xref: /openbmc/qemu/block/io.c (revision d40d3da0)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/blockjob_int.h"
30 #include "block/block_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
36 
37 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
38     int64_t offset, int bytes, BdrvRequestFlags flags);
39 
40 void bdrv_parent_drained_begin(BlockDriverState *bs)
41 {
42     BdrvChild *c;
43 
44     QLIST_FOREACH(c, &bs->parents, next_parent) {
45         if (c->role->drained_begin) {
46             c->role->drained_begin(c);
47         }
48     }
49 }
50 
51 void bdrv_parent_drained_end(BlockDriverState *bs)
52 {
53     BdrvChild *c;
54 
55     QLIST_FOREACH(c, &bs->parents, next_parent) {
56         if (c->role->drained_end) {
57             c->role->drained_end(c);
58         }
59     }
60 }
61 
62 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
63 {
64     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
65     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
66     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
67                                  src->opt_mem_alignment);
68     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
69                                  src->min_mem_alignment);
70     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
71 }
72 
73 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
74 {
75     BlockDriver *drv = bs->drv;
76     Error *local_err = NULL;
77 
78     memset(&bs->bl, 0, sizeof(bs->bl));
79 
80     if (!drv) {
81         return;
82     }
83 
84     /* Default alignment based on whether driver has byte interface */
85     bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
86 
87     /* Take some limits from the children as a default */
88     if (bs->file) {
89         bdrv_refresh_limits(bs->file->bs, &local_err);
90         if (local_err) {
91             error_propagate(errp, local_err);
92             return;
93         }
94         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
95     } else {
96         bs->bl.min_mem_alignment = 512;
97         bs->bl.opt_mem_alignment = getpagesize();
98 
99         /* Safe default since most protocols use readv()/writev()/etc */
100         bs->bl.max_iov = IOV_MAX;
101     }
102 
103     if (bs->backing) {
104         bdrv_refresh_limits(bs->backing->bs, &local_err);
105         if (local_err) {
106             error_propagate(errp, local_err);
107             return;
108         }
109         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
110     }
111 
112     /* Then let the driver override it */
113     if (drv->bdrv_refresh_limits) {
114         drv->bdrv_refresh_limits(bs, errp);
115     }
116 }
117 
118 /**
119  * The copy-on-read flag is actually a reference count so multiple users may
120  * use the feature without worrying about clobbering its previous state.
121  * Copy-on-read stays enabled until all users have called to disable it.
122  */
123 void bdrv_enable_copy_on_read(BlockDriverState *bs)
124 {
125     atomic_inc(&bs->copy_on_read);
126 }
127 
128 void bdrv_disable_copy_on_read(BlockDriverState *bs)
129 {
130     int old = atomic_fetch_dec(&bs->copy_on_read);
131     assert(old >= 1);
132 }
133 
134 /* Check if any requests are in-flight (including throttled requests) */
135 bool bdrv_requests_pending(BlockDriverState *bs)
136 {
137     BdrvChild *child;
138 
139     if (atomic_read(&bs->in_flight)) {
140         return true;
141     }
142 
143     QLIST_FOREACH(child, &bs->children, next) {
144         if (bdrv_requests_pending(child->bs)) {
145             return true;
146         }
147     }
148 
149     return false;
150 }
151 
152 static bool bdrv_drain_recurse(BlockDriverState *bs)
153 {
154     BdrvChild *child, *tmp;
155     bool waited;
156 
157     waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
158 
159     if (bs->drv && bs->drv->bdrv_drain) {
160         bs->drv->bdrv_drain(bs);
161     }
162 
163     QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
164         BlockDriverState *bs = child->bs;
165         bool in_main_loop =
166             qemu_get_current_aio_context() == qemu_get_aio_context();
167         assert(bs->refcnt > 0);
168         if (in_main_loop) {
169             /* In case the recursive bdrv_drain_recurse processes a
170              * block_job_defer_to_main_loop BH and modifies the graph,
171              * let's hold a reference to bs until we are done.
172              *
173              * IOThread doesn't have such a BH, and it is not safe to call
174              * bdrv_unref without BQL, so skip doing it there.
175              */
176             bdrv_ref(bs);
177         }
178         waited |= bdrv_drain_recurse(bs);
179         if (in_main_loop) {
180             bdrv_unref(bs);
181         }
182     }
183 
184     return waited;
185 }
186 
187 typedef struct {
188     Coroutine *co;
189     BlockDriverState *bs;
190     bool done;
191 } BdrvCoDrainData;
192 
193 static void bdrv_co_drain_bh_cb(void *opaque)
194 {
195     BdrvCoDrainData *data = opaque;
196     Coroutine *co = data->co;
197     BlockDriverState *bs = data->bs;
198 
199     bdrv_dec_in_flight(bs);
200     bdrv_drained_begin(bs);
201     data->done = true;
202     aio_co_wake(co);
203 }
204 
205 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
206 {
207     BdrvCoDrainData data;
208 
209     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
210      * other coroutines run if they were queued from
211      * qemu_co_queue_run_restart(). */
212 
213     assert(qemu_in_coroutine());
214     data = (BdrvCoDrainData) {
215         .co = qemu_coroutine_self(),
216         .bs = bs,
217         .done = false,
218     };
219     bdrv_inc_in_flight(bs);
220     aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
221                             bdrv_co_drain_bh_cb, &data);
222 
223     qemu_coroutine_yield();
224     /* If we are resumed from some other event (such as an aio completion or a
225      * timer callback), it is a bug in the caller that should be fixed. */
226     assert(data.done);
227 }
228 
229 void bdrv_drained_begin(BlockDriverState *bs)
230 {
231     if (qemu_in_coroutine()) {
232         bdrv_co_yield_to_drain(bs);
233         return;
234     }
235 
236     if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
237         aio_disable_external(bdrv_get_aio_context(bs));
238         bdrv_parent_drained_begin(bs);
239     }
240 
241     bdrv_drain_recurse(bs);
242 }
243 
244 void bdrv_drained_end(BlockDriverState *bs)
245 {
246     assert(bs->quiesce_counter > 0);
247     if (atomic_fetch_dec(&bs->quiesce_counter) > 1) {
248         return;
249     }
250 
251     bdrv_parent_drained_end(bs);
252     aio_enable_external(bdrv_get_aio_context(bs));
253 }
254 
255 /*
256  * Wait for pending requests to complete on a single BlockDriverState subtree,
257  * and suspend block driver's internal I/O until next request arrives.
258  *
259  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
260  * AioContext.
261  *
262  * Only this BlockDriverState's AioContext is run, so in-flight requests must
263  * not depend on events in other AioContexts.  In that case, use
264  * bdrv_drain_all() instead.
265  */
266 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
267 {
268     assert(qemu_in_coroutine());
269     bdrv_drained_begin(bs);
270     bdrv_drained_end(bs);
271 }
272 
273 void bdrv_drain(BlockDriverState *bs)
274 {
275     bdrv_drained_begin(bs);
276     bdrv_drained_end(bs);
277 }
278 
279 /*
280  * Wait for pending requests to complete across all BlockDriverStates
281  *
282  * This function does not flush data to disk, use bdrv_flush_all() for that
283  * after calling this function.
284  *
285  * This pauses all block jobs and disables external clients. It must
286  * be paired with bdrv_drain_all_end().
287  *
288  * NOTE: no new block jobs or BlockDriverStates can be created between
289  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
290  */
291 void bdrv_drain_all_begin(void)
292 {
293     /* Always run first iteration so any pending completion BHs run */
294     bool waited = true;
295     BlockDriverState *bs;
296     BdrvNextIterator it;
297     GSList *aio_ctxs = NULL, *ctx;
298 
299     block_job_pause_all();
300 
301     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
302         AioContext *aio_context = bdrv_get_aio_context(bs);
303 
304         aio_context_acquire(aio_context);
305         bdrv_parent_drained_begin(bs);
306         aio_disable_external(aio_context);
307         aio_context_release(aio_context);
308 
309         if (!g_slist_find(aio_ctxs, aio_context)) {
310             aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
311         }
312     }
313 
314     /* Note that completion of an asynchronous I/O operation can trigger any
315      * number of other I/O operations on other devices---for example a
316      * coroutine can submit an I/O request to another device in response to
317      * request completion.  Therefore we must keep looping until there was no
318      * more activity rather than simply draining each device independently.
