1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "qemu/cutils.h" 33 #include "qapi/error.h" 34 #include "qemu/error-report.h" 35 36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 37 38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 40 41 static void bdrv_parent_cb_resize(BlockDriverState *bs); 42 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 43 int64_t offset, int bytes, BdrvRequestFlags flags); 44 45 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 46 bool ignore_bds_parents) 47 { 48 BdrvChild *c, *next; 49 50 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 51 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 52 continue; 53 } 54 bdrv_parent_drained_begin_single(c, false); 55 } 56 } 57 58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 59 bool ignore_bds_parents) 60 { 61 BdrvChild *c, *next; 62 63 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 64 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 65 continue; 66 } 67 if (c->role->drained_end) { 68 c->role->drained_end(c); 69 } 70 } 71 } 72 73 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 74 { 75 if (c->role->drained_poll) { 76 return c->role->drained_poll(c); 77 } 78 return false; 79 } 80 81 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 82 bool ignore_bds_parents) 83 { 84 BdrvChild *c, *next; 85 bool busy = false; 86 87 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 88 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 89 continue; 90 } 91 busy |= bdrv_parent_drained_poll_single(c); 92 } 93 94 return busy; 95 } 96 97 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 98 { 99 if (c->role->drained_begin) { 100 c->role->drained_begin(c); 101 } 102 if (poll) { 103 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 104 } 105 } 106 107 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 108 { 109 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 110 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 111 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 112 src->opt_mem_alignment); 113 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 114 src->min_mem_alignment); 115 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 116 } 117 118 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 119 { 120 BlockDriver *drv = bs->drv; 121 Error *local_err = NULL; 122 123 memset(&bs->bl, 0, sizeof(bs->bl)); 124 125 if (!drv) { 126 return; 127 } 128 129 /* Default alignment based on whether driver has byte interface */ 130 bs->bl.request_alignment = (drv->bdrv_co_preadv || 131 drv->bdrv_aio_preadv) ? 1 : 512; 132 133 /* Take some limits from the children as a default */ 134 if (bs->file) { 135 bdrv_refresh_limits(bs->file->bs, &local_err); 136 if (local_err) { 137 error_propagate(errp, local_err); 138 return; 139 } 140 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 141 } else { 142 bs->bl.min_mem_alignment = 512; 143 bs->bl.opt_mem_alignment = getpagesize(); 144 145 /* Safe default since most protocols use readv()/writev()/etc */ 146 bs->bl.max_iov = IOV_MAX; 147 } 148 149 if (bs->backing) { 150 bdrv_refresh_limits(bs->backing->bs, &local_err); 151 if (local_err) { 152 error_propagate(errp, local_err); 153 return; 154 } 155 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 156 } 157 158 /* Then let the driver override it */ 159 if (drv->bdrv_refresh_limits) { 160 drv->bdrv_refresh_limits(bs, errp); 161 } 162 } 163 164 /** 165 * The copy-on-read flag is actually a reference count so multiple users may 166 * use the feature without worrying about clobbering its previous state. 167 * Copy-on-read stays enabled until all users have called to disable it. 168 */ 169 void bdrv_enable_copy_on_read(BlockDriverState *bs) 170 { 171 atomic_inc(&bs->copy_on_read); 172 } 173 174 void bdrv_disable_copy_on_read(BlockDriverState *bs) 175 { 176 int old = atomic_fetch_dec(&bs->copy_on_read); 177 assert(old >= 1); 178 } 179 180 typedef struct { 181 Coroutine *co; 182 BlockDriverState *bs; 183 bool done; 184 bool begin; 185 bool recursive; 186 bool poll; 187 BdrvChild *parent; 188 bool ignore_bds_parents; 189 } BdrvCoDrainData; 190 191 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 192 { 193 BdrvCoDrainData *data = opaque; 194 BlockDriverState *bs = data->bs; 195 196 if (data->begin) { 197 bs->drv->bdrv_co_drain_begin(bs); 198 } else { 199 bs->drv->bdrv_co_drain_end(bs); 200 } 201 202 /* Set data->done before reading bs->wakeup. */ 203 atomic_mb_set(&data->done, true); 204 bdrv_dec_in_flight(bs); 205 206 if (data->begin) { 207 g_free(data); 208 } 209 } 210 211 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 212 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin) 213 { 214 BdrvCoDrainData *data; 215 216 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 217 (!begin && !bs->drv->bdrv_co_drain_end)) { 218 return; 219 } 220 221 data = g_new(BdrvCoDrainData, 1); 222 *data = (BdrvCoDrainData) { 223 .bs = bs, 224 .done = false, 225 .begin = begin 226 }; 227 228 /* Make sure the driver callback completes during the polling phase for 229 * drain_begin. */ 230 bdrv_inc_in_flight(bs); 231 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 232 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 233 234 if (!begin) { 235 BDRV_POLL_WHILE(bs, !data->done); 236 g_free(data); 237 } 238 } 239 240 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 241 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 242 BdrvChild *ignore_parent, bool ignore_bds_parents) 243 { 244 BdrvChild *child, *next; 245 246 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 247 return true; 248 } 249 250 if (atomic_read(&bs->in_flight)) { 251 return true; 252 } 253 254 if (recursive) { 255 assert(!ignore_bds_parents); 256 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 257 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 258 return true; 259 } 260 } 261 } 262 263 return false; 264 } 265 266 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 267 BdrvChild *ignore_parent) 268 { 269 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 270 } 271 272 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 273 BdrvChild *parent, bool ignore_bds_parents, 274 bool poll); 275 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 276 BdrvChild *parent, bool ignore_bds_parents); 277 278 static void bdrv_co_drain_bh_cb(void *opaque) 279 { 280 BdrvCoDrainData *data = opaque; 281 Coroutine *co = data->co; 282 BlockDriverState *bs = data->bs; 283 284 if (bs) { 285 AioContext *ctx = bdrv_get_aio_context(bs); 286 AioContext *co_ctx = qemu_coroutine_get_aio_context(co); 287 288 /* 289 * When the coroutine yielded, the lock for its home context was 290 * released, so we need to re-acquire it here. If it explicitly 291 * acquired a different context, the lock is still held and we don't 292 * want to lock it a second time (or AIO_WAIT_WHILE() would hang). 293 */ 294 if (ctx == co_ctx) { 295 aio_context_acquire(ctx); 296 } 297 bdrv_dec_in_flight(bs); 298 if (data->begin) { 299 bdrv_do_drained_begin(bs, data->recursive, data->parent, 300 data->ignore_bds_parents, data->poll); 301 } else { 302 bdrv_do_drained_end(bs, data->recursive, data->parent, 303 data->ignore_bds_parents); 304 } 305 if (ctx == co_ctx) { 306 aio_context_release(ctx); 307 } 308 } else { 309 assert(data->begin); 310 bdrv_drain_all_begin(); 311 } 312 313 data->done = true; 314 aio_co_wake(co); 315 } 316 317 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 318 bool begin, bool recursive, 319 BdrvChild *parent, 320 bool ignore_bds_parents, 321 bool poll) 322 { 323 BdrvCoDrainData data; 324 325 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 326 * other coroutines run if they were queued by aio_co_enter(). */ 327 328 assert(qemu_in_coroutine()); 329 data = (BdrvCoDrainData) { 330 .co = qemu_coroutine_self(), 331 .bs = bs, 332 .done = false, 333 .begin = begin, 334 .recursive = recursive, 335 .parent = parent, 336 .ignore_bds_parents = ignore_bds_parents, 337 .poll = poll, 338 }; 339 if (bs) { 340 bdrv_inc_in_flight(bs); 341 } 342 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 343 bdrv_co_drain_bh_cb, &data); 344 345 qemu_coroutine_yield(); 346 /* If we are resumed from some other event (such as an aio completion or a 347 * timer callback), it is a bug in the caller that should be fixed. */ 348 assert(data.done); 349 } 350 351 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 352 BdrvChild *parent, bool ignore_bds_parents) 353 { 354 assert(!qemu_in_coroutine()); 355 356 /* Stop things in parent-to-child order */ 357 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 358 aio_disable_external(bdrv_get_aio_context(bs)); 359 } 360 361 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 362 bdrv_drain_invoke(bs, true); 363 } 364 365 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 366 BdrvChild *parent, bool ignore_bds_parents, 367 bool poll) 368 { 369 BdrvChild *child, *next; 370 371 if (qemu_in_coroutine()) { 372 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 373 poll); 374 return; 375 } 376 377 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 378 379 if (recursive) { 380 assert(!ignore_bds_parents); 381 bs->recursive_quiesce_counter++; 382 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 383 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 384 false); 385 } 386 } 387 388 /* 389 * Wait for drained requests to finish. 390 * 391 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 392 * call is needed so things in this AioContext can make progress even 393 * though we don't return to the main AioContext loop - this automatically 394 * includes other nodes in the same AioContext and therefore all child 395 * nodes. 396 */ 397 if (poll) { 398 assert(!ignore_bds_parents); 399 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 400 } 401 } 402 403 void bdrv_drained_begin(BlockDriverState *bs) 404 { 405 bdrv_do_drained_begin(bs, false, NULL, false, true); 406 } 407 408 void bdrv_subtree_drained_begin(BlockDriverState *bs) 409 { 410 bdrv_do_drained_begin(bs, true, NULL, false, true); 411 } 412 413 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 414 BdrvChild *parent, bool ignore_bds_parents) 415 { 416 BdrvChild *child, *next; 417 int old_quiesce_counter; 418 419 if (qemu_in_coroutine()) { 420 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 421 false); 422 return; 423 } 424 assert(bs->quiesce_counter > 0); 425 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter); 426 427 /* Re-enable things in child-to-parent order */ 428 bdrv_drain_invoke(bs, false); 429 bdrv_parent_drained_end(bs, parent, ignore_bds_parents); 430 if (old_quiesce_counter == 1) { 431 aio_enable_external(bdrv_get_aio_context(bs)); 432 } 433 434 if (recursive) { 435 assert(!ignore_bds_parents); 436 bs->recursive_quiesce_counter--; 437 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 438 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents); 439 } 440 } 441 } 442 443 void bdrv_drained_end(BlockDriverState *bs) 444 { 445 bdrv_do_drained_end(bs, false, NULL, false); 446 } 447 448 void bdrv_subtree_drained_end(BlockDriverState *bs) 449 { 450 bdrv_do_drained_end(bs, true, NULL, false); 451 } 452 453 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 454 { 455 int i; 456 457 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 458 bdrv_do_drained_begin(child->bs, true, child, false, true); 459 } 460 } 461 462 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 463 { 464 int i; 465 466 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 467 bdrv_do_drained_end(child->bs, true, child, false); 468 } 469 } 470 471 /* 472 * Wait for pending requests to complete on a single BlockDriverState subtree, 473 * and suspend block driver's internal I/O until next request arrives. 