1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "trace.h" 26 #include "block/blockjob.h" 27 #include "block/block_int.h" 28 #include "block/throttle-groups.h" 29 30 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 31 32 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 33 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 34 BlockCompletionFunc *cb, void *opaque); 35 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 36 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 37 BlockCompletionFunc *cb, void *opaque); 38 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 39 int64_t sector_num, int nb_sectors, 40 QEMUIOVector *iov); 41 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 42 int64_t sector_num, int nb_sectors, 43 QEMUIOVector *iov); 44 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs, 45 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 46 BdrvRequestFlags flags); 47 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs, 48 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 49 BdrvRequestFlags flags); 50 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 51 int64_t sector_num, 52 QEMUIOVector *qiov, 53 int nb_sectors, 54 BdrvRequestFlags flags, 55 BlockCompletionFunc *cb, 56 void *opaque, 57 bool is_write); 58 static void coroutine_fn bdrv_co_do_rw(void *opaque); 59 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 60 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags); 61 62 /* throttling disk I/O limits */ 63 void bdrv_set_io_limits(BlockDriverState *bs, 64 ThrottleConfig *cfg) 65 { 66 int i; 67 68 throttle_group_config(bs, cfg); 69 70 for (i = 0; i < 2; i++) { 71 qemu_co_enter_next(&bs->throttled_reqs[i]); 72 } 73 } 74 75 /* this function drain all the throttled IOs */ 76 static bool bdrv_start_throttled_reqs(BlockDriverState *bs) 77 { 78 bool drained = false; 79 bool enabled = bs->io_limits_enabled; 80 int i; 81 82 bs->io_limits_enabled = false; 83 84 for (i = 0; i < 2; i++) { 85 while (qemu_co_enter_next(&bs->throttled_reqs[i])) { 86 drained = true; 87 } 88 } 89 90 bs->io_limits_enabled = enabled; 91 92 return drained; 93 } 94 95 void bdrv_io_limits_disable(BlockDriverState *bs) 96 { 97 bs->io_limits_enabled = false; 98 bdrv_start_throttled_reqs(bs); 99 throttle_group_unregister_bs(bs); 100 } 101 102 /* should be called before bdrv_set_io_limits if a limit is set */ 103 void bdrv_io_limits_enable(BlockDriverState *bs, const char *group) 104 { 105 assert(!bs->io_limits_enabled); 106 throttle_group_register_bs(bs, group); 107 bs->io_limits_enabled = true; 108 } 109 110 void bdrv_io_limits_update_group(BlockDriverState *bs, const char *group) 111 { 112 /* this bs is not part of any group */ 113 if (!bs->throttle_state) { 114 return; 115 } 116 117 /* this bs is a part of the same group than the one we want */ 118 if (!g_strcmp0(throttle_group_get_name(bs), group)) { 119 return; 120 } 121 122 /* need to change the group this bs belong to */ 123 bdrv_io_limits_disable(bs); 124 bdrv_io_limits_enable(bs, group); 125 } 126 127 void bdrv_setup_io_funcs(BlockDriver *bdrv) 128 { 129 /* Block drivers without coroutine functions need emulation */ 130 if (!bdrv->bdrv_co_readv) { 131 bdrv->bdrv_co_readv = bdrv_co_readv_em; 132 bdrv->bdrv_co_writev = bdrv_co_writev_em; 133 134 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 135 * the block driver lacks aio we need to emulate that too. 136 */ 137 if (!bdrv->bdrv_aio_readv) { 138 /* add AIO emulation layer */ 139 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 140 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 141 } 142 } 143 } 144 145 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 146 { 147 BlockDriver *drv = bs->drv; 148 Error *local_err = NULL; 149 150 memset(&bs->bl, 0, sizeof(bs->bl)); 151 152 if (!drv) { 153 return; 154 } 155 156 /* Take some limits from the children as a default */ 157 if (bs->file) { 158 bdrv_refresh_limits(bs->file, &local_err); 159 if (local_err) { 160 error_propagate(errp, local_err); 161 return; 162 } 163 bs->bl.opt_transfer_length = bs->file->bl.opt_transfer_length; 164 bs->bl.max_transfer_length = bs->file->bl.max_transfer_length; 165 bs->bl.min_mem_alignment = bs->file->bl.min_mem_alignment; 166 bs->bl.opt_mem_alignment = bs->file->bl.opt_mem_alignment; 167 } else { 168 bs->bl.min_mem_alignment = 512; 169 bs->bl.opt_mem_alignment = getpagesize(); 170 } 171 172 if (bs->backing_hd) { 173 bdrv_refresh_limits(bs->backing_hd, &local_err); 174 if (local_err) { 175 error_propagate(errp, local_err); 176 return; 177 } 178 bs->bl.opt_transfer_length = 179 MAX(bs->bl.opt_transfer_length, 180 bs->backing_hd->bl.opt_transfer_length); 181 bs->bl.max_transfer_length = 182 MIN_NON_ZERO(bs->bl.max_transfer_length, 183 bs->backing_hd->bl.max_transfer_length); 184 bs->bl.opt_mem_alignment = 185 MAX(bs->bl.opt_mem_alignment, 186 bs->backing_hd->bl.opt_mem_alignment); 187 bs->bl.min_mem_alignment = 188 MAX(bs->bl.min_mem_alignment, 189 bs->backing_hd->bl.min_mem_alignment); 190 } 191 192 /* Then let the driver override it */ 193 if (drv->bdrv_refresh_limits) { 194 drv->bdrv_refresh_limits(bs, errp); 195 } 196 } 197 198 /** 199 * The copy-on-read flag is actually a reference count so multiple users may 200 * use the feature without worrying about clobbering its previous state. 201 * Copy-on-read stays enabled until all users have called to disable it. 202 */ 203 void bdrv_enable_copy_on_read(BlockDriverState *bs) 204 { 205 bs->copy_on_read++; 206 } 207 208 void bdrv_disable_copy_on_read(BlockDriverState *bs) 209 { 210 assert(bs->copy_on_read > 0); 211 bs->copy_on_read--; 212 } 213 214 /* Check if any requests are in-flight (including throttled requests) */ 215 static bool bdrv_requests_pending(BlockDriverState *bs) 216 { 217 if (!QLIST_EMPTY(&bs->tracked_requests)) { 218 return true; 219 } 220 if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) { 221 return true; 222 } 223 if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) { 224 return true; 225 } 226 if (bs->file && bdrv_requests_pending(bs->file)) { 227 return true; 228 } 229 if (bs->backing_hd && bdrv_requests_pending(bs->backing_hd)) { 230 return true; 231 } 232 return false; 233 } 234 235 static bool bdrv_drain_one(BlockDriverState *bs) 236 { 237 bool bs_busy; 238 239 bdrv_flush_io_queue(bs); 240 bdrv_start_throttled_reqs(bs); 241 bs_busy = bdrv_requests_pending(bs); 242 bs_busy |= aio_poll(bdrv_get_aio_context(bs), bs_busy); 243 return bs_busy; 244 } 245 246 /* 247 * Wait for pending requests to complete on a single BlockDriverState subtree 248 * 249 * See the warning in bdrv_drain_all(). This function can only be called if 250 * you are sure nothing can generate I/O because you have op blockers 251 * installed. 252 * 253 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 254 * AioContext. 255 */ 256 void bdrv_drain(BlockDriverState *bs) 257 { 258 while (bdrv_drain_one(bs)) { 259 /* Keep iterating */ 260 } 261 } 262 263 /* 264 * Wait for pending requests to complete across all BlockDriverStates 265 * 266 * This function does not flush data to disk, use bdrv_flush_all() for that 267 * after calling this function. 268 * 269 * Note that completion of an asynchronous I/O operation can trigger any 270 * number of other I/O operations on other devices---for example a coroutine 271 * can be arbitrarily complex and a constant flow of I/O can come until the 272 * coroutine is complete. Because of this, it is not possible to have a 273 * function to drain a single device's I/O queue. 274 */ 275 void bdrv_drain_all(void) 276 { 277 /* Always run first iteration so any pending completion BHs run */ 278 bool busy = true; 279 BlockDriverState *bs = NULL; 280 281 while ((bs = bdrv_next(bs))) { 282 AioContext *aio_context = bdrv_get_aio_context(bs); 283 284 aio_context_acquire(aio_context); 285 if (bs->job) { 286 block_job_pause(bs->job); 287 } 288 aio_context_release(aio_context); 289 } 290 291 while (busy) { 292 busy = false; 293 bs = NULL; 294 295 while ((bs = bdrv_next(bs))) { 296 AioContext *aio_context = bdrv_get_aio_context(bs); 297 298 aio_context_acquire(aio_context); 299 busy |= bdrv_drain_one(bs); 300 aio_context_release(aio_context); 301 } 302 } 303 304 bs = NULL; 305 while ((bs = bdrv_next(bs))) { 306 AioContext *aio_context = bdrv_get_aio_context(bs); 307 308 aio_context_acquire(aio_context); 309 if (bs->job) { 310 block_job_resume(bs->job); 311 } 312 aio_context_release(aio_context); 313 } 314 } 315 316 /** 317 * Remove an active request from the tracked requests list 318 * 319 * This function should be called when a tracked request is completing. 