319      */
320     while (waited) {
321         waited = false;
322 
323         for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
324             AioContext *aio_context = ctx->data;
325 
326             aio_context_acquire(aio_context);
327             for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
328                 if (aio_context == bdrv_get_aio_context(bs)) {
329                     waited |= bdrv_drain_recurse(bs);
330                 }
331             }
332             aio_context_release(aio_context);
333         }
334     }
335 
336     g_slist_free(aio_ctxs);
337 }
338 
339 void bdrv_drain_all_end(void)
340 {
341     BlockDriverState *bs;
342     BdrvNextIterator it;
343 
344     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
345         AioContext *aio_context = bdrv_get_aio_context(bs);
346 
347         aio_context_acquire(aio_context);
348         aio_enable_external(aio_context);
349         bdrv_parent_drained_end(bs);
350         aio_context_release(aio_context);
351     }
352 
353     block_job_resume_all();
354 }
355 
356 void bdrv_drain_all(void)
357 {
358     bdrv_drain_all_begin();
359     bdrv_drain_all_end();
360 }
361 
362 /**
363  * Remove an active request from the tracked requests list
364  *
365  * This function should be called when a tracked request is completing.
366  */
367 static void tracked_request_end(BdrvTrackedRequest *req)
368 {
369     if (req->serialising) {
370         atomic_dec(&req->bs->serialising_in_flight);
371     }
372 
373     qemu_co_mutex_lock(&req->bs->reqs_lock);
374     QLIST_REMOVE(req, list);
375     qemu_co_queue_restart_all(&req->wait_queue);
376     qemu_co_mutex_unlock(&req->bs->reqs_lock);
377 }
378 
379 /**
380  * Add an active request to the tracked requests list
381  */
382 static void tracked_request_begin(BdrvTrackedRequest *req,
383                                   BlockDriverState *bs,
384                                   int64_t offset,
385                                   unsigned int bytes,
386                                   enum BdrvTrackedRequestType type)
387 {
388     *req = (BdrvTrackedRequest){
389         .bs = bs,
390         .offset         = offset,
391         .bytes          = bytes,
392         .type           = type,
393         .co             = qemu_coroutine_self(),
394         .serialising    = false,
395         .overlap_offset = offset,
396         .overlap_bytes  = bytes,
397     };
398 
399     qemu_co_queue_init(&req->wait_queue);
400 
401     qemu_co_mutex_lock(&bs->reqs_lock);
402     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
403     qemu_co_mutex_unlock(&bs->reqs_lock);
404 }
405 
406 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
407 {
408     int64_t overlap_offset = req->offset & ~(align - 1);
409     unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
410                                - overlap_offset;
411 
412     if (!req->serialising) {
413         atomic_inc(&req->bs->serialising_in_flight);
414         req->serialising = true;
415     }
416 
417     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
418     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
419 }
420 
421 /**
422  * Round a region to cluster boundaries
423  */
424 void bdrv_round_to_clusters(BlockDriverState *bs,
425                             int64_t offset, unsigned int bytes,
426                             int64_t *cluster_offset,
427                             unsigned int *cluster_bytes)
428 {
429     BlockDriverInfo bdi;
430 
431     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
432         *cluster_offset = offset;
433         *cluster_bytes = bytes;
434     } else {
435         int64_t c = bdi.cluster_size;
436         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
437         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
438     }
439 }
440 
441 static int bdrv_get_cluster_size(BlockDriverState *bs)
442 {
443     BlockDriverInfo bdi;
444     int ret;
445 
446     ret = bdrv_get_info(bs, &bdi);
447     if (ret < 0 || bdi.cluster_size == 0) {
448         return bs->bl.request_alignment;
449     } else {
450         return bdi.cluster_size;
451     }
452 }
453 
454 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
455                                      int64_t offset, unsigned int bytes)
456 {
457     /*        aaaa   bbbb */
458     if (offset >= req->overlap_offset + req->overlap_bytes) {
459         return false;
460     }
461     /* bbbb   aaaa        */
462     if (req->overlap_offset >= offset + bytes) {
463         return false;
464     }
465     return true;
466 }
467 
468 void bdrv_inc_in_flight(BlockDriverState *bs)
469 {
470     atomic_inc(&bs->in_flight);
471 }
472 
473 static void dummy_bh_cb(void *opaque)
474 {
475 }
476 
477 void bdrv_wakeup(BlockDriverState *bs)
478 {
479     /* The barrier (or an atomic op) is in the caller.  */
480     if (atomic_read(&bs->wakeup)) {
481         aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
482     }
483 }
484 
485 void bdrv_dec_in_flight(BlockDriverState *bs)
486 {
487     atomic_dec(&bs->in_flight);
488     bdrv_wakeup(bs);
489 }
490 
491 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
492 {
493     BlockDriverState *bs = self->bs;
494     BdrvTrackedRequest *req;
495     bool retry;
496     bool waited = false;
497 
498     if (!atomic_read(&bs->serialising_in_flight)) {
499         return false;
500     }
501 
502     do {
503         retry = false;
504         qemu_co_mutex_lock(&bs->reqs_lock);
505         QLIST_FOREACH(req, &bs->tracked_requests, list) {
506             if (req == self || (!req->serialising && !self->serialising)) {
507                 continue;
508             }
509             if (tracked_request_overlaps(req, self->overlap_offset,
510                                          self->overlap_bytes))
511             {
512                 /* Hitting this means there was a reentrant request, for
513                  * example, a block driver issuing nested requests.  This must
514                  * never happen since it means deadlock.
515                  */
516                 assert(qemu_coroutine_self() != req->co);
517 
518                 /* If the request is already (indirectly) waiting for us, or
519                  * will wait for us as soon as it wakes up, then just go on
520                  * (instead of producing a deadlock in the former case). */
521                 if (!req->waiting_for) {
522                     self->waiting_for = req;
523                     qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
524                     self->waiting_for = NULL;
525                     retry = true;
526                     waited = true;
527                     break;
528                 }
529             }
530         }
531         qemu_co_mutex_unlock(&bs->reqs_lock);
532     } while (retry);
533 
534     return waited;
535 }
536 
537 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
538                                    size_t size)
539 {
540     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
541         return -EIO;
542     }
543 
544     if (!bdrv_is_inserted(bs)) {
545         return -ENOMEDIUM;
546     }
547 
548     if (offset < 0) {
549         return -EIO;
550     }
551 
552     return 0;
553 }
554 
555 typedef struct RwCo {
556     BdrvChild *child;
557     int64_t offset;
558     QEMUIOVector *qiov;
559     bool is_write;
560     int ret;
561     BdrvRequestFlags flags;
562 } RwCo;
563 
564 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
565 {
566     RwCo *rwco = opaque;
567 
568     if (!rwco->is_write) {
569         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
570                                    rwco->qiov->size, rwco->qiov,
571                                    rwco->flags);
572     } else {
573         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
574                                     rwco->qiov->size, rwco->qiov,
575                                     rwco->flags);
576     }
577 }
578 
579 /*
580  * Process a vectored synchronous request using coroutines
581  */
582 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
583                         QEMUIOVector *qiov, bool is_write,
584                         BdrvRequestFlags flags)
585 {
586     Coroutine *co;
587     RwCo rwco = {
588         .child = child,
589         .offset = offset,
590         .qiov = qiov,
591         .is_write = is_write,
592         .ret = NOT_DONE,
593         .flags = flags,
594     };
595 
596     if (qemu_in_coroutine()) {
597         /* Fast-path if already in coroutine context */
598         bdrv_rw_co_entry(&rwco);
599     } else {
600         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
601         bdrv_coroutine_enter(child->bs, co);
602         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
603     }
604     return rwco.ret;
605 }
606 
607 /*
608  * Process a synchronous request using coroutines
609  */
610 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
611                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
612 {
613     QEMUIOVector qiov;
614     struct iovec iov = {
615         .iov_base = (void *)buf,
616         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
617     };
618 
619     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
620         return -EINVAL;
621     }
622 
623     qemu_iovec_init_external(&qiov, &iov, 1);
624     return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
625                         &qiov, is_write, flags);
626 }
627 
628 /* return < 0 if error. See bdrv_write() for the return codes */
629 int bdrv_read(BdrvChild *child, int64_t sector_num,
630               uint8_t *buf, int nb_sectors)
631 {
632     return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
633 }
634 
635 /* Return < 0 if error. Important errors are:
636   -EIO         generic I/O error (may happen for all errors)
637   -ENOMEDIUM   No media inserted.
638   -EINVAL      Invalid sector number or nb_sectors
639   -EACCES      Trying to write a read-only device
640 */
641 int bdrv_write(BdrvChild *child, int64_t sector_num,
642                const uint8_t *buf, int nb_sectors)
643 {
644     return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
645 }
646 
647 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
648                        int bytes, BdrvRequestFlags flags)
649 {
650     QEMUIOVector qiov;
651     struct iovec iov = {
652         .iov_base = NULL,
653         .iov_len = bytes,
654     };
655 
656     qemu_iovec_init_external(&qiov, &iov, 1);
657     return bdrv_prwv_co(child, offset, &qiov, true,
658                         BDRV_REQ_ZERO_WRITE | flags);
659 }
660 
661 /*
662  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
663  * The operation is sped up by checking the block status and only writing
664  * zeroes to the device if they currently do not return zeroes. Optional
665  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
666  * BDRV_REQ_FUA).
