1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/blockjob.h" 29 #include "block/block_int.h" 30 #include "block/throttle-groups.h" 31 #include "qemu/error-report.h" 32 33 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 34 35 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 36 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 37 BlockCompletionFunc *cb, void *opaque); 38 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 39 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 40 BlockCompletionFunc *cb, void *opaque); 41 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 42 int64_t sector_num, int nb_sectors, 43 QEMUIOVector *iov); 44 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 45 int64_t sector_num, int nb_sectors, 46 QEMUIOVector *iov); 47 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs, 48 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 49 BdrvRequestFlags flags); 50 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs, 51 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 52 BdrvRequestFlags flags); 53 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 54 int64_t sector_num, 55 QEMUIOVector *qiov, 56 int nb_sectors, 57 BdrvRequestFlags flags, 58 BlockCompletionFunc *cb, 59 void *opaque, 60 bool is_write); 61 static void coroutine_fn bdrv_co_do_rw(void *opaque); 62 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 63 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags); 64 65 /* throttling disk I/O limits */ 66 void bdrv_set_io_limits(BlockDriverState *bs, 67 ThrottleConfig *cfg) 68 { 69 int i; 70 71 throttle_group_config(bs, cfg); 72 73 for (i = 0; i < 2; i++) { 74 qemu_co_enter_next(&bs->throttled_reqs[i]); 75 } 76 } 77 78 /* this function drain all the throttled IOs */ 79 static bool bdrv_start_throttled_reqs(BlockDriverState *bs) 80 { 81 bool drained = false; 82 bool enabled = bs->io_limits_enabled; 83 int i; 84 85 bs->io_limits_enabled = false; 86 87 for (i = 0; i < 2; i++) { 88 while (qemu_co_enter_next(&bs->throttled_reqs[i])) { 89 drained = true; 90 } 91 } 92 93 bs->io_limits_enabled = enabled; 94 95 return drained; 96 } 97 98 void bdrv_io_limits_disable(BlockDriverState *bs) 99 { 100 bs->io_limits_enabled = false; 101 bdrv_start_throttled_reqs(bs); 102 throttle_group_unregister_bs(bs); 103 } 104 105 /* should be called before bdrv_set_io_limits if a limit is set */ 106 void bdrv_io_limits_enable(BlockDriverState *bs, const char *group) 107 { 108 assert(!bs->io_limits_enabled); 109 throttle_group_register_bs(bs, group); 110 bs->io_limits_enabled = true; 111 } 112 113 void bdrv_io_limits_update_group(BlockDriverState *bs, const char *group) 114 { 115 /* this bs is not part of any group */ 116 if (!bs->throttle_state) { 117 return; 118 } 119 120 /* this bs is a part of the same group than the one we want */ 121 if (!g_strcmp0(throttle_group_get_name(bs), group)) { 122 return; 123 } 124 125 /* need to change the group this bs belong to */ 126 bdrv_io_limits_disable(bs); 127 bdrv_io_limits_enable(bs, group); 128 } 129 130 void bdrv_setup_io_funcs(BlockDriver *bdrv) 131 { 132 /* Block drivers without coroutine functions need emulation */ 133 if (!bdrv->bdrv_co_readv) { 134 bdrv->bdrv_co_readv = bdrv_co_readv_em; 135 bdrv->bdrv_co_writev = bdrv_co_writev_em; 136 137 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 138 * the block driver lacks aio we need to emulate that too. 139 */ 140 if (!bdrv->bdrv_aio_readv) { 141 /* add AIO emulation layer */ 142 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 143 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 144 } 145 } 146 } 147 148 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 149 { 150 BlockDriver *drv = bs->drv; 151 Error *local_err = NULL; 152 153 memset(&bs->bl, 0, sizeof(bs->bl)); 154 155 if (!drv) { 156 return; 157 } 158 159 /* Take some limits from the children as a default */ 160 if (bs->file) { 161 bdrv_refresh_limits(bs->file->bs, &local_err); 162 if (local_err) { 163 error_propagate(errp, local_err); 164 return; 165 } 166 bs->bl.opt_transfer_length = bs->file->bs->bl.opt_transfer_length; 167 bs->bl.max_transfer_length = bs->file->bs->bl.max_transfer_length; 168 bs->bl.min_mem_alignment = bs->file->bs->bl.min_mem_alignment; 169 bs->bl.opt_mem_alignment = bs->file->bs->bl.opt_mem_alignment; 170 bs->bl.max_iov = bs->file->bs->bl.max_iov; 171 } else { 172 bs->bl.min_mem_alignment = 512; 173 bs->bl.opt_mem_alignment = getpagesize(); 174 175 /* Safe default since most protocols use readv()/writev()/etc */ 176 bs->bl.max_iov = IOV_MAX; 177 } 178 179 if (bs->backing) { 180 bdrv_refresh_limits(bs->backing->bs, &local_err); 181 if (local_err) { 182 error_propagate(errp, local_err); 183 return; 184 } 185 bs->bl.opt_transfer_length = 186 MAX(bs->bl.opt_transfer_length, 187 bs->backing->bs->bl.opt_transfer_length); 188 bs->bl.max_transfer_length = 189 MIN_NON_ZERO(bs->bl.max_transfer_length, 190 bs->backing->bs->bl.max_transfer_length); 191 bs->bl.opt_mem_alignment = 192 MAX(bs->bl.opt_mem_alignment, 193 bs->backing->bs->bl.opt_mem_alignment); 194 bs->bl.min_mem_alignment = 195 MAX(bs->bl.min_mem_alignment, 196 bs->backing->bs->bl.min_mem_alignment); 197 bs->bl.max_iov = 198 MIN(bs->bl.max_iov, 199 bs->backing->bs->bl.max_iov); 200 } 201 202 /* Then let the driver override it */ 203 if (drv->bdrv_refresh_limits) { 204 drv->bdrv_refresh_limits(bs, errp); 205 } 206 } 207 208 /** 209 * The copy-on-read flag is actually a reference count so multiple users may 210 * use the feature without worrying about clobbering its previous state. 211 * Copy-on-read stays enabled until all users have called to disable it. 212 */ 213 void bdrv_enable_copy_on_read(BlockDriverState *bs) 214 { 215 bs->copy_on_read++; 216 } 217 218 void bdrv_disable_copy_on_read(BlockDriverState *bs) 219 { 220 assert(bs->copy_on_read > 0); 221 bs->copy_on_read--; 222 } 223 224 /* Check if any requests are in-flight (including throttled requests) */ 225 bool bdrv_requests_pending(BlockDriverState *bs) 226 { 227 BdrvChild *child; 228 229 if (!QLIST_EMPTY(&bs->tracked_requests)) { 230 return true; 231 } 232 if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) { 233 return true; 234 } 235 if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) { 236 return true; 237 } 238 239 QLIST_FOREACH(child, &bs->children, next) { 240 if (bdrv_requests_pending(child->bs)) { 241 return true; 242 } 243 } 244 245 return false; 246 } 247 248 static void bdrv_drain_recurse(BlockDriverState *bs) 249 { 250 BdrvChild *child; 251 252 if (bs->drv && bs->drv->bdrv_drain) { 253 bs->drv->bdrv_drain(bs); 254 } 255 QLIST_FOREACH(child, &bs->children, next) { 256 bdrv_drain_recurse(child->bs); 257 } 258 } 259 260 /* 261 * Wait for pending requests to complete on a single BlockDriverState subtree, 262 * and suspend block driver's internal I/O until next request arrives. 263 * 264 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 265 * AioContext. 266 * 267 * Only this BlockDriverState's AioContext is run, so in-flight requests must 268 * not depend on events in other AioContexts. In that case, use 269 * bdrv_drain_all() instead. 270 */ 271 void bdrv_drain(BlockDriverState *bs) 272 { 273 bool busy = true; 274 275 bdrv_drain_recurse(bs); 276 while (busy) { 277 /* Keep iterating */ 278 bdrv_flush_io_queue(bs); 279 busy = bdrv_requests_pending(bs); 280 busy |= aio_poll(bdrv_get_aio_context(bs), busy); 281 } 282 } 283 284 /* 285 * Wait for pending requests to complete across all BlockDriverStates 286 * 287 * This function does not flush data to disk, use bdrv_flush_all() for that 288 * after calling this function. 289 */ 290 void bdrv_drain_all(void) 291 { 292 /* Always run first iteration so any pending completion BHs run */ 293 bool busy = true; 294 BlockDriverState *bs = NULL; 295 GSList *aio_ctxs = NULL, *ctx; 296 297 while ((bs = bdrv_next(bs))) { 298 AioContext *aio_context = bdrv_get_aio_context(bs); 299 300 aio_context_acquire(aio_context); 301 if (bs->job) { 302 block_job_pause(bs->job); 303 } 304 bdrv_drain_recurse(bs); 305 aio_context_release(aio_context); 306 307 if (!g_slist_find(aio_ctxs, aio_context)) { 308 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context); 309 } 310 } 311 312 /* Note that completion of an asynchronous I/O operation can trigger any 313 * number of other I/O operations on other devices---for example a 314 * coroutine can submit an I/O request to another device in response to 315 * request completion. Therefore we must keep looping until there was no 316 * more activity rather than simply draining each device independently. 317 */ 318 while (busy) { 319 busy = false; 320 321 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) { 322 AioContext *aio_context = ctx->data; 323 bs = NULL; 324 325 aio_context_acquire(aio_context); 326 while ((bs = bdrv_next(bs))) { 327 if (aio_context == bdrv_get_aio_context(bs)) { 328 bdrv_flush_io_queue(bs); 329 if (bdrv_requests_pending(bs)) { 330 busy = true; 331 aio_poll(aio_context, busy); 332 } 333 } 334 } 335 busy |= aio_poll(aio_context, false); 336 aio_context_release(aio_context); 337 } 338 } 339 340 bs = NULL; 341 while ((bs = bdrv_next(bs))) { 342 AioContext *aio_context = bdrv_get_aio_context(bs); 343 344 aio_context_acquire(aio_context); 345 if (bs->job) { 346 block_job_resume(bs->job); 347 } 348 aio_context_release(aio_context); 349 } 350 g_slist_free(aio_ctxs); 351 } 352 353 /** 354 * Remove an active request from the tracked requests list 355 * 356 * This function should be called when a tracked request is completing. 