1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "qemu/cutils.h" 33 #include "qapi/error.h" 34 #include "qemu/error-report.h" 35 #include "qemu/main-loop.h" 36 37 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 38 39 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 40 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 41 42 static void bdrv_parent_cb_resize(BlockDriverState *bs); 43 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 44 int64_t offset, int bytes, BdrvRequestFlags flags); 45 46 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 47 bool ignore_bds_parents) 48 { 49 BdrvChild *c, *next; 50 51 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 52 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 53 continue; 54 } 55 bdrv_parent_drained_begin_single(c, false); 56 } 57 } 58 59 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 60 int *drained_end_counter) 61 { 62 assert(c->parent_quiesce_counter > 0); 63 c->parent_quiesce_counter--; 64 if (c->role->drained_end) { 65 c->role->drained_end(c, drained_end_counter); 66 } 67 } 68 69 void bdrv_parent_drained_end_single(BdrvChild *c) 70 { 71 int drained_end_counter = 0; 72 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 73 BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0); 74 } 75 76 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 77 bool ignore_bds_parents, 78 int *drained_end_counter) 79 { 80 BdrvChild *c; 81 82 QLIST_FOREACH(c, &bs->parents, next_parent) { 83 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 84 continue; 85 } 86 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 87 } 88 } 89 90 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 91 { 92 if (c->role->drained_poll) { 93 return c->role->drained_poll(c); 94 } 95 return false; 96 } 97 98 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 99 bool ignore_bds_parents) 100 { 101 BdrvChild *c, *next; 102 bool busy = false; 103 104 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 105 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 106 continue; 107 } 108 busy |= bdrv_parent_drained_poll_single(c); 109 } 110 111 return busy; 112 } 113 114 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 115 { 116 c->parent_quiesce_counter++; 117 if (c->role->drained_begin) { 118 c->role->drained_begin(c); 119 } 120 if (poll) { 121 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 122 } 123 } 124 125 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 126 { 127 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 128 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 130 src->opt_mem_alignment); 131 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 132 src->min_mem_alignment); 133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 134 } 135 136 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 137 { 138 BlockDriver *drv = bs->drv; 139 Error *local_err = NULL; 140 141 memset(&bs->bl, 0, sizeof(bs->bl)); 142 143 if (!drv) { 144 return; 145 } 146 147 /* Default alignment based on whether driver has byte interface */ 148 bs->bl.request_alignment = (drv->bdrv_co_preadv || 149 drv->bdrv_aio_preadv) ? 1 : 512; 150 151 /* Take some limits from the children as a default */ 152 if (bs->file) { 153 bdrv_refresh_limits(bs->file->bs, &local_err); 154 if (local_err) { 155 error_propagate(errp, local_err); 156 return; 157 } 158 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 159 } else { 160 bs->bl.min_mem_alignment = 512; 161 bs->bl.opt_mem_alignment = getpagesize(); 162 163 /* Safe default since most protocols use readv()/writev()/etc */ 164 bs->bl.max_iov = IOV_MAX; 165 } 166 167 if (bs->backing) { 168 bdrv_refresh_limits(bs->backing->bs, &local_err); 169 if (local_err) { 170 error_propagate(errp, local_err); 171 return; 172 } 173 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 174 } 175 176 /* Then let the driver override it */ 177 if (drv->bdrv_refresh_limits) { 178 drv->bdrv_refresh_limits(bs, errp); 179 } 180 } 181 182 /** 183 * The copy-on-read flag is actually a reference count so multiple users may 184 * use the feature without worrying about clobbering its previous state. 185 * Copy-on-read stays enabled until all users have called to disable it. 186 */ 187 void bdrv_enable_copy_on_read(BlockDriverState *bs) 188 { 189 atomic_inc(&bs->copy_on_read); 190 } 191 192 void bdrv_disable_copy_on_read(BlockDriverState *bs) 193 { 194 int old = atomic_fetch_dec(&bs->copy_on_read); 195 assert(old >= 1); 196 } 197 198 typedef struct { 199 Coroutine *co; 200 BlockDriverState *bs; 201 bool done; 202 bool begin; 203 bool recursive; 204 bool poll; 205 BdrvChild *parent; 206 bool ignore_bds_parents; 207 int *drained_end_counter; 208 } BdrvCoDrainData; 209 210 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 211 { 212 BdrvCoDrainData *data = opaque; 213 BlockDriverState *bs = data->bs; 214 215 if (data->begin) { 216 bs->drv->bdrv_co_drain_begin(bs); 217 } else { 218 bs->drv->bdrv_co_drain_end(bs); 219 } 220 221 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 222 atomic_mb_set(&data->done, true); 223 if (!data->begin) { 224 atomic_dec(data->drained_end_counter); 225 } 226 bdrv_dec_in_flight(bs); 227 228 g_free(data); 229 } 230 231 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 232 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 233 int *drained_end_counter) 234 { 235 BdrvCoDrainData *data; 236 237 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 238 (!begin && !bs->drv->bdrv_co_drain_end)) { 239 return; 240 } 241 242 data = g_new(BdrvCoDrainData, 1); 243 *data = (BdrvCoDrainData) { 244 .bs = bs, 245 .done = false, 246 .begin = begin, 247 .drained_end_counter = drained_end_counter, 248 }; 249 250 if (!begin) { 251 atomic_inc(drained_end_counter); 252 } 253 254 /* Make sure the driver callback completes during the polling phase for 255 * drain_begin. */ 256 bdrv_inc_in_flight(bs); 257 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 258 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 259 } 260 261 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 262 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 263 BdrvChild *ignore_parent, bool ignore_bds_parents) 264 { 265 BdrvChild *child, *next; 266 267 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 268 return true; 269 } 270 271 if (atomic_read(&bs->in_flight)) { 272 return true; 273 } 274 275 if (recursive) { 276 assert(!ignore_bds_parents); 277 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 278 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 279 return true; 280 } 281 } 282 } 283 284 return false; 285 } 286 287 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 288 BdrvChild *ignore_parent) 289 { 290 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 291 } 292 293 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 294 BdrvChild *parent, bool ignore_bds_parents, 295 bool poll); 296 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 297 BdrvChild *parent, bool ignore_bds_parents, 298 int *drained_end_counter); 299 300 static void bdrv_co_drain_bh_cb(void *opaque) 301 { 302 BdrvCoDrainData *data = opaque; 303 Coroutine *co = data->co; 304 BlockDriverState *bs = data->bs; 305 306 if (bs) { 307 AioContext *ctx = bdrv_get_aio_context(bs); 308 AioContext *co_ctx = qemu_coroutine_get_aio_context(co); 309 310 /* 311 * When the coroutine yielded, the lock for its home context was 312 * released, so we need to re-acquire it here. If it explicitly 313 * acquired a different context, the lock is still held and we don't 314 * want to lock it a second time (or AIO_WAIT_WHILE() would hang). 315 */ 316 if (ctx == co_ctx) { 317 aio_context_acquire(ctx); 318 } 319 bdrv_dec_in_flight(bs); 320 if (data->begin) { 321 assert(!data->drained_end_counter); 322 bdrv_do_drained_begin(bs, data->recursive, data->parent, 323 data->ignore_bds_parents, data->poll); 324 } else { 325 assert(!data->poll); 326 bdrv_do_drained_end(bs, data->recursive, data->parent, 327 data->ignore_bds_parents, 328 data->drained_end_counter); 329 } 330 if (ctx == co_ctx) { 331 aio_context_release(ctx); 332 } 333 } else { 334 assert(data->begin); 335 bdrv_drain_all_begin(); 336 } 337 338 data->done = true; 339 aio_co_wake(co); 340 } 341 342 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 343 bool begin, bool recursive, 344 BdrvChild *parent, 345 bool ignore_bds_parents, 346 bool poll, 347 int *drained_end_counter) 348 { 349 BdrvCoDrainData data; 350 351 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 352 * other coroutines run if they were queued by aio_co_enter(). */ 353 354 assert(qemu_in_coroutine()); 355 data = (BdrvCoDrainData) { 356 .co = qemu_coroutine_self(), 357 .bs = bs, 358 .done = false, 359 .begin = begin, 360 .recursive = recursive, 361 .parent = parent, 362 .ignore_bds_parents = ignore_bds_parents, 363 .poll = poll, 364 .drained_end_counter = drained_end_counter, 365 }; 366 367 if (bs) { 368 bdrv_inc_in_flight(bs); 369 } 370 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 371 bdrv_co_drain_bh_cb, &data); 372 373 qemu_coroutine_yield(); 374 /* If we are resumed from some other event (such as an aio completion or a 375 * timer callback), it is a bug in the caller that should be fixed. */ 376 assert(data.done); 377 } 378 379 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 380 BdrvChild *parent, bool ignore_bds_parents) 381 { 382 assert(!qemu_in_coroutine()); 383 384 /* Stop things in parent-to-child order */ 385 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 386 aio_disable_external(bdrv_get_aio_context(bs)); 387 } 388 389 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 390 bdrv_drain_invoke(bs, true, NULL); 391 } 392 393 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 394 BdrvChild *parent, bool ignore_bds_parents, 395 bool poll) 396 { 397 BdrvChild *child, *next; 398 399 if (qemu_in_coroutine()) { 400 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 401 poll, NULL); 402 return; 403 } 404 405 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 406 407 if (recursive) { 408 assert(!ignore_bds_parents); 409 bs->recursive_quiesce_counter++; 410 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 411 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 412 false); 413 } 414 } 415 416 /* 417 * Wait for drained requests to finish. 418 * 419 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 420 * call is needed so things in this AioContext can make progress even 421 * though we don't return to the main AioContext loop - this automatically 422 * includes other nodes in the same AioContext and therefore all child 423 * nodes. 424 */ 425 if (poll) { 426 assert(!ignore_bds_parents); 427 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 428 } 429 } 430 431 void bdrv_drained_begin(BlockDriverState *bs) 432 { 433 bdrv_do_drained_begin(bs, false, NULL, false, true); 434 } 435 436 void bdrv_subtree_drained_begin(BlockDriverState *bs) 437 { 438 bdrv_do_drained_begin(bs, true, NULL, false, true); 439 } 440 441 /** 442 * This function does not poll, nor must any of its recursively called 443 * functions. The *drained_end_counter pointee will be incremented 444 * once for every background operation scheduled, and decremented once 445 * the operation settles. Therefore, the pointer must remain valid 446 * until the pointee reaches 0. That implies that whoever sets up the 447 * pointee has to poll until it is 0. 