667  *
668  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
669  */
670 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
671 {
672     int64_t target_sectors, ret, nb_sectors, sector_num = 0;
673     BlockDriverState *bs = child->bs;
674     BlockDriverState *file;
675     int n;
676 
677     target_sectors = bdrv_nb_sectors(bs);
678     if (target_sectors < 0) {
679         return target_sectors;
680     }
681 
682     for (;;) {
683         nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
684         if (nb_sectors <= 0) {
685             return 0;
686         }
687         ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
688         if (ret < 0) {
689             error_report("error getting block status at sector %" PRId64 ": %s",
690                          sector_num, strerror(-ret));
691             return ret;
692         }
693         if (ret & BDRV_BLOCK_ZERO) {
694             sector_num += n;
695             continue;
696         }
697         ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
698                                  n << BDRV_SECTOR_BITS, flags);
699         if (ret < 0) {
700             error_report("error writing zeroes at sector %" PRId64 ": %s",
701                          sector_num, strerror(-ret));
702             return ret;
703         }
704         sector_num += n;
705     }
706 }
707 
708 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
709 {
710     int ret;
711 
712     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
713     if (ret < 0) {
714         return ret;
715     }
716 
717     return qiov->size;
718 }
719 
720 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
721 {
722     QEMUIOVector qiov;
723     struct iovec iov = {
724         .iov_base = (void *)buf,
725         .iov_len = bytes,
726     };
727 
728     if (bytes < 0) {
729         return -EINVAL;
730     }
731 
732     qemu_iovec_init_external(&qiov, &iov, 1);
733     return bdrv_preadv(child, offset, &qiov);
734 }
735 
736 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
737 {
738     int ret;
739 
740     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
741     if (ret < 0) {
742         return ret;
743     }
744 
745     return qiov->size;
746 }
747 
748 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
749 {
750     QEMUIOVector qiov;
751     struct iovec iov = {
752         .iov_base   = (void *) buf,
753         .iov_len    = bytes,
754     };
755 
756     if (bytes < 0) {
757         return -EINVAL;
758     }
759 
760     qemu_iovec_init_external(&qiov, &iov, 1);
761     return bdrv_pwritev(child, offset, &qiov);
762 }
763 
764 /*
765  * Writes to the file and ensures that no writes are reordered across this
766  * request (acts as a barrier)
767  *
768  * Returns 0 on success, -errno in error cases.
769  */
770 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
771                      const void *buf, int count)
772 {
773     int ret;
774 
775     ret = bdrv_pwrite(child, offset, buf, count);
776     if (ret < 0) {
777         return ret;
778     }
779 
780     ret = bdrv_flush(child->bs);
781     if (ret < 0) {
782         return ret;
783     }
784 
785     return 0;
786 }
787 
788 typedef struct CoroutineIOCompletion {
789     Coroutine *coroutine;
790     int ret;
791 } CoroutineIOCompletion;
792 
793 static void bdrv_co_io_em_complete(void *opaque, int ret)
794 {
795     CoroutineIOCompletion *co = opaque;
796 
797     co->ret = ret;
798     aio_co_wake(co->coroutine);
799 }
800 
801 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
802                                            uint64_t offset, uint64_t bytes,
803                                            QEMUIOVector *qiov, int flags)
804 {
805     BlockDriver *drv = bs->drv;
806     int64_t sector_num;
807     unsigned int nb_sectors;
808 
809     assert(!(flags & ~BDRV_REQ_MASK));
810 
811     if (drv->bdrv_co_preadv) {
812         return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
813     }
814 
815     sector_num = offset >> BDRV_SECTOR_BITS;
816     nb_sectors = bytes >> BDRV_SECTOR_BITS;
817 
818     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
819     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
820     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
821 
822     if (drv->bdrv_co_readv) {
823         return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
824     } else {
825         BlockAIOCB *acb;
826         CoroutineIOCompletion co = {
827             .coroutine = qemu_coroutine_self(),
828         };
829 
830         acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
831                                       bdrv_co_io_em_complete, &co);
832         if (acb == NULL) {
833             return -EIO;
834         } else {
835             qemu_coroutine_yield();
836             return co.ret;
837         }
838     }
839 }
840 
841 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
842                                             uint64_t offset, uint64_t bytes,
843                                             QEMUIOVector *qiov, int flags)
844 {
845     BlockDriver *drv = bs->drv;
846     int64_t sector_num;
847     unsigned int nb_sectors;
848     int ret;
849 
850     assert(!(flags & ~BDRV_REQ_MASK));
851 
852     if (drv->bdrv_co_pwritev) {
853         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
854                                    flags & bs->supported_write_flags);
855         flags &= ~bs->supported_write_flags;
856         goto emulate_flags;
857     }
858 
859     sector_num = offset >> BDRV_SECTOR_BITS;
860     nb_sectors = bytes >> BDRV_SECTOR_BITS;
861 
862     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
863     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
864     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
865 
866     if (drv->bdrv_co_writev_flags) {
867         ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
868                                         flags & bs->supported_write_flags);
869         flags &= ~bs->supported_write_flags;
870     } else if (drv->bdrv_co_writev) {
871         assert(!bs->supported_write_flags);
872         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
873     } else {
874         BlockAIOCB *acb;
875         CoroutineIOCompletion co = {
876             .coroutine = qemu_coroutine_self(),
877         };
878 
879         acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
880                                        bdrv_co_io_em_complete, &co);
881         if (acb == NULL) {
882             ret = -EIO;
883         } else {
884             qemu_coroutine_yield();
885             ret = co.ret;
886         }
887     }
888 
889 emulate_flags:
890     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
891         ret = bdrv_co_flush(bs);
892     }
893 
894     return ret;
895 }
896 
897 static int coroutine_fn
898 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
899                                uint64_t bytes, QEMUIOVector *qiov)
900 {
901     BlockDriver *drv = bs->drv;
902 
903     if (!drv->bdrv_co_pwritev_compressed) {
904         return -ENOTSUP;
905     }
906 
907     return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
908 }
909 
910 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
911         int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
912 {
913     BlockDriverState *bs = child->bs;
914 
915     /* Perform I/O through a temporary buffer so that users who scribble over
916      * their read buffer while the operation is in progress do not end up
917      * modifying the image file.  This is critical for zero-copy guest I/O
918      * where anything might happen inside guest memory.
919      */
920     void *bounce_buffer;
921 
922     BlockDriver *drv = bs->drv;
923     struct iovec iov;
924     QEMUIOVector bounce_qiov;
925     int64_t cluster_offset;
926     unsigned int cluster_bytes;
927     size_t skip_bytes;
928     int ret;
929 
930     /* FIXME We cannot require callers to have write permissions when all they
931      * are doing is a read request. If we did things right, write permissions
932      * would be obtained anyway, but internally by the copy-on-read code. As
933      * long as it is implemented here rather than in a separat filter driver,
934      * the copy-on-read code doesn't have its own BdrvChild, however, for which
935      * it could request permissions. Therefore we have to bypass the permission
936      * system for the moment. */
937     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
938 
939     /* Cover entire cluster so no additional backing file I/O is required when
940      * allocating cluster in the image file.
941      */
942     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
943 
944     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
945                                    cluster_offset, cluster_bytes);
946 
947     iov.iov_len = cluster_bytes;
948     iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
949     if (bounce_buffer == NULL) {
950         ret = -ENOMEM;
951         goto err;
952     }
953 
954     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
955 
956     ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
957                              &bounce_qiov, 0);
958     if (ret < 0) {
959         goto err;
960     }
961 
962     if (drv->bdrv_co_pwrite_zeroes &&
963         buffer_is_zero(bounce_buffer, iov.iov_len)) {
964         /* FIXME: Should we (perhaps conditionally) be setting
965          * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
966          * that still correctly reads as zero? */
967         ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
968     } else {
969         /* This does not change the data on the disk, it is not necessary
970          * to flush even in cache=writethrough mode.
971          */
972         ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
973                                   &bounce_qiov, 0);
974     }
975 
976     if (ret < 0) {
977         /* It might be okay to ignore write errors for guest requests.  If this
978          * is a deliberate copy-on-read then we don't want to ignore the error.
979          * Simply report it in all cases.
980          */
981         goto err;
982     }
983 
984     skip_bytes = offset - cluster_offset;
985     qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
986 
987 err:
988     qemu_vfree(bounce_buffer);
989     return ret;
990 }
991 
992 /*
993  * Forwards an already correctly aligned request to the BlockDriver. This
994  * handles copy on read, zeroing after EOF, and fragmentation of large
995  * reads; any other features must be implemented by the caller.
