xref: /openbmc/qemu/block/io.c (revision c6bd8c70)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "trace.h"
26 #include "block/blockjob.h"
27 #include "block/block_int.h"
28 #include "block/throttle-groups.h"
29 
30 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
31 
32 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
33         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
34         BlockCompletionFunc *cb, void *opaque);
35 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
36         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
37         BlockCompletionFunc *cb, void *opaque);
38 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
39                                          int64_t sector_num, int nb_sectors,
40                                          QEMUIOVector *iov);
41 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
42                                          int64_t sector_num, int nb_sectors,
43                                          QEMUIOVector *iov);
44 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
45     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
46     BdrvRequestFlags flags);
47 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
48     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
49     BdrvRequestFlags flags);
50 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
51                                          int64_t sector_num,
52                                          QEMUIOVector *qiov,
53                                          int nb_sectors,
54                                          BdrvRequestFlags flags,
55                                          BlockCompletionFunc *cb,
56                                          void *opaque,
57                                          bool is_write);
58 static void coroutine_fn bdrv_co_do_rw(void *opaque);
59 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
60     int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
61 
62 /* throttling disk I/O limits */
63 void bdrv_set_io_limits(BlockDriverState *bs,
64                         ThrottleConfig *cfg)
65 {
66     int i;
67 
68     throttle_group_config(bs, cfg);
69 
70     for (i = 0; i < 2; i++) {
71         qemu_co_enter_next(&bs->throttled_reqs[i]);
72     }
73 }
74 
75 /* this function drain all the throttled IOs */
76 static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
77 {
78     bool drained = false;
79     bool enabled = bs->io_limits_enabled;
80     int i;
81 
82     bs->io_limits_enabled = false;
83 
84     for (i = 0; i < 2; i++) {
85         while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
86             drained = true;
87         }
88     }
89 
90     bs->io_limits_enabled = enabled;
91 
92     return drained;
93 }
94 
95 void bdrv_io_limits_disable(BlockDriverState *bs)
96 {
97     bs->io_limits_enabled = false;
98     bdrv_start_throttled_reqs(bs);
99     throttle_group_unregister_bs(bs);
100 }
101 
102 /* should be called before bdrv_set_io_limits if a limit is set */
103 void bdrv_io_limits_enable(BlockDriverState *bs, const char *group)
104 {
105     assert(!bs->io_limits_enabled);
106     throttle_group_register_bs(bs, group);
107     bs->io_limits_enabled = true;
108 }
109 
110 void bdrv_io_limits_update_group(BlockDriverState *bs, const char *group)
111 {
112     /* this bs is not part of any group */
113     if (!bs->throttle_state) {
114         return;
115     }
116 
117     /* this bs is a part of the same group than the one we want */
118     if (!g_strcmp0(throttle_group_get_name(bs), group)) {
119         return;
120     }
121 
122     /* need to change the group this bs belong to */
123     bdrv_io_limits_disable(bs);
124     bdrv_io_limits_enable(bs, group);
125 }
126 
127 void bdrv_setup_io_funcs(BlockDriver *bdrv)
128 {
129     /* Block drivers without coroutine functions need emulation */
130     if (!bdrv->bdrv_co_readv) {
131         bdrv->bdrv_co_readv = bdrv_co_readv_em;
132         bdrv->bdrv_co_writev = bdrv_co_writev_em;
133 
134         /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
135          * the block driver lacks aio we need to emulate that too.
136          */
137         if (!bdrv->bdrv_aio_readv) {
138             /* add AIO emulation layer */
139             bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
140             bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
141         }
142     }
143 }
144 
145 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
146 {
147     BlockDriver *drv = bs->drv;
148     Error *local_err = NULL;
149 
150     memset(&bs->bl, 0, sizeof(bs->bl));
151 
152     if (!drv) {
153         return;
154     }
155 
156     /* Take some limits from the children as a default */
157     if (bs->file) {
158         bdrv_refresh_limits(bs->file, &local_err);
159         if (local_err) {
160             error_propagate(errp, local_err);
161             return;
162         }
163         bs->bl.opt_transfer_length = bs->file->bl.opt_transfer_length;
164         bs->bl.max_transfer_length = bs->file->bl.max_transfer_length;
165         bs->bl.min_mem_alignment = bs->file->bl.min_mem_alignment;
166         bs->bl.opt_mem_alignment = bs->file->bl.opt_mem_alignment;
167     } else {
168         bs->bl.min_mem_alignment = 512;
169         bs->bl.opt_mem_alignment = getpagesize();
170     }
171 
172     if (bs->backing_hd) {
173         bdrv_refresh_limits(bs->backing_hd, &local_err);
174         if (local_err) {
175             error_propagate(errp, local_err);
176             return;
177         }
178         bs->bl.opt_transfer_length =
179             MAX(bs->bl.opt_transfer_length,
180                 bs->backing_hd->bl.opt_transfer_length);
181         bs->bl.max_transfer_length =
182             MIN_NON_ZERO(bs->bl.max_transfer_length,
183                          bs->backing_hd->bl.max_transfer_length);
184         bs->bl.opt_mem_alignment =
185             MAX(bs->bl.opt_mem_alignment,
186                 bs->backing_hd->bl.opt_mem_alignment);
187         bs->bl.min_mem_alignment =
188             MAX(bs->bl.min_mem_alignment,
189                 bs->backing_hd->bl.min_mem_alignment);
190     }
191 
192     /* Then let the driver override it */
193     if (drv->bdrv_refresh_limits) {
194         drv->bdrv_refresh_limits(bs, errp);
195     }
196 }
197 
198 /**
199  * The copy-on-read flag is actually a reference count so multiple users may
200  * use the feature without worrying about clobbering its previous state.
201  * Copy-on-read stays enabled until all users have called to disable it.
202  */
203 void bdrv_enable_copy_on_read(BlockDriverState *bs)
204 {
205     bs->copy_on_read++;
206 }
207 
208 void bdrv_disable_copy_on_read(BlockDriverState *bs)
209 {
210     assert(bs->copy_on_read > 0);
211     bs->copy_on_read--;
212 }
213 
214 /* Check if any requests are in-flight (including throttled requests) */
215 static bool bdrv_requests_pending(BlockDriverState *bs)
216 {
217     if (!QLIST_EMPTY(&bs->tracked_requests)) {
218         return true;
219     }
220     if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
221         return true;
222     }
223     if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
224         return true;
225     }
226     if (bs->file && bdrv_requests_pending(bs->file)) {
227         return true;
228     }
229     if (bs->backing_hd && bdrv_requests_pending(bs->backing_hd)) {
230         return true;
231     }
232     return false;
233 }
234 
235 static bool bdrv_drain_one(BlockDriverState *bs)
236 {
237     bool bs_busy;
238 
239     bdrv_flush_io_queue(bs);
240     bdrv_start_throttled_reqs(bs);
241     bs_busy = bdrv_requests_pending(bs);
242     bs_busy |= aio_poll(bdrv_get_aio_context(bs), bs_busy);
243     return bs_busy;
244 }
245 
246 /*
247  * Wait for pending requests to complete on a single BlockDriverState subtree
248  *
249  * See the warning in bdrv_drain_all().  This function can only be called if
250  * you are sure nothing can generate I/O because you have op blockers
251  * installed.
252  *
253  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
254  * AioContext.
255  */
256 void bdrv_drain(BlockDriverState *bs)
257 {
258     while (bdrv_drain_one(bs)) {
259         /* Keep iterating */
260     }
261 }
262 
263 /*
264  * Wait for pending requests to complete across all BlockDriverStates
265  *
266  * This function does not flush data to disk, use bdrv_flush_all() for that
267  * after calling this function.
268  *
269  * Note that completion of an asynchronous I/O operation can trigger any
270  * number of other I/O operations on other devices---for example a coroutine
271  * can be arbitrarily complex and a constant flow of I/O can come until the
272  * coroutine is complete.  Because of this, it is not possible to have a
273  * function to drain a single device's I/O queue.
274  */
275 void bdrv_drain_all(void)
276 {
277     /* Always run first iteration so any pending completion BHs run */
278     bool busy = true;
279     BlockDriverState *bs = NULL;
280 
281     while ((bs = bdrv_next(bs))) {
282         AioContext *aio_context = bdrv_get_aio_context(bs);
283 
284         aio_context_acquire(aio_context);
285         if (bs->job) {
286             block_job_pause(bs->job);
287         }
288         aio_context_release(aio_context);
289     }
290 
291     while (busy) {
292         busy = false;
293         bs = NULL;
294 
295         while ((bs = bdrv_next(bs))) {
296             AioContext *aio_context = bdrv_get_aio_context(bs);
297 
298             aio_context_acquire(aio_context);
299             busy |= bdrv_drain_one(bs);
300             aio_context_release(aio_context);
301         }
302     }
303 
304     bs = NULL;
305     while ((bs = bdrv_next(bs))) {
306         AioContext *aio_context = bdrv_get_aio_context(bs);
307 
308         aio_context_acquire(aio_context);
309         if (bs->job) {
310             block_job_resume(bs->job);
311         }
312         aio_context_release(aio_context);
313     }
314 }
315 
316 /**
317  * Remove an active request from the tracked requests list
318  *
319  * This function should be called when a tracked request is completing.
