xref: /openbmc/qemu/block/io.c (revision c8ca2a23)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 
36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 
38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
40 
41 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
42     int64_t offset, int bytes, BdrvRequestFlags flags);
43 
44 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
45 {
46     BdrvChild *c, *next;
47 
48     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
49         if (c == ignore) {
50             continue;
51         }
52         if (c->role->drained_begin) {
53             c->role->drained_begin(c);
54         }
55     }
56 }
57 
58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
59 {
60     BdrvChild *c, *next;
61 
62     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
63         if (c == ignore) {
64             continue;
65         }
66         if (c->role->drained_end) {
67             c->role->drained_end(c);
68         }
69     }
70 }
71 
72 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
73 {
74     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
75     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
76     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
77                                  src->opt_mem_alignment);
78     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
79                                  src->min_mem_alignment);
80     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
81 }
82 
83 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
84 {
85     BlockDriver *drv = bs->drv;
86     Error *local_err = NULL;
87 
88     memset(&bs->bl, 0, sizeof(bs->bl));
89 
90     if (!drv) {
91         return;
92     }
93 
94     /* Default alignment based on whether driver has byte interface */
95     bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
96 
97     /* Take some limits from the children as a default */
98     if (bs->file) {
99         bdrv_refresh_limits(bs->file->bs, &local_err);
100         if (local_err) {
101             error_propagate(errp, local_err);
102             return;
103         }
104         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
105     } else {
106         bs->bl.min_mem_alignment = 512;
107         bs->bl.opt_mem_alignment = getpagesize();
108 
109         /* Safe default since most protocols use readv()/writev()/etc */
110         bs->bl.max_iov = IOV_MAX;
111     }
112 
113     if (bs->backing) {
114         bdrv_refresh_limits(bs->backing->bs, &local_err);
115         if (local_err) {
116             error_propagate(errp, local_err);
117             return;
118         }
119         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
120     }
121 
122     /* Then let the driver override it */
123     if (drv->bdrv_refresh_limits) {
124         drv->bdrv_refresh_limits(bs, errp);
125     }
126 }
127 
128 /**
129  * The copy-on-read flag is actually a reference count so multiple users may
130  * use the feature without worrying about clobbering its previous state.
131  * Copy-on-read stays enabled until all users have called to disable it.
132  */
133 void bdrv_enable_copy_on_read(BlockDriverState *bs)
134 {
135     atomic_inc(&bs->copy_on_read);
136 }
137 
138 void bdrv_disable_copy_on_read(BlockDriverState *bs)
139 {
140     int old = atomic_fetch_dec(&bs->copy_on_read);
141     assert(old >= 1);
142 }
143 
144 typedef struct {
145     Coroutine *co;
146     BlockDriverState *bs;
147     bool done;
148     bool begin;
149     bool recursive;
150     BdrvChild *parent;
151 } BdrvCoDrainData;
152 
153 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
154 {
155     BdrvCoDrainData *data = opaque;
156     BlockDriverState *bs = data->bs;
157 
158     if (data->begin) {
159         bs->drv->bdrv_co_drain_begin(bs);
160     } else {
161         bs->drv->bdrv_co_drain_end(bs);
162     }
163 
164     /* Set data->done before reading bs->wakeup.  */
165     atomic_mb_set(&data->done, true);
166     bdrv_wakeup(bs);
167 }
168 
169 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
170 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, bool recursive)
171 {
172     BdrvChild *child, *tmp;
173     BdrvCoDrainData data = { .bs = bs, .done = false, .begin = begin};
174 
175     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
176             (!begin && !bs->drv->bdrv_co_drain_end)) {
177         return;
178     }
179 
180     data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data);
181     bdrv_coroutine_enter(bs, data.co);
182     BDRV_POLL_WHILE(bs, !data.done);
183 
184     if (recursive) {
185         QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
186             bdrv_drain_invoke(child->bs, begin, true);
187         }
188     }
189 }
190 
191 static bool bdrv_drain_recurse(BlockDriverState *bs)
192 {
193     BdrvChild *child, *tmp;
194     bool waited;
195 
196     /* Wait for drained requests to finish */
197     waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
198 
199     QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
200         BlockDriverState *bs = child->bs;
201         bool in_main_loop =
202             qemu_get_current_aio_context() == qemu_get_aio_context();
203         assert(bs->refcnt > 0);
204         if (in_main_loop) {
205             /* In case the recursive bdrv_drain_recurse processes a
206              * block_job_defer_to_main_loop BH and modifies the graph,
207              * let's hold a reference to bs until we are done.
208              *
209              * IOThread doesn't have such a BH, and it is not safe to call
210              * bdrv_unref without BQL, so skip doing it there.
211              */
212             bdrv_ref(bs);
213         }
214         waited |= bdrv_drain_recurse(bs);
215         if (in_main_loop) {
216             bdrv_unref(bs);
217         }
218     }
219 
220     return waited;
221 }
222 
223 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
224                                   BdrvChild *parent);
225 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
226                                 BdrvChild *parent);
227 
228 static void bdrv_co_drain_bh_cb(void *opaque)
229 {
230     BdrvCoDrainData *data = opaque;
231     Coroutine *co = data->co;
232     BlockDriverState *bs = data->bs;
233 
234     bdrv_dec_in_flight(bs);
235     if (data->begin) {
236         bdrv_do_drained_begin(bs, data->recursive, data->parent);
237     } else {
238         bdrv_do_drained_end(bs, data->recursive, data->parent);
239     }
240 
241     data->done = true;
242     aio_co_wake(co);
243 }
244 
245 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
246                                                 bool begin, bool recursive,
247                                                 BdrvChild *parent)
248 {
249     BdrvCoDrainData data;
250 
251     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
252      * other coroutines run if they were queued from
253      * qemu_co_queue_run_restart(). */
254 
255     assert(qemu_in_coroutine());
256     data = (BdrvCoDrainData) {
257         .co = qemu_coroutine_self(),
258         .bs = bs,
259         .done = false,
260         .begin = begin,
261         .recursive = recursive,
262         .parent = parent,
263     };
264     bdrv_inc_in_flight(bs);
265     aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
266                             bdrv_co_drain_bh_cb, &data);
267 
268     qemu_coroutine_yield();
269     /* If we are resumed from some other event (such as an aio completion or a
270      * timer callback), it is a bug in the caller that should be fixed. */
271     assert(data.done);
272 }
273 
274 void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
275                            BdrvChild *parent)
276 {
277     BdrvChild *child, *next;
278 
279     if (qemu_in_coroutine()) {
280         bdrv_co_yield_to_drain(bs, true, recursive, parent);
281         return;
282     }
283 
284     /* Stop things in parent-to-child order */
285     if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
286         aio_disable_external(bdrv_get_aio_context(bs));
287     }
288 
289     bdrv_parent_drained_begin(bs, parent);
290     bdrv_drain_invoke(bs, true, false);
291     bdrv_drain_recurse(bs);
292 
293     if (recursive) {
294         bs->recursive_quiesce_counter++;
295         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
296             bdrv_do_drained_begin(child->bs, true, child);
297         }
298     }
299 }
300 
301 void bdrv_drained_begin(BlockDriverState *bs)
302 {
303     bdrv_do_drained_begin(bs, false, NULL);
304 }
305 
306 void bdrv_subtree_drained_begin(BlockDriverState *bs)
307 {
308     bdrv_do_drained_begin(bs, true, NULL);
309 }
310 
311 void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
312                          BdrvChild *parent)
313 {
314     BdrvChild *child, *next;
315     int old_quiesce_counter;
316 
317     if (qemu_in_coroutine()) {
318         bdrv_co_yield_to_drain(bs, false, recursive, parent);
319         return;
320     }
321     assert(bs->quiesce_counter > 0);
322     old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
323 
324     /* Re-enable things in child-to-parent order */
325     bdrv_drain_invoke(bs, false, false);
326     bdrv_parent_drained_end(bs, parent);
327     if (old_quiesce_counter == 1) {
328         aio_enable_external(bdrv_get_aio_context(bs));
329     }
330 
331     if (recursive) {
332         bs->recursive_quiesce_counter--;
333         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
334             bdrv_do_drained_end(child->bs, true, child);
335         }
336     }
337 }
338 
339 void bdrv_drained_end(BlockDriverState *bs)
340 {
341     bdrv_do_drained_end(bs, false, NULL);
342 }
343 
344 void bdrv_subtree_drained_end(BlockDriverState *bs)
345 {
346     bdrv_do_drained_end(bs, true, NULL);
347 }
348 
349 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
350 {
351     int i;
352 
353     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
354         bdrv_do_drained_begin(child->bs, true, child);
355     }
356 }
357 
358 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
359 {
360     int i;
361 
362     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
363         bdrv_do_drained_end(child->bs, true, child);
364     }
365 }
366 
367 /*
368  * Wait for pending requests to complete on a single BlockDriverState subtree,
369  * and suspend block driver's internal I/O until next request arrives.
370  *
371  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
372  * AioContext.
373  *
374  * Only this BlockDriverState's AioContext is run, so in-flight requests must
375  * not depend on events in other AioContexts.  In that case, use
376  * bdrv_drain_all() instead.
377  */
378 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
379 {
380     assert(qemu_in_coroutine());
381     bdrv_drained_begin(bs);
382     bdrv_drained_end(bs);
383 }
384 
385 void bdrv_drain(BlockDriverState *bs)
386 {
387     bdrv_drained_begin(bs);
388     bdrv_drained_end(bs);
389 }
390 
391 /*
392  * Wait for pending requests to complete across all BlockDriverStates
393  *
394  * This function does not flush data to disk, use bdrv_flush_all() for that
395  * after calling this function.
396  *
397  * This pauses all block jobs and disables external clients. It must
398  * be paired with bdrv_drain_all_end().
