xref: /openbmc/qemu/block/io.c (revision d36f7de8)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 
36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 
38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
40 
41 static AioWait drain_all_aio_wait;
42 
43 static void bdrv_parent_cb_resize(BlockDriverState *bs);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45     int64_t offset, int bytes, BdrvRequestFlags flags);
46 
47 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
48                                bool ignore_bds_parents)
49 {
50     BdrvChild *c, *next;
51 
52     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
54             continue;
55         }
56         bdrv_parent_drained_begin_single(c, false);
57     }
58 }
59 
60 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
61                              bool ignore_bds_parents)
62 {
63     BdrvChild *c, *next;
64 
65     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
66         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
67             continue;
68         }
69         if (c->role->drained_end) {
70             c->role->drained_end(c);
71         }
72     }
73 }
74 
75 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
76 {
77     if (c->role->drained_poll) {
78         return c->role->drained_poll(c);
79     }
80     return false;
81 }
82 
83 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
84                                      bool ignore_bds_parents)
85 {
86     BdrvChild *c, *next;
87     bool busy = false;
88 
89     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
90         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
91             continue;
92         }
93         busy |= bdrv_parent_drained_poll_single(c);
94     }
95 
96     return busy;
97 }
98 
99 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
100 {
101     if (c->role->drained_begin) {
102         c->role->drained_begin(c);
103     }
104     if (poll) {
105         BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
106     }
107 }
108 
109 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
110 {
111     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
112     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
113     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
114                                  src->opt_mem_alignment);
115     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
116                                  src->min_mem_alignment);
117     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
118 }
119 
120 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
121 {
122     BlockDriver *drv = bs->drv;
123     Error *local_err = NULL;
124 
125     memset(&bs->bl, 0, sizeof(bs->bl));
126 
127     if (!drv) {
128         return;
129     }
130 
131     /* Default alignment based on whether driver has byte interface */
132     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
133                                 drv->bdrv_aio_preadv) ? 1 : 512;
134 
135     /* Take some limits from the children as a default */
136     if (bs->file) {
137         bdrv_refresh_limits(bs->file->bs, &local_err);
138         if (local_err) {
139             error_propagate(errp, local_err);
140             return;
141         }
142         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
143     } else {
144         bs->bl.min_mem_alignment = 512;
145         bs->bl.opt_mem_alignment = getpagesize();
146 
147         /* Safe default since most protocols use readv()/writev()/etc */
148         bs->bl.max_iov = IOV_MAX;
149     }
150 
151     if (bs->backing) {
152         bdrv_refresh_limits(bs->backing->bs, &local_err);
153         if (local_err) {
154             error_propagate(errp, local_err);
155             return;
156         }
157         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
158     }
159 
160     /* Then let the driver override it */
161     if (drv->bdrv_refresh_limits) {
162         drv->bdrv_refresh_limits(bs, errp);
163     }
164 }
165 
166 /**
167  * The copy-on-read flag is actually a reference count so multiple users may
168  * use the feature without worrying about clobbering its previous state.
169  * Copy-on-read stays enabled until all users have called to disable it.
170  */
171 void bdrv_enable_copy_on_read(BlockDriverState *bs)
172 {
173     atomic_inc(&bs->copy_on_read);
174 }
175 
176 void bdrv_disable_copy_on_read(BlockDriverState *bs)
177 {
178     int old = atomic_fetch_dec(&bs->copy_on_read);
179     assert(old >= 1);
180 }
181 
182 typedef struct {
183     Coroutine *co;
184     BlockDriverState *bs;
185     bool done;
186     bool begin;
187     bool recursive;
188     bool poll;
189     BdrvChild *parent;
190     bool ignore_bds_parents;
191 } BdrvCoDrainData;
192 
193 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
194 {
195     BdrvCoDrainData *data = opaque;
196     BlockDriverState *bs = data->bs;
197 
198     if (data->begin) {
199         bs->drv->bdrv_co_drain_begin(bs);
200     } else {
201         bs->drv->bdrv_co_drain_end(bs);
202     }
203 
204     /* Set data->done before reading bs->wakeup.  */
205     atomic_mb_set(&data->done, true);
206     bdrv_dec_in_flight(bs);
207 
208     if (data->begin) {
209         g_free(data);
210     }
211 }
212 
213 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
214 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin)
215 {
216     BdrvCoDrainData *data;
217 
218     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
219             (!begin && !bs->drv->bdrv_co_drain_end)) {
220         return;
221     }
222 
223     data = g_new(BdrvCoDrainData, 1);
224     *data = (BdrvCoDrainData) {
225         .bs = bs,
226         .done = false,
227         .begin = begin
228     };
229 
230     /* Make sure the driver callback completes during the polling phase for
231      * drain_begin. */
232     bdrv_inc_in_flight(bs);
233     data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
234     aio_co_schedule(bdrv_get_aio_context(bs), data->co);
235 
236     if (!begin) {
237         BDRV_POLL_WHILE(bs, !data->done);
238         g_free(data);
239     }
240 }
241 
242 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
243 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
244                      BdrvChild *ignore_parent, bool ignore_bds_parents)
245 {
246     BdrvChild *child, *next;
247 
248     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
249         return true;
250     }
251 
252     if (atomic_read(&bs->in_flight)) {
253         return true;
254     }
255 
256     if (recursive) {
257         assert(!ignore_bds_parents);
258         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
259             if (bdrv_drain_poll(child->bs, recursive, child, false)) {
260                 return true;
261             }
262         }
263     }
264 
265     return false;
266 }
267 
268 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
269                                       BdrvChild *ignore_parent)
270 {
271     /* Execute pending BHs first and check everything else only after the BHs
272      * have executed. */
273     while (aio_poll(bs->aio_context, false));
274 
275     return bdrv_drain_poll(bs, recursive, ignore_parent, false);
276 }
277 
278 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
279                                   BdrvChild *parent, bool ignore_bds_parents,
280                                   bool poll);
281 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
282                                 BdrvChild *parent, bool ignore_bds_parents);
283 
284 static void bdrv_co_drain_bh_cb(void *opaque)
285 {
286     BdrvCoDrainData *data = opaque;
287     Coroutine *co = data->co;
288     BlockDriverState *bs = data->bs;
289 
290     if (bs) {
291         bdrv_dec_in_flight(bs);
292         if (data->begin) {
293             bdrv_do_drained_begin(bs, data->recursive, data->parent,
294                                   data->ignore_bds_parents, data->poll);
295         } else {
296             bdrv_do_drained_end(bs, data->recursive, data->parent,
297                                 data->ignore_bds_parents);
298         }
299     } else {
300         assert(data->begin);
301         bdrv_drain_all_begin();
302     }
303 
304     data->done = true;
305     aio_co_wake(co);
306 }
307 
308 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
309                                                 bool begin, bool recursive,
310                                                 BdrvChild *parent,
311                                                 bool ignore_bds_parents,
312                                                 bool poll)
313 {
314     BdrvCoDrainData data;
315 
316     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
317      * other coroutines run if they were queued by aio_co_enter(). */
318 
319     assert(qemu_in_coroutine());
320     data = (BdrvCoDrainData) {
321         .co = qemu_coroutine_self(),
322         .bs = bs,
323         .done = false,
324         .begin = begin,
325         .recursive = recursive,
326         .parent = parent,
327         .ignore_bds_parents = ignore_bds_parents,
328         .poll = poll,
329     };
330     if (bs) {
331         bdrv_inc_in_flight(bs);
332     }
333     aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
334                             bdrv_co_drain_bh_cb, &data);
335 
336     qemu_coroutine_yield();
337     /* If we are resumed from some other event (such as an aio completion or a
338      * timer callback), it is a bug in the caller that should be fixed. */
339     assert(data.done);
340 }
341 
342 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
343                                    BdrvChild *parent, bool ignore_bds_parents)
344 {
345     assert(!qemu_in_coroutine());
346 
347     /* Stop things in parent-to-child order */
348     if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
349         aio_disable_external(bdrv_get_aio_context(bs));
350     }
351 
352     bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
353     bdrv_drain_invoke(bs, true);
354 }
355 
356 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
357                                   BdrvChild *parent, bool ignore_bds_parents,
358                                   bool poll)
359 {
360     BdrvChild *child, *next;
361 
362     if (qemu_in_coroutine()) {
363         bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
364                                poll);
365         return;
366     }
367 
368     bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
369 
370     if (recursive) {
371         assert(!ignore_bds_parents);
372         bs->recursive_quiesce_counter++;
373         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
374             bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
375                                   false);
376         }
377     }
378 
379     /*
380      * Wait for drained requests to finish.
381      *
382      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
383      * call is needed so things in this AioContext can make progress even
384      * though we don't return to the main AioContext loop - this automatically
385      * includes other nodes in the same AioContext and therefore all child
386      * nodes.
387      */
388     if (poll) {
389         assert(!ignore_bds_parents);
390         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
391     }
392 }
393 
394 void bdrv_drained_begin(BlockDriverState *bs)
395 {
396     bdrv_do_drained_begin(bs, false, NULL, false, true);
397 }
398 
399 void bdrv_subtree_drained_begin(BlockDriverState *bs)
400 {
401     bdrv_do_drained_begin(bs, true, NULL, false, true);
402 }
403 
404 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
405                                 BdrvChild *parent, bool ignore_bds_parents)
406 {
407     BdrvChild *child, *next;
408     int old_quiesce_counter;
409 
410     if (qemu_in_coroutine()) {
411         bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
412                                false);
413         return;
414     }
415     assert(bs->quiesce_counter > 0);
416     old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
417 
418     /* Re-enable things in child-to-parent order */
419     bdrv_drain_invoke(bs, false);
420     bdrv_parent_drained_end(bs, parent, ignore_bds_parents);
421     if (old_quiesce_counter == 1) {
422         aio_enable_external(bdrv_get_aio_context(bs));
423     }
424 
425     if (recursive) {
426         assert(!ignore_bds_parents);
427         bs->recursive_quiesce_counter--;
428         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
429             bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents);
430         }
431     }
432 }
433 
434 void bdrv_drained_end(BlockDriverState *bs)
435 {
436     bdrv_do_drained_end(bs, false, NULL, false);
437 }
438 
439 void bdrv_subtree_drained_end(BlockDriverState *bs)
440 {
441     bdrv_do_drained_end(bs, true, NULL, false);
442 }
443 
444 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
445 {
446     int i;
447 
448     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
449         bdrv_do_drained_begin(child->bs, true, child, false, true);
450     }
451 }
452 
453 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
454 {
455     int i;
456 
457     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
458         bdrv_do_drained_end(child->bs, true, child, false);
459     }
460 }
461 
462 /*
463  * Wait for pending requests to complete on a single BlockDriverState subtree,
464  * and suspend block driver's internal I/O until next request arrives.
465  *
466  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
467  * AioContext.