320 */ 321 static void tracked_request_end(BdrvTrackedRequest *req) 322 { 323 if (req->serialising) { 324 req->bs->serialising_in_flight--; 325 } 326 327 QLIST_REMOVE(req, list); 328 qemu_co_queue_restart_all(&req->wait_queue); 329 } 330 331 /** 332 * Add an active request to the tracked requests list 333 */ 334 static void tracked_request_begin(BdrvTrackedRequest *req, 335 BlockDriverState *bs, 336 int64_t offset, 337 unsigned int bytes, bool is_write) 338 { 339 *req = (BdrvTrackedRequest){ 340 .bs = bs, 341 .offset = offset, 342 .bytes = bytes, 343 .is_write = is_write, 344 .co = qemu_coroutine_self(), 345 .serialising = false, 346 .overlap_offset = offset, 347 .overlap_bytes = bytes, 348 }; 349 350 qemu_co_queue_init(&req->wait_queue); 351 352 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 353 } 354 355 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 356 { 357 int64_t overlap_offset = req->offset & ~(align - 1); 358 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 359 - overlap_offset; 360 361 if (!req->serialising) { 362 req->bs->serialising_in_flight++; 363 req->serialising = true; 364 } 365 366 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 367 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 368 } 369 370 /** 371 * Round a region to cluster boundaries 372 */ 373 void bdrv_round_to_clusters(BlockDriverState *bs, 374 int64_t sector_num, int nb_sectors, 375 int64_t *cluster_sector_num, 376 int *cluster_nb_sectors) 377 { 378 BlockDriverInfo bdi; 379 380 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 381 *cluster_sector_num = sector_num; 382 *cluster_nb_sectors = nb_sectors; 383 } else { 384 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 385 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 386 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 387 nb_sectors, c); 388 } 389 } 390 391 static int bdrv_get_cluster_size(BlockDriverState *bs) 392 { 393 BlockDriverInfo bdi; 394 int ret; 395 396 ret = bdrv_get_info(bs, &bdi); 397 if (ret < 0 || bdi.cluster_size == 0) { 398 return bs->request_alignment; 399 } else { 400 return bdi.cluster_size; 401 } 402 } 403 404 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 405 int64_t offset, unsigned int bytes) 406 { 407 /* aaaa bbbb */ 408 if (offset >= req->overlap_offset + req->overlap_bytes) { 409 return false; 410 } 411 /* bbbb aaaa */ 412 if (req->overlap_offset >= offset + bytes) { 413 return false; 414 } 415 return true; 416 } 417 418 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 419 { 420 BlockDriverState *bs = self->bs; 421 BdrvTrackedRequest *req; 422 bool retry; 423 bool waited = false; 424 425 if (!bs->serialising_in_flight) { 426 return false; 427 } 428 429 do { 430 retry = false; 431 QLIST_FOREACH(req, &bs->tracked_requests, list) { 432 if (req == self || (!req->serialising && !self->serialising)) { 433 continue; 434 } 435 if (tracked_request_overlaps(req, self->overlap_offset, 436 self->overlap_bytes)) 437 { 438 /* Hitting this means there was a reentrant request, for 439 * example, a block driver issuing nested requests. This must 440 * never happen since it means deadlock. 441 */ 442 assert(qemu_coroutine_self() != req->co); 443 444 /* If the request is already (indirectly) waiting for us, or 445 * will wait for us as soon as it wakes up, then just go on 446 * (instead of producing a deadlock in the former case). */ 447 if (!req->waiting_for) { 448 self->waiting_for = req; 449 qemu_co_queue_wait(&req->wait_queue); 450 self->waiting_for = NULL; 451 retry = true; 452 waited = true; 453 break; 454 } 455 } 456 } 457 } while (retry); 458 459 return waited; 460 } 461 462 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 463 size_t size) 464 { 465 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 466 return -EIO; 467 } 468 469 if (!bdrv_is_inserted(bs)) { 470 return -ENOMEDIUM; 471 } 472 473 if (offset < 0) { 474 return -EIO; 475 } 476 477 return 0; 478 } 479 480 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 481 int nb_sectors) 482 { 483 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 484 return -EIO; 485 } 486 487 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 488 nb_sectors * BDRV_SECTOR_SIZE); 489 } 490 491 typedef struct RwCo { 492 BlockDriverState *bs; 493 int64_t offset; 494 QEMUIOVector *qiov; 495 bool is_write; 496 int ret; 497 BdrvRequestFlags flags; 498 } RwCo; 499 500 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 501 { 502 RwCo *rwco = opaque; 503 504 if (!rwco->is_write) { 505 rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset, 506 rwco->qiov->size, rwco->qiov, 507 rwco->flags); 508 } else { 509 rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset, 510 rwco->qiov->size, rwco->qiov, 511 rwco->flags); 512 } 513 } 514 515 /* 516 * Process a vectored synchronous request using coroutines 517 */ 518 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset, 519 QEMUIOVector *qiov, bool is_write, 520 BdrvRequestFlags flags) 521 { 522 Coroutine *co; 523 RwCo rwco = { 524 .bs = bs, 525 .offset = offset, 526 .qiov = qiov, 527 .is_write = is_write, 528 .ret = NOT_DONE, 529 .flags = flags, 530 }; 531 532 /** 533 * In sync call context, when the vcpu is blocked, this throttling timer 534 * will not fire; so the I/O throttling function has to be disabled here 535 * if it has been enabled. 536 */ 537 if (bs->io_limits_enabled) { 538 fprintf(stderr, "Disabling I/O throttling on '%s' due " 539 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 540 bdrv_io_limits_disable(bs); 541 } 542 543 if (qemu_in_coroutine()) { 544 /* Fast-path if already in coroutine context */ 545 bdrv_rw_co_entry(&rwco); 546 } else { 547 AioContext *aio_context = bdrv_get_aio_context(bs); 548 549 co = qemu_coroutine_create(bdrv_rw_co_entry); 550 qemu_coroutine_enter(co, &rwco); 551 while (rwco.ret == NOT_DONE) { 552 aio_poll(aio_context, true); 553 } 554 } 555 return rwco.ret; 556 } 557 558 /* 559 * Process a synchronous request using coroutines 560 */ 561 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 562 int nb_sectors, bool is_write, BdrvRequestFlags flags) 563 { 564 QEMUIOVector qiov; 565 struct iovec iov = { 566 .iov_base = (void *)buf, 567 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 568 }; 569 570 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 571 return -EINVAL; 572 } 573 574 qemu_iovec_init_external(&qiov, &iov, 1); 575 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS, 576 &qiov, is_write, flags); 577 } 578 579 /* return < 0 if error. See bdrv_write() for the return codes */ 580 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 581 uint8_t *buf, int nb_sectors) 582 { 583 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0); 584 } 585 586 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 587 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 588 uint8_t *buf, int nb_sectors) 589 { 590 bool enabled; 591 int ret; 592 593 enabled = bs->io_limits_enabled; 594 bs->io_limits_enabled = false; 595 ret = bdrv_read(bs, sector_num, buf, nb_sectors); 596 bs->io_limits_enabled = enabled; 597 return ret; 598 } 599 600 /* Return < 0 if error. Important errors are: 601 -EIO generic I/O error (may happen for all errors) 602 -ENOMEDIUM No media inserted. 603 -EINVAL Invalid sector number or nb_sectors 604 -EACCES Trying to write a read-only device 605 */ 606 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 607 const uint8_t *buf, int nb_sectors) 608 { 609 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 610 } 611 612 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num, 613 int nb_sectors, BdrvRequestFlags flags) 614 { 615 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true, 616 BDRV_REQ_ZERO_WRITE | flags); 617 } 618 619 /* 620 * Completely zero out a block device with the help of bdrv_write_zeroes. 621 * The operation is sped up by checking the block status and only writing 622 * zeroes to the device if they currently do not return zeroes. Optional 623 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP). 