448 * 449 * We use atomic operations to access *drained_end_counter, because 450 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 451 * @bs may contain nodes in different AioContexts, 452 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 453 * regardless of which AioContext they are in. 454 */ 455 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 456 BdrvChild *parent, bool ignore_bds_parents, 457 int *drained_end_counter) 458 { 459 BdrvChild *child; 460 int old_quiesce_counter; 461 462 assert(drained_end_counter != NULL); 463 464 if (qemu_in_coroutine()) { 465 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 466 false, drained_end_counter); 467 return; 468 } 469 assert(bs->quiesce_counter > 0); 470 471 /* Re-enable things in child-to-parent order */ 472 bdrv_drain_invoke(bs, false, drained_end_counter); 473 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 474 drained_end_counter); 475 476 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter); 477 if (old_quiesce_counter == 1) { 478 aio_enable_external(bdrv_get_aio_context(bs)); 479 } 480 481 if (recursive) { 482 assert(!ignore_bds_parents); 483 bs->recursive_quiesce_counter--; 484 QLIST_FOREACH(child, &bs->children, next) { 485 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 486 drained_end_counter); 487 } 488 } 489 } 490 491 void bdrv_drained_end(BlockDriverState *bs) 492 { 493 int drained_end_counter = 0; 494 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 495 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0); 496 } 497 498 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 499 { 500 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 501 } 502 503 void bdrv_subtree_drained_end(BlockDriverState *bs) 504 { 505 int drained_end_counter = 0; 506 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 507 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0); 508 } 509 510 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 511 { 512 int i; 513 514 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 515 bdrv_do_drained_begin(child->bs, true, child, false, true); 516 } 517 } 518 519 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 520 { 521 int drained_end_counter = 0; 522 int i; 523 524 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 525 bdrv_do_drained_end(child->bs, true, child, false, 526 &drained_end_counter); 527 } 528 529 BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0); 530 } 531 532 /* 533 * Wait for pending requests to complete on a single BlockDriverState subtree, 534 * and suspend block driver's internal I/O until next request arrives. 535 * 536 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 537 * AioContext. 538 */ 539 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 540 { 541 assert(qemu_in_coroutine()); 542 bdrv_drained_begin(bs); 543 bdrv_drained_end(bs); 544 } 545 546 void bdrv_drain(BlockDriverState *bs) 547 { 548 bdrv_drained_begin(bs); 549 bdrv_drained_end(bs); 550 } 551 552 static void bdrv_drain_assert_idle(BlockDriverState *bs) 553 { 554 BdrvChild *child, *next; 555 556 assert(atomic_read(&bs->in_flight) == 0); 557 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 558 bdrv_drain_assert_idle(child->bs); 559 } 560 } 561 562 unsigned int bdrv_drain_all_count = 0; 563 564 static bool bdrv_drain_all_poll(void) 565 { 566 BlockDriverState *bs = NULL; 567 bool result = false; 568 569 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 570 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 571 while ((bs = bdrv_next_all_states(bs))) { 572 AioContext *aio_context = bdrv_get_aio_context(bs); 573 aio_context_acquire(aio_context); 574 result |= bdrv_drain_poll(bs, false, NULL, true); 575 aio_context_release(aio_context); 576 } 577 578 return result; 579 } 580 581 /* 582 * Wait for pending requests to complete across all BlockDriverStates 583 * 584 * This function does not flush data to disk, use bdrv_flush_all() for that 585 * after calling this function. 586 * 587 * This pauses all block jobs and disables external clients. It must 588 * be paired with bdrv_drain_all_end(). 589 * 590 * NOTE: no new block jobs or BlockDriverStates can be created between 591 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 592 */ 593 void bdrv_drain_all_begin(void) 594 { 595 BlockDriverState *bs = NULL; 596 597 if (qemu_in_coroutine()) { 598 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 599 return; 600 } 601 602 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 603 * loop AioContext, so make sure we're in the main context. */ 604 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 605 assert(bdrv_drain_all_count < INT_MAX); 606 bdrv_drain_all_count++; 607 608 /* Quiesce all nodes, without polling in-flight requests yet. The graph 609 * cannot change during this loop. */ 610 while ((bs = bdrv_next_all_states(bs))) { 611 AioContext *aio_context = bdrv_get_aio_context(bs); 612 613 aio_context_acquire(aio_context); 614 bdrv_do_drained_begin(bs, false, NULL, true, false); 615 aio_context_release(aio_context); 616 } 617 618 /* Now poll the in-flight requests */ 619 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 620 621 while ((bs = bdrv_next_all_states(bs))) { 622 bdrv_drain_assert_idle(bs); 623 } 624 } 625 626 void bdrv_drain_all_end(void) 627 { 628 BlockDriverState *bs = NULL; 629 int drained_end_counter = 0; 630 631 while ((bs = bdrv_next_all_states(bs))) { 632 AioContext *aio_context = bdrv_get_aio_context(bs); 633 634 aio_context_acquire(aio_context); 635 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 636 aio_context_release(aio_context); 637 } 638 639 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 640 AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0); 641 642 assert(bdrv_drain_all_count > 0); 643 bdrv_drain_all_count--; 644 } 645 646 void bdrv_drain_all(void) 647 { 648 bdrv_drain_all_begin(); 649 bdrv_drain_all_end(); 650 } 651 652 /** 653 * Remove an active request from the tracked requests list 654 * 655 * This function should be called when a tracked request is completing. 656 */ 657 static void tracked_request_end(BdrvTrackedRequest *req) 658 { 659 if (req->serialising) { 660 atomic_dec(&req->bs->serialising_in_flight); 661 } 662 663 qemu_co_mutex_lock(&req->bs->reqs_lock); 664 QLIST_REMOVE(req, list); 665 qemu_co_queue_restart_all(&req->wait_queue); 666 qemu_co_mutex_unlock(&req->bs->reqs_lock); 667 } 668 669 /** 670 * Add an active request to the tracked requests list 671 */ 672 static void tracked_request_begin(BdrvTrackedRequest *req, 673 BlockDriverState *bs, 674 int64_t offset, 675 uint64_t bytes, 676 enum BdrvTrackedRequestType type) 677 { 678 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes); 679 680 *req = (BdrvTrackedRequest){ 681 .bs = bs, 682 .offset = offset, 683 .bytes = bytes, 684 .type = type, 685 .co = qemu_coroutine_self(), 686 .serialising = false, 687 .overlap_offset = offset, 688 .overlap_bytes = bytes, 689 }; 690 691 qemu_co_queue_init(&req->wait_queue); 692 693 qemu_co_mutex_lock(&bs->reqs_lock); 694 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 695 qemu_co_mutex_unlock(&bs->reqs_lock); 696 } 697 698 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 699 { 700 int64_t overlap_offset = req->offset & ~(align - 1); 701 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 702 - overlap_offset; 703 704 if (!req->serialising) { 705 atomic_inc(&req->bs->serialising_in_flight); 706 req->serialising = true; 707 } 708 709 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 710 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 711 } 712 713 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req) 714 { 715 /* 716 * If the request is serialising, overlap_offset and overlap_bytes are set, 717 * so we can check if the request is aligned. Otherwise, don't care and 718 * return false. 719 */ 720 721 return req->serialising && (req->offset == req->overlap_offset) && 722 (req->bytes == req->overlap_bytes); 723 } 724 725 /** 726 * Round a region to cluster boundaries 727 */ 728 void bdrv_round_to_clusters(BlockDriverState *bs, 729 int64_t offset, int64_t bytes, 730 int64_t *cluster_offset, 731 int64_t *cluster_bytes) 732 { 733 BlockDriverInfo bdi; 734 735 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 736 *cluster_offset = offset; 737 *cluster_bytes = bytes; 738 } else { 739 int64_t c = bdi.cluster_size; 740 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 741 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 742 } 743 } 744 745 static int bdrv_get_cluster_size(BlockDriverState *bs) 746 { 747 BlockDriverInfo bdi; 748 int ret; 749 750 ret = bdrv_get_info(bs, &bdi); 751 if (ret < 0 || bdi.cluster_size == 0) { 752 return bs->bl.request_alignment; 753 } else { 754 return bdi.cluster_size; 755 } 756 } 757 758 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 759 int64_t offset, uint64_t bytes) 760 { 761 /* aaaa bbbb */ 762 if (offset >= req->overlap_offset + req->overlap_bytes) { 763 return false; 764 } 765 /* bbbb aaaa */ 766 if (req->overlap_offset >= offset + bytes) { 767 return false; 768 } 769 return true; 770 } 771 772 void bdrv_inc_in_flight(BlockDriverState *bs) 773 { 774 atomic_inc(&bs->in_flight); 775 } 776 777 void bdrv_wakeup(BlockDriverState *bs) 778 { 779 aio_wait_kick(); 780 } 781 782 void bdrv_dec_in_flight(BlockDriverState *bs) 783 { 784 atomic_dec(&bs->in_flight); 785 bdrv_wakeup(bs); 786 } 787 788 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 789 { 790 BlockDriverState *bs = self->bs; 791 BdrvTrackedRequest *req; 792 bool retry; 793 bool waited = false; 794 795 if (!atomic_read(&bs->serialising_in_flight)) { 796 return false; 797 } 798 799 do { 800 retry = false; 801 qemu_co_mutex_lock(&bs->reqs_lock); 802 QLIST_FOREACH(req, &bs->tracked_requests, list) { 803 if (req == self || (!req->serialising && !self->serialising)) { 804 continue; 805 } 806 if (tracked_request_overlaps(req, self->overlap_offset, 807 self->overlap_bytes)) 808 { 809 /* Hitting this means there was a reentrant request, for 810 * example, a block driver issuing nested requests. This must 811 * never happen since it means deadlock. 