399  *
400  * NOTE: no new block jobs or BlockDriverStates can be created between
401  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
402  */
403 void bdrv_drain_all_begin(void)
404 {
405     /* Always run first iteration so any pending completion BHs run */
406     bool waited = true;
407     BlockDriverState *bs;
408     BdrvNextIterator it;
409     GSList *aio_ctxs = NULL, *ctx;
410 
411     /* BDRV_POLL_WHILE() for a node can only be called from its own I/O thread
412      * or the main loop AioContext. We potentially use BDRV_POLL_WHILE() on
413      * nodes in several different AioContexts, so make sure we're in the main
414      * context. */
415     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
416 
417     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
418         AioContext *aio_context = bdrv_get_aio_context(bs);
419 
420         /* Stop things in parent-to-child order */
421         aio_context_acquire(aio_context);
422         aio_disable_external(aio_context);
423         bdrv_parent_drained_begin(bs, NULL);
424         bdrv_drain_invoke(bs, true, true);
425         aio_context_release(aio_context);
426 
427         if (!g_slist_find(aio_ctxs, aio_context)) {
428             aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
429         }
430     }
431 
432     /* Note that completion of an asynchronous I/O operation can trigger any
433      * number of other I/O operations on other devices---for example a
434      * coroutine can submit an I/O request to another device in response to
435      * request completion.  Therefore we must keep looping until there was no
436      * more activity rather than simply draining each device independently.
437      */
438     while (waited) {
439         waited = false;
440 
441         for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
442             AioContext *aio_context = ctx->data;
443 
444             aio_context_acquire(aio_context);
445             for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
446                 if (aio_context == bdrv_get_aio_context(bs)) {
447                     waited |= bdrv_drain_recurse(bs);
448                 }
449             }
450             aio_context_release(aio_context);
451         }
452     }
453 
454     g_slist_free(aio_ctxs);
455 }
456 
457 void bdrv_drain_all_end(void)
458 {
459     BlockDriverState *bs;
460     BdrvNextIterator it;
461 
462     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
463         AioContext *aio_context = bdrv_get_aio_context(bs);
464 
465         /* Re-enable things in child-to-parent order */
466         aio_context_acquire(aio_context);
467         bdrv_drain_invoke(bs, false, true);
468         bdrv_parent_drained_end(bs, NULL);
469         aio_enable_external(aio_context);
470         aio_context_release(aio_context);
471     }
472 }
473 
474 void bdrv_drain_all(void)
475 {
476     bdrv_drain_all_begin();
477     bdrv_drain_all_end();
478 }
479 
480 /**
481  * Remove an active request from the tracked requests list
482  *
483  * This function should be called when a tracked request is completing.
484  */
485 static void tracked_request_end(BdrvTrackedRequest *req)
486 {
487     if (req->serialising) {
488         atomic_dec(&req->bs->serialising_in_flight);
489     }
490 
491     qemu_co_mutex_lock(&req->bs->reqs_lock);
492     QLIST_REMOVE(req, list);
493     qemu_co_queue_restart_all(&req->wait_queue);
494     qemu_co_mutex_unlock(&req->bs->reqs_lock);
495 }
496 
497 /**
498  * Add an active request to the tracked requests list
499  */
500 static void tracked_request_begin(BdrvTrackedRequest *req,
501                                   BlockDriverState *bs,
502                                   int64_t offset,
503                                   unsigned int bytes,
504                                   enum BdrvTrackedRequestType type)
505 {
506     *req = (BdrvTrackedRequest){
507         .bs = bs,
508         .offset         = offset,
509         .bytes          = bytes,
510         .type           = type,
511         .co             = qemu_coroutine_self(),
512         .serialising    = false,
513         .overlap_offset = offset,
514         .overlap_bytes  = bytes,
515     };
516 
517     qemu_co_queue_init(&req->wait_queue);
518 
519     qemu_co_mutex_lock(&bs->reqs_lock);
520     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
521     qemu_co_mutex_unlock(&bs->reqs_lock);
522 }
523 
524 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
525 {
526     int64_t overlap_offset = req->offset & ~(align - 1);
527     unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
528                                - overlap_offset;
529 
530     if (!req->serialising) {
531         atomic_inc(&req->bs->serialising_in_flight);
532         req->serialising = true;
533     }
534 
535     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
536     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
537 }
538 
539 /**
540  * Round a region to cluster boundaries
541  */
542 void bdrv_round_to_clusters(BlockDriverState *bs,
543                             int64_t offset, int64_t bytes,
544                             int64_t *cluster_offset,
545                             int64_t *cluster_bytes)
546 {
547     BlockDriverInfo bdi;
548 
549     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
550         *cluster_offset = offset;
551         *cluster_bytes = bytes;
552     } else {
553         int64_t c = bdi.cluster_size;
554         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
555         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
556     }
557 }
558 
559 static int bdrv_get_cluster_size(BlockDriverState *bs)
560 {
561     BlockDriverInfo bdi;
562     int ret;
563 
564     ret = bdrv_get_info(bs, &bdi);
565     if (ret < 0 || bdi.cluster_size == 0) {
566         return bs->bl.request_alignment;
567     } else {
568         return bdi.cluster_size;
569     }
570 }
571 
572 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
573                                      int64_t offset, unsigned int bytes)
574 {
575     /*        aaaa   bbbb */
576     if (offset >= req->overlap_offset + req->overlap_bytes) {
577         return false;
578     }
579     /* bbbb   aaaa        */
580     if (req->overlap_offset >= offset + bytes) {
581         return false;
582     }
583     return true;
584 }
585 
586 void bdrv_inc_in_flight(BlockDriverState *bs)
587 {
588     atomic_inc(&bs->in_flight);
589 }
590 
591 void bdrv_wakeup(BlockDriverState *bs)
592 {
593     aio_wait_kick(bdrv_get_aio_wait(bs));
594 }
595 
596 void bdrv_dec_in_flight(BlockDriverState *bs)
597 {
598     atomic_dec(&bs->in_flight);
599     bdrv_wakeup(bs);
600 }
601 
602 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
603 {
604     BlockDriverState *bs = self->bs;
605     BdrvTrackedRequest *req;
606     bool retry;
607     bool waited = false;
608 
609     if (!atomic_read(&bs->serialising_in_flight)) {
610         return false;
611     }
612 
613     do {
614         retry = false;
615         qemu_co_mutex_lock(&bs->reqs_lock);
616         QLIST_FOREACH(req, &bs->tracked_requests, list) {
617             if (req == self || (!req->serialising && !self->serialising)) {
618                 continue;
619             }
620             if (tracked_request_overlaps(req, self->overlap_offset,
621                                          self->overlap_bytes))
622             {
623                 /* Hitting this means there was a reentrant request, for
624                  * example, a block driver issuing nested requests.  This must
625                  * never happen since it means deadlock.
626                  */
627                 assert(qemu_coroutine_self() != req->co);
628 
629                 /* If the request is already (indirectly) waiting for us, or
630                  * will wait for us as soon as it wakes up, then just go on
631                  * (instead of producing a deadlock in the former case). */
632                 if (!req->waiting_for) {
633                     self->waiting_for = req;
634                     qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
635                     self->waiting_for = NULL;
636                     retry = true;
637                     waited = true;
638                     break;
639                 }
640             }
641         }
642         qemu_co_mutex_unlock(&bs->reqs_lock);
643     } while (retry);
644 
645     return waited;
646 }
647 
648 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
649                                    size_t size)
650 {
651     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
652         return -EIO;
653     }
654 
655     if (!bdrv_is_inserted(bs)) {
656         return -ENOMEDIUM;
657     }
658 
659     if (offset < 0) {
660         return -EIO;
661     }
662 
663     return 0;
664 }
665 
666 typedef struct RwCo {
667     BdrvChild *child;
668     int64_t offset;
669     QEMUIOVector *qiov;
670     bool is_write;
671     int ret;
672     BdrvRequestFlags flags;
673 } RwCo;
674 
675 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
676 {
677     RwCo *rwco = opaque;
678 
679     if (!rwco->is_write) {
680         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
681                                    rwco->qiov->size, rwco->qiov,
682                                    rwco->flags);
683     } else {
684         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
685                                     rwco->qiov->size, rwco->qiov,
686                                     rwco->flags);
687     }
688 }
689 
690 /*
691  * Process a vectored synchronous request using coroutines
692  */
693 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
694                         QEMUIOVector *qiov, bool is_write,
695                         BdrvRequestFlags flags)
696 {
697     Coroutine *co;
698     RwCo rwco = {
699         .child = child,
700         .offset = offset,
701         .qiov = qiov,
702         .is_write = is_write,
703         .ret = NOT_DONE,
704         .flags = flags,
705     };
706 
707     if (qemu_in_coroutine()) {
708         /* Fast-path if already in coroutine context */
709         bdrv_rw_co_entry(&rwco);
710     } else {
711         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
712         bdrv_coroutine_enter(child->bs, co);
713         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
714     }
715     return rwco.ret;
716 }
717 
718 /*
719  * Process a synchronous request using coroutines
720  */
721 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
722                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
723 {
724     QEMUIOVector qiov;
725     struct iovec iov = {
726         .iov_base = (void *)buf,
727         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
728     };
729 
730     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
731         return -EINVAL;
732     }
733 
734     qemu_iovec_init_external(&qiov, &iov, 1);
735     return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
736                         &qiov, is_write, flags);
737 }
738 
739 /* return < 0 if error. See bdrv_write() for the return codes */
740 int bdrv_read(BdrvChild *child, int64_t sector_num,
741               uint8_t *buf, int nb_sectors)
742 {
743     return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
744 }
745 
746 /* Return < 0 if error. Important errors are:
747   -EIO         generic I/O error (may happen for all errors)
748   -ENOMEDIUM   No media inserted.