357 */ 358 static void tracked_request_end(BdrvTrackedRequest *req) 359 { 360 if (req->serialising) { 361 req->bs->serialising_in_flight--; 362 } 363 364 QLIST_REMOVE(req, list); 365 qemu_co_queue_restart_all(&req->wait_queue); 366 } 367 368 /** 369 * Add an active request to the tracked requests list 370 */ 371 static void tracked_request_begin(BdrvTrackedRequest *req, 372 BlockDriverState *bs, 373 int64_t offset, 374 unsigned int bytes, 375 enum BdrvTrackedRequestType type) 376 { 377 *req = (BdrvTrackedRequest){ 378 .bs = bs, 379 .offset = offset, 380 .bytes = bytes, 381 .type = type, 382 .co = qemu_coroutine_self(), 383 .serialising = false, 384 .overlap_offset = offset, 385 .overlap_bytes = bytes, 386 }; 387 388 qemu_co_queue_init(&req->wait_queue); 389 390 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 391 } 392 393 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 394 { 395 int64_t overlap_offset = req->offset & ~(align - 1); 396 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 397 - overlap_offset; 398 399 if (!req->serialising) { 400 req->bs->serialising_in_flight++; 401 req->serialising = true; 402 } 403 404 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 405 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 406 } 407 408 /** 409 * Round a region to cluster boundaries 410 */ 411 void bdrv_round_to_clusters(BlockDriverState *bs, 412 int64_t sector_num, int nb_sectors, 413 int64_t *cluster_sector_num, 414 int *cluster_nb_sectors) 415 { 416 BlockDriverInfo bdi; 417 418 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 419 *cluster_sector_num = sector_num; 420 *cluster_nb_sectors = nb_sectors; 421 } else { 422 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 423 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 424 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 425 nb_sectors, c); 426 } 427 } 428 429 static int bdrv_get_cluster_size(BlockDriverState *bs) 430 { 431 BlockDriverInfo bdi; 432 int ret; 433 434 ret = bdrv_get_info(bs, &bdi); 435 if (ret < 0 || bdi.cluster_size == 0) { 436 return bs->request_alignment; 437 } else { 438 return bdi.cluster_size; 439 } 440 } 441 442 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 443 int64_t offset, unsigned int bytes) 444 { 445 /* aaaa bbbb */ 446 if (offset >= req->overlap_offset + req->overlap_bytes) { 447 return false; 448 } 449 /* bbbb aaaa */ 450 if (req->overlap_offset >= offset + bytes) { 451 return false; 452 } 453 return true; 454 } 455 456 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 457 { 458 BlockDriverState *bs = self->bs; 459 BdrvTrackedRequest *req; 460 bool retry; 461 bool waited = false; 462 463 if (!bs->serialising_in_flight) { 464 return false; 465 } 466 467 do { 468 retry = false; 469 QLIST_FOREACH(req, &bs->tracked_requests, list) { 470 if (req == self || (!req->serialising && !self->serialising)) { 471 continue; 472 } 473 if (tracked_request_overlaps(req, self->overlap_offset, 474 self->overlap_bytes)) 475 { 476 /* Hitting this means there was a reentrant request, for 477 * example, a block driver issuing nested requests. This must 478 * never happen since it means deadlock. 479 */ 480 assert(qemu_coroutine_self() != req->co); 481 482 /* If the request is already (indirectly) waiting for us, or 483 * will wait for us as soon as it wakes up, then just go on 484 * (instead of producing a deadlock in the former case). */ 485 if (!req->waiting_for) { 486 self->waiting_for = req; 487 qemu_co_queue_wait(&req->wait_queue); 488 self->waiting_for = NULL; 489 retry = true; 490 waited = true; 491 break; 492 } 493 } 494 } 495 } while (retry); 496 497 return waited; 498 } 499 500 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 501 size_t size) 502 { 503 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 504 return -EIO; 505 } 506 507 if (!bdrv_is_inserted(bs)) { 508 return -ENOMEDIUM; 509 } 510 511 if (offset < 0) { 512 return -EIO; 513 } 514 515 return 0; 516 } 517 518 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 519 int nb_sectors) 520 { 521 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 522 return -EIO; 523 } 524 525 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 526 nb_sectors * BDRV_SECTOR_SIZE); 527 } 528 529 typedef struct RwCo { 530 BlockDriverState *bs; 531 int64_t offset; 532 QEMUIOVector *qiov; 533 bool is_write; 534 int ret; 535 BdrvRequestFlags flags; 536 } RwCo; 537 538 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 539 { 540 RwCo *rwco = opaque; 541 542 if (!rwco->is_write) { 543 rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset, 544 rwco->qiov->size, rwco->qiov, 545 rwco->flags); 546 } else { 547 rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset, 548 rwco->qiov->size, rwco->qiov, 549 rwco->flags); 550 } 551 } 552 553 /* 554 * Process a vectored synchronous request using coroutines 555 */ 556 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset, 557 QEMUIOVector *qiov, bool is_write, 558 BdrvRequestFlags flags) 559 { 560 Coroutine *co; 561 RwCo rwco = { 562 .bs = bs, 563 .offset = offset, 564 .qiov = qiov, 565 .is_write = is_write, 566 .ret = NOT_DONE, 567 .flags = flags, 568 }; 569 570 /** 571 * In sync call context, when the vcpu is blocked, this throttling timer 572 * will not fire; so the I/O throttling function has to be disabled here 573 * if it has been enabled. 574 */ 575 if (bs->io_limits_enabled) { 576 fprintf(stderr, "Disabling I/O throttling on '%s' due " 577 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 578 bdrv_io_limits_disable(bs); 579 } 580 581 if (qemu_in_coroutine()) { 582 /* Fast-path if already in coroutine context */ 583 bdrv_rw_co_entry(&rwco); 584 } else { 585 AioContext *aio_context = bdrv_get_aio_context(bs); 586 587 co = qemu_coroutine_create(bdrv_rw_co_entry); 588 qemu_coroutine_enter(co, &rwco); 589 while (rwco.ret == NOT_DONE) { 590 aio_poll(aio_context, true); 591 } 592 } 593 return rwco.ret; 594 } 595 596 /* 597 * Process a synchronous request using coroutines 598 */ 599 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 600 int nb_sectors, bool is_write, BdrvRequestFlags flags) 601 { 602 QEMUIOVector qiov; 603 struct iovec iov = { 604 .iov_base = (void *)buf, 605 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 606 }; 607 608 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 609 return -EINVAL; 610 } 611 612 qemu_iovec_init_external(&qiov, &iov, 1); 613 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS, 614 &qiov, is_write, flags); 615 } 616 617 /* return < 0 if error. See bdrv_write() for the return codes */ 618 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 619 uint8_t *buf, int nb_sectors) 620 { 621 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0); 622 } 623 624 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 625 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 626 uint8_t *buf, int nb_sectors) 627 { 628 bool enabled; 629 int ret; 630 631 enabled = bs->io_limits_enabled; 632 bs->io_limits_enabled = false; 633 ret = bdrv_read(bs, sector_num, buf, nb_sectors); 634 bs->io_limits_enabled = enabled; 635 return ret; 636 } 637 638 /* Return < 0 if error. Important errors are: 639 -EIO generic I/O error (may happen for all errors) 640 -ENOMEDIUM No media inserted. 641 -EINVAL Invalid sector number or nb_sectors 642 -EACCES Trying to write a read-only device 643 */ 644 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 645 const uint8_t *buf, int nb_sectors) 646 { 647 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 648 } 649 650 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num, 651 int nb_sectors, BdrvRequestFlags flags) 652 { 653 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true, 654 BDRV_REQ_ZERO_WRITE | flags); 655 } 656 657 /* 658 * Completely zero out a block device with the help of bdrv_write_zeroes. 659 * The operation is sped up by checking the block status and only writing 660 * zeroes to the device if they currently do not return zeroes. Optional 661 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP). 662 * 663 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 664 */ 665 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags) 666 { 667 int64_t target_sectors, ret, nb_sectors, sector_num = 0; 668 BlockDriverState *file; 669 int n; 670 671 target_sectors = bdrv_nb_sectors(bs); 672 if (target_sectors < 0) { 673 return target_sectors; 674 } 675 676 for (;;) { 677 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS); 678 if (nb_sectors <= 0) { 679 return 0; 680 } 681 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file); 682 if (ret < 0) { 683 error_report("error getting block status at sector %" PRId64 ": %s", 684 sector_num, strerror(-ret)); 685 return ret; 686 } 687 if (ret & BDRV_BLOCK_ZERO) { 688 sector_num += n; 689 continue; 690 } 691 ret = bdrv_write_zeroes(bs, sector_num, n, flags); 692 if (ret < 0) { 693 error_report("error writing zeroes at sector %" PRId64 ": %s", 694 sector_num, strerror(-ret)); 695 return ret; 696 } 697 sector_num += n; 698 } 699 } 700 701 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes) 702 { 703 QEMUIOVector qiov; 704 struct iovec iov = { 705 .iov_base = (void *)buf, 706 .iov_len = bytes, 707 }; 708 int ret; 709 710 if (bytes < 0) { 711 return -EINVAL; 712 } 713 714 qemu_iovec_init_external(&qiov, &iov, 1); 715 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0); 716 if (ret < 0) { 717 return ret; 718 } 719 720 return bytes; 721 } 722 723 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov) 724 { 725 int ret; 726 727 ret = bdrv_prwv_co(bs, offset, qiov, true, 0); 728 if (ret < 0) { 729 return ret; 730 } 731 732 return qiov->size; 733 } 734 735 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 736 const void *buf, int bytes) 737 { 738 QEMUIOVector qiov; 739 struct iovec iov = { 740 .iov_base = (void *) buf, 741 .iov_len = bytes, 742 }; 743 744 if (bytes < 0) { 745 return -EINVAL; 746 } 747 748 qemu_iovec_init_external(&qiov, &iov, 1); 749 return bdrv_pwritev(bs, offset, &qiov); 750 } 751 752 /* 753 * Writes to the file and ensures that no writes are reordered across this 754 * request (acts as a barrier) 755 * 756 * Returns 0 on success, -errno in error cases. 