996  */
997 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
998     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
999     int64_t align, QEMUIOVector *qiov, int flags)
1000 {
1001     BlockDriverState *bs = child->bs;
1002     int64_t total_bytes, max_bytes;
1003     int ret = 0;
1004     uint64_t bytes_remaining = bytes;
1005     int max_transfer;
1006 
1007     assert(is_power_of_2(align));
1008     assert((offset & (align - 1)) == 0);
1009     assert((bytes & (align - 1)) == 0);
1010     assert(!qiov || bytes == qiov->size);
1011     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1012     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1013                                    align);
1014 
1015     /* TODO: We would need a per-BDS .supported_read_flags and
1016      * potential fallback support, if we ever implement any read flags
1017      * to pass through to drivers.  For now, there aren't any
1018      * passthrough flags.  */
1019     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1020 
1021     /* Handle Copy on Read and associated serialisation */
1022     if (flags & BDRV_REQ_COPY_ON_READ) {
1023         /* If we touch the same cluster it counts as an overlap.  This
1024          * guarantees that allocating writes will be serialized and not race
1025          * with each other for the same cluster.  For example, in copy-on-read
1026          * it ensures that the CoR read and write operations are atomic and
1027          * guest writes cannot interleave between them. */
1028         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1029     }
1030 
1031     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1032         wait_serialising_requests(req);
1033     }
1034 
1035     if (flags & BDRV_REQ_COPY_ON_READ) {
1036         /* TODO: Simplify further once bdrv_is_allocated no longer
1037          * requires sector alignment */
1038         int64_t start = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
1039         int64_t end = QEMU_ALIGN_UP(offset + bytes, BDRV_SECTOR_SIZE);
1040         int64_t pnum;
1041 
1042         ret = bdrv_is_allocated(bs, start, end - start, &pnum);
1043         if (ret < 0) {
1044             goto out;
1045         }
1046 
1047         if (!ret || pnum != end - start) {
1048             ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1049             goto out;
1050         }
1051     }
1052 
1053     /* Forward the request to the BlockDriver, possibly fragmenting it */
1054     total_bytes = bdrv_getlength(bs);
1055     if (total_bytes < 0) {
1056         ret = total_bytes;
1057         goto out;
1058     }
1059 
1060     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1061     if (bytes <= max_bytes && bytes <= max_transfer) {
1062         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1063         goto out;
1064     }
1065 
1066     while (bytes_remaining) {
1067         int num;
1068 
1069         if (max_bytes) {
1070             QEMUIOVector local_qiov;
1071 
1072             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1073             assert(num);
1074             qemu_iovec_init(&local_qiov, qiov->niov);
1075             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1076 
1077             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1078                                      num, &local_qiov, 0);
1079             max_bytes -= num;
1080             qemu_iovec_destroy(&local_qiov);
1081         } else {
1082             num = bytes_remaining;
1083             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1084                                     bytes_remaining);
1085         }
1086         if (ret < 0) {
1087             goto out;
1088         }
1089         bytes_remaining -= num;
1090     }
1091 
1092 out:
1093     return ret < 0 ? ret : 0;
1094 }
1095 
1096 /*
1097  * Handle a read request in coroutine context
1098  */
1099 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1100     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1101     BdrvRequestFlags flags)
1102 {
1103     BlockDriverState *bs = child->bs;
1104     BlockDriver *drv = bs->drv;
1105     BdrvTrackedRequest req;
1106 
1107     uint64_t align = bs->bl.request_alignment;
1108     uint8_t *head_buf = NULL;
1109     uint8_t *tail_buf = NULL;
1110     QEMUIOVector local_qiov;
1111     bool use_local_qiov = false;
1112     int ret;
1113 
1114     if (!drv) {
1115         return -ENOMEDIUM;
1116     }
1117 
1118     ret = bdrv_check_byte_request(bs, offset, bytes);
1119     if (ret < 0) {
1120         return ret;
1121     }
1122 
1123     bdrv_inc_in_flight(bs);
1124 
1125     /* Don't do copy-on-read if we read data before write operation */
1126     if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1127         flags |= BDRV_REQ_COPY_ON_READ;
1128     }
1129 
1130     /* Align read if necessary by padding qiov */
1131     if (offset & (align - 1)) {
1132         head_buf = qemu_blockalign(bs, align);
1133         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1134         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1135         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1136         use_local_qiov = true;
1137 
1138         bytes += offset & (align - 1);
1139         offset = offset & ~(align - 1);
1140     }
1141 
1142     if ((offset + bytes) & (align - 1)) {
1143         if (!use_local_qiov) {
1144             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1145             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1146             use_local_qiov = true;
1147         }
1148         tail_buf = qemu_blockalign(bs, align);
1149         qemu_iovec_add(&local_qiov, tail_buf,
1150                        align - ((offset + bytes) & (align - 1)));
1151 
1152         bytes = ROUND_UP(bytes, align);
1153     }
1154 
1155     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1156     ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1157                               use_local_qiov ? &local_qiov : qiov,
1158                               flags);
1159     tracked_request_end(&req);
1160     bdrv_dec_in_flight(bs);
1161 
1162     if (use_local_qiov) {
1163         qemu_iovec_destroy(&local_qiov);
1164         qemu_vfree(head_buf);
1165         qemu_vfree(tail_buf);
1166     }
1167 
1168     return ret;
1169 }
1170 
1171 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1172     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1173     BdrvRequestFlags flags)
1174 {
1175     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1176         return -EINVAL;
1177     }
1178 
1179     return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1180                           nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1181 }
1182 
1183 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1184                                int nb_sectors, QEMUIOVector *qiov)
1185 {
1186     trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1187 
1188     return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1189 }
1190 
1191 /* Maximum buffer for write zeroes fallback, in bytes */
1192 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1193 
1194 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1195     int64_t offset, int bytes, BdrvRequestFlags flags)
1196 {
1197     BlockDriver *drv = bs->drv;
1198     QEMUIOVector qiov;
1199     struct iovec iov = {0};
1200     int ret = 0;
1201     bool need_flush = false;
1202     int head = 0;
1203     int tail = 0;
1204 
1205     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1206     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1207                         bs->bl.request_alignment);
1208     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1209                                     MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1210 
1211     assert(alignment % bs->bl.request_alignment == 0);
1212     head = offset % alignment;
1213     tail = (offset + bytes) % alignment;
1214     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1215     assert(max_write_zeroes >= bs->bl.request_alignment);
1216 
1217     while (bytes > 0 && !ret) {
1218         int num = bytes;
1219 
1220         /* Align request.  Block drivers can expect the "bulk" of the request
1221          * to be aligned, and that unaligned requests do not cross cluster
1222          * boundaries.
1223          */
1224         if (head) {
1225             /* Make a small request up to the first aligned sector. For
1226              * convenience, limit this request to max_transfer even if
1227              * we don't need to fall back to writes.  */
1228             num = MIN(MIN(bytes, max_transfer), alignment - head);
1229             head = (head + num) % alignment;
1230             assert(num < max_write_zeroes);
1231         } else if (tail && num > alignment) {
1232             /* Shorten the request to the last aligned sector.  */
1233             num -= tail;
1234         }
1235 
1236         /* limit request size */
1237         if (num > max_write_zeroes) {
1238             num = max_write_zeroes;
1239         }
1240 
1241         ret = -ENOTSUP;
1242         /* First try the efficient write zeroes operation */
1243         if (drv->bdrv_co_pwrite_zeroes) {
1244             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1245                                              flags & bs->supported_zero_flags);
1246             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1247                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1248                 need_flush = true;
1249             }
1250         } else {
1251             assert(!bs->supported_zero_flags);
1252         }
1253 
1254         if (ret == -ENOTSUP) {
1255             /* Fall back to bounce buffer if write zeroes is unsupported */
1256             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1257 
1258             if ((flags & BDRV_REQ_FUA) &&
1259                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1260                 /* No need for bdrv_driver_pwrite() to do a fallback
1261                  * flush on each chunk; use just one at the end */
1262                 write_flags &= ~BDRV_REQ_FUA;
1263                 need_flush = true;
1264             }
1265             num = MIN(num, max_transfer);
1266             iov.iov_len = num;
1267             if (iov.iov_base == NULL) {
1268                 iov.iov_base = qemu_try_blockalign(bs, num);
1269                 if (iov.iov_base == NULL) {
1270                     ret = -ENOMEM;
1271                     goto fail;
1272                 }
1273                 memset(iov.iov_base, 0, num);
1274             }
1275             qemu_iovec_init_external(&qiov, &iov, 1);
1276 
1277             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1278 
1279             /* Keep bounce buffer around if it is big enough for all
1280              * all future requests.