749   -EINVAL      Invalid sector number or nb_sectors
750   -EACCES      Trying to write a read-only device
751 */
752 int bdrv_write(BdrvChild *child, int64_t sector_num,
753                const uint8_t *buf, int nb_sectors)
754 {
755     return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
756 }
757 
758 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
759                        int bytes, BdrvRequestFlags flags)
760 {
761     QEMUIOVector qiov;
762     struct iovec iov = {
763         .iov_base = NULL,
764         .iov_len = bytes,
765     };
766 
767     qemu_iovec_init_external(&qiov, &iov, 1);
768     return bdrv_prwv_co(child, offset, &qiov, true,
769                         BDRV_REQ_ZERO_WRITE | flags);
770 }
771 
772 /*
773  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
774  * The operation is sped up by checking the block status and only writing
775  * zeroes to the device if they currently do not return zeroes. Optional
776  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
777  * BDRV_REQ_FUA).
778  *
779  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
780  */
781 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
782 {
783     int ret;
784     int64_t target_size, bytes, offset = 0;
785     BlockDriverState *bs = child->bs;
786 
787     target_size = bdrv_getlength(bs);
788     if (target_size < 0) {
789         return target_size;
790     }
791 
792     for (;;) {
793         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
794         if (bytes <= 0) {
795             return 0;
796         }
797         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
798         if (ret < 0) {
799             error_report("error getting block status at offset %" PRId64 ": %s",
800                          offset, strerror(-ret));
801             return ret;
802         }
803         if (ret & BDRV_BLOCK_ZERO) {
804             offset += bytes;
805             continue;
806         }
807         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
808         if (ret < 0) {
809             error_report("error writing zeroes at offset %" PRId64 ": %s",
810                          offset, strerror(-ret));
811             return ret;
812         }
813         offset += bytes;
814     }
815 }
816 
817 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
818 {
819     int ret;
820 
821     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
822     if (ret < 0) {
823         return ret;
824     }
825 
826     return qiov->size;
827 }
828 
829 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
830 {
831     QEMUIOVector qiov;
832     struct iovec iov = {
833         .iov_base = (void *)buf,
834         .iov_len = bytes,
835     };
836 
837     if (bytes < 0) {
838         return -EINVAL;
839     }
840 
841     qemu_iovec_init_external(&qiov, &iov, 1);
842     return bdrv_preadv(child, offset, &qiov);
843 }
844 
845 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
846 {
847     int ret;
848 
849     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
850     if (ret < 0) {
851         return ret;
852     }
853 
854     return qiov->size;
855 }
856 
857 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
858 {
859     QEMUIOVector qiov;
860     struct iovec iov = {
861         .iov_base   = (void *) buf,
862         .iov_len    = bytes,
863     };
864 
865     if (bytes < 0) {
866         return -EINVAL;
867     }
868 
869     qemu_iovec_init_external(&qiov, &iov, 1);
870     return bdrv_pwritev(child, offset, &qiov);
871 }
872 
873 /*
874  * Writes to the file and ensures that no writes are reordered across this
875  * request (acts as a barrier)
876  *
877  * Returns 0 on success, -errno in error cases.
878  */
879 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
880                      const void *buf, int count)
881 {
882     int ret;
883 
884     ret = bdrv_pwrite(child, offset, buf, count);
885     if (ret < 0) {
886         return ret;
887     }
888 
889     ret = bdrv_flush(child->bs);
890     if (ret < 0) {
891         return ret;
892     }
893 
894     return 0;
895 }
896 
897 typedef struct CoroutineIOCompletion {
898     Coroutine *coroutine;
899     int ret;
900 } CoroutineIOCompletion;
901 
902 static void bdrv_co_io_em_complete(void *opaque, int ret)
903 {
904     CoroutineIOCompletion *co = opaque;
905 
906     co->ret = ret;
907     aio_co_wake(co->coroutine);
908 }
909 
910 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
911                                            uint64_t offset, uint64_t bytes,
912                                            QEMUIOVector *qiov, int flags)
913 {
914     BlockDriver *drv = bs->drv;
915     int64_t sector_num;
916     unsigned int nb_sectors;
917 
918     assert(!(flags & ~BDRV_REQ_MASK));
919 
920     if (!drv) {
921         return -ENOMEDIUM;
922     }
923 
924     if (drv->bdrv_co_preadv) {
925         return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
926     }
927 
928     sector_num = offset >> BDRV_SECTOR_BITS;
929     nb_sectors = bytes >> BDRV_SECTOR_BITS;
930 
931     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
932     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
933     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
934 
935     if (drv->bdrv_co_readv) {
936         return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
937     } else {
938         BlockAIOCB *acb;
939         CoroutineIOCompletion co = {
940             .coroutine = qemu_coroutine_self(),
941         };
942 
943         acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
944                                       bdrv_co_io_em_complete, &co);
945         if (acb == NULL) {
946             return -EIO;
947         } else {
948             qemu_coroutine_yield();
949             return co.ret;
950         }
951     }
952 }
953 
954 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
955                                             uint64_t offset, uint64_t bytes,
956                                             QEMUIOVector *qiov, int flags)
957 {
958     BlockDriver *drv = bs->drv;
959     int64_t sector_num;
960     unsigned int nb_sectors;
961     int ret;
962 
963     assert(!(flags & ~BDRV_REQ_MASK));
964 
965     if (!drv) {
966         return -ENOMEDIUM;
967     }
968 
969     if (drv->bdrv_co_pwritev) {
970         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
971                                    flags & bs->supported_write_flags);
972         flags &= ~bs->supported_write_flags;
973         goto emulate_flags;
974     }
975 
976     sector_num = offset >> BDRV_SECTOR_BITS;
977     nb_sectors = bytes >> BDRV_SECTOR_BITS;
978 
979     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
980     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
981     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
982 
983     if (drv->bdrv_co_writev_flags) {
984         ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
985                                         flags & bs->supported_write_flags);
986         flags &= ~bs->supported_write_flags;
987     } else if (drv->bdrv_co_writev) {
988         assert(!bs->supported_write_flags);
989         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
990     } else {
991         BlockAIOCB *acb;
992         CoroutineIOCompletion co = {
993             .coroutine = qemu_coroutine_self(),
994         };
995 
996         acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
997                                        bdrv_co_io_em_complete, &co);
998         if (acb == NULL) {
999             ret = -EIO;
1000         } else {
1001             qemu_coroutine_yield();
1002             ret = co.ret;
1003         }
1004     }
1005 
1006 emulate_flags:
1007     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1008         ret = bdrv_co_flush(bs);
1009     }
1010 
1011     return ret;
1012 }
1013 
1014 static int coroutine_fn
1015 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1016                                uint64_t bytes, QEMUIOVector *qiov)
1017 {
1018     BlockDriver *drv = bs->drv;
1019 
1020     if (!drv) {
1021         return -ENOMEDIUM;
1022     }
1023 
1024     if (!drv->bdrv_co_pwritev_compressed) {
1025         return -ENOTSUP;
1026     }
1027 
1028     return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1029 }
1030 
1031 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1032         int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
1033 {
1034     BlockDriverState *bs = child->bs;
1035 
1036     /* Perform I/O through a temporary buffer so that users who scribble over
1037      * their read buffer while the operation is in progress do not end up
1038      * modifying the image file.  This is critical for zero-copy guest I/O
1039      * where anything might happen inside guest memory.
1040      */
1041     void *bounce_buffer;
1042 
1043     BlockDriver *drv = bs->drv;
1044     struct iovec iov;
1045     QEMUIOVector local_qiov;
1046     int64_t cluster_offset;
1047     int64_t cluster_bytes;
1048     size_t skip_bytes;
1049     int ret;
1050     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1051                                     BDRV_REQUEST_MAX_BYTES);
1052     unsigned int progress = 0;
1053 
1054     if (!drv) {
1055         return -ENOMEDIUM;
1056     }
1057 
1058     /* FIXME We cannot require callers to have write permissions when all they
1059      * are doing is a read request. If we did things right, write permissions
1060      * would be obtained anyway, but internally by the copy-on-read code. As
1061      * long as it is implemented here rather than in a separate filter driver,
1062      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1063      * it could request permissions. Therefore we have to bypass the permission
1064      * system for the moment. */
1065     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1066 
1067     /* Cover entire cluster so no additional backing file I/O is required when
1068      * allocating cluster in the image file.  Note that this value may exceed
1069      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1070      * is one reason we loop rather than doing it all at once.
1071      */
1072     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1073     skip_bytes = offset - cluster_offset;
1074 
1075     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1076                                    cluster_offset, cluster_bytes);
1077 
1078     bounce_buffer = qemu_try_blockalign(bs,
1079                                         MIN(MIN(max_transfer, cluster_bytes),
1080                                             MAX_BOUNCE_BUFFER));
1081     if (bounce_buffer == NULL) {
1082         ret = -ENOMEM;
1083         goto err;
1084     }
1085 
1086     while (cluster_bytes) {
1087         int64_t pnum;
1088 
1089         ret = bdrv_is_allocated(bs, cluster_offset,
1090                                 MIN(cluster_bytes, max_transfer), &pnum);
1091         if (ret < 0) {
1092             /* Safe to treat errors in querying allocation as if
1093              * unallocated; we'll probably fail again soon on the
1094              * read, but at least that will set a decent errno.
1095              */
1096             pnum = MIN(cluster_bytes, max_transfer);
1097         }
1098 
1099         assert(skip_bytes < pnum);
1100 
1101         if (ret <= 0) {
1102             /* Must copy-on-read; use the bounce buffer */
1103             iov.iov_base = bounce_buffer;
1104             iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1105             qemu_iovec_init_external(&local_qiov, &iov, 1);
1106 
1107             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1108                                      &local_qiov, 0);
1109             if (ret < 0) {
1110                 goto err;
1111             }
1112 
1113             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1114             if (drv->bdrv_co_pwrite_zeroes &&
1115                 buffer_is_zero(bounce_buffer, pnum)) {
1116                 /* FIXME: Should we (perhaps conditionally) be setting
1117                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1118                  * that still correctly reads as zero? */
1119                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 0);
1120             } else {
1121                 /* This does not change the data on the disk, it is not
1122                  * necessary to flush even in cache=writethrough mode.