757 */ 758 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 759 const void *buf, int count) 760 { 761 int ret; 762 763 ret = bdrv_pwrite(bs, offset, buf, count); 764 if (ret < 0) { 765 return ret; 766 } 767 768 /* No flush needed for cache modes that already do it */ 769 if (bs->enable_write_cache) { 770 bdrv_flush(bs); 771 } 772 773 return 0; 774 } 775 776 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 777 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 778 { 779 /* Perform I/O through a temporary buffer so that users who scribble over 780 * their read buffer while the operation is in progress do not end up 781 * modifying the image file. This is critical for zero-copy guest I/O 782 * where anything might happen inside guest memory. 783 */ 784 void *bounce_buffer; 785 786 BlockDriver *drv = bs->drv; 787 struct iovec iov; 788 QEMUIOVector bounce_qiov; 789 int64_t cluster_sector_num; 790 int cluster_nb_sectors; 791 size_t skip_bytes; 792 int ret; 793 794 /* Cover entire cluster so no additional backing file I/O is required when 795 * allocating cluster in the image file. 796 */ 797 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 798 &cluster_sector_num, &cluster_nb_sectors); 799 800 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 801 cluster_sector_num, cluster_nb_sectors); 802 803 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 804 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len); 805 if (bounce_buffer == NULL) { 806 ret = -ENOMEM; 807 goto err; 808 } 809 810 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 811 812 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 813 &bounce_qiov); 814 if (ret < 0) { 815 goto err; 816 } 817 818 if (drv->bdrv_co_write_zeroes && 819 buffer_is_zero(bounce_buffer, iov.iov_len)) { 820 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 821 cluster_nb_sectors, 0); 822 } else { 823 /* This does not change the data on the disk, it is not necessary 824 * to flush even in cache=writethrough mode. 825 */ 826 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 827 &bounce_qiov); 828 } 829 830 if (ret < 0) { 831 /* It might be okay to ignore write errors for guest requests. If this 832 * is a deliberate copy-on-read then we don't want to ignore the error. 833 * Simply report it in all cases. 834 */ 835 goto err; 836 } 837 838 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 839 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 840 nb_sectors * BDRV_SECTOR_SIZE); 841 842 err: 843 qemu_vfree(bounce_buffer); 844 return ret; 845 } 846 847 /* 848 * Forwards an already correctly aligned request to the BlockDriver. This 849 * handles copy on read and zeroing after EOF; any other features must be 850 * implemented by the caller. 851 */ 852 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs, 853 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 854 int64_t align, QEMUIOVector *qiov, int flags) 855 { 856 BlockDriver *drv = bs->drv; 857 int ret; 858 859 int64_t sector_num = offset >> BDRV_SECTOR_BITS; 860 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS; 861 862 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 863 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 864 assert(!qiov || bytes == qiov->size); 865 866 /* Handle Copy on Read and associated serialisation */ 867 if (flags & BDRV_REQ_COPY_ON_READ) { 868 /* If we touch the same cluster it counts as an overlap. This 869 * guarantees that allocating writes will be serialized and not race 870 * with each other for the same cluster. For example, in copy-on-read 871 * it ensures that the CoR read and write operations are atomic and 872 * guest writes cannot interleave between them. */ 873 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 874 } 875 876 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 877 wait_serialising_requests(req); 878 } 879 880 if (flags & BDRV_REQ_COPY_ON_READ) { 881 int pnum; 882 883 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum); 884 if (ret < 0) { 885 goto out; 886 } 887 888 if (!ret || pnum != nb_sectors) { 889 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 890 goto out; 891 } 892 } 893 894 /* Forward the request to the BlockDriver */ 895 if (!bs->zero_beyond_eof) { 896 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 897 } else { 898 /* Read zeros after EOF */ 899 int64_t total_sectors, max_nb_sectors; 900 901 total_sectors = bdrv_nb_sectors(bs); 902 if (total_sectors < 0) { 903 ret = total_sectors; 904 goto out; 905 } 906 907 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num), 908 align >> BDRV_SECTOR_BITS); 909 if (nb_sectors < max_nb_sectors) { 910 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 911 } else if (max_nb_sectors > 0) { 912 QEMUIOVector local_qiov; 913 914 qemu_iovec_init(&local_qiov, qiov->niov); 915 qemu_iovec_concat(&local_qiov, qiov, 0, 916 max_nb_sectors * BDRV_SECTOR_SIZE); 917 918 ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors, 919 &local_qiov); 920 921 qemu_iovec_destroy(&local_qiov); 922 } else { 923 ret = 0; 924 } 925 926 /* Reading beyond end of file is supposed to produce zeroes */ 927 if (ret == 0 && total_sectors < sector_num + nb_sectors) { 928 uint64_t offset = MAX(0, total_sectors - sector_num); 929 uint64_t bytes = (sector_num + nb_sectors - offset) * 930 BDRV_SECTOR_SIZE; 931 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes); 932 } 933 } 934 935 out: 936 return ret; 937 } 938 939 /* 940 * Handle a read request in coroutine context 941 */ 942 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs, 943 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 944 BdrvRequestFlags flags) 945 { 946 BlockDriver *drv = bs->drv; 947 BdrvTrackedRequest req; 948 949 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */ 950 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment); 951 uint8_t *head_buf = NULL; 952 uint8_t *tail_buf = NULL; 953 QEMUIOVector local_qiov; 954 bool use_local_qiov = false; 955 int ret; 956 957 if (!drv) { 958 return -ENOMEDIUM; 959 } 960 961 ret = bdrv_check_byte_request(bs, offset, bytes); 962 if (ret < 0) { 963 return ret; 964 } 965 966 /* Don't do copy-on-read if we read data before write operation */ 967 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) { 968 flags |= BDRV_REQ_COPY_ON_READ; 969 } 970 971 /* throttling disk I/O */ 972 if (bs->io_limits_enabled) { 973 throttle_group_co_io_limits_intercept(bs, bytes, false); 974 } 975 976 /* Align read if necessary by padding qiov */ 977 if (offset & (align - 1)) { 978 head_buf = qemu_blockalign(bs, align); 979 qemu_iovec_init(&local_qiov, qiov->niov + 2); 980 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 981 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 982 use_local_qiov = true; 983 984 bytes += offset & (align - 1); 985 offset = offset & ~(align - 1); 986 } 987 988 if ((offset + bytes) & (align - 1)) { 989 if (!use_local_qiov) { 990 qemu_iovec_init(&local_qiov, qiov->niov + 1); 991 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 992 use_local_qiov = true; 993 } 994 tail_buf = qemu_blockalign(bs, align); 995 qemu_iovec_add(&local_qiov, tail_buf, 996 align - ((offset + bytes) & (align - 1))); 997 998 bytes = ROUND_UP(bytes, align); 999 } 1000 1001 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1002 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align, 1003 use_local_qiov ? &local_qiov : qiov, 1004 flags); 1005 tracked_request_end(&req); 1006 1007 if (use_local_qiov) { 1008 qemu_iovec_destroy(&local_qiov); 1009 qemu_vfree(head_buf); 1010 qemu_vfree(tail_buf); 1011 } 1012 1013 return ret; 1014 } 1015 1016 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 1017 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1018 BdrvRequestFlags flags) 1019 { 1020 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1021 return -EINVAL; 1022 } 1023 1024 return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS, 1025 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1026 } 1027 1028 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 1029 int nb_sectors, QEMUIOVector *qiov) 1030 { 1031 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 1032 1033 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 1034 } 1035 1036 int coroutine_fn bdrv_co_readv_no_serialising(BlockDriverState *bs, 1037 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 1038 { 1039 trace_bdrv_co_readv_no_serialising(bs, sector_num, nb_sectors); 1040 1041 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 1042 BDRV_REQ_NO_SERIALISING); 1043 } 1044 1045 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 1046 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 1047 { 1048 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 1049 1050 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 1051 BDRV_REQ_COPY_ON_READ); 1052 } 1053 1054 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768 1055 1056 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 1057 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags) 1058 { 1059 BlockDriver *drv = bs->drv; 1060 QEMUIOVector qiov; 1061 struct iovec iov = {0}; 1062 int ret = 0; 1063 1064 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes, 1065 BDRV_REQUEST_MAX_SECTORS); 1066 1067 while (nb_sectors > 0 && !ret) { 1068 int num = nb_sectors; 1069 1070 /* Align request. Block drivers can expect the "bulk" of the request 1071 * to be aligned. 