624 * 625 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 626 */ 627 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags) 628 { 629 int64_t target_sectors, ret, nb_sectors, sector_num = 0; 630 int n; 631 632 target_sectors = bdrv_nb_sectors(bs); 633 if (target_sectors < 0) { 634 return target_sectors; 635 } 636 637 for (;;) { 638 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS); 639 if (nb_sectors <= 0) { 640 return 0; 641 } 642 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n); 643 if (ret < 0) { 644 error_report("error getting block status at sector %" PRId64 ": %s", 645 sector_num, strerror(-ret)); 646 return ret; 647 } 648 if (ret & BDRV_BLOCK_ZERO) { 649 sector_num += n; 650 continue; 651 } 652 ret = bdrv_write_zeroes(bs, sector_num, n, flags); 653 if (ret < 0) { 654 error_report("error writing zeroes at sector %" PRId64 ": %s", 655 sector_num, strerror(-ret)); 656 return ret; 657 } 658 sector_num += n; 659 } 660 } 661 662 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes) 663 { 664 QEMUIOVector qiov; 665 struct iovec iov = { 666 .iov_base = (void *)buf, 667 .iov_len = bytes, 668 }; 669 int ret; 670 671 if (bytes < 0) { 672 return -EINVAL; 673 } 674 675 qemu_iovec_init_external(&qiov, &iov, 1); 676 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0); 677 if (ret < 0) { 678 return ret; 679 } 680 681 return bytes; 682 } 683 684 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov) 685 { 686 int ret; 687 688 ret = bdrv_prwv_co(bs, offset, qiov, true, 0); 689 if (ret < 0) { 690 return ret; 691 } 692 693 return qiov->size; 694 } 695 696 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 697 const void *buf, int bytes) 698 { 699 QEMUIOVector qiov; 700 struct iovec iov = { 701 .iov_base = (void *) buf, 702 .iov_len = bytes, 703 }; 704 705 if (bytes < 0) { 706 return -EINVAL; 707 } 708 709 qemu_iovec_init_external(&qiov, &iov, 1); 710 return bdrv_pwritev(bs, offset, &qiov); 711 } 712 713 /* 714 * Writes to the file and ensures that no writes are reordered across this 715 * request (acts as a barrier) 716 * 717 * Returns 0 on success, -errno in error cases. 718 */ 719 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 720 const void *buf, int count) 721 { 722 int ret; 723 724 ret = bdrv_pwrite(bs, offset, buf, count); 725 if (ret < 0) { 726 return ret; 727 } 728 729 /* No flush needed for cache modes that already do it */ 730 if (bs->enable_write_cache) { 731 bdrv_flush(bs); 732 } 733 734 return 0; 735 } 736 737 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 738 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 739 { 740 /* Perform I/O through a temporary buffer so that users who scribble over 741 * their read buffer while the operation is in progress do not end up 742 * modifying the image file. This is critical for zero-copy guest I/O 743 * where anything might happen inside guest memory. 744 */ 745 void *bounce_buffer; 746 747 BlockDriver *drv = bs->drv; 748 struct iovec iov; 749 QEMUIOVector bounce_qiov; 750 int64_t cluster_sector_num; 751 int cluster_nb_sectors; 752 size_t skip_bytes; 753 int ret; 754 755 /* Cover entire cluster so no additional backing file I/O is required when 756 * allocating cluster in the image file. 757 */ 758 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 759 &cluster_sector_num, &cluster_nb_sectors); 760 761 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 762 cluster_sector_num, cluster_nb_sectors); 763 764 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 765 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len); 766 if (bounce_buffer == NULL) { 767 ret = -ENOMEM; 768 goto err; 769 } 770 771 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 772 773 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 774 &bounce_qiov); 775 if (ret < 0) { 776 goto err; 777 } 778 779 if (drv->bdrv_co_write_zeroes && 780 buffer_is_zero(bounce_buffer, iov.iov_len)) { 781 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 782 cluster_nb_sectors, 0); 783 } else { 784 /* This does not change the data on the disk, it is not necessary 785 * to flush even in cache=writethrough mode. 786 */ 787 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 788 &bounce_qiov); 789 } 790 791 if (ret < 0) { 792 /* It might be okay to ignore write errors for guest requests. If this 793 * is a deliberate copy-on-read then we don't want to ignore the error. 794 * Simply report it in all cases. 795 */ 796 goto err; 797 } 798 799 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 800 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 801 nb_sectors * BDRV_SECTOR_SIZE); 802 803 err: 804 qemu_vfree(bounce_buffer); 805 return ret; 806 } 807 808 /* 809 * Forwards an already correctly aligned request to the BlockDriver. This 810 * handles copy on read and zeroing after EOF; any other features must be 811 * implemented by the caller. 812 */ 813 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs, 814 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 815 int64_t align, QEMUIOVector *qiov, int flags) 816 { 817 BlockDriver *drv = bs->drv; 818 int ret; 819 820 int64_t sector_num = offset >> BDRV_SECTOR_BITS; 821 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS; 822 823 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 824 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 825 assert(!qiov || bytes == qiov->size); 826 827 /* Handle Copy on Read and associated serialisation */ 828 if (flags & BDRV_REQ_COPY_ON_READ) { 829 /* If we touch the same cluster it counts as an overlap. This 830 * guarantees that allocating writes will be serialized and not race 831 * with each other for the same cluster. For example, in copy-on-read 832 * it ensures that the CoR read and write operations are atomic and 833 * guest writes cannot interleave between them. */ 834 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 835 } 836 837 wait_serialising_requests(req); 838 839 if (flags & BDRV_REQ_COPY_ON_READ) { 840 int pnum; 841 842 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum); 843 if (ret < 0) { 844 goto out; 845 } 846 847 if (!ret || pnum != nb_sectors) { 848 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 849 goto out; 850 } 851 } 852 853 /* Forward the request to the BlockDriver */ 854 if (!bs->zero_beyond_eof) { 855 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 856 } else { 857 /* Read zeros after EOF */ 858 int64_t total_sectors, max_nb_sectors; 859 860 total_sectors = bdrv_nb_sectors(bs); 861 if (total_sectors < 0) { 862 ret = total_sectors; 863 goto out; 864 } 865 866 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num), 867 align >> BDRV_SECTOR_BITS); 868 if (nb_sectors < max_nb_sectors) { 869 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 870 } else if (max_nb_sectors > 0) { 871 QEMUIOVector local_qiov; 872 873 qemu_iovec_init(&local_qiov, qiov->niov); 874 qemu_iovec_concat(&local_qiov, qiov, 0, 875 max_nb_sectors * BDRV_SECTOR_SIZE); 876 877 ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors, 878 &local_qiov); 879 880 qemu_iovec_destroy(&local_qiov); 881 } else { 882 ret = 0; 883 } 884 885 /* Reading beyond end of file is supposed to produce zeroes */ 886 if (ret == 0 && total_sectors < sector_num + nb_sectors) { 887 uint64_t offset = MAX(0, total_sectors - sector_num); 888 uint64_t bytes = (sector_num + nb_sectors - offset) * 889 BDRV_SECTOR_SIZE; 890 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes); 891 } 892 } 893 894 out: 895 return ret; 896 } 897 898 /* 899 * Handle a read request in coroutine context 900 */ 901 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs, 902 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 903 BdrvRequestFlags flags) 904 { 905 BlockDriver *drv = bs->drv; 906 BdrvTrackedRequest req; 907 908 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */ 909 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment); 910 uint8_t *head_buf = NULL; 911 uint8_t *tail_buf = NULL; 912 QEMUIOVector local_qiov; 913 bool use_local_qiov = false; 914 int ret; 915 916 if (!drv) { 917 return -ENOMEDIUM; 918 } 919 920 ret = bdrv_check_byte_request(bs, offset, bytes); 921 if (ret < 0) { 922 return ret; 923 } 924 925 if (bs->copy_on_read) { 926 flags |= BDRV_REQ_COPY_ON_READ; 927 } 928 929 /* throttling disk I/O */ 930 if (bs->io_limits_enabled) { 931 throttle_group_co_io_limits_intercept(bs, bytes, false); 932 } 933 934 /* Align read if necessary by padding qiov */ 935 if (offset & (align - 1)) { 936 head_buf = qemu_blockalign(bs, align); 937 qemu_iovec_init(&local_qiov, qiov->niov + 2); 938 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 939 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 940 use_local_qiov = true; 941 942 bytes += offset & (align - 1); 943 offset = offset & ~(align - 1); 944 } 945 946 if ((offset + bytes) & (align - 1)) { 947 if (!use_local_qiov) { 948 qemu_iovec_init(&local_qiov, qiov->niov + 1); 949 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 950 use_local_qiov = true; 951 } 952 tail_buf = qemu_blockalign(bs, align); 953 qemu_iovec_add(&local_qiov, tail_buf, 954 align - ((offset + bytes) & (align - 1))); 955 956 bytes = ROUND_UP(bytes, align); 957 } 958 959 tracked_request_begin(&req, bs, offset, bytes, false); 960 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align, 961 use_local_qiov ? &local_qiov : qiov, 962 flags); 963 tracked_request_end(&req); 964 965 if (use_local_qiov) { 966 qemu_iovec_destroy(&local_qiov); 967 qemu_vfree(head_buf); 968 qemu_vfree(tail_buf); 969 } 970 971 return ret; 972 } 973 974 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 975 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 976 BdrvRequestFlags flags) 977 { 978 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 979 return -EINVAL; 980 } 981 982 return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS, 983 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 984 } 985 986 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 987 int nb_sectors, QEMUIOVector *qiov) 988 { 989 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 990 991 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 992 } 993 994 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 995 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 996 { 997 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 998 999 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 1000 BDRV_REQ_COPY_ON_READ); 1001 } 1002 1003 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768 1004 1005 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 1006 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags) 1007 { 1008 BlockDriver *drv = bs->drv; 1009 QEMUIOVector qiov; 1010 struct iovec iov = {0}; 1011 int ret = 0; 1012 1013 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes, 1014 BDRV_REQUEST_MAX_SECTORS); 1015 1016 while (nb_sectors > 0 && !ret) { 1017 int num = nb_sectors; 1018 1019 /* Align request. Block drivers can expect the "bulk" of the request 1020 * to be aligned. 