812 */ 813 assert(qemu_coroutine_self() != req->co); 814 815 /* If the request is already (indirectly) waiting for us, or 816 * will wait for us as soon as it wakes up, then just go on 817 * (instead of producing a deadlock in the former case). */ 818 if (!req->waiting_for) { 819 self->waiting_for = req; 820 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 821 self->waiting_for = NULL; 822 retry = true; 823 waited = true; 824 break; 825 } 826 } 827 } 828 qemu_co_mutex_unlock(&bs->reqs_lock); 829 } while (retry); 830 831 return waited; 832 } 833 834 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 835 size_t size) 836 { 837 if (size > BDRV_REQUEST_MAX_BYTES) { 838 return -EIO; 839 } 840 841 if (!bdrv_is_inserted(bs)) { 842 return -ENOMEDIUM; 843 } 844 845 if (offset < 0) { 846 return -EIO; 847 } 848 849 return 0; 850 } 851 852 typedef struct RwCo { 853 BdrvChild *child; 854 int64_t offset; 855 QEMUIOVector *qiov; 856 bool is_write; 857 int ret; 858 BdrvRequestFlags flags; 859 } RwCo; 860 861 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 862 { 863 RwCo *rwco = opaque; 864 865 if (!rwco->is_write) { 866 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 867 rwco->qiov->size, rwco->qiov, 868 rwco->flags); 869 } else { 870 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 871 rwco->qiov->size, rwco->qiov, 872 rwco->flags); 873 } 874 aio_wait_kick(); 875 } 876 877 /* 878 * Process a vectored synchronous request using coroutines 879 */ 880 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 881 QEMUIOVector *qiov, bool is_write, 882 BdrvRequestFlags flags) 883 { 884 Coroutine *co; 885 RwCo rwco = { 886 .child = child, 887 .offset = offset, 888 .qiov = qiov, 889 .is_write = is_write, 890 .ret = NOT_DONE, 891 .flags = flags, 892 }; 893 894 if (qemu_in_coroutine()) { 895 /* Fast-path if already in coroutine context */ 896 bdrv_rw_co_entry(&rwco); 897 } else { 898 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 899 bdrv_coroutine_enter(child->bs, co); 900 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 901 } 902 return rwco.ret; 903 } 904 905 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 906 int bytes, BdrvRequestFlags flags) 907 { 908 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes); 909 910 return bdrv_prwv_co(child, offset, &qiov, true, 911 BDRV_REQ_ZERO_WRITE | flags); 912 } 913 914 /* 915 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 916 * The operation is sped up by checking the block status and only writing 917 * zeroes to the device if they currently do not return zeroes. Optional 918 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 919 * BDRV_REQ_FUA). 920 * 921 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 922 */ 923 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 924 { 925 int ret; 926 int64_t target_size, bytes, offset = 0; 927 BlockDriverState *bs = child->bs; 928 929 target_size = bdrv_getlength(bs); 930 if (target_size < 0) { 931 return target_size; 932 } 933 934 for (;;) { 935 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 936 if (bytes <= 0) { 937 return 0; 938 } 939 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 940 if (ret < 0) { 941 return ret; 942 } 943 if (ret & BDRV_BLOCK_ZERO) { 944 offset += bytes; 945 continue; 946 } 947 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 948 if (ret < 0) { 949 return ret; 950 } 951 offset += bytes; 952 } 953 } 954 955 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 956 { 957 int ret; 958 959 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 960 if (ret < 0) { 961 return ret; 962 } 963 964 return qiov->size; 965 } 966 967 /* See bdrv_pwrite() for the return codes */ 968 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 969 { 970 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 971 972 if (bytes < 0) { 973 return -EINVAL; 974 } 975 976 return bdrv_preadv(child, offset, &qiov); 977 } 978 979 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 980 { 981 int ret; 982 983 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 984 if (ret < 0) { 985 return ret; 986 } 987 988 return qiov->size; 989 } 990 991 /* Return no. of bytes on success or < 0 on error. Important errors are: 992 -EIO generic I/O error (may happen for all errors) 993 -ENOMEDIUM No media inserted. 994 -EINVAL Invalid offset or number of bytes 995 -EACCES Trying to write a read-only device 996 */ 997 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 998 { 999 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1000 1001 if (bytes < 0) { 1002 return -EINVAL; 1003 } 1004 1005 return bdrv_pwritev(child, offset, &qiov); 1006 } 1007 1008 /* 1009 * Writes to the file and ensures that no writes are reordered across this 1010 * request (acts as a barrier) 1011 * 1012 * Returns 0 on success, -errno in error cases. 1013 */ 1014 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1015 const void *buf, int count) 1016 { 1017 int ret; 1018 1019 ret = bdrv_pwrite(child, offset, buf, count); 1020 if (ret < 0) { 1021 return ret; 1022 } 1023 1024 ret = bdrv_flush(child->bs); 1025 if (ret < 0) { 1026 return ret; 1027 } 1028 1029 return 0; 1030 } 1031 1032 typedef struct CoroutineIOCompletion { 1033 Coroutine *coroutine; 1034 int ret; 1035 } CoroutineIOCompletion; 1036 1037 static void bdrv_co_io_em_complete(void *opaque, int ret) 1038 { 1039 CoroutineIOCompletion *co = opaque; 1040 1041 co->ret = ret; 1042 aio_co_wake(co->coroutine); 1043 } 1044 1045 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1046 uint64_t offset, uint64_t bytes, 1047 QEMUIOVector *qiov, int flags) 1048 { 1049 BlockDriver *drv = bs->drv; 1050 int64_t sector_num; 1051 unsigned int nb_sectors; 1052 1053 assert(!(flags & ~BDRV_REQ_MASK)); 1054 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1055 1056 if (!drv) { 1057 return -ENOMEDIUM; 1058 } 1059 1060 if (drv->bdrv_co_preadv) { 1061 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1062 } 1063 1064 if (drv->bdrv_aio_preadv) { 1065 BlockAIOCB *acb; 1066 CoroutineIOCompletion co = { 1067 .coroutine = qemu_coroutine_self(), 1068 }; 1069 1070 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1071 bdrv_co_io_em_complete, &co); 1072 if (acb == NULL) { 1073 return -EIO; 1074 } else { 1075 qemu_coroutine_yield(); 1076 return co.ret; 1077 } 1078 } 1079 1080 sector_num = offset >> BDRV_SECTOR_BITS; 1081 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1082 1083 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1084 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1085 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1086 assert(drv->bdrv_co_readv); 1087 1088 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1089 } 1090 1091 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1092 uint64_t offset, uint64_t bytes, 1093 QEMUIOVector *qiov, int flags) 1094 { 1095 BlockDriver *drv = bs->drv; 1096 int64_t sector_num; 1097 unsigned int nb_sectors; 1098 int ret; 1099 1100 assert(!(flags & ~BDRV_REQ_MASK)); 1101 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1102 1103 if (!drv) { 1104 return -ENOMEDIUM; 1105 } 1106 1107 if (drv->bdrv_co_pwritev) { 1108 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1109 flags & bs->supported_write_flags); 1110 flags &= ~bs->supported_write_flags; 1111 goto emulate_flags; 1112 } 1113 1114 if (drv->bdrv_aio_pwritev) { 1115 BlockAIOCB *acb; 1116 CoroutineIOCompletion co = { 1117 .coroutine = qemu_coroutine_self(), 1118 }; 1119 1120 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1121 flags & bs->supported_write_flags, 1122 bdrv_co_io_em_complete, &co); 1123 flags &= ~bs->supported_write_flags; 1124 if (acb == NULL) { 1125 ret = -EIO; 1126 } else { 1127 qemu_coroutine_yield(); 1128 ret = co.ret; 1129 } 1130 goto emulate_flags; 1131 } 1132 1133 sector_num = offset >> BDRV_SECTOR_BITS; 1134 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1135 1136 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1137 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1138 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1139 1140 assert(drv->bdrv_co_writev); 1141 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1142 flags & bs->supported_write_flags); 1143 flags &= ~bs->supported_write_flags; 1144 1145 emulate_flags: 1146 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1147 ret = bdrv_co_flush(bs); 1148 } 1149 1150 return ret; 1151 } 1152 1153 static int coroutine_fn 1154 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 1155 uint64_t bytes, QEMUIOVector *qiov) 1156 { 1157 BlockDriver *drv = bs->drv; 1158 1159 if (!drv) { 1160 return -ENOMEDIUM; 1161 } 1162 1163 if (!drv->bdrv_co_pwritev_compressed) { 1164 return -ENOTSUP; 1165 } 1166 1167 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1168 } 1169 1170 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1171 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 1172 { 1173 BlockDriverState *bs = child->bs; 1174 1175 /* Perform I/O through a temporary buffer so that users who scribble over 1176 * their read buffer while the operation is in progress do not end up 1177 * modifying the image file. This is critical for zero-copy guest I/O 1178 * where anything might happen inside guest memory. 1179 */ 1180 void *bounce_buffer; 1181 1182 BlockDriver *drv = bs->drv; 1183 QEMUIOVector local_qiov; 1184 int64_t cluster_offset; 1185 int64_t cluster_bytes; 1186 size_t skip_bytes; 1187 int ret; 1188 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1189 BDRV_REQUEST_MAX_BYTES); 1190 unsigned int progress = 0; 1191 1192 if (!drv) { 1193 return -ENOMEDIUM; 1194 } 1195 1196 /* FIXME We cannot require callers to have write permissions when all they 1197 * are doing is a read request. If we did things right, write permissions 1198 * would be obtained anyway, but internally by the copy-on-read code. As 1199 * long as it is implemented here rather than in a separate filter driver, 1200 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1201 * it could request permissions. Therefore we have to bypass the permission 1202 * system for the moment. */ 1203 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1204 1205 /* Cover entire cluster so no additional backing file I/O is required when 1206 * allocating cluster in the image file. Note that this value may exceed 1207 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1208 * is one reason we loop rather than doing it all at once. 1209 */ 1210 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1211 skip_bytes = offset - cluster_offset; 1212 1213 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1214 cluster_offset, cluster_bytes); 1215 1216 bounce_buffer = qemu_try_blockalign(bs, 1217 MIN(MIN(max_transfer, cluster_bytes), 1218 MAX_BOUNCE_BUFFER)); 1219 if (bounce_buffer == NULL) { 1220 ret = -ENOMEM; 1221 goto err; 1222 } 1223 1224 while (cluster_bytes) { 1225 int64_t pnum; 1226 1227 ret = bdrv_is_allocated(bs, cluster_offset, 1228 MIN(cluster_bytes, max_transfer), &pnum); 1229 if (ret < 0) { 1230 /* Safe to treat errors in querying allocation as if 1231 * unallocated; we'll probably fail again soon on the 1232 * read, but at least that will set a decent errno. 1233 */ 1234 pnum = MIN(cluster_bytes, max_transfer); 1235 } 1236 1237 /* Stop at EOF if the image ends in the middle of the cluster */ 1238 if (ret == 0 && pnum == 0) { 1239 assert(progress >= bytes); 1240 break; 1241 } 1242 1243 assert(skip_bytes < pnum); 1244 1245 if (ret <= 0) { 1246 /* Must copy-on-read; use the bounce buffer */ 1247 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1248 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1249 1250 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1251 &local_qiov, 0); 1252 if (ret < 0) { 1253 goto err; 1254 } 1255 1256 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1257 if (drv->bdrv_co_pwrite_zeroes && 1258 buffer_is_zero(bounce_buffer, pnum)) { 1259 /* FIXME: Should we (perhaps conditionally) be setting 1260 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1261 * that still correctly reads as zero? */ 1262 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1263 BDRV_REQ_WRITE_UNCHANGED); 1264 } else { 1265 /* This does not change the data on the disk, it is not 1266 * necessary to flush even in cache=writethrough mode. 1267 */ 1268 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1269 &local_qiov, 1270 BDRV_REQ_WRITE_UNCHANGED); 1271 } 1272 1273 if (ret < 0) { 1274 /* It might be okay to ignore write errors for guest 1275 * requests. If this is a deliberate copy-on-read 1276 * then we don't want to ignore the error. Simply 1277 * report it in all cases. 