468  */
469 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
470 {
471     assert(qemu_in_coroutine());
472     bdrv_drained_begin(bs);
473     bdrv_drained_end(bs);
474 }
475 
476 void bdrv_drain(BlockDriverState *bs)
477 {
478     bdrv_drained_begin(bs);
479     bdrv_drained_end(bs);
480 }
481 
482 static void bdrv_drain_assert_idle(BlockDriverState *bs)
483 {
484     BdrvChild *child, *next;
485 
486     assert(atomic_read(&bs->in_flight) == 0);
487     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
488         bdrv_drain_assert_idle(child->bs);
489     }
490 }
491 
492 unsigned int bdrv_drain_all_count = 0;
493 
494 static bool bdrv_drain_all_poll(void)
495 {
496     BlockDriverState *bs = NULL;
497     bool result = false;
498 
499     /* Execute pending BHs first (may modify the graph) and check everything
500      * else only after the BHs have executed. */
501     while (aio_poll(qemu_get_aio_context(), false));
502 
503     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
504      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
505     while ((bs = bdrv_next_all_states(bs))) {
506         AioContext *aio_context = bdrv_get_aio_context(bs);
507         aio_context_acquire(aio_context);
508         result |= bdrv_drain_poll(bs, false, NULL, true);
509         aio_context_release(aio_context);
510     }
511 
512     return result;
513 }
514 
515 /*
516  * Wait for pending requests to complete across all BlockDriverStates
517  *
518  * This function does not flush data to disk, use bdrv_flush_all() for that
519  * after calling this function.
520  *
521  * This pauses all block jobs and disables external clients. It must
522  * be paired with bdrv_drain_all_end().
523  *
524  * NOTE: no new block jobs or BlockDriverStates can be created between
525  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
526  */
527 void bdrv_drain_all_begin(void)
528 {
529     BlockDriverState *bs = NULL;
530 
531     if (qemu_in_coroutine()) {
532         bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true);
533         return;
534     }
535 
536     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
537      * loop AioContext, so make sure we're in the main context. */
538     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
539     assert(bdrv_drain_all_count < INT_MAX);
540     bdrv_drain_all_count++;
541 
542     /* Quiesce all nodes, without polling in-flight requests yet. The graph
543      * cannot change during this loop. */
544     while ((bs = bdrv_next_all_states(bs))) {
545         AioContext *aio_context = bdrv_get_aio_context(bs);
546 
547         aio_context_acquire(aio_context);
548         bdrv_do_drained_begin(bs, false, NULL, true, false);
549         aio_context_release(aio_context);
550     }
551 
552     /* Now poll the in-flight requests */
553     AIO_WAIT_WHILE(&drain_all_aio_wait, NULL, bdrv_drain_all_poll());
554 
555     while ((bs = bdrv_next_all_states(bs))) {
556         bdrv_drain_assert_idle(bs);
557     }
558 }
559 
560 void bdrv_drain_all_end(void)
561 {
562     BlockDriverState *bs = NULL;
563 
564     while ((bs = bdrv_next_all_states(bs))) {
565         AioContext *aio_context = bdrv_get_aio_context(bs);
566 
567         aio_context_acquire(aio_context);
568         bdrv_do_drained_end(bs, false, NULL, true);
569         aio_context_release(aio_context);
570     }
571 
572     assert(bdrv_drain_all_count > 0);
573     bdrv_drain_all_count--;
574 }
575 
576 void bdrv_drain_all(void)
577 {
578     bdrv_drain_all_begin();
579     bdrv_drain_all_end();
580 }
581 
582 /**
583  * Remove an active request from the tracked requests list
584  *
585  * This function should be called when a tracked request is completing.
586  */
587 static void tracked_request_end(BdrvTrackedRequest *req)
588 {
589     if (req->serialising) {
590         atomic_dec(&req->bs->serialising_in_flight);
591     }
592 
593     qemu_co_mutex_lock(&req->bs->reqs_lock);
594     QLIST_REMOVE(req, list);
595     qemu_co_queue_restart_all(&req->wait_queue);
596     qemu_co_mutex_unlock(&req->bs->reqs_lock);
597 }
598 
599 /**
600  * Add an active request to the tracked requests list
601  */
602 static void tracked_request_begin(BdrvTrackedRequest *req,
603                                   BlockDriverState *bs,
604                                   int64_t offset,
605                                   uint64_t bytes,
606                                   enum BdrvTrackedRequestType type)
607 {
608     assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
609 
610     *req = (BdrvTrackedRequest){
611         .bs = bs,
612         .offset         = offset,
613         .bytes          = bytes,
614         .type           = type,
615         .co             = qemu_coroutine_self(),
616         .serialising    = false,
617         .overlap_offset = offset,
618         .overlap_bytes  = bytes,
619     };
620 
621     qemu_co_queue_init(&req->wait_queue);
622 
623     qemu_co_mutex_lock(&bs->reqs_lock);
624     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
625     qemu_co_mutex_unlock(&bs->reqs_lock);
626 }
627 
628 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
629 {
630     int64_t overlap_offset = req->offset & ~(align - 1);
631     uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
632                                - overlap_offset;
633 
634     if (!req->serialising) {
635         atomic_inc(&req->bs->serialising_in_flight);
636         req->serialising = true;
637     }
638 
639     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
640     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
641 }
642 
643 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req)
644 {
645     /*
646      * If the request is serialising, overlap_offset and overlap_bytes are set,
647      * so we can check if the request is aligned. Otherwise, don't care and
648      * return false.
649      */
650 
651     return req->serialising && (req->offset == req->overlap_offset) &&
652            (req->bytes == req->overlap_bytes);
653 }
654 
655 /**
656  * Round a region to cluster boundaries
657  */
658 void bdrv_round_to_clusters(BlockDriverState *bs,
659                             int64_t offset, int64_t bytes,
660                             int64_t *cluster_offset,
661                             int64_t *cluster_bytes)
662 {
663     BlockDriverInfo bdi;
664 
665     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
666         *cluster_offset = offset;
667         *cluster_bytes = bytes;
668     } else {
669         int64_t c = bdi.cluster_size;
670         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
671         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
672     }
673 }
674 
675 static int bdrv_get_cluster_size(BlockDriverState *bs)
676 {
677     BlockDriverInfo bdi;
678     int ret;
679 
680     ret = bdrv_get_info(bs, &bdi);
681     if (ret < 0 || bdi.cluster_size == 0) {
682         return bs->bl.request_alignment;
683     } else {
684         return bdi.cluster_size;
685     }
686 }
687 
688 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
689                                      int64_t offset, uint64_t bytes)
690 {
691     /*        aaaa   bbbb */
692     if (offset >= req->overlap_offset + req->overlap_bytes) {
693         return false;
694     }
695     /* bbbb   aaaa        */
696     if (req->overlap_offset >= offset + bytes) {
697         return false;
698     }
699     return true;
700 }
701 
702 void bdrv_inc_in_flight(BlockDriverState *bs)
703 {
704     atomic_inc(&bs->in_flight);
705 }
706 
707 void bdrv_wakeup(BlockDriverState *bs)
708 {
709     aio_wait_kick(bdrv_get_aio_wait(bs));
710     aio_wait_kick(&drain_all_aio_wait);
711 }
712 
713 void bdrv_dec_in_flight(BlockDriverState *bs)
714 {
715     atomic_dec(&bs->in_flight);
716     bdrv_wakeup(bs);
717 }
718 
719 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
720 {
721     BlockDriverState *bs = self->bs;
722     BdrvTrackedRequest *req;
723     bool retry;
724     bool waited = false;
725 
726     if (!atomic_read(&bs->serialising_in_flight)) {
727         return false;
728     }
729 
730     do {
731         retry = false;
732         qemu_co_mutex_lock(&bs->reqs_lock);
733         QLIST_FOREACH(req, &bs->tracked_requests, list) {
734             if (req == self || (!req->serialising && !self->serialising)) {
735                 continue;
736             }
737             if (tracked_request_overlaps(req, self->overlap_offset,
738                                          self->overlap_bytes))
739             {
740                 /* Hitting this means there was a reentrant request, for
741                  * example, a block driver issuing nested requests.  This must
742                  * never happen since it means deadlock.
743                  */
744                 assert(qemu_coroutine_self() != req->co);
745 
746                 /* If the request is already (indirectly) waiting for us, or
747                  * will wait for us as soon as it wakes up, then just go on
748                  * (instead of producing a deadlock in the former case). */
749                 if (!req->waiting_for) {
750                     self->waiting_for = req;
751                     qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
752                     self->waiting_for = NULL;
753                     retry = true;
754                     waited = true;
755                     break;
756                 }
757             }
758         }
759         qemu_co_mutex_unlock(&bs->reqs_lock);
760     } while (retry);
761 
762     return waited;
763 }
764 
765 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
766                                    size_t size)
767 {
768     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
769         return -EIO;
770     }
771 
772     if (!bdrv_is_inserted(bs)) {
773         return -ENOMEDIUM;
774     }
775 
776     if (offset < 0) {
777         return -EIO;
778     }
779 
780     return 0;
781 }
782 
783 typedef struct RwCo {
784     BdrvChild *child;
785     int64_t offset;
786     QEMUIOVector *qiov;
787     bool is_write;
788     int ret;
789     BdrvRequestFlags flags;
790 } RwCo;
791 
792 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
793 {
794     RwCo *rwco = opaque;
795 
796     if (!rwco->is_write) {
797         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
798                                    rwco->qiov->size, rwco->qiov,
799                                    rwco->flags);
800     } else {
801         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
802                                     rwco->qiov->size, rwco->qiov,
803                                     rwco->flags);
804     }
805 }
806 
807 /*
808  * Process a vectored synchronous request using coroutines
809  */
810 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
811                         QEMUIOVector *qiov, bool is_write,
812                         BdrvRequestFlags flags)
813 {
814     Coroutine *co;
815     RwCo rwco = {
816         .child = child,
817         .offset = offset,
818         .qiov = qiov,
819         .is_write = is_write,
820         .ret = NOT_DONE,
821         .flags = flags,
822     };
823 
824     if (qemu_in_coroutine()) {
825         /* Fast-path if already in coroutine context */
826         bdrv_rw_co_entry(&rwco);
827     } else {
828         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
829         bdrv_coroutine_enter(child->bs, co);
830         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
831     }
832     return rwco.ret;
833 }
834 
835 /*
836  * Process a synchronous request using coroutines
837  */
838 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
839                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
840 {
841     QEMUIOVector qiov;
842     struct iovec iov = {
843         .iov_base = (void *)buf,
844         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
845     };
846 
847     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
848         return -EINVAL;
849     }
850 
851     qemu_iovec_init_external(&qiov, &iov, 1);
852     return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
853                         &qiov, is_write, flags);
854 }
855 
856 /* return < 0 if error. See bdrv_write() for the return codes */
857 int bdrv_read(BdrvChild *child, int64_t sector_num,
858               uint8_t *buf, int nb_sectors)
859 {
860     return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
861 }
862 
863 /* Return < 0 if error. Important errors are:
864   -EIO         generic I/O error (may happen for all errors)
865   -ENOMEDIUM   No media inserted.
866   -EINVAL      Invalid sector number or nb_sectors
867   -EACCES      Trying to write a read-only device
868 */
869 int bdrv_write(BdrvChild *child, int64_t sector_num,
870                const uint8_t *buf, int nb_sectors)
871 {
872     return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
873 }
874 
875 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
876                        int bytes, BdrvRequestFlags flags)
877 {
878     QEMUIOVector qiov;
879     struct iovec iov = {
880         .iov_base = NULL,
881         .iov_len = bytes,
882     };
883 
884     qemu_iovec_init_external(&qiov, &iov, 1);
885     return bdrv_prwv_co(child, offset, &qiov, true,
886                         BDRV_REQ_ZERO_WRITE | flags);
887 }
888 
889 /*
890  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
891  * The operation is sped up by checking the block status and only writing
892  * zeroes to the device if they currently do not return zeroes. Optional
893  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
894  * BDRV_REQ_FUA).
