, &bs->children, next) { 2655 bdrv_io_plug(child->bs); 2656 } 2657 2658 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 2659 BlockDriver *drv = bs->drv; 2660 if (drv && drv->bdrv_io_plug) { 2661 drv->bdrv_io_plug(bs); 2662 } 2663 } 2664 } 2665 2666 void bdrv_io_unplug(BlockDriverState *bs) 2667 { 2668 BdrvChild *child; 2669 2670 assert(bs->io_plugged); 2671 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 2672 BlockDriver *drv = bs->drv; 2673 if (drv && drv->bdrv_io_unplug) { 2674 drv->bdrv_io_unplug(bs); 2675 } 2676 } 2677 2678 QLIST_FOREACH(child, &bs->children, next) { 2679 bdrv_io_unplug(child->bs); 2680 } 2681 } 2682