1278 */ 1279 goto err; 1280 } 1281 1282 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes, 1283 pnum - skip_bytes); 1284 } else { 1285 /* Read directly into the destination */ 1286 qemu_iovec_init(&local_qiov, qiov->niov); 1287 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes); 1288 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size, 1289 &local_qiov, 0); 1290 qemu_iovec_destroy(&local_qiov); 1291 if (ret < 0) { 1292 goto err; 1293 } 1294 } 1295 1296 cluster_offset += pnum; 1297 cluster_bytes -= pnum; 1298 progress += pnum - skip_bytes; 1299 skip_bytes = 0; 1300 } 1301 ret = 0; 1302 1303 err: 1304 qemu_vfree(bounce_buffer); 1305 return ret; 1306 } 1307 1308 /* 1309 * Forwards an already correctly aligned request to the BlockDriver. This 1310 * handles copy on read, zeroing after EOF, and fragmentation of large 1311 * reads; any other features must be implemented by the caller. 1312 */ 1313 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1314 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1315 int64_t align, QEMUIOVector *qiov, int flags) 1316 { 1317 BlockDriverState *bs = child->bs; 1318 int64_t total_bytes, max_bytes; 1319 int ret = 0; 1320 uint64_t bytes_remaining = bytes; 1321 int max_transfer; 1322 1323 assert(is_power_of_2(align)); 1324 assert((offset & (align - 1)) == 0); 1325 assert((bytes & (align - 1)) == 0); 1326 assert(!qiov || bytes == qiov->size); 1327 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1328 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1329 align); 1330 1331 /* TODO: We would need a per-BDS .supported_read_flags and 1332 * potential fallback support, if we ever implement any read flags 1333 * to pass through to drivers. For now, there aren't any 1334 * passthrough flags. */ 1335 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 1336 1337 /* Handle Copy on Read and associated serialisation */ 1338 if (flags & BDRV_REQ_COPY_ON_READ) { 1339 /* If we touch the same cluster it counts as an overlap. This 1340 * guarantees that allocating writes will be serialized and not race 1341 * with each other for the same cluster. For example, in copy-on-read 1342 * it ensures that the CoR read and write operations are atomic and 1343 * guest writes cannot interleave between them. */ 1344 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1345 } 1346 1347 /* BDRV_REQ_SERIALISING is only for write operation */ 1348 assert(!(flags & BDRV_REQ_SERIALISING)); 1349 1350 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1351 wait_serialising_requests(req); 1352 } 1353 1354 if (flags & BDRV_REQ_COPY_ON_READ) { 1355 int64_t pnum; 1356 1357 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1358 if (ret < 0) { 1359 goto out; 1360 } 1361 1362 if (!ret || pnum != bytes) { 1363 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); 1364 goto out; 1365 } 1366 } 1367 1368 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1369 total_bytes = bdrv_getlength(bs); 1370 if (total_bytes < 0) { 1371 ret = total_bytes; 1372 goto out; 1373 } 1374 1375 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1376 if (bytes <= max_bytes && bytes <= max_transfer) { 1377 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1378 goto out; 1379 } 1380 1381 while (bytes_remaining) { 1382 int num; 1383 1384 if (max_bytes) { 1385 QEMUIOVector local_qiov; 1386 1387 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1388 assert(num); 1389 qemu_iovec_init(&local_qiov, qiov->niov); 1390 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1391 1392 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1393 num, &local_qiov, 0); 1394 max_bytes -= num; 1395 qemu_iovec_destroy(&local_qiov); 1396 } else { 1397 num = bytes_remaining; 1398 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1399 bytes_remaining); 1400 } 1401 if (ret < 0) { 1402 goto out; 1403 } 1404 bytes_remaining -= num; 1405 } 1406 1407 out: 1408 return ret < 0 ? ret : 0; 1409 } 1410 1411 /* 1412 * Handle a read request in coroutine context 1413 */ 1414 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1415 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1416 BdrvRequestFlags flags) 1417 { 1418 BlockDriverState *bs = child->bs; 1419 BlockDriver *drv = bs->drv; 1420 BdrvTrackedRequest req; 1421 1422 uint64_t align = bs->bl.request_alignment; 1423 uint8_t *head_buf = NULL; 1424 uint8_t *tail_buf = NULL; 1425 QEMUIOVector local_qiov; 1426 bool use_local_qiov = false; 1427 int ret; 1428 1429 trace_bdrv_co_preadv(child->bs, offset, bytes, flags); 1430 1431 if (!drv) { 1432 return -ENOMEDIUM; 1433 } 1434 1435 ret = bdrv_check_byte_request(bs, offset, bytes); 1436 if (ret < 0) { 1437 return ret; 1438 } 1439 1440 bdrv_inc_in_flight(bs); 1441 1442 /* Don't do copy-on-read if we read data before write operation */ 1443 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1444 flags |= BDRV_REQ_COPY_ON_READ; 1445 } 1446 1447 /* Align read if necessary by padding qiov */ 1448 if (offset & (align - 1)) { 1449 head_buf = qemu_blockalign(bs, align); 1450 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1451 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1452 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1453 use_local_qiov = true; 1454 1455 bytes += offset & (align - 1); 1456 offset = offset & ~(align - 1); 1457 } 1458 1459 if ((offset + bytes) & (align - 1)) { 1460 if (!use_local_qiov) { 1461 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1462 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1463 use_local_qiov = true; 1464 } 1465 tail_buf = qemu_blockalign(bs, align); 1466 qemu_iovec_add(&local_qiov, tail_buf, 1467 align - ((offset + bytes) & (align - 1))); 1468 1469 bytes = ROUND_UP(bytes, align); 1470 } 1471 1472 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1473 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1474 use_local_qiov ? &local_qiov : qiov, 1475 flags); 1476 tracked_request_end(&req); 1477 bdrv_dec_in_flight(bs); 1478 1479 if (use_local_qiov) { 1480 qemu_iovec_destroy(&local_qiov); 1481 qemu_vfree(head_buf); 1482 qemu_vfree(tail_buf); 1483 } 1484 1485 return ret; 1486 } 1487 1488 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1489 int64_t offset, int bytes, BdrvRequestFlags flags) 1490 { 1491 BlockDriver *drv = bs->drv; 1492 QEMUIOVector qiov; 1493 void *buf = NULL; 1494 int ret = 0; 1495 bool need_flush = false; 1496 int head = 0; 1497 int tail = 0; 1498 1499 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1500 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1501 bs->bl.request_alignment); 1502 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1503 1504 if (!drv) { 1505 return -ENOMEDIUM; 1506 } 1507 1508 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1509 return -ENOTSUP; 1510 } 1511 1512 assert(alignment % bs->bl.request_alignment == 0); 1513 head = offset % alignment; 1514 tail = (offset + bytes) % alignment; 1515 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1516 assert(max_write_zeroes >= bs->bl.request_alignment); 1517 1518 while (bytes > 0 && !ret) { 1519 int num = bytes; 1520 1521 /* Align request. Block drivers can expect the "bulk" of the request 1522 * to be aligned, and that unaligned requests do not cross cluster 1523 * boundaries. 1524 */ 1525 if (head) { 1526 /* Make a small request up to the first aligned sector. For 1527 * convenience, limit this request to max_transfer even if 1528 * we don't need to fall back to writes. */ 1529 num = MIN(MIN(bytes, max_transfer), alignment - head); 1530 head = (head + num) % alignment; 1531 assert(num < max_write_zeroes); 1532 } else if (tail && num > alignment) { 1533 /* Shorten the request to the last aligned sector. */ 1534 num -= tail; 1535 } 1536 1537 /* limit request size */ 1538 if (num > max_write_zeroes) { 1539 num = max_write_zeroes; 1540 } 1541 1542 ret = -ENOTSUP; 1543 /* First try the efficient write zeroes operation */ 1544 if (drv->bdrv_co_pwrite_zeroes) { 1545 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1546 flags & bs->supported_zero_flags); 1547 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1548 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1549 need_flush = true; 1550 } 1551 } else { 1552 assert(!bs->supported_zero_flags); 1553 } 1554 1555 if (ret < 0 && !(flags & BDRV_REQ_NO_FALLBACK)) { 1556 /* Fall back to bounce buffer if write zeroes is unsupported */ 1557 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1558 1559 if ((flags & BDRV_REQ_FUA) && 1560 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1561 /* No need for bdrv_driver_pwrite() to do a fallback 1562 * flush on each chunk; use just one at the end */ 1563 write_flags &= ~BDRV_REQ_FUA; 1564 need_flush = true; 1565 } 1566 num = MIN(num, max_transfer); 1567 if (buf == NULL) { 1568 buf = qemu_try_blockalign0(bs, num); 1569 if (buf == NULL) { 1570 ret = -ENOMEM; 1571 goto fail; 1572 } 1573 } 1574 qemu_iovec_init_buf(&qiov, buf, num); 1575 1576 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1577 1578 /* Keep bounce buffer around if it is big enough for all 1579 * all future requests. 1580 */ 1581 if (num < max_transfer) { 1582 qemu_vfree(buf); 1583 buf = NULL; 1584 } 1585 } 1586 1587 offset += num; 1588 bytes -= num; 1589 } 1590 1591 fail: 1592 if (ret == 0 && need_flush) { 1593 ret = bdrv_co_flush(bs); 1594 } 1595 qemu_vfree(buf); 1596 return ret; 1597 } 1598 1599 static inline int coroutine_fn 1600 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes, 1601 BdrvTrackedRequest *req, int flags) 1602 { 1603 BlockDriverState *bs = child->bs; 1604 bool waited; 1605 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1606 1607 if (bs->read_only) { 1608 return -EPERM; 1609 } 1610 1611 /* BDRV_REQ_NO_SERIALISING is only for read operation */ 1612 assert(!(flags & BDRV_REQ_NO_SERIALISING)); 1613 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1614 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1615 assert(!(flags & ~BDRV_REQ_MASK)); 1616 1617 if (flags & BDRV_REQ_SERIALISING) { 1618 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1619 } 1620 1621 waited = wait_serialising_requests(req); 1622 1623 assert(!waited || !req->serialising || 1624 is_request_serialising_and_aligned(req)); 1625 assert(req->overlap_offset <= offset); 1626 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1627 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1628 1629 switch (req->type) { 1630 case BDRV_TRACKED_WRITE: 1631 case BDRV_TRACKED_DISCARD: 1632 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1633 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1634 } else { 1635 assert(child->perm & BLK_PERM_WRITE); 1636 } 1637 return notifier_with_return_list_notify(&bs->before_write_notifiers, 1638 req); 1639 case BDRV_TRACKED_TRUNCATE: 1640 assert(child->perm & BLK_PERM_RESIZE); 1641 return 0; 1642 default: 1643 abort(); 1644 } 1645 } 1646 1647 static inline void coroutine_fn 1648 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes, 1649 BdrvTrackedRequest *req, int ret) 1650 { 1651 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1652 BlockDriverState *bs = child->bs; 1653 1654 atomic_inc(&bs->write_gen); 1655 1656 /* 1657 * Discard cannot extend the image, but in error handling cases, such as 1658 * when reverting a qcow2 cluster allocation, the discarded range can pass 1659 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1660 * here. Instead, just skip it, since semantically a discard request 1661 * beyond EOF cannot expand the image anyway. 