895  *
896  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
897  */
898 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
899 {
900     int ret;
901     int64_t target_size, bytes, offset = 0;
902     BlockDriverState *bs = child->bs;
903 
904     target_size = bdrv_getlength(bs);
905     if (target_size < 0) {
906         return target_size;
907     }
908 
909     for (;;) {
910         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
911         if (bytes <= 0) {
912             return 0;
913         }
914         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
915         if (ret < 0) {
916             error_report("error getting block status at offset %" PRId64 ": %s",
917                          offset, strerror(-ret));
918             return ret;
919         }
920         if (ret & BDRV_BLOCK_ZERO) {
921             offset += bytes;
922             continue;
923         }
924         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
925         if (ret < 0) {
926             error_report("error writing zeroes at offset %" PRId64 ": %s",
927                          offset, strerror(-ret));
928             return ret;
929         }
930         offset += bytes;
931     }
932 }
933 
934 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
935 {
936     int ret;
937 
938     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
939     if (ret < 0) {
940         return ret;
941     }
942 
943     return qiov->size;
944 }
945 
946 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
947 {
948     QEMUIOVector qiov;
949     struct iovec iov = {
950         .iov_base = (void *)buf,
951         .iov_len = bytes,
952     };
953 
954     if (bytes < 0) {
955         return -EINVAL;
956     }
957 
958     qemu_iovec_init_external(&qiov, &iov, 1);
959     return bdrv_preadv(child, offset, &qiov);
960 }
961 
962 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
963 {
964     int ret;
965 
966     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
967     if (ret < 0) {
968         return ret;
969     }
970 
971     return qiov->size;
972 }
973 
974 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
975 {
976     QEMUIOVector qiov;
977     struct iovec iov = {
978         .iov_base   = (void *) buf,
979         .iov_len    = bytes,
980     };
981 
982     if (bytes < 0) {
983         return -EINVAL;
984     }
985 
986     qemu_iovec_init_external(&qiov, &iov, 1);
987     return bdrv_pwritev(child, offset, &qiov);
988 }
989 
990 /*
991  * Writes to the file and ensures that no writes are reordered across this
992  * request (acts as a barrier)
993  *
994  * Returns 0 on success, -errno in error cases.
995  */
996 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
997                      const void *buf, int count)
998 {
999     int ret;
1000 
1001     ret = bdrv_pwrite(child, offset, buf, count);
1002     if (ret < 0) {
1003         return ret;
1004     }
1005 
1006     ret = bdrv_flush(child->bs);
1007     if (ret < 0) {
1008         return ret;
1009     }
1010 
1011     return 0;
1012 }
1013 
1014 typedef struct CoroutineIOCompletion {
1015     Coroutine *coroutine;
1016     int ret;
1017 } CoroutineIOCompletion;
1018 
1019 static void bdrv_co_io_em_complete(void *opaque, int ret)
1020 {
1021     CoroutineIOCompletion *co = opaque;
1022 
1023     co->ret = ret;
1024     aio_co_wake(co->coroutine);
1025 }
1026 
1027 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1028                                            uint64_t offset, uint64_t bytes,
1029                                            QEMUIOVector *qiov, int flags)
1030 {
1031     BlockDriver *drv = bs->drv;
1032     int64_t sector_num;
1033     unsigned int nb_sectors;
1034 
1035     assert(!(flags & ~BDRV_REQ_MASK));
1036 
1037     if (!drv) {
1038         return -ENOMEDIUM;
1039     }
1040 
1041     if (drv->bdrv_co_preadv) {
1042         return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1043     }
1044 
1045     if (drv->bdrv_aio_preadv) {
1046         BlockAIOCB *acb;
1047         CoroutineIOCompletion co = {
1048             .coroutine = qemu_coroutine_self(),
1049         };
1050 
1051         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1052                                    bdrv_co_io_em_complete, &co);
1053         if (acb == NULL) {
1054             return -EIO;
1055         } else {
1056             qemu_coroutine_yield();
1057             return co.ret;
1058         }
1059     }
1060 
1061     sector_num = offset >> BDRV_SECTOR_BITS;
1062     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1063 
1064     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1065     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1066     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
1067     assert(drv->bdrv_co_readv);
1068 
1069     return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1070 }
1071 
1072 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1073                                             uint64_t offset, uint64_t bytes,
1074                                             QEMUIOVector *qiov, int flags)
1075 {
1076     BlockDriver *drv = bs->drv;
1077     int64_t sector_num;
1078     unsigned int nb_sectors;
1079     int ret;
1080 
1081     assert(!(flags & ~BDRV_REQ_MASK));
1082 
1083     if (!drv) {
1084         return -ENOMEDIUM;
1085     }
1086 
1087     if (drv->bdrv_co_pwritev) {
1088         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1089                                    flags & bs->supported_write_flags);
1090         flags &= ~bs->supported_write_flags;
1091         goto emulate_flags;
1092     }
1093 
1094     if (drv->bdrv_aio_pwritev) {
1095         BlockAIOCB *acb;
1096         CoroutineIOCompletion co = {
1097             .coroutine = qemu_coroutine_self(),
1098         };
1099 
1100         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1101                                     flags & bs->supported_write_flags,
1102                                     bdrv_co_io_em_complete, &co);
1103         flags &= ~bs->supported_write_flags;
1104         if (acb == NULL) {
1105             ret = -EIO;
1106         } else {
1107             qemu_coroutine_yield();
1108             ret = co.ret;
1109         }
1110         goto emulate_flags;
1111     }
1112 
1113     sector_num = offset >> BDRV_SECTOR_BITS;
1114     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1115 
1116     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1117     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1118     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
1119 
1120     assert(drv->bdrv_co_writev);
1121     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1122                               flags & bs->supported_write_flags);
1123     flags &= ~bs->supported_write_flags;
1124 
1125 emulate_flags:
1126     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1127         ret = bdrv_co_flush(bs);
1128     }
1129 
1130     return ret;
1131 }
1132 
1133 static int coroutine_fn
1134 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1135                                uint64_t bytes, QEMUIOVector *qiov)
1136 {
1137     BlockDriver *drv = bs->drv;
1138 
1139     if (!drv) {
1140         return -ENOMEDIUM;
1141     }
1142 
1143     if (!drv->bdrv_co_pwritev_compressed) {
1144         return -ENOTSUP;
1145     }
1146 
1147     return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1148 }
1149 
1150 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1151         int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
1152 {
1153     BlockDriverState *bs = child->bs;
1154 
1155     /* Perform I/O through a temporary buffer so that users who scribble over
1156      * their read buffer while the operation is in progress do not end up
1157      * modifying the image file.  This is critical for zero-copy guest I/O
1158      * where anything might happen inside guest memory.
1159      */
1160     void *bounce_buffer;
1161 
1162     BlockDriver *drv = bs->drv;
1163     struct iovec iov;
1164     QEMUIOVector local_qiov;
1165     int64_t cluster_offset;
1166     int64_t cluster_bytes;
1167     size_t skip_bytes;
1168     int ret;
1169     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1170                                     BDRV_REQUEST_MAX_BYTES);
1171     unsigned int progress = 0;
1172 
1173     if (!drv) {
1174         return -ENOMEDIUM;
1175     }
1176 
1177     /* FIXME We cannot require callers to have write permissions when all they
1178      * are doing is a read request. If we did things right, write permissions
1179      * would be obtained anyway, but internally by the copy-on-read code. As
1180      * long as it is implemented here rather than in a separate filter driver,
1181      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1182      * it could request permissions. Therefore we have to bypass the permission
1183      * system for the moment. */
1184     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1185 
1186     /* Cover entire cluster so no additional backing file I/O is required when
1187      * allocating cluster in the image file.  Note that this value may exceed
1188      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1189      * is one reason we loop rather than doing it all at once.
1190      */
1191     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1192     skip_bytes = offset - cluster_offset;
1193 
1194     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1195                                    cluster_offset, cluster_bytes);
1196 
1197     bounce_buffer = qemu_try_blockalign(bs,
1198                                         MIN(MIN(max_transfer, cluster_bytes),
1199                                             MAX_BOUNCE_BUFFER));
1200     if (bounce_buffer == NULL) {
1201         ret = -ENOMEM;
1202         goto err;
1203     }
1204 
1205     while (cluster_bytes) {
1206         int64_t pnum;
1207 
1208         ret = bdrv_is_allocated(bs, cluster_offset,
1209                                 MIN(cluster_bytes, max_transfer), &pnum);
1210         if (ret < 0) {
1211             /* Safe to treat errors in querying allocation as if
1212              * unallocated; we'll probably fail again soon on the
1213              * read, but at least that will set a decent errno.
1214              */
1215             pnum = MIN(cluster_bytes, max_transfer);
1216         }
1217 
1218         /* Stop at EOF if the image ends in the middle of the cluster */
1219         if (ret == 0 && pnum == 0) {
1220             assert(progress >= bytes);
1221             break;
1222         }
1223 
1224         assert(skip_bytes < pnum);
1225 
1226         if (ret <= 0) {
1227             /* Must copy-on-read; use the bounce buffer */
1228             iov.iov_base = bounce_buffer;
1229             iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1230             qemu_iovec_init_external(&local_qiov, &iov, 1);
1231 
1232             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1233                                      &local_qiov, 0);
1234             if (ret < 0) {
1235                 goto err;
1236             }
1237 
1238             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1239             if (drv->bdrv_co_pwrite_zeroes &&
1240                 buffer_is_zero(bounce_buffer, pnum)) {
1241                 /* FIXME: Should we (perhaps conditionally) be setting
1242                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1243                  * that still correctly reads as zero? */
1244                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1245                                                BDRV_REQ_WRITE_UNCHANGED);
1246             } else {
1247                 /* This does not change the data on the disk, it is not
1248                  * necessary to flush even in cache=writethrough mode.
1249                  */
1250                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1251                                           &local_qiov,
1252                                           BDRV_REQ_WRITE_UNCHANGED);
1253             }
1254 
1255             if (ret < 0) {
1256                 /* It might be okay to ignore write errors for guest
1257                  * requests.  If this is a deliberate copy-on-read
1258                  * then we don't want to ignore the error.  Simply
1259                  * report it in all cases.
1260                  */
1261                 goto err;
1262             }
1263 
1264             qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1265                                 pnum - skip_bytes);
1266         } else {
1267             /* Read directly into the destination */
1268             qemu_iovec_init(&local_qiov, qiov->niov);
1269             qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1270             ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1271                                      &local_qiov, 0);
1272             qemu_iovec_destroy(&local_qiov);
1273             if (ret < 0) {
1274                 goto err;
1275             }
1276         }
1277 
1278         cluster_offset += pnum;
1279         cluster_bytes -= pnum;
1280         progress += pnum - skip_bytes;
1281         skip_bytes = 0;
1282     }
1283     ret = 0;
1284 
1285 err:
1286     qemu_vfree(bounce_buffer);
1287     return ret;
1288 }
1289 
1290 /*
1291  * Forwards an already correctly aligned request to the BlockDriver. This
1292  * handles copy on read, zeroing after EOF, and fragmentation of large
1293  * reads; any other features must be implemented by the caller.