1021 */ 1022 if (bs->bl.write_zeroes_alignment 1023 && num > bs->bl.write_zeroes_alignment) { 1024 if (sector_num % bs->bl.write_zeroes_alignment != 0) { 1025 /* Make a small request up to the first aligned sector. */ 1026 num = bs->bl.write_zeroes_alignment; 1027 num -= sector_num % bs->bl.write_zeroes_alignment; 1028 } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) { 1029 /* Shorten the request to the last aligned sector. num cannot 1030 * underflow because num > bs->bl.write_zeroes_alignment. 1031 */ 1032 num -= (sector_num + num) % bs->bl.write_zeroes_alignment; 1033 } 1034 } 1035 1036 /* limit request size */ 1037 if (num > max_write_zeroes) { 1038 num = max_write_zeroes; 1039 } 1040 1041 ret = -ENOTSUP; 1042 /* First try the efficient write zeroes operation */ 1043 if (drv->bdrv_co_write_zeroes) { 1044 ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags); 1045 } 1046 1047 if (ret == -ENOTSUP) { 1048 /* Fall back to bounce buffer if write zeroes is unsupported */ 1049 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length, 1050 MAX_WRITE_ZEROES_BOUNCE_BUFFER); 1051 num = MIN(num, max_xfer_len); 1052 iov.iov_len = num * BDRV_SECTOR_SIZE; 1053 if (iov.iov_base == NULL) { 1054 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE); 1055 if (iov.iov_base == NULL) { 1056 ret = -ENOMEM; 1057 goto fail; 1058 } 1059 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE); 1060 } 1061 qemu_iovec_init_external(&qiov, &iov, 1); 1062 1063 ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov); 1064 1065 /* Keep bounce buffer around if it is big enough for all 1066 * all future requests. 1067 */ 1068 if (num < max_xfer_len) { 1069 qemu_vfree(iov.iov_base); 1070 iov.iov_base = NULL; 1071 } 1072 } 1073 1074 sector_num += num; 1075 nb_sectors -= num; 1076 } 1077 1078 fail: 1079 qemu_vfree(iov.iov_base); 1080 return ret; 1081 } 1082 1083 /* 1084 * Forwards an already correctly aligned write request to the BlockDriver. 1085 */ 1086 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs, 1087 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1088 QEMUIOVector *qiov, int flags) 1089 { 1090 BlockDriver *drv = bs->drv; 1091 bool waited; 1092 int ret; 1093 1094 int64_t sector_num = offset >> BDRV_SECTOR_BITS; 1095 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS; 1096 1097 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1098 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1099 assert(!qiov || bytes == qiov->size); 1100 1101 waited = wait_serialising_requests(req); 1102 assert(!waited || !req->serialising); 1103 assert(req->overlap_offset <= offset); 1104 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1105 1106 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); 1107 1108 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1109 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes && 1110 qemu_iovec_is_zero(qiov)) { 1111 flags |= BDRV_REQ_ZERO_WRITE; 1112 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1113 flags |= BDRV_REQ_MAY_UNMAP; 1114 } 1115 } 1116 1117 if (ret < 0) { 1118 /* Do nothing, write notifier decided to fail this request */ 1119 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1120 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_ZERO); 1121 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags); 1122 } else { 1123 BLKDBG_EVENT(bs, BLKDBG_PWRITEV); 1124 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 1125 } 1126 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_DONE); 1127 1128 if (ret == 0 && !bs->enable_write_cache) { 1129 ret = bdrv_co_flush(bs); 1130 } 1131 1132 bdrv_set_dirty(bs, sector_num, nb_sectors); 1133 1134 block_acct_highest_sector(&bs->stats, sector_num, nb_sectors); 1135 1136 if (ret >= 0) { 1137 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors); 1138 } 1139 1140 return ret; 1141 } 1142 1143 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs, 1144 int64_t offset, 1145 unsigned int bytes, 1146 BdrvRequestFlags flags, 1147 BdrvTrackedRequest *req) 1148 { 1149 uint8_t *buf = NULL; 1150 QEMUIOVector local_qiov; 1151 struct iovec iov; 1152 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment); 1153 unsigned int head_padding_bytes, tail_padding_bytes; 1154 int ret = 0; 1155 1156 head_padding_bytes = offset & (align - 1); 1157 tail_padding_bytes = align - ((offset + bytes) & (align - 1)); 1158 1159 1160 assert(flags & BDRV_REQ_ZERO_WRITE); 1161 if (head_padding_bytes || tail_padding_bytes) { 1162 buf = qemu_blockalign(bs, align); 1163 iov = (struct iovec) { 1164 .iov_base = buf, 1165 .iov_len = align, 1166 }; 1167 qemu_iovec_init_external(&local_qiov, &iov, 1); 1168 } 1169 if (head_padding_bytes) { 1170 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1171 1172 /* RMW the unaligned part before head. */ 1173 mark_request_serialising(req, align); 1174 wait_serialising_requests(req); 1175 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_HEAD); 1176 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align, 1177 align, &local_qiov, 0); 1178 if (ret < 0) { 1179 goto fail; 1180 } 1181 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1182 1183 memset(buf + head_padding_bytes, 0, zero_bytes); 1184 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align, 1185 &local_qiov, 1186 flags & ~BDRV_REQ_ZERO_WRITE); 1187 if (ret < 0) { 1188 goto fail; 1189 } 1190 offset += zero_bytes; 1191 bytes -= zero_bytes; 1192 } 1193 1194 assert(!bytes || (offset & (align - 1)) == 0); 1195 if (bytes >= align) { 1196 /* Write the aligned part in the middle. */ 1197 uint64_t aligned_bytes = bytes & ~(align - 1); 1198 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes, 1199 NULL, flags); 1200 if (ret < 0) { 1201 goto fail; 1202 } 1203 bytes -= aligned_bytes; 1204 offset += aligned_bytes; 1205 } 1206 1207 assert(!bytes || (offset & (align - 1)) == 0); 1208 if (bytes) { 1209 assert(align == tail_padding_bytes + bytes); 1210 /* RMW the unaligned part after tail. */ 1211 mark_request_serialising(req, align); 1212 wait_serialising_requests(req); 1213 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_TAIL); 1214 ret = bdrv_aligned_preadv(bs, req, offset, align, 1215 align, &local_qiov, 0); 1216 if (ret < 0) { 1217 goto fail; 1218 } 1219 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1220 1221 memset(buf, 0, bytes); 1222 ret = bdrv_aligned_pwritev(bs, req, offset, align, 1223 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1224 } 1225 fail: 1226 qemu_vfree(buf); 1227 return ret; 1228 1229 } 1230 1231 /* 1232 * Handle a write request in coroutine context 1233 */ 1234 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs, 1235 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1236 BdrvRequestFlags flags) 1237 { 1238 BdrvTrackedRequest req; 1239 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */ 1240 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment); 1241 uint8_t *head_buf = NULL; 1242 uint8_t *tail_buf = NULL; 1243 QEMUIOVector local_qiov; 1244 bool use_local_qiov = false; 1245 int ret; 1246 1247 if (!bs->drv) { 1248 return -ENOMEDIUM; 1249 } 1250 if (bs->read_only) { 1251 return -EPERM; 1252 } 1253 1254 ret = bdrv_check_byte_request(bs, offset, bytes); 1255 if (ret < 0) { 1256 return ret; 1257 } 1258 1259 /* throttling disk I/O */ 1260 if (bs->io_limits_enabled) { 1261 throttle_group_co_io_limits_intercept(bs, bytes, true); 1262 } 1263 1264 /* 1265 * Align write if necessary by performing a read-modify-write cycle. 