1281              */
1282             if (num < max_transfer) {
1283                 qemu_vfree(iov.iov_base);
1284                 iov.iov_base = NULL;
1285             }
1286         }
1287 
1288         offset += num;
1289         bytes -= num;
1290     }
1291 
1292 fail:
1293     if (ret == 0 && need_flush) {
1294         ret = bdrv_co_flush(bs);
1295     }
1296     qemu_vfree(iov.iov_base);
1297     return ret;
1298 }
1299 
1300 /*
1301  * Forwards an already correctly aligned write request to the BlockDriver,
1302  * after possibly fragmenting it.
1303  */
1304 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1305     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1306     int64_t align, QEMUIOVector *qiov, int flags)
1307 {
1308     BlockDriverState *bs = child->bs;
1309     BlockDriver *drv = bs->drv;
1310     bool waited;
1311     int ret;
1312 
1313     int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1314     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1315     uint64_t bytes_remaining = bytes;
1316     int max_transfer;
1317 
1318     if (bdrv_has_readonly_bitmaps(bs)) {
1319         return -EPERM;
1320     }
1321 
1322     assert(is_power_of_2(align));
1323     assert((offset & (align - 1)) == 0);
1324     assert((bytes & (align - 1)) == 0);
1325     assert(!qiov || bytes == qiov->size);
1326     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1327     assert(!(flags & ~BDRV_REQ_MASK));
1328     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1329                                    align);
1330 
1331     waited = wait_serialising_requests(req);
1332     assert(!waited || !req->serialising);
1333     assert(req->overlap_offset <= offset);
1334     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1335     assert(child->perm & BLK_PERM_WRITE);
1336     assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1337 
1338     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1339 
1340     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1341         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1342         qemu_iovec_is_zero(qiov)) {
1343         flags |= BDRV_REQ_ZERO_WRITE;
1344         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1345             flags |= BDRV_REQ_MAY_UNMAP;
1346         }
1347     }
1348 
1349     if (ret < 0) {
1350         /* Do nothing, write notifier decided to fail this request */
1351     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1352         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1353         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1354     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1355         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1356     } else if (bytes <= max_transfer) {
1357         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1358         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1359     } else {
1360         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1361         while (bytes_remaining) {
1362             int num = MIN(bytes_remaining, max_transfer);
1363             QEMUIOVector local_qiov;
1364             int local_flags = flags;
1365 
1366             assert(num);
1367             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1368                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1369                 /* If FUA is going to be emulated by flush, we only
1370                  * need to flush on the last iteration */
1371                 local_flags &= ~BDRV_REQ_FUA;
1372             }
1373             qemu_iovec_init(&local_qiov, qiov->niov);
1374             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1375 
1376             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1377                                       num, &local_qiov, local_flags);
1378             qemu_iovec_destroy(&local_qiov);
1379             if (ret < 0) {
1380                 break;
1381             }
1382             bytes_remaining -= num;
1383         }
1384     }
1385     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1386 
1387     atomic_inc(&bs->write_gen);
1388     bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1389 
1390     stat64_max(&bs->wr_highest_offset, offset + bytes);
1391 
1392     if (ret >= 0) {
1393         bs->total_sectors = MAX(bs->total_sectors, end_sector);
1394         ret = 0;
1395     }
1396 
1397     return ret;
1398 }
1399 
1400 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1401                                                 int64_t offset,
1402                                                 unsigned int bytes,
1403                                                 BdrvRequestFlags flags,
1404                                                 BdrvTrackedRequest *req)
1405 {
1406     BlockDriverState *bs = child->bs;
1407     uint8_t *buf = NULL;
1408     QEMUIOVector local_qiov;
1409     struct iovec iov;
1410     uint64_t align = bs->bl.request_alignment;
1411     unsigned int head_padding_bytes, tail_padding_bytes;
1412     int ret = 0;
1413 
1414     head_padding_bytes = offset & (align - 1);
1415     tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1416 
1417 
1418     assert(flags & BDRV_REQ_ZERO_WRITE);
1419     if (head_padding_bytes || tail_padding_bytes) {
1420         buf = qemu_blockalign(bs, align);
1421         iov = (struct iovec) {
1422             .iov_base   = buf,
1423             .iov_len    = align,
1424         };
1425         qemu_iovec_init_external(&local_qiov, &iov, 1);
1426     }
1427     if (head_padding_bytes) {
1428         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1429 
1430         /* RMW the unaligned part before head. */
1431         mark_request_serialising(req, align);
1432         wait_serialising_requests(req);
1433         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1434         ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1435                                   align, &local_qiov, 0);
1436         if (ret < 0) {
1437             goto fail;
1438         }
1439         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1440 
1441         memset(buf + head_padding_bytes, 0, zero_bytes);
1442         ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1443                                    align, &local_qiov,
1444                                    flags & ~BDRV_REQ_ZERO_WRITE);
1445         if (ret < 0) {
1446             goto fail;
1447         }
1448         offset += zero_bytes;
1449         bytes -= zero_bytes;
1450     }
1451 
1452     assert(!bytes || (offset & (align - 1)) == 0);
1453     if (bytes >= align) {
1454         /* Write the aligned part in the middle. */
1455         uint64_t aligned_bytes = bytes & ~(align - 1);
1456         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1457                                    NULL, flags);
1458         if (ret < 0) {
1459             goto fail;
1460         }
1461         bytes -= aligned_bytes;
1462         offset += aligned_bytes;
1463     }
1464 
1465     assert(!bytes || (offset & (align - 1)) == 0);
1466     if (bytes) {
1467         assert(align == tail_padding_bytes + bytes);
1468         /* RMW the unaligned part after tail. */
1469         mark_request_serialising(req, align);
1470         wait_serialising_requests(req);
1471         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1472         ret = bdrv_aligned_preadv(child, req, offset, align,
1473                                   align, &local_qiov, 0);
1474         if (ret < 0) {
1475             goto fail;
1476         }
1477         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1478 
1479         memset(buf, 0, bytes);
1480         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1481                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1482     }
1483 fail:
1484     qemu_vfree(buf);
1485     return ret;
1486 
1487 }
1488 
1489 /*
1490  * Handle a write request in coroutine context
1491  */
1492 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1493     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1494     BdrvRequestFlags flags)
1495 {
1496     BlockDriverState *bs = child->bs;
1497     BdrvTrackedRequest req;
1498     uint64_t align = bs->bl.request_alignment;
1499     uint8_t *head_buf = NULL;
1500     uint8_t *tail_buf = NULL;
1501     QEMUIOVector local_qiov;
1502     bool use_local_qiov = false;
1503     int ret;
1504 
1505     if (!bs->drv) {
1506         return -ENOMEDIUM;
1507     }
1508     if (bs->read_only) {
1509         return -EPERM;
1510     }
1511     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1512 
1513     ret = bdrv_check_byte_request(bs, offset, bytes);
1514     if (ret < 0) {
1515         return ret;
1516     }
1517 
1518     bdrv_inc_in_flight(bs);
1519     /*
1520      * Align write if necessary by performing a read-modify-write cycle.
1521      * Pad qiov with the read parts and be sure to have a tracked request not
1522      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1523      */
1524     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1525 
1526     if (!qiov) {
1527         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1528         goto out;
1529     }
1530 
1531     if (offset & (align - 1)) {
1532         QEMUIOVector head_qiov;
1533         struct iovec head_iov;
1534 
1535         mark_request_serialising(&req, align);
1536         wait_serialising_requests(&req);
1537 
1538         head_buf = qemu_blockalign(bs, align);
1539         head_iov = (struct iovec) {
1540             .iov_base   = head_buf,
1541             .iov_len    = align,
1542         };
1543         qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1544 
1545         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1546         ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1547                                   align, &head_qiov, 0);
1548         if (ret < 0) {
1549             goto fail;
1550         }
1551         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1552 
1553         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1554         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1555         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1556         use_local_qiov = true;
1557 
1558         bytes += offset & (align - 1);
1559         offset = offset & ~(align - 1);
1560 
1561         /* We have read the tail already if the request is smaller
1562          * than one aligned block.