474 * 475 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 476 * AioContext. 477 */ 478 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 479 { 480 assert(qemu_in_coroutine()); 481 bdrv_drained_begin(bs); 482 bdrv_drained_end(bs); 483 } 484 485 void bdrv_drain(BlockDriverState *bs) 486 { 487 bdrv_drained_begin(bs); 488 bdrv_drained_end(bs); 489 } 490 491 static void bdrv_drain_assert_idle(BlockDriverState *bs) 492 { 493 BdrvChild *child, *next; 494 495 assert(atomic_read(&bs->in_flight) == 0); 496 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 497 bdrv_drain_assert_idle(child->bs); 498 } 499 } 500 501 unsigned int bdrv_drain_all_count = 0; 502 503 static bool bdrv_drain_all_poll(void) 504 { 505 BlockDriverState *bs = NULL; 506 bool result = false; 507 508 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 509 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 510 while ((bs = bdrv_next_all_states(bs))) { 511 AioContext *aio_context = bdrv_get_aio_context(bs); 512 aio_context_acquire(aio_context); 513 result |= bdrv_drain_poll(bs, false, NULL, true); 514 aio_context_release(aio_context); 515 } 516 517 return result; 518 } 519 520 /* 521 * Wait for pending requests to complete across all BlockDriverStates 522 * 523 * This function does not flush data to disk, use bdrv_flush_all() for that 524 * after calling this function. 525 * 526 * This pauses all block jobs and disables external clients. It must 527 * be paired with bdrv_drain_all_end(). 528 * 529 * NOTE: no new block jobs or BlockDriverStates can be created between 530 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 531 */ 532 void bdrv_drain_all_begin(void) 533 { 534 BlockDriverState *bs = NULL; 535 536 if (qemu_in_coroutine()) { 537 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true); 538 return; 539 } 540 541 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 542 * loop AioContext, so make sure we're in the main context. */ 543 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 544 assert(bdrv_drain_all_count < INT_MAX); 545 bdrv_drain_all_count++; 546 547 /* Quiesce all nodes, without polling in-flight requests yet. The graph 548 * cannot change during this loop. */ 549 while ((bs = bdrv_next_all_states(bs))) { 550 AioContext *aio_context = bdrv_get_aio_context(bs); 551 552 aio_context_acquire(aio_context); 553 bdrv_do_drained_begin(bs, false, NULL, true, false); 554 aio_context_release(aio_context); 555 } 556 557 /* Now poll the in-flight requests */ 558 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 559 560 while ((bs = bdrv_next_all_states(bs))) { 561 bdrv_drain_assert_idle(bs); 562 } 563 } 564 565 void bdrv_drain_all_end(void) 566 { 567 BlockDriverState *bs = NULL; 568 569 while ((bs = bdrv_next_all_states(bs))) { 570 AioContext *aio_context = bdrv_get_aio_context(bs); 571 572 aio_context_acquire(aio_context); 573 bdrv_do_drained_end(bs, false, NULL, true); 574 aio_context_release(aio_context); 575 } 576 577 assert(bdrv_drain_all_count > 0); 578 bdrv_drain_all_count--; 579 } 580 581 void bdrv_drain_all(void) 582 { 583 bdrv_drain_all_begin(); 584 bdrv_drain_all_end(); 585 } 586 587 /** 588 * Remove an active request from the tracked requests list 589 * 590 * This function should be called when a tracked request is completing. 591 */ 592 static void tracked_request_end(BdrvTrackedRequest *req) 593 { 594 if (req->serialising) { 595 atomic_dec(&req->bs->serialising_in_flight); 596 } 597 598 qemu_co_mutex_lock(&req->bs->reqs_lock); 599 QLIST_REMOVE(req, list); 600 qemu_co_queue_restart_all(&req->wait_queue); 601 qemu_co_mutex_unlock(&req->bs->reqs_lock); 602 } 603 604 /** 605 * Add an active request to the tracked requests list 606 */ 607 static void tracked_request_begin(BdrvTrackedRequest *req, 608 BlockDriverState *bs, 609 int64_t offset, 610 uint64_t bytes, 611 enum BdrvTrackedRequestType type) 612 { 613 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes); 614 615 *req = (BdrvTrackedRequest){ 616 .bs = bs, 617 .offset = offset, 618 .bytes = bytes, 619 .type = type, 620 .co = qemu_coroutine_self(), 621 .serialising = false, 622 .overlap_offset = offset, 623 .overlap_bytes = bytes, 624 }; 625 626 qemu_co_queue_init(&req->wait_queue); 627 628 qemu_co_mutex_lock(&bs->reqs_lock); 629 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 630 qemu_co_mutex_unlock(&bs->reqs_lock); 631 } 632 633 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 634 { 635 int64_t overlap_offset = req->offset & ~(align - 1); 636 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 637 - overlap_offset; 638 639 if (!req->serialising) { 640 atomic_inc(&req->bs->serialising_in_flight); 641 req->serialising = true; 642 } 643 644 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 645 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 646 } 647 648 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req) 649 { 650 /* 651 * If the request is serialising, overlap_offset and overlap_bytes are set, 652 * so we can check if the request is aligned. Otherwise, don't care and 653 * return false. 654 */ 655 656 return req->serialising && (req->offset == req->overlap_offset) && 657 (req->bytes == req->overlap_bytes); 658 } 659 660 /** 661 * Round a region to cluster boundaries 662 */ 663 void bdrv_round_to_clusters(BlockDriverState *bs, 664 int64_t offset, int64_t bytes, 665 int64_t *cluster_offset, 666 int64_t *cluster_bytes) 667 { 668 BlockDriverInfo bdi; 669 670 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 671 *cluster_offset = offset; 672 *cluster_bytes = bytes; 673 } else { 674 int64_t c = bdi.cluster_size; 675 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 676 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 677 } 678 } 679 680 static int bdrv_get_cluster_size(BlockDriverState *bs) 681 { 682 BlockDriverInfo bdi; 683 int ret; 684 685 ret = bdrv_get_info(bs, &bdi); 686 if (ret < 0 || bdi.cluster_size == 0) { 687 return bs->bl.request_alignment; 688 } else { 689 return bdi.cluster_size; 690 } 691 } 692 693 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 694 int64_t offset, uint64_t bytes) 695 { 696 /* aaaa bbbb */ 697 if (offset >= req->overlap_offset + req->overlap_bytes) { 698 return false; 699 } 700 /* bbbb aaaa */ 701 if (req->overlap_offset >= offset + bytes) { 702 return false; 703 } 704 return true; 705 } 706 707 void bdrv_inc_in_flight(BlockDriverState *bs) 708 { 709 atomic_inc(&bs->in_flight); 710 } 711 712 void bdrv_wakeup(BlockDriverState *bs) 713 { 714 aio_wait_kick(); 715 } 716 717 void bdrv_dec_in_flight(BlockDriverState *bs) 718 { 719 atomic_dec(&bs->in_flight); 720 bdrv_wakeup(bs); 721 } 722 723 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 724 { 725 BlockDriverState *bs = self->bs; 726 BdrvTrackedRequest *req; 727 bool retry; 728 bool waited = false; 729 730 if (!atomic_read(&bs->serialising_in_flight)) { 731 return false; 732 } 733 734 do { 735 retry = false; 736 qemu_co_mutex_lock(&bs->reqs_lock); 737 QLIST_FOREACH(req, &bs->tracked_requests, list) { 738 if (req == self || (!req->serialising && !self->serialising)) { 739 continue; 740 } 741 if (tracked_request_overlaps(req, self->overlap_offset, 742 self->overlap_bytes)) 743 { 744 /* Hitting this means there was a reentrant request, for 745 * example, a block driver issuing nested requests. This must 746 * never happen since it means deadlock. 747 */ 748 assert(qemu_coroutine_self() != req->co); 749 750 /* If the request is already (indirectly) waiting for us, or 751 * will wait for us as soon as it wakes up, then just go on 752 * (instead of producing a deadlock in the former case). */ 753 if (!req->waiting_for) { 754 self->waiting_for = req; 755 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 756 self->waiting_for = NULL; 757 retry = true; 758 waited = true; 759 break; 760 } 761 } 762 } 763 qemu_co_mutex_unlock(&bs->reqs_lock); 764 } while (retry); 765 766 return waited; 767 } 768 769 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 770 size_t size) 771 { 772 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 773 return -EIO; 774 } 775 776 if (!bdrv_is_inserted(bs)) { 777 return -ENOMEDIUM; 778 } 779 780 if (offset < 0) { 781 return -EIO; 782 } 783 784 return 0; 785 } 786 787 typedef struct RwCo { 788 BdrvChild *child; 789 int64_t offset; 790 QEMUIOVector *qiov; 791 bool is_write; 792 int ret; 793 BdrvRequestFlags flags; 794 } RwCo; 795 796 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 797 { 798 RwCo *rwco = opaque; 799 800 if (!rwco->is_write) { 801 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 802 rwco->qiov->size, rwco->qiov, 803 rwco->flags); 804 } else { 805 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 806 rwco->qiov->size, rwco->qiov, 807 rwco->flags); 808 } 809 aio_wait_kick(); 810 } 811 812 /* 813 * Process a vectored synchronous request using coroutines 814 */ 815 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 816 QEMUIOVector *qiov, bool is_write, 817 BdrvRequestFlags flags) 818 { 819 Coroutine *co; 820 RwCo rwco = { 821 .child = child, 822 .offset = offset, 823 .qiov = qiov, 824 .is_write = is_write, 825 .ret = NOT_DONE, 826 .flags = flags, 827 }; 828 829 if (qemu_in_coroutine()) { 830 /* Fast-path if already in coroutine context */ 831 bdrv_rw_co_entry(&rwco); 832 } else { 833 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 834 bdrv_coroutine_enter(child->bs, co); 835 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 836 } 837 return rwco.ret; 838 } 839 840 /* 841 * Process a synchronous request using coroutines 842 */ 843 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, 844 int nb_sectors, bool is_write, BdrvRequestFlags flags) 845 { 846 QEMUIOVector qiov; 847 struct iovec iov = { 848 .iov_base = (void *)buf, 849 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 850 }; 851 852 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 853 return -EINVAL; 854 } 855 856 qemu_iovec_init_external(&qiov, &iov, 1); 857 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, 858 &qiov, is_write, flags); 859 } 860 861 /* return < 0 if error. See bdrv_write() for the return codes */ 862 int bdrv_read(BdrvChild *child, int64_t sector_num, 863 uint8_t *buf, int nb_sectors) 864 { 865 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); 866 } 867 868 /* Return < 0 if error. Important errors are: 869 -EIO generic I/O error (may happen for all errors) 870 -ENOMEDIUM No media inserted. 