1123                  */
1124                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1125                                           &local_qiov, 0);
1126             }
1127 
1128             if (ret < 0) {
1129                 /* It might be okay to ignore write errors for guest
1130                  * requests.  If this is a deliberate copy-on-read
1131                  * then we don't want to ignore the error.  Simply
1132                  * report it in all cases.
1133                  */
1134                 goto err;
1135             }
1136 
1137             qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1138                                 pnum - skip_bytes);
1139         } else {
1140             /* Read directly into the destination */
1141             qemu_iovec_init(&local_qiov, qiov->niov);
1142             qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1143             ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1144                                      &local_qiov, 0);
1145             qemu_iovec_destroy(&local_qiov);
1146             if (ret < 0) {
1147                 goto err;
1148             }
1149         }
1150 
1151         cluster_offset += pnum;
1152         cluster_bytes -= pnum;
1153         progress += pnum - skip_bytes;
1154         skip_bytes = 0;
1155     }
1156     ret = 0;
1157 
1158 err:
1159     qemu_vfree(bounce_buffer);
1160     return ret;
1161 }
1162 
1163 /*
1164  * Forwards an already correctly aligned request to the BlockDriver. This
1165  * handles copy on read, zeroing after EOF, and fragmentation of large
1166  * reads; any other features must be implemented by the caller.
1167  */
1168 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1169     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1170     int64_t align, QEMUIOVector *qiov, int flags)
1171 {
1172     BlockDriverState *bs = child->bs;
1173     int64_t total_bytes, max_bytes;
1174     int ret = 0;
1175     uint64_t bytes_remaining = bytes;
1176     int max_transfer;
1177 
1178     assert(is_power_of_2(align));
1179     assert((offset & (align - 1)) == 0);
1180     assert((bytes & (align - 1)) == 0);
1181     assert(!qiov || bytes == qiov->size);
1182     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1183     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1184                                    align);
1185 
1186     /* TODO: We would need a per-BDS .supported_read_flags and
1187      * potential fallback support, if we ever implement any read flags
1188      * to pass through to drivers.  For now, there aren't any
1189      * passthrough flags.  */
1190     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1191 
1192     /* Handle Copy on Read and associated serialisation */
1193     if (flags & BDRV_REQ_COPY_ON_READ) {
1194         /* If we touch the same cluster it counts as an overlap.  This
1195          * guarantees that allocating writes will be serialized and not race
1196          * with each other for the same cluster.  For example, in copy-on-read
1197          * it ensures that the CoR read and write operations are atomic and
1198          * guest writes cannot interleave between them. */
1199         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1200     }
1201 
1202     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1203         wait_serialising_requests(req);
1204     }
1205 
1206     if (flags & BDRV_REQ_COPY_ON_READ) {
1207         int64_t pnum;
1208 
1209         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1210         if (ret < 0) {
1211             goto out;
1212         }
1213 
1214         if (!ret || pnum != bytes) {
1215             ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1216             goto out;
1217         }
1218     }
1219 
1220     /* Forward the request to the BlockDriver, possibly fragmenting it */
1221     total_bytes = bdrv_getlength(bs);
1222     if (total_bytes < 0) {
1223         ret = total_bytes;
1224         goto out;
1225     }
1226 
1227     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1228     if (bytes <= max_bytes && bytes <= max_transfer) {
1229         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1230         goto out;
1231     }
1232 
1233     while (bytes_remaining) {
1234         int num;
1235 
1236         if (max_bytes) {
1237             QEMUIOVector local_qiov;
1238 
1239             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1240             assert(num);
1241             qemu_iovec_init(&local_qiov, qiov->niov);
1242             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1243 
1244             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1245                                      num, &local_qiov, 0);
1246             max_bytes -= num;
1247             qemu_iovec_destroy(&local_qiov);
1248         } else {
1249             num = bytes_remaining;
1250             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1251                                     bytes_remaining);
1252         }
1253         if (ret < 0) {
1254             goto out;
1255         }
1256         bytes_remaining -= num;
1257     }
1258 
1259 out:
1260     return ret < 0 ? ret : 0;
1261 }
1262 
1263 /*
1264  * Handle a read request in coroutine context
1265  */
1266 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1267     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1268     BdrvRequestFlags flags)
1269 {
1270     BlockDriverState *bs = child->bs;
1271     BlockDriver *drv = bs->drv;
1272     BdrvTrackedRequest req;
1273 
1274     uint64_t align = bs->bl.request_alignment;
1275     uint8_t *head_buf = NULL;
1276     uint8_t *tail_buf = NULL;
1277     QEMUIOVector local_qiov;
1278     bool use_local_qiov = false;
1279     int ret;
1280 
1281     trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1282 
1283     if (!drv) {
1284         return -ENOMEDIUM;
1285     }
1286 
1287     ret = bdrv_check_byte_request(bs, offset, bytes);
1288     if (ret < 0) {
1289         return ret;
1290     }
1291 
1292     bdrv_inc_in_flight(bs);
1293 
1294     /* Don't do copy-on-read if we read data before write operation */
1295     if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1296         flags |= BDRV_REQ_COPY_ON_READ;
1297     }
1298 
1299     /* Align read if necessary by padding qiov */
1300     if (offset & (align - 1)) {
1301         head_buf = qemu_blockalign(bs, align);
1302         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1303         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1304         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1305         use_local_qiov = true;
1306 
1307         bytes += offset & (align - 1);
1308         offset = offset & ~(align - 1);
1309     }
1310 
1311     if ((offset + bytes) & (align - 1)) {
1312         if (!use_local_qiov) {
1313             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1314             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1315             use_local_qiov = true;
1316         }
1317         tail_buf = qemu_blockalign(bs, align);
1318         qemu_iovec_add(&local_qiov, tail_buf,
1319                        align - ((offset + bytes) & (align - 1)));
1320 
1321         bytes = ROUND_UP(bytes, align);
1322     }
1323 
1324     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1325     ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1326                               use_local_qiov ? &local_qiov : qiov,
1327                               flags);
1328     tracked_request_end(&req);
1329     bdrv_dec_in_flight(bs);
1330 
1331     if (use_local_qiov) {
1332         qemu_iovec_destroy(&local_qiov);
1333         qemu_vfree(head_buf);
1334         qemu_vfree(tail_buf);
1335     }
1336 
1337     return ret;
1338 }
1339 
1340 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1341     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1342     BdrvRequestFlags flags)
1343 {
1344     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1345         return -EINVAL;
1346     }
1347 
1348     return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1349                           nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1350 }
1351 
1352 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1353                                int nb_sectors, QEMUIOVector *qiov)
1354 {
1355     return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1356 }
1357 
1358 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1359     int64_t offset, int bytes, BdrvRequestFlags flags)
1360 {
1361     BlockDriver *drv = bs->drv;
1362     QEMUIOVector qiov;
1363     struct iovec iov = {0};
1364     int ret = 0;
1365     bool need_flush = false;
1366     int head = 0;
1367     int tail = 0;
1368 
1369     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1370     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1371                         bs->bl.request_alignment);
1372     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1373 
1374     if (!drv) {
1375         return -ENOMEDIUM;
1376     }
1377 
1378     assert(alignment % bs->bl.request_alignment == 0);
1379     head = offset % alignment;
1380     tail = (offset + bytes) % alignment;
1381     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1382     assert(max_write_zeroes >= bs->bl.request_alignment);
1383 
1384     while (bytes > 0 && !ret) {
1385         int num = bytes;
1386 
1387         /* Align request.  Block drivers can expect the "bulk" of the request
1388          * to be aligned, and that unaligned requests do not cross cluster
1389          * boundaries.
1390          */
1391         if (head) {
1392             /* Make a small request up to the first aligned sector. For
1393              * convenience, limit this request to max_transfer even if
1394              * we don't need to fall back to writes.  */
1395             num = MIN(MIN(bytes, max_transfer), alignment - head);
1396             head = (head + num) % alignment;
1397             assert(num < max_write_zeroes);
1398         } else if (tail && num > alignment) {
1399             /* Shorten the request to the last aligned sector.  */
1400             num -= tail;
1401         }
1402 
1403         /* limit request size */
1404         if (num > max_write_zeroes) {
1405             num = max_write_zeroes;
1406         }
1407 
1408         ret = -ENOTSUP;
1409         /* First try the efficient write zeroes operation */
1410         if (drv->bdrv_co_pwrite_zeroes) {
1411             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1412                                              flags & bs->supported_zero_flags);
1413             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1414                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1415                 need_flush = true;
1416             }
1417         } else {
1418             assert(!bs->supported_zero_flags);
1419         }
1420 
1421         if (ret == -ENOTSUP) {
1422             /* Fall back to bounce buffer if write zeroes is unsupported */
1423             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1424 
1425             if ((flags & BDRV_REQ_FUA) &&
1426                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1427                 /* No need for bdrv_driver_pwrite() to do a fallback
1428                  * flush on each chunk; use just one at the end */
1429                 write_flags &= ~BDRV_REQ_FUA;
1430                 need_flush = true;
1431             }
1432             num = MIN(num, max_transfer);
1433             iov.iov_len = num;
1434             if (iov.iov_base == NULL) {
1435                 iov.iov_base = qemu_try_blockalign(bs, num);
1436                 if (iov.iov_base == NULL) {
1437                     ret = -ENOMEM;
1438                     goto fail;
1439                 }
1440                 memset(iov.iov_base, 0, num);
1441             }
1442             qemu_iovec_init_external(&qiov, &iov, 1);
1443 
1444             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1445 
1446             /* Keep bounce buffer around if it is big enough for all
1447              * all future requests.