320  */
321 static void tracked_request_end(BdrvTrackedRequest *req)
322 {
323     if (req->serialising) {
324         req->bs->serialising_in_flight--;
325     }
326 
327     QLIST_REMOVE(req, list);
328     qemu_co_queue_restart_all(&req->wait_queue);
329 }
330 
331 /**
332  * Add an active request to the tracked requests list
333  */
334 static void tracked_request_begin(BdrvTrackedRequest *req,
335                                   BlockDriverState *bs,
336                                   int64_t offset,
337                                   unsigned int bytes, bool is_write)
338 {
339     *req = (BdrvTrackedRequest){
340         .bs = bs,
341         .offset         = offset,
342         .bytes          = bytes,
343         .is_write       = is_write,
344         .co             = qemu_coroutine_self(),
345         .serialising    = false,
346         .overlap_offset = offset,
347         .overlap_bytes  = bytes,
348     };
349 
350     qemu_co_queue_init(&req->wait_queue);
351 
352     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
353 }
354 
355 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
356 {
357     int64_t overlap_offset = req->offset & ~(align - 1);
358     unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
359                                - overlap_offset;
360 
361     if (!req->serialising) {
362         req->bs->serialising_in_flight++;
363         req->serialising = true;
364     }
365 
366     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
367     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
368 }
369 
370 /**
371  * Round a region to cluster boundaries
372  */
373 void bdrv_round_to_clusters(BlockDriverState *bs,
374                             int64_t sector_num, int nb_sectors,
375                             int64_t *cluster_sector_num,
376                             int *cluster_nb_sectors)
377 {
378     BlockDriverInfo bdi;
379 
380     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
381         *cluster_sector_num = sector_num;
382         *cluster_nb_sectors = nb_sectors;
383     } else {
384         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
385         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
386         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
387                                             nb_sectors, c);
388     }
389 }
390 
391 static int bdrv_get_cluster_size(BlockDriverState *bs)
392 {
393     BlockDriverInfo bdi;
394     int ret;
395 
396     ret = bdrv_get_info(bs, &bdi);
397     if (ret < 0 || bdi.cluster_size == 0) {
398         return bs->request_alignment;
399     } else {
400         return bdi.cluster_size;
401     }
402 }
403 
404 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
405                                      int64_t offset, unsigned int bytes)
406 {
407     /*        aaaa   bbbb */
408     if (offset >= req->overlap_offset + req->overlap_bytes) {
409         return false;
410     }
411     /* bbbb   aaaa        */
412     if (req->overlap_offset >= offset + bytes) {
413         return false;
414     }
415     return true;
416 }
417 
418 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
419 {
420     BlockDriverState *bs = self->bs;
421     BdrvTrackedRequest *req;
422     bool retry;
423     bool waited = false;
424 
425     if (!bs->serialising_in_flight) {
426         return false;
427     }
428 
429     do {
430         retry = false;
431         QLIST_FOREACH(req, &bs->tracked_requests, list) {
432             if (req == self || (!req->serialising && !self->serialising)) {
433                 continue;
434             }
435             if (tracked_request_overlaps(req, self->overlap_offset,
436                                          self->overlap_bytes))
437             {
438                 /* Hitting this means there was a reentrant request, for
439                  * example, a block driver issuing nested requests.  This must
440                  * never happen since it means deadlock.
441                  */
442                 assert(qemu_coroutine_self() != req->co);
443 
444                 /* If the request is already (indirectly) waiting for us, or
445                  * will wait for us as soon as it wakes up, then just go on
446                  * (instead of producing a deadlock in the former case). */
447                 if (!req->waiting_for) {
448                     self->waiting_for = req;
449                     qemu_co_queue_wait(&req->wait_queue);
450                     self->waiting_for = NULL;
451                     retry = true;
452                     waited = true;
453                     break;
454                 }
455             }
456         }
457     } while (retry);
458 
459     return waited;
460 }
461 
462 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
463                                    size_t size)
464 {
465     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
466         return -EIO;
467     }
468 
469     if (!bdrv_is_inserted(bs)) {
470         return -ENOMEDIUM;
471     }
472 
473     if (offset < 0) {
474         return -EIO;
475     }
476 
477     return 0;
478 }
479 
480 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
481                               int nb_sectors)
482 {
483     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
484         return -EIO;
485     }
486 
487     return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
488                                    nb_sectors * BDRV_SECTOR_SIZE);
489 }
490 
491 typedef struct RwCo {
492     BlockDriverState *bs;
493     int64_t offset;
494     QEMUIOVector *qiov;
495     bool is_write;
496     int ret;
497     BdrvRequestFlags flags;
498 } RwCo;
499 
500 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
501 {
502     RwCo *rwco = opaque;
503 
504     if (!rwco->is_write) {
505         rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
506                                       rwco->qiov->size, rwco->qiov,
507                                       rwco->flags);
508     } else {
509         rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
510                                        rwco->qiov->size, rwco->qiov,
511                                        rwco->flags);
512     }
513 }
514 
515 /*
516  * Process a vectored synchronous request using coroutines
517  */
518 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
519                         QEMUIOVector *qiov, bool is_write,
520                         BdrvRequestFlags flags)
521 {
522     Coroutine *co;
523     RwCo rwco = {
524         .bs = bs,
525         .offset = offset,
526         .qiov = qiov,
527         .is_write = is_write,
528         .ret = NOT_DONE,
529         .flags = flags,
530     };
531 
532     /**
533      * In sync call context, when the vcpu is blocked, this throttling timer
534      * will not fire; so the I/O throttling function has to be disabled here
535      * if it has been enabled.
536      */
537     if (bs->io_limits_enabled) {
538         fprintf(stderr, "Disabling I/O throttling on '%s' due "
539                         "to synchronous I/O.\n", bdrv_get_device_name(bs));
540         bdrv_io_limits_disable(bs);
541     }
542 
543     if (qemu_in_coroutine()) {
544         /* Fast-path if already in coroutine context */
545         bdrv_rw_co_entry(&rwco);
546     } else {
547         AioContext *aio_context = bdrv_get_aio_context(bs);
548 
549         co = qemu_coroutine_create(bdrv_rw_co_entry);
550         qemu_coroutine_enter(co, &rwco);
551         while (rwco.ret == NOT_DONE) {
552             aio_poll(aio_context, true);
553         }
554     }
555     return rwco.ret;
556 }
557 
558 /*
559  * Process a synchronous request using coroutines
560  */
561 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
562                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
563 {
564     QEMUIOVector qiov;
565     struct iovec iov = {
566         .iov_base = (void *)buf,
567         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
568     };
569 
570     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
571         return -EINVAL;
572     }
573 
574     qemu_iovec_init_external(&qiov, &iov, 1);
575     return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
576                         &qiov, is_write, flags);
577 }
578 
579 /* return < 0 if error. See bdrv_write() for the return codes */
580 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
581               uint8_t *buf, int nb_sectors)
582 {
583     return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
584 }
585 
586 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
587 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
588                           uint8_t *buf, int nb_sectors)
589 {
590     bool enabled;
591     int ret;
592 
593     enabled = bs->io_limits_enabled;
594     bs->io_limits_enabled = false;
595     ret = bdrv_read(bs, sector_num, buf, nb_sectors);
596     bs->io_limits_enabled = enabled;
597     return ret;
598 }
599 
600 /* Return < 0 if error. Important errors are:
601   -EIO         generic I/O error (may happen for all errors)
602   -ENOMEDIUM   No media inserted.
603   -EINVAL      Invalid sector number or nb_sectors
604   -EACCES      Trying to write a read-only device
605 */
606 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
607                const uint8_t *buf, int nb_sectors)
608 {
609     return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
610 }
611 
612 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
613                       int nb_sectors, BdrvRequestFlags flags)
614 {
615     return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
616                       BDRV_REQ_ZERO_WRITE | flags);
617 }
618 
619 /*
620  * Completely zero out a block device with the help of bdrv_write_zeroes.