871 -EINVAL Invalid sector number or nb_sectors 872 -EACCES Trying to write a read-only device 873 */ 874 int bdrv_write(BdrvChild *child, int64_t sector_num, 875 const uint8_t *buf, int nb_sectors) 876 { 877 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 878 } 879 880 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 881 int bytes, BdrvRequestFlags flags) 882 { 883 QEMUIOVector qiov; 884 struct iovec iov = { 885 .iov_base = NULL, 886 .iov_len = bytes, 887 }; 888 889 qemu_iovec_init_external(&qiov, &iov, 1); 890 return bdrv_prwv_co(child, offset, &qiov, true, 891 BDRV_REQ_ZERO_WRITE | flags); 892 } 893 894 /* 895 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 896 * The operation is sped up by checking the block status and only writing 897 * zeroes to the device if they currently do not return zeroes. Optional 898 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 899 * BDRV_REQ_FUA). 900 * 901 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 902 */ 903 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 904 { 905 int ret; 906 int64_t target_size, bytes, offset = 0; 907 BlockDriverState *bs = child->bs; 908 909 target_size = bdrv_getlength(bs); 910 if (target_size < 0) { 911 return target_size; 912 } 913 914 for (;;) { 915 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 916 if (bytes <= 0) { 917 return 0; 918 } 919 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 920 if (ret < 0) { 921 error_report("error getting block status at offset %" PRId64 ": %s", 922 offset, strerror(-ret)); 923 return ret; 924 } 925 if (ret & BDRV_BLOCK_ZERO) { 926 offset += bytes; 927 continue; 928 } 929 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 930 if (ret < 0) { 931 error_report("error writing zeroes at offset %" PRId64 ": %s", 932 offset, strerror(-ret)); 933 return ret; 934 } 935 offset += bytes; 936 } 937 } 938 939 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 940 { 941 int ret; 942 943 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 944 if (ret < 0) { 945 return ret; 946 } 947 948 return qiov->size; 949 } 950 951 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 952 { 953 QEMUIOVector qiov; 954 struct iovec iov = { 955 .iov_base = (void *)buf, 956 .iov_len = bytes, 957 }; 958 959 if (bytes < 0) { 960 return -EINVAL; 961 } 962 963 qemu_iovec_init_external(&qiov, &iov, 1); 964 return bdrv_preadv(child, offset, &qiov); 965 } 966 967 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 968 { 969 int ret; 970 971 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 972 if (ret < 0) { 973 return ret; 974 } 975 976 return qiov->size; 977 } 978 979 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 980 { 981 QEMUIOVector qiov; 982 struct iovec iov = { 983 .iov_base = (void *) buf, 984 .iov_len = bytes, 985 }; 986 987 if (bytes < 0) { 988 return -EINVAL; 989 } 990 991 qemu_iovec_init_external(&qiov, &iov, 1); 992 return bdrv_pwritev(child, offset, &qiov); 993 } 994 995 /* 996 * Writes to the file and ensures that no writes are reordered across this 997 * request (acts as a barrier) 998 * 999 * Returns 0 on success, -errno in error cases. 1000 */ 1001 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1002 const void *buf, int count) 1003 { 1004 int ret; 1005 1006 ret = bdrv_pwrite(child, offset, buf, count); 1007 if (ret < 0) { 1008 return ret; 1009 } 1010 1011 ret = bdrv_flush(child->bs); 1012 if (ret < 0) { 1013 return ret; 1014 } 1015 1016 return 0; 1017 } 1018 1019 typedef struct CoroutineIOCompletion { 1020 Coroutine *coroutine; 1021 int ret; 1022 } CoroutineIOCompletion; 1023 1024 static void bdrv_co_io_em_complete(void *opaque, int ret) 1025 { 1026 CoroutineIOCompletion *co = opaque; 1027 1028 co->ret = ret; 1029 aio_co_wake(co->coroutine); 1030 } 1031 1032 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1033 uint64_t offset, uint64_t bytes, 1034 QEMUIOVector *qiov, int flags) 1035 { 1036 BlockDriver *drv = bs->drv; 1037 int64_t sector_num; 1038 unsigned int nb_sectors; 1039 1040 assert(!(flags & ~BDRV_REQ_MASK)); 1041 1042 if (!drv) { 1043 return -ENOMEDIUM; 1044 } 1045 1046 if (drv->bdrv_co_preadv) { 1047 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1048 } 1049 1050 if (drv->bdrv_aio_preadv) { 1051 BlockAIOCB *acb; 1052 CoroutineIOCompletion co = { 1053 .coroutine = qemu_coroutine_self(), 1054 }; 1055 1056 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1057 bdrv_co_io_em_complete, &co); 1058 if (acb == NULL) { 1059 return -EIO; 1060 } else { 1061 qemu_coroutine_yield(); 1062 return co.ret; 1063 } 1064 } 1065 1066 sector_num = offset >> BDRV_SECTOR_BITS; 1067 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1068 1069 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1070 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1071 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 1072 assert(drv->bdrv_co_readv); 1073 1074 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1075 } 1076 1077 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1078 uint64_t offset, uint64_t bytes, 1079 QEMUIOVector *qiov, int flags) 1080 { 1081 BlockDriver *drv = bs->drv; 1082 int64_t sector_num; 1083 unsigned int nb_sectors; 1084 int ret; 1085 1086 assert(!(flags & ~BDRV_REQ_MASK)); 1087 1088 if (!drv) { 1089 return -ENOMEDIUM; 1090 } 1091 1092 if (drv->bdrv_co_pwritev) { 1093 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1094 flags & bs->supported_write_flags); 1095 flags &= ~bs->supported_write_flags; 1096 goto emulate_flags; 1097 } 1098 1099 if (drv->bdrv_aio_pwritev) { 1100 BlockAIOCB *acb; 1101 CoroutineIOCompletion co = { 1102 .coroutine = qemu_coroutine_self(), 1103 }; 1104 1105 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1106 flags & bs->supported_write_flags, 1107 bdrv_co_io_em_complete, &co); 1108 flags &= ~bs->supported_write_flags; 1109 if (acb == NULL) { 1110 ret = -EIO; 1111 } else { 1112 qemu_coroutine_yield(); 1113 ret = co.ret; 1114 } 1115 goto emulate_flags; 1116 } 1117 1118 sector_num = offset >> BDRV_SECTOR_BITS; 1119 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1120 1121 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1122 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1123 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 1124 1125 assert(drv->bdrv_co_writev); 1126 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1127 flags & bs->supported_write_flags); 1128 flags &= ~bs->supported_write_flags; 1129 1130 emulate_flags: 1131 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1132 ret = bdrv_co_flush(bs); 1133 } 1134 1135 return ret; 1136 } 1137 1138 static int coroutine_fn 1139 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 1140 uint64_t bytes, QEMUIOVector *qiov) 1141 { 1142 BlockDriver *drv = bs->drv; 1143 1144 if (!drv) { 1145 return -ENOMEDIUM; 1146 } 1147 1148 if (!drv->bdrv_co_pwritev_compressed) { 1149 return -ENOTSUP; 1150 } 1151 1152 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1153 } 1154 1155 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1156 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 1157 { 1158 BlockDriverState *bs = child->bs; 1159 1160 /* Perform I/O through a temporary buffer so that users who scribble over 1161 * their read buffer while the operation is in progress do not end up 1162 * modifying the image file. This is critical for zero-copy guest I/O 1163 * where anything might happen inside guest memory. 1164 */ 1165 void *bounce_buffer; 1166 1167 BlockDriver *drv = bs->drv; 1168 struct iovec iov; 1169 QEMUIOVector local_qiov; 1170 int64_t cluster_offset; 1171 int64_t cluster_bytes; 1172 size_t skip_bytes; 1173 int ret; 1174 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1175 BDRV_REQUEST_MAX_BYTES); 1176 unsigned int progress = 0; 1177 1178 if (!drv) { 1179 return -ENOMEDIUM; 1180 } 1181 1182 /* FIXME We cannot require callers to have write permissions when all they 1183 * are doing is a read request. If we did things right, write permissions 1184 * would be obtained anyway, but internally by the copy-on-read code. As 1185 * long as it is implemented here rather than in a separate filter driver, 1186 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1187 * it could request permissions. Therefore we have to bypass the permission 1188 * system for the moment. */ 1189 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1190 1191 /* Cover entire cluster so no additional backing file I/O is required when 1192 * allocating cluster in the image file. Note that this value may exceed 1193 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1194 * is one reason we loop rather than doing it all at once. 1195 */ 1196 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1197 skip_bytes = offset - cluster_offset; 1198 1199 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1200 cluster_offset, cluster_bytes); 1201 1202 bounce_buffer = qemu_try_blockalign(bs, 1203 MIN(MIN(max_transfer, cluster_bytes), 1204 MAX_BOUNCE_BUFFER)); 1205 if (bounce_buffer == NULL) { 1206 ret = -ENOMEM; 1207 goto err; 1208 } 1209 1210 while (cluster_bytes) { 1211 int64_t pnum; 1212 1213 ret = bdrv_is_allocated(bs, cluster_offset, 1214 MIN(cluster_bytes, max_transfer), &pnum); 1215 if (ret < 0) { 1216 /* Safe to treat errors in querying allocation as if 1217 * unallocated; we'll probably fail again soon on the 1218 * read, but at least that will set a decent errno. 1219 */ 1220 pnum = MIN(cluster_bytes, max_transfer); 1221 } 1222 1223 /* Stop at EOF if the image ends in the middle of the cluster */ 1224 if (ret == 0 && pnum == 0) { 1225 assert(progress >= bytes); 1226 break; 1227 } 1228 1229 assert(skip_bytes < pnum); 1230 1231 if (ret <= 0) { 1232 /* Must copy-on-read; use the bounce buffer */ 1233 iov.iov_base = bounce_buffer; 1234 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1235 qemu_iovec_init_external(&local_qiov, &iov, 1); 1236 1237 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1238 &local_qiov, 0); 1239 if (ret < 0) { 1240 goto err; 1241 } 1242 1243 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1244 if (drv->bdrv_co_pwrite_zeroes && 1245 buffer_is_zero(bounce_buffer, pnum)) { 1246 /* FIXME: Should we (perhaps conditionally) be setting 1247 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1248 * that still correctly reads as zero? */ 1249 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1250 BDRV_REQ_WRITE_UNCHANGED); 1251 } else { 1252 /* This does not change the data on the disk, it is not 1253 * necessary to flush even in cache=writethrough mode. 1254 */ 1255 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1256 &local_qiov, 1257 BDRV_REQ_WRITE_UNCHANGED); 1258 } 1259 1260 if (ret < 0) { 1261 /* It might be okay to ignore write errors for guest 1262 * requests. If this is a deliberate copy-on-read 1263 * then we don't want to ignore the error. Simply 1264 * report it in all cases. 