1563          */
1564         if (bytes < align) {
1565             qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1566             bytes = align;
1567         }
1568     }
1569 
1570     if ((offset + bytes) & (align - 1)) {
1571         QEMUIOVector tail_qiov;
1572         struct iovec tail_iov;
1573         size_t tail_bytes;
1574         bool waited;
1575 
1576         mark_request_serialising(&req, align);
1577         waited = wait_serialising_requests(&req);
1578         assert(!waited || !use_local_qiov);
1579 
1580         tail_buf = qemu_blockalign(bs, align);
1581         tail_iov = (struct iovec) {
1582             .iov_base   = tail_buf,
1583             .iov_len    = align,
1584         };
1585         qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1586 
1587         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1588         ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1589                                   align, align, &tail_qiov, 0);
1590         if (ret < 0) {
1591             goto fail;
1592         }
1593         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1594 
1595         if (!use_local_qiov) {
1596             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1597             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1598             use_local_qiov = true;
1599         }
1600 
1601         tail_bytes = (offset + bytes) & (align - 1);
1602         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1603 
1604         bytes = ROUND_UP(bytes, align);
1605     }
1606 
1607     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1608                                use_local_qiov ? &local_qiov : qiov,
1609                                flags);
1610 
1611 fail:
1612 
1613     if (use_local_qiov) {
1614         qemu_iovec_destroy(&local_qiov);
1615     }
1616     qemu_vfree(head_buf);
1617     qemu_vfree(tail_buf);
1618 out:
1619     tracked_request_end(&req);
1620     bdrv_dec_in_flight(bs);
1621     return ret;
1622 }
1623 
1624 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1625     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1626     BdrvRequestFlags flags)
1627 {
1628     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1629         return -EINVAL;
1630     }
1631 
1632     return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1633                            nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1634 }
1635 
1636 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1637     int nb_sectors, QEMUIOVector *qiov)
1638 {
1639     trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1640 
1641     return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1642 }
1643 
1644 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1645                                        int bytes, BdrvRequestFlags flags)
1646 {
1647     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1648 
1649     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1650         flags &= ~BDRV_REQ_MAY_UNMAP;
1651     }
1652 
1653     return bdrv_co_pwritev(child, offset, bytes, NULL,
1654                            BDRV_REQ_ZERO_WRITE | flags);
1655 }
1656 
1657 /*
1658  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1659  */
1660 int bdrv_flush_all(void)
1661 {
1662     BdrvNextIterator it;
1663     BlockDriverState *bs = NULL;
1664     int result = 0;
1665 
1666     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1667         AioContext *aio_context = bdrv_get_aio_context(bs);
1668         int ret;
1669 
1670         aio_context_acquire(aio_context);
1671         ret = bdrv_flush(bs);
1672         if (ret < 0 && !result) {
1673             result = ret;
1674         }
1675         aio_context_release(aio_context);
1676     }
1677 
1678     return result;
1679 }
1680 
1681 
1682 typedef struct BdrvCoGetBlockStatusData {
1683     BlockDriverState *bs;
1684     BlockDriverState *base;
1685     BlockDriverState **file;
1686     int64_t sector_num;
1687     int nb_sectors;
1688     int *pnum;
1689     int64_t ret;
1690     bool done;
1691 } BdrvCoGetBlockStatusData;
1692 
1693 /*
1694  * Returns the allocation status of the specified sectors.
1695  * Drivers not implementing the functionality are assumed to not support
1696  * backing files, hence all their sectors are reported as allocated.
1697  *
1698  * If 'sector_num' is beyond the end of the disk image the return value is
1699  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1700  *
1701  * 'pnum' is set to the number of sectors (including and immediately following
1702  * the specified sector) that are known to be in the same
1703  * allocated/unallocated state.
1704  *
1705  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
1706  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1707  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1708  *
1709  * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1710  * points to the BDS which the sector range is allocated in.
1711  */
1712 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1713                                                      int64_t sector_num,
1714                                                      int nb_sectors, int *pnum,
1715                                                      BlockDriverState **file)
1716 {
1717     int64_t total_sectors;
1718     int64_t n;
1719     int64_t ret, ret2;
1720 
1721     *file = NULL;
1722     total_sectors = bdrv_nb_sectors(bs);
1723     if (total_sectors < 0) {
1724         return total_sectors;
1725     }
1726 
1727     if (sector_num >= total_sectors) {
1728         *pnum = 0;
1729         return BDRV_BLOCK_EOF;
1730     }
1731 
1732     n = total_sectors - sector_num;
1733     if (n < nb_sectors) {
1734         nb_sectors = n;
1735     }
1736 
1737     if (!bs->drv->bdrv_co_get_block_status) {
1738         *pnum = nb_sectors;
1739         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1740         if (sector_num + nb_sectors == total_sectors) {
1741             ret |= BDRV_BLOCK_EOF;
1742         }
1743         if (bs->drv->protocol_name) {
1744             ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1745             *file = bs;
1746         }
1747         return ret;
1748     }
1749 
1750     bdrv_inc_in_flight(bs);
1751     ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1752                                             file);
1753     if (ret < 0) {
1754         *pnum = 0;
1755         goto out;
1756     }
1757 
1758     if (ret & BDRV_BLOCK_RAW) {
1759         assert(ret & BDRV_BLOCK_OFFSET_VALID && *file);
1760         ret = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1761                                        *pnum, pnum, file);
1762         goto out;
1763     }
1764 
1765     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1766         ret |= BDRV_BLOCK_ALLOCATED;
1767     } else {
1768         if (bdrv_unallocated_blocks_are_zero(bs)) {
1769             ret |= BDRV_BLOCK_ZERO;
1770         } else if (bs->backing) {
1771             BlockDriverState *bs2 = bs->backing->bs;
1772             int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1773             if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1774                 ret |= BDRV_BLOCK_ZERO;
1775             }
1776         }
1777     }
1778 
1779     if (*file && *file != bs &&
1780         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1781         (ret & BDRV_BLOCK_OFFSET_VALID)) {
1782         BlockDriverState *file2;
1783         int file_pnum;
1784 
1785         ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1786                                         *pnum, &file_pnum, &file2);
1787         if (ret2 >= 0) {
1788             /* Ignore errors.  This is just providing extra information, it
1789              * is useful but not necessary.
1790              */
1791             if (ret2 & BDRV_BLOCK_EOF &&
1792                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
1793                 /*
1794                  * It is valid for the format block driver to read
1795                  * beyond the end of the underlying file's current
1796                  * size; such areas read as zero.
1797                  */
1798                 ret |= BDRV_BLOCK_ZERO;
1799             } else {
1800                 /* Limit request to the range reported by the protocol driver */
1801                 *pnum = file_pnum;
1802                 ret |= (ret2 & BDRV_BLOCK_ZERO);
1803             }
1804         }
1805     }
1806 
1807 out:
1808     bdrv_dec_in_flight(bs);
1809     if (ret >= 0 && sector_num + *pnum == total_sectors) {
1810         ret |= BDRV_BLOCK_EOF;
1811     }
1812     return ret;
1813 }
1814 
1815 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1816         BlockDriverState *base,
1817         int64_t sector_num,
1818         int nb_sectors,
1819         int *pnum,
1820         BlockDriverState **file)
1821 {
1822     BlockDriverState *p;
1823     int64_t ret = 0;
1824     bool first = true;
1825 
1826     assert(bs != base);
1827     for (p = bs; p != base; p = backing_bs(p)) {
1828         ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1829         if (ret < 0) {
1830             break;
1831         }
1832         if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
1833             /*
1834              * Reading beyond the end of the file continues to read
1835              * zeroes, but we can only widen the result to the
1836              * unallocated length we learned from an earlier
1837              * iteration.
1838              */
1839             *pnum = nb_sectors;
1840         }
1841         if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
1842             break;
1843         }
1844         /* [sector_num, pnum] unallocated on this layer, which could be only
1845          * the first part of [sector_num, nb_sectors].  */
1846         nb_sectors = MIN(nb_sectors, *pnum);
1847         first = false;
1848     }
1849     return ret;
1850 }
1851 
1852 /* Coroutine wrapper for bdrv_get_block_status_above() */
1853 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1854 {
1855     BdrvCoGetBlockStatusData *data = opaque;
1856 
1857     data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1858                                                data->sector_num,
1859                                                data->nb_sectors,
1860                                                data->pnum,
1861                                                data->file);
1862     data->done = true;
1863 }
1864 
1865 /*
1866  * Synchronous wrapper around bdrv_co_get_block_status_above().
1867  *
1868  * See bdrv_co_get_block_status_above() for details.
1869  */
1870 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1871                                     BlockDriverState *base,
1872                                     int64_t sector_num,
1873                                     int nb_sectors, int *pnum,
1874                                     BlockDriverState **file)
1875 {
1876     Coroutine *co;
1877     BdrvCoGetBlockStatusData data = {
1878         .bs = bs,
1879         .base = base,
1880         .file = file,
1881         .sector_num = sector_num,
1882         .nb_sectors = nb_sectors,
1883         .pnum = pnum,
1884         .done = false,
1885     };
1886 
1887     if (qemu_in_coroutine()) {
1888         /* Fast-path if already in coroutine context */
1889         bdrv_get_block_status_above_co_entry(&data);
1890     } else {
1891         co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1892                                    &data);
1893         bdrv_coroutine_enter(bs, co);
1894         BDRV_POLL_WHILE(bs, !data.done);
1895     }
1896     return data.ret;
1897 }
1898 
1899 int64_t bdrv_get_block_status(BlockDriverState *bs,
1900                               int64_t sector_num,
1901                               int nb_sectors, int *pnum,
1902                               BlockDriverState **file)
1903 {
1904     return bdrv_get_block_status_above(bs, backing_bs(bs),
1905                                        sector_num, nb_sectors, pnum, file);
1906 }
1907 
1908 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
1909                                    int64_t bytes, int64_t *pnum)
1910 {
1911     BlockDriverState *file;
1912     int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1913     int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1914     int64_t ret;
1915     int psectors;
1916 
1917     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1918     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE) && bytes < INT_MAX);
1919     ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &psectors,
1920                                 &file);
1921     if (ret < 0) {
1922         return ret;
1923     }
1924     if (pnum) {
1925         *pnum = psectors * BDRV_SECTOR_SIZE;
1926     }
1927     return !!(ret & BDRV_BLOCK_ALLOCATED);
1928 }
1929 
1930 /*
1931  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1932  *
1933  * Return true if (a prefix of) the given range is allocated in any image
1934  * between BASE and TOP (inclusive).  BASE can be NULL to check if the given
1935  * offset is allocated in any image of the chain.  Return false otherwise,
1936  * or negative errno on failure.