621  * The operation is sped up by checking the block status and only writing
622  * zeroes to the device if they currently do not return zeroes. Optional
623  * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
624  *
625  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
626  */
627 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
628 {
629     int64_t target_sectors, ret, nb_sectors, sector_num = 0;
630     int n;
631 
632     target_sectors = bdrv_nb_sectors(bs);
633     if (target_sectors < 0) {
634         return target_sectors;
635     }
636 
637     for (;;) {
638         nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
639         if (nb_sectors <= 0) {
640             return 0;
641         }
642         ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n);
643         if (ret < 0) {
644             error_report("error getting block status at sector %" PRId64 ": %s",
645                          sector_num, strerror(-ret));
646             return ret;
647         }
648         if (ret & BDRV_BLOCK_ZERO) {
649             sector_num += n;
650             continue;
651         }
652         ret = bdrv_write_zeroes(bs, sector_num, n, flags);
653         if (ret < 0) {
654             error_report("error writing zeroes at sector %" PRId64 ": %s",
655                          sector_num, strerror(-ret));
656             return ret;
657         }
658         sector_num += n;
659     }
660 }
661 
662 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
663 {
664     QEMUIOVector qiov;
665     struct iovec iov = {
666         .iov_base = (void *)buf,
667         .iov_len = bytes,
668     };
669     int ret;
670 
671     if (bytes < 0) {
672         return -EINVAL;
673     }
674 
675     qemu_iovec_init_external(&qiov, &iov, 1);
676     ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
677     if (ret < 0) {
678         return ret;
679     }
680 
681     return bytes;
682 }
683 
684 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
685 {
686     int ret;
687 
688     ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
689     if (ret < 0) {
690         return ret;
691     }
692 
693     return qiov->size;
694 }
695 
696 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
697                 const void *buf, int bytes)
698 {
699     QEMUIOVector qiov;
700     struct iovec iov = {
701         .iov_base   = (void *) buf,
702         .iov_len    = bytes,
703     };
704 
705     if (bytes < 0) {
706         return -EINVAL;
707     }
708 
709     qemu_iovec_init_external(&qiov, &iov, 1);
710     return bdrv_pwritev(bs, offset, &qiov);
711 }
712 
713 /*
714  * Writes to the file and ensures that no writes are reordered across this
715  * request (acts as a barrier)
716  *
717  * Returns 0 on success, -errno in error cases.
718  */
719 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
720     const void *buf, int count)
721 {
722     int ret;
723 
724     ret = bdrv_pwrite(bs, offset, buf, count);
725     if (ret < 0) {
726         return ret;
727     }
728 
729     /* No flush needed for cache modes that already do it */
730     if (bs->enable_write_cache) {
731         bdrv_flush(bs);
732     }
733 
734     return 0;
735 }
736 
737 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
738         int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
739 {
740     /* Perform I/O through a temporary buffer so that users who scribble over
741      * their read buffer while the operation is in progress do not end up
742      * modifying the image file.  This is critical for zero-copy guest I/O
743      * where anything might happen inside guest memory.
744      */
745     void *bounce_buffer;
746 
747     BlockDriver *drv = bs->drv;
748     struct iovec iov;
749     QEMUIOVector bounce_qiov;
750     int64_t cluster_sector_num;
751     int cluster_nb_sectors;
752     size_t skip_bytes;
753     int ret;
754 
755     /* Cover entire cluster so no additional backing file I/O is required when
756      * allocating cluster in the image file.
757      */
758     bdrv_round_to_clusters(bs, sector_num, nb_sectors,
759                            &cluster_sector_num, &cluster_nb_sectors);
760 
761     trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
762                                    cluster_sector_num, cluster_nb_sectors);
763 
764     iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
765     iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
766     if (bounce_buffer == NULL) {
767         ret = -ENOMEM;
768         goto err;
769     }
770 
771     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
772 
773     ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
774                              &bounce_qiov);
775     if (ret < 0) {
776         goto err;
777     }
778 
779     if (drv->bdrv_co_write_zeroes &&
780         buffer_is_zero(bounce_buffer, iov.iov_len)) {
781         ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
782                                       cluster_nb_sectors, 0);
783     } else {
784         /* This does not change the data on the disk, it is not necessary
785          * to flush even in cache=writethrough mode.
786          */
787         ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
788                                   &bounce_qiov);
789     }
790 
791     if (ret < 0) {
792         /* It might be okay to ignore write errors for guest requests.  If this
793          * is a deliberate copy-on-read then we don't want to ignore the error.
794          * Simply report it in all cases.
795          */
796         goto err;
797     }
798 
799     skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
800     qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
801                         nb_sectors * BDRV_SECTOR_SIZE);
802 
803 err:
804     qemu_vfree(bounce_buffer);
805     return ret;
806 }
807 
808 /*
809  * Forwards an already correctly aligned request to the BlockDriver. This
810  * handles copy on read and zeroing after EOF; any other features must be
811  * implemented by the caller.
812  */
813 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
814     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
815     int64_t align, QEMUIOVector *qiov, int flags)
816 {
817     BlockDriver *drv = bs->drv;
818     int ret;
819 
820     int64_t sector_num = offset >> BDRV_SECTOR_BITS;
821     unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
822 
823     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
824     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
825     assert(!qiov || bytes == qiov->size);
826 
827     /* Handle Copy on Read and associated serialisation */
828     if (flags & BDRV_REQ_COPY_ON_READ) {
829         /* If we touch the same cluster it counts as an overlap.  This
830          * guarantees that allocating writes will be serialized and not race
831          * with each other for the same cluster.  For example, in copy-on-read
832          * it ensures that the CoR read and write operations are atomic and
833          * guest writes cannot interleave between them. */
834         mark_request_serialising(req, bdrv_get_cluster_size(bs));
835     }
836 
837     wait_serialising_requests(req);
838 
839     if (flags & BDRV_REQ_COPY_ON_READ) {
840         int pnum;
841 
842         ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
843         if (ret < 0) {
844             goto out;
845         }
846 
847         if (!ret || pnum != nb_sectors) {
848             ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
849             goto out;
850         }
851     }
852 
853     /* Forward the request to the BlockDriver */
854     if (!bs->zero_beyond_eof) {
855         ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
856     } else {
857         /* Read zeros after EOF */
858         int64_t total_sectors, max_nb_sectors;
859 
860         total_sectors = bdrv_nb_sectors(bs);
861         if (total_sectors < 0) {
862             ret = total_sectors;
863             goto out;
864         }
865 
866         max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
867                                   align >> BDRV_SECTOR_BITS);
868         if (nb_sectors < max_nb_sectors) {
869             ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
870         } else if (max_nb_sectors > 0) {
871             QEMUIOVector local_qiov;
872 
873             qemu_iovec_init(&local_qiov, qiov->niov);
874             qemu_iovec_concat(&local_qiov, qiov, 0,
875                               max_nb_sectors * BDRV_SECTOR_SIZE);
876 
877             ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
878                                      &local_qiov);
879 
880             qemu_iovec_destroy(&local_qiov);
881         } else {
882             ret = 0;
883         }
884 
885         /* Reading beyond end of file is supposed to produce zeroes */
886         if (ret == 0 && total_sectors < sector_num + nb_sectors) {
887             uint64_t offset = MAX(0, total_sectors - sector_num);
888             uint64_t bytes = (sector_num + nb_sectors - offset) *
889                               BDRV_SECTOR_SIZE;
890             qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
891         }
892     }
893 
894 out:
895     return ret;
896 }
897 
898 /*
899  * Handle a read request in coroutine context
900  */
901 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
902     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
903     BdrvRequestFlags flags)
904 {
905     BlockDriver *drv = bs->drv;
906     BdrvTrackedRequest req;
907 
908     /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
909     uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
910     uint8_t *head_buf = NULL;
911     uint8_t *tail_buf = NULL;
912     QEMUIOVector local_qiov;
913     bool use_local_qiov = false;
914     int ret;
915 
916     if (!drv) {
917         return -ENOMEDIUM;
918     }
919 
920     ret = bdrv_check_byte_request(bs, offset, bytes);
921     if (ret < 0) {
922         return ret;
923     }
924 
925     if (bs->copy_on_read) {
926         flags |= BDRV_REQ_COPY_ON_READ;
927     }
928 
929     /* throttling disk I/O */
930     if (bs->io_limits_enabled) {
931         throttle_group_co_io_limits_intercept(bs, bytes, false);
932     }
933 
934     /* Align read if necessary by padding qiov */
935     if (offset & (align - 1)) {
936         head_buf = qemu_blockalign(bs, align);
937         qemu_iovec_init(&local_qiov, qiov->niov + 2);
938         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
939         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
940         use_local_qiov = true;
941 
942         bytes += offset & (align - 1);
943         offset = offset & ~(align - 1);
944     }
945 
946     if ((offset + bytes) & (align - 1)) {
947         if (!use_local_qiov) {
948             qemu_iovec_init(&local_qiov, qiov->niov + 1);
949             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
950             use_local_qiov = true;
951         }
952         tail_buf = qemu_blockalign(bs, align);
953         qemu_iovec_add(&local_qiov, tail_buf,
954                        align - ((offset + bytes) & (align - 1)));
955 
956         bytes = ROUND_UP(bytes, align);
957     }
958 
959     tracked_request_begin(&req, bs, offset, bytes, false);
960     ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
961                               use_local_qiov ? &local_qiov : qiov,
962                               flags);
963     tracked_request_end(&req);
964 
965     if (use_local_qiov) {
966         qemu_iovec_destroy(&local_qiov);
967         qemu_vfree(head_buf);
968         qemu_vfree(tail_buf);
969     }
970 
971     return ret;
972 }
973 
974 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
975     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
976     BdrvRequestFlags flags)
977 {
978     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
979         return -EINVAL;
980     }
981 
982     return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
983                              nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
984 }
985 
986 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
987     int nb_sectors, QEMUIOVector *qiov)
988 {
989     trace_bdrv_co_readv(bs, sector_num, nb_sectors);
990 
991     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
992 }
993 
994 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
995     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
996 {
997     trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
998 
999     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1000                             BDRV_REQ_COPY_ON_READ);
1001 }
1002 
1003 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1004 
1005 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1006     int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1007 {
1008     BlockDriver *drv = bs->drv;
1009     QEMUIOVector qiov;
1010     struct iovec iov = {0};
1011     int ret = 0;
1012 
1013     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1014                                         BDRV_REQUEST_MAX_SECTORS);
1015 
1016     while (nb_sectors > 0 && !ret) {
1017         int num = nb_sectors;
1018 
1019         /* Align request.  Block drivers can expect the "bulk" of the request
1020          * to be aligned.