1294  */
1295 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1296     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1297     int64_t align, QEMUIOVector *qiov, int flags)
1298 {
1299     BlockDriverState *bs = child->bs;
1300     int64_t total_bytes, max_bytes;
1301     int ret = 0;
1302     uint64_t bytes_remaining = bytes;
1303     int max_transfer;
1304 
1305     assert(is_power_of_2(align));
1306     assert((offset & (align - 1)) == 0);
1307     assert((bytes & (align - 1)) == 0);
1308     assert(!qiov || bytes == qiov->size);
1309     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1310     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1311                                    align);
1312 
1313     /* TODO: We would need a per-BDS .supported_read_flags and
1314      * potential fallback support, if we ever implement any read flags
1315      * to pass through to drivers.  For now, there aren't any
1316      * passthrough flags.  */
1317     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1318 
1319     /* Handle Copy on Read and associated serialisation */
1320     if (flags & BDRV_REQ_COPY_ON_READ) {
1321         /* If we touch the same cluster it counts as an overlap.  This
1322          * guarantees that allocating writes will be serialized and not race
1323          * with each other for the same cluster.  For example, in copy-on-read
1324          * it ensures that the CoR read and write operations are atomic and
1325          * guest writes cannot interleave between them. */
1326         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1327     }
1328 
1329     /* BDRV_REQ_SERIALISING is only for write operation */
1330     assert(!(flags & BDRV_REQ_SERIALISING));
1331 
1332     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1333         wait_serialising_requests(req);
1334     }
1335 
1336     if (flags & BDRV_REQ_COPY_ON_READ) {
1337         int64_t pnum;
1338 
1339         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1340         if (ret < 0) {
1341             goto out;
1342         }
1343 
1344         if (!ret || pnum != bytes) {
1345             ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1346             goto out;
1347         }
1348     }
1349 
1350     /* Forward the request to the BlockDriver, possibly fragmenting it */
1351     total_bytes = bdrv_getlength(bs);
1352     if (total_bytes < 0) {
1353         ret = total_bytes;
1354         goto out;
1355     }
1356 
1357     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1358     if (bytes <= max_bytes && bytes <= max_transfer) {
1359         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1360         goto out;
1361     }
1362 
1363     while (bytes_remaining) {
1364         int num;
1365 
1366         if (max_bytes) {
1367             QEMUIOVector local_qiov;
1368 
1369             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1370             assert(num);
1371             qemu_iovec_init(&local_qiov, qiov->niov);
1372             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1373 
1374             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1375                                      num, &local_qiov, 0);
1376             max_bytes -= num;
1377             qemu_iovec_destroy(&local_qiov);
1378         } else {
1379             num = bytes_remaining;
1380             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1381                                     bytes_remaining);
1382         }
1383         if (ret < 0) {
1384             goto out;
1385         }
1386         bytes_remaining -= num;
1387     }
1388 
1389 out:
1390     return ret < 0 ? ret : 0;
1391 }
1392 
1393 /*
1394  * Handle a read request in coroutine context
1395  */
1396 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1397     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1398     BdrvRequestFlags flags)
1399 {
1400     BlockDriverState *bs = child->bs;
1401     BlockDriver *drv = bs->drv;
1402     BdrvTrackedRequest req;
1403 
1404     uint64_t align = bs->bl.request_alignment;
1405     uint8_t *head_buf = NULL;
1406     uint8_t *tail_buf = NULL;
1407     QEMUIOVector local_qiov;
1408     bool use_local_qiov = false;
1409     int ret;
1410 
1411     trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1412 
1413     if (!drv) {
1414         return -ENOMEDIUM;
1415     }
1416 
1417     ret = bdrv_check_byte_request(bs, offset, bytes);
1418     if (ret < 0) {
1419         return ret;
1420     }
1421 
1422     bdrv_inc_in_flight(bs);
1423 
1424     /* Don't do copy-on-read if we read data before write operation */
1425     if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1426         flags |= BDRV_REQ_COPY_ON_READ;
1427     }
1428 
1429     /* Align read if necessary by padding qiov */
1430     if (offset & (align - 1)) {
1431         head_buf = qemu_blockalign(bs, align);
1432         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1433         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1434         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1435         use_local_qiov = true;
1436 
1437         bytes += offset & (align - 1);
1438         offset = offset & ~(align - 1);
1439     }
1440 
1441     if ((offset + bytes) & (align - 1)) {
1442         if (!use_local_qiov) {
1443             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1444             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1445             use_local_qiov = true;
1446         }
1447         tail_buf = qemu_blockalign(bs, align);
1448         qemu_iovec_add(&local_qiov, tail_buf,
1449                        align - ((offset + bytes) & (align - 1)));
1450 
1451         bytes = ROUND_UP(bytes, align);
1452     }
1453 
1454     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1455     ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1456                               use_local_qiov ? &local_qiov : qiov,
1457                               flags);
1458     tracked_request_end(&req);
1459     bdrv_dec_in_flight(bs);
1460 
1461     if (use_local_qiov) {
1462         qemu_iovec_destroy(&local_qiov);
1463         qemu_vfree(head_buf);
1464         qemu_vfree(tail_buf);
1465     }
1466 
1467     return ret;
1468 }
1469 
1470 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1471     int64_t offset, int bytes, BdrvRequestFlags flags)
1472 {
1473     BlockDriver *drv = bs->drv;
1474     QEMUIOVector qiov;
1475     struct iovec iov = {0};
1476     int ret = 0;
1477     bool need_flush = false;
1478     int head = 0;
1479     int tail = 0;
1480 
1481     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1482     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1483                         bs->bl.request_alignment);
1484     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1485 
1486     if (!drv) {
1487         return -ENOMEDIUM;
1488     }
1489 
1490     assert(alignment % bs->bl.request_alignment == 0);
1491     head = offset % alignment;
1492     tail = (offset + bytes) % alignment;
1493     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1494     assert(max_write_zeroes >= bs->bl.request_alignment);
1495 
1496     while (bytes > 0 && !ret) {
1497         int num = bytes;
1498 
1499         /* Align request.  Block drivers can expect the "bulk" of the request
1500          * to be aligned, and that unaligned requests do not cross cluster
1501          * boundaries.
1502          */
1503         if (head) {
1504             /* Make a small request up to the first aligned sector. For
1505              * convenience, limit this request to max_transfer even if
1506              * we don't need to fall back to writes.  */
1507             num = MIN(MIN(bytes, max_transfer), alignment - head);
1508             head = (head + num) % alignment;
1509             assert(num < max_write_zeroes);
1510         } else if (tail && num > alignment) {
1511             /* Shorten the request to the last aligned sector.  */
1512             num -= tail;
1513         }
1514 
1515         /* limit request size */
1516         if (num > max_write_zeroes) {
1517             num = max_write_zeroes;
1518         }
1519 
1520         ret = -ENOTSUP;
1521         /* First try the efficient write zeroes operation */
1522         if (drv->bdrv_co_pwrite_zeroes) {
1523             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1524                                              flags & bs->supported_zero_flags);
1525             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1526                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1527                 need_flush = true;
1528             }
1529         } else {
1530             assert(!bs->supported_zero_flags);
1531         }
1532 
1533         if (ret == -ENOTSUP) {
1534             /* Fall back to bounce buffer if write zeroes is unsupported */
1535             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1536 
1537             if ((flags & BDRV_REQ_FUA) &&
1538                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1539                 /* No need for bdrv_driver_pwrite() to do a fallback
1540                  * flush on each chunk; use just one at the end */
1541                 write_flags &= ~BDRV_REQ_FUA;
1542                 need_flush = true;
1543             }
1544             num = MIN(num, max_transfer);
1545             iov.iov_len = num;
1546             if (iov.iov_base == NULL) {
1547                 iov.iov_base = qemu_try_blockalign(bs, num);
1548                 if (iov.iov_base == NULL) {
1549                     ret = -ENOMEM;
1550                     goto fail;
1551                 }
1552                 memset(iov.iov_base, 0, num);
1553             }
1554             qemu_iovec_init_external(&qiov, &iov, 1);
1555 
1556             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1557 
1558             /* Keep bounce buffer around if it is big enough for all
1559              * all future requests.
1560              */
1561             if (num < max_transfer) {
1562                 qemu_vfree(iov.iov_base);
1563                 iov.iov_base = NULL;
1564             }
1565         }
1566 
1567         offset += num;
1568         bytes -= num;
1569     }
1570 
1571 fail:
1572     if (ret == 0 && need_flush) {
1573         ret = bdrv_co_flush(bs);
1574     }
1575     qemu_vfree(iov.iov_base);
1576     return ret;
1577 }
1578 
1579 static inline int coroutine_fn
1580 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1581                           BdrvTrackedRequest *req, int flags)
1582 {
1583     BlockDriverState *bs = child->bs;
1584     bool waited;
1585     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1586 
1587     if (bs->read_only) {
1588         return -EPERM;
1589     }
1590 
1591     /* BDRV_REQ_NO_SERIALISING is only for read operation */
1592     assert(!(flags & BDRV_REQ_NO_SERIALISING));
1593     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1594     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1595     assert(!(flags & ~BDRV_REQ_MASK));
1596 
1597     if (flags & BDRV_REQ_SERIALISING) {
1598         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1599     }
1600 
1601     waited = wait_serialising_requests(req);
1602 
1603     assert(!waited || !req->serialising ||
1604            is_request_serialising_and_aligned(req));
1605     assert(req->overlap_offset <= offset);
1606     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1607     assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1608 
1609     switch (req->type) {
1610     case BDRV_TRACKED_WRITE:
1611     case BDRV_TRACKED_DISCARD:
1612         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1613             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1614         } else {
1615             assert(child->perm & BLK_PERM_WRITE);
1616         }
1617         return notifier_with_return_list_notify(&bs->before_write_notifiers,
1618                                                 req);
1619     case BDRV_TRACKED_TRUNCATE:
1620         assert(child->perm & BLK_PERM_RESIZE);
1621         return 0;
1622     default:
1623         abort();
1624     }
1625 }
1626 
1627 static inline void coroutine_fn
1628 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1629                          BdrvTrackedRequest *req, int ret)
1630 {
1631     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1632     BlockDriverState *bs = child->bs;
1633 
1634     atomic_inc(&bs->write_gen);
1635 
1636     /*
1637      * Discard cannot extend the image, but in error handling cases, such as
1638      * when reverting a qcow2 cluster allocation, the discarded range can pass
1639      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1640      * here. Instead, just skip it, since semantically a discard request
1641      * beyond EOF cannot expand the image anyway.
1642      */
1643     if (ret == 0 &&
1644         (req->type == BDRV_TRACKED_TRUNCATE ||
1645          end_sector > bs->total_sectors) &&
1646         req->type != BDRV_TRACKED_DISCARD) {
1647         bs->total_sectors = end_sector;
1648         bdrv_parent_cb_resize(bs);
1649         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1650     }
1651     if (req->bytes) {
1652         switch (req->type) {
1653         case BDRV_TRACKED_WRITE:
1654             stat64_max(&bs->wr_highest_offset, offset + bytes);
1655             /* fall through, to set dirty bits */
1656         case BDRV_TRACKED_DISCARD:
1657             bdrv_set_dirty(bs, offset, bytes);
1658             break;
1659         default:
1660             break;
1661         }
1662     }
1663 }
1664 
1665 /*
1666  * Forwards an already correctly aligned write request to the BlockDriver,
1667  * after possibly fragmenting it.