1265 */ 1266 goto err; 1267 } 1268 1269 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes, 1270 pnum - skip_bytes); 1271 } else { 1272 /* Read directly into the destination */ 1273 qemu_iovec_init(&local_qiov, qiov->niov); 1274 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes); 1275 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size, 1276 &local_qiov, 0); 1277 qemu_iovec_destroy(&local_qiov); 1278 if (ret < 0) { 1279 goto err; 1280 } 1281 } 1282 1283 cluster_offset += pnum; 1284 cluster_bytes -= pnum; 1285 progress += pnum - skip_bytes; 1286 skip_bytes = 0; 1287 } 1288 ret = 0; 1289 1290 err: 1291 qemu_vfree(bounce_buffer); 1292 return ret; 1293 } 1294 1295 /* 1296 * Forwards an already correctly aligned request to the BlockDriver. This 1297 * handles copy on read, zeroing after EOF, and fragmentation of large 1298 * reads; any other features must be implemented by the caller. 1299 */ 1300 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1301 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1302 int64_t align, QEMUIOVector *qiov, int flags) 1303 { 1304 BlockDriverState *bs = child->bs; 1305 int64_t total_bytes, max_bytes; 1306 int ret = 0; 1307 uint64_t bytes_remaining = bytes; 1308 int max_transfer; 1309 1310 assert(is_power_of_2(align)); 1311 assert((offset & (align - 1)) == 0); 1312 assert((bytes & (align - 1)) == 0); 1313 assert(!qiov || bytes == qiov->size); 1314 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1315 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1316 align); 1317 1318 /* TODO: We would need a per-BDS .supported_read_flags and 1319 * potential fallback support, if we ever implement any read flags 1320 * to pass through to drivers. For now, there aren't any 1321 * passthrough flags. */ 1322 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 1323 1324 /* Handle Copy on Read and associated serialisation */ 1325 if (flags & BDRV_REQ_COPY_ON_READ) { 1326 /* If we touch the same cluster it counts as an overlap. This 1327 * guarantees that allocating writes will be serialized and not race 1328 * with each other for the same cluster. For example, in copy-on-read 1329 * it ensures that the CoR read and write operations are atomic and 1330 * guest writes cannot interleave between them. */ 1331 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1332 } 1333 1334 /* BDRV_REQ_SERIALISING is only for write operation */ 1335 assert(!(flags & BDRV_REQ_SERIALISING)); 1336 1337 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1338 wait_serialising_requests(req); 1339 } 1340 1341 if (flags & BDRV_REQ_COPY_ON_READ) { 1342 int64_t pnum; 1343 1344 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1345 if (ret < 0) { 1346 goto out; 1347 } 1348 1349 if (!ret || pnum != bytes) { 1350 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); 1351 goto out; 1352 } 1353 } 1354 1355 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1356 total_bytes = bdrv_getlength(bs); 1357 if (total_bytes < 0) { 1358 ret = total_bytes; 1359 goto out; 1360 } 1361 1362 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1363 if (bytes <= max_bytes && bytes <= max_transfer) { 1364 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1365 goto out; 1366 } 1367 1368 while (bytes_remaining) { 1369 int num; 1370 1371 if (max_bytes) { 1372 QEMUIOVector local_qiov; 1373 1374 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1375 assert(num); 1376 qemu_iovec_init(&local_qiov, qiov->niov); 1377 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1378 1379 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1380 num, &local_qiov, 0); 1381 max_bytes -= num; 1382 qemu_iovec_destroy(&local_qiov); 1383 } else { 1384 num = bytes_remaining; 1385 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1386 bytes_remaining); 1387 } 1388 if (ret < 0) { 1389 goto out; 1390 } 1391 bytes_remaining -= num; 1392 } 1393 1394 out: 1395 return ret < 0 ? ret : 0; 1396 } 1397 1398 /* 1399 * Handle a read request in coroutine context 1400 */ 1401 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1402 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1403 BdrvRequestFlags flags) 1404 { 1405 BlockDriverState *bs = child->bs; 1406 BlockDriver *drv = bs->drv; 1407 BdrvTrackedRequest req; 1408 1409 uint64_t align = bs->bl.request_alignment; 1410 uint8_t *head_buf = NULL; 1411 uint8_t *tail_buf = NULL; 1412 QEMUIOVector local_qiov; 1413 bool use_local_qiov = false; 1414 int ret; 1415 1416 trace_bdrv_co_preadv(child->bs, offset, bytes, flags); 1417 1418 if (!drv) { 1419 return -ENOMEDIUM; 1420 } 1421 1422 ret = bdrv_check_byte_request(bs, offset, bytes); 1423 if (ret < 0) { 1424 return ret; 1425 } 1426 1427 bdrv_inc_in_flight(bs); 1428 1429 /* Don't do copy-on-read if we read data before write operation */ 1430 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1431 flags |= BDRV_REQ_COPY_ON_READ; 1432 } 1433 1434 /* Align read if necessary by padding qiov */ 1435 if (offset & (align - 1)) { 1436 head_buf = qemu_blockalign(bs, align); 1437 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1438 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1439 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1440 use_local_qiov = true; 1441 1442 bytes += offset & (align - 1); 1443 offset = offset & ~(align - 1); 1444 } 1445 1446 if ((offset + bytes) & (align - 1)) { 1447 if (!use_local_qiov) { 1448 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1449 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1450 use_local_qiov = true; 1451 } 1452 tail_buf = qemu_blockalign(bs, align); 1453 qemu_iovec_add(&local_qiov, tail_buf, 1454 align - ((offset + bytes) & (align - 1))); 1455 1456 bytes = ROUND_UP(bytes, align); 1457 } 1458 1459 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1460 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1461 use_local_qiov ? &local_qiov : qiov, 1462 flags); 1463 tracked_request_end(&req); 1464 bdrv_dec_in_flight(bs); 1465 1466 if (use_local_qiov) { 1467 qemu_iovec_destroy(&local_qiov); 1468 qemu_vfree(head_buf); 1469 qemu_vfree(tail_buf); 1470 } 1471 1472 return ret; 1473 } 1474 1475 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1476 int64_t offset, int bytes, BdrvRequestFlags flags) 1477 { 1478 BlockDriver *drv = bs->drv; 1479 QEMUIOVector qiov; 1480 struct iovec iov = {0}; 1481 int ret = 0; 1482 bool need_flush = false; 1483 int head = 0; 1484 int tail = 0; 1485 1486 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1487 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1488 bs->bl.request_alignment); 1489 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1490 1491 if (!drv) { 1492 return -ENOMEDIUM; 1493 } 1494 1495 assert(alignment % bs->bl.request_alignment == 0); 1496 head = offset % alignment; 1497 tail = (offset + bytes) % alignment; 1498 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1499 assert(max_write_zeroes >= bs->bl.request_alignment); 1500 1501 while (bytes > 0 && !ret) { 1502 int num = bytes; 1503 1504 /* Align request. Block drivers can expect the "bulk" of the request 1505 * to be aligned, and that unaligned requests do not cross cluster 1506 * boundaries. 1507 */ 1508 if (head) { 1509 /* Make a small request up to the first aligned sector. For 1510 * convenience, limit this request to max_transfer even if 1511 * we don't need to fall back to writes. */ 1512 num = MIN(MIN(bytes, max_transfer), alignment - head); 1513 head = (head + num) % alignment; 1514 assert(num < max_write_zeroes); 1515 } else if (tail && num > alignment) { 1516 /* Shorten the request to the last aligned sector. */ 1517 num -= tail; 1518 } 1519 1520 /* limit request size */ 1521 if (num > max_write_zeroes) { 1522 num = max_write_zeroes; 1523 } 1524 1525 ret = -ENOTSUP; 1526 /* First try the efficient write zeroes operation */ 1527 if (drv->bdrv_co_pwrite_zeroes) { 1528 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1529 flags & bs->supported_zero_flags); 1530 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1531 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1532 need_flush = true; 1533 } 1534 } else { 1535 assert(!bs->supported_zero_flags); 1536 } 1537 1538 if (ret == -ENOTSUP) { 1539 /* Fall back to bounce buffer if write zeroes is unsupported */ 1540 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1541 1542 if ((flags & BDRV_REQ_FUA) && 1543 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1544 /* No need for bdrv_driver_pwrite() to do a fallback 1545 * flush on each chunk; use just one at the end */ 1546 write_flags &= ~BDRV_REQ_FUA; 1547 need_flush = true; 1548 } 1549 num = MIN(num, max_transfer); 1550 iov.iov_len = num; 1551 if (iov.iov_base == NULL) { 1552 iov.iov_base = qemu_try_blockalign(bs, num); 1553 if (iov.iov_base == NULL) { 1554 ret = -ENOMEM; 1555 goto fail; 1556 } 1557 memset(iov.iov_base, 0, num); 1558 } 1559 qemu_iovec_init_external(&qiov, &iov, 1); 1560 1561 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1562 1563 /* Keep bounce buffer around if it is big enough for all 1564 * all future requests. 1565 */ 1566 if (num < max_transfer) { 1567 qemu_vfree(iov.iov_base); 1568 iov.iov_base = NULL; 1569 } 1570 } 1571 1572 offset += num; 1573 bytes -= num; 1574 } 1575 1576 fail: 1577 if (ret == 0 && need_flush) { 1578 ret = bdrv_co_flush(bs); 1579 } 1580 qemu_vfree(iov.iov_base); 1581 return ret; 1582 } 1583 1584 static inline int coroutine_fn 1585 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes, 1586 BdrvTrackedRequest *req, int flags) 1587 { 1588 BlockDriverState *bs = child->bs; 1589 bool waited; 1590 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1591 1592 if (bs->read_only) { 1593 return -EPERM; 1594 } 1595 1596 /* BDRV_REQ_NO_SERIALISING is only for read operation */ 1597 assert(!(flags & BDRV_REQ_NO_SERIALISING)); 1598 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1599 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1600 assert(!(flags & ~BDRV_REQ_MASK)); 1601 1602 if (flags & BDRV_REQ_SERIALISING) { 1603 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1604 } 1605 1606 waited = wait_serialising_requests(req); 1607 1608 assert(!waited || !req->serialising || 1609 is_request_serialising_and_aligned(req)); 1610 assert(req->overlap_offset <= offset); 1611 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1612 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1613 1614 switch (req->type) { 1615 case BDRV_TRACKED_WRITE: 1616 case BDRV_TRACKED_DISCARD: 1617 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1618 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1619 } else { 1620 assert(child->perm & BLK_PERM_WRITE); 1621 } 1622 return notifier_with_return_list_notify(&bs->before_write_notifiers, 1623 req); 1624 case BDRV_TRACKED_TRUNCATE: 1625 assert(child->perm & BLK_PERM_RESIZE); 1626 return 0; 1627 default: 1628 abort(); 1629 } 1630 } 1631 1632 static inline void coroutine_fn 1633 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes, 1634 BdrvTrackedRequest *req, int ret) 1635 { 1636 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1637 BlockDriverState *bs = child->bs; 1638 1639 atomic_inc(&bs->write_gen); 1640 1641 /* 1642 * Discard cannot extend the image, but in error handling cases, such as 1643 * when reverting a qcow2 cluster allocation, the discarded range can pass 1644 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1645 * here. Instead, just skip it, since semantically a discard request 1646 * beyond EOF cannot expand the image anyway. 