1021          */
1022         if (bs->bl.write_zeroes_alignment
1023             && num > bs->bl.write_zeroes_alignment) {
1024             if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1025                 /* Make a small request up to the first aligned sector.  */
1026                 num = bs->bl.write_zeroes_alignment;
1027                 num -= sector_num % bs->bl.write_zeroes_alignment;
1028             } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1029                 /* Shorten the request to the last aligned sector.  num cannot
1030                  * underflow because num > bs->bl.write_zeroes_alignment.
1031                  */
1032                 num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1033             }
1034         }
1035 
1036         /* limit request size */
1037         if (num > max_write_zeroes) {
1038             num = max_write_zeroes;
1039         }
1040 
1041         ret = -ENOTSUP;
1042         /* First try the efficient write zeroes operation */
1043         if (drv->bdrv_co_write_zeroes) {
1044             ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1045         }
1046 
1047         if (ret == -ENOTSUP) {
1048             /* Fall back to bounce buffer if write zeroes is unsupported */
1049             int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1050                                             MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1051             num = MIN(num, max_xfer_len);
1052             iov.iov_len = num * BDRV_SECTOR_SIZE;
1053             if (iov.iov_base == NULL) {
1054                 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1055                 if (iov.iov_base == NULL) {
1056                     ret = -ENOMEM;
1057                     goto fail;
1058                 }
1059                 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1060             }
1061             qemu_iovec_init_external(&qiov, &iov, 1);
1062 
1063             ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1064 
1065             /* Keep bounce buffer around if it is big enough for all
1066              * all future requests.
1067              */
1068             if (num < max_xfer_len) {
1069                 qemu_vfree(iov.iov_base);
1070                 iov.iov_base = NULL;
1071             }
1072         }
1073 
1074         sector_num += num;
1075         nb_sectors -= num;
1076     }
1077 
1078 fail:
1079     qemu_vfree(iov.iov_base);
1080     return ret;
1081 }
1082 
1083 /*
1084  * Forwards an already correctly aligned write request to the BlockDriver.
1085  */
1086 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1087     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1088     QEMUIOVector *qiov, int flags)
1089 {
1090     BlockDriver *drv = bs->drv;
1091     bool waited;
1092     int ret;
1093 
1094     int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1095     unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1096 
1097     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1098     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1099     assert(!qiov || bytes == qiov->size);
1100 
1101     waited = wait_serialising_requests(req);
1102     assert(!waited || !req->serialising);
1103     assert(req->overlap_offset <= offset);
1104     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1105 
1106     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1107 
1108     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1109         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1110         qemu_iovec_is_zero(qiov)) {
1111         flags |= BDRV_REQ_ZERO_WRITE;
1112         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1113             flags |= BDRV_REQ_MAY_UNMAP;
1114         }
1115     }
1116 
1117     if (ret < 0) {
1118         /* Do nothing, write notifier decided to fail this request */
1119     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1120         BLKDBG_EVENT(bs, BLKDBG_PWRITEV_ZERO);
1121         ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1122     } else {
1123         BLKDBG_EVENT(bs, BLKDBG_PWRITEV);
1124         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1125     }
1126     BLKDBG_EVENT(bs, BLKDBG_PWRITEV_DONE);
1127 
1128     if (ret == 0 && !bs->enable_write_cache) {
1129         ret = bdrv_co_flush(bs);
1130     }
1131 
1132     bdrv_set_dirty(bs, sector_num, nb_sectors);
1133 
1134     block_acct_highest_sector(&bs->stats, sector_num, nb_sectors);
1135 
1136     if (ret >= 0) {
1137         bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1138     }
1139 
1140     return ret;
1141 }
1142 
1143 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1144                                                 int64_t offset,
1145                                                 unsigned int bytes,
1146                                                 BdrvRequestFlags flags,
1147                                                 BdrvTrackedRequest *req)
1148 {
1149     uint8_t *buf = NULL;
1150     QEMUIOVector local_qiov;
1151     struct iovec iov;
1152     uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1153     unsigned int head_padding_bytes, tail_padding_bytes;
1154     int ret = 0;
1155 
1156     head_padding_bytes = offset & (align - 1);
1157     tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1158 
1159 
1160     assert(flags & BDRV_REQ_ZERO_WRITE);
1161     if (head_padding_bytes || tail_padding_bytes) {
1162         buf = qemu_blockalign(bs, align);
1163         iov = (struct iovec) {
1164             .iov_base   = buf,
1165             .iov_len    = align,
1166         };
1167         qemu_iovec_init_external(&local_qiov, &iov, 1);
1168     }
1169     if (head_padding_bytes) {
1170         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1171 
1172         /* RMW the unaligned part before head. */
1173         mark_request_serialising(req, align);
1174         wait_serialising_requests(req);
1175         BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_HEAD);
1176         ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1177                                   align, &local_qiov, 0);
1178         if (ret < 0) {
1179             goto fail;
1180         }
1181         BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1182 
1183         memset(buf + head_padding_bytes, 0, zero_bytes);
1184         ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1185                                    &local_qiov,
1186                                    flags & ~BDRV_REQ_ZERO_WRITE);
1187         if (ret < 0) {
1188             goto fail;
1189         }
1190         offset += zero_bytes;
1191         bytes -= zero_bytes;
1192     }
1193 
1194     assert(!bytes || (offset & (align - 1)) == 0);
1195     if (bytes >= align) {
1196         /* Write the aligned part in the middle. */
1197         uint64_t aligned_bytes = bytes & ~(align - 1);
1198         ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes,
1199                                    NULL, flags);
1200         if (ret < 0) {
1201             goto fail;
1202         }
1203         bytes -= aligned_bytes;
1204         offset += aligned_bytes;
1205     }
1206 
1207     assert(!bytes || (offset & (align - 1)) == 0);
1208     if (bytes) {
1209         assert(align == tail_padding_bytes + bytes);
1210         /* RMW the unaligned part after tail. */
1211         mark_request_serialising(req, align);
1212         wait_serialising_requests(req);
1213         BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_TAIL);
1214         ret = bdrv_aligned_preadv(bs, req, offset, align,
1215                                   align, &local_qiov, 0);
1216         if (ret < 0) {
1217             goto fail;
1218         }
1219         BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1220 
1221         memset(buf, 0, bytes);
1222         ret = bdrv_aligned_pwritev(bs, req, offset, align,
1223                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1224     }
1225 fail:
1226     qemu_vfree(buf);
1227     return ret;
1228 
1229 }
1230 
1231 /*
1232  * Handle a write request in coroutine context
1233  */
1234 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1235     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1236     BdrvRequestFlags flags)
1237 {
1238     BdrvTrackedRequest req;
1239     /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1240     uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1241     uint8_t *head_buf = NULL;
1242     uint8_t *tail_buf = NULL;
1243     QEMUIOVector local_qiov;
1244     bool use_local_qiov = false;
1245     int ret;
1246 
1247     if (!bs->drv) {
1248         return -ENOMEDIUM;
1249     }
1250     if (bs->read_only) {
1251         return -EPERM;
1252     }
1253 
1254     ret = bdrv_check_byte_request(bs, offset, bytes);
1255     if (ret < 0) {
1256         return ret;
1257     }
1258 
1259     /* throttling disk I/O */
1260     if (bs->io_limits_enabled) {
1261         throttle_group_co_io_limits_intercept(bs, bytes, true);
1262     }
1263 
1264     /*
1265      * Align write if necessary by performing a read-modify-write cycle.