1072 */ 1073 if (bs->bl.write_zeroes_alignment 1074 && num > bs->bl.write_zeroes_alignment) { 1075 if (sector_num % bs->bl.write_zeroes_alignment != 0) { 1076 /* Make a small request up to the first aligned sector. */ 1077 num = bs->bl.write_zeroes_alignment; 1078 num -= sector_num % bs->bl.write_zeroes_alignment; 1079 } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) { 1080 /* Shorten the request to the last aligned sector. num cannot 1081 * underflow because num > bs->bl.write_zeroes_alignment. 1082 */ 1083 num -= (sector_num + num) % bs->bl.write_zeroes_alignment; 1084 } 1085 } 1086 1087 /* limit request size */ 1088 if (num > max_write_zeroes) { 1089 num = max_write_zeroes; 1090 } 1091 1092 ret = -ENOTSUP; 1093 /* First try the efficient write zeroes operation */ 1094 if (drv->bdrv_co_write_zeroes) { 1095 ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags); 1096 } 1097 1098 if (ret == -ENOTSUP) { 1099 /* Fall back to bounce buffer if write zeroes is unsupported */ 1100 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length, 1101 MAX_WRITE_ZEROES_BOUNCE_BUFFER); 1102 num = MIN(num, max_xfer_len); 1103 iov.iov_len = num * BDRV_SECTOR_SIZE; 1104 if (iov.iov_base == NULL) { 1105 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE); 1106 if (iov.iov_base == NULL) { 1107 ret = -ENOMEM; 1108 goto fail; 1109 } 1110 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE); 1111 } 1112 qemu_iovec_init_external(&qiov, &iov, 1); 1113 1114 ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov); 1115 1116 /* Keep bounce buffer around if it is big enough for all 1117 * all future requests. 1118 */ 1119 if (num < max_xfer_len) { 1120 qemu_vfree(iov.iov_base); 1121 iov.iov_base = NULL; 1122 } 1123 } 1124 1125 sector_num += num; 1126 nb_sectors -= num; 1127 } 1128 1129 fail: 1130 qemu_vfree(iov.iov_base); 1131 return ret; 1132 } 1133 1134 /* 1135 * Forwards an already correctly aligned write request to the BlockDriver. 1136 */ 1137 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs, 1138 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1139 QEMUIOVector *qiov, int flags) 1140 { 1141 BlockDriver *drv = bs->drv; 1142 bool waited; 1143 int ret; 1144 1145 int64_t sector_num = offset >> BDRV_SECTOR_BITS; 1146 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS; 1147 1148 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1149 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1150 assert(!qiov || bytes == qiov->size); 1151 1152 waited = wait_serialising_requests(req); 1153 assert(!waited || !req->serialising); 1154 assert(req->overlap_offset <= offset); 1155 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1156 1157 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); 1158 1159 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1160 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes && 1161 qemu_iovec_is_zero(qiov)) { 1162 flags |= BDRV_REQ_ZERO_WRITE; 1163 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1164 flags |= BDRV_REQ_MAY_UNMAP; 1165 } 1166 } 1167 1168 if (ret < 0) { 1169 /* Do nothing, write notifier decided to fail this request */ 1170 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1171 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1172 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags); 1173 } else { 1174 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1175 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 1176 } 1177 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1178 1179 if (ret == 0 && !bs->enable_write_cache) { 1180 ret = bdrv_co_flush(bs); 1181 } 1182 1183 bdrv_set_dirty(bs, sector_num, nb_sectors); 1184 1185 if (bs->wr_highest_offset < offset + bytes) { 1186 bs->wr_highest_offset = offset + bytes; 1187 } 1188 1189 if (ret >= 0) { 1190 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors); 1191 } 1192 1193 return ret; 1194 } 1195 1196 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs, 1197 int64_t offset, 1198 unsigned int bytes, 1199 BdrvRequestFlags flags, 1200 BdrvTrackedRequest *req) 1201 { 1202 uint8_t *buf = NULL; 1203 QEMUIOVector local_qiov; 1204 struct iovec iov; 1205 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment); 1206 unsigned int head_padding_bytes, tail_padding_bytes; 1207 int ret = 0; 1208 1209 head_padding_bytes = offset & (align - 1); 1210 tail_padding_bytes = align - ((offset + bytes) & (align - 1)); 1211 1212 1213 assert(flags & BDRV_REQ_ZERO_WRITE); 1214 if (head_padding_bytes || tail_padding_bytes) { 1215 buf = qemu_blockalign(bs, align); 1216 iov = (struct iovec) { 1217 .iov_base = buf, 1218 .iov_len = align, 1219 }; 1220 qemu_iovec_init_external(&local_qiov, &iov, 1); 1221 } 1222 if (head_padding_bytes) { 1223 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1224 1225 /* RMW the unaligned part before head. */ 1226 mark_request_serialising(req, align); 1227 wait_serialising_requests(req); 1228 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1229 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align, 1230 align, &local_qiov, 0); 1231 if (ret < 0) { 1232 goto fail; 1233 } 1234 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1235 1236 memset(buf + head_padding_bytes, 0, zero_bytes); 1237 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align, 1238 &local_qiov, 1239 flags & ~BDRV_REQ_ZERO_WRITE); 1240 if (ret < 0) { 1241 goto fail; 1242 } 1243 offset += zero_bytes; 1244 bytes -= zero_bytes; 1245 } 1246 1247 assert(!bytes || (offset & (align - 1)) == 0); 1248 if (bytes >= align) { 1249 /* Write the aligned part in the middle. */ 1250 uint64_t aligned_bytes = bytes & ~(align - 1); 1251 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes, 1252 NULL, flags); 1253 if (ret < 0) { 1254 goto fail; 1255 } 1256 bytes -= aligned_bytes; 1257 offset += aligned_bytes; 1258 } 1259 1260 assert(!bytes || (offset & (align - 1)) == 0); 1261 if (bytes) { 1262 assert(align == tail_padding_bytes + bytes); 1263 /* RMW the unaligned part after tail. */ 1264 mark_request_serialising(req, align); 1265 wait_serialising_requests(req); 1266 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1267 ret = bdrv_aligned_preadv(bs, req, offset, align, 1268 align, &local_qiov, 0); 1269 if (ret < 0) { 1270 goto fail; 1271 } 1272 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1273 1274 memset(buf, 0, bytes); 1275 ret = bdrv_aligned_pwritev(bs, req, offset, align, 1276 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1277 } 1278 fail: 1279 qemu_vfree(buf); 1280 return ret; 1281 1282 } 1283 1284 /* 1285 * Handle a write request in coroutine context 1286 */ 1287 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs, 1288 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1289 BdrvRequestFlags flags) 1290 { 1291 BdrvTrackedRequest req; 1292 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */ 1293 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment); 1294 uint8_t *head_buf = NULL; 1295 uint8_t *tail_buf = NULL; 1296 QEMUIOVector local_qiov; 1297 bool use_local_qiov = false; 1298 int ret; 1299 1300 if (!bs->drv) { 1301 return -ENOMEDIUM; 1302 } 1303 if (bs->read_only) { 1304 return -EPERM; 1305 } 1306 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1307 1308 ret = bdrv_check_byte_request(bs, offset, bytes); 1309 if (ret < 0) { 1310 return ret; 1311 } 1312 1313 /* throttling disk I/O */ 1314 if (bs->io_limits_enabled) { 1315 throttle_group_co_io_limits_intercept(bs, bytes, true); 1316 } 1317 1318 /* 1319 * Align write if necessary by performing a read-modify-write cycle. 1320 * Pad qiov with the read parts and be sure to have a tracked request not 1321 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1322 */ 1323 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1324 1325 if (!qiov) { 1326 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req); 1327 goto out; 1328 } 1329 1330 if (offset & (align - 1)) { 1331 QEMUIOVector head_qiov; 1332 struct iovec head_iov; 1333 1334 mark_request_serialising(&req, align); 1335 wait_serialising_requests(&req); 1336 1337 head_buf = qemu_blockalign(bs, align); 1338 head_iov = (struct iovec) { 1339 .iov_base = head_buf, 1340 .iov_len = align, 1341 }; 1342 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1343 1344 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1345 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align, 1346 align, &head_qiov, 0); 1347 if (ret < 0) { 1348 goto fail; 1349 } 1350 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1351 1352 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1353 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1354 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1355 use_local_qiov = true; 1356 1357 bytes += offset & (align - 1); 1358 offset = offset & ~(align - 1); 1359 } 1360 1361 if ((offset + bytes) & (align - 1)) { 1362 QEMUIOVector tail_qiov; 1363 struct iovec tail_iov; 1364 size_t tail_bytes; 1365 bool waited; 1366 1367 mark_request_serialising(&req, align); 1368 waited = wait_serialising_requests(&req); 1369 assert(!waited || !use_local_qiov); 1370 1371 tail_buf = qemu_blockalign(bs, align); 