1647 */ 1648 if (ret == 0 && 1649 (req->type == BDRV_TRACKED_TRUNCATE || 1650 end_sector > bs->total_sectors) && 1651 req->type != BDRV_TRACKED_DISCARD) { 1652 bs->total_sectors = end_sector; 1653 bdrv_parent_cb_resize(bs); 1654 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1655 } 1656 if (req->bytes) { 1657 switch (req->type) { 1658 case BDRV_TRACKED_WRITE: 1659 stat64_max(&bs->wr_highest_offset, offset + bytes); 1660 /* fall through, to set dirty bits */ 1661 case BDRV_TRACKED_DISCARD: 1662 bdrv_set_dirty(bs, offset, bytes); 1663 break; 1664 default: 1665 break; 1666 } 1667 } 1668 } 1669 1670 /* 1671 * Forwards an already correctly aligned write request to the BlockDriver, 1672 * after possibly fragmenting it. 1673 */ 1674 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1675 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1676 int64_t align, QEMUIOVector *qiov, int flags) 1677 { 1678 BlockDriverState *bs = child->bs; 1679 BlockDriver *drv = bs->drv; 1680 int ret; 1681 1682 uint64_t bytes_remaining = bytes; 1683 int max_transfer; 1684 1685 if (!drv) { 1686 return -ENOMEDIUM; 1687 } 1688 1689 if (bdrv_has_readonly_bitmaps(bs)) { 1690 return -EPERM; 1691 } 1692 1693 assert(is_power_of_2(align)); 1694 assert((offset & (align - 1)) == 0); 1695 assert((bytes & (align - 1)) == 0); 1696 assert(!qiov || bytes == qiov->size); 1697 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1698 align); 1699 1700 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1701 1702 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1703 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1704 qemu_iovec_is_zero(qiov)) { 1705 flags |= BDRV_REQ_ZERO_WRITE; 1706 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1707 flags |= BDRV_REQ_MAY_UNMAP; 1708 } 1709 } 1710 1711 if (ret < 0) { 1712 /* Do nothing, write notifier decided to fail this request */ 1713 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1714 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1715 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1716 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1717 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1718 } else if (bytes <= max_transfer) { 1719 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1720 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1721 } else { 1722 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1723 while (bytes_remaining) { 1724 int num = MIN(bytes_remaining, max_transfer); 1725 QEMUIOVector local_qiov; 1726 int local_flags = flags; 1727 1728 assert(num); 1729 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1730 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1731 /* If FUA is going to be emulated by flush, we only 1732 * need to flush on the last iteration */ 1733 local_flags &= ~BDRV_REQ_FUA; 1734 } 1735 qemu_iovec_init(&local_qiov, qiov->niov); 1736 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1737 1738 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1739 num, &local_qiov, local_flags); 1740 qemu_iovec_destroy(&local_qiov); 1741 if (ret < 0) { 1742 break; 1743 } 1744 bytes_remaining -= num; 1745 } 1746 } 1747 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1748 1749 if (ret >= 0) { 1750 ret = 0; 1751 } 1752 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 1753 1754 return ret; 1755 } 1756 1757 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1758 int64_t offset, 1759 unsigned int bytes, 1760 BdrvRequestFlags flags, 1761 BdrvTrackedRequest *req) 1762 { 1763 BlockDriverState *bs = child->bs; 1764 uint8_t *buf = NULL; 1765 QEMUIOVector local_qiov; 1766 struct iovec iov; 1767 uint64_t align = bs->bl.request_alignment; 1768 unsigned int head_padding_bytes, tail_padding_bytes; 1769 int ret = 0; 1770 1771 head_padding_bytes = offset & (align - 1); 1772 tail_padding_bytes = (align - (offset + bytes)) & (align - 1); 1773 1774 1775 assert(flags & BDRV_REQ_ZERO_WRITE); 1776 if (head_padding_bytes || tail_padding_bytes) { 1777 buf = qemu_blockalign(bs, align); 1778 iov = (struct iovec) { 1779 .iov_base = buf, 1780 .iov_len = align, 1781 }; 1782 qemu_iovec_init_external(&local_qiov, &iov, 1); 1783 } 1784 if (head_padding_bytes) { 1785 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1786 1787 /* RMW the unaligned part before head. */ 1788 mark_request_serialising(req, align); 1789 wait_serialising_requests(req); 1790 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1791 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1792 align, &local_qiov, 0); 1793 if (ret < 0) { 1794 goto fail; 1795 } 1796 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1797 1798 memset(buf + head_padding_bytes, 0, zero_bytes); 1799 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1800 align, &local_qiov, 1801 flags & ~BDRV_REQ_ZERO_WRITE); 1802 if (ret < 0) { 1803 goto fail; 1804 } 1805 offset += zero_bytes; 1806 bytes -= zero_bytes; 1807 } 1808 1809 assert(!bytes || (offset & (align - 1)) == 0); 1810 if (bytes >= align) { 1811 /* Write the aligned part in the middle. */ 1812 uint64_t aligned_bytes = bytes & ~(align - 1); 1813 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1814 NULL, flags); 1815 if (ret < 0) { 1816 goto fail; 1817 } 1818 bytes -= aligned_bytes; 1819 offset += aligned_bytes; 1820 } 1821 1822 assert(!bytes || (offset & (align - 1)) == 0); 1823 if (bytes) { 1824 assert(align == tail_padding_bytes + bytes); 1825 /* RMW the unaligned part after tail. */ 1826 mark_request_serialising(req, align); 1827 wait_serialising_requests(req); 1828 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1829 ret = bdrv_aligned_preadv(child, req, offset, align, 1830 align, &local_qiov, 0); 1831 if (ret < 0) { 1832 goto fail; 1833 } 1834 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1835 1836 memset(buf, 0, bytes); 1837 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1838 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1839 } 1840 fail: 1841 qemu_vfree(buf); 1842 return ret; 1843 1844 } 1845 1846 /* 1847 * Handle a write request in coroutine context 1848 */ 1849 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1850 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1851 BdrvRequestFlags flags) 1852 { 1853 BlockDriverState *bs = child->bs; 1854 BdrvTrackedRequest req; 1855 uint64_t align = bs->bl.request_alignment; 1856 uint8_t *head_buf = NULL; 1857 uint8_t *tail_buf = NULL; 1858 QEMUIOVector local_qiov; 1859 bool use_local_qiov = false; 1860 int ret; 1861 1862 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 1863 1864 if (!bs->drv) { 1865 return -ENOMEDIUM; 1866 } 1867 1868 ret = bdrv_check_byte_request(bs, offset, bytes); 1869 if (ret < 0) { 1870 return ret; 1871 } 1872 1873 bdrv_inc_in_flight(bs); 1874 /* 1875 * Align write if necessary by performing a read-modify-write cycle. 1876 * Pad qiov with the read parts and be sure to have a tracked request not 1877 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1878 */ 1879 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1880 1881 if (flags & BDRV_REQ_ZERO_WRITE) { 1882 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1883 goto out; 1884 } 1885 1886 if (offset & (align - 1)) { 1887 QEMUIOVector head_qiov; 1888 struct iovec head_iov; 1889 1890 mark_request_serialising(&req, align); 1891 wait_serialising_requests(&req); 1892 1893 head_buf = qemu_blockalign(bs, align); 1894 head_iov = (struct iovec) { 1895 .iov_base = head_buf, 1896 .iov_len = align, 1897 }; 1898 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1899 1900 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1901 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1902 align, &head_qiov, 0); 1903 if (ret < 0) { 1904 goto fail; 1905 } 1906 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1907 1908 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1909 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1910 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1911 use_local_qiov = true; 1912 1913 bytes += offset & (align - 1); 1914 offset = offset & ~(align - 1); 1915 1916 /* We have read the tail already if the request is smaller 1917 * than one aligned block. 1918 */ 1919 if (bytes < align) { 1920 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1921 bytes = align; 1922 } 1923 } 1924 1925 if ((offset + bytes) & (align - 1)) { 1926 QEMUIOVector tail_qiov; 1927 struct iovec tail_iov; 1928 size_t tail_bytes; 1929 bool waited; 1930 1931 mark_request_serialising(&req, align); 1932 waited = wait_serialising_requests(&req); 1933 assert(!waited || !use_local_qiov); 1934 1935 tail_buf = qemu_blockalign(bs, align); 1936 tail_iov = (struct iovec) { 1937 .iov_base = tail_buf, 1938 .iov_len = align, 1939 }; 1940 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1941 1942 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1943 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1944 align, align, &tail_qiov, 0); 1945 if (ret < 0) { 1946 goto fail; 1947 } 1948 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1949 1950 if (!use_local_qiov) { 1951 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1952 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1953 use_local_qiov = true; 1954 } 1955 1956 tail_bytes = (offset + bytes) & (align - 1); 1957 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1958 1959 bytes = ROUND_UP(bytes, align); 1960 } 1961 1962 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1963 use_local_qiov ? &local_qiov : qiov, 1964 flags); 1965 1966 fail: 1967 1968 if (use_local_qiov) { 1969 qemu_iovec_destroy(&local_qiov); 1970 } 1971 qemu_vfree(head_buf); 1972 qemu_vfree(tail_buf); 1973 out: 1974 tracked_request_end(&req); 1975 bdrv_dec_in_flight(bs); 1976 return ret; 1977 } 1978 1979 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1980 int bytes, BdrvRequestFlags flags) 1981 { 1982 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 1983 1984 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1985 flags &= ~BDRV_REQ_MAY_UNMAP; 1986 } 1987 1988 return bdrv_co_pwritev(child, offset, bytes, NULL, 1989 BDRV_REQ_ZERO_WRITE | flags); 1990 } 1991 1992 /* 1993 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1994 */ 1995 int bdrv_flush_all(void) 1996 { 1997 BdrvNextIterator it; 1998 BlockDriverState *bs = NULL; 1999 int result = 0; 2000 2001 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2002 AioContext *aio_context = bdrv_get_aio_context(bs); 2003 int ret; 2004 2005 aio_context_acquire(aio_context); 2006 ret = bdrv_flush(bs); 2007 if (ret < 0 && !result) { 2008 result = ret; 2009 } 2010 aio_context_release(aio_context); 2011 } 2012 2013 return result; 2014 } 2015 2016 2017 typedef struct BdrvCoBlockStatusData { 2018 BlockDriverState *bs; 2019 BlockDriverState *base; 2020 bool want_zero; 2021 int64_t offset; 2022 int64_t bytes; 2023 int64_t *pnum; 2024 int64_t *map; 2025 BlockDriverState **file; 2026 int ret; 2027 bool done; 2028 } BdrvCoBlockStatusData; 2029 2030 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs, 2031 bool want_zero, 2032 int64_t offset, 2033 int64_t bytes, 2034 int64_t *pnum, 2035 int64_t *map, 2036 BlockDriverState **file) 2037 { 2038 assert(bs->file && bs->file->bs); 2039 *pnum = bytes; 2040 *map = offset; 2041 *file = bs->file->bs; 2042 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2043 } 2044 2045 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs, 2046 bool want_zero, 2047 int64_t offset, 2048 int64_t bytes, 2049 int64_t *pnum, 2050 int64_t *map, 2051 BlockDriverState **file) 2052 { 2053 assert(bs->backing && bs->backing->bs); 2054 *pnum = bytes; 2055 *map = offset; 2056 *file = bs->backing->bs; 2057 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2058 } 2059 2060 /* 2061 * Returns the allocation status of the specified sectors. 