1266      * Pad qiov with the read parts and be sure to have a tracked request not
1267      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1268      */
1269     tracked_request_begin(&req, bs, offset, bytes, true);
1270 
1271     if (!qiov) {
1272         ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1273         goto out;
1274     }
1275 
1276     if (offset & (align - 1)) {
1277         QEMUIOVector head_qiov;
1278         struct iovec head_iov;
1279 
1280         mark_request_serialising(&req, align);
1281         wait_serialising_requests(&req);
1282 
1283         head_buf = qemu_blockalign(bs, align);
1284         head_iov = (struct iovec) {
1285             .iov_base   = head_buf,
1286             .iov_len    = align,
1287         };
1288         qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1289 
1290         BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_HEAD);
1291         ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1292                                   align, &head_qiov, 0);
1293         if (ret < 0) {
1294             goto fail;
1295         }
1296         BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1297 
1298         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1299         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1300         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1301         use_local_qiov = true;
1302 
1303         bytes += offset & (align - 1);
1304         offset = offset & ~(align - 1);
1305     }
1306 
1307     if ((offset + bytes) & (align - 1)) {
1308         QEMUIOVector tail_qiov;
1309         struct iovec tail_iov;
1310         size_t tail_bytes;
1311         bool waited;
1312 
1313         mark_request_serialising(&req, align);
1314         waited = wait_serialising_requests(&req);
1315         assert(!waited || !use_local_qiov);
1316 
1317         tail_buf = qemu_blockalign(bs, align);
1318         tail_iov = (struct iovec) {
1319             .iov_base   = tail_buf,
1320             .iov_len    = align,
1321         };
1322         qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1323 
1324         BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_TAIL);
1325         ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1326                                   align, &tail_qiov, 0);
1327         if (ret < 0) {
1328             goto fail;
1329         }
1330         BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1331 
1332         if (!use_local_qiov) {
1333             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1334             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1335             use_local_qiov = true;
1336         }
1337 
1338         tail_bytes = (offset + bytes) & (align - 1);
1339         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1340 
1341         bytes = ROUND_UP(bytes, align);
1342     }
1343 
1344     ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1345                                use_local_qiov ? &local_qiov : qiov,
1346                                flags);
1347 
1348 fail:
1349 
1350     if (use_local_qiov) {
1351         qemu_iovec_destroy(&local_qiov);
1352     }
1353     qemu_vfree(head_buf);
1354     qemu_vfree(tail_buf);
1355 out:
1356     tracked_request_end(&req);
1357     return ret;
1358 }
1359 
1360 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1361     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1362     BdrvRequestFlags flags)
1363 {
1364     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1365         return -EINVAL;
1366     }
1367 
1368     return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1369                               nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1370 }
1371 
1372 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1373     int nb_sectors, QEMUIOVector *qiov)
1374 {
1375     trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1376 
1377     return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1378 }
1379 
1380 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1381                                       int64_t sector_num, int nb_sectors,
1382                                       BdrvRequestFlags flags)
1383 {
1384     trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1385 
1386     if (!(bs->open_flags & BDRV_O_UNMAP)) {
1387         flags &= ~BDRV_REQ_MAY_UNMAP;
1388     }
1389 
1390     return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1391                              BDRV_REQ_ZERO_WRITE | flags);
1392 }
1393 
1394 int bdrv_flush_all(void)
1395 {
1396     BlockDriverState *bs = NULL;
1397     int result = 0;
1398 
1399     while ((bs = bdrv_next(bs))) {
1400         AioContext *aio_context = bdrv_get_aio_context(bs);
1401         int ret;
1402 
1403         aio_context_acquire(aio_context);
1404         ret = bdrv_flush(bs);
1405         if (ret < 0 && !result) {
1406             result = ret;
1407         }
1408         aio_context_release(aio_context);
1409     }
1410 
1411     return result;
1412 }
1413 
1414 typedef struct BdrvCoGetBlockStatusData {
1415     BlockDriverState *bs;
1416     BlockDriverState *base;
1417     int64_t sector_num;
1418     int nb_sectors;
1419     int *pnum;
1420     int64_t ret;
1421     bool done;
1422 } BdrvCoGetBlockStatusData;
1423 
1424 /*
1425  * Returns the allocation status of the specified sectors.
1426  * Drivers not implementing the functionality are assumed to not support
1427  * backing files, hence all their sectors are reported as allocated.
1428  *
1429  * If 'sector_num' is beyond the end of the disk image the return value is 0
1430  * and 'pnum' is set to 0.
1431  *
1432  * 'pnum' is set to the number of sectors (including and immediately following
1433  * the specified sector) that are known to be in the same
1434  * allocated/unallocated state.
1435  *
1436  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
1437  * beyond the end of the disk image it will be clamped.
1438  */
1439 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1440                                                      int64_t sector_num,
1441                                                      int nb_sectors, int *pnum)
1442 {
1443     int64_t total_sectors;
1444     int64_t n;
1445     int64_t ret, ret2;
1446 
1447     total_sectors = bdrv_nb_sectors(bs);
1448     if (total_sectors < 0) {
1449         return total_sectors;
1450     }
1451 
1452     if (sector_num >= total_sectors) {
1453         *pnum = 0;
1454         return 0;
1455     }
1456 
1457     n = total_sectors - sector_num;
1458     if (n < nb_sectors) {
1459         nb_sectors = n;
1460     }
1461 
1462     if (!bs->drv->bdrv_co_get_block_status) {
1463         *pnum = nb_sectors;
1464         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1465         if (bs->drv->protocol_name) {
1466             ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1467         }
1468         return ret;
1469     }
1470 
1471     ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum);
1472     if (ret < 0) {
1473         *pnum = 0;
1474         return ret;
1475     }
1476 
1477     if (ret & BDRV_BLOCK_RAW) {
1478         assert(ret & BDRV_BLOCK_OFFSET_VALID);
1479         return bdrv_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
1480                                      *pnum, pnum);
1481     }
1482 
1483     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1484         ret |= BDRV_BLOCK_ALLOCATED;
1485     } else {
1486         if (bdrv_unallocated_blocks_are_zero(bs)) {
1487             ret |= BDRV_BLOCK_ZERO;
1488         } else if (bs->backing_hd) {
1489             BlockDriverState *bs2 = bs->backing_hd;
1490             int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1491             if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1492                 ret |= BDRV_BLOCK_ZERO;
1493             }
1494         }
1495     }
1496 
1497     if (bs->file &&
1498         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1499         (ret & BDRV_BLOCK_OFFSET_VALID)) {
1500         int file_pnum;
1501 
1502         ret2 = bdrv_co_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
1503                                         *pnum, &file_pnum);
1504         if (ret2 >= 0) {
1505             /* Ignore errors.  This is just providing extra information, it
1506              * is useful but not necessary.
1507              */
1508             if (!file_pnum) {
1509                 /* !file_pnum indicates an offset at or beyond the EOF; it is
1510                  * perfectly valid for the format block driver to point to such
1511                  * offsets, so catch it and mark everything as zero */
1512                 ret |= BDRV_BLOCK_ZERO;
1513             } else {
1514                 /* Limit request to the range reported by the protocol driver */
1515                 *pnum = file_pnum;
1516                 ret |= (ret2 & BDRV_BLOCK_ZERO);
1517             }
1518         }
1519     }
1520 
1521     return ret;
1522 }
1523 
1524 /* Coroutine wrapper for bdrv_get_block_status() */
1525 static void coroutine_fn bdrv_get_block_status_co_entry(void *opaque)
1526 {
1527     BdrvCoGetBlockStatusData *data = opaque;
1528     BlockDriverState *bs = data->bs;
1529 
1530     data->ret = bdrv_co_get_block_status(bs, data->sector_num, data->nb_sectors,
1531                                          data->pnum);
1532     data->done = true;
1533 }
1534 
1535 /*
1536  * Synchronous wrapper around bdrv_co_get_block_status().
1537  *
1538  * See bdrv_co_get_block_status() for details.
1539  */
1540 int64_t bdrv_get_block_status(BlockDriverState *bs, int64_t sector_num,
1541                               int nb_sectors, int *pnum)
1542 {
1543     Coroutine *co;
1544     BdrvCoGetBlockStatusData data = {
1545         .bs = bs,
1546         .sector_num = sector_num,
1547         .nb_sectors = nb_sectors,
1548         .pnum = pnum,
1549         .done = false,
1550     };
1551 
1552     if (qemu_in_coroutine()) {
1553         /* Fast-path if already in coroutine context */
1554         bdrv_get_block_status_co_entry(&data);
1555     } else {
1556         AioContext *aio_context = bdrv_get_aio_context(bs);
1557 
1558         co = qemu_coroutine_create(bdrv_get_block_status_co_entry);
1559         qemu_coroutine_enter(co, &data);
1560         while (!data.done) {
1561             aio_poll(aio_context, true);
1562         }
1563     }
1564     return data.ret;
1565 }
1566 
1567 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1568                                    int nb_sectors, int *pnum)
1569 {
1570     int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum);
1571     if (ret < 0) {
1572         return ret;
1573     }
1574     return !!(ret & BDRV_BLOCK_ALLOCATED);
1575 }
1576 
1577 /*
1578  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1579  *
1580  * Return true if the given sector is allocated in any image between
1581  * BASE and TOP (inclusive).  BASE can be NULL to check if the given
1582  * sector is allocated in any image of the chain.  Return false otherwise.
1583  *
1584  * 'pnum' is set to the number of sectors (including and immediately following
1585  *  the specified sector) that are known to be in the same
1586  *  allocated/unallocated state.
1587  *
1588  */
1589 int bdrv_is_allocated_above(BlockDriverState *top,
1590                             BlockDriverState *base,
1591                             int64_t sector_num,
1592                             int nb_sectors, int *pnum)
1593 {
1594     BlockDriverState *intermediate;
1595     int ret, n = nb_sectors;
1596 
1597     intermediate = top;
1598     while (intermediate && intermediate != base) {
1599         int pnum_inter;
1600         ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1601                                 &pnum_inter);
1602         if (ret < 0) {
1603             return ret;
1604         } else if (ret) {
1605             *pnum = pnum_inter;
1606             return 1;
1607         }
1608 
1609         /*
1610          * [sector_num, nb_sectors] is unallocated on top but intermediate
1611          * might have
1612          *
1613          * [sector_num+x, nr_sectors] allocated.