1668  */
1669 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1670     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1671     int64_t align, QEMUIOVector *qiov, int flags)
1672 {
1673     BlockDriverState *bs = child->bs;
1674     BlockDriver *drv = bs->drv;
1675     int ret;
1676 
1677     uint64_t bytes_remaining = bytes;
1678     int max_transfer;
1679 
1680     if (!drv) {
1681         return -ENOMEDIUM;
1682     }
1683 
1684     if (bdrv_has_readonly_bitmaps(bs)) {
1685         return -EPERM;
1686     }
1687 
1688     assert(is_power_of_2(align));
1689     assert((offset & (align - 1)) == 0);
1690     assert((bytes & (align - 1)) == 0);
1691     assert(!qiov || bytes == qiov->size);
1692     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1693                                    align);
1694 
1695     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1696 
1697     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1698         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1699         qemu_iovec_is_zero(qiov)) {
1700         flags |= BDRV_REQ_ZERO_WRITE;
1701         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1702             flags |= BDRV_REQ_MAY_UNMAP;
1703         }
1704     }
1705 
1706     if (ret < 0) {
1707         /* Do nothing, write notifier decided to fail this request */
1708     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1709         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1710         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1711     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1712         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1713     } else if (bytes <= max_transfer) {
1714         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1715         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1716     } else {
1717         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1718         while (bytes_remaining) {
1719             int num = MIN(bytes_remaining, max_transfer);
1720             QEMUIOVector local_qiov;
1721             int local_flags = flags;
1722 
1723             assert(num);
1724             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1725                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1726                 /* If FUA is going to be emulated by flush, we only
1727                  * need to flush on the last iteration */
1728                 local_flags &= ~BDRV_REQ_FUA;
1729             }
1730             qemu_iovec_init(&local_qiov, qiov->niov);
1731             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1732 
1733             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1734                                       num, &local_qiov, local_flags);
1735             qemu_iovec_destroy(&local_qiov);
1736             if (ret < 0) {
1737                 break;
1738             }
1739             bytes_remaining -= num;
1740         }
1741     }
1742     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1743 
1744     if (ret >= 0) {
1745         ret = 0;
1746     }
1747     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1748 
1749     return ret;
1750 }
1751 
1752 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1753                                                 int64_t offset,
1754                                                 unsigned int bytes,
1755                                                 BdrvRequestFlags flags,
1756                                                 BdrvTrackedRequest *req)
1757 {
1758     BlockDriverState *bs = child->bs;
1759     uint8_t *buf = NULL;
1760     QEMUIOVector local_qiov;
1761     struct iovec iov;
1762     uint64_t align = bs->bl.request_alignment;
1763     unsigned int head_padding_bytes, tail_padding_bytes;
1764     int ret = 0;
1765 
1766     head_padding_bytes = offset & (align - 1);
1767     tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1768 
1769 
1770     assert(flags & BDRV_REQ_ZERO_WRITE);
1771     if (head_padding_bytes || tail_padding_bytes) {
1772         buf = qemu_blockalign(bs, align);
1773         iov = (struct iovec) {
1774             .iov_base   = buf,
1775             .iov_len    = align,
1776         };
1777         qemu_iovec_init_external(&local_qiov, &iov, 1);
1778     }
1779     if (head_padding_bytes) {
1780         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1781 
1782         /* RMW the unaligned part before head. */
1783         mark_request_serialising(req, align);
1784         wait_serialising_requests(req);
1785         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1786         ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1787                                   align, &local_qiov, 0);
1788         if (ret < 0) {
1789             goto fail;
1790         }
1791         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1792 
1793         memset(buf + head_padding_bytes, 0, zero_bytes);
1794         ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1795                                    align, &local_qiov,
1796                                    flags & ~BDRV_REQ_ZERO_WRITE);
1797         if (ret < 0) {
1798             goto fail;
1799         }
1800         offset += zero_bytes;
1801         bytes -= zero_bytes;
1802     }
1803 
1804     assert(!bytes || (offset & (align - 1)) == 0);
1805     if (bytes >= align) {
1806         /* Write the aligned part in the middle. */
1807         uint64_t aligned_bytes = bytes & ~(align - 1);
1808         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1809                                    NULL, flags);
1810         if (ret < 0) {
1811             goto fail;
1812         }
1813         bytes -= aligned_bytes;
1814         offset += aligned_bytes;
1815     }
1816 
1817     assert(!bytes || (offset & (align - 1)) == 0);
1818     if (bytes) {
1819         assert(align == tail_padding_bytes + bytes);
1820         /* RMW the unaligned part after tail. */
1821         mark_request_serialising(req, align);
1822         wait_serialising_requests(req);
1823         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1824         ret = bdrv_aligned_preadv(child, req, offset, align,
1825                                   align, &local_qiov, 0);
1826         if (ret < 0) {
1827             goto fail;
1828         }
1829         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1830 
1831         memset(buf, 0, bytes);
1832         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1833                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1834     }
1835 fail:
1836     qemu_vfree(buf);
1837     return ret;
1838 
1839 }
1840 
1841 /*
1842  * Handle a write request in coroutine context
1843  */
1844 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1845     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1846     BdrvRequestFlags flags)
1847 {
1848     BlockDriverState *bs = child->bs;
1849     BdrvTrackedRequest req;
1850     uint64_t align = bs->bl.request_alignment;
1851     uint8_t *head_buf = NULL;
1852     uint8_t *tail_buf = NULL;
1853     QEMUIOVector local_qiov;
1854     bool use_local_qiov = false;
1855     int ret;
1856 
1857     trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1858 
1859     if (!bs->drv) {
1860         return -ENOMEDIUM;
1861     }
1862 
1863     ret = bdrv_check_byte_request(bs, offset, bytes);
1864     if (ret < 0) {
1865         return ret;
1866     }
1867 
1868     bdrv_inc_in_flight(bs);
1869     /*
1870      * Align write if necessary by performing a read-modify-write cycle.
1871      * Pad qiov with the read parts and be sure to have a tracked request not
1872      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1873      */
1874     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1875 
1876     if (flags & BDRV_REQ_ZERO_WRITE) {
1877         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1878         goto out;
1879     }
1880 
1881     if (offset & (align - 1)) {
1882         QEMUIOVector head_qiov;
1883         struct iovec head_iov;
1884 
1885         mark_request_serialising(&req, align);
1886         wait_serialising_requests(&req);
1887 
1888         head_buf = qemu_blockalign(bs, align);
1889         head_iov = (struct iovec) {
1890             .iov_base   = head_buf,
1891             .iov_len    = align,
1892         };
1893         qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1894 
1895         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1896         ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1897                                   align, &head_qiov, 0);
1898         if (ret < 0) {
1899             goto fail;
1900         }
1901         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1902 
1903         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1904         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1905         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1906         use_local_qiov = true;
1907 
1908         bytes += offset & (align - 1);
1909         offset = offset & ~(align - 1);
1910 
1911         /* We have read the tail already if the request is smaller
1912          * than one aligned block.
1913          */
1914         if (bytes < align) {
1915             qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1916             bytes = align;
1917         }
1918     }
1919 
1920     if ((offset + bytes) & (align - 1)) {
1921         QEMUIOVector tail_qiov;
1922         struct iovec tail_iov;
1923         size_t tail_bytes;
1924         bool waited;
1925 
1926         mark_request_serialising(&req, align);
1927         waited = wait_serialising_requests(&req);
1928         assert(!waited || !use_local_qiov);
1929 
1930         tail_buf = qemu_blockalign(bs, align);
1931         tail_iov = (struct iovec) {
1932             .iov_base   = tail_buf,
1933             .iov_len    = align,
1934         };
1935         qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1936 
1937         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1938         ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1939                                   align, align, &tail_qiov, 0);
1940         if (ret < 0) {
1941             goto fail;
1942         }
1943         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1944 
1945         if (!use_local_qiov) {
1946             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1947             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1948             use_local_qiov = true;
1949         }
1950 
1951         tail_bytes = (offset + bytes) & (align - 1);
1952         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1953 
1954         bytes = ROUND_UP(bytes, align);
1955     }
1956 
1957     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1958                                use_local_qiov ? &local_qiov : qiov,
1959                                flags);
1960 
1961 fail:
1962 
1963     if (use_local_qiov) {
1964         qemu_iovec_destroy(&local_qiov);
1965     }
1966     qemu_vfree(head_buf);
1967     qemu_vfree(tail_buf);
1968 out:
1969     tracked_request_end(&req);
1970     bdrv_dec_in_flight(bs);
1971     return ret;
1972 }
1973 
1974 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1975                                        int bytes, BdrvRequestFlags flags)
1976 {
1977     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1978 
1979     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1980         flags &= ~BDRV_REQ_MAY_UNMAP;
1981     }
1982 
1983     return bdrv_co_pwritev(child, offset, bytes, NULL,
1984                            BDRV_REQ_ZERO_WRITE | flags);
1985 }
1986 
1987 /*
1988  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1989  */
1990 int bdrv_flush_all(void)
1991 {
1992     BdrvNextIterator it;
1993     BlockDriverState *bs = NULL;
1994     int result = 0;
1995 
1996     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1997         AioContext *aio_context = bdrv_get_aio_context(bs);
1998         int ret;
1999 
2000         aio_context_acquire(aio_context);
2001         ret = bdrv_flush(bs);
2002         if (ret < 0 && !result) {
2003             result = ret;
2004         }
2005         aio_context_release(aio_context);
2006     }
2007 
2008     return result;
2009 }
2010 
2011 
2012 typedef struct BdrvCoBlockStatusData {
2013     BlockDriverState *bs;
2014     BlockDriverState *base;
2015     bool want_zero;
2016     int64_t offset;
2017     int64_t bytes;
2018     int64_t *pnum;
2019     int64_t *map;
2020     BlockDriverState **file;
2021     int ret;
2022     bool done;
2023 } BdrvCoBlockStatusData;
2024 
2025 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
2026                                                 bool want_zero,
2027                                                 int64_t offset,
2028                                                 int64_t bytes,
2029                                                 int64_t *pnum,
2030                                                 int64_t *map,
2031                                                 BlockDriverState **file)
2032 {
2033     assert(bs->file && bs->file->bs);
2034     *pnum = bytes;
2035     *map = offset;
2036     *file = bs->file->bs;
2037     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2038 }
2039 
2040 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
2041                                                    bool want_zero,
2042                                                    int64_t offset,
2043                                                    int64_t bytes,
2044                                                    int64_t *pnum,
2045                                                    int64_t *map,
2046                                                    BlockDriverState **file)
2047 {
2048     assert(bs->backing && bs->backing->bs);
2049     *pnum = bytes;
2050     *map = offset;
2051     *file = bs->backing->bs;
2052     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2053 }
2054 
2055 /*
2056  * Returns the allocation status of the specified sectors.
2057  * Drivers not implementing the functionality are assumed to not support
2058  * backing files, hence all their sectors are reported as allocated.