2062 * Drivers not implementing the functionality are assumed to not support 2063 * backing files, hence all their sectors are reported as allocated. 2064 * 2065 * If 'want_zero' is true, the caller is querying for mapping 2066 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2067 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2068 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2069 * 2070 * If 'offset' is beyond the end of the disk image the return value is 2071 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2072 * 2073 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2074 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2075 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2076 * 2077 * 'pnum' is set to the number of bytes (including and immediately 2078 * following the specified offset) that are easily known to be in the 2079 * same allocated/unallocated state. Note that a second call starting 2080 * at the original offset plus returned pnum may have the same status. 2081 * The returned value is non-zero on success except at end-of-file. 2082 * 2083 * Returns negative errno on failure. Otherwise, if the 2084 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2085 * set to the host mapping and BDS corresponding to the guest offset. 2086 */ 2087 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2088 bool want_zero, 2089 int64_t offset, int64_t bytes, 2090 int64_t *pnum, int64_t *map, 2091 BlockDriverState **file) 2092 { 2093 int64_t total_size; 2094 int64_t n; /* bytes */ 2095 int ret; 2096 int64_t local_map = 0; 2097 BlockDriverState *local_file = NULL; 2098 int64_t aligned_offset, aligned_bytes; 2099 uint32_t align; 2100 2101 assert(pnum); 2102 *pnum = 0; 2103 total_size = bdrv_getlength(bs); 2104 if (total_size < 0) { 2105 ret = total_size; 2106 goto early_out; 2107 } 2108 2109 if (offset >= total_size) { 2110 ret = BDRV_BLOCK_EOF; 2111 goto early_out; 2112 } 2113 if (!bytes) { 2114 ret = 0; 2115 goto early_out; 2116 } 2117 2118 n = total_size - offset; 2119 if (n < bytes) { 2120 bytes = n; 2121 } 2122 2123 /* Must be non-NULL or bdrv_getlength() would have failed */ 2124 assert(bs->drv); 2125 if (!bs->drv->bdrv_co_block_status) { 2126 *pnum = bytes; 2127 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2128 if (offset + bytes == total_size) { 2129 ret |= BDRV_BLOCK_EOF; 2130 } 2131 if (bs->drv->protocol_name) { 2132 ret |= BDRV_BLOCK_OFFSET_VALID; 2133 local_map = offset; 2134 local_file = bs; 2135 } 2136 goto early_out; 2137 } 2138 2139 bdrv_inc_in_flight(bs); 2140 2141 /* Round out to request_alignment boundaries */ 2142 align = bs->bl.request_alignment; 2143 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2144 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2145 2146 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2147 aligned_bytes, pnum, &local_map, 2148 &local_file); 2149 if (ret < 0) { 2150 *pnum = 0; 2151 goto out; 2152 } 2153 2154 /* 2155 * The driver's result must be a non-zero multiple of request_alignment. 2156 * Clamp pnum and adjust map to original request. 2157 */ 2158 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2159 align > offset - aligned_offset); 2160 *pnum -= offset - aligned_offset; 2161 if (*pnum > bytes) { 2162 *pnum = bytes; 2163 } 2164 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2165 local_map += offset - aligned_offset; 2166 } 2167 2168 if (ret & BDRV_BLOCK_RAW) { 2169 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2170 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2171 *pnum, pnum, &local_map, &local_file); 2172 goto out; 2173 } 2174 2175 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2176 ret |= BDRV_BLOCK_ALLOCATED; 2177 } else if (want_zero) { 2178 if (bdrv_unallocated_blocks_are_zero(bs)) { 2179 ret |= BDRV_BLOCK_ZERO; 2180 } else if (bs->backing) { 2181 BlockDriverState *bs2 = bs->backing->bs; 2182 int64_t size2 = bdrv_getlength(bs2); 2183 2184 if (size2 >= 0 && offset >= size2) { 2185 ret |= BDRV_BLOCK_ZERO; 2186 } 2187 } 2188 } 2189 2190 if (want_zero && local_file && local_file != bs && 2191 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2192 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2193 int64_t file_pnum; 2194 int ret2; 2195 2196 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2197 *pnum, &file_pnum, NULL, NULL); 2198 if (ret2 >= 0) { 2199 /* Ignore errors. This is just providing extra information, it 2200 * is useful but not necessary. 2201 */ 2202 if (ret2 & BDRV_BLOCK_EOF && 2203 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2204 /* 2205 * It is valid for the format block driver to read 2206 * beyond the end of the underlying file's current 2207 * size; such areas read as zero. 2208 */ 2209 ret |= BDRV_BLOCK_ZERO; 2210 } else { 2211 /* Limit request to the range reported by the protocol driver */ 2212 *pnum = file_pnum; 2213 ret |= (ret2 & BDRV_BLOCK_ZERO); 2214 } 2215 } 2216 } 2217 2218 out: 2219 bdrv_dec_in_flight(bs); 2220 if (ret >= 0 && offset + *pnum == total_size) { 2221 ret |= BDRV_BLOCK_EOF; 2222 } 2223 early_out: 2224 if (file) { 2225 *file = local_file; 2226 } 2227 if (map) { 2228 *map = local_map; 2229 } 2230 return ret; 2231 } 2232 2233 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2234 BlockDriverState *base, 2235 bool want_zero, 2236 int64_t offset, 2237 int64_t bytes, 2238 int64_t *pnum, 2239 int64_t *map, 2240 BlockDriverState **file) 2241 { 2242 BlockDriverState *p; 2243 int ret = 0; 2244 bool first = true; 2245 2246 assert(bs != base); 2247 for (p = bs; p != base; p = backing_bs(p)) { 2248 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2249 file); 2250 if (ret < 0) { 2251 break; 2252 } 2253 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 2254 /* 2255 * Reading beyond the end of the file continues to read 2256 * zeroes, but we can only widen the result to the 2257 * unallocated length we learned from an earlier 2258 * iteration. 2259 */ 2260 *pnum = bytes; 2261 } 2262 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 2263 break; 2264 } 2265 /* [offset, pnum] unallocated on this layer, which could be only 2266 * the first part of [offset, bytes]. */ 2267 bytes = MIN(bytes, *pnum); 2268 first = false; 2269 } 2270 return ret; 2271 } 2272 2273 /* Coroutine wrapper for bdrv_block_status_above() */ 2274 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque) 2275 { 2276 BdrvCoBlockStatusData *data = opaque; 2277 2278 data->ret = bdrv_co_block_status_above(data->bs, data->base, 2279 data->want_zero, 2280 data->offset, data->bytes, 2281 data->pnum, data->map, data->file); 2282 data->done = true; 2283 aio_wait_kick(); 2284 } 2285 2286 /* 2287 * Synchronous wrapper around bdrv_co_block_status_above(). 2288 * 2289 * See bdrv_co_block_status_above() for details. 2290 */ 2291 static int bdrv_common_block_status_above(BlockDriverState *bs, 2292 BlockDriverState *base, 2293 bool want_zero, int64_t offset, 2294 int64_t bytes, int64_t *pnum, 2295 int64_t *map, 2296 BlockDriverState **file) 2297 { 2298 Coroutine *co; 2299 BdrvCoBlockStatusData data = { 2300 .bs = bs, 2301 .base = base, 2302 .want_zero = want_zero, 2303 .offset = offset, 2304 .bytes = bytes, 2305 .pnum = pnum, 2306 .map = map, 2307 .file = file, 2308 .done = false, 2309 }; 2310 2311 if (qemu_in_coroutine()) { 2312 /* Fast-path if already in coroutine context */ 2313 bdrv_block_status_above_co_entry(&data); 2314 } else { 2315 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data); 2316 bdrv_coroutine_enter(bs, co); 2317 BDRV_POLL_WHILE(bs, !data.done); 2318 } 2319 return data.ret; 2320 } 2321 2322 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2323 int64_t offset, int64_t bytes, int64_t *pnum, 2324 int64_t *map, BlockDriverState **file) 2325 { 2326 return bdrv_common_block_status_above(bs, base, true, offset, bytes, 2327 pnum, map, file); 2328 } 2329 2330 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2331 int64_t *pnum, int64_t *map, BlockDriverState **file) 2332 { 2333 return bdrv_block_status_above(bs, backing_bs(bs), 2334 offset, bytes, pnum, map, file); 2335 } 2336 2337 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2338 int64_t bytes, int64_t *pnum) 2339 { 2340 int ret; 2341 int64_t dummy; 2342 2343 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset, 2344 bytes, pnum ? pnum : &dummy, NULL, 2345 NULL); 2346 if (ret < 0) { 2347 return ret; 2348 } 2349 return !!(ret & BDRV_BLOCK_ALLOCATED); 2350 } 2351 2352 /* 2353 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2354 * 2355 * Return true if (a prefix of) the given range is allocated in any image 2356 * between BASE and TOP (inclusive). BASE can be NULL to check if the given 2357 * offset is allocated in any image of the chain. Return false otherwise, 2358 * or negative errno on failure. 2359 * 2360 * 'pnum' is set to the number of bytes (including and immediately 2361 * following the specified offset) that are known to be in the same 2362 * allocated/unallocated state. Note that a subsequent call starting 2363 * at 'offset + *pnum' may return the same allocation status (in other 2364 * words, the result is not necessarily the maximum possible range); 2365 * but 'pnum' will only be 0 when end of file is reached. 