1614          */
1615         if (n > pnum_inter &&
1616             (intermediate == top ||
1617              sector_num + pnum_inter < intermediate->total_sectors)) {
1618             n = pnum_inter;
1619         }
1620 
1621         intermediate = intermediate->backing_hd;
1622     }
1623 
1624     *pnum = n;
1625     return 0;
1626 }
1627 
1628 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1629                           const uint8_t *buf, int nb_sectors)
1630 {
1631     BlockDriver *drv = bs->drv;
1632     int ret;
1633 
1634     if (!drv) {
1635         return -ENOMEDIUM;
1636     }
1637     if (!drv->bdrv_write_compressed) {
1638         return -ENOTSUP;
1639     }
1640     ret = bdrv_check_request(bs, sector_num, nb_sectors);
1641     if (ret < 0) {
1642         return ret;
1643     }
1644 
1645     assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1646 
1647     return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1648 }
1649 
1650 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1651                       int64_t pos, int size)
1652 {
1653     QEMUIOVector qiov;
1654     struct iovec iov = {
1655         .iov_base   = (void *) buf,
1656         .iov_len    = size,
1657     };
1658 
1659     qemu_iovec_init_external(&qiov, &iov, 1);
1660     return bdrv_writev_vmstate(bs, &qiov, pos);
1661 }
1662 
1663 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1664 {
1665     BlockDriver *drv = bs->drv;
1666 
1667     if (!drv) {
1668         return -ENOMEDIUM;
1669     } else if (drv->bdrv_save_vmstate) {
1670         return drv->bdrv_save_vmstate(bs, qiov, pos);
1671     } else if (bs->file) {
1672         return bdrv_writev_vmstate(bs->file, qiov, pos);
1673     }
1674 
1675     return -ENOTSUP;
1676 }
1677 
1678 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1679                       int64_t pos, int size)
1680 {
1681     BlockDriver *drv = bs->drv;
1682     if (!drv)
1683         return -ENOMEDIUM;
1684     if (drv->bdrv_load_vmstate)
1685         return drv->bdrv_load_vmstate(bs, buf, pos, size);
1686     if (bs->file)
1687         return bdrv_load_vmstate(bs->file, buf, pos, size);
1688     return -ENOTSUP;
1689 }
1690 
1691 /**************************************************************/
1692 /* async I/Os */
1693 
1694 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1695                            QEMUIOVector *qiov, int nb_sectors,
1696                            BlockCompletionFunc *cb, void *opaque)
1697 {
1698     trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1699 
1700     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1701                                  cb, opaque, false);
1702 }
1703 
1704 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1705                             QEMUIOVector *qiov, int nb_sectors,
1706                             BlockCompletionFunc *cb, void *opaque)
1707 {
1708     trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1709 
1710     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1711                                  cb, opaque, true);
1712 }
1713 
1714 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1715         int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1716         BlockCompletionFunc *cb, void *opaque)
1717 {
1718     trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1719 
1720     return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1721                                  BDRV_REQ_ZERO_WRITE | flags,
1722                                  cb, opaque, true);
1723 }
1724 
1725 
1726 typedef struct MultiwriteCB {
1727     int error;
1728     int num_requests;
1729     int num_callbacks;
1730     struct {
1731         BlockCompletionFunc *cb;
1732         void *opaque;
1733         QEMUIOVector *free_qiov;
1734     } callbacks[];
1735 } MultiwriteCB;
1736 
1737 static void multiwrite_user_cb(MultiwriteCB *mcb)
1738 {
1739     int i;
1740 
1741     for (i = 0; i < mcb->num_callbacks; i++) {
1742         mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1743         if (mcb->callbacks[i].free_qiov) {
1744             qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1745         }
1746         g_free(mcb->callbacks[i].free_qiov);
1747     }
1748 }
1749 
1750 static void multiwrite_cb(void *opaque, int ret)
1751 {
1752     MultiwriteCB *mcb = opaque;
1753 
1754     trace_multiwrite_cb(mcb, ret);
1755 
1756     if (ret < 0 && !mcb->error) {
1757         mcb->error = ret;
1758     }
1759 
1760     mcb->num_requests--;
1761     if (mcb->num_requests == 0) {
1762         multiwrite_user_cb(mcb);
1763         g_free(mcb);
1764     }
1765 }
1766 
1767 static int multiwrite_req_compare(const void *a, const void *b)
1768 {
1769     const BlockRequest *req1 = a, *req2 = b;
1770 
1771     /*
1772      * Note that we can't simply subtract req2->sector from req1->sector
1773      * here as that could overflow the return value.
1774      */
1775     if (req1->sector > req2->sector) {
1776         return 1;
1777     } else if (req1->sector < req2->sector) {
1778         return -1;
1779     } else {
1780         return 0;
1781     }
1782 }
1783 
1784 /*
1785  * Takes a bunch of requests and tries to merge them. Returns the number of
1786  * requests that remain after merging.
1787  */
1788 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1789     int num_reqs, MultiwriteCB *mcb)
1790 {
1791     int i, outidx;
1792 
1793     // Sort requests by start sector
1794     qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1795 
1796     // Check if adjacent requests touch the same clusters. If so, combine them,
1797     // filling up gaps with zero sectors.
1798     outidx = 0;
1799     for (i = 1; i < num_reqs; i++) {
1800         int merge = 0;
1801         int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1802 
1803         // Handle exactly sequential writes and overlapping writes.
1804         if (reqs[i].sector <= oldreq_last) {
1805             merge = 1;
1806         }
1807 
1808         if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
1809             merge = 0;
1810         }
1811 
1812         if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1813             reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1814             merge = 0;
1815         }
1816 
1817         if (merge) {
1818             size_t size;
1819             QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1820             qemu_iovec_init(qiov,
1821                 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1822 
1823             // Add the first request to the merged one. If the requests are
1824             // overlapping, drop the last sectors of the first request.
1825             size = (reqs[i].sector - reqs[outidx].sector) << 9;
1826             qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1827 
1828             // We should need to add any zeros between the two requests
1829             assert (reqs[i].sector <= oldreq_last);
1830 
1831             // Add the second request
1832             qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1833 
1834             // Add tail of first request, if necessary
1835             if (qiov->size < reqs[outidx].qiov->size) {
1836                 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1837                                   reqs[outidx].qiov->size - qiov->size);
1838             }
1839 
1840             reqs[outidx].nb_sectors = qiov->size >> 9;
1841             reqs[outidx].qiov = qiov;
1842 
1843             mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1844         } else {
1845             outidx++;
1846             reqs[outidx].sector     = reqs[i].sector;
1847             reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1848             reqs[outidx].qiov       = reqs[i].qiov;
1849         }
1850     }
1851 
1852     block_acct_merge_done(&bs->stats, BLOCK_ACCT_WRITE, num_reqs - outidx - 1);
1853 
1854     return outidx + 1;
1855 }
1856 
1857 /*
1858  * Submit multiple AIO write requests at once.
1859  *
1860  * On success, the function returns 0 and all requests in the reqs array have
1861  * been submitted. In error case this function returns -1, and any of the
1862  * requests may or may not be submitted yet. In particular, this means that the
1863  * callback will be called for some of the requests, for others it won't. The
1864  * caller must check the error field of the BlockRequest to wait for the right
1865  * callbacks (if error != 0, no callback will be called).
1866  *
1867  * The implementation may modify the contents of the reqs array, e.g. to merge
1868  * requests. However, the fields opaque and error are left unmodified as they
1869  * are used to signal failure for a single request to the caller.
1870  */
1871 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1872 {
1873     MultiwriteCB *mcb;
1874     int i;
1875 
1876     /* don't submit writes if we don't have a medium */
1877     if (bs->drv == NULL) {
1878         for (i = 0; i < num_reqs; i++) {
1879             reqs[i].error = -ENOMEDIUM;
1880         }
1881         return -1;
1882     }
1883 
1884     if (num_reqs == 0) {
1885         return 0;
1886     }
1887 
1888     // Create MultiwriteCB structure
1889     mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
1890     mcb->num_requests = 0;
1891     mcb->num_callbacks = num_reqs;
1892 
1893     for (i = 0; i < num_reqs; i++) {
1894         mcb->callbacks[i].cb = reqs[i].cb;
1895         mcb->callbacks[i].opaque = reqs[i].opaque;
1896     }
1897 
1898     // Check for mergable requests
1899     num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
1900 
1901     trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
1902 
1903     /* Run the aio requests. */
1904     mcb->num_requests = num_reqs;
1905     for (i = 0; i < num_reqs; i++) {
1906         bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
1907                               reqs[i].nb_sectors, reqs[i].flags,
1908                               multiwrite_cb, mcb,
1909                               true);
1910     }
1911 
1912     return 0;
1913 }
1914 
1915 void bdrv_aio_cancel(BlockAIOCB *acb)
1916 {
1917     qemu_aio_ref(acb);
1918     bdrv_aio_cancel_async(acb);
1919     while (acb->refcnt > 1) {
1920         if (acb->aiocb_info->get_aio_context) {
1921             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
1922         } else if (acb->bs) {
1923             aio_poll(bdrv_get_aio_context(acb->bs), true);
1924         } else {
1925             abort();
1926         }
1927     }
1928     qemu_aio_unref(acb);
1929 }
1930 
1931 /* Async version of aio cancel. The caller is not blocked if the acb implements
1932  * cancel_async, otherwise we do nothing and let the request normally complete.