1448              */
1449             if (num < max_transfer) {
1450                 qemu_vfree(iov.iov_base);
1451                 iov.iov_base = NULL;
1452             }
1453         }
1454 
1455         offset += num;
1456         bytes -= num;
1457     }
1458 
1459 fail:
1460     if (ret == 0 && need_flush) {
1461         ret = bdrv_co_flush(bs);
1462     }
1463     qemu_vfree(iov.iov_base);
1464     return ret;
1465 }
1466 
1467 /*
1468  * Forwards an already correctly aligned write request to the BlockDriver,
1469  * after possibly fragmenting it.
1470  */
1471 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1472     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1473     int64_t align, QEMUIOVector *qiov, int flags)
1474 {
1475     BlockDriverState *bs = child->bs;
1476     BlockDriver *drv = bs->drv;
1477     bool waited;
1478     int ret;
1479 
1480     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1481     uint64_t bytes_remaining = bytes;
1482     int max_transfer;
1483 
1484     if (!drv) {
1485         return -ENOMEDIUM;
1486     }
1487 
1488     if (bdrv_has_readonly_bitmaps(bs)) {
1489         return -EPERM;
1490     }
1491 
1492     assert(is_power_of_2(align));
1493     assert((offset & (align - 1)) == 0);
1494     assert((bytes & (align - 1)) == 0);
1495     assert(!qiov || bytes == qiov->size);
1496     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1497     assert(!(flags & ~BDRV_REQ_MASK));
1498     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1499                                    align);
1500 
1501     waited = wait_serialising_requests(req);
1502     assert(!waited || !req->serialising);
1503     assert(req->overlap_offset <= offset);
1504     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1505     assert(child->perm & BLK_PERM_WRITE);
1506     assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1507 
1508     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1509 
1510     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1511         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1512         qemu_iovec_is_zero(qiov)) {
1513         flags |= BDRV_REQ_ZERO_WRITE;
1514         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1515             flags |= BDRV_REQ_MAY_UNMAP;
1516         }
1517     }
1518 
1519     if (ret < 0) {
1520         /* Do nothing, write notifier decided to fail this request */
1521     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1522         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1523         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1524     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1525         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1526     } else if (bytes <= max_transfer) {
1527         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1528         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1529     } else {
1530         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1531         while (bytes_remaining) {
1532             int num = MIN(bytes_remaining, max_transfer);
1533             QEMUIOVector local_qiov;
1534             int local_flags = flags;
1535 
1536             assert(num);
1537             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1538                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1539                 /* If FUA is going to be emulated by flush, we only
1540                  * need to flush on the last iteration */
1541                 local_flags &= ~BDRV_REQ_FUA;
1542             }
1543             qemu_iovec_init(&local_qiov, qiov->niov);
1544             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1545 
1546             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1547                                       num, &local_qiov, local_flags);
1548             qemu_iovec_destroy(&local_qiov);
1549             if (ret < 0) {
1550                 break;
1551             }
1552             bytes_remaining -= num;
1553         }
1554     }
1555     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1556 
1557     atomic_inc(&bs->write_gen);
1558     bdrv_set_dirty(bs, offset, bytes);
1559 
1560     stat64_max(&bs->wr_highest_offset, offset + bytes);
1561 
1562     if (ret >= 0) {
1563         bs->total_sectors = MAX(bs->total_sectors, end_sector);
1564         ret = 0;
1565     }
1566 
1567     return ret;
1568 }
1569 
1570 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1571                                                 int64_t offset,
1572                                                 unsigned int bytes,
1573                                                 BdrvRequestFlags flags,
1574                                                 BdrvTrackedRequest *req)
1575 {
1576     BlockDriverState *bs = child->bs;
1577     uint8_t *buf = NULL;
1578     QEMUIOVector local_qiov;
1579     struct iovec iov;
1580     uint64_t align = bs->bl.request_alignment;
1581     unsigned int head_padding_bytes, tail_padding_bytes;
1582     int ret = 0;
1583 
1584     head_padding_bytes = offset & (align - 1);
1585     tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1586 
1587 
1588     assert(flags & BDRV_REQ_ZERO_WRITE);
1589     if (head_padding_bytes || tail_padding_bytes) {
1590         buf = qemu_blockalign(bs, align);
1591         iov = (struct iovec) {
1592             .iov_base   = buf,
1593             .iov_len    = align,
1594         };
1595         qemu_iovec_init_external(&local_qiov, &iov, 1);
1596     }
1597     if (head_padding_bytes) {
1598         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1599 
1600         /* RMW the unaligned part before head. */
1601         mark_request_serialising(req, align);
1602         wait_serialising_requests(req);
1603         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1604         ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1605                                   align, &local_qiov, 0);
1606         if (ret < 0) {
1607             goto fail;
1608         }
1609         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1610 
1611         memset(buf + head_padding_bytes, 0, zero_bytes);
1612         ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1613                                    align, &local_qiov,
1614                                    flags & ~BDRV_REQ_ZERO_WRITE);
1615         if (ret < 0) {
1616             goto fail;
1617         }
1618         offset += zero_bytes;
1619         bytes -= zero_bytes;
1620     }
1621 
1622     assert(!bytes || (offset & (align - 1)) == 0);
1623     if (bytes >= align) {
1624         /* Write the aligned part in the middle. */
1625         uint64_t aligned_bytes = bytes & ~(align - 1);
1626         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1627                                    NULL, flags);
1628         if (ret < 0) {
1629             goto fail;
1630         }
1631         bytes -= aligned_bytes;
1632         offset += aligned_bytes;
1633     }
1634 
1635     assert(!bytes || (offset & (align - 1)) == 0);
1636     if (bytes) {
1637         assert(align == tail_padding_bytes + bytes);
1638         /* RMW the unaligned part after tail. */
1639         mark_request_serialising(req, align);
1640         wait_serialising_requests(req);
1641         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1642         ret = bdrv_aligned_preadv(child, req, offset, align,
1643                                   align, &local_qiov, 0);
1644         if (ret < 0) {
1645             goto fail;
1646         }
1647         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1648 
1649         memset(buf, 0, bytes);
1650         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1651                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1652     }
1653 fail:
1654     qemu_vfree(buf);
1655     return ret;
1656 
1657 }
1658 
1659 /*
1660  * Handle a write request in coroutine context
1661  */
1662 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1663     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1664     BdrvRequestFlags flags)
1665 {
1666     BlockDriverState *bs = child->bs;
1667     BdrvTrackedRequest req;
1668     uint64_t align = bs->bl.request_alignment;
1669     uint8_t *head_buf = NULL;
1670     uint8_t *tail_buf = NULL;
1671     QEMUIOVector local_qiov;
1672     bool use_local_qiov = false;
1673     int ret;
1674 
1675     trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1676 
1677     if (!bs->drv) {
1678         return -ENOMEDIUM;
1679     }
1680     if (bs->read_only) {
1681         return -EPERM;
1682     }
1683     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1684 
1685     ret = bdrv_check_byte_request(bs, offset, bytes);
1686     if (ret < 0) {
1687         return ret;
1688     }
1689 
1690     bdrv_inc_in_flight(bs);
1691     /*
1692      * Align write if necessary by performing a read-modify-write cycle.
1693      * Pad qiov with the read parts and be sure to have a tracked request not
1694      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1695      */
1696     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1697 
1698     if (flags & BDRV_REQ_ZERO_WRITE) {
1699         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1700         goto out;
1701     }
1702 
1703     if (offset & (align - 1)) {
1704         QEMUIOVector head_qiov;
1705         struct iovec head_iov;
1706 
1707         mark_request_serialising(&req, align);
1708         wait_serialising_requests(&req);
1709 
1710         head_buf = qemu_blockalign(bs, align);
1711         head_iov = (struct iovec) {
1712             .iov_base   = head_buf,
1713             .iov_len    = align,
1714         };
1715         qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1716 
1717         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1718         ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1719                                   align, &head_qiov, 0);
1720         if (ret < 0) {
1721             goto fail;
1722         }
1723         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1724 
1725         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1726         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1727         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1728         use_local_qiov = true;
1729 
1730         bytes += offset & (align - 1);
1731         offset = offset & ~(align - 1);
1732 
1733         /* We have read the tail already if the request is smaller
1734          * than one aligned block.