2366 * 2367 */ 2368 int bdrv_is_allocated_above(BlockDriverState *top, 2369 BlockDriverState *base, 2370 int64_t offset, int64_t bytes, int64_t *pnum) 2371 { 2372 BlockDriverState *intermediate; 2373 int ret; 2374 int64_t n = bytes; 2375 2376 intermediate = top; 2377 while (intermediate && intermediate != base) { 2378 int64_t pnum_inter; 2379 int64_t size_inter; 2380 2381 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2382 if (ret < 0) { 2383 return ret; 2384 } 2385 if (ret) { 2386 *pnum = pnum_inter; 2387 return 1; 2388 } 2389 2390 size_inter = bdrv_getlength(intermediate); 2391 if (size_inter < 0) { 2392 return size_inter; 2393 } 2394 if (n > pnum_inter && 2395 (intermediate == top || offset + pnum_inter < size_inter)) { 2396 n = pnum_inter; 2397 } 2398 2399 intermediate = backing_bs(intermediate); 2400 } 2401 2402 *pnum = n; 2403 return 0; 2404 } 2405 2406 typedef struct BdrvVmstateCo { 2407 BlockDriverState *bs; 2408 QEMUIOVector *qiov; 2409 int64_t pos; 2410 bool is_read; 2411 int ret; 2412 } BdrvVmstateCo; 2413 2414 static int coroutine_fn 2415 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2416 bool is_read) 2417 { 2418 BlockDriver *drv = bs->drv; 2419 int ret = -ENOTSUP; 2420 2421 bdrv_inc_in_flight(bs); 2422 2423 if (!drv) { 2424 ret = -ENOMEDIUM; 2425 } else if (drv->bdrv_load_vmstate) { 2426 if (is_read) { 2427 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2428 } else { 2429 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2430 } 2431 } else if (bs->file) { 2432 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2433 } 2434 2435 bdrv_dec_in_flight(bs); 2436 return ret; 2437 } 2438 2439 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2440 { 2441 BdrvVmstateCo *co = opaque; 2442 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2443 aio_wait_kick(); 2444 } 2445 2446 static inline int 2447 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2448 bool is_read) 2449 { 2450 if (qemu_in_coroutine()) { 2451 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2452 } else { 2453 BdrvVmstateCo data = { 2454 .bs = bs, 2455 .qiov = qiov, 2456 .pos = pos, 2457 .is_read = is_read, 2458 .ret = -EINPROGRESS, 2459 }; 2460 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2461 2462 bdrv_coroutine_enter(bs, co); 2463 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2464 return data.ret; 2465 } 2466 } 2467 2468 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2469 int64_t pos, int size) 2470 { 2471 QEMUIOVector qiov; 2472 struct iovec iov = { 2473 .iov_base = (void *) buf, 2474 .iov_len = size, 2475 }; 2476 int ret; 2477 2478 qemu_iovec_init_external(&qiov, &iov, 1); 2479 2480 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2481 if (ret < 0) { 2482 return ret; 2483 } 2484 2485 return size; 2486 } 2487 2488 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2489 { 2490 return bdrv_rw_vmstate(bs, qiov, pos, false); 2491 } 2492 2493 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2494 int64_t pos, int size) 2495 { 2496 QEMUIOVector qiov; 2497 struct iovec iov = { 2498 .iov_base = buf, 2499 .iov_len = size, 2500 }; 2501 int ret; 2502 2503 qemu_iovec_init_external(&qiov, &iov, 1); 2504 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2505 if (ret < 0) { 2506 return ret; 2507 } 2508 2509 return size; 2510 } 2511 2512 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2513 { 2514 return bdrv_rw_vmstate(bs, qiov, pos, true); 2515 } 2516 2517 /**************************************************************/ 2518 /* async I/Os */ 2519 2520 void bdrv_aio_cancel(BlockAIOCB *acb) 2521 { 2522 qemu_aio_ref(acb); 2523 bdrv_aio_cancel_async(acb); 2524 while (acb->refcnt > 1) { 2525 if (acb->aiocb_info->get_aio_context) { 2526 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2527 } else if (acb->bs) { 2528 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2529 * assert that we're not using an I/O thread. Thread-safe 2530 * code should use bdrv_aio_cancel_async exclusively. 2531 */ 2532 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2533 aio_poll(bdrv_get_aio_context(acb->bs), true); 2534 } else { 2535 abort(); 2536 } 2537 } 2538 qemu_aio_unref(acb); 2539 } 2540 2541 /* Async version of aio cancel. The caller is not blocked if the acb implements 2542 * cancel_async, otherwise we do nothing and let the request normally complete. 2543 * In either case the completion callback must be called. */ 2544 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2545 { 2546 if (acb->aiocb_info->cancel_async) { 2547 acb->aiocb_info->cancel_async(acb); 2548 } 2549 } 2550 2551 /**************************************************************/ 2552 /* Coroutine block device emulation */ 2553 2554 typedef struct FlushCo { 2555 BlockDriverState *bs; 2556 int ret; 2557 } FlushCo; 2558 2559 2560 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2561 { 2562 FlushCo *rwco = opaque; 2563 2564 rwco->ret = bdrv_co_flush(rwco->bs); 2565 aio_wait_kick(); 2566 } 2567 2568 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2569 { 2570 int current_gen; 2571 int ret = 0; 2572 2573 bdrv_inc_in_flight(bs); 2574 2575 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2576 bdrv_is_sg(bs)) { 2577 goto early_exit; 2578 } 2579 2580 qemu_co_mutex_lock(&bs->reqs_lock); 2581 current_gen = atomic_read(&bs->write_gen); 2582 2583 /* Wait until any previous flushes are completed */ 2584 while (bs->active_flush_req) { 2585 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2586 } 2587 2588 /* Flushes reach this point in nondecreasing current_gen order. */ 2589 bs->active_flush_req = true; 2590 qemu_co_mutex_unlock(&bs->reqs_lock); 2591 2592 /* Write back all layers by calling one driver function */ 2593 if (bs->drv->bdrv_co_flush) { 2594 ret = bs->drv->bdrv_co_flush(bs); 2595 goto out; 2596 } 2597 2598 /* Write back cached data to the OS even with cache=unsafe */ 2599 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2600 if (bs->drv->bdrv_co_flush_to_os) { 2601 ret = bs->drv->bdrv_co_flush_to_os(bs); 2602 if (ret < 0) { 2603 goto out; 2604 } 2605 } 2606 2607 /* But don't actually force it to the disk with cache=unsafe */ 2608 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2609 goto flush_parent; 2610 } 2611 2612 /* Check if we really need to flush anything */ 2613 if (bs->flushed_gen == current_gen) { 2614 goto flush_parent; 2615 } 2616 2617 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2618 if (!bs->drv) { 2619 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2620 * (even in case of apparent success) */ 2621 ret = -ENOMEDIUM; 2622 goto out; 2623 } 2624 if (bs->drv->bdrv_co_flush_to_disk) { 2625 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2626 } else if (bs->drv->bdrv_aio_flush) { 2627 BlockAIOCB *acb; 2628 CoroutineIOCompletion co = { 2629 .coroutine = qemu_coroutine_self(), 2630 }; 2631 2632 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2633 if (acb == NULL) { 2634 ret = -EIO; 2635 } else { 2636 qemu_coroutine_yield(); 2637 ret = co.ret; 2638 } 2639 } else { 2640 /* 2641 * Some block drivers always operate in either writethrough or unsafe 2642 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2643 * know how the server works (because the behaviour is hardcoded or 2644 * depends on server-side configuration), so we can't ensure that 2645 * everything is safe on disk. Returning an error doesn't work because 2646 * that would break guests even if the server operates in writethrough 2647 * mode. 2648 * 2649 * Let's hope the user knows what he's doing. 2650 */ 2651 ret = 0; 2652 } 2653 2654 if (ret < 0) { 2655 goto out; 2656 } 2657 2658 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2659 * in the case of cache=unsafe, so there are no useless flushes. 2660 */ 2661 flush_parent: 2662 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2663 out: 2664 /* Notify any pending flushes that we have completed */ 2665 if (ret == 0) { 2666 bs->flushed_gen = current_gen; 2667 } 2668 2669 qemu_co_mutex_lock(&bs->reqs_lock); 2670 bs->active_flush_req = false; 2671 /* Return value is ignored - it's ok if wait queue is empty */ 2672 qemu_co_queue_next(&bs->flush_queue); 2673 qemu_co_mutex_unlock(&bs->reqs_lock); 2674 2675 early_exit: 2676 bdrv_dec_in_flight(bs); 2677 return ret; 2678 } 2679 2680 int bdrv_flush(BlockDriverState *bs) 2681 { 2682 Coroutine *co; 2683 FlushCo flush_co = { 2684 .bs = bs, 2685 .ret = NOT_DONE, 2686 }; 2687 2688 if (qemu_in_coroutine()) { 2689 /* Fast-path if already in coroutine context */ 2690 bdrv_flush_co_entry(&flush_co); 2691 } else { 2692 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2693 bdrv_coroutine_enter(bs, co); 2694 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2695 } 2696 2697 return flush_co.ret; 2698 } 2699 2700 typedef struct DiscardCo { 2701 BdrvChild *child; 2702 int64_t offset; 2703 int bytes; 2704 int ret; 2705 } DiscardCo; 2706 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2707 { 2708 DiscardCo *rwco = opaque; 2709 2710 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes); 2711 aio_wait_kick(); 2712 } 2713 2714 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, int bytes) 2715 { 2716 BdrvTrackedRequest req; 2717 int max_pdiscard, ret; 2718 int head, tail, align; 2719 BlockDriverState *bs = child->bs; 2720 2721 if (!bs || !bs->drv) { 2722 return -ENOMEDIUM; 2723 } 2724 2725 if (bdrv_has_readonly_bitmaps(bs)) { 2726 return -EPERM; 2727 } 2728 2729 ret = bdrv_check_byte_request(bs, offset, bytes); 2730 if (ret < 0) { 2731 return ret; 2732 } 2733 2734 /* Do nothing if disabled. */ 2735 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2736 return 0; 2737 } 2738 2739 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2740 return 0; 2741 } 2742 2743 /* Discard is advisory, but some devices track and coalesce 2744 * unaligned requests, so we must pass everything down rather than 2745 * round here. Still, most devices will just silently ignore 2746 * unaligned requests (by returning -ENOTSUP), so we must fragment 2747 * the request accordingly. */ 2748 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2749 assert(align % bs->bl.request_alignment == 0); 2750 head = offset % align; 2751 tail = (offset + bytes) % align; 2752 2753 bdrv_inc_in_flight(bs); 2754 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2755 2756 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 2757 if (ret < 0) { 2758 goto out; 2759 } 2760 2761 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2762 align); 2763 assert(max_pdiscard >= bs->bl.request_alignment); 2764 2765 while (bytes > 0) { 2766 int num = bytes; 2767 2768 if (head) { 2769 /* Make small requests to get to alignment boundaries. */ 2770 num = MIN(bytes, align - head); 2771 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2772 num %= bs->bl.request_alignment; 2773 } 2774 head = (head + num) % align; 2775 assert(num < max_pdiscard); 2776 } else if (tail) { 2777 if (num > align) { 2778 /* Shorten the request to the last aligned cluster. */ 2779 num -= tail; 2780 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2781 tail > bs->bl.request_alignment) { 2782 tail %= bs->bl.request_alignment; 2783 num -= tail; 2784 } 2785 } 2786 /* limit request size */ 2787 if (num > max_pdiscard) { 2788 num = max_pdiscard; 2789 } 2790 2791 if (!bs->drv) { 2792 ret = -ENOMEDIUM; 2793 goto out; 2794 } 2795 if (bs->drv->bdrv_co_pdiscard) { 2796 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2797 } else { 2798 BlockAIOCB *acb; 2799 CoroutineIOCompletion co = { 2800 .coroutine = qemu_coroutine_self(), 2801 }; 2802 2803 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2804 bdrv_co_io_em_complete, &co); 2805 if (acb == NULL) { 2806 ret = -EIO; 2807 goto out; 2808 } else { 2809 qemu_coroutine_yield(); 2810 ret = co.ret; 2811 } 2812 } 2813 if (ret && ret != -ENOTSUP) { 2814 goto out; 2815 } 2816 2817 offset += num; 2818 bytes -= num; 2819 } 2820 ret = 0; 2821 out: 2822 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 2823 tracked_request_end(&req); 2824 bdrv_dec_in_flight(bs); 2825 return ret; 2826 } 2827 2828 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int bytes) 2829 { 2830 Coroutine *co; 2831 DiscardCo rwco = { 2832 .child = child, 2833 .offset = offset, 2834 .bytes = bytes, 2835 .ret = NOT_DONE, 2836 }; 2837 2838 if (qemu_in_coroutine()) { 2839 /* Fast-path if already in coroutine context */ 2840 bdrv_pdiscard_co_entry(&rwco); 2841 } else { 2842 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2843 bdrv_coroutine_enter(child->bs, co); 2844 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 2845 } 2846 2847 return rwco.ret; 2848 } 2849 2850 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2851 { 2852 BlockDriver *drv = bs->drv; 2853 CoroutineIOCompletion co = { 2854 .coroutine = qemu_coroutine_self(), 2855 }; 2856 BlockAIOCB *acb; 2857 2858 bdrv_inc_in_flight(bs); 2859 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2860 co.ret = -ENOTSUP; 2861 goto out; 2862 } 2863 2864 if (drv->bdrv_co_ioctl) { 2865 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2866 } else { 2867 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2868 if (!acb) { 2869 co.ret = -ENOTSUP; 2870 goto out; 2871 } 2872 qemu_coroutine_yield(); 2873 } 2874 out: 2875 bdrv_dec_in_flight(bs); 2876 return co.ret; 2877 } 2878 2879 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2880 { 2881 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2882 } 2883 2884 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2885 { 2886 return memset(qemu_blockalign(bs, size), 0, size); 2887 } 2888 2889 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2890 { 2891 size_t align = bdrv_opt_mem_align(bs); 2892 2893 /* Ensure that NULL is never returned on success */ 2894 assert(align > 0); 2895 if (size == 0) { 2896 size = align; 2897 } 2898 2899 return qemu_try_memalign(align, size); 2900 } 2901 2902 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2903 { 2904 void *mem = qemu_try_blockalign(bs, size); 2905 2906 if (mem) { 2907 memset(mem, 0, size); 2908 } 2909 2910 return mem; 2911 } 2912 2913 /* 2914 * Check if all memory in this vector is sector aligned. 2915 */ 2916 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2917 { 2918 int i; 2919 size_t alignment = bdrv_min_mem_align(bs); 2920 2921 for (i = 0; i < qiov->niov; i++) { 2922 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2923 return false; 2924 } 2925 if (qiov->iov[i].iov_len % alignment) { 2926 return false; 2927 } 2928 } 2929 2930 return true; 2931 } 2932 2933 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2934 NotifierWithReturn *notifier) 2935 { 2936 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2937 } 2938 2939 void bdrv_io_plug(BlockDriverState *bs) 2940 { 2941 BdrvChild *child; 2942 2943 QLIST_FOREACH(child, &bs->children, next) { 2944 bdrv_io_plug(child->bs); 2945 } 2946 2947 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 2948 BlockDriver *drv = bs->drv; 2949 if (drv && drv->bdrv_io_plug) { 2950 drv->bdrv_io_plug(bs); 2951 } 2952 } 2953 } 2954 2955 void bdrv_io_unplug(BlockDriverState *bs) 2956 { 2957 BdrvChild *child; 2958 2959 assert(bs->io_plugged); 2960 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 2961 BlockDriver *drv = bs->drv; 2962 if (drv && drv->bdrv_io_unplug) { 2963 drv->bdrv_io_unplug(bs); 2964 } 2965 } 2966 2967 QLIST_FOREACH(child, &bs->children, next) { 2968 bdrv_io_unplug(child->bs); 2969 } 2970 } 2971 2972 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 2973 { 2974 BdrvChild *child; 2975 2976 if (bs->drv && bs->drv->bdrv_register_buf) { 2977 bs->drv->bdrv_register_buf(bs, host, size); 2978 } 2979 QLIST_FOREACH(child, &bs->children, next) { 2980 bdrv_register_buf(child->bs, host, size); 2981 } 2982 } 2983 2984 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 2985 { 2986 BdrvChild *child; 2987 2988 if (bs->drv && bs->drv->bdrv_unregister_buf) { 2989 bs->drv->bdrv_unregister_buf(bs, host); 2990 } 2991 QLIST_FOREACH(child, &bs->children, next) { 2992 bdrv_unregister_buf(child->bs, host); 2993 } 2994 } 2995 2996 static int coroutine_fn bdrv_co_copy_range_internal( 2997 BdrvChild *src, uint64_t src_offset, BdrvChild *dst, 2998 uint64_t dst_offset, uint64_t bytes, 2999 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3000 bool recurse_src) 3001 { 3002 BdrvTrackedRequest req; 3003 int ret; 3004 3005 if (!dst || !dst->bs) { 3006 return -ENOMEDIUM; 3007 } 3008 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes); 3009 if (ret) { 3010 return ret; 3011 } 3012 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3013 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3014 } 3015 3016 if (!src || !src->bs) { 3017 return -ENOMEDIUM; 3018 } 3019 ret = bdrv_check_byte_request(src->bs, src_offset, bytes); 3020 if (ret) { 3021 return ret; 3022 } 3023 3024 if (!src->bs->drv->bdrv_co_copy_range_from 3025 || !dst->bs->drv->bdrv_co_copy_range_to 3026 || src->bs->encrypted || dst->bs->encrypted) { 3027 return -ENOTSUP; 3028 } 3029 3030 if (recurse_src) { 3031 bdrv_inc_in_flight(src->bs); 3032 tracked_request_begin(&req, src->bs, src_offset, bytes, 3033 BDRV_TRACKED_READ); 3034 3035 /* BDRV_REQ_SERIALISING is only for write operation */ 3036 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3037 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) { 3038 wait_serialising_requests(&req); 3039 } 3040 3041 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3042 src, src_offset, 3043 dst, dst_offset, 3044 bytes, 3045 read_flags, write_flags); 3046 3047 tracked_request_end(&req); 3048 bdrv_dec_in_flight(src->bs); 3049 } else { 3050 bdrv_inc_in_flight(dst->bs); 3051 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3052 BDRV_TRACKED_WRITE); 3053 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3054 write_flags); 3055 if (!ret) { 3056 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3057 src, src_offset, 3058 dst, dst_offset, 3059 bytes, 3060 read_flags, write_flags); 3061 } 3062 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3063 tracked_request_end(&req); 3064 bdrv_dec_in_flight(dst->bs); 3065 } 3066 3067 return ret; 3068 } 3069 3070 /* Copy range from @src to @dst. 3071 * 3072 * See the comment of bdrv_co_copy_range for the parameter and return value 3073 * semantics. */ 3074 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset, 3075 BdrvChild *dst, uint64_t dst_offset, 3076 uint64_t bytes, 3077 BdrvRequestFlags read_flags, 3078 BdrvRequestFlags write_flags) 3079 { 3080 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3081 read_flags, write_flags); 3082 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3083 bytes, read_flags, write_flags, true); 3084 } 3085 3086 /* Copy range from @src to @dst. 3087 * 3088 * See the comment of bdrv_co_copy_range for the parameter and return value 3089 * semantics. */ 3090 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset, 3091 BdrvChild *dst, uint64_t dst_offset, 3092 uint64_t bytes, 3093 BdrvRequestFlags read_flags, 3094 BdrvRequestFlags write_flags) 3095 { 3096 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3097 read_flags, write_flags); 3098 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3099 bytes, read_flags, write_flags, false); 3100 } 3101 3102 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset, 3103 BdrvChild *dst, uint64_t dst_offset, 3104 uint64_t bytes, BdrvRequestFlags read_flags, 3105 BdrvRequestFlags write_flags) 3106 { 3107 return bdrv_co_copy_range_from(src, src_offset, 3108 dst, dst_offset, 3109 bytes, read_flags, write_flags); 3110 } 3111 3112 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3113 { 3114 BdrvChild *c; 3115 QLIST_FOREACH(c, &bs->parents, next_parent) { 3116 if (c->role->resize) { 3117 c->role->resize(c); 3118 } 3119 } 3120 } 3121 3122 /** 3123 * Truncate file to 'offset' bytes (needed only for file protocols) 3124 */ 3125 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, 3126 PreallocMode prealloc, Error **errp) 3127 { 3128 BlockDriverState *bs = child->bs; 3129 BlockDriver *drv = bs->drv; 3130 BdrvTrackedRequest req; 3131 int64_t old_size, new_bytes; 3132 int ret; 3133 3134 3135 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3136 if (!drv) { 3137 error_setg(errp, "No medium inserted"); 3138 return -ENOMEDIUM; 3139 } 3140 if (offset < 0) { 3141 error_setg(errp, "Image size cannot be negative"); 3142 return -EINVAL; 3143 } 3144 3145 old_size = bdrv_getlength(bs); 3146 if (old_size < 0) { 3147 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3148 return old_size; 3149 } 3150 3151 if (offset > old_size) { 3152 new_bytes = offset - old_size; 3153 } else { 3154 new_bytes = 0; 3155 } 3156 3157 bdrv_inc_in_flight(bs); 3158 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3159 BDRV_TRACKED_TRUNCATE); 3160 3161 /* If we are growing the image and potentially using preallocation for the 3162 * new area, we need to make sure that no write requests are made to it 3163 * concurrently or they might be overwritten by preallocation. */ 3164 if (new_bytes) { 3165 mark_request_serialising(&req, 1); 3166 } 3167 if (bs->read_only) { 3168 error_setg(errp, "Image is read-only"); 3169 ret = -EACCES; 3170 goto out; 3171 } 3172 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3173 0); 3174 if (ret < 0) { 3175 error_setg_errno(errp, -ret, 3176 "Failed to prepare request for truncation"); 3177 goto out; 3178 } 3179 3180 if (!drv->bdrv_co_truncate) { 3181 if (bs->file && drv->is_filter) { 3182 ret = bdrv_co_truncate(bs->file, offset, prealloc, errp); 3183 goto out; 3184 } 3185 error_setg(errp, "Image format driver does not support resize"); 3186 ret = -ENOTSUP; 3187 goto out; 3188 } 3189 3190 ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp); 3191 if (ret < 0) { 3192 goto out; 3193 } 3194 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3195 if (ret < 0) { 3196 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3197 } else { 3198 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3199 } 3200 /* It's possible that truncation succeeded but refresh_total_sectors 3201 * failed, but the latter doesn't affect how we should finish the request. 3202 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3203 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3204 3205 out: 3206 tracked_request_end(&req); 3207 bdrv_dec_in_flight(bs); 3208 3209 return ret; 3210 } 3211 3212 typedef struct TruncateCo { 3213 BdrvChild *child; 3214 int64_t offset; 3215 PreallocMode prealloc; 3216 Error **errp; 3217 int ret; 3218 } TruncateCo; 3219 3220 static void coroutine_fn bdrv_truncate_co_entry(void *opaque) 3221 { 3222 TruncateCo *tco = opaque; 3223 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc, 3224 tco->errp); 3225 aio_wait_kick(); 3226 } 3227 3228 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc, 3229 Error **errp) 3230 { 3231 Coroutine *co; 3232 TruncateCo tco = { 3233 .child = child, 3234 .offset = offset, 3235 .prealloc = prealloc, 3236 .errp = errp, 3237 .ret = NOT_DONE, 3238 }; 3239 3240 if (qemu_in_coroutine()) { 3241 /* Fast-path if already in coroutine context */ 3242 bdrv_truncate_co_entry(&tco); 3243 } else { 3244 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco); 3245 bdrv_coroutine_enter(child->bs, co); 3246 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE); 3247 } 3248 3249 return tco.ret; 3250 } 3251