1933  * In either case the completion callback must be called. */
1934 void bdrv_aio_cancel_async(BlockAIOCB *acb)
1935 {
1936     if (acb->aiocb_info->cancel_async) {
1937         acb->aiocb_info->cancel_async(acb);
1938     }
1939 }
1940 
1941 /**************************************************************/
1942 /* async block device emulation */
1943 
1944 typedef struct BlockAIOCBSync {
1945     BlockAIOCB common;
1946     QEMUBH *bh;
1947     int ret;
1948     /* vector translation state */
1949     QEMUIOVector *qiov;
1950     uint8_t *bounce;
1951     int is_write;
1952 } BlockAIOCBSync;
1953 
1954 static const AIOCBInfo bdrv_em_aiocb_info = {
1955     .aiocb_size         = sizeof(BlockAIOCBSync),
1956 };
1957 
1958 static void bdrv_aio_bh_cb(void *opaque)
1959 {
1960     BlockAIOCBSync *acb = opaque;
1961 
1962     if (!acb->is_write && acb->ret >= 0) {
1963         qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
1964     }
1965     qemu_vfree(acb->bounce);
1966     acb->common.cb(acb->common.opaque, acb->ret);
1967     qemu_bh_delete(acb->bh);
1968     acb->bh = NULL;
1969     qemu_aio_unref(acb);
1970 }
1971 
1972 static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
1973                                       int64_t sector_num,
1974                                       QEMUIOVector *qiov,
1975                                       int nb_sectors,
1976                                       BlockCompletionFunc *cb,
1977                                       void *opaque,
1978                                       int is_write)
1979 
1980 {
1981     BlockAIOCBSync *acb;
1982 
1983     acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
1984     acb->is_write = is_write;
1985     acb->qiov = qiov;
1986     acb->bounce = qemu_try_blockalign(bs, qiov->size);
1987     acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
1988 
1989     if (acb->bounce == NULL) {
1990         acb->ret = -ENOMEM;
1991     } else if (is_write) {
1992         qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
1993         acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
1994     } else {
1995         acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
1996     }
1997 
1998     qemu_bh_schedule(acb->bh);
1999 
2000     return &acb->common;
2001 }
2002 
2003 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
2004         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2005         BlockCompletionFunc *cb, void *opaque)
2006 {
2007     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
2008 }
2009 
2010 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
2011         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2012         BlockCompletionFunc *cb, void *opaque)
2013 {
2014     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
2015 }
2016 
2017 
2018 typedef struct BlockAIOCBCoroutine {
2019     BlockAIOCB common;
2020     BlockRequest req;
2021     bool is_write;
2022     bool need_bh;
2023     bool *done;
2024     QEMUBH* bh;
2025 } BlockAIOCBCoroutine;
2026 
2027 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2028     .aiocb_size         = sizeof(BlockAIOCBCoroutine),
2029 };
2030 
2031 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2032 {
2033     if (!acb->need_bh) {
2034         acb->common.cb(acb->common.opaque, acb->req.error);
2035         qemu_aio_unref(acb);
2036     }
2037 }
2038 
2039 static void bdrv_co_em_bh(void *opaque)
2040 {
2041     BlockAIOCBCoroutine *acb = opaque;
2042 
2043     assert(!acb->need_bh);
2044     qemu_bh_delete(acb->bh);
2045     bdrv_co_complete(acb);
2046 }
2047 
2048 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2049 {
2050     acb->need_bh = false;
2051     if (acb->req.error != -EINPROGRESS) {
2052         BlockDriverState *bs = acb->common.bs;
2053 
2054         acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2055         qemu_bh_schedule(acb->bh);
2056     }
2057 }
2058 
2059 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2060 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2061 {
2062     BlockAIOCBCoroutine *acb = opaque;
2063     BlockDriverState *bs = acb->common.bs;
2064 
2065     if (!acb->is_write) {
2066         acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2067             acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2068     } else {
2069         acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2070             acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2071     }
2072 
2073     bdrv_co_complete(acb);
2074 }
2075 
2076 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2077                                          int64_t sector_num,
2078                                          QEMUIOVector *qiov,
2079                                          int nb_sectors,
2080                                          BdrvRequestFlags flags,
2081                                          BlockCompletionFunc *cb,
2082                                          void *opaque,
2083                                          bool is_write)
2084 {
2085     Coroutine *co;
2086     BlockAIOCBCoroutine *acb;
2087 
2088     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2089     acb->need_bh = true;
2090     acb->req.error = -EINPROGRESS;
2091     acb->req.sector = sector_num;
2092     acb->req.nb_sectors = nb_sectors;
2093     acb->req.qiov = qiov;
2094     acb->req.flags = flags;
2095     acb->is_write = is_write;
2096 
2097     co = qemu_coroutine_create(bdrv_co_do_rw);
2098     qemu_coroutine_enter(co, acb);
2099 
2100     bdrv_co_maybe_schedule_bh(acb);
2101     return &acb->common;
2102 }
2103 
2104 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2105 {
2106     BlockAIOCBCoroutine *acb = opaque;
2107     BlockDriverState *bs = acb->common.bs;
2108 
2109     acb->req.error = bdrv_co_flush(bs);
2110     bdrv_co_complete(acb);
2111 }
2112 
2113 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2114         BlockCompletionFunc *cb, void *opaque)
2115 {
2116     trace_bdrv_aio_flush(bs, opaque);
2117 
2118     Coroutine *co;
2119     BlockAIOCBCoroutine *acb;
2120 
2121     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2122     acb->need_bh = true;
2123     acb->req.error = -EINPROGRESS;
2124 
2125     co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2126     qemu_coroutine_enter(co, acb);
2127 
2128     bdrv_co_maybe_schedule_bh(acb);
2129     return &acb->common;
2130 }
2131 
2132 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2133 {
2134     BlockAIOCBCoroutine *acb = opaque;
2135     BlockDriverState *bs = acb->common.bs;
2136 
2137     acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2138     bdrv_co_complete(acb);
2139 }
2140 
2141 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2142         int64_t sector_num, int nb_sectors,
2143         BlockCompletionFunc *cb, void *opaque)
2144 {
2145     Coroutine *co;
2146     BlockAIOCBCoroutine *acb;
2147 
2148     trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2149 
2150     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2151     acb->need_bh = true;
2152     acb->req.error = -EINPROGRESS;
2153     acb->req.sector = sector_num;
2154     acb->req.nb_sectors = nb_sectors;
2155     co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2156     qemu_coroutine_enter(co, acb);
2157 
2158     bdrv_co_maybe_schedule_bh(acb);
2159     return &acb->common;
2160 }
2161 
2162 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2163                    BlockCompletionFunc *cb, void *opaque)
2164 {
2165     BlockAIOCB *acb;
2166 
2167     acb = g_slice_alloc(aiocb_info->aiocb_size);
2168     acb->aiocb_info = aiocb_info;
2169     acb->bs = bs;
2170     acb->cb = cb;
2171     acb->opaque = opaque;
2172     acb->refcnt = 1;
2173     return acb;
2174 }
2175 
2176 void qemu_aio_ref(void *p)
2177 {
2178     BlockAIOCB *acb = p;
2179     acb->refcnt++;
2180 }
2181 
2182 void qemu_aio_unref(void *p)
2183 {
2184     BlockAIOCB *acb = p;
2185     assert(acb->refcnt > 0);
2186     if (--acb->refcnt == 0) {
2187         g_slice_free1(acb->aiocb_info->aiocb_size, acb);
2188     }
2189 }
2190 
2191 /**************************************************************/
2192 /* Coroutine block device emulation */
2193 
2194 typedef struct CoroutineIOCompletion {
2195     Coroutine *coroutine;
2196     int ret;
2197 } CoroutineIOCompletion;
2198 
2199 static void bdrv_co_io_em_complete(void *opaque, int ret)
2200 {
2201     CoroutineIOCompletion *co = opaque;
2202 
2203     co->ret = ret;
2204     qemu_coroutine_enter(co->coroutine, NULL);
2205 }
2206 
2207 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2208                                       int nb_sectors, QEMUIOVector *iov,
2209                                       bool is_write)
2210 {
2211     CoroutineIOCompletion co = {
2212         .coroutine = qemu_coroutine_self(),
2213     };
2214     BlockAIOCB *acb;
2215 
2216     if (is_write) {
2217         acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2218                                        bdrv_co_io_em_complete, &co);
2219     } else {
2220         acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2221                                       bdrv_co_io_em_complete, &co);
2222     }
2223 
2224     trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2225     if (!acb) {
2226         return -EIO;
2227     }
2228     qemu_coroutine_yield();
2229 
2230     return co.ret;
2231 }
2232 
2233 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2234                                          int64_t sector_num, int nb_sectors,
2235                                          QEMUIOVector *iov)
2236 {
2237     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2238 }
2239 
2240 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2241                                          int64_t sector_num, int nb_sectors,
2242                                          QEMUIOVector *iov)
2243 {
2244     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2245 }
2246 
2247 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2248 {
2249     RwCo *rwco = opaque;
2250 
2251     rwco->ret = bdrv_co_flush(rwco->bs);
2252 }
2253 
2254 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2255 {
2256     int ret;
2257 
2258     if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2259         return 0;
2260     }
2261 
2262     /* Write back cached data to the OS even with cache=unsafe */
2263     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2264     if (bs->drv->bdrv_co_flush_to_os) {
2265         ret = bs->drv->bdrv_co_flush_to_os(bs);
2266         if (ret < 0) {
2267             return ret;
2268         }
2269     }
2270 
2271     /* But don't actually force it to the disk with cache=unsafe */
2272     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2273         goto flush_parent;
2274     }
2275 
2276     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2277     if (bs->drv->bdrv_co_flush_to_disk) {
2278         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2279     } else if (bs->drv->bdrv_aio_flush) {
2280         BlockAIOCB *acb;
2281         CoroutineIOCompletion co = {
2282             .coroutine = qemu_coroutine_self(),
2283         };
2284 
2285         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2286         if (acb == NULL) {
2287             ret = -EIO;
2288         } else {
2289             qemu_coroutine_yield();
2290             ret = co.ret;
2291         }
2292     } else {
2293         /*
2294          * Some block drivers always operate in either writethrough or unsafe
2295          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2296          * know how the server works (because the behaviour is hardcoded or
2297          * depends on server-side configuration), so we can't ensure that
2298          * everything is safe on disk. Returning an error doesn't work because
2299          * that would break guests even if the server operates in writethrough
2300          * mode.