1937  *
1938  * 'pnum' is set to the number of bytes (including and immediately
1939  * following the specified offset) that are known to be in the same
1940  * allocated/unallocated state.  Note that a subsequent call starting
1941  * at 'offset + *pnum' may return the same allocation status (in other
1942  * words, the result is not necessarily the maximum possible range);
1943  * but 'pnum' will only be 0 when end of file is reached.
1944  *
1945  */
1946 int bdrv_is_allocated_above(BlockDriverState *top,
1947                             BlockDriverState *base,
1948                             int64_t offset, int64_t bytes, int64_t *pnum)
1949 {
1950     BlockDriverState *intermediate;
1951     int ret;
1952     int64_t n = bytes;
1953 
1954     intermediate = top;
1955     while (intermediate && intermediate != base) {
1956         int64_t pnum_inter;
1957         int64_t size_inter;
1958 
1959         ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
1960         if (ret < 0) {
1961             return ret;
1962         }
1963         if (ret) {
1964             *pnum = pnum_inter;
1965             return 1;
1966         }
1967 
1968         size_inter = bdrv_getlength(intermediate);
1969         if (size_inter < 0) {
1970             return size_inter;
1971         }
1972         if (n > pnum_inter &&
1973             (intermediate == top || offset + pnum_inter < size_inter)) {
1974             n = pnum_inter;
1975         }
1976 
1977         intermediate = backing_bs(intermediate);
1978     }
1979 
1980     *pnum = n;
1981     return 0;
1982 }
1983 
1984 typedef struct BdrvVmstateCo {
1985     BlockDriverState    *bs;
1986     QEMUIOVector        *qiov;
1987     int64_t             pos;
1988     bool                is_read;
1989     int                 ret;
1990 } BdrvVmstateCo;
1991 
1992 static int coroutine_fn
1993 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1994                    bool is_read)
1995 {
1996     BlockDriver *drv = bs->drv;
1997     int ret = -ENOTSUP;
1998 
1999     bdrv_inc_in_flight(bs);
2000 
2001     if (!drv) {
2002         ret = -ENOMEDIUM;
2003     } else if (drv->bdrv_load_vmstate) {
2004         if (is_read) {
2005             ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2006         } else {
2007             ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2008         }
2009     } else if (bs->file) {
2010         ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2011     }
2012 
2013     bdrv_dec_in_flight(bs);
2014     return ret;
2015 }
2016 
2017 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2018 {
2019     BdrvVmstateCo *co = opaque;
2020     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2021 }
2022 
2023 static inline int
2024 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2025                 bool is_read)
2026 {
2027     if (qemu_in_coroutine()) {
2028         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2029     } else {
2030         BdrvVmstateCo data = {
2031             .bs         = bs,
2032             .qiov       = qiov,
2033             .pos        = pos,
2034             .is_read    = is_read,
2035             .ret        = -EINPROGRESS,
2036         };
2037         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2038 
2039         bdrv_coroutine_enter(bs, co);
2040         BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2041         return data.ret;
2042     }
2043 }
2044 
2045 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2046                       int64_t pos, int size)
2047 {
2048     QEMUIOVector qiov;
2049     struct iovec iov = {
2050         .iov_base   = (void *) buf,
2051         .iov_len    = size,
2052     };
2053     int ret;
2054 
2055     qemu_iovec_init_external(&qiov, &iov, 1);
2056 
2057     ret = bdrv_writev_vmstate(bs, &qiov, pos);
2058     if (ret < 0) {
2059         return ret;
2060     }
2061 
2062     return size;
2063 }
2064 
2065 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2066 {
2067     return bdrv_rw_vmstate(bs, qiov, pos, false);
2068 }
2069 
2070 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2071                       int64_t pos, int size)
2072 {
2073     QEMUIOVector qiov;
2074     struct iovec iov = {
2075         .iov_base   = buf,
2076         .iov_len    = size,
2077     };
2078     int ret;
2079 
2080     qemu_iovec_init_external(&qiov, &iov, 1);
2081     ret = bdrv_readv_vmstate(bs, &qiov, pos);
2082     if (ret < 0) {
2083         return ret;
2084     }
2085 
2086     return size;
2087 }
2088 
2089 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2090 {
2091     return bdrv_rw_vmstate(bs, qiov, pos, true);
2092 }
2093 
2094 /**************************************************************/
2095 /* async I/Os */
2096 
2097 void bdrv_aio_cancel(BlockAIOCB *acb)
2098 {
2099     qemu_aio_ref(acb);
2100     bdrv_aio_cancel_async(acb);
2101     while (acb->refcnt > 1) {
2102         if (acb->aiocb_info->get_aio_context) {
2103             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2104         } else if (acb->bs) {
2105             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2106              * assert that we're not using an I/O thread.  Thread-safe
2107              * code should use bdrv_aio_cancel_async exclusively.
2108              */
2109             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2110             aio_poll(bdrv_get_aio_context(acb->bs), true);
2111         } else {
2112             abort();
2113         }
2114     }
2115     qemu_aio_unref(acb);
2116 }
2117 
2118 /* Async version of aio cancel. The caller is not blocked if the acb implements
2119  * cancel_async, otherwise we do nothing and let the request normally complete.
2120  * In either case the completion callback must be called. */
2121 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2122 {
2123     if (acb->aiocb_info->cancel_async) {
2124         acb->aiocb_info->cancel_async(acb);
2125     }
2126 }
2127 
2128 /**************************************************************/
2129 /* Coroutine block device emulation */
2130 
2131 typedef struct FlushCo {
2132     BlockDriverState *bs;
2133     int ret;
2134 } FlushCo;
2135 
2136 
2137 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2138 {
2139     FlushCo *rwco = opaque;
2140 
2141     rwco->ret = bdrv_co_flush(rwco->bs);
2142 }
2143 
2144 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2145 {
2146     int current_gen;
2147     int ret = 0;
2148 
2149     bdrv_inc_in_flight(bs);
2150 
2151     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2152         bdrv_is_sg(bs)) {
2153         goto early_exit;
2154     }
2155 
2156     qemu_co_mutex_lock(&bs->reqs_lock);
2157     current_gen = atomic_read(&bs->write_gen);
2158 
2159     /* Wait until any previous flushes are completed */
2160     while (bs->active_flush_req) {
2161         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2162     }
2163 
2164     /* Flushes reach this point in nondecreasing current_gen order.  */
2165     bs->active_flush_req = true;
2166     qemu_co_mutex_unlock(&bs->reqs_lock);
2167 
2168     /* Write back all layers by calling one driver function */
2169     if (bs->drv->bdrv_co_flush) {
2170         ret = bs->drv->bdrv_co_flush(bs);
2171         goto out;
2172     }
2173 
2174     /* Write back cached data to the OS even with cache=unsafe */
2175     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2176     if (bs->drv->bdrv_co_flush_to_os) {
2177         ret = bs->drv->bdrv_co_flush_to_os(bs);
2178         if (ret < 0) {
2179             goto out;
2180         }
2181     }
2182 
2183     /* But don't actually force it to the disk with cache=unsafe */
2184     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2185         goto flush_parent;
2186     }
2187 
2188     /* Check if we really need to flush anything */
2189     if (bs->flushed_gen == current_gen) {
2190         goto flush_parent;
2191     }
2192 
2193     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2194     if (bs->drv->bdrv_co_flush_to_disk) {
2195         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2196     } else if (bs->drv->bdrv_aio_flush) {
2197         BlockAIOCB *acb;
2198         CoroutineIOCompletion co = {
2199             .coroutine = qemu_coroutine_self(),
2200         };
2201 
2202         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2203         if (acb == NULL) {
2204             ret = -EIO;
2205         } else {
2206             qemu_coroutine_yield();
2207             ret = co.ret;
2208         }
2209     } else {
2210         /*
2211          * Some block drivers always operate in either writethrough or unsafe
2212          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2213          * know how the server works (because the behaviour is hardcoded or
2214          * depends on server-side configuration), so we can't ensure that
2215          * everything is safe on disk. Returning an error doesn't work because
2216          * that would break guests even if the server operates in writethrough
2217          * mode.