2059  *
2060  * If 'want_zero' is true, the caller is querying for mapping
2061  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2062  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2063  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2064  *
2065  * If 'offset' is beyond the end of the disk image the return value is
2066  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2067  *
2068  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2069  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2070  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2071  *
2072  * 'pnum' is set to the number of bytes (including and immediately
2073  * following the specified offset) that are easily known to be in the
2074  * same allocated/unallocated state.  Note that a second call starting
2075  * at the original offset plus returned pnum may have the same status.
2076  * The returned value is non-zero on success except at end-of-file.
2077  *
2078  * Returns negative errno on failure.  Otherwise, if the
2079  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2080  * set to the host mapping and BDS corresponding to the guest offset.
2081  */
2082 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2083                                              bool want_zero,
2084                                              int64_t offset, int64_t bytes,
2085                                              int64_t *pnum, int64_t *map,
2086                                              BlockDriverState **file)
2087 {
2088     int64_t total_size;
2089     int64_t n; /* bytes */
2090     int ret;
2091     int64_t local_map = 0;
2092     BlockDriverState *local_file = NULL;
2093     int64_t aligned_offset, aligned_bytes;
2094     uint32_t align;
2095 
2096     assert(pnum);
2097     *pnum = 0;
2098     total_size = bdrv_getlength(bs);
2099     if (total_size < 0) {
2100         ret = total_size;
2101         goto early_out;
2102     }
2103 
2104     if (offset >= total_size) {
2105         ret = BDRV_BLOCK_EOF;
2106         goto early_out;
2107     }
2108     if (!bytes) {
2109         ret = 0;
2110         goto early_out;
2111     }
2112 
2113     n = total_size - offset;
2114     if (n < bytes) {
2115         bytes = n;
2116     }
2117 
2118     /* Must be non-NULL or bdrv_getlength() would have failed */
2119     assert(bs->drv);
2120     if (!bs->drv->bdrv_co_block_status) {
2121         *pnum = bytes;
2122         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2123         if (offset + bytes == total_size) {
2124             ret |= BDRV_BLOCK_EOF;
2125         }
2126         if (bs->drv->protocol_name) {
2127             ret |= BDRV_BLOCK_OFFSET_VALID;
2128             local_map = offset;
2129             local_file = bs;
2130         }
2131         goto early_out;
2132     }
2133 
2134     bdrv_inc_in_flight(bs);
2135 
2136     /* Round out to request_alignment boundaries */
2137     align = bs->bl.request_alignment;
2138     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2139     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2140 
2141     ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2142                                         aligned_bytes, pnum, &local_map,
2143                                         &local_file);
2144     if (ret < 0) {
2145         *pnum = 0;
2146         goto out;
2147     }
2148 
2149     /*
2150      * The driver's result must be a non-zero multiple of request_alignment.
2151      * Clamp pnum and adjust map to original request.
2152      */
2153     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2154            align > offset - aligned_offset);
2155     *pnum -= offset - aligned_offset;
2156     if (*pnum > bytes) {
2157         *pnum = bytes;
2158     }
2159     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2160         local_map += offset - aligned_offset;
2161     }
2162 
2163     if (ret & BDRV_BLOCK_RAW) {
2164         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2165         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2166                                    *pnum, pnum, &local_map, &local_file);
2167         goto out;
2168     }
2169 
2170     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2171         ret |= BDRV_BLOCK_ALLOCATED;
2172     } else if (want_zero) {
2173         if (bdrv_unallocated_blocks_are_zero(bs)) {
2174             ret |= BDRV_BLOCK_ZERO;
2175         } else if (bs->backing) {
2176             BlockDriverState *bs2 = bs->backing->bs;
2177             int64_t size2 = bdrv_getlength(bs2);
2178 
2179             if (size2 >= 0 && offset >= size2) {
2180                 ret |= BDRV_BLOCK_ZERO;
2181             }
2182         }
2183     }
2184 
2185     if (want_zero && local_file && local_file != bs &&
2186         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2187         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2188         int64_t file_pnum;
2189         int ret2;
2190 
2191         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2192                                     *pnum, &file_pnum, NULL, NULL);
2193         if (ret2 >= 0) {
2194             /* Ignore errors.  This is just providing extra information, it
2195              * is useful but not necessary.
2196              */
2197             if (ret2 & BDRV_BLOCK_EOF &&
2198                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2199                 /*
2200                  * It is valid for the format block driver to read
2201                  * beyond the end of the underlying file's current
2202                  * size; such areas read as zero.
2203                  */
2204                 ret |= BDRV_BLOCK_ZERO;
2205             } else {
2206                 /* Limit request to the range reported by the protocol driver */
2207                 *pnum = file_pnum;
2208                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2209             }
2210         }
2211     }
2212 
2213 out:
2214     bdrv_dec_in_flight(bs);
2215     if (ret >= 0 && offset + *pnum == total_size) {
2216         ret |= BDRV_BLOCK_EOF;
2217     }
2218 early_out:
2219     if (file) {
2220         *file = local_file;
2221     }
2222     if (map) {
2223         *map = local_map;
2224     }
2225     return ret;
2226 }
2227 
2228 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2229                                                    BlockDriverState *base,
2230                                                    bool want_zero,
2231                                                    int64_t offset,
2232                                                    int64_t bytes,
2233                                                    int64_t *pnum,
2234                                                    int64_t *map,
2235                                                    BlockDriverState **file)
2236 {
2237     BlockDriverState *p;
2238     int ret = 0;
2239     bool first = true;
2240 
2241     assert(bs != base);
2242     for (p = bs; p != base; p = backing_bs(p)) {
2243         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2244                                    file);
2245         if (ret < 0) {
2246             break;
2247         }
2248         if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2249             /*
2250              * Reading beyond the end of the file continues to read
2251              * zeroes, but we can only widen the result to the
2252              * unallocated length we learned from an earlier
2253              * iteration.
2254              */
2255             *pnum = bytes;
2256         }
2257         if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2258             break;
2259         }
2260         /* [offset, pnum] unallocated on this layer, which could be only
2261          * the first part of [offset, bytes].  */
2262         bytes = MIN(bytes, *pnum);
2263         first = false;
2264     }
2265     return ret;
2266 }
2267 
2268 /* Coroutine wrapper for bdrv_block_status_above() */
2269 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2270 {
2271     BdrvCoBlockStatusData *data = opaque;
2272 
2273     data->ret = bdrv_co_block_status_above(data->bs, data->base,
2274                                            data->want_zero,
2275                                            data->offset, data->bytes,
2276                                            data->pnum, data->map, data->file);
2277     data->done = true;
2278 }
2279 
2280 /*
2281  * Synchronous wrapper around bdrv_co_block_status_above().
2282  *
2283  * See bdrv_co_block_status_above() for details.
2284  */
2285 static int bdrv_common_block_status_above(BlockDriverState *bs,
2286                                           BlockDriverState *base,
2287                                           bool want_zero, int64_t offset,
2288                                           int64_t bytes, int64_t *pnum,
2289                                           int64_t *map,
2290                                           BlockDriverState **file)
2291 {
2292     Coroutine *co;
2293     BdrvCoBlockStatusData data = {
2294         .bs = bs,
2295         .base = base,
2296         .want_zero = want_zero,
2297         .offset = offset,
2298         .bytes = bytes,
2299         .pnum = pnum,
2300         .map = map,
2301         .file = file,
2302         .done = false,
2303     };
2304 
2305     if (qemu_in_coroutine()) {
2306         /* Fast-path if already in coroutine context */
2307         bdrv_block_status_above_co_entry(&data);
2308     } else {
2309         co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2310         bdrv_coroutine_enter(bs, co);
2311         BDRV_POLL_WHILE(bs, !data.done);
2312     }
2313     return data.ret;
2314 }
2315 
2316 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2317                             int64_t offset, int64_t bytes, int64_t *pnum,
2318                             int64_t *map, BlockDriverState **file)
2319 {
2320     return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2321                                           pnum, map, file);
2322 }
2323 
2324 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2325                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2326 {
2327     return bdrv_block_status_above(bs, backing_bs(bs),
2328                                    offset, bytes, pnum, map, file);
2329 }
2330 
2331 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2332                                    int64_t bytes, int64_t *pnum)
2333 {
2334     int ret;
2335     int64_t dummy;
2336 
2337     ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2338                                          bytes, pnum ? pnum : &dummy, NULL,
2339                                          NULL);
2340     if (ret < 0) {
2341         return ret;
2342     }
2343     return !!(ret & BDRV_BLOCK_ALLOCATED);
2344 }
2345 
2346 /*
2347  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2348  *
2349  * Return true if (a prefix of) the given range is allocated in any image
2350  * between BASE and TOP (inclusive).  BASE can be NULL to check if the given
2351  * offset is allocated in any image of the chain.  Return false otherwise,
2352  * or negative errno on failure.
2353  *
2354  * 'pnum' is set to the number of bytes (including and immediately
2355  * following the specified offset) that are known to be in the same
2356  * allocated/unallocated state.  Note that a subsequent call starting
2357  * at 'offset + *pnum' may return the same allocation status (in other
2358  * words, the result is not necessarily the maximum possible range);
2359  * but 'pnum' will only be 0 when end of file is reached.