1662 */ 1663 if (ret == 0 && 1664 (req->type == BDRV_TRACKED_TRUNCATE || 1665 end_sector > bs->total_sectors) && 1666 req->type != BDRV_TRACKED_DISCARD) { 1667 bs->total_sectors = end_sector; 1668 bdrv_parent_cb_resize(bs); 1669 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1670 } 1671 if (req->bytes) { 1672 switch (req->type) { 1673 case BDRV_TRACKED_WRITE: 1674 stat64_max(&bs->wr_highest_offset, offset + bytes); 1675 /* fall through, to set dirty bits */ 1676 case BDRV_TRACKED_DISCARD: 1677 bdrv_set_dirty(bs, offset, bytes); 1678 break; 1679 default: 1680 break; 1681 } 1682 } 1683 } 1684 1685 /* 1686 * Forwards an already correctly aligned write request to the BlockDriver, 1687 * after possibly fragmenting it. 1688 */ 1689 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1690 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1691 int64_t align, QEMUIOVector *qiov, int flags) 1692 { 1693 BlockDriverState *bs = child->bs; 1694 BlockDriver *drv = bs->drv; 1695 int ret; 1696 1697 uint64_t bytes_remaining = bytes; 1698 int max_transfer; 1699 1700 if (!drv) { 1701 return -ENOMEDIUM; 1702 } 1703 1704 if (bdrv_has_readonly_bitmaps(bs)) { 1705 return -EPERM; 1706 } 1707 1708 assert(is_power_of_2(align)); 1709 assert((offset & (align - 1)) == 0); 1710 assert((bytes & (align - 1)) == 0); 1711 assert(!qiov || bytes == qiov->size); 1712 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1713 align); 1714 1715 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1716 1717 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1718 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1719 qemu_iovec_is_zero(qiov)) { 1720 flags |= BDRV_REQ_ZERO_WRITE; 1721 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1722 flags |= BDRV_REQ_MAY_UNMAP; 1723 } 1724 } 1725 1726 if (ret < 0) { 1727 /* Do nothing, write notifier decided to fail this request */ 1728 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1729 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1730 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1731 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1732 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1733 } else if (bytes <= max_transfer) { 1734 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1735 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1736 } else { 1737 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1738 while (bytes_remaining) { 1739 int num = MIN(bytes_remaining, max_transfer); 1740 QEMUIOVector local_qiov; 1741 int local_flags = flags; 1742 1743 assert(num); 1744 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1745 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1746 /* If FUA is going to be emulated by flush, we only 1747 * need to flush on the last iteration */ 1748 local_flags &= ~BDRV_REQ_FUA; 1749 } 1750 qemu_iovec_init(&local_qiov, qiov->niov); 1751 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1752 1753 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1754 num, &local_qiov, local_flags); 1755 qemu_iovec_destroy(&local_qiov); 1756 if (ret < 0) { 1757 break; 1758 } 1759 bytes_remaining -= num; 1760 } 1761 } 1762 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1763 1764 if (ret >= 0) { 1765 ret = 0; 1766 } 1767 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 1768 1769 return ret; 1770 } 1771 1772 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1773 int64_t offset, 1774 unsigned int bytes, 1775 BdrvRequestFlags flags, 1776 BdrvTrackedRequest *req) 1777 { 1778 BlockDriverState *bs = child->bs; 1779 uint8_t *buf = NULL; 1780 QEMUIOVector local_qiov; 1781 uint64_t align = bs->bl.request_alignment; 1782 unsigned int head_padding_bytes, tail_padding_bytes; 1783 int ret = 0; 1784 1785 head_padding_bytes = offset & (align - 1); 1786 tail_padding_bytes = (align - (offset + bytes)) & (align - 1); 1787 1788 1789 assert(flags & BDRV_REQ_ZERO_WRITE); 1790 if (head_padding_bytes || tail_padding_bytes) { 1791 buf = qemu_blockalign(bs, align); 1792 qemu_iovec_init_buf(&local_qiov, buf, align); 1793 } 1794 if (head_padding_bytes) { 1795 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1796 1797 /* RMW the unaligned part before head. */ 1798 mark_request_serialising(req, align); 1799 wait_serialising_requests(req); 1800 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1801 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1802 align, &local_qiov, 0); 1803 if (ret < 0) { 1804 goto fail; 1805 } 1806 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1807 1808 memset(buf + head_padding_bytes, 0, zero_bytes); 1809 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1810 align, &local_qiov, 1811 flags & ~BDRV_REQ_ZERO_WRITE); 1812 if (ret < 0) { 1813 goto fail; 1814 } 1815 offset += zero_bytes; 1816 bytes -= zero_bytes; 1817 } 1818 1819 assert(!bytes || (offset & (align - 1)) == 0); 1820 if (bytes >= align) { 1821 /* Write the aligned part in the middle. */ 1822 uint64_t aligned_bytes = bytes & ~(align - 1); 1823 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1824 NULL, flags); 1825 if (ret < 0) { 1826 goto fail; 1827 } 1828 bytes -= aligned_bytes; 1829 offset += aligned_bytes; 1830 } 1831 1832 assert(!bytes || (offset & (align - 1)) == 0); 1833 if (bytes) { 1834 assert(align == tail_padding_bytes + bytes); 1835 /* RMW the unaligned part after tail. */ 1836 mark_request_serialising(req, align); 1837 wait_serialising_requests(req); 1838 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1839 ret = bdrv_aligned_preadv(child, req, offset, align, 1840 align, &local_qiov, 0); 1841 if (ret < 0) { 1842 goto fail; 1843 } 1844 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1845 1846 memset(buf, 0, bytes); 1847 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1848 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1849 } 1850 fail: 1851 qemu_vfree(buf); 1852 return ret; 1853 1854 } 1855 1856 /* 1857 * Handle a write request in coroutine context 1858 */ 1859 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1860 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1861 BdrvRequestFlags flags) 1862 { 1863 BlockDriverState *bs = child->bs; 1864 BdrvTrackedRequest req; 1865 uint64_t align = bs->bl.request_alignment; 1866 uint8_t *head_buf = NULL; 1867 uint8_t *tail_buf = NULL; 1868 QEMUIOVector local_qiov; 1869 bool use_local_qiov = false; 1870 int ret; 1871 1872 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 1873 1874 if (!bs->drv) { 1875 return -ENOMEDIUM; 1876 } 1877 1878 ret = bdrv_check_byte_request(bs, offset, bytes); 1879 if (ret < 0) { 1880 return ret; 1881 } 1882 1883 bdrv_inc_in_flight(bs); 1884 /* 1885 * Align write if necessary by performing a read-modify-write cycle. 1886 * Pad qiov with the read parts and be sure to have a tracked request not 1887 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1888 */ 1889 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1890 1891 if (flags & BDRV_REQ_ZERO_WRITE) { 1892 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1893 goto out; 1894 } 1895 1896 if (offset & (align - 1)) { 1897 QEMUIOVector head_qiov; 1898 1899 mark_request_serialising(&req, align); 1900 wait_serialising_requests(&req); 1901 1902 head_buf = qemu_blockalign(bs, align); 1903 qemu_iovec_init_buf(&head_qiov, head_buf, align); 1904 1905 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1906 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1907 align, &head_qiov, 0); 1908 if (ret < 0) { 1909 goto fail; 1910 } 1911 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1912 1913 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1914 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1915 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1916 use_local_qiov = true; 1917 1918 bytes += offset & (align - 1); 1919 offset = offset & ~(align - 1); 1920 1921 /* We have read the tail already if the request is smaller 1922 * than one aligned block. 1923 */ 1924 if (bytes < align) { 1925 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1926 bytes = align; 1927 } 1928 } 1929 1930 if ((offset + bytes) & (align - 1)) { 1931 QEMUIOVector tail_qiov; 1932 size_t tail_bytes; 1933 bool waited; 1934 1935 mark_request_serialising(&req, align); 1936 waited = wait_serialising_requests(&req); 1937 assert(!waited || !use_local_qiov); 1938 1939 tail_buf = qemu_blockalign(bs, align); 1940 qemu_iovec_init_buf(&tail_qiov, tail_buf, align); 1941 1942 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1943 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1944 align, align, &tail_qiov, 0); 1945 if (ret < 0) { 1946 goto fail; 1947 } 1948 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1949 1950 if (!use_local_qiov) { 1951 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1952 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1953 use_local_qiov = true; 1954 } 1955 1956 tail_bytes = (offset + bytes) & (align - 1); 1957 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1958 1959 bytes = ROUND_UP(bytes, align); 1960 } 1961 1962 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1963 use_local_qiov ? &local_qiov : qiov, 1964 flags); 1965 1966 fail: 1967 1968 if (use_local_qiov) { 1969 qemu_iovec_destroy(&local_qiov); 1970 } 1971 qemu_vfree(head_buf); 1972 qemu_vfree(tail_buf); 1973 out: 1974 tracked_request_end(&req); 1975 bdrv_dec_in_flight(bs); 1976 return ret; 1977 } 1978 1979 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1980 int bytes, BdrvRequestFlags flags) 1981 { 1982 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 1983 1984 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1985 flags &= ~BDRV_REQ_MAY_UNMAP; 1986 } 1987 1988 return bdrv_co_pwritev(child, offset, bytes, NULL, 1989 BDRV_REQ_ZERO_WRITE | flags); 1990 } 1991 1992 /* 1993 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1994 */ 1995 int bdrv_flush_all(void) 1996 { 1997 BdrvNextIterator it; 1998 BlockDriverState *bs = NULL; 1999 int result = 0; 2000 2001 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2002 AioContext *aio_context = bdrv_get_aio_context(bs); 2003 int ret; 2004 2005 aio_context_acquire(aio_context); 2006 ret = bdrv_flush(bs); 2007 if (ret < 0 && !result) { 2008 result = ret; 2009 } 2010 aio_context_release(aio_context); 2011 } 2012 2013 return result; 2014 } 2015 2016 2017 typedef struct BdrvCoBlockStatusData { 2018 BlockDriverState *bs; 2019 BlockDriverState *base; 2020 bool want_zero; 2021 int64_t offset; 2022 int64_t bytes; 2023 int64_t *pnum; 2024 int64_t *map; 2025 BlockDriverState **file; 2026 int ret; 2027 bool done; 2028 } BdrvCoBlockStatusData; 2029 2030 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs, 2031 bool want_zero, 2032 int64_t offset, 2033 int64_t bytes, 2034 int64_t *pnum, 2035 int64_t *map, 2036 BlockDriverState **file) 2037 { 2038 assert(bs->file && bs->file->bs); 2039 *pnum = bytes; 2040 *map = offset; 2041 *file = bs->file->bs; 2042 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2043 } 2044 2045 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs, 2046 bool want_zero, 2047 int64_t offset, 2048 int64_t bytes, 2049 int64_t *pnum, 2050 int64_t *map, 2051 BlockDriverState **file) 2052 { 2053 assert(bs->backing && bs->backing->bs); 2054 *pnum = bytes; 2055 *map = offset; 2056 *file = bs->backing->bs; 2057 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2058 } 2059 2060 /* 2061 * Returns the allocation status of the specified sectors. 