1266 * Pad qiov with the read parts and be sure to have a tracked request not 1267 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1268 */ 1269 tracked_request_begin(&req, bs, offset, bytes, true); 1270 1271 if (!qiov) { 1272 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req); 1273 goto out; 1274 } 1275 1276 if (offset & (align - 1)) { 1277 QEMUIOVector head_qiov; 1278 struct iovec head_iov; 1279 1280 mark_request_serialising(&req, align); 1281 wait_serialising_requests(&req); 1282 1283 head_buf = qemu_blockalign(bs, align); 1284 head_iov = (struct iovec) { 1285 .iov_base = head_buf, 1286 .iov_len = align, 1287 }; 1288 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1289 1290 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_HEAD); 1291 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align, 1292 align, &head_qiov, 0); 1293 if (ret < 0) { 1294 goto fail; 1295 } 1296 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1297 1298 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1299 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1300 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1301 use_local_qiov = true; 1302 1303 bytes += offset & (align - 1); 1304 offset = offset & ~(align - 1); 1305 } 1306 1307 if ((offset + bytes) & (align - 1)) { 1308 QEMUIOVector tail_qiov; 1309 struct iovec tail_iov; 1310 size_t tail_bytes; 1311 bool waited; 1312 1313 mark_request_serialising(&req, align); 1314 waited = wait_serialising_requests(&req); 1315 assert(!waited || !use_local_qiov); 1316 1317 tail_buf = qemu_blockalign(bs, align); 1318 tail_iov = (struct iovec) { 1319 .iov_base = tail_buf, 1320 .iov_len = align, 1321 }; 1322 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1323 1324 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_TAIL); 1325 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align, 1326 align, &tail_qiov, 0); 1327 if (ret < 0) { 1328 goto fail; 1329 } 1330 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1331 1332 if (!use_local_qiov) { 1333 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1334 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1335 use_local_qiov = true; 1336 } 1337 1338 tail_bytes = (offset + bytes) & (align - 1); 1339 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1340 1341 bytes = ROUND_UP(bytes, align); 1342 } 1343 1344 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes, 1345 use_local_qiov ? &local_qiov : qiov, 1346 flags); 1347 1348 fail: 1349 1350 if (use_local_qiov) { 1351 qemu_iovec_destroy(&local_qiov); 1352 } 1353 qemu_vfree(head_buf); 1354 qemu_vfree(tail_buf); 1355 out: 1356 tracked_request_end(&req); 1357 return ret; 1358 } 1359 1360 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 1361 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1362 BdrvRequestFlags flags) 1363 { 1364 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1365 return -EINVAL; 1366 } 1367 1368 return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS, 1369 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1370 } 1371 1372 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 1373 int nb_sectors, QEMUIOVector *qiov) 1374 { 1375 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 1376 1377 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 1378 } 1379 1380 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 1381 int64_t sector_num, int nb_sectors, 1382 BdrvRequestFlags flags) 1383 { 1384 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags); 1385 1386 if (!(bs->open_flags & BDRV_O_UNMAP)) { 1387 flags &= ~BDRV_REQ_MAY_UNMAP; 1388 } 1389 1390 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 1391 BDRV_REQ_ZERO_WRITE | flags); 1392 } 1393 1394 int bdrv_flush_all(void) 1395 { 1396 BlockDriverState *bs = NULL; 1397 int result = 0; 1398 1399 while ((bs = bdrv_next(bs))) { 1400 AioContext *aio_context = bdrv_get_aio_context(bs); 1401 int ret; 1402 1403 aio_context_acquire(aio_context); 1404 ret = bdrv_flush(bs); 1405 if (ret < 0 && !result) { 1406 result = ret; 1407 } 1408 aio_context_release(aio_context); 1409 } 1410 1411 return result; 1412 } 1413 1414 typedef struct BdrvCoGetBlockStatusData { 1415 BlockDriverState *bs; 1416 BlockDriverState *base; 1417 int64_t sector_num; 1418 int nb_sectors; 1419 int *pnum; 1420 int64_t ret; 1421 bool done; 1422 } BdrvCoGetBlockStatusData; 1423 1424 /* 1425 * Returns the allocation status of the specified sectors. 1426 * Drivers not implementing the functionality are assumed to not support 1427 * backing files, hence all their sectors are reported as allocated. 1428 * 1429 * If 'sector_num' is beyond the end of the disk image the return value is 0 1430 * and 'pnum' is set to 0. 1431 * 1432 * 'pnum' is set to the number of sectors (including and immediately following 1433 * the specified sector) that are known to be in the same 1434 * allocated/unallocated state. 1435 * 1436 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 1437 * beyond the end of the disk image it will be clamped. 1438 */ 1439 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs, 1440 int64_t sector_num, 1441 int nb_sectors, int *pnum) 1442 { 1443 int64_t total_sectors; 1444 int64_t n; 1445 int64_t ret, ret2; 1446 1447 total_sectors = bdrv_nb_sectors(bs); 1448 if (total_sectors < 0) { 1449 return total_sectors; 1450 } 1451 1452 if (sector_num >= total_sectors) { 1453 *pnum = 0; 1454 return 0; 1455 } 1456 1457 n = total_sectors - sector_num; 1458 if (n < nb_sectors) { 1459 nb_sectors = n; 1460 } 1461 1462 if (!bs->drv->bdrv_co_get_block_status) { 1463 *pnum = nb_sectors; 1464 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 1465 if (bs->drv->protocol_name) { 1466 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE); 1467 } 1468 return ret; 1469 } 1470 1471 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum); 1472 if (ret < 0) { 1473 *pnum = 0; 1474 return ret; 1475 } 1476 1477 if (ret & BDRV_BLOCK_RAW) { 1478 assert(ret & BDRV_BLOCK_OFFSET_VALID); 1479 return bdrv_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS, 1480 *pnum, pnum); 1481 } 1482 1483 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 1484 ret |= BDRV_BLOCK_ALLOCATED; 1485 } else { 1486 if (bdrv_unallocated_blocks_are_zero(bs)) { 1487 ret |= BDRV_BLOCK_ZERO; 1488 } else if (bs->backing_hd) { 1489 BlockDriverState *bs2 = bs->backing_hd; 1490 int64_t nb_sectors2 = bdrv_nb_sectors(bs2); 1491 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) { 1492 ret |= BDRV_BLOCK_ZERO; 1493 } 1494 } 1495 } 1496 1497 if (bs->file && 1498 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 1499 (ret & BDRV_BLOCK_OFFSET_VALID)) { 1500 int file_pnum; 1501 1502 ret2 = bdrv_co_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS, 1503 *pnum, &file_pnum); 1504 if (ret2 >= 0) { 1505 /* Ignore errors. This is just providing extra information, it 1506 * is useful but not necessary. 1507 */ 1508 if (!file_pnum) { 1509 /* !file_pnum indicates an offset at or beyond the EOF; it is 1510 * perfectly valid for the format block driver to point to such 1511 * offsets, so catch it and mark everything as zero */ 1512 ret |= BDRV_BLOCK_ZERO; 1513 } else { 1514 /* Limit request to the range reported by the protocol driver */ 1515 *pnum = file_pnum; 1516 ret |= (ret2 & BDRV_BLOCK_ZERO); 1517 } 1518 } 1519 } 1520 1521 return ret; 1522 } 1523 1524 /* Coroutine wrapper for bdrv_get_block_status() */ 1525 static void coroutine_fn bdrv_get_block_status_co_entry(void *opaque) 1526 { 1527 BdrvCoGetBlockStatusData *data = opaque; 1528 BlockDriverState *bs = data->bs; 1529 1530 data->ret = bdrv_co_get_block_status(bs, data->sector_num, data->nb_sectors, 1531 data->pnum); 1532 data->done = true; 1533 } 1534 1535 /* 1536 * Synchronous wrapper around bdrv_co_get_block_status(). 1537 * 1538 * See bdrv_co_get_block_status() for details. 1539 */ 1540 int64_t bdrv_get_block_status(BlockDriverState *bs, int64_t sector_num, 1541 int nb_sectors, int *pnum) 1542 { 1543 Coroutine *co; 1544 BdrvCoGetBlockStatusData data = { 1545 .bs = bs, 1546 .sector_num = sector_num, 1547 .nb_sectors = nb_sectors, 1548 .pnum = pnum, 1549 .done = false, 1550 }; 1551 1552 if (qemu_in_coroutine()) { 1553 /* Fast-path if already in coroutine context */ 1554 bdrv_get_block_status_co_entry(&data); 1555 } else { 1556 AioContext *aio_context = bdrv_get_aio_context(bs); 1557 1558 co = qemu_coroutine_create(bdrv_get_block_status_co_entry); 1559 qemu_coroutine_enter(co, &data); 1560 while (!data.done) { 1561 aio_poll(aio_context, true); 1562 } 1563 } 1564 return data.ret; 1565 } 1566 1567 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, 1568 int nb_sectors, int *pnum) 1569 { 1570 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum); 1571 if (ret < 0) { 1572 return ret; 1573 } 1574 return !!