2360  *
2361  */
2362 int bdrv_is_allocated_above(BlockDriverState *top,
2363                             BlockDriverState *base,
2364                             int64_t offset, int64_t bytes, int64_t *pnum)
2365 {
2366     BlockDriverState *intermediate;
2367     int ret;
2368     int64_t n = bytes;
2369 
2370     intermediate = top;
2371     while (intermediate && intermediate != base) {
2372         int64_t pnum_inter;
2373         int64_t size_inter;
2374 
2375         ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2376         if (ret < 0) {
2377             return ret;
2378         }
2379         if (ret) {
2380             *pnum = pnum_inter;
2381             return 1;
2382         }
2383 
2384         size_inter = bdrv_getlength(intermediate);
2385         if (size_inter < 0) {
2386             return size_inter;
2387         }
2388         if (n > pnum_inter &&
2389             (intermediate == top || offset + pnum_inter < size_inter)) {
2390             n = pnum_inter;
2391         }
2392 
2393         intermediate = backing_bs(intermediate);
2394     }
2395 
2396     *pnum = n;
2397     return 0;
2398 }
2399 
2400 typedef struct BdrvVmstateCo {
2401     BlockDriverState    *bs;
2402     QEMUIOVector        *qiov;
2403     int64_t             pos;
2404     bool                is_read;
2405     int                 ret;
2406 } BdrvVmstateCo;
2407 
2408 static int coroutine_fn
2409 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2410                    bool is_read)
2411 {
2412     BlockDriver *drv = bs->drv;
2413     int ret = -ENOTSUP;
2414 
2415     bdrv_inc_in_flight(bs);
2416 
2417     if (!drv) {
2418         ret = -ENOMEDIUM;
2419     } else if (drv->bdrv_load_vmstate) {
2420         if (is_read) {
2421             ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2422         } else {
2423             ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2424         }
2425     } else if (bs->file) {
2426         ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2427     }
2428 
2429     bdrv_dec_in_flight(bs);
2430     return ret;
2431 }
2432 
2433 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2434 {
2435     BdrvVmstateCo *co = opaque;
2436     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2437 }
2438 
2439 static inline int
2440 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2441                 bool is_read)
2442 {
2443     if (qemu_in_coroutine()) {
2444         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2445     } else {
2446         BdrvVmstateCo data = {
2447             .bs         = bs,
2448             .qiov       = qiov,
2449             .pos        = pos,
2450             .is_read    = is_read,
2451             .ret        = -EINPROGRESS,
2452         };
2453         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2454 
2455         bdrv_coroutine_enter(bs, co);
2456         BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2457         return data.ret;
2458     }
2459 }
2460 
2461 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2462                       int64_t pos, int size)
2463 {
2464     QEMUIOVector qiov;
2465     struct iovec iov = {
2466         .iov_base   = (void *) buf,
2467         .iov_len    = size,
2468     };
2469     int ret;
2470 
2471     qemu_iovec_init_external(&qiov, &iov, 1);
2472 
2473     ret = bdrv_writev_vmstate(bs, &qiov, pos);
2474     if (ret < 0) {
2475         return ret;
2476     }
2477 
2478     return size;
2479 }
2480 
2481 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2482 {
2483     return bdrv_rw_vmstate(bs, qiov, pos, false);
2484 }
2485 
2486 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2487                       int64_t pos, int size)
2488 {
2489     QEMUIOVector qiov;
2490     struct iovec iov = {
2491         .iov_base   = buf,
2492         .iov_len    = size,
2493     };
2494     int ret;
2495 
2496     qemu_iovec_init_external(&qiov, &iov, 1);
2497     ret = bdrv_readv_vmstate(bs, &qiov, pos);
2498     if (ret < 0) {
2499         return ret;
2500     }
2501 
2502     return size;
2503 }
2504 
2505 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2506 {
2507     return bdrv_rw_vmstate(bs, qiov, pos, true);
2508 }
2509 
2510 /**************************************************************/
2511 /* async I/Os */
2512 
2513 void bdrv_aio_cancel(BlockAIOCB *acb)
2514 {
2515     qemu_aio_ref(acb);
2516     bdrv_aio_cancel_async(acb);
2517     while (acb->refcnt > 1) {
2518         if (acb->aiocb_info->get_aio_context) {
2519             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2520         } else if (acb->bs) {
2521             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2522              * assert that we're not using an I/O thread.  Thread-safe
2523              * code should use bdrv_aio_cancel_async exclusively.
2524              */
2525             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2526             aio_poll(bdrv_get_aio_context(acb->bs), true);
2527         } else {
2528             abort();
2529         }
2530     }
2531     qemu_aio_unref(acb);
2532 }
2533 
2534 /* Async version of aio cancel. The caller is not blocked if the acb implements
2535  * cancel_async, otherwise we do nothing and let the request normally complete.
2536  * In either case the completion callback must be called. */
2537 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2538 {
2539     if (acb->aiocb_info->cancel_async) {
2540         acb->aiocb_info->cancel_async(acb);
2541     }
2542 }
2543 
2544 /**************************************************************/
2545 /* Coroutine block device emulation */
2546 
2547 typedef struct FlushCo {
2548     BlockDriverState *bs;
2549     int ret;
2550 } FlushCo;
2551 
2552 
2553 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2554 {
2555     FlushCo *rwco = opaque;
2556 
2557     rwco->ret = bdrv_co_flush(rwco->bs);
2558 }
2559 
2560 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2561 {
2562     int current_gen;
2563     int ret = 0;
2564 
2565     bdrv_inc_in_flight(bs);
2566 
2567     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2568         bdrv_is_sg(bs)) {
2569         goto early_exit;
2570     }
2571 
2572     qemu_co_mutex_lock(&bs->reqs_lock);
2573     current_gen = atomic_read(&bs->write_gen);
2574 
2575     /* Wait until any previous flushes are completed */
2576     while (bs->active_flush_req) {
2577         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2578     }
2579 
2580     /* Flushes reach this point in nondecreasing current_gen order.  */
2581     bs->active_flush_req = true;
2582     qemu_co_mutex_unlock(&bs->reqs_lock);
2583 
2584     /* Write back all layers by calling one driver function */
2585     if (bs->drv->bdrv_co_flush) {
2586         ret = bs->drv->bdrv_co_flush(bs);
2587         goto out;
2588     }
2589 
2590     /* Write back cached data to the OS even with cache=unsafe */
2591     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2592     if (bs->drv->bdrv_co_flush_to_os) {
2593         ret = bs->drv->bdrv_co_flush_to_os(bs);
2594         if (ret < 0) {
2595             goto out;
2596         }
2597     }
2598 
2599     /* But don't actually force it to the disk with cache=unsafe */
2600     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2601         goto flush_parent;
2602     }
2603 
2604     /* Check if we really need to flush anything */
2605     if (bs->flushed_gen == current_gen) {
2606         goto flush_parent;
2607     }
2608 
2609     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2610     if (!bs->drv) {
2611         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2612          * (even in case of apparent success) */
2613         ret = -ENOMEDIUM;
2614         goto out;
2615     }
2616     if (bs->drv->bdrv_co_flush_to_disk) {
2617         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2618     } else if (bs->drv->bdrv_aio_flush) {
2619         BlockAIOCB *acb;
2620         CoroutineIOCompletion co = {
2621             .coroutine = qemu_coroutine_self(),
2622         };
2623 
2624         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2625         if (acb == NULL) {
2626             ret = -EIO;
2627         } else {
2628             qemu_coroutine_yield();
2629             ret = co.ret;
2630         }
2631     } else {
2632         /*
2633          * Some block drivers always operate in either writethrough or unsafe
2634          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2635          * know how the server works (because the behaviour is hardcoded or
2636          * depends on server-side configuration), so we can't ensure that
2637          * everything is safe on disk. Returning an error doesn't work because
2638          * that would break guests even if the server operates in writethrough
2639          * mode.
2640          *
2641          * Let's hope the user knows what he's doing.
2642          */
2643         ret = 0;
2644     }
2645 
2646     if (ret < 0) {
2647         goto out;
2648     }
2649 
2650     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2651      * in the case of cache=unsafe, so there are no useless flushes.
2652      */
2653 flush_parent:
2654     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2655 out:
2656     /* Notify any pending flushes that we have completed */
2657     if (ret == 0) {
2658         bs->flushed_gen = current_gen;
2659     }
2660 
2661     qemu_co_mutex_lock(&bs->reqs_lock);
2662     bs->active_flush_req = false;
2663     /* Return value is ignored - it's ok if wait queue is empty */
2664     qemu_co_queue_next(&bs->flush_queue);
2665     qemu_co_mutex_unlock(&bs->reqs_lock);
2666 
2667 early_exit:
2668     bdrv_dec_in_flight(bs);
2669     return ret;
2670 }
2671 
2672 int bdrv_flush(BlockDriverState *bs)
2673 {
2674     Coroutine *co;
2675     FlushCo flush_co = {
2676         .bs = bs,
2677         .ret = NOT_DONE,
2678     };
2679 
2680     if (qemu_in_coroutine()) {
2681         /* Fast-path if already in coroutine context */
2682         bdrv_flush_co_entry(&flush_co);
2683     } else {
2684         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2685         bdrv_coroutine_enter(bs, co);
2686         BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2687     }
2688 
2689     return flush_co.ret;
2690 }
2691 
2692 typedef struct DiscardCo {
2693     BdrvChild *child;
2694     int64_t offset;
2695     int bytes;
2696     int ret;
2697 } DiscardCo;
2698 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2699 {
2700     DiscardCo *rwco = opaque;
2701 
2702     rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
2703 }
2704 
2705 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, int bytes)
2706 {
2707     BdrvTrackedRequest req;
2708     int max_pdiscard, ret;
2709     int head, tail, align;
2710     BlockDriverState *bs = child->bs;
2711 
2712     if (!bs || !bs->drv) {
2713         return -ENOMEDIUM;
2714     }
2715 
2716     if (bdrv_has_readonly_bitmaps(bs)) {
2717         return -EPERM;
2718     }
2719 
2720     ret = bdrv_check_byte_request(bs, offset, bytes);
2721     if (ret < 0) {
2722         return ret;
2723     }
2724 
2725     /* Do nothing if disabled.  */
2726     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2727         return 0;
2728     }
2729 
2730     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2731         return 0;
2732     }
2733 
2734     /* Discard is advisory, but some devices track and coalesce
2735      * unaligned requests, so we must pass everything down rather than
2736      * round here.  Still, most devices will just silently ignore
2737      * unaligned requests (by returning -ENOTSUP), so we must fragment
2738      * the request accordingly.  */
2739     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2740     assert(align % bs->bl.request_alignment == 0);
2741     head = offset % align;
2742     tail = (offset + bytes) % align;
2743 
2744     bdrv_inc_in_flight(bs);
2745     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2746 
2747     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2748     if (ret < 0) {
2749         goto out;
2750     }
2751 
2752     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2753                                    align);
2754     assert(max_pdiscard >= bs->bl.request_alignment);
2755 
2756     while (bytes > 0) {
2757         int num = bytes;
2758 
2759         if (head) {
2760             /* Make small requests to get to alignment boundaries. */
2761             num = MIN(bytes, align - head);
2762             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2763                 num %= bs->bl.request_alignment;
2764             }
2765             head = (head + num) % align;
2766             assert(num < max_pdiscard);
2767         } else if (tail) {
2768             if (num > align) {
2769                 /* Shorten the request to the last aligned cluster.  */
2770                 num -= tail;
2771             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2772                        tail > bs->bl.request_alignment) {
2773                 tail %= bs->bl.request_alignment;
2774                 num -= tail;
2775             }
2776         }
2777         /* limit request size */
2778         if (num > max_pdiscard) {
2779             num = max_pdiscard;
2780         }
2781 
2782         if (!bs->drv) {
2783             ret = -ENOMEDIUM;
2784             goto out;
2785         }
2786         if (bs->drv->bdrv_co_pdiscard) {
2787             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2788         } else {
2789             BlockAIOCB *acb;
2790             CoroutineIOCompletion co = {
2791                 .coroutine = qemu_coroutine_self(),
2792             };
2793 
2794             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2795                                              bdrv_co_io_em_complete, &co);
2796             if (acb == NULL) {
2797                 ret = -EIO;
2798                 goto out;
2799             } else {
2800                 qemu_coroutine_yield();
2801                 ret = co.ret;
2802             }
2803         }
2804         if (ret && ret != -ENOTSUP) {
2805             goto out;
2806         }
2807 
2808         offset += num;
2809         bytes -= num;
2810     }
2811     ret = 0;
2812 out:
2813     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
2814     tracked_request_end(&req);
2815     bdrv_dec_in_flight(bs);
2816     return ret;
2817 }
2818 
2819 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int bytes)
2820 {
2821     Coroutine *co;
2822     DiscardCo rwco = {
2823         .child = child,
2824         .offset = offset,
2825         .bytes = bytes,
2826         .ret = NOT_DONE,
2827     };
2828 
2829     if (qemu_in_coroutine()) {
2830         /* Fast-path if already in coroutine context */
2831         bdrv_pdiscard_co_entry(&rwco);
2832     } else {
2833         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2834         bdrv_coroutine_enter(child->bs, co);
2835         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
2836     }
2837 
2838     return rwco.ret;
2839 }
2840 
2841 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2842 {
2843     BlockDriver *drv = bs->drv;
2844     CoroutineIOCompletion co = {
2845         .coroutine = qemu_coroutine_self(),
2846     };
2847     BlockAIOCB *acb;
2848 
2849     bdrv_inc_in_flight(bs);
2850     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2851         co.ret = -ENOTSUP;
2852         goto out;
2853     }
2854 
2855     if (drv->bdrv_co_ioctl) {
2856         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2857     } else {
2858         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2859         if (!acb) {
2860             co.ret = -ENOTSUP;
2861             goto out;
2862         }
2863         qemu_coroutine_yield();
2864     }
2865 out:
2866     bdrv_dec_in_flight(bs);
2867     return co.ret;
2868 }
2869 
2870 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2871 {
2872     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2873 }
2874 
2875 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2876 {
2877     return memset(qemu_blockalign(bs, size), 0, size);
2878 }
2879 
2880 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2881 {
2882     size_t align = bdrv_opt_mem_align(bs);
2883 
2884     /* Ensure that NULL is never returned on success */
2885     assert(align > 0);
2886     if (size == 0) {
2887         size = align;
2888     }
2889 
2890     return qemu_try_memalign(align, size);
2891 }
2892 
2893 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2894 {
2895     void *mem = qemu_try_blockalign(bs, size);
2896 
2897     if (mem) {
2898         memset(mem, 0, size);
2899     }
2900 
2901     return mem;
2902 }
2903 
2904 /*
2905  * Check if all memory in this vector is sector aligned.