1735          */
1736         if (bytes < align) {
1737             qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1738             bytes = align;
1739         }
1740     }
1741 
1742     if ((offset + bytes) & (align - 1)) {
1743         QEMUIOVector tail_qiov;
1744         struct iovec tail_iov;
1745         size_t tail_bytes;
1746         bool waited;
1747 
1748         mark_request_serialising(&req, align);
1749         waited = wait_serialising_requests(&req);
1750         assert(!waited || !use_local_qiov);
1751 
1752         tail_buf = qemu_blockalign(bs, align);
1753         tail_iov = (struct iovec) {
1754             .iov_base   = tail_buf,
1755             .iov_len    = align,
1756         };
1757         qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1758 
1759         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1760         ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1761                                   align, align, &tail_qiov, 0);
1762         if (ret < 0) {
1763             goto fail;
1764         }
1765         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1766 
1767         if (!use_local_qiov) {
1768             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1769             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1770             use_local_qiov = true;
1771         }
1772 
1773         tail_bytes = (offset + bytes) & (align - 1);
1774         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1775 
1776         bytes = ROUND_UP(bytes, align);
1777     }
1778 
1779     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1780                                use_local_qiov ? &local_qiov : qiov,
1781                                flags);
1782 
1783 fail:
1784 
1785     if (use_local_qiov) {
1786         qemu_iovec_destroy(&local_qiov);
1787     }
1788     qemu_vfree(head_buf);
1789     qemu_vfree(tail_buf);
1790 out:
1791     tracked_request_end(&req);
1792     bdrv_dec_in_flight(bs);
1793     return ret;
1794 }
1795 
1796 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1797     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1798     BdrvRequestFlags flags)
1799 {
1800     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1801         return -EINVAL;
1802     }
1803 
1804     return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1805                            nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1806 }
1807 
1808 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1809     int nb_sectors, QEMUIOVector *qiov)
1810 {
1811     return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1812 }
1813 
1814 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1815                                        int bytes, BdrvRequestFlags flags)
1816 {
1817     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1818 
1819     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1820         flags &= ~BDRV_REQ_MAY_UNMAP;
1821     }
1822 
1823     return bdrv_co_pwritev(child, offset, bytes, NULL,
1824                            BDRV_REQ_ZERO_WRITE | flags);
1825 }
1826 
1827 /*
1828  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1829  */
1830 int bdrv_flush_all(void)
1831 {
1832     BdrvNextIterator it;
1833     BlockDriverState *bs = NULL;
1834     int result = 0;
1835 
1836     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1837         AioContext *aio_context = bdrv_get_aio_context(bs);
1838         int ret;
1839 
1840         aio_context_acquire(aio_context);
1841         ret = bdrv_flush(bs);
1842         if (ret < 0 && !result) {
1843             result = ret;
1844         }
1845         aio_context_release(aio_context);
1846     }
1847 
1848     return result;
1849 }
1850 
1851 
1852 typedef struct BdrvCoBlockStatusData {
1853     BlockDriverState *bs;
1854     BlockDriverState *base;
1855     bool want_zero;
1856     int64_t offset;
1857     int64_t bytes;
1858     int64_t *pnum;
1859     int64_t *map;
1860     BlockDriverState **file;
1861     int ret;
1862     bool done;
1863 } BdrvCoBlockStatusData;
1864 
1865 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
1866                                                 bool want_zero,
1867                                                 int64_t offset,
1868                                                 int64_t bytes,
1869                                                 int64_t *pnum,
1870                                                 int64_t *map,
1871                                                 BlockDriverState **file)
1872 {
1873     assert(bs->file && bs->file->bs);
1874     *pnum = bytes;
1875     *map = offset;
1876     *file = bs->file->bs;
1877     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1878 }
1879 
1880 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
1881                                                    bool want_zero,
1882                                                    int64_t offset,
1883                                                    int64_t bytes,
1884                                                    int64_t *pnum,
1885                                                    int64_t *map,
1886                                                    BlockDriverState **file)
1887 {
1888     assert(bs->backing && bs->backing->bs);
1889     *pnum = bytes;
1890     *map = offset;
1891     *file = bs->backing->bs;
1892     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1893 }
1894 
1895 /*
1896  * Returns the allocation status of the specified sectors.
1897  * Drivers not implementing the functionality are assumed to not support
1898  * backing files, hence all their sectors are reported as allocated.
1899  *
1900  * If 'want_zero' is true, the caller is querying for mapping
1901  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
1902  * _ZERO where possible; otherwise, the result favors larger 'pnum',
1903  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
1904  *
1905  * If 'offset' is beyond the end of the disk image the return value is
1906  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1907  *
1908  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
1909  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1910  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1911  *
1912  * 'pnum' is set to the number of bytes (including and immediately
1913  * following the specified offset) that are easily known to be in the
1914  * same allocated/unallocated state.  Note that a second call starting
1915  * at the original offset plus returned pnum may have the same status.
1916  * The returned value is non-zero on success except at end-of-file.
1917  *
1918  * Returns negative errno on failure.  Otherwise, if the
1919  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
1920  * set to the host mapping and BDS corresponding to the guest offset.
1921  */
1922 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
1923                                              bool want_zero,
1924                                              int64_t offset, int64_t bytes,
1925                                              int64_t *pnum, int64_t *map,
1926                                              BlockDriverState **file)
1927 {
1928     int64_t total_size;
1929     int64_t n; /* bytes */
1930     int ret;
1931     int64_t local_map = 0;
1932     BlockDriverState *local_file = NULL;
1933     int64_t aligned_offset, aligned_bytes;
1934     uint32_t align;
1935 
1936     assert(pnum);
1937     *pnum = 0;
1938     total_size = bdrv_getlength(bs);
1939     if (total_size < 0) {
1940         ret = total_size;
1941         goto early_out;
1942     }
1943 
1944     if (offset >= total_size) {
1945         ret = BDRV_BLOCK_EOF;
1946         goto early_out;
1947     }
1948     if (!bytes) {
1949         ret = 0;
1950         goto early_out;
1951     }
1952 
1953     n = total_size - offset;
1954     if (n < bytes) {
1955         bytes = n;
1956     }
1957 
1958     /* Must be non-NULL or bdrv_getlength() would have failed */
1959     assert(bs->drv);
1960     if (!bs->drv->bdrv_co_block_status) {
1961         *pnum = bytes;
1962         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1963         if (offset + bytes == total_size) {
1964             ret |= BDRV_BLOCK_EOF;
1965         }
1966         if (bs->drv->protocol_name) {
1967             ret |= BDRV_BLOCK_OFFSET_VALID;
1968             local_map = offset;
1969             local_file = bs;
1970         }
1971         goto early_out;
1972     }
1973 
1974     bdrv_inc_in_flight(bs);
1975 
1976     /* Round out to request_alignment boundaries */
1977     align = bs->bl.request_alignment;
1978     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
1979     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
1980 
1981     ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
1982                                         aligned_bytes, pnum, &local_map,
1983                                         &local_file);
1984     if (ret < 0) {
1985         *pnum = 0;
1986         goto out;
1987     }
1988 
1989     /*
1990      * The driver's result must be a non-zero multiple of request_alignment.
1991      * Clamp pnum and adjust map to original request.
1992      */
1993     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
1994            align > offset - aligned_offset);
1995     *pnum -= offset - aligned_offset;
1996     if (*pnum > bytes) {
1997         *pnum = bytes;
1998     }
1999     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2000         local_map += offset - aligned_offset;
2001     }
2002 
2003     if (ret & BDRV_BLOCK_RAW) {
2004         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2005         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2006                                    *pnum, pnum, &local_map, &local_file);
2007         goto out;
2008     }
2009 
2010     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2011         ret |= BDRV_BLOCK_ALLOCATED;
2012     } else if (want_zero) {
2013         if (bdrv_unallocated_blocks_are_zero(bs)) {
2014             ret |= BDRV_BLOCK_ZERO;
2015         } else if (bs->backing) {
2016             BlockDriverState *bs2 = bs->backing->bs;
2017             int64_t size2 = bdrv_getlength(bs2);
2018 
2019             if (size2 >= 0 && offset >= size2) {
2020                 ret |= BDRV_BLOCK_ZERO;
2021             }
2022         }
2023     }
2024 
2025     if (want_zero && local_file && local_file != bs &&
2026         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2027         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2028         int64_t file_pnum;
2029         int ret2;
2030 
2031         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2032                                     *pnum, &file_pnum, NULL, NULL);
2033         if (ret2 >= 0) {
2034             /* Ignore errors.  This is just providing extra information, it
2035              * is useful but not necessary.
2036              */
2037             if (ret2 & BDRV_BLOCK_EOF &&
2038                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2039                 /*
2040                  * It is valid for the format block driver to read
2041                  * beyond the end of the underlying file's current
2042                  * size; such areas read as zero.
2043                  */
2044                 ret |= BDRV_BLOCK_ZERO;
2045             } else {
2046                 /* Limit request to the range reported by the protocol driver */
2047                 *pnum = file_pnum;
2048                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2049             }
2050         }
2051     }
2052 
2053 out:
2054     bdrv_dec_in_flight(bs);
2055     if (ret >= 0 && offset + *pnum == total_size) {
2056         ret |= BDRV_BLOCK_EOF;
2057     }
2058 early_out:
2059     if (file) {
2060         *file = local_file;
2061     }
2062     if (map) {
2063         *map = local_map;
2064     }
2065     return ret;
2066 }
2067 
2068 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2069                                                    BlockDriverState *base,
2070                                                    bool want_zero,
2071                                                    int64_t offset,
2072                                                    int64_t bytes,
2073                                                    int64_t *pnum,
2074                                                    int64_t *map,
2075                                                    BlockDriverState **file)
2076 {
2077     BlockDriverState *p;
2078     int ret = 0;
2079     bool first = true;
2080 
2081     assert(bs != base);
2082     for (p = bs; p != base; p = backing_bs(p)) {
2083         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2084                                    file);
2085         if (ret < 0) {
2086             break;
2087         }
2088         if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2089             /*
2090              * Reading beyond the end of the file continues to read
2091              * zeroes, but we can only widen the result to the
2092              * unallocated length we learned from an earlier
2093              * iteration.
2094              */
2095             *pnum = bytes;
2096         }
2097         if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2098             break;
2099         }
2100         /* [offset, pnum] unallocated on this layer, which could be only
2101          * the first part of [offset, bytes].  */
2102         bytes = MIN(bytes, *pnum);
2103         first = false;
2104     }
2105     return ret;
2106 }
2107 
2108 /* Coroutine wrapper for bdrv_block_status_above() */
2109 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2110 {
2111     BdrvCoBlockStatusData *data = opaque;
2112 
2113     data->ret = bdrv_co_block_status_above(data->bs, data->base,
2114                                            data->want_zero,
2115                                            data->offset, data->bytes,
2116                                            data->pnum, data->map, data->file);
2117     data->done = true;
2118 }
2119 
2120 /*
2121  * Synchronous wrapper around bdrv_co_block_status_above().
2122  *
2123  * See bdrv_co_block_status_above() for details.