(ret & BDRV_BLOCK_ALLOCATED); 1575 } 1576 1577 /* 1578 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 1579 * 1580 * Return true if the given sector is allocated in any image between 1581 * BASE and TOP (inclusive). BASE can be NULL to check if the given 1582 * sector is allocated in any image of the chain. Return false otherwise. 1583 * 1584 * 'pnum' is set to the number of sectors (including and immediately following 1585 * the specified sector) that are known to be in the same 1586 * allocated/unallocated state. 1587 * 1588 */ 1589 int bdrv_is_allocated_above(BlockDriverState *top, 1590 BlockDriverState *base, 1591 int64_t sector_num, 1592 int nb_sectors, int *pnum) 1593 { 1594 BlockDriverState *intermediate; 1595 int ret, n = nb_sectors; 1596 1597 intermediate = top; 1598 while (intermediate && intermediate != base) { 1599 int pnum_inter; 1600 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors, 1601 &pnum_inter); 1602 if (ret < 0) { 1603 return ret; 1604 } else if (ret) { 1605 *pnum = pnum_inter; 1606 return 1; 1607 } 1608 1609 /* 1610 * [sector_num, nb_sectors] is unallocated on top but intermediate 1611 * might have 1612 * 1613 * [sector_num+x, nr_sectors] allocated. 1614 */ 1615 if (n > pnum_inter && 1616 (intermediate == top || 1617 sector_num + pnum_inter < intermediate->total_sectors)) { 1618 n = pnum_inter; 1619 } 1620 1621 intermediate = intermediate->backing_hd; 1622 } 1623 1624 *pnum = n; 1625 return 0; 1626 } 1627 1628 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 1629 const uint8_t *buf, int nb_sectors) 1630 { 1631 BlockDriver *drv = bs->drv; 1632 int ret; 1633 1634 if (!drv) { 1635 return -ENOMEDIUM; 1636 } 1637 if (!drv->bdrv_write_compressed) { 1638 return -ENOTSUP; 1639 } 1640 ret = bdrv_check_request(bs, sector_num, nb_sectors); 1641 if (ret < 0) { 1642 return ret; 1643 } 1644 1645 assert(QLIST_EMPTY(&bs->dirty_bitmaps)); 1646 1647 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 1648 } 1649 1650 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 1651 int64_t pos, int size) 1652 { 1653 QEMUIOVector qiov; 1654 struct iovec iov = { 1655 .iov_base = (void *) buf, 1656 .iov_len = size, 1657 }; 1658 1659 qemu_iovec_init_external(&qiov, &iov, 1); 1660 return bdrv_writev_vmstate(bs, &qiov, pos); 1661 } 1662 1663 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 1664 { 1665 BlockDriver *drv = bs->drv; 1666 1667 if (!drv) { 1668 return -ENOMEDIUM; 1669 } else if (drv->bdrv_save_vmstate) { 1670 return drv->bdrv_save_vmstate(bs, qiov, pos); 1671 } else if (bs->file) { 1672 return bdrv_writev_vmstate(bs->file, qiov, pos); 1673 } 1674 1675 return -ENOTSUP; 1676 } 1677 1678 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 1679 int64_t pos, int size) 1680 { 1681 BlockDriver *drv = bs->drv; 1682 if (!drv) 1683 return -ENOMEDIUM; 1684 if (drv->bdrv_load_vmstate) 1685 return drv->bdrv_load_vmstate(bs, buf, pos, size); 1686 if (bs->file) 1687 return bdrv_load_vmstate(bs->file, buf, pos, size); 1688 return -ENOTSUP; 1689 } 1690 1691 /**************************************************************/ 1692 /* async I/Os */ 1693 1694 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 1695 QEMUIOVector *qiov, int nb_sectors, 1696 BlockCompletionFunc *cb, void *opaque) 1697 { 1698 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 1699 1700 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0, 1701 cb, opaque, false); 1702 } 1703 1704 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 1705 QEMUIOVector *qiov, int nb_sectors, 1706 BlockCompletionFunc *cb, void *opaque) 1707 { 1708 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 1709 1710 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0, 1711 cb, opaque, true); 1712 } 1713 1714 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs, 1715 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags, 1716 BlockCompletionFunc *cb, void *opaque) 1717 { 1718 trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque); 1719 1720 return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors, 1721 BDRV_REQ_ZERO_WRITE | flags, 1722 cb, opaque, true); 1723 } 1724 1725 1726 typedef struct MultiwriteCB { 1727 int error; 1728 int num_requests; 1729 int num_callbacks; 1730 struct { 1731 BlockCompletionFunc *cb; 1732 void *opaque; 1733 QEMUIOVector *free_qiov; 1734 } callbacks[]; 1735 } MultiwriteCB; 1736 1737 static void multiwrite_user_cb(MultiwriteCB *mcb) 1738 { 1739 int i; 1740 1741 for (i = 0; i < mcb->num_callbacks; i++) { 1742 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 1743 if (mcb->callbacks[i].free_qiov) { 1744 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 1745 } 1746 g_free(mcb->callbacks[i].free_qiov); 1747 } 1748 } 1749 1750 static void multiwrite_cb(void *opaque, int ret) 1751 { 1752 MultiwriteCB *mcb = opaque; 1753 1754 trace_multiwrite_cb(mcb, ret); 1755 1756 if (ret < 0 && !mcb->error) { 1757 mcb->error = ret; 1758 } 1759 1760 mcb->num_requests--; 1761 if (mcb->num_requests == 0) { 1762 multiwrite_user_cb(mcb); 1763 g_free(mcb); 1764 } 1765 } 1766 1767 static int multiwrite_req_compare(const void *a, const void *b) 1768 { 1769 const BlockRequest *req1 = a, *req2 = b; 1770 1771 /* 1772 * Note that we can't simply subtract req2->sector from req1->sector 1773 * here as that could overflow the return value. 1774 */ 1775 if (req1->sector > req2->sector) { 1776 return 1; 1777 } else if (req1->sector < req2->sector) { 1778 return -1; 1779 } else { 1780 return 0; 1781 } 1782 } 1783 1784 /* 1785 * Takes a bunch of requests and tries to merge them. Returns the number of 1786 * requests that remain after merging. 1787 */ 1788 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 1789 int num_reqs, MultiwriteCB *mcb) 1790 { 1791 int i, outidx; 1792 1793 // Sort requests by start sector 1794 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 1795 1796 // Check if adjacent requests touch the same clusters. If so, combine them, 1797 // filling up gaps with zero sectors. 1798 outidx = 0; 1799 for (i = 1; i < num_reqs; i++) { 1800 int merge = 0; 1801 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 1802 1803 // Handle exactly sequential writes and overlapping writes. 1804 if (reqs[i].sector <= oldreq_last) { 1805 merge = 1; 1806 } 1807 1808 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 1809 merge = 0; 1810 } 1811 1812 if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors + 1813 reqs[i].nb_sectors > bs->bl.max_transfer_length) { 1814 merge = 0; 1815 } 1816 1817 if (merge) { 1818 size_t size; 1819 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 1820 qemu_iovec_init(qiov, 1821 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 1822 1823 // Add the first request to the merged one. If the requests are 1824 // overlapping, drop the last sectors of the first request. 1825 size = (reqs[i].sector - reqs[outidx].sector) << 9; 1826 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 1827 1828 // We should need to add any zeros between the two requests 1829 assert (reqs[i].sector <= oldreq_last); 1830 1831 // Add the second request 1832 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 1833 1834 // Add tail of first request, if necessary 1835 if (qiov->size < reqs[outidx].qiov->size) { 1836 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size, 1837 reqs[outidx].qiov->size - qiov->size); 1838 } 1839 1840 reqs[outidx].nb_sectors = qiov->size >> 9; 1841 reqs[outidx].qiov = qiov; 1842 1843 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 1844 } else { 1845 outidx++; 1846 reqs[outidx].sector = reqs[i].sector; 1847 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 1848 reqs[outidx].qiov = reqs[i].qiov; 1849 } 1850 } 1851 1852 block_acct_merge_done(&bs->stats, BLOCK_ACCT_WRITE, num_reqs - outidx - 1); 1853 1854 return outidx + 1; 1855 } 1856 1857 /* 1858 * Submit multiple AIO write requests at once. 1859 * 1860 * On success, the function returns 0 and all requests in the reqs array have 1861 * been submitted. In error case this function returns -1, and any of the 1862 * requests may or may not be submitted yet. In particular, this means that the 1863 * callback will be called for some of the requests, for others it won't. The 1864 * caller must check the error field of the BlockRequest to wait for the right 1865 * callbacks (if error != 0, no callback will be called). 1866 * 1867 * The implementation may modify the contents of the reqs array, e.g. to merge 1868 * requests. However, the fields opaque and error are left unmodified as they 1869 * are used to signal failure for a single request to the caller. 