1372 tail_iov = (struct iovec) { 1373 .iov_base = tail_buf, 1374 .iov_len = align, 1375 }; 1376 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1377 1378 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1379 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align, 1380 align, &tail_qiov, 0); 1381 if (ret < 0) { 1382 goto fail; 1383 } 1384 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1385 1386 if (!use_local_qiov) { 1387 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1388 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1389 use_local_qiov = true; 1390 } 1391 1392 tail_bytes = (offset + bytes) & (align - 1); 1393 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1394 1395 bytes = ROUND_UP(bytes, align); 1396 } 1397 1398 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes, 1399 use_local_qiov ? &local_qiov : qiov, 1400 flags); 1401 1402 fail: 1403 1404 if (use_local_qiov) { 1405 qemu_iovec_destroy(&local_qiov); 1406 } 1407 qemu_vfree(head_buf); 1408 qemu_vfree(tail_buf); 1409 out: 1410 tracked_request_end(&req); 1411 return ret; 1412 } 1413 1414 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 1415 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1416 BdrvRequestFlags flags) 1417 { 1418 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1419 return -EINVAL; 1420 } 1421 1422 return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS, 1423 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1424 } 1425 1426 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 1427 int nb_sectors, QEMUIOVector *qiov) 1428 { 1429 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 1430 1431 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 1432 } 1433 1434 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 1435 int64_t sector_num, int nb_sectors, 1436 BdrvRequestFlags flags) 1437 { 1438 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags); 1439 1440 if (!(bs->open_flags & BDRV_O_UNMAP)) { 1441 flags &= ~BDRV_REQ_MAY_UNMAP; 1442 } 1443 1444 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 1445 BDRV_REQ_ZERO_WRITE | flags); 1446 } 1447 1448 int bdrv_flush_all(void) 1449 { 1450 BlockDriverState *bs = NULL; 1451 int result = 0; 1452 1453 while ((bs = bdrv_next(bs))) { 1454 AioContext *aio_context = bdrv_get_aio_context(bs); 1455 int ret; 1456 1457 aio_context_acquire(aio_context); 1458 ret = bdrv_flush(bs); 1459 if (ret < 0 && !result) { 1460 result = ret; 1461 } 1462 aio_context_release(aio_context); 1463 } 1464 1465 return result; 1466 } 1467 1468 typedef struct BdrvCoGetBlockStatusData { 1469 BlockDriverState *bs; 1470 BlockDriverState *base; 1471 BlockDriverState **file; 1472 int64_t sector_num; 1473 int nb_sectors; 1474 int *pnum; 1475 int64_t ret; 1476 bool done; 1477 } BdrvCoGetBlockStatusData; 1478 1479 /* 1480 * Returns the allocation status of the specified sectors. 1481 * Drivers not implementing the functionality are assumed to not support 1482 * backing files, hence all their sectors are reported as allocated. 1483 * 1484 * If 'sector_num' is beyond the end of the disk image the return value is 0 1485 * and 'pnum' is set to 0. 1486 * 1487 * 'pnum' is set to the number of sectors (including and immediately following 1488 * the specified sector) that are known to be in the same 1489 * allocated/unallocated state. 1490 * 1491 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 1492 * beyond the end of the disk image it will be clamped. 1493 * 1494 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file' 1495 * points to the BDS which the sector range is allocated in. 1496 */ 1497 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs, 1498 int64_t sector_num, 1499 int nb_sectors, int *pnum, 1500 BlockDriverState **file) 1501 { 1502 int64_t total_sectors; 1503 int64_t n; 1504 int64_t ret, ret2; 1505 1506 total_sectors = bdrv_nb_sectors(bs); 1507 if (total_sectors < 0) { 1508 return total_sectors; 1509 } 1510 1511 if (sector_num >= total_sectors) { 1512 *pnum = 0; 1513 return 0; 1514 } 1515 1516 n = total_sectors - sector_num; 1517 if (n < nb_sectors) { 1518 nb_sectors = n; 1519 } 1520 1521 if (!bs->drv->bdrv_co_get_block_status) { 1522 *pnum = nb_sectors; 1523 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 1524 if (bs->drv->protocol_name) { 1525 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE); 1526 } 1527 return ret; 1528 } 1529 1530 *file = NULL; 1531 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum, 1532 file); 1533 if (ret < 0) { 1534 *pnum = 0; 1535 return ret; 1536 } 1537 1538 if (ret & BDRV_BLOCK_RAW) { 1539 assert(ret & BDRV_BLOCK_OFFSET_VALID); 1540 return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS, 1541 *pnum, pnum, file); 1542 } 1543 1544 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 1545 ret |= BDRV_BLOCK_ALLOCATED; 1546 } else { 1547 if (bdrv_unallocated_blocks_are_zero(bs)) { 1548 ret |= BDRV_BLOCK_ZERO; 1549 } else if (bs->backing) { 1550 BlockDriverState *bs2 = bs->backing->bs; 1551 int64_t nb_sectors2 = bdrv_nb_sectors(bs2); 1552 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) { 1553 ret |= BDRV_BLOCK_ZERO; 1554 } 1555 } 1556 } 1557 1558 if (*file && *file != bs && 1559 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 1560 (ret & BDRV_BLOCK_OFFSET_VALID)) { 1561 BlockDriverState *file2; 1562 int file_pnum; 1563 1564 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1565 *pnum, &file_pnum, &file2); 1566 if (ret2 >= 0) { 1567 /* Ignore errors. This is just providing extra information, it 1568 * is useful but not necessary. 1569 */ 1570 if (!file_pnum) { 1571 /* !file_pnum indicates an offset at or beyond the EOF; it is 1572 * perfectly valid for the format block driver to point to such 1573 * offsets, so catch it and mark everything as zero */ 1574 ret |= BDRV_BLOCK_ZERO; 1575 } else { 1576 /* Limit request to the range reported by the protocol driver */ 1577 *pnum = file_pnum; 1578 ret |= (ret2 & BDRV_BLOCK_ZERO); 1579 } 1580 } 1581 } 1582 1583 return ret; 1584 } 1585 1586 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs, 1587 BlockDriverState *base, 1588 int64_t sector_num, 1589 int nb_sectors, 1590 int *pnum, 1591 BlockDriverState **file) 1592 { 1593 BlockDriverState *p; 1594 int64_t ret = 0; 1595 1596 assert(bs != base); 1597 for (p = bs; p != base; p = backing_bs(p)) { 1598 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file); 1599 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) { 1600 break; 1601 } 1602 /* [sector_num, pnum] unallocated on this layer, which could be only 1603 * the first part of [sector_num, nb_sectors]. */ 1604 nb_sectors = MIN(nb_sectors, *pnum); 1605 } 1606 return ret; 1607 } 1608 1609 /* Coroutine wrapper for bdrv_get_block_status_above() */ 1610 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque) 1611 { 1612 BdrvCoGetBlockStatusData *data = opaque; 1613 1614 data->ret = bdrv_co_get_block_status_above(data->bs, data->base, 1615 data->sector_num, 1616 data->nb_sectors, 1617 data->pnum, 1618 data->file); 1619 data->done = true; 1620 } 1621 1622 /* 1623 * Synchronous wrapper around bdrv_co_get_block_status_above(). 1624 * 1625 * See bdrv_co_get_block_status_above() for details. 1626 */ 1627 int64_t bdrv_get_block_status_above(BlockDriverState *bs, 1628 BlockDriverState *base, 1629 int64_t sector_num, 1630 int nb_sectors, int *pnum, 1631 BlockDriverState **file) 1632 { 1633 Coroutine *co; 1634 BdrvCoGetBlockStatusData data = { 1635 .bs = bs, 1636 .base = base, 1637 .file = file, 1638 .sector_num = sector_num, 1639 .nb_sectors = nb_sectors, 1640 .pnum = pnum, 1641 .done = false, 1642 }; 1643 1644 if (qemu_in_coroutine()) { 1645 /* Fast-path if already in coroutine context */ 1646 bdrv_get_block_status_above_co_entry(&data); 1647 } else { 1648 AioContext *aio_context = bdrv_get_aio_context(bs); 1649 1650 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry); 1651 qemu_coroutine_enter(co, &data); 1652 while (!data.done) { 1653 aio_poll(aio_context, true); 1654 } 1655 } 1656 return data.ret; 1657 } 1658 1659 int64_t bdrv_get_block_status(BlockDriverState *bs, 1660 int64_t sector_num, 1661 int nb_sectors, int *pnum, 1662 BlockDriverState **file) 1663 { 1664 return bdrv_get_block_status_above(bs, backing_bs(bs), 1665 sector_num, nb_sectors, pnum, file); 1666 } 1667 1668 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, 1669 int nb_sectors, int *pnum) 1670 { 1671 BlockDriverState *file; 1672 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum, 1673 &file); 1674 if (ret < 0) { 1675 return ret; 1676 } 1677 return !!(ret & BDRV_BLOCK_ALLOCATED); 1678 } 1679 1680 /* 1681 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 1682 * 1683 * Return true if the given sector is allocated in any image between 1684 * BASE and TOP (inclusive). BASE can be NULL to check if the given 1685 * sector is allocated in any image of the chain. Return false otherwise. 1686 * 1687 * 'pnum' is set to the number of sectors (including and immediately following 1688 * the specified sector) that are known to be in the same 1689 * allocated/unallocated state. 1690 * 1691 */ 1692 int bdrv_is_allocated_above(BlockDriverState *top, 1693 BlockDriverState *base, 1694 int64_t sector_num, 1695 int nb_sectors, int *pnum) 1696 { 1697 BlockDriverState *intermediate; 1698 int ret, n = nb_sectors; 1699 1700 intermediate = top; 1701 while (intermediate && intermediate != base) { 1702 int pnum_inter; 1703 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors, 1704 &pnum_inter); 1705 if (ret < 0) { 1706 return ret; 1707 } else if (ret) { 1708 *pnum = pnum_inter; 1709 return 1; 1710 } 1711 1712 /* 1713 * [sector_num, nb_sectors] is unallocated on top but intermediate 1714 * might have 1715 * 1716 * [sector_num+x, nr_sectors] allocated. 