2124  */
2125 static int bdrv_common_block_status_above(BlockDriverState *bs,
2126                                           BlockDriverState *base,
2127                                           bool want_zero, int64_t offset,
2128                                           int64_t bytes, int64_t *pnum,
2129                                           int64_t *map,
2130                                           BlockDriverState **file)
2131 {
2132     Coroutine *co;
2133     BdrvCoBlockStatusData data = {
2134         .bs = bs,
2135         .base = base,
2136         .want_zero = want_zero,
2137         .offset = offset,
2138         .bytes = bytes,
2139         .pnum = pnum,
2140         .map = map,
2141         .file = file,
2142         .done = false,
2143     };
2144 
2145     if (qemu_in_coroutine()) {
2146         /* Fast-path if already in coroutine context */
2147         bdrv_block_status_above_co_entry(&data);
2148     } else {
2149         co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2150         bdrv_coroutine_enter(bs, co);
2151         BDRV_POLL_WHILE(bs, !data.done);
2152     }
2153     return data.ret;
2154 }
2155 
2156 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2157                             int64_t offset, int64_t bytes, int64_t *pnum,
2158                             int64_t *map, BlockDriverState **file)
2159 {
2160     return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2161                                           pnum, map, file);
2162 }
2163 
2164 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2165                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2166 {
2167     return bdrv_block_status_above(bs, backing_bs(bs),
2168                                    offset, bytes, pnum, map, file);
2169 }
2170 
2171 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2172                                    int64_t bytes, int64_t *pnum)
2173 {
2174     int ret;
2175     int64_t dummy;
2176 
2177     ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2178                                          bytes, pnum ? pnum : &dummy, NULL,
2179                                          NULL);
2180     if (ret < 0) {
2181         return ret;
2182     }
2183     return !!(ret & BDRV_BLOCK_ALLOCATED);
2184 }
2185 
2186 /*
2187  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2188  *
2189  * Return true if (a prefix of) the given range is allocated in any image
2190  * between BASE and TOP (inclusive).  BASE can be NULL to check if the given
2191  * offset is allocated in any image of the chain.  Return false otherwise,
2192  * or negative errno on failure.
2193  *
2194  * 'pnum' is set to the number of bytes (including and immediately
2195  * following the specified offset) that are known to be in the same
2196  * allocated/unallocated state.  Note that a subsequent call starting
2197  * at 'offset + *pnum' may return the same allocation status (in other
2198  * words, the result is not necessarily the maximum possible range);
2199  * but 'pnum' will only be 0 when end of file is reached.
2200  *
2201  */
2202 int bdrv_is_allocated_above(BlockDriverState *top,
2203                             BlockDriverState *base,
2204                             int64_t offset, int64_t bytes, int64_t *pnum)
2205 {
2206     BlockDriverState *intermediate;
2207     int ret;
2208     int64_t n = bytes;
2209 
2210     intermediate = top;
2211     while (intermediate && intermediate != base) {
2212         int64_t pnum_inter;
2213         int64_t size_inter;
2214 
2215         ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2216         if (ret < 0) {
2217             return ret;
2218         }
2219         if (ret) {
2220             *pnum = pnum_inter;
2221             return 1;
2222         }
2223 
2224         size_inter = bdrv_getlength(intermediate);
2225         if (size_inter < 0) {
2226             return size_inter;
2227         }
2228         if (n > pnum_inter &&
2229             (intermediate == top || offset + pnum_inter < size_inter)) {
2230             n = pnum_inter;
2231         }
2232 
2233         intermediate = backing_bs(intermediate);
2234     }
2235 
2236     *pnum = n;
2237     return 0;
2238 }
2239 
2240 typedef struct BdrvVmstateCo {
2241     BlockDriverState    *bs;
2242     QEMUIOVector        *qiov;
2243     int64_t             pos;
2244     bool                is_read;
2245     int                 ret;
2246 } BdrvVmstateCo;
2247 
2248 static int coroutine_fn
2249 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2250                    bool is_read)
2251 {
2252     BlockDriver *drv = bs->drv;
2253     int ret = -ENOTSUP;
2254 
2255     bdrv_inc_in_flight(bs);
2256 
2257     if (!drv) {
2258         ret = -ENOMEDIUM;
2259     } else if (drv->bdrv_load_vmstate) {
2260         if (is_read) {
2261             ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2262         } else {
2263             ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2264         }
2265     } else if (bs->file) {
2266         ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2267     }
2268 
2269     bdrv_dec_in_flight(bs);
2270     return ret;
2271 }
2272 
2273 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2274 {
2275     BdrvVmstateCo *co = opaque;
2276     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2277 }
2278 
2279 static inline int
2280 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2281                 bool is_read)
2282 {
2283     if (qemu_in_coroutine()) {
2284         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2285     } else {
2286         BdrvVmstateCo data = {
2287             .bs         = bs,
2288             .qiov       = qiov,
2289             .pos        = pos,
2290             .is_read    = is_read,
2291             .ret        = -EINPROGRESS,
2292         };
2293         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2294 
2295         bdrv_coroutine_enter(bs, co);
2296         BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2297         return data.ret;
2298     }
2299 }
2300 
2301 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2302                       int64_t pos, int size)
2303 {
2304     QEMUIOVector qiov;
2305     struct iovec iov = {
2306         .iov_base   = (void *) buf,
2307         .iov_len    = size,
2308     };
2309     int ret;
2310 
2311     qemu_iovec_init_external(&qiov, &iov, 1);
2312 
2313     ret = bdrv_writev_vmstate(bs, &qiov, pos);
2314     if (ret < 0) {
2315         return ret;
2316     }
2317 
2318     return size;
2319 }
2320 
2321 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2322 {
2323     return bdrv_rw_vmstate(bs, qiov, pos, false);
2324 }
2325 
2326 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2327                       int64_t pos, int size)
2328 {
2329     QEMUIOVector qiov;
2330     struct iovec iov = {
2331         .iov_base   = buf,
2332         .iov_len    = size,
2333     };
2334     int ret;
2335 
2336     qemu_iovec_init_external(&qiov, &iov, 1);
2337     ret = bdrv_readv_vmstate(bs, &qiov, pos);
2338     if (ret < 0) {
2339         return ret;
2340     }
2341 
2342     return size;
2343 }
2344 
2345 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2346 {
2347     return bdrv_rw_vmstate(bs, qiov, pos, true);
2348 }
2349 
2350 /**************************************************************/
2351 /* async I/Os */
2352 
2353 void bdrv_aio_cancel(BlockAIOCB *acb)
2354 {
2355     qemu_aio_ref(acb);
2356     bdrv_aio_cancel_async(acb);
2357     while (acb->refcnt > 1) {
2358         if (acb->aiocb_info->get_aio_context) {
2359             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2360         } else if (acb->bs) {
2361             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2362              * assert that we're not using an I/O thread.  Thread-safe
2363              * code should use bdrv_aio_cancel_async exclusively.
2364              */
2365             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2366             aio_poll(bdrv_get_aio_context(acb->bs), true);
2367         } else {
2368             abort();
2369         }
2370     }
2371     qemu_aio_unref(acb);
2372 }
2373 
2374 /* Async version of aio cancel. The caller is not blocked if the acb implements
2375  * cancel_async, otherwise we do nothing and let the request normally complete.
2376  * In either case the completion callback must be called. */
2377 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2378 {
2379     if (acb->aiocb_info->cancel_async) {
2380         acb->aiocb_info->cancel_async(acb);
2381     }
2382 }
2383 
2384 /**************************************************************/
2385 /* Coroutine block device emulation */
2386 
2387 typedef struct FlushCo {
2388     BlockDriverState *bs;
2389     int ret;
2390 } FlushCo;
2391 
2392 
2393 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2394 {
2395     FlushCo *rwco = opaque;
2396 
2397     rwco->ret = bdrv_co_flush(rwco->bs);
2398 }
2399 
2400 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2401 {
2402     int current_gen;
2403     int ret = 0;
2404 
2405     bdrv_inc_in_flight(bs);
2406 
2407     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2408         bdrv_is_sg(bs)) {
2409         goto early_exit;
2410     }
2411 
2412     qemu_co_mutex_lock(&bs->reqs_lock);
2413     current_gen = atomic_read(&bs->write_gen);
2414 
2415     /* Wait until any previous flushes are completed */
2416     while (bs->active_flush_req) {
2417         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2418     }
2419 
2420     /* Flushes reach this point in nondecreasing current_gen order.  */
2421     bs->active_flush_req = true;
2422     qemu_co_mutex_unlock(&bs->reqs_lock);
2423 
2424     /* Write back all layers by calling one driver function */
2425     if (bs->drv->bdrv_co_flush) {
2426         ret = bs->drv->bdrv_co_flush(bs);
2427         goto out;
2428     }
2429 
2430     /* Write back cached data to the OS even with cache=unsafe */
2431     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2432     if (bs->drv->bdrv_co_flush_to_os) {
2433         ret = bs->drv->bdrv_co_flush_to_os(bs);
2434         if (ret < 0) {
2435             goto out;
2436         }
2437     }
2438 
2439     /* But don't actually force it to the disk with cache=unsafe */
2440     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2441         goto flush_parent;
2442     }
2443 
2444     /* Check if we really need to flush anything */
2445     if (bs->flushed_gen == current_gen) {
2446         goto flush_parent;
2447     }
2448 
2449     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2450     if (!bs->drv) {
2451         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2452          * (even in case of apparent success) */
2453         ret = -ENOMEDIUM;
2454         goto out;
2455     }
2456     if (bs->drv->bdrv_co_flush_to_disk) {
2457         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2458     } else if (bs->drv->bdrv_aio_flush) {
2459         BlockAIOCB *acb;
2460         CoroutineIOCompletion co = {
2461             .coroutine = qemu_coroutine_self(),
2462         };
2463 
2464         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2465         if (acb == NULL) {
2466             ret = -EIO;
2467         } else {
2468             qemu_coroutine_yield();
2469             ret = co.ret;
2470         }
2471     } else {
2472         /*
2473          * Some block drivers always operate in either writethrough or unsafe
2474          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2475          * know how the server works (because the behaviour is hardcoded or
2476          * depends on server-side configuration), so we can't ensure that
2477          * everything is safe on disk. Returning an error doesn't work because
2478          * that would break guests even if the server operates in writethrough
2479          * mode.