2062 * Drivers not implementing the functionality are assumed to not support 2063 * backing files, hence all their sectors are reported as allocated. 2064 * 2065 * If 'want_zero' is true, the caller is querying for mapping 2066 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2067 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2068 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2069 * 2070 * If 'offset' is beyond the end of the disk image the return value is 2071 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2072 * 2073 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2074 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2075 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2076 * 2077 * 'pnum' is set to the number of bytes (including and immediately 2078 * following the specified offset) that are easily known to be in the 2079 * same allocated/unallocated state. Note that a second call starting 2080 * at the original offset plus returned pnum may have the same status. 2081 * The returned value is non-zero on success except at end-of-file. 2082 * 2083 * Returns negative errno on failure. Otherwise, if the 2084 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2085 * set to the host mapping and BDS corresponding to the guest offset. 2086 */ 2087 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2088 bool want_zero, 2089 int64_t offset, int64_t bytes, 2090 int64_t *pnum, int64_t *map, 2091 BlockDriverState **file) 2092 { 2093 int64_t total_size; 2094 int64_t n; /* bytes */ 2095 int ret; 2096 int64_t local_map = 0; 2097 BlockDriverState *local_file = NULL; 2098 int64_t aligned_offset, aligned_bytes; 2099 uint32_t align; 2100 2101 assert(pnum); 2102 *pnum = 0; 2103 total_size = bdrv_getlength(bs); 2104 if (total_size < 0) { 2105 ret = total_size; 2106 goto early_out; 2107 } 2108 2109 if (offset >= total_size) { 2110 ret = BDRV_BLOCK_EOF; 2111 goto early_out; 2112 } 2113 if (!bytes) { 2114 ret = 0; 2115 goto early_out; 2116 } 2117 2118 n = total_size - offset; 2119 if (n < bytes) { 2120 bytes = n; 2121 } 2122 2123 /* Must be non-NULL or bdrv_getlength() would have failed */ 2124 assert(bs->drv); 2125 if (!bs->drv->bdrv_co_block_status) { 2126 *pnum = bytes; 2127 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2128 if (offset + bytes == total_size) { 2129 ret |= BDRV_BLOCK_EOF; 2130 } 2131 if (bs->drv->protocol_name) { 2132 ret |= BDRV_BLOCK_OFFSET_VALID; 2133 local_map = offset; 2134 local_file = bs; 2135 } 2136 goto early_out; 2137 } 2138 2139 bdrv_inc_in_flight(bs); 2140 2141 /* Round out to request_alignment boundaries */ 2142 align = bs->bl.request_alignment; 2143 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2144 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2145 2146 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2147 aligned_bytes, pnum, &local_map, 2148 &local_file); 2149 if (ret < 0) { 2150 *pnum = 0; 2151 goto out; 2152 } 2153 2154 /* 2155 * The driver's result must be a non-zero multiple of request_alignment. 2156 * Clamp pnum and adjust map to original request. 2157 */ 2158 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2159 align > offset - aligned_offset); 2160 if (ret & BDRV_BLOCK_RECURSE) { 2161 assert(ret & BDRV_BLOCK_DATA); 2162 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2163 assert(!(ret & BDRV_BLOCK_ZERO)); 2164 } 2165 2166 *pnum -= offset - aligned_offset; 2167 if (*pnum > bytes) { 2168 *pnum = bytes; 2169 } 2170 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2171 local_map += offset - aligned_offset; 2172 } 2173 2174 if (ret & BDRV_BLOCK_RAW) { 2175 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2176 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2177 *pnum, pnum, &local_map, &local_file); 2178 goto out; 2179 } 2180 2181 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2182 ret |= BDRV_BLOCK_ALLOCATED; 2183 } else if (want_zero) { 2184 if (bdrv_unallocated_blocks_are_zero(bs)) { 2185 ret |= BDRV_BLOCK_ZERO; 2186 } else if (bs->backing) { 2187 BlockDriverState *bs2 = bs->backing->bs; 2188 int64_t size2 = bdrv_getlength(bs2); 2189 2190 if (size2 >= 0 && offset >= size2) { 2191 ret |= BDRV_BLOCK_ZERO; 2192 } 2193 } 2194 } 2195 2196 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2197 local_file && local_file != bs && 2198 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2199 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2200 int64_t file_pnum; 2201 int ret2; 2202 2203 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2204 *pnum, &file_pnum, NULL, NULL); 2205 if (ret2 >= 0) { 2206 /* Ignore errors. This is just providing extra information, it 2207 * is useful but not necessary. 2208 */ 2209 if (ret2 & BDRV_BLOCK_EOF && 2210 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2211 /* 2212 * It is valid for the format block driver to read 2213 * beyond the end of the underlying file's current 2214 * size; such areas read as zero. 2215 */ 2216 ret |= BDRV_BLOCK_ZERO; 2217 } else { 2218 /* Limit request to the range reported by the protocol driver */ 2219 *pnum = file_pnum; 2220 ret |= (ret2 & BDRV_BLOCK_ZERO); 2221 } 2222 } 2223 } 2224 2225 out: 2226 bdrv_dec_in_flight(bs); 2227 if (ret >= 0 && offset + *pnum == total_size) { 2228 ret |= BDRV_BLOCK_EOF; 2229 } 2230 early_out: 2231 if (file) { 2232 *file = local_file; 2233 } 2234 if (map) { 2235 *map = local_map; 2236 } 2237 return ret; 2238 } 2239 2240 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2241 BlockDriverState *base, 2242 bool want_zero, 2243 int64_t offset, 2244 int64_t bytes, 2245 int64_t *pnum, 2246 int64_t *map, 2247 BlockDriverState **file) 2248 { 2249 BlockDriverState *p; 2250 int ret = 0; 2251 bool first = true; 2252 2253 assert(bs != base); 2254 for (p = bs; p != base; p = backing_bs(p)) { 2255 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2256 file); 2257 if (ret < 0) { 2258 break; 2259 } 2260 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 2261 /* 2262 * Reading beyond the end of the file continues to read 2263 * zeroes, but we can only widen the result to the 2264 * unallocated length we learned from an earlier 2265 * iteration. 2266 */ 2267 *pnum = bytes; 2268 } 2269 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 2270 break; 2271 } 2272 /* [offset, pnum] unallocated on this layer, which could be only 2273 * the first part of [offset, bytes]. */ 2274 bytes = MIN(bytes, *pnum); 2275 first = false; 2276 } 2277 return ret; 2278 } 2279 2280 /* Coroutine wrapper for bdrv_block_status_above() */ 2281 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque) 2282 { 2283 BdrvCoBlockStatusData *data = opaque; 2284 2285 data->ret = bdrv_co_block_status_above(data->bs, data->base, 2286 data->want_zero, 2287 data->offset, data->bytes, 2288 data->pnum, data->map, data->file); 2289 data->done = true; 2290 aio_wait_kick(); 2291 } 2292 2293 /* 2294 * Synchronous wrapper around bdrv_co_block_status_above(). 2295 * 2296 * See bdrv_co_block_status_above() for details. 2297 */ 2298 static int bdrv_common_block_status_above(BlockDriverState *bs, 2299 BlockDriverState *base, 2300 bool want_zero, int64_t offset, 2301 int64_t bytes, int64_t *pnum, 2302 int64_t *map, 2303 BlockDriverState **file) 2304 { 2305 Coroutine *co; 2306 BdrvCoBlockStatusData data = { 2307 .bs = bs, 2308 .base = base, 2309 .want_zero = want_zero, 2310 .offset = offset, 2311 .bytes = bytes, 2312 .pnum = pnum, 2313 .map = map, 2314 .file = file, 2315 .done = false, 2316 }; 2317 2318 if (qemu_in_coroutine()) { 2319 /* Fast-path if already in coroutine context */ 2320 bdrv_block_status_above_co_entry(&data); 2321 } else { 2322 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data); 2323 bdrv_coroutine_enter(bs, co); 2324 BDRV_POLL_WHILE(bs, !data.done); 2325 } 2326 return data.ret; 2327 } 2328 2329 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2330 int64_t offset, int64_t bytes, int64_t *pnum, 2331 int64_t *map, BlockDriverState **file) 2332 { 2333 return bdrv_common_block_status_above(bs, base, true, offset, bytes, 2334 pnum, map, file); 2335 } 2336 2337 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2338 int64_t *pnum, int64_t *map, BlockDriverState **file) 2339 { 2340 return bdrv_block_status_above(bs, backing_bs(bs), 2341 offset, bytes, pnum, map, file); 2342 } 2343 2344 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2345 int64_t bytes, int64_t *pnum) 2346 { 2347 int ret; 2348 int64_t dummy; 2349 2350 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset, 2351 bytes, pnum ? pnum : &dummy, NULL, 2352 NULL); 2353 if (ret < 0) { 2354 return ret; 2355 } 2356 return !!(ret & BDRV_BLOCK_ALLOCATED); 2357 } 2358 2359 /* 2360 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2361 * 2362 * Return 1 if (a prefix of) the given range is allocated in any image 2363 * between BASE and TOP (BASE is only included if include_base is set). 2364 * BASE can be NULL to check if the given offset is allocated in any 2365 * image of the chain. Return 0 otherwise, or negative errno on 2366 * failure. 2367 * 2368 * 'pnum' is set to the number of bytes (including and immediately 2369 * following the specified offset) that are known to be in the same 2370 * allocated/unallocated state. Note that a subsequent call starting 2371 * at 'offset + *pnum' may return the same allocation status (in other 2372 * words, the result is not necessarily the maximum possible range); 2373 * but 'pnum' will only be 0 when end of file is reached. 