1717 */ 1718 if (n > pnum_inter && 1719 (intermediate == top || 1720 sector_num + pnum_inter < intermediate->total_sectors)) { 1721 n = pnum_inter; 1722 } 1723 1724 intermediate = backing_bs(intermediate); 1725 } 1726 1727 *pnum = n; 1728 return 0; 1729 } 1730 1731 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 1732 const uint8_t *buf, int nb_sectors) 1733 { 1734 BlockDriver *drv = bs->drv; 1735 int ret; 1736 1737 if (!drv) { 1738 return -ENOMEDIUM; 1739 } 1740 if (!drv->bdrv_write_compressed) { 1741 return -ENOTSUP; 1742 } 1743 ret = bdrv_check_request(bs, sector_num, nb_sectors); 1744 if (ret < 0) { 1745 return ret; 1746 } 1747 1748 assert(QLIST_EMPTY(&bs->dirty_bitmaps)); 1749 1750 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 1751 } 1752 1753 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 1754 int64_t pos, int size) 1755 { 1756 QEMUIOVector qiov; 1757 struct iovec iov = { 1758 .iov_base = (void *) buf, 1759 .iov_len = size, 1760 }; 1761 1762 qemu_iovec_init_external(&qiov, &iov, 1); 1763 return bdrv_writev_vmstate(bs, &qiov, pos); 1764 } 1765 1766 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 1767 { 1768 BlockDriver *drv = bs->drv; 1769 1770 if (!drv) { 1771 return -ENOMEDIUM; 1772 } else if (drv->bdrv_save_vmstate) { 1773 return drv->bdrv_save_vmstate(bs, qiov, pos); 1774 } else if (bs->file) { 1775 return bdrv_writev_vmstate(bs->file->bs, qiov, pos); 1776 } 1777 1778 return -ENOTSUP; 1779 } 1780 1781 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 1782 int64_t pos, int size) 1783 { 1784 BlockDriver *drv = bs->drv; 1785 if (!drv) 1786 return -ENOMEDIUM; 1787 if (drv->bdrv_load_vmstate) 1788 return drv->bdrv_load_vmstate(bs, buf, pos, size); 1789 if (bs->file) 1790 return bdrv_load_vmstate(bs->file->bs, buf, pos, size); 1791 return -ENOTSUP; 1792 } 1793 1794 /**************************************************************/ 1795 /* async I/Os */ 1796 1797 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 1798 QEMUIOVector *qiov, int nb_sectors, 1799 BlockCompletionFunc *cb, void *opaque) 1800 { 1801 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 1802 1803 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0, 1804 cb, opaque, false); 1805 } 1806 1807 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 1808 QEMUIOVector *qiov, int nb_sectors, 1809 BlockCompletionFunc *cb, void *opaque) 1810 { 1811 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 1812 1813 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0, 1814 cb, opaque, true); 1815 } 1816 1817 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs, 1818 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags, 1819 BlockCompletionFunc *cb, void *opaque) 1820 { 1821 trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque); 1822 1823 return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors, 1824 BDRV_REQ_ZERO_WRITE | flags, 1825 cb, opaque, true); 1826 } 1827 1828 1829 typedef struct MultiwriteCB { 1830 int error; 1831 int num_requests; 1832 int num_callbacks; 1833 struct { 1834 BlockCompletionFunc *cb; 1835 void *opaque; 1836 QEMUIOVector *free_qiov; 1837 } callbacks[]; 1838 } MultiwriteCB; 1839 1840 static void multiwrite_user_cb(MultiwriteCB *mcb) 1841 { 1842 int i; 1843 1844 for (i = 0; i < mcb->num_callbacks; i++) { 1845 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 1846 if (mcb->callbacks[i].free_qiov) { 1847 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 1848 } 1849 g_free(mcb->callbacks[i].free_qiov); 1850 } 1851 } 1852 1853 static void multiwrite_cb(void *opaque, int ret) 1854 { 1855 MultiwriteCB *mcb = opaque; 1856 1857 trace_multiwrite_cb(mcb, ret); 1858 1859 if (ret < 0 && !mcb->error) { 1860 mcb->error = ret; 1861 } 1862 1863 mcb->num_requests--; 1864 if (mcb->num_requests == 0) { 1865 multiwrite_user_cb(mcb); 1866 g_free(mcb); 1867 } 1868 } 1869 1870 static int multiwrite_req_compare(const void *a, const void *b) 1871 { 1872 const BlockRequest *req1 = a, *req2 = b; 1873 1874 /* 1875 * Note that we can't simply subtract req2->sector from req1->sector 1876 * here as that could overflow the return value. 1877 */ 1878 if (req1->sector > req2->sector) { 1879 return 1; 1880 } else if (req1->sector < req2->sector) { 1881 return -1; 1882 } else { 1883 return 0; 1884 } 1885 } 1886 1887 /* 1888 * Takes a bunch of requests and tries to merge them. Returns the number of 1889 * requests that remain after merging. 1890 */ 1891 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 1892 int num_reqs, MultiwriteCB *mcb) 1893 { 1894 int i, outidx; 1895 1896 // Sort requests by start sector 1897 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 1898 1899 // Check if adjacent requests touch the same clusters. If so, combine them, 1900 // filling up gaps with zero sectors. 1901 outidx = 0; 1902 for (i = 1; i < num_reqs; i++) { 1903 int merge = 0; 1904 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 1905 1906 // Handle exactly sequential writes and overlapping writes. 1907 if (reqs[i].sector <= oldreq_last) { 1908 merge = 1; 1909 } 1910 1911 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > 1912 bs->bl.max_iov) { 1913 merge = 0; 1914 } 1915 1916 if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors + 1917 reqs[i].nb_sectors > bs->bl.max_transfer_length) { 1918 merge = 0; 1919 } 1920 1921 if (merge) { 1922 size_t size; 1923 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 1924 qemu_iovec_init(qiov, 1925 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 1926 1927 // Add the first request to the merged one. If the requests are 1928 // overlapping, drop the last sectors of the first request. 1929 size = (reqs[i].sector - reqs[outidx].sector) << 9; 1930 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 1931 1932 // We should need to add any zeros between the two requests 1933 assert (reqs[i].sector <= oldreq_last); 1934 1935 // Add the second request 1936 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 1937 1938 // Add tail of first request, if necessary 1939 if (qiov->size < reqs[outidx].qiov->size) { 1940 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size, 1941 reqs[outidx].qiov->size - qiov->size); 1942 } 1943 1944 reqs[outidx].nb_sectors = qiov->size >> 9; 1945 reqs[outidx].qiov = qiov; 1946 1947 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 1948 } else { 1949 outidx++; 1950 reqs[outidx].sector = reqs[i].sector; 1951 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 1952 reqs[outidx].qiov = reqs[i].qiov; 1953 } 1954 } 1955 1956 if (bs->blk) { 1957 block_acct_merge_done(blk_get_stats(bs->blk), BLOCK_ACCT_WRITE, 1958 num_reqs - outidx - 1); 1959 } 1960 1961 return outidx + 1; 1962 } 1963 1964 /* 1965 * Submit multiple AIO write requests at once. 1966 * 1967 * On success, the function returns 0 and all requests in the reqs array have 1968 * been submitted. In error case this function returns -1, and any of the 1969 * requests may or may not be submitted yet. In particular, this means that the 1970 * callback will be called for some of the requests, for others it won't. The 1971 * caller must check the error field of the BlockRequest to wait for the right 1972 * callbacks (if error != 0, no callback will be called). 1973 * 1974 * The implementation may modify the contents of the reqs array, e.g. to merge 1975 * requests. However, the fields opaque and error are left unmodified as they 1976 * are used to signal failure for a single request to the caller. 1977 */ 1978 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 1979 { 1980 MultiwriteCB *mcb; 1981 int i; 1982 1983 /* don't submit writes if we don't have a medium */ 1984 if (bs->drv == NULL) { 1985 for (i = 0; i < num_reqs; i++) { 1986 reqs[i].error = -ENOMEDIUM; 1987 } 1988 return -1; 1989 } 1990 1991 if (num_reqs == 0) { 1992 return 0; 1993 } 1994 1995 // Create MultiwriteCB structure 1996 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 1997 mcb->num_requests = 0; 1998 mcb->num_callbacks = num_reqs; 1999 2000 for (i = 0; i < num_reqs; i++) { 2001 mcb->callbacks[i].cb = reqs[i].cb; 2002 mcb->callbacks[i].opaque = reqs[i].opaque; 2003 } 2004 2005 // Check for mergable requests 2006 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 2007 2008 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 2009 2010 /* Run the aio requests. */ 2011 mcb->num_requests = num_reqs; 2012 for (i = 0; i < num_reqs; i++) { 2013 bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov, 2014 reqs[i].nb_sectors, reqs[i].flags, 2015 multiwrite_cb, mcb, 2016 true); 2017 } 2018 2019 return 0; 2020 } 2021 2022 void bdrv_aio_cancel(BlockAIOCB *acb) 2023 { 2024 qemu_aio_ref(acb); 2025 bdrv_aio_cancel_async(acb); 2026 while (acb->refcnt > 1) { 2027 if (acb->aiocb_info->get_aio_context) { 2028 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2029 } else if (acb->bs) { 2030 aio_poll(bdrv_get_aio_context(acb->bs), true); 2031 } else { 2032 abort(); 2033 } 2034 } 2035 qemu_aio_unref(acb); 2036 } 2037 2038 /* Async version of aio cancel. The caller is not blocked if the acb implements 2039 * cancel_async, otherwise we do nothing and let the request normally complete. 