2480          *
2481          * Let's hope the user knows what he's doing.
2482          */
2483         ret = 0;
2484     }
2485 
2486     if (ret < 0) {
2487         goto out;
2488     }
2489 
2490     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2491      * in the case of cache=unsafe, so there are no useless flushes.
2492      */
2493 flush_parent:
2494     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2495 out:
2496     /* Notify any pending flushes that we have completed */
2497     if (ret == 0) {
2498         bs->flushed_gen = current_gen;
2499     }
2500 
2501     qemu_co_mutex_lock(&bs->reqs_lock);
2502     bs->active_flush_req = false;
2503     /* Return value is ignored - it's ok if wait queue is empty */
2504     qemu_co_queue_next(&bs->flush_queue);
2505     qemu_co_mutex_unlock(&bs->reqs_lock);
2506 
2507 early_exit:
2508     bdrv_dec_in_flight(bs);
2509     return ret;
2510 }
2511 
2512 int bdrv_flush(BlockDriverState *bs)
2513 {
2514     Coroutine *co;
2515     FlushCo flush_co = {
2516         .bs = bs,
2517         .ret = NOT_DONE,
2518     };
2519 
2520     if (qemu_in_coroutine()) {
2521         /* Fast-path if already in coroutine context */
2522         bdrv_flush_co_entry(&flush_co);
2523     } else {
2524         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2525         bdrv_coroutine_enter(bs, co);
2526         BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2527     }
2528 
2529     return flush_co.ret;
2530 }
2531 
2532 typedef struct DiscardCo {
2533     BlockDriverState *bs;
2534     int64_t offset;
2535     int bytes;
2536     int ret;
2537 } DiscardCo;
2538 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2539 {
2540     DiscardCo *rwco = opaque;
2541 
2542     rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2543 }
2544 
2545 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2546                                   int bytes)
2547 {
2548     BdrvTrackedRequest req;
2549     int max_pdiscard, ret;
2550     int head, tail, align;
2551 
2552     if (!bs->drv) {
2553         return -ENOMEDIUM;
2554     }
2555 
2556     if (bdrv_has_readonly_bitmaps(bs)) {
2557         return -EPERM;
2558     }
2559 
2560     ret = bdrv_check_byte_request(bs, offset, bytes);
2561     if (ret < 0) {
2562         return ret;
2563     } else if (bs->read_only) {
2564         return -EPERM;
2565     }
2566     assert(!(bs->open_flags & BDRV_O_INACTIVE));
2567 
2568     /* Do nothing if disabled.  */
2569     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2570         return 0;
2571     }
2572 
2573     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2574         return 0;
2575     }
2576 
2577     /* Discard is advisory, but some devices track and coalesce
2578      * unaligned requests, so we must pass everything down rather than
2579      * round here.  Still, most devices will just silently ignore
2580      * unaligned requests (by returning -ENOTSUP), so we must fragment
2581      * the request accordingly.  */
2582     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2583     assert(align % bs->bl.request_alignment == 0);
2584     head = offset % align;
2585     tail = (offset + bytes) % align;
2586 
2587     bdrv_inc_in_flight(bs);
2588     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2589 
2590     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2591     if (ret < 0) {
2592         goto out;
2593     }
2594 
2595     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2596                                    align);
2597     assert(max_pdiscard >= bs->bl.request_alignment);
2598 
2599     while (bytes > 0) {
2600         int num = bytes;
2601 
2602         if (head) {
2603             /* Make small requests to get to alignment boundaries. */
2604             num = MIN(bytes, align - head);
2605             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2606                 num %= bs->bl.request_alignment;
2607             }
2608             head = (head + num) % align;
2609             assert(num < max_pdiscard);
2610         } else if (tail) {
2611             if (num > align) {
2612                 /* Shorten the request to the last aligned cluster.  */
2613                 num -= tail;
2614             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2615                        tail > bs->bl.request_alignment) {
2616                 tail %= bs->bl.request_alignment;
2617                 num -= tail;
2618             }
2619         }
2620         /* limit request size */
2621         if (num > max_pdiscard) {
2622             num = max_pdiscard;
2623         }
2624 
2625         if (!bs->drv) {
2626             ret = -ENOMEDIUM;
2627             goto out;
2628         }
2629         if (bs->drv->bdrv_co_pdiscard) {
2630             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2631         } else {
2632             BlockAIOCB *acb;
2633             CoroutineIOCompletion co = {
2634                 .coroutine = qemu_coroutine_self(),
2635             };
2636 
2637             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2638                                              bdrv_co_io_em_complete, &co);
2639             if (acb == NULL) {
2640                 ret = -EIO;
2641                 goto out;
2642             } else {
2643                 qemu_coroutine_yield();
2644                 ret = co.ret;
2645             }
2646         }
2647         if (ret && ret != -ENOTSUP) {
2648             goto out;
2649         }
2650 
2651         offset += num;
2652         bytes -= num;
2653     }
2654     ret = 0;
2655 out:
2656     atomic_inc(&bs->write_gen);
2657     bdrv_set_dirty(bs, req.offset, req.bytes);
2658     tracked_request_end(&req);
2659     bdrv_dec_in_flight(bs);
2660     return ret;
2661 }
2662 
2663 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2664 {
2665     Coroutine *co;
2666     DiscardCo rwco = {
2667         .bs = bs,
2668         .offset = offset,
2669         .bytes = bytes,
2670         .ret = NOT_DONE,
2671     };
2672 
2673     if (qemu_in_coroutine()) {
2674         /* Fast-path if already in coroutine context */
2675         bdrv_pdiscard_co_entry(&rwco);
2676     } else {
2677         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2678         bdrv_coroutine_enter(bs, co);
2679         BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2680     }
2681 
2682     return rwco.ret;
2683 }
2684 
2685 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2686 {
2687     BlockDriver *drv = bs->drv;
2688     CoroutineIOCompletion co = {
2689         .coroutine = qemu_coroutine_self(),
2690     };
2691     BlockAIOCB *acb;
2692 
2693     bdrv_inc_in_flight(bs);
2694     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2695         co.ret = -ENOTSUP;
2696         goto out;
2697     }
2698 
2699     if (drv->bdrv_co_ioctl) {
2700         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2701     } else {
2702         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2703         if (!acb) {
2704             co.ret = -ENOTSUP;
2705             goto out;
2706         }
2707         qemu_coroutine_yield();
2708     }
2709 out:
2710     bdrv_dec_in_flight(bs);
2711     return co.ret;
2712 }
2713 
2714 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2715 {
2716     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2717 }
2718 
2719 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2720 {
2721     return memset(qemu_blockalign(bs, size), 0, size);
2722 }
2723 
2724 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2725 {
2726     size_t align = bdrv_opt_mem_align(bs);
2727 
2728     /* Ensure that NULL is never returned on success */
2729     assert(align > 0);
2730     if (size == 0) {
2731         size = align;
2732     }
2733 
2734     return qemu_try_memalign(align, size);
2735 }
2736 
2737 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2738 {
2739     void *mem = qemu_try_blockalign(bs, size);
2740 
2741     if (mem) {
2742         memset(mem, 0, size);
2743     }
2744 
2745     return mem;
2746 }
2747 
2748 /*
2749  * Check if all memory in this vector is sector aligned.
2750  */
2751 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2752 {
2753     int i;
2754     size_t alignment = bdrv_min_mem_align(bs);
2755 
2756     for (i = 0; i < qiov->niov; i++) {
2757         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2758             return false;
2759         }
2760         if (qiov->iov[i].iov_len % alignment) {
2761             return false;
2762         }
2763     }
2764 
2765     return true;
2766 }
2767 
2768 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2769                                     NotifierWithReturn *notifier)
2770 {
2771     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2772 }
2773 
2774 void bdrv_io_plug(BlockDriverState *bs)
2775 {
2776     BdrvChild *child;
2777 
2778     QLIST_FOREACH(child, &bs->children, next) {
2779         bdrv_io_plug(child->bs);
2780     }
2781 
2782     if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2783         BlockDriver *drv = bs->drv;
2784         if (drv && drv->bdrv_io_plug) {
2785             drv->bdrv_io_plug(bs);
2786         }
2787     }
2788 }
2789 
2790 void bdrv_io_unplug(BlockDriverState *bs)
2791 {
2792     BdrvChild *child;
2793 
2794     assert(bs->io_plugged);
2795     if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2796         BlockDriver *drv = bs->drv;
2797         if (drv && drv->bdrv_io_unplug) {
2798             drv->bdrv_io_unplug(bs);
2799         }
2800     }
2801 
2802     QLIST_FOREACH(child, &bs->children, next) {
2803         bdrv_io_unplug(child->bs);
2804     }
2805 }
2806 
2807 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2808 {
2809     BdrvChild *child;
2810 
2811     if (bs->drv && bs->drv->bdrv_register_buf) {
2812         bs->drv->bdrv_register_buf(bs, host, size);
2813     }
2814     QLIST_FOREACH(child, &bs->children, next) {
2815         bdrv_register_buf(child->bs, host, size);
2816     }
2817 }
2818 
2819 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2820 {
2821     BdrvChild *child;
2822 
2823     if (bs->drv && bs->drv->bdrv_unregister_buf) {
2824         bs->drv->bdrv_unregister_buf(bs, host);
2825     }
2826     QLIST_FOREACH(child, &bs->children, next) {
2827         bdrv_unregister_buf(child->bs, host);
2828     }
2829 }
2830