2374 * 2375 */ 2376 int bdrv_is_allocated_above(BlockDriverState *top, 2377 BlockDriverState *base, 2378 bool include_base, int64_t offset, 2379 int64_t bytes, int64_t *pnum) 2380 { 2381 BlockDriverState *intermediate; 2382 int ret; 2383 int64_t n = bytes; 2384 2385 assert(base || !include_base); 2386 2387 intermediate = top; 2388 while (include_base || intermediate != base) { 2389 int64_t pnum_inter; 2390 int64_t size_inter; 2391 2392 assert(intermediate); 2393 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2394 if (ret < 0) { 2395 return ret; 2396 } 2397 if (ret) { 2398 *pnum = pnum_inter; 2399 return 1; 2400 } 2401 2402 size_inter = bdrv_getlength(intermediate); 2403 if (size_inter < 0) { 2404 return size_inter; 2405 } 2406 if (n > pnum_inter && 2407 (intermediate == top || offset + pnum_inter < size_inter)) { 2408 n = pnum_inter; 2409 } 2410 2411 if (intermediate == base) { 2412 break; 2413 } 2414 2415 intermediate = backing_bs(intermediate); 2416 } 2417 2418 *pnum = n; 2419 return 0; 2420 } 2421 2422 typedef struct BdrvVmstateCo { 2423 BlockDriverState *bs; 2424 QEMUIOVector *qiov; 2425 int64_t pos; 2426 bool is_read; 2427 int ret; 2428 } BdrvVmstateCo; 2429 2430 static int coroutine_fn 2431 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2432 bool is_read) 2433 { 2434 BlockDriver *drv = bs->drv; 2435 int ret = -ENOTSUP; 2436 2437 bdrv_inc_in_flight(bs); 2438 2439 if (!drv) { 2440 ret = -ENOMEDIUM; 2441 } else if (drv->bdrv_load_vmstate) { 2442 if (is_read) { 2443 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2444 } else { 2445 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2446 } 2447 } else if (bs->file) { 2448 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2449 } 2450 2451 bdrv_dec_in_flight(bs); 2452 return ret; 2453 } 2454 2455 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2456 { 2457 BdrvVmstateCo *co = opaque; 2458 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2459 aio_wait_kick(); 2460 } 2461 2462 static inline int 2463 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2464 bool is_read) 2465 { 2466 if (qemu_in_coroutine()) { 2467 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2468 } else { 2469 BdrvVmstateCo data = { 2470 .bs = bs, 2471 .qiov = qiov, 2472 .pos = pos, 2473 .is_read = is_read, 2474 .ret = -EINPROGRESS, 2475 }; 2476 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2477 2478 bdrv_coroutine_enter(bs, co); 2479 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2480 return data.ret; 2481 } 2482 } 2483 2484 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2485 int64_t pos, int size) 2486 { 2487 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2488 int ret; 2489 2490 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2491 if (ret < 0) { 2492 return ret; 2493 } 2494 2495 return size; 2496 } 2497 2498 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2499 { 2500 return bdrv_rw_vmstate(bs, qiov, pos, false); 2501 } 2502 2503 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2504 int64_t pos, int size) 2505 { 2506 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2507 int ret; 2508 2509 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2510 if (ret < 0) { 2511 return ret; 2512 } 2513 2514 return size; 2515 } 2516 2517 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2518 { 2519 return bdrv_rw_vmstate(bs, qiov, pos, true); 2520 } 2521 2522 /**************************************************************/ 2523 /* async I/Os */ 2524 2525 void bdrv_aio_cancel(BlockAIOCB *acb) 2526 { 2527 qemu_aio_ref(acb); 2528 bdrv_aio_cancel_async(acb); 2529 while (acb->refcnt > 1) { 2530 if (acb->aiocb_info->get_aio_context) { 2531 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2532 } else if (acb->bs) { 2533 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2534 * assert that we're not using an I/O thread. Thread-safe 2535 * code should use bdrv_aio_cancel_async exclusively. 2536 */ 2537 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2538 aio_poll(bdrv_get_aio_context(acb->bs), true); 2539 } else { 2540 abort(); 2541 } 2542 } 2543 qemu_aio_unref(acb); 2544 } 2545 2546 /* Async version of aio cancel. The caller is not blocked if the acb implements 2547 * cancel_async, otherwise we do nothing and let the request normally complete. 2548 * In either case the completion callback must be called. */ 2549 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2550 { 2551 if (acb->aiocb_info->cancel_async) { 2552 acb->aiocb_info->cancel_async(acb); 2553 } 2554 } 2555 2556 /**************************************************************/ 2557 /* Coroutine block device emulation */ 2558 2559 typedef struct FlushCo { 2560 BlockDriverState *bs; 2561 int ret; 2562 } FlushCo; 2563 2564 2565 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2566 { 2567 FlushCo *rwco = opaque; 2568 2569 rwco->ret = bdrv_co_flush(rwco->bs); 2570 aio_wait_kick(); 2571 } 2572 2573 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2574 { 2575 int current_gen; 2576 int ret = 0; 2577 2578 bdrv_inc_in_flight(bs); 2579 2580 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2581 bdrv_is_sg(bs)) { 2582 goto early_exit; 2583 } 2584 2585 qemu_co_mutex_lock(&bs->reqs_lock); 2586 current_gen = atomic_read(&bs->write_gen); 2587 2588 /* Wait until any previous flushes are completed */ 2589 while (bs->active_flush_req) { 2590 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2591 } 2592 2593 /* Flushes reach this point in nondecreasing current_gen order. */ 2594 bs->active_flush_req = true; 2595 qemu_co_mutex_unlock(&bs->reqs_lock); 2596 2597 /* Write back all layers by calling one driver function */ 2598 if (bs->drv->bdrv_co_flush) { 2599 ret = bs->drv->bdrv_co_flush(bs); 2600 goto out; 2601 } 2602 2603 /* Write back cached data to the OS even with cache=unsafe */ 2604 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2605 if (bs->drv->bdrv_co_flush_to_os) { 2606 ret = bs->drv->bdrv_co_flush_to_os(bs); 2607 if (ret < 0) { 2608 goto out; 2609 } 2610 } 2611 2612 /* But don't actually force it to the disk with cache=unsafe */ 2613 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2614 goto flush_parent; 2615 } 2616 2617 /* Check if we really need to flush anything */ 2618 if (bs->flushed_gen == current_gen) { 2619 goto flush_parent; 2620 } 2621 2622 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2623 if (!bs->drv) { 2624 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2625 * (even in case of apparent success) */ 2626 ret = -ENOMEDIUM; 2627 goto out; 2628 } 2629 if (bs->drv->bdrv_co_flush_to_disk) { 2630 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2631 } else if (bs->drv->bdrv_aio_flush) { 2632 BlockAIOCB *acb; 2633 CoroutineIOCompletion co = { 2634 .coroutine = qemu_coroutine_self(), 2635 }; 2636 2637 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2638 if (acb == NULL) { 2639 ret = -EIO; 2640 } else { 2641 qemu_coroutine_yield(); 2642 ret = co.ret; 2643 } 2644 } else { 2645 /* 2646 * Some block drivers always operate in either writethrough or unsafe 2647 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2648 * know how the server works (because the behaviour is hardcoded or 2649 * depends on server-side configuration), so we can't ensure that 2650 * everything is safe on disk. Returning an error doesn't work because 2651 * that would break guests even if the server operates in writethrough 2652 * mode. 2653 * 2654 * Let's hope the user knows what he's doing. 2655 */ 2656 ret = 0; 2657 } 2658 2659 if (ret < 0) { 2660 goto out; 2661 } 2662 2663 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2664 * in the case of cache=unsafe, so there are no useless flushes. 2665 */ 2666 flush_parent: 2667 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2668 out: 2669 /* Notify any pending flushes that we have completed */ 2670 if (ret == 0) { 2671 bs->flushed_gen = current_gen; 2672 } 2673 2674 qemu_co_mutex_lock(&bs->reqs_lock); 2675 bs->active_flush_req = false; 2676 /* Return value is ignored - it's ok if wait queue is empty */ 2677 qemu_co_queue_next(&bs->flush_queue); 2678 qemu_co_mutex_unlock(&bs->reqs_lock); 2679 2680 early_exit: 2681 bdrv_dec_in_flight(bs); 2682 return ret; 2683 } 2684 2685 int bdrv_flush(BlockDriverState *bs) 2686 { 2687 Coroutine *co; 2688 FlushCo flush_co = { 2689 .bs = bs, 2690 .ret = NOT_DONE, 2691 }; 2692 2693 if (qemu_in_coroutine()) { 2694 /* Fast-path if already in coroutine context */ 2695 bdrv_flush_co_entry(&flush_co); 2696 } else { 2697 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2698 bdrv_coroutine_enter(bs, co); 2699 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2700 } 2701 2702 return flush_co.ret; 2703 } 2704 2705 typedef struct DiscardCo { 2706 BdrvChild *child; 2707 int64_t offset; 2708 int64_t bytes; 2709 int ret; 2710 } DiscardCo; 2711 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2712 { 2713 DiscardCo *rwco = opaque; 2714 2715 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes); 2716 aio_wait_kick(); 2717 } 2718 2719 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 2720 int64_t bytes) 2721 { 2722 BdrvTrackedRequest req; 2723 int max_pdiscard, ret; 2724 int head, tail, align; 2725 BlockDriverState *bs = child->bs; 2726 2727 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 2728 return -ENOMEDIUM; 2729 } 2730 2731 if (bdrv_has_readonly_bitmaps(bs)) { 2732 return -EPERM; 2733 } 2734 2735 if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) { 2736 return -EIO; 2737 } 2738 2739 /* Do nothing if disabled. */ 2740 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2741 return 0; 2742 } 2743 2744 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2745 return 0; 2746 } 2747 2748 /* Discard is advisory, but some devices track and coalesce 2749 * unaligned requests, so we must pass everything down rather than 2750 * round here. Still, most devices will just silently ignore 2751 * unaligned requests (by returning -ENOTSUP), so we must fragment 2752 * the request accordingly. */ 2753 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2754 assert(align % bs->bl.request_alignment == 0); 2755 head = offset % align; 2756 tail = (offset + bytes) % align; 2757 2758 bdrv_inc_in_flight(bs); 2759 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2760 2761 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 2762 if (ret < 0) { 2763 goto out; 2764 } 2765 2766 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2767 align); 2768 assert(max_pdiscard >= bs->bl.request_alignment); 2769 2770 while (bytes > 0) { 2771 int64_t num = bytes; 2772 2773 if (head) { 2774 /* Make small requests to get to alignment boundaries. */ 2775 num = MIN(bytes, align - head); 2776 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2777 num %= bs->bl.request_alignment; 2778 } 2779 head = (head + num) % align; 2780 assert(num < max_pdiscard); 2781 } else if (tail) { 2782 if (num > align) { 2783 /* Shorten the request to the last aligned cluster. */ 2784 num -= tail; 2785 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2786 tail > bs->bl.request_alignment) { 2787 tail %= bs->bl.request_alignment; 2788 num -= tail; 2789 } 2790 } 2791 /* limit request size */ 2792 if (num > max_pdiscard) { 2793 num = max_pdiscard; 2794 } 2795 2796 if (!bs->drv) { 2797 ret = -ENOMEDIUM; 2798 goto out; 2799 } 2800 if (bs->drv->bdrv_co_pdiscard) { 2801 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2802 } else { 2803 BlockAIOCB *acb; 2804 CoroutineIOCompletion co = { 2805 .coroutine = qemu_coroutine_self(), 2806 }; 2807 2808 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2809 bdrv_co_io_em_complete, &co); 2810 if (acb == NULL) { 2811 ret = -EIO; 2812 goto out; 2813 } else { 2814 qemu_coroutine_yield(); 2815 ret = co.ret; 2816 } 2817 } 2818 if (ret && ret != -ENOTSUP) { 2819 goto out; 2820 } 2821 2822 offset += num; 2823 bytes -= num; 2824 } 2825 ret = 0; 2826 out: 2827 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 2828 tracked_request_end(&req); 2829 bdrv_dec_in_flight(bs); 2830 return ret; 2831 } 2832 2833 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes) 2834 { 2835 Coroutine *co; 2836 DiscardCo rwco = { 2837 .child = child, 2838 .offset = offset, 2839 .bytes = bytes, 