2040 * In either case the completion callback must be called. */ 2041 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2042 { 2043 if (acb->aiocb_info->cancel_async) { 2044 acb->aiocb_info->cancel_async(acb); 2045 } 2046 } 2047 2048 /**************************************************************/ 2049 /* async block device emulation */ 2050 2051 typedef struct BlockAIOCBSync { 2052 BlockAIOCB common; 2053 QEMUBH *bh; 2054 int ret; 2055 /* vector translation state */ 2056 QEMUIOVector *qiov; 2057 uint8_t *bounce; 2058 int is_write; 2059 } BlockAIOCBSync; 2060 2061 static const AIOCBInfo bdrv_em_aiocb_info = { 2062 .aiocb_size = sizeof(BlockAIOCBSync), 2063 }; 2064 2065 static void bdrv_aio_bh_cb(void *opaque) 2066 { 2067 BlockAIOCBSync *acb = opaque; 2068 2069 if (!acb->is_write && acb->ret >= 0) { 2070 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 2071 } 2072 qemu_vfree(acb->bounce); 2073 acb->common.cb(acb->common.opaque, acb->ret); 2074 qemu_bh_delete(acb->bh); 2075 acb->bh = NULL; 2076 qemu_aio_unref(acb); 2077 } 2078 2079 static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 2080 int64_t sector_num, 2081 QEMUIOVector *qiov, 2082 int nb_sectors, 2083 BlockCompletionFunc *cb, 2084 void *opaque, 2085 int is_write) 2086 2087 { 2088 BlockAIOCBSync *acb; 2089 2090 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque); 2091 acb->is_write = is_write; 2092 acb->qiov = qiov; 2093 acb->bounce = qemu_try_blockalign(bs, qiov->size); 2094 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb); 2095 2096 if (acb->bounce == NULL) { 2097 acb->ret = -ENOMEM; 2098 } else if (is_write) { 2099 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 2100 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 2101 } else { 2102 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 2103 } 2104 2105 qemu_bh_schedule(acb->bh); 2106 2107 return &acb->common; 2108 } 2109 2110 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 2111 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 2112 BlockCompletionFunc *cb, void *opaque) 2113 { 2114 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 2115 } 2116 2117 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 2118 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 2119 BlockCompletionFunc *cb, void *opaque) 2120 { 2121 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 2122 } 2123 2124 2125 typedef struct BlockAIOCBCoroutine { 2126 BlockAIOCB common; 2127 BlockRequest req; 2128 bool is_write; 2129 bool need_bh; 2130 bool *done; 2131 QEMUBH* bh; 2132 } BlockAIOCBCoroutine; 2133 2134 static const AIOCBInfo bdrv_em_co_aiocb_info = { 2135 .aiocb_size = sizeof(BlockAIOCBCoroutine), 2136 }; 2137 2138 static void bdrv_co_complete(BlockAIOCBCoroutine *acb) 2139 { 2140 if (!acb->need_bh) { 2141 acb->common.cb(acb->common.opaque, acb->req.error); 2142 qemu_aio_unref(acb); 2143 } 2144 } 2145 2146 static void bdrv_co_em_bh(void *opaque) 2147 { 2148 BlockAIOCBCoroutine *acb = opaque; 2149 2150 assert(!acb->need_bh); 2151 qemu_bh_delete(acb->bh); 2152 bdrv_co_complete(acb); 2153 } 2154 2155 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb) 2156 { 2157 acb->need_bh = false; 2158 if (acb->req.error != -EINPROGRESS) { 2159 BlockDriverState *bs = acb->common.bs; 2160 2161 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb); 2162 qemu_bh_schedule(acb->bh); 2163 } 2164 } 2165 2166 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 2167 static void coroutine_fn bdrv_co_do_rw(void *opaque) 2168 { 2169 BlockAIOCBCoroutine *acb = opaque; 2170 BlockDriverState *bs = acb->common.bs; 2171 2172 if (!acb->is_write) { 2173 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 2174 acb->req.nb_sectors, acb->req.qiov, acb->req.flags); 2175 } else { 2176 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 2177 acb->req.nb_sectors, acb->req.qiov, acb->req.flags); 2178 } 2179 2180 bdrv_co_complete(acb); 2181 } 2182 2183 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 2184 int64_t sector_num, 2185 QEMUIOVector *qiov, 2186 int nb_sectors, 2187 BdrvRequestFlags flags, 2188 BlockCompletionFunc *cb, 2189 void *opaque, 2190 bool is_write) 2191 { 2192 Coroutine *co; 2193 BlockAIOCBCoroutine *acb; 2194 2195 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2196 acb->need_bh = true; 2197 acb->req.error = -EINPROGRESS; 2198 acb->req.sector = sector_num; 2199 acb->req.nb_sectors = nb_sectors; 2200 acb->req.qiov = qiov; 2201 acb->req.flags = flags; 2202 acb->is_write = is_write; 2203 2204 co = qemu_coroutine_create(bdrv_co_do_rw); 2205 qemu_coroutine_enter(co, acb); 2206 2207 bdrv_co_maybe_schedule_bh(acb); 2208 return &acb->common; 2209 } 2210 2211 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 2212 { 2213 BlockAIOCBCoroutine *acb = opaque; 2214 BlockDriverState *bs = acb->common.bs; 2215 2216 acb->req.error = bdrv_co_flush(bs); 2217 bdrv_co_complete(acb); 2218 } 2219 2220 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs, 2221 BlockCompletionFunc *cb, void *opaque) 2222 { 2223 trace_bdrv_aio_flush(bs, opaque); 2224 2225 Coroutine *co; 2226 BlockAIOCBCoroutine *acb; 2227 2228 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2229 acb->need_bh = true; 2230 acb->req.error = -EINPROGRESS; 2231 2232 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 2233 qemu_coroutine_enter(co, acb); 2234 2235 bdrv_co_maybe_schedule_bh(acb); 2236 return &acb->common; 2237 } 2238 2239 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 2240 { 2241 BlockAIOCBCoroutine *acb = opaque; 2242 BlockDriverState *bs = acb->common.bs; 2243 2244 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 2245 bdrv_co_complete(acb); 2246 } 2247 2248 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs, 2249 int64_t sector_num, int nb_sectors, 2250 BlockCompletionFunc *cb, void *opaque) 2251 { 2252 Coroutine *co; 2253 BlockAIOCBCoroutine *acb; 2254 2255 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 2256 2257 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2258 acb->need_bh = true; 2259 acb->req.error = -EINPROGRESS; 2260 acb->req.sector = sector_num; 2261 acb->req.nb_sectors = nb_sectors; 2262 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 2263 qemu_coroutine_enter(co, acb); 2264 2265 bdrv_co_maybe_schedule_bh(acb); 2266 return &acb->common; 2267 } 2268 2269 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 2270 BlockCompletionFunc *cb, void *opaque) 2271 { 2272 BlockAIOCB *acb; 2273 2274 acb = g_malloc(aiocb_info->aiocb_size); 2275 acb->aiocb_info = aiocb_info; 2276 acb->bs = bs; 2277 acb->cb = cb; 2278 acb->opaque = opaque; 2279 acb->refcnt = 1; 2280 return acb; 2281 } 2282 2283 void qemu_aio_ref(void *p) 2284 { 2285 BlockAIOCB *acb = p; 2286 acb->refcnt++; 2287 } 2288 2289 void qemu_aio_unref(void *p) 2290 { 2291 BlockAIOCB *acb = p; 2292 assert(acb->refcnt > 0); 2293 if (--acb->refcnt == 0) { 2294 g_free(acb); 2295 } 2296 } 2297 2298 /**************************************************************/ 2299 /* Coroutine block device emulation */ 2300 2301 typedef struct CoroutineIOCompletion { 2302 Coroutine *coroutine; 2303 int ret; 2304 } CoroutineIOCompletion; 2305 2306 static void bdrv_co_io_em_complete(void *opaque, int ret) 2307 { 2308 CoroutineIOCompletion *co = opaque; 2309 2310 co->ret = ret; 2311 qemu_coroutine_enter(co->coroutine, NULL); 2312 } 2313 2314 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 2315 int nb_sectors, QEMUIOVector *iov, 2316 bool is_write) 2317 { 2318 CoroutineIOCompletion co = { 2319 .coroutine = qemu_coroutine_self(), 2320 }; 2321 BlockAIOCB *acb; 2322 2323 if (is_write) { 2324 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 2325 bdrv_co_io_em_complete, &co); 2326 } else { 2327 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 2328 bdrv_co_io_em_complete, &co); 2329 } 2330 2331 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 2332 if (!acb) { 2333 return -EIO; 2334 } 2335 qemu_coroutine_yield(); 2336 2337 return co.ret; 2338 } 2339 2340 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 2341 int64_t sector_num, int nb_sectors, 2342 QEMUIOVector *iov) 2343 { 2344 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 2345 } 2346 2347 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 2348 int64_t sector_num, int nb_sectors, 2349 QEMUIOVector *iov) 2350 { 2351 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 2352 } 2353 2354 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2355 { 2356 RwCo *rwco = opaque; 2357 2358 rwco->ret = bdrv_co_flush(rwco->bs); 2359 } 2360 2361 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2362 { 2363 int ret; 2364 BdrvTrackedRequest req; 2365 2366 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2367 bdrv_is_sg(bs)) { 2368 return 0; 2369 } 2370 2371 tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH); 2372 /* Write back cached data to the OS even with cache=unsafe */ 2373 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2374 if (bs->drv->bdrv_co_flush_to_os) { 2375 ret = bs->drv->bdrv_co_flush_to_os(bs); 2376 if (ret < 0) { 2377 goto out; 2378 } 2379 } 2380 2381 /* But don't actually force it to the disk with cache=unsafe */ 2382 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2383 goto flush_parent; 2384 } 2385 2386 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2387 if (bs->drv->bdrv_co_flush_to_disk) { 2388 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2389 } else if (bs->drv->bdrv_aio_flush) { 2390 BlockAIOCB *acb; 2391 CoroutineIOCompletion co = { 2392 .coroutine = qemu_coroutine_self(), 2393 }; 2394 2395 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2396 if (acb == NULL) { 2397 ret = -EIO; 2398 } else { 2399 qemu_coroutine_yield(); 2400 ret = co.ret; 2401 } 2402 } else { 2403 /* 2404 * Some block drivers always operate in either writethrough or unsafe 2405 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2406 * know how the server works (because the behaviour is hardcoded or 2407 * depends on server-side configuration), so we can't ensure that 2408 * everything is safe on disk. Returning an error doesn't work because 2409 * that would break guests even if the server operates in writethrough 2410 * mode. 2411 * 2412 * Let's hope the user knows what he's doing. 