2301          *
2302          * Let's hope the user knows what he's doing.
2303          */
2304         ret = 0;
2305     }
2306     if (ret < 0) {
2307         return ret;
2308     }
2309 
2310     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2311      * in the case of cache=unsafe, so there are no useless flushes.
2312      */
2313 flush_parent:
2314     return bdrv_co_flush(bs->file);
2315 }
2316 
2317 int bdrv_flush(BlockDriverState *bs)
2318 {
2319     Coroutine *co;
2320     RwCo rwco = {
2321         .bs = bs,
2322         .ret = NOT_DONE,
2323     };
2324 
2325     if (qemu_in_coroutine()) {
2326         /* Fast-path if already in coroutine context */
2327         bdrv_flush_co_entry(&rwco);
2328     } else {
2329         AioContext *aio_context = bdrv_get_aio_context(bs);
2330 
2331         co = qemu_coroutine_create(bdrv_flush_co_entry);
2332         qemu_coroutine_enter(co, &rwco);
2333         while (rwco.ret == NOT_DONE) {
2334             aio_poll(aio_context, true);
2335         }
2336     }
2337 
2338     return rwco.ret;
2339 }
2340 
2341 typedef struct DiscardCo {
2342     BlockDriverState *bs;
2343     int64_t sector_num;
2344     int nb_sectors;
2345     int ret;
2346 } DiscardCo;
2347 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2348 {
2349     DiscardCo *rwco = opaque;
2350 
2351     rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2352 }
2353 
2354 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2355                                  int nb_sectors)
2356 {
2357     int max_discard, ret;
2358 
2359     if (!bs->drv) {
2360         return -ENOMEDIUM;
2361     }
2362 
2363     ret = bdrv_check_request(bs, sector_num, nb_sectors);
2364     if (ret < 0) {
2365         return ret;
2366     } else if (bs->read_only) {
2367         return -EPERM;
2368     }
2369 
2370     bdrv_reset_dirty(bs, sector_num, nb_sectors);
2371 
2372     /* Do nothing if disabled.  */
2373     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2374         return 0;
2375     }
2376 
2377     if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2378         return 0;
2379     }
2380 
2381     max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2382     while (nb_sectors > 0) {
2383         int ret;
2384         int num = nb_sectors;
2385 
2386         /* align request */
2387         if (bs->bl.discard_alignment &&
2388             num >= bs->bl.discard_alignment &&
2389             sector_num % bs->bl.discard_alignment) {
2390             if (num > bs->bl.discard_alignment) {
2391                 num = bs->bl.discard_alignment;
2392             }
2393             num -= sector_num % bs->bl.discard_alignment;
2394         }
2395 
2396         /* limit request size */
2397         if (num > max_discard) {
2398             num = max_discard;
2399         }
2400 
2401         if (bs->drv->bdrv_co_discard) {
2402             ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2403         } else {
2404             BlockAIOCB *acb;
2405             CoroutineIOCompletion co = {
2406                 .coroutine = qemu_coroutine_self(),
2407             };
2408 
2409             acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2410                                             bdrv_co_io_em_complete, &co);
2411             if (acb == NULL) {
2412                 return -EIO;
2413             } else {
2414                 qemu_coroutine_yield();
2415                 ret = co.ret;
2416             }
2417         }
2418         if (ret && ret != -ENOTSUP) {
2419             return ret;
2420         }
2421 
2422         sector_num += num;
2423         nb_sectors -= num;
2424     }
2425     return 0;
2426 }
2427 
2428 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2429 {
2430     Coroutine *co;
2431     DiscardCo rwco = {
2432         .bs = bs,
2433         .sector_num = sector_num,
2434         .nb_sectors = nb_sectors,
2435         .ret = NOT_DONE,
2436     };
2437 
2438     if (qemu_in_coroutine()) {
2439         /* Fast-path if already in coroutine context */
2440         bdrv_discard_co_entry(&rwco);
2441     } else {
2442         AioContext *aio_context = bdrv_get_aio_context(bs);
2443 
2444         co = qemu_coroutine_create(bdrv_discard_co_entry);
2445         qemu_coroutine_enter(co, &rwco);
2446         while (rwco.ret == NOT_DONE) {
2447             aio_poll(aio_context, true);
2448         }
2449     }
2450 
2451     return rwco.ret;
2452 }
2453 
2454 /* needed for generic scsi interface */
2455 
2456 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2457 {
2458     BlockDriver *drv = bs->drv;
2459 
2460     if (drv && drv->bdrv_ioctl)
2461         return drv->bdrv_ioctl(bs, req, buf);
2462     return -ENOTSUP;
2463 }
2464 
2465 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2466         unsigned long int req, void *buf,
2467         BlockCompletionFunc *cb, void *opaque)
2468 {
2469     BlockDriver *drv = bs->drv;
2470 
2471     if (drv && drv->bdrv_aio_ioctl)
2472         return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
2473     return NULL;
2474 }
2475 
2476 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2477 {
2478     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2479 }
2480 
2481 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2482 {
2483     return memset(qemu_blockalign(bs, size), 0, size);
2484 }
2485 
2486 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2487 {
2488     size_t align = bdrv_opt_mem_align(bs);
2489 
2490     /* Ensure that NULL is never returned on success */
2491     assert(align > 0);
2492     if (size == 0) {
2493         size = align;
2494     }
2495 
2496     return qemu_try_memalign(align, size);
2497 }
2498 
2499 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2500 {
2501     void *mem = qemu_try_blockalign(bs, size);
2502 
2503     if (mem) {
2504         memset(mem, 0, size);
2505     }
2506 
2507     return mem;
2508 }
2509 
2510 /*
2511  * Check if all memory in this vector is sector aligned.
2512  */
2513 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2514 {
2515     int i;
2516     size_t alignment = bdrv_min_mem_align(bs);
2517 
2518     for (i = 0; i < qiov->niov; i++) {
2519         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2520             return false;
2521         }
2522         if (qiov->iov[i].iov_len % alignment) {
2523             return false;
2524         }
2525     }
2526 
2527     return true;
2528 }
2529 
2530 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2531                                     NotifierWithReturn *notifier)
2532 {
2533     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2534 }
2535 
2536 void bdrv_io_plug(BlockDriverState *bs)
2537 {
2538     BlockDriver *drv = bs->drv;
2539     if (drv && drv->bdrv_io_plug) {
2540         drv->bdrv_io_plug(bs);
2541     } else if (bs->file) {
2542         bdrv_io_plug(bs->file);
2543     }
2544 }
2545 
2546 void bdrv_io_unplug(BlockDriverState *bs)
2547 {
2548     BlockDriver *drv = bs->drv;
2549     if (drv && drv->bdrv_io_unplug) {
2550         drv->bdrv_io_unplug(bs);
2551     } else if (bs->file) {
2552         bdrv_io_unplug(bs->file);
2553     }
2554 }
2555 
2556 void bdrv_flush_io_queue(BlockDriverState *bs)
2557 {
2558     BlockDriver *drv = bs->drv;
2559     if (drv && drv->bdrv_flush_io_queue) {
2560         drv->bdrv_flush_io_queue(bs);
2561     } else if (bs->file) {
2562         bdrv_flush_io_queue(bs->file);
2563     }
2564 }
2565