2906  */
2907 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2908 {
2909     int i;
2910     size_t alignment = bdrv_min_mem_align(bs);
2911 
2912     for (i = 0; i < qiov->niov; i++) {
2913         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2914             return false;
2915         }
2916         if (qiov->iov[i].iov_len % alignment) {
2917             return false;
2918         }
2919     }
2920 
2921     return true;
2922 }
2923 
2924 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2925                                     NotifierWithReturn *notifier)
2926 {
2927     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2928 }
2929 
2930 void bdrv_io_plug(BlockDriverState *bs)
2931 {
2932     BdrvChild *child;
2933 
2934     QLIST_FOREACH(child, &bs->children, next) {
2935         bdrv_io_plug(child->bs);
2936     }
2937 
2938     if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2939         BlockDriver *drv = bs->drv;
2940         if (drv && drv->bdrv_io_plug) {
2941             drv->bdrv_io_plug(bs);
2942         }
2943     }
2944 }
2945 
2946 void bdrv_io_unplug(BlockDriverState *bs)
2947 {
2948     BdrvChild *child;
2949 
2950     assert(bs->io_plugged);
2951     if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2952         BlockDriver *drv = bs->drv;
2953         if (drv && drv->bdrv_io_unplug) {
2954             drv->bdrv_io_unplug(bs);
2955         }
2956     }
2957 
2958     QLIST_FOREACH(child, &bs->children, next) {
2959         bdrv_io_unplug(child->bs);
2960     }
2961 }
2962 
2963 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2964 {
2965     BdrvChild *child;
2966 
2967     if (bs->drv && bs->drv->bdrv_register_buf) {
2968         bs->drv->bdrv_register_buf(bs, host, size);
2969     }
2970     QLIST_FOREACH(child, &bs->children, next) {
2971         bdrv_register_buf(child->bs, host, size);
2972     }
2973 }
2974 
2975 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2976 {
2977     BdrvChild *child;
2978 
2979     if (bs->drv && bs->drv->bdrv_unregister_buf) {
2980         bs->drv->bdrv_unregister_buf(bs, host);
2981     }
2982     QLIST_FOREACH(child, &bs->children, next) {
2983         bdrv_unregister_buf(child->bs, host);
2984     }
2985 }
2986 
2987 static int coroutine_fn bdrv_co_copy_range_internal(
2988         BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
2989         uint64_t dst_offset, uint64_t bytes,
2990         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
2991         bool recurse_src)
2992 {
2993     BdrvTrackedRequest req;
2994     int ret;
2995 
2996     if (!dst || !dst->bs) {
2997         return -ENOMEDIUM;
2998     }
2999     ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
3000     if (ret) {
3001         return ret;
3002     }
3003     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3004         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3005     }
3006 
3007     if (!src || !src->bs) {
3008         return -ENOMEDIUM;
3009     }
3010     ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
3011     if (ret) {
3012         return ret;
3013     }
3014 
3015     if (!src->bs->drv->bdrv_co_copy_range_from
3016         || !dst->bs->drv->bdrv_co_copy_range_to
3017         || src->bs->encrypted || dst->bs->encrypted) {
3018         return -ENOTSUP;
3019     }
3020 
3021     if (recurse_src) {
3022         bdrv_inc_in_flight(src->bs);
3023         tracked_request_begin(&req, src->bs, src_offset, bytes,
3024                               BDRV_TRACKED_READ);
3025 
3026         /* BDRV_REQ_SERIALISING is only for write operation */
3027         assert(!(read_flags & BDRV_REQ_SERIALISING));
3028         if (!(read_flags & BDRV_REQ_NO_SERIALISING)) {
3029             wait_serialising_requests(&req);
3030         }
3031 
3032         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3033                                                     src, src_offset,
3034                                                     dst, dst_offset,
3035                                                     bytes,
3036                                                     read_flags, write_flags);
3037 
3038         tracked_request_end(&req);
3039         bdrv_dec_in_flight(src->bs);
3040     } else {
3041         bdrv_inc_in_flight(dst->bs);
3042         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3043                               BDRV_TRACKED_WRITE);
3044         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3045                                         write_flags);
3046         if (!ret) {
3047             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3048                                                       src, src_offset,
3049                                                       dst, dst_offset,
3050                                                       bytes,
3051                                                       read_flags, write_flags);
3052         }
3053         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3054         tracked_request_end(&req);
3055         bdrv_dec_in_flight(dst->bs);
3056     }
3057 
3058     return ret;
3059 }
3060 
3061 /* Copy range from @src to @dst.
3062  *
3063  * See the comment of bdrv_co_copy_range for the parameter and return value
3064  * semantics. */
3065 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3066                                          BdrvChild *dst, uint64_t dst_offset,
3067                                          uint64_t bytes,
3068                                          BdrvRequestFlags read_flags,
3069                                          BdrvRequestFlags write_flags)
3070 {
3071     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3072                                   read_flags, write_flags);
3073     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3074                                        bytes, read_flags, write_flags, true);
3075 }
3076 
3077 /* Copy range from @src to @dst.
3078  *
3079  * See the comment of bdrv_co_copy_range for the parameter and return value
3080  * semantics. */
3081 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3082                                        BdrvChild *dst, uint64_t dst_offset,
3083                                        uint64_t bytes,
3084                                        BdrvRequestFlags read_flags,
3085                                        BdrvRequestFlags write_flags)
3086 {
3087     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3088                                 read_flags, write_flags);
3089     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3090                                        bytes, read_flags, write_flags, false);
3091 }
3092 
3093 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3094                                     BdrvChild *dst, uint64_t dst_offset,
3095                                     uint64_t bytes, BdrvRequestFlags read_flags,
3096                                     BdrvRequestFlags write_flags)
3097 {
3098     return bdrv_co_copy_range_from(src, src_offset,
3099                                    dst, dst_offset,
3100                                    bytes, read_flags, write_flags);
3101 }
3102 
3103 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3104 {
3105     BdrvChild *c;
3106     QLIST_FOREACH(c, &bs->parents, next_parent) {
3107         if (c->role->resize) {
3108             c->role->resize(c);
3109         }
3110     }
3111 }
3112 
3113 /**
3114  * Truncate file to 'offset' bytes (needed only for file protocols)
3115  */
3116 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset,
3117                                   PreallocMode prealloc, Error **errp)
3118 {
3119     BlockDriverState *bs = child->bs;
3120     BlockDriver *drv = bs->drv;
3121     BdrvTrackedRequest req;
3122     int64_t old_size, new_bytes;
3123     int ret;
3124 
3125 
3126     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3127     if (!drv) {
3128         error_setg(errp, "No medium inserted");
3129         return -ENOMEDIUM;
3130     }
3131     if (offset < 0) {
3132         error_setg(errp, "Image size cannot be negative");
3133         return -EINVAL;
3134     }
3135 
3136     old_size = bdrv_getlength(bs);
3137     if (old_size < 0) {
3138         error_setg_errno(errp, -old_size, "Failed to get old image size");
3139         return old_size;
3140     }
3141 
3142     if (offset > old_size) {
3143         new_bytes = offset - old_size;
3144     } else {
3145         new_bytes = 0;
3146     }
3147 
3148     bdrv_inc_in_flight(bs);
3149     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3150                           BDRV_TRACKED_TRUNCATE);
3151 
3152     /* If we are growing the image and potentially using preallocation for the
3153      * new area, we need to make sure that no write requests are made to it
3154      * concurrently or they might be overwritten by preallocation. */
3155     if (new_bytes) {
3156         mark_request_serialising(&req, 1);
3157     }
3158     if (bs->read_only) {
3159         error_setg(errp, "Image is read-only");
3160         ret = -EACCES;
3161         goto out;
3162     }
3163     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3164                                     0);
3165     if (ret < 0) {
3166         error_setg_errno(errp, -ret,
3167                          "Failed to prepare request for truncation");
3168         goto out;
3169     }
3170 
3171     if (!drv->bdrv_co_truncate) {
3172         if (bs->file && drv->is_filter) {
3173             ret = bdrv_co_truncate(bs->file, offset, prealloc, errp);
3174             goto out;
3175         }
3176         error_setg(errp, "Image format driver does not support resize");
3177         ret = -ENOTSUP;
3178         goto out;
3179     }
3180 
3181     ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp);
3182     if (ret < 0) {
3183         goto out;
3184     }
3185     ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3186     if (ret < 0) {
3187         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3188     } else {
3189         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3190     }
3191     /* It's possible that truncation succeeded but refresh_total_sectors
3192      * failed, but the latter doesn't affect how we should finish the request.
3193      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3194     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3195 
3196 out:
3197     tracked_request_end(&req);
3198     bdrv_dec_in_flight(bs);
3199 
3200     return ret;
3201 }
3202 
3203 typedef struct TruncateCo {
3204     BdrvChild *child;
3205     int64_t offset;
3206     PreallocMode prealloc;
3207     Error **errp;
3208     int ret;
3209 } TruncateCo;
3210 
3211 static void coroutine_fn bdrv_truncate_co_entry(void *opaque)
3212 {
3213     TruncateCo *tco = opaque;
3214     tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc,
3215                                 tco->errp);
3216 }
3217 
3218 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc,
3219                   Error **errp)
3220 {
3221     Coroutine *co;
3222     TruncateCo tco = {
3223         .child      = child,
3224         .offset     = offset,
3225         .prealloc   = prealloc,
3226         .errp       = errp,
3227         .ret        = NOT_DONE,
3228     };
3229 
3230     if (qemu_in_coroutine()) {
3231         /* Fast-path if already in coroutine context */
3232         bdrv_truncate_co_entry(&tco);
3233     } else {
3234         co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco);
3235         qemu_coroutine_enter(co);
3236         BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE);
3237     }
3238 
3239     return tco.ret;
3240 }
3241