2218          *
2219          * Let's hope the user knows what he's doing.
2220          */
2221         ret = 0;
2222     }
2223 
2224     if (ret < 0) {
2225         goto out;
2226     }
2227 
2228     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2229      * in the case of cache=unsafe, so there are no useless flushes.
2230      */
2231 flush_parent:
2232     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2233 out:
2234     /* Notify any pending flushes that we have completed */
2235     if (ret == 0) {
2236         bs->flushed_gen = current_gen;
2237     }
2238 
2239     qemu_co_mutex_lock(&bs->reqs_lock);
2240     bs->active_flush_req = false;
2241     /* Return value is ignored - it's ok if wait queue is empty */
2242     qemu_co_queue_next(&bs->flush_queue);
2243     qemu_co_mutex_unlock(&bs->reqs_lock);
2244 
2245 early_exit:
2246     bdrv_dec_in_flight(bs);
2247     return ret;
2248 }
2249 
2250 int bdrv_flush(BlockDriverState *bs)
2251 {
2252     Coroutine *co;
2253     FlushCo flush_co = {
2254         .bs = bs,
2255         .ret = NOT_DONE,
2256     };
2257 
2258     if (qemu_in_coroutine()) {
2259         /* Fast-path if already in coroutine context */
2260         bdrv_flush_co_entry(&flush_co);
2261     } else {
2262         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2263         bdrv_coroutine_enter(bs, co);
2264         BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2265     }
2266 
2267     return flush_co.ret;
2268 }
2269 
2270 typedef struct DiscardCo {
2271     BlockDriverState *bs;
2272     int64_t offset;
2273     int bytes;
2274     int ret;
2275 } DiscardCo;
2276 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2277 {
2278     DiscardCo *rwco = opaque;
2279 
2280     rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2281 }
2282 
2283 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2284                                   int bytes)
2285 {
2286     BdrvTrackedRequest req;
2287     int max_pdiscard, ret;
2288     int head, tail, align;
2289 
2290     if (!bs->drv) {
2291         return -ENOMEDIUM;
2292     }
2293 
2294     if (bdrv_has_readonly_bitmaps(bs)) {
2295         return -EPERM;
2296     }
2297 
2298     ret = bdrv_check_byte_request(bs, offset, bytes);
2299     if (ret < 0) {
2300         return ret;
2301     } else if (bs->read_only) {
2302         return -EPERM;
2303     }
2304     assert(!(bs->open_flags & BDRV_O_INACTIVE));
2305 
2306     /* Do nothing if disabled.  */
2307     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2308         return 0;
2309     }
2310 
2311     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2312         return 0;
2313     }
2314 
2315     /* Discard is advisory, but some devices track and coalesce
2316      * unaligned requests, so we must pass everything down rather than
2317      * round here.  Still, most devices will just silently ignore
2318      * unaligned requests (by returning -ENOTSUP), so we must fragment
2319      * the request accordingly.  */
2320     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2321     assert(align % bs->bl.request_alignment == 0);
2322     head = offset % align;
2323     tail = (offset + bytes) % align;
2324 
2325     bdrv_inc_in_flight(bs);
2326     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2327 
2328     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2329     if (ret < 0) {
2330         goto out;
2331     }
2332 
2333     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2334                                    align);
2335     assert(max_pdiscard >= bs->bl.request_alignment);
2336 
2337     while (bytes > 0) {
2338         int ret;
2339         int num = bytes;
2340 
2341         if (head) {
2342             /* Make small requests to get to alignment boundaries. */
2343             num = MIN(bytes, align - head);
2344             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2345                 num %= bs->bl.request_alignment;
2346             }
2347             head = (head + num) % align;
2348             assert(num < max_pdiscard);
2349         } else if (tail) {
2350             if (num > align) {
2351                 /* Shorten the request to the last aligned cluster.  */
2352                 num -= tail;
2353             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2354                        tail > bs->bl.request_alignment) {
2355                 tail %= bs->bl.request_alignment;
2356                 num -= tail;
2357             }
2358         }
2359         /* limit request size */
2360         if (num > max_pdiscard) {
2361             num = max_pdiscard;
2362         }
2363 
2364         if (bs->drv->bdrv_co_pdiscard) {
2365             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2366         } else {
2367             BlockAIOCB *acb;
2368             CoroutineIOCompletion co = {
2369                 .coroutine = qemu_coroutine_self(),
2370             };
2371 
2372             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2373                                              bdrv_co_io_em_complete, &co);
2374             if (acb == NULL) {
2375                 ret = -EIO;
2376                 goto out;
2377             } else {
2378                 qemu_coroutine_yield();
2379                 ret = co.ret;
2380             }
2381         }
2382         if (ret && ret != -ENOTSUP) {
2383             goto out;
2384         }
2385 
2386         offset += num;
2387         bytes -= num;
2388     }
2389     ret = 0;
2390 out:
2391     atomic_inc(&bs->write_gen);
2392     bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2393                    req.bytes >> BDRV_SECTOR_BITS);
2394     tracked_request_end(&req);
2395     bdrv_dec_in_flight(bs);
2396     return ret;
2397 }
2398 
2399 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2400 {
2401     Coroutine *co;
2402     DiscardCo rwco = {
2403         .bs = bs,
2404         .offset = offset,
2405         .bytes = bytes,
2406         .ret = NOT_DONE,
2407     };
2408 
2409     if (qemu_in_coroutine()) {
2410         /* Fast-path if already in coroutine context */
2411         bdrv_pdiscard_co_entry(&rwco);
2412     } else {
2413         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2414         bdrv_coroutine_enter(bs, co);
2415         BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2416     }
2417 
2418     return rwco.ret;
2419 }
2420 
2421 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2422 {
2423     BlockDriver *drv = bs->drv;
2424     CoroutineIOCompletion co = {
2425         .coroutine = qemu_coroutine_self(),
2426     };
2427     BlockAIOCB *acb;
2428 
2429     bdrv_inc_in_flight(bs);
2430     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2431         co.ret = -ENOTSUP;
2432         goto out;
2433     }
2434 
2435     if (drv->bdrv_co_ioctl) {
2436         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2437     } else {
2438         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2439         if (!acb) {
2440             co.ret = -ENOTSUP;
2441             goto out;
2442         }
2443         qemu_coroutine_yield();
2444     }
2445 out:
2446     bdrv_dec_in_flight(bs);
2447     return co.ret;
2448 }
2449 
2450 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2451 {
2452     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2453 }
2454 
2455 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2456 {
2457     return memset(qemu_blockalign(bs, size), 0, size);
2458 }
2459 
2460 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2461 {
2462     size_t align = bdrv_opt_mem_align(bs);
2463 
2464     /* Ensure that NULL is never returned on success */
2465     assert(align > 0);
2466     if (size == 0) {
2467         size = align;
2468     }
2469 
2470     return qemu_try_memalign(align, size);
2471 }
2472 
2473 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2474 {
2475     void *mem = qemu_try_blockalign(bs, size);
2476 
2477     if (mem) {
2478         memset(mem, 0, size);
2479     }
2480 
2481     return mem;
2482 }
2483 
2484 /*
2485  * Check if all memory in this vector is sector aligned.
2486  */
2487 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2488 {
2489     int i;
2490     size_t alignment = bdrv_min_mem_align(bs);
2491 
2492     for (i = 0; i < qiov->niov; i++) {
2493         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2494             return false;
2495         }
2496         if (qiov->iov[i].iov_len % alignment) {
2497             return false;
2498         }
2499     }
2500 
2501     return true;
2502 }
2503 
2504 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2505                                     NotifierWithReturn *notifier)
2506 {
2507     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2508 }
2509 
2510 void bdrv_io_plug(BlockDriverState *bs)
2511 {
2512     BdrvChild *child;
2513 
2514     QLIST_FOREACH(child, &bs->children, next) {
2515         bdrv_io_plug(child->bs);
2516     }
2517 
2518     if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2519         BlockDriver *drv = bs->drv;
2520         if (drv && drv->bdrv_io_plug) {
2521             drv->bdrv_io_plug(bs);
2522         }
2523     }
2524 }
2525 
2526 void bdrv_io_unplug(BlockDriverState *bs)
2527 {
2528     BdrvChild *child;
2529 
2530     assert(bs->io_plugged);
2531     if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2532         BlockDriver *drv = bs->drv;
2533         if (drv && drv->bdrv_io_unplug) {
2534             drv->bdrv_io_unplug(bs);
2535         }
2536     }
2537 
2538     QLIST_FOREACH(child, &bs->children, next) {
2539         bdrv_io_unplug(child->bs);
2540     }
2541 }
2542