2840 .ret = NOT_DONE, 2841 }; 2842 2843 if (qemu_in_coroutine()) { 2844 /* Fast-path if already in coroutine context */ 2845 bdrv_pdiscard_co_entry(&rwco); 2846 } else { 2847 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2848 bdrv_coroutine_enter(child->bs, co); 2849 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 2850 } 2851 2852 return rwco.ret; 2853 } 2854 2855 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2856 { 2857 BlockDriver *drv = bs->drv; 2858 CoroutineIOCompletion co = { 2859 .coroutine = qemu_coroutine_self(), 2860 }; 2861 BlockAIOCB *acb; 2862 2863 bdrv_inc_in_flight(bs); 2864 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2865 co.ret = -ENOTSUP; 2866 goto out; 2867 } 2868 2869 if (drv->bdrv_co_ioctl) { 2870 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2871 } else { 2872 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2873 if (!acb) { 2874 co.ret = -ENOTSUP; 2875 goto out; 2876 } 2877 qemu_coroutine_yield(); 2878 } 2879 out: 2880 bdrv_dec_in_flight(bs); 2881 return co.ret; 2882 } 2883 2884 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2885 { 2886 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2887 } 2888 2889 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2890 { 2891 return memset(qemu_blockalign(bs, size), 0, size); 2892 } 2893 2894 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2895 { 2896 size_t align = bdrv_opt_mem_align(bs); 2897 2898 /* Ensure that NULL is never returned on success */ 2899 assert(align > 0); 2900 if (size == 0) { 2901 size = align; 2902 } 2903 2904 return qemu_try_memalign(align, size); 2905 } 2906 2907 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2908 { 2909 void *mem = qemu_try_blockalign(bs, size); 2910 2911 if (mem) { 2912 memset(mem, 0, size); 2913 } 2914 2915 return mem; 2916 } 2917 2918 /* 2919 * Check if all memory in this vector is sector aligned. 2920 */ 2921 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2922 { 2923 int i; 2924 size_t alignment = bdrv_min_mem_align(bs); 2925 2926 for (i = 0; i < qiov->niov; i++) { 2927 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2928 return false; 2929 } 2930 if (qiov->iov[i].iov_len % alignment) { 2931 return false; 2932 } 2933 } 2934 2935 return true; 2936 } 2937 2938 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2939 NotifierWithReturn *notifier) 2940 { 2941 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2942 } 2943 2944 void bdrv_io_plug(BlockDriverState *bs) 2945 { 2946 BdrvChild *child; 2947 2948 QLIST_FOREACH(child, &bs->children, next) { 2949 bdrv_io_plug(child->bs); 2950 } 2951 2952 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 2953 BlockDriver *drv = bs->drv; 2954 if (drv && drv->bdrv_io_plug) { 2955 drv->bdrv_io_plug(bs); 2956 } 2957 } 2958 } 2959 2960 void bdrv_io_unplug(BlockDriverState *bs) 2961 { 2962 BdrvChild *child; 2963 2964 assert(bs->io_plugged); 2965 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 2966 BlockDriver *drv = bs->drv; 2967 if (drv && drv->bdrv_io_unplug) { 2968 drv->bdrv_io_unplug(bs); 2969 } 2970 } 2971 2972 QLIST_FOREACH(child, &bs->children, next) { 2973 bdrv_io_unplug(child->bs); 2974 } 2975 } 2976 2977 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 2978 { 2979 BdrvChild *child; 2980 2981 if (bs->drv && bs->drv->bdrv_register_buf) { 2982 bs->drv->bdrv_register_buf(bs, host, size); 2983 } 2984 QLIST_FOREACH(child, &bs->children, next) { 2985 bdrv_register_buf(child->bs, host, size); 2986 } 2987 } 2988 2989 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 2990 { 2991 BdrvChild *child; 2992 2993 if (bs->drv && bs->drv->bdrv_unregister_buf) { 2994 bs->drv->bdrv_unregister_buf(bs, host); 2995 } 2996 QLIST_FOREACH(child, &bs->children, next) { 2997 bdrv_unregister_buf(child->bs, host); 2998 } 2999 } 3000 3001 static int coroutine_fn bdrv_co_copy_range_internal( 3002 BdrvChild *src, uint64_t src_offset, BdrvChild *dst, 3003 uint64_t dst_offset, uint64_t bytes, 3004 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3005 bool recurse_src) 3006 { 3007 BdrvTrackedRequest req; 3008 int ret; 3009 3010 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3011 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3012 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3013 3014 if (!dst || !dst->bs) { 3015 return -ENOMEDIUM; 3016 } 3017 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes); 3018 if (ret) { 3019 return ret; 3020 } 3021 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3022 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3023 } 3024 3025 if (!src || !src->bs) { 3026 return -ENOMEDIUM; 3027 } 3028 ret = bdrv_check_byte_request(src->bs, src_offset, bytes); 3029 if (ret) { 3030 return ret; 3031 } 3032 3033 if (!src->bs->drv->bdrv_co_copy_range_from 3034 || !dst->bs->drv->bdrv_co_copy_range_to 3035 || src->bs->encrypted || dst->bs->encrypted) { 3036 return -ENOTSUP; 3037 } 3038 3039 if (recurse_src) { 3040 bdrv_inc_in_flight(src->bs); 3041 tracked_request_begin(&req, src->bs, src_offset, bytes, 3042 BDRV_TRACKED_READ); 3043 3044 /* BDRV_REQ_SERIALISING is only for write operation */ 3045 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3046 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) { 3047 wait_serialising_requests(&req); 3048 } 3049 3050 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3051 src, src_offset, 3052 dst, dst_offset, 3053 bytes, 3054 read_flags, write_flags); 3055 3056 tracked_request_end(&req); 3057 bdrv_dec_in_flight(src->bs); 3058 } else { 3059 bdrv_inc_in_flight(dst->bs); 3060 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3061 BDRV_TRACKED_WRITE); 3062 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3063 write_flags); 3064 if (!ret) { 3065 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3066 src, src_offset, 3067 dst, dst_offset, 3068 bytes, 3069 read_flags, write_flags); 3070 } 3071 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3072 tracked_request_end(&req); 3073 bdrv_dec_in_flight(dst->bs); 3074 } 3075 3076 return ret; 3077 } 3078 3079 /* Copy range from @src to @dst. 3080 * 3081 * See the comment of bdrv_co_copy_range for the parameter and return value 3082 * semantics. */ 3083 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset, 3084 BdrvChild *dst, uint64_t dst_offset, 3085 uint64_t bytes, 3086 BdrvRequestFlags read_flags, 3087 BdrvRequestFlags write_flags) 3088 { 3089 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3090 read_flags, write_flags); 3091 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3092 bytes, read_flags, write_flags, true); 3093 } 3094 3095 /* Copy range from @src to @dst. 3096 * 3097 * See the comment of bdrv_co_copy_range for the parameter and return value 3098 * semantics. */ 3099 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset, 3100 BdrvChild *dst, uint64_t dst_offset, 3101 uint64_t bytes, 3102 BdrvRequestFlags read_flags, 3103 BdrvRequestFlags write_flags) 3104 { 3105 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3106 read_flags, write_flags); 3107 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3108 bytes, read_flags, write_flags, false); 3109 } 3110 3111 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset, 3112 BdrvChild *dst, uint64_t dst_offset, 3113 uint64_t bytes, BdrvRequestFlags read_flags, 3114 BdrvRequestFlags write_flags) 3115 { 3116 return bdrv_co_copy_range_from(src, src_offset, 3117 dst, dst_offset, 3118 bytes, read_flags, write_flags); 3119 } 3120 3121 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3122 { 3123 BdrvChild *c; 3124 QLIST_FOREACH(c, &bs->parents, next_parent) { 3125 if (c->role->resize) { 3126 c->role->resize(c); 3127 } 3128 } 3129 } 3130 3131 /** 3132 * Truncate file to 'offset' bytes (needed only for file protocols) 3133 */ 3134 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, 3135 PreallocMode prealloc, Error **errp) 3136 { 3137 BlockDriverState *bs = child->bs; 3138 BlockDriver *drv = bs->drv; 3139 BdrvTrackedRequest req; 3140 int64_t old_size, new_bytes; 3141 int ret; 3142 3143 3144 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3145 if (!drv) { 3146 error_setg(errp, "No medium inserted"); 3147 return -ENOMEDIUM; 3148 } 3149 if (offset < 0) { 3150 error_setg(errp, "Image size cannot be negative"); 3151 return -EINVAL; 3152 } 3153 3154 old_size = bdrv_getlength(bs); 3155 if (old_size < 0) { 3156 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3157 return old_size; 3158 } 3159 3160 if (offset > old_size) { 3161 new_bytes = offset - old_size; 3162 } else { 3163 new_bytes = 0; 3164 } 3165 3166 bdrv_inc_in_flight(bs); 3167 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3168 BDRV_TRACKED_TRUNCATE); 3169 3170 /* If we are growing the image and potentially using preallocation for the 3171 * new area, we need to make sure that no write requests are made to it 3172 * concurrently or they might be overwritten by preallocation. */ 3173 if (new_bytes) { 3174 mark_request_serialising(&req, 1); 3175 } 3176 if (bs->read_only) { 3177 error_setg(errp, "Image is read-only"); 3178 ret = -EACCES; 3179 goto out; 3180 } 3181 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3182 0); 3183 if (ret < 0) { 3184 error_setg_errno(errp, -ret, 3185 "Failed to prepare request for truncation"); 3186 goto out; 3187 } 3188 3189 if (!drv->bdrv_co_truncate) { 3190 if (bs->file && drv->is_filter) { 3191 ret = bdrv_co_truncate(bs->file, offset, prealloc, errp); 3192 goto out; 3193 } 3194 error_setg(errp, "Image format driver does not support resize"); 3195 ret = -ENOTSUP; 3196 goto out; 3197 } 3198 3199 ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp); 3200 if (ret < 0) { 3201 goto out; 3202 } 3203 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3204 if (ret < 0) { 3205 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3206 } else { 3207 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3208 } 3209 /* It's possible that truncation succeeded but refresh_total_sectors 3210 * failed, but the latter doesn't affect how we should finish the request. 3211 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3212 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3213 3214 out: 3215 tracked_request_end(&req); 3216 bdrv_dec_in_flight(bs); 3217 3218 return ret; 3219 } 3220 3221 typedef struct TruncateCo { 3222 BdrvChild *child; 3223 int64_t offset; 3224 PreallocMode prealloc; 3225 Error **errp; 3226 int ret; 3227 } TruncateCo; 3228 3229 static void coroutine_fn bdrv_truncate_co_entry(void *opaque) 3230 { 3231 TruncateCo *tco = opaque; 3232 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc, 3233 tco->errp); 3234 aio_wait_kick(); 3235 } 3236 3237 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc, 3238 Error **errp) 3239 { 3240 Coroutine *co; 3241 TruncateCo tco = { 3242 .child = child, 3243 .offset = offset, 3244 .prealloc = prealloc, 3245 .errp = errp, 3246 .ret = NOT_DONE, 3247 }; 3248 3249 if (qemu_in_coroutine()) { 3250 /* Fast-path if already in coroutine context */ 3251 bdrv_truncate_co_entry(&tco); 3252 } else { 3253 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco); 3254 bdrv_coroutine_enter(child->bs, co); 3255 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE); 3256 } 3257 3258 return tco.ret; 3259 } 3260