2413 */ 2414 ret = 0; 2415 } 2416 if (ret < 0) { 2417 goto out; 2418 } 2419 2420 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2421 * in the case of cache=unsafe, so there are no useless flushes. 2422 */ 2423 flush_parent: 2424 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2425 out: 2426 tracked_request_end(&req); 2427 return ret; 2428 } 2429 2430 int bdrv_flush(BlockDriverState *bs) 2431 { 2432 Coroutine *co; 2433 RwCo rwco = { 2434 .bs = bs, 2435 .ret = NOT_DONE, 2436 }; 2437 2438 if (qemu_in_coroutine()) { 2439 /* Fast-path if already in coroutine context */ 2440 bdrv_flush_co_entry(&rwco); 2441 } else { 2442 AioContext *aio_context = bdrv_get_aio_context(bs); 2443 2444 co = qemu_coroutine_create(bdrv_flush_co_entry); 2445 qemu_coroutine_enter(co, &rwco); 2446 while (rwco.ret == NOT_DONE) { 2447 aio_poll(aio_context, true); 2448 } 2449 } 2450 2451 return rwco.ret; 2452 } 2453 2454 typedef struct DiscardCo { 2455 BlockDriverState *bs; 2456 int64_t sector_num; 2457 int nb_sectors; 2458 int ret; 2459 } DiscardCo; 2460 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 2461 { 2462 DiscardCo *rwco = opaque; 2463 2464 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 2465 } 2466 2467 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 2468 int nb_sectors) 2469 { 2470 BdrvTrackedRequest req; 2471 int max_discard, ret; 2472 2473 if (!bs->drv) { 2474 return -ENOMEDIUM; 2475 } 2476 2477 ret = bdrv_check_request(bs, sector_num, nb_sectors); 2478 if (ret < 0) { 2479 return ret; 2480 } else if (bs->read_only) { 2481 return -EPERM; 2482 } 2483 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2484 2485 /* Do nothing if disabled. */ 2486 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2487 return 0; 2488 } 2489 2490 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) { 2491 return 0; 2492 } 2493 2494 tracked_request_begin(&req, bs, sector_num, nb_sectors, 2495 BDRV_TRACKED_DISCARD); 2496 bdrv_set_dirty(bs, sector_num, nb_sectors); 2497 2498 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS); 2499 while (nb_sectors > 0) { 2500 int ret; 2501 int num = nb_sectors; 2502 2503 /* align request */ 2504 if (bs->bl.discard_alignment && 2505 num >= bs->bl.discard_alignment && 2506 sector_num % bs->bl.discard_alignment) { 2507 if (num > bs->bl.discard_alignment) { 2508 num = bs->bl.discard_alignment; 2509 } 2510 num -= sector_num % bs->bl.discard_alignment; 2511 } 2512 2513 /* limit request size */ 2514 if (num > max_discard) { 2515 num = max_discard; 2516 } 2517 2518 if (bs->drv->bdrv_co_discard) { 2519 ret = bs->drv->bdrv_co_discard(bs, sector_num, num); 2520 } else { 2521 BlockAIOCB *acb; 2522 CoroutineIOCompletion co = { 2523 .coroutine = qemu_coroutine_self(), 2524 }; 2525 2526 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 2527 bdrv_co_io_em_complete, &co); 2528 if (acb == NULL) { 2529 ret = -EIO; 2530 goto out; 2531 } else { 2532 qemu_coroutine_yield(); 2533 ret = co.ret; 2534 } 2535 } 2536 if (ret && ret != -ENOTSUP) { 2537 goto out; 2538 } 2539 2540 sector_num += num; 2541 nb_sectors -= num; 2542 } 2543 ret = 0; 2544 out: 2545 tracked_request_end(&req); 2546 return ret; 2547 } 2548 2549 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 2550 { 2551 Coroutine *co; 2552 DiscardCo rwco = { 2553 .bs = bs, 2554 .sector_num = sector_num, 2555 .nb_sectors = nb_sectors, 2556 .ret = NOT_DONE, 2557 }; 2558 2559 if (qemu_in_coroutine()) { 2560 /* Fast-path if already in coroutine context */ 2561 bdrv_discard_co_entry(&rwco); 2562 } else { 2563 AioContext *aio_context = bdrv_get_aio_context(bs); 2564 2565 co = qemu_coroutine_create(bdrv_discard_co_entry); 2566 qemu_coroutine_enter(co, &rwco); 2567 while (rwco.ret == NOT_DONE) { 2568 aio_poll(aio_context, true); 2569 } 2570 } 2571 2572 return rwco.ret; 2573 } 2574 2575 typedef struct { 2576 CoroutineIOCompletion *co; 2577 QEMUBH *bh; 2578 } BdrvIoctlCompletionData; 2579 2580 static void bdrv_ioctl_bh_cb(void *opaque) 2581 { 2582 BdrvIoctlCompletionData *data = opaque; 2583 2584 bdrv_co_io_em_complete(data->co, -ENOTSUP); 2585 qemu_bh_delete(data->bh); 2586 } 2587 2588 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf) 2589 { 2590 BlockDriver *drv = bs->drv; 2591 BdrvTrackedRequest tracked_req; 2592 CoroutineIOCompletion co = { 2593 .coroutine = qemu_coroutine_self(), 2594 }; 2595 BlockAIOCB *acb; 2596 2597 tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL); 2598 if (!drv || !drv->bdrv_aio_ioctl) { 2599 co.ret = -ENOTSUP; 2600 goto out; 2601 } 2602 2603 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2604 if (!acb) { 2605 BdrvIoctlCompletionData *data = g_new(BdrvIoctlCompletionData, 1); 2606 data->bh = aio_bh_new(bdrv_get_aio_context(bs), 2607 bdrv_ioctl_bh_cb, data); 2608 data->co = &co; 2609 qemu_bh_schedule(data->bh); 2610 } 2611 qemu_coroutine_yield(); 2612 out: 2613 tracked_request_end(&tracked_req); 2614 return co.ret; 2615 } 2616 2617 typedef struct { 2618 BlockDriverState *bs; 2619 int req; 2620 void *buf; 2621 int ret; 2622 } BdrvIoctlCoData; 2623 2624 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque) 2625 { 2626 BdrvIoctlCoData *data = opaque; 2627 data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf); 2628 } 2629 2630 /* needed for generic scsi interface */ 2631 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 2632 { 2633 BdrvIoctlCoData data = { 2634 .bs = bs, 2635 .req = req, 2636 .buf = buf, 2637 .ret = -EINPROGRESS, 2638 }; 2639 2640 if (qemu_in_coroutine()) { 2641 /* Fast-path if already in coroutine context */ 2642 bdrv_co_ioctl_entry(&data); 2643 } else { 2644 Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry); 2645 2646 qemu_coroutine_enter(co, &data); 2647 while (data.ret == -EINPROGRESS) { 2648 aio_poll(bdrv_get_aio_context(bs), true); 2649 } 2650 } 2651 return data.ret; 2652 } 2653 2654 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque) 2655 { 2656 BlockAIOCBCoroutine *acb = opaque; 2657 acb->req.error = bdrv_co_do_ioctl(acb->common.bs, 2658 acb->req.req, acb->req.buf); 2659 bdrv_co_complete(acb); 2660 } 2661 2662 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 2663 unsigned long int req, void *buf, 2664 BlockCompletionFunc *cb, void *opaque) 2665 { 2666 BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info, 2667 bs, cb, opaque); 2668 Coroutine *co; 2669 2670 acb->need_bh = true; 2671 acb->req.error = -EINPROGRESS; 2672 acb->req.req = req; 2673 acb->req.buf = buf; 2674 co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry); 2675 qemu_coroutine_enter(co, acb); 2676 2677 bdrv_co_maybe_schedule_bh(acb); 2678 return &acb->common; 2679 } 2680 2681 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2682 { 2683 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2684 } 2685 2686 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2687 { 2688 return memset(qemu_blockalign(bs, size), 0, size); 2689 } 2690 2691 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2692 { 2693 size_t align = bdrv_opt_mem_align(bs); 2694 2695 /* Ensure that NULL is never returned on success */ 2696 assert(align > 0); 2697 if (size == 0) { 2698 size = align; 2699 } 2700 2701 return qemu_try_memalign(align, size); 2702 } 2703 2704 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2705 { 2706 void *mem = qemu_try_blockalign(bs, size); 2707 2708 if (mem) { 2709 memset(mem, 0, size); 2710 } 2711 2712 return mem; 2713 } 2714 2715 /* 2716 * Check if all memory in this vector is sector aligned. 2717 */ 2718 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2719 { 2720 int i; 2721 size_t alignment = bdrv_min_mem_align(bs); 2722 2723 for (i = 0; i < qiov->niov; i++) { 2724 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2725 return false; 2726 } 2727 if (qiov->iov[i].iov_len % alignment) { 2728 return false; 2729 } 2730 } 2731 2732 return true; 2733 } 2734 2735 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2736 NotifierWithReturn *notifier) 2737 { 2738 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2739 } 2740 2741 void bdrv_io_plug(BlockDriverState *bs) 2742 { 2743 BlockDriver *drv = bs->drv; 2744 if (drv && drv->bdrv_io_plug) { 2745 drv->bdrv_io_plug(bs); 2746 } else if (bs->file) { 2747 bdrv_io_plug(bs->file->bs); 2748 } 2749 } 2750 2751 void bdrv_io_unplug(BlockDriverState *bs) 2752 { 2753 BlockDriver *drv = bs->drv; 2754 if (drv && drv->bdrv_io_unplug) { 2755 drv->bdrv_io_unplug(bs); 2756 } else if (bs->file) { 2757 bdrv_io_unplug(bs->file->bs); 2758 } 2759 } 2760 2761 void bdrv_flush_io_queue(BlockDriverState *bs) 2762 { 2763 BlockDriver *drv = bs->drv; 2764 if (drv && drv->bdrv_flush_io_queue) { 2765 drv->bdrv_flush_io_queue(bs); 2766 } else if (bs->file) { 2767 bdrv_flush_io_queue(bs->file->bs); 2768 } 2769 bdrv_start_throttled_reqs(bs); 2770 } 2771 2772 void bdrv_drained_begin(BlockDriverState *bs) 2773 { 2774 if (!bs->quiesce_counter++) { 2775 aio_disable_external(bdrv_get_aio_context(bs)); 2776 } 2777 bdrv_drain(bs); 2778 } 2779 2780 void bdrv_drained_end(BlockDriverState *bs) 2781 { 2782 assert(bs->quiesce_counter > 0); 2783 if (--bs->quiesce_counter > 0) { 2784 return; 2785 } 2786 aio_enable_external(bdrv_get_aio_context(bs)); 2787 } 2788