1870 */ 1871 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 1872 { 1873 MultiwriteCB *mcb; 1874 int i; 1875 1876 /* don't submit writes if we don't have a medium */ 1877 if (bs->drv == NULL) { 1878 for (i = 0; i < num_reqs; i++) { 1879 reqs[i].error = -ENOMEDIUM; 1880 } 1881 return -1; 1882 } 1883 1884 if (num_reqs == 0) { 1885 return 0; 1886 } 1887 1888 // Create MultiwriteCB structure 1889 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 1890 mcb->num_requests = 0; 1891 mcb->num_callbacks = num_reqs; 1892 1893 for (i = 0; i < num_reqs; i++) { 1894 mcb->callbacks[i].cb = reqs[i].cb; 1895 mcb->callbacks[i].opaque = reqs[i].opaque; 1896 } 1897 1898 // Check for mergable requests 1899 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 1900 1901 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 1902 1903 /* Run the aio requests. */ 1904 mcb->num_requests = num_reqs; 1905 for (i = 0; i < num_reqs; i++) { 1906 bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov, 1907 reqs[i].nb_sectors, reqs[i].flags, 1908 multiwrite_cb, mcb, 1909 true); 1910 } 1911 1912 return 0; 1913 } 1914 1915 void bdrv_aio_cancel(BlockAIOCB *acb) 1916 { 1917 qemu_aio_ref(acb); 1918 bdrv_aio_cancel_async(acb); 1919 while (acb->refcnt > 1) { 1920 if (acb->aiocb_info->get_aio_context) { 1921 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 1922 } else if (acb->bs) { 1923 aio_poll(bdrv_get_aio_context(acb->bs), true); 1924 } else { 1925 abort(); 1926 } 1927 } 1928 qemu_aio_unref(acb); 1929 } 1930 1931 /* Async version of aio cancel. The caller is not blocked if the acb implements 1932 * cancel_async, otherwise we do nothing and let the request normally complete. 1933 * In either case the completion callback must be called. */ 1934 void bdrv_aio_cancel_async(BlockAIOCB *acb) 1935 { 1936 if (acb->aiocb_info->cancel_async) { 1937 acb->aiocb_info->cancel_async(acb); 1938 } 1939 } 1940 1941 /**************************************************************/ 1942 /* async block device emulation */ 1943 1944 typedef struct BlockAIOCBSync { 1945 BlockAIOCB common; 1946 QEMUBH *bh; 1947 int ret; 1948 /* vector translation state */ 1949 QEMUIOVector *qiov; 1950 uint8_t *bounce; 1951 int is_write; 1952 } BlockAIOCBSync; 1953 1954 static const AIOCBInfo bdrv_em_aiocb_info = { 1955 .aiocb_size = sizeof(BlockAIOCBSync), 1956 }; 1957 1958 static void bdrv_aio_bh_cb(void *opaque) 1959 { 1960 BlockAIOCBSync *acb = opaque; 1961 1962 if (!acb->is_write && acb->ret >= 0) { 1963 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 1964 } 1965 qemu_vfree(acb->bounce); 1966 acb->common.cb(acb->common.opaque, acb->ret); 1967 qemu_bh_delete(acb->bh); 1968 acb->bh = NULL; 1969 qemu_aio_unref(acb); 1970 } 1971 1972 static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 1973 int64_t sector_num, 1974 QEMUIOVector *qiov, 1975 int nb_sectors, 1976 BlockCompletionFunc *cb, 1977 void *opaque, 1978 int is_write) 1979 1980 { 1981 BlockAIOCBSync *acb; 1982 1983 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque); 1984 acb->is_write = is_write; 1985 acb->qiov = qiov; 1986 acb->bounce = qemu_try_blockalign(bs, qiov->size); 1987 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb); 1988 1989 if (acb->bounce == NULL) { 1990 acb->ret = -ENOMEM; 1991 } else if (is_write) { 1992 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 1993 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 1994 } else { 1995 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 1996 } 1997 1998 qemu_bh_schedule(acb->bh); 1999 2000 return &acb->common; 2001 } 2002 2003 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 2004 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 2005 BlockCompletionFunc *cb, void *opaque) 2006 { 2007 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 2008 } 2009 2010 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 2011 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 2012 BlockCompletionFunc *cb, void *opaque) 2013 { 2014 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 2015 } 2016 2017 2018 typedef struct BlockAIOCBCoroutine { 2019 BlockAIOCB common; 2020 BlockRequest req; 2021 bool is_write; 2022 bool need_bh; 2023 bool *done; 2024 QEMUBH* bh; 2025 } BlockAIOCBCoroutine; 2026 2027 static const AIOCBInfo bdrv_em_co_aiocb_info = { 2028 .aiocb_size = sizeof(BlockAIOCBCoroutine), 2029 }; 2030 2031 static void bdrv_co_complete(BlockAIOCBCoroutine *acb) 2032 { 2033 if (!acb->need_bh) { 2034 acb->common.cb(acb->common.opaque, acb->req.error); 2035 qemu_aio_unref(acb); 2036 } 2037 } 2038 2039 static void bdrv_co_em_bh(void *opaque) 2040 { 2041 BlockAIOCBCoroutine *acb = opaque; 2042 2043 assert(!acb->need_bh); 2044 qemu_bh_delete(acb->bh); 2045 bdrv_co_complete(acb); 2046 } 2047 2048 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb) 2049 { 2050 acb->need_bh = false; 2051 if (acb->req.error != -EINPROGRESS) { 2052 BlockDriverState *bs = acb->common.bs; 2053 2054 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb); 2055 qemu_bh_schedule(acb->bh); 2056 } 2057 } 2058 2059 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 2060 static void coroutine_fn bdrv_co_do_rw(void *opaque) 2061 { 2062 BlockAIOCBCoroutine *acb = opaque; 2063 BlockDriverState *bs = acb->common.bs; 2064 2065 if (!acb->is_write) { 2066 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 2067 acb->req.nb_sectors, acb->req.qiov, acb->req.flags); 2068 } else { 2069 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 2070 acb->req.nb_sectors, acb->req.qiov, acb->req.flags); 2071 } 2072 2073 bdrv_co_complete(acb); 2074 } 2075 2076 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 2077 int64_t sector_num, 2078 QEMUIOVector *qiov, 2079 int nb_sectors, 2080 BdrvRequestFlags flags, 2081 BlockCompletionFunc *cb, 2082 void *opaque, 2083 bool is_write) 2084 { 2085 Coroutine *co; 2086 BlockAIOCBCoroutine *acb; 2087 2088 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2089 acb->need_bh = true; 2090 acb->req.error = -EINPROGRESS; 2091 acb->req.sector = sector_num; 2092 acb->req.nb_sectors = nb_sectors; 2093 acb->req.qiov = qiov; 2094 acb->req.flags = flags; 2095 acb->is_write = is_write; 2096 2097 co = qemu_coroutine_create(bdrv_co_do_rw); 2098 qemu_coroutine_enter(co, acb); 2099 2100 bdrv_co_maybe_schedule_bh(acb); 2101 return &acb->common; 2102 } 2103 2104 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 2105 { 2106 BlockAIOCBCoroutine *acb = opaque; 2107 BlockDriverState *bs = acb->common.bs; 2108 2109 acb->req.error = bdrv_co_flush(bs); 2110 bdrv_co_complete(acb); 2111 } 2112 2113 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs, 2114 BlockCompletionFunc *cb, void *opaque) 2115 { 2116 trace_bdrv_aio_flush(bs, opaque); 2117 2118 Coroutine *co; 2119 BlockAIOCBCoroutine *acb; 2120 2121 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2122 acb->need_bh = true; 2123 acb->req.error = -EINPROGRESS; 2124 2125 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 2126 qemu_coroutine_enter(co, acb); 2127 2128 bdrv_co_maybe_schedule_bh(acb); 2129 return &acb->common; 2130 } 2131 2132 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 2133 { 2134 BlockAIOCBCoroutine *acb = opaque; 2135 BlockDriverState *bs = acb->common.bs; 2136 2137 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 2138 bdrv_co_complete(acb); 2139 } 2140 2141 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs, 2142 int64_t sector_num, int nb_sectors, 2143 BlockCompletionFunc *cb, void *opaque) 2144 { 2145 Coroutine *co; 2146 BlockAIOCBCoroutine *acb; 2147 2148 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 2149 2150 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2151 acb->need_bh = true; 2152 acb->req.error = -EINPROGRESS; 2153 acb->req.sector = sector_num; 2154 acb->req.nb_sectors = nb_sectors; 2155 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 2156 qemu_coroutine_enter(co, acb); 2157 2158 bdrv_co_maybe_schedule_bh(acb); 2159 return &acb->common; 2160 } 2161 2162 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 2163 BlockCompletionFunc *cb, void *opaque) 2164 { 2165 BlockAIOCB *acb; 2166 2167 acb = g_slice_alloc(aiocb_info->aiocb_size); 2168 acb->aiocb_info = aiocb_info; 2169 acb->bs = bs; 2170 acb->cb = cb; 2171 acb->opaque = opaque; 2172 acb->refcnt = 1; 2173 return acb; 2174 } 2175 2176 void qemu_aio_ref(void *p) 2177 { 2178 BlockAIOCB *acb = p; 2179 acb->refcnt++; 2180 } 2181 2182 void qemu_aio_unref(void *p) 2183 { 2184 BlockAIOCB *acb = p; 2185 assert(acb->refcnt > 0); 2186 if (--acb->refcnt == 0) { 2187 g_slice_free1(acb->aiocb_info->aiocb_size, acb); 2188 } 2189 } 2190 2191 /**************************************************************/ 2192 /* Coroutine block device emulation */ 2193 2194 typedef struct CoroutineIOCompletion { 2195 Coroutine *coroutine; 2196 int ret; 2197 } CoroutineIOCompletion; 2198 2199 static void bdrv_co_io_em_complete(void *opaque, int ret) 2200 { 2201 CoroutineIOCompletion *co = opaque; 2202 2203 co->ret = ret; 2204 qemu_coroutine_enter(co->coroutine, NULL); 2205 } 2206 2207 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 2208 int nb_sectors, QEMUIOVector *iov, 2209 bool is_write) 2210 { 2211 CoroutineIOCompletion co = { 2212 .coroutine = qemu_coroutine_self(), 2213 }; 2214 BlockAIOCB *acb; 2215 2216 if (is_write) { 2217 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 2218 bdrv_co_io_em_complete, &co); 2219 } else { 2220 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 2221 bdrv_co_io_em_complete, &co); 2222 } 2223 2224 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 2225 if (!acb) { 2226 return -EIO; 2227 } 2228 qemu_coroutine_yield(); 2229 2230 return co.ret; 2231 } 2232 2233 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 2234 int64_t sector_num, int nb_sectors, 2235 QEMUIOVector *iov) 2236 { 2237 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 2238 } 2239 2240 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 2241 int64_t sector_num, int nb_sectors, 2242 QEMUIOVector *iov) 2243 { 2244 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 2245 } 2246 2247 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2248 { 2249 RwCo *rwco = opaque; 2250 2251 rwco->ret = bdrv_co_flush(rwco->bs); 2252 } 2253 2254 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2255 { 2256 int ret; 2257 2258 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 2259 return 0; 2260 } 2261 2262 /* Write back cached data to the OS even with cache=unsafe */ 2263 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2264 if (bs->drv->bdrv_co_flush_to_os) { 2265 ret = bs->drv->bdrv_co_flush_to_os(bs); 2266 if (ret < 0) { 2267 return ret; 2268 } 2269 } 2270 2271 /* But don't actually force it to the disk with cache=unsafe */ 2272 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2273 goto flush_parent; 2274 } 2275 2276 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2277 if (bs->drv->bdrv_co_flush_to_disk) { 2278 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2279 } else if (bs->drv->bdrv_aio_flush) { 2280 BlockAIOCB *acb; 2281 CoroutineIOCompletion co = { 2282 .coroutine = qemu_coroutine_self(), 2283 }; 2284 2285 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2286 if (acb == NULL) { 2287 ret = -EIO; 2288 } else { 2289 qemu_coroutine_yield(); 2290 ret = co.ret; 2291 } 2292 } else { 2293 /* 2294 * Some block drivers always operate in either writethrough or unsafe 2295 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2296 * know how the server works (because the behaviour is hardcoded or 2297 * depends on server-side configuration), so we can't ensure that 2298 * everything is safe on disk. Returning an error doesn't work because 2299 * that would break guests even if the server operates in writethrough 2300 * mode. 2301 * 2302 * Let's hope the user knows what he's doing. 2303 */ 2304 ret = 0; 2305 } 2306 if (ret < 0) { 2307 return ret; 2308 } 2309 2310 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2311 * in the case of cache=unsafe, so there are no useless flushes. 2312 */ 2313 flush_parent: 2314 return bdrv_co_flush(bs->file); 2315 } 2316 2317 int bdrv_flush(BlockDriverState *bs) 2318 { 2319 Coroutine *co; 2320 RwCo rwco = { 2321 .bs = bs, 2322 .ret = NOT_DONE, 2323 }; 2324 2325 if (qemu_in_coroutine()) { 2326 /* Fast-path if already in coroutine context */ 2327 bdrv_flush_co_entry(&rwco); 2328 } else { 2329 AioContext *aio_context = bdrv_get_aio_context(bs); 2330 2331 co = qemu_coroutine_create(bdrv_flush_co_entry); 2332 qemu_coroutine_enter(co, &rwco); 2333 while (rwco.ret == NOT_DONE) { 2334 aio_poll(aio_context, true); 2335 } 2336 } 2337 2338 return rwco.ret; 2339 } 2340 2341 typedef struct DiscardCo { 2342 BlockDriverState *bs; 2343 int64_t sector_num; 2344 int nb_sectors; 2345 int ret; 2346 } DiscardCo; 2347 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 2348 { 2349 DiscardCo *rwco = opaque; 2350 2351 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 2352 } 2353 2354 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 2355 int nb_sectors) 2356 { 2357 int max_discard, ret; 2358 2359 if (!bs->drv) { 2360 return -ENOMEDIUM; 2361 } 2362 2363 ret = bdrv_check_request(bs, sector_num, nb_sectors); 2364 if (ret < 0) { 2365 return ret; 2366 } else if (bs->read_only) { 2367 return -EPERM; 2368 } 2369 2370 bdrv_reset_dirty(bs, sector_num, nb_sectors); 2371 2372 /* Do nothing if disabled. */ 2373 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2374 return 0; 2375 } 2376 2377 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) { 2378 return 0; 2379 } 2380 2381 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS); 2382 while (nb_sectors > 0) { 2383 int ret; 2384 int num = nb_sectors; 2385 2386 /* align request */ 2387 if (bs->bl.discard_alignment && 2388 num >= bs->bl.discard_alignment && 2389 sector_num % bs->bl.discard_alignment) { 2390 if (num > bs->bl.discard_alignment) { 2391 num = bs->bl.discard_alignment; 2392 } 2393 num -= sector_num % bs->bl.discard_alignment; 2394 } 2395 2396 /* limit request size */ 2397 if (num > max_discard) { 2398 num = max_discard; 2399 } 2400 2401 if (bs->drv->bdrv_co_discard) { 2402 ret = bs->drv->bdrv_co_discard(bs, sector_num, num); 2403 } else { 2404 BlockAIOCB *acb; 2405 CoroutineIOCompletion co = { 2406 .coroutine = qemu_coroutine_self(), 2407 }; 2408 2409 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 2410 bdrv_co_io_em_complete, &co); 2411 if (acb == NULL) { 2412 return -EIO; 2413 } else { 2414 qemu_coroutine_yield(); 2415 ret = co.ret; 2416 } 2417 } 2418 if (ret && ret != -ENOTSUP) { 2419 return ret; 2420 } 2421 2422 sector_num += num; 2423 nb_sectors -= num; 2424 } 2425 return 0; 2426 } 2427 2428 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 2429 { 2430 Coroutine *co; 2431 DiscardCo rwco = { 2432 .bs = bs, 2433 .sector_num = sector_num, 2434 .nb_sectors = nb_sectors, 2435 .ret = NOT_DONE, 2436 }; 2437 2438 if (qemu_in_coroutine()) { 2439 /* Fast-path if already in coroutine context */ 2440 bdrv_discard_co_entry(&rwco); 2441 } else { 2442 AioContext *aio_context = bdrv_get_aio_context(bs); 2443 2444 co = qemu_coroutine_create(bdrv_discard_co_entry); 2445 qemu_coroutine_enter(co, &rwco); 2446 while (rwco.ret == NOT_DONE) { 2447 aio_poll(aio_context, true); 2448 } 2449 } 2450 2451 return rwco.ret; 2452 } 2453 2454 /* needed for generic scsi interface */ 2455 2456 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 2457 { 2458 BlockDriver *drv = bs->drv; 2459 2460 if (drv && drv->bdrv_ioctl) 2461 return drv->bdrv_ioctl(bs, req, buf); 2462 return -ENOTSUP; 2463 } 2464 2465 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 2466 unsigned long int req, void *buf, 2467 BlockCompletionFunc *cb, void *opaque) 2468 { 2469 BlockDriver *drv = bs->drv; 2470 2471 if (drv && drv->bdrv_aio_ioctl) 2472 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 2473 return NULL; 2474 } 2475 2476 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2477 { 2478 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2479 } 2480 2481 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2482 { 2483 return memset(qemu_blockalign(bs, size), 0, size); 2484 } 2485 2486 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2487 { 2488 size_t align = bdrv_opt_mem_align(bs); 2489 2490 /* Ensure that NULL is never returned on success */ 2491 assert(align > 0); 2492 if (size == 0) { 2493 size = align; 2494 } 2495 2496 return qemu_try_memalign(align, size); 2497 } 2498 2499 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2500 { 2501 void *mem = qemu_try_blockalign(bs, size); 2502 2503 if (mem) { 2504 memset(mem, 0, size); 2505 } 2506 2507 return mem; 2508 } 2509 2510 /* 2511 * Check if all memory in this vector is sector aligned. 2512 */ 2513 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2514 { 2515 int i; 2516 size_t alignment = bdrv_min_mem_align(bs); 2517 2518 for (i = 0; i < qiov->niov; i++) { 2519 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2520 return false; 2521 } 2522 if (qiov->iov[i].iov_len % alignment) { 2523 return false; 2524 } 2525 } 2526 2527 return true; 2528 } 2529 2530 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2531 NotifierWithReturn *notifier) 2532 { 2533 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2534 } 2535 2536 void bdrv_io_plug(BlockDriverState *bs) 2537 { 2538 BlockDriver *drv = bs->drv; 2539 if (drv && drv->bdrv_io_plug) { 2540 drv->bdrv_io_plug(bs); 2541 } else if (bs->file) { 2542 bdrv_io_plug(bs->file); 2543 } 2544 } 2545 2546 void bdrv_io_unplug(BlockDriverState *bs) 2547 { 2548 BlockDriver *drv = bs->drv; 2549 if (drv && drv->bdrv_io_unplug) { 2550 drv->bdrv_io_unplug(bs); 2551 } else if (bs->file) { 2552 bdrv_io_unplug(bs->file); 2553 } 2554 } 2555 2556 void bdrv_flush_io_queue(BlockDriverState *bs) 2557 { 2558 BlockDriver *drv = bs->drv; 2559 if (drv && drv->bdrv_flush_io_queue) { 2560 drv->bdrv_flush_io_queue(bs); 2561 } else if (bs->file) { 2562 bdrv_flush_io_queue(bs->file); 2563 } 2564 } 2565