xref: /openbmc/qemu/block/io.c (revision c5b4ee5b)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/write-threshold.h"
34 #include "qemu/cutils.h"
35 #include "qapi/error.h"
36 #include "qemu/error-report.h"
37 #include "qemu/main-loop.h"
38 #include "sysemu/replay.h"
39 
40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
42 
43 static void bdrv_parent_cb_resize(BlockDriverState *bs);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45     int64_t offset, int64_t bytes, BdrvRequestFlags flags);
46 
47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
48                                       bool ignore_bds_parents)
49 {
50     BdrvChild *c, *next;
51 
52     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
54             continue;
55         }
56         bdrv_parent_drained_begin_single(c, false);
57     }
58 }
59 
60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
61                                                    int *drained_end_counter)
62 {
63     assert(c->parent_quiesce_counter > 0);
64     c->parent_quiesce_counter--;
65     if (c->klass->drained_end) {
66         c->klass->drained_end(c, drained_end_counter);
67     }
68 }
69 
70 void bdrv_parent_drained_end_single(BdrvChild *c)
71 {
72     int drained_end_counter = 0;
73     bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
74     BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
75 }
76 
77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
78                                     bool ignore_bds_parents,
79                                     int *drained_end_counter)
80 {
81     BdrvChild *c;
82 
83     QLIST_FOREACH(c, &bs->parents, next_parent) {
84         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
85             continue;
86         }
87         bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
88     }
89 }
90 
91 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
92 {
93     if (c->klass->drained_poll) {
94         return c->klass->drained_poll(c);
95     }
96     return false;
97 }
98 
99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
100                                      bool ignore_bds_parents)
101 {
102     BdrvChild *c, *next;
103     bool busy = false;
104 
105     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
106         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
107             continue;
108         }
109         busy |= bdrv_parent_drained_poll_single(c);
110     }
111 
112     return busy;
113 }
114 
115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
116 {
117     c->parent_quiesce_counter++;
118     if (c->klass->drained_begin) {
119         c->klass->drained_begin(c);
120     }
121     if (poll) {
122         BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
123     }
124 }
125 
126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
127 {
128     dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
129                                   src->pdiscard_alignment);
130     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
131     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
132     dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
133                                         src->max_hw_transfer);
134     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
135                                  src->opt_mem_alignment);
136     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
137                                  src->min_mem_alignment);
138     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
139     dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
140 }
141 
142 typedef struct BdrvRefreshLimitsState {
143     BlockDriverState *bs;
144     BlockLimits old_bl;
145 } BdrvRefreshLimitsState;
146 
147 static void bdrv_refresh_limits_abort(void *opaque)
148 {
149     BdrvRefreshLimitsState *s = opaque;
150 
151     s->bs->bl = s->old_bl;
152 }
153 
154 static TransactionActionDrv bdrv_refresh_limits_drv = {
155     .abort = bdrv_refresh_limits_abort,
156     .clean = g_free,
157 };
158 
159 /* @tran is allowed to be NULL, in this case no rollback is possible. */
160 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
161 {
162     ERRP_GUARD();
163     BlockDriver *drv = bs->drv;
164     BdrvChild *c;
165     bool have_limits;
166 
167     if (tran) {
168         BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
169         *s = (BdrvRefreshLimitsState) {
170             .bs = bs,
171             .old_bl = bs->bl,
172         };
173         tran_add(tran, &bdrv_refresh_limits_drv, s);
174     }
175 
176     memset(&bs->bl, 0, sizeof(bs->bl));
177 
178     if (!drv) {
179         return;
180     }
181 
182     /* Default alignment based on whether driver has byte interface */
183     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
184                                 drv->bdrv_aio_preadv ||
185                                 drv->bdrv_co_preadv_part) ? 1 : 512;
186 
187     /* Take some limits from the children as a default */
188     have_limits = false;
189     QLIST_FOREACH(c, &bs->children, next) {
190         if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
191         {
192             bdrv_refresh_limits(c->bs, tran, errp);
193             if (*errp) {
194                 return;
195             }
196             bdrv_merge_limits(&bs->bl, &c->bs->bl);
197             have_limits = true;
198         }
199     }
200 
201     if (!have_limits) {
202         bs->bl.min_mem_alignment = 512;
203         bs->bl.opt_mem_alignment = qemu_real_host_page_size;
204 
205         /* Safe default since most protocols use readv()/writev()/etc */
206         bs->bl.max_iov = IOV_MAX;
207     }
208 
209     /* Then let the driver override it */
210     if (drv->bdrv_refresh_limits) {
211         drv->bdrv_refresh_limits(bs, errp);
212         if (*errp) {
213             return;
214         }
215     }
216 
217     if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
218         error_setg(errp, "Driver requires too large request alignment");
219     }
220 }
221 
222 /**
223  * The copy-on-read flag is actually a reference count so multiple users may
224  * use the feature without worrying about clobbering its previous state.
225  * Copy-on-read stays enabled until all users have called to disable it.
226  */
227 void bdrv_enable_copy_on_read(BlockDriverState *bs)
228 {
229     qatomic_inc(&bs->copy_on_read);
230 }
231 
232 void bdrv_disable_copy_on_read(BlockDriverState *bs)
233 {
234     int old = qatomic_fetch_dec(&bs->copy_on_read);
235     assert(old >= 1);
236 }
237 
238 typedef struct {
239     Coroutine *co;
240     BlockDriverState *bs;
241     bool done;
242     bool begin;
243     bool recursive;
244     bool poll;
245     BdrvChild *parent;
246     bool ignore_bds_parents;
247     int *drained_end_counter;
248 } BdrvCoDrainData;
249 
250 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
251 {
252     BdrvCoDrainData *data = opaque;
253     BlockDriverState *bs = data->bs;
254 
255     if (data->begin) {
256         bs->drv->bdrv_co_drain_begin(bs);
257     } else {
258         bs->drv->bdrv_co_drain_end(bs);
259     }
260 
261     /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
262     qatomic_mb_set(&data->done, true);
263     if (!data->begin) {
264         qatomic_dec(data->drained_end_counter);
265     }
266     bdrv_dec_in_flight(bs);
267 
268     g_free(data);
269 }
270 
271 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
272 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
273                               int *drained_end_counter)
274 {
275     BdrvCoDrainData *data;
276 
277     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
278             (!begin && !bs->drv->bdrv_co_drain_end)) {
279         return;
280     }
281 
282     data = g_new(BdrvCoDrainData, 1);
283     *data = (BdrvCoDrainData) {
284         .bs = bs,
285         .done = false,
286         .begin = begin,
287         .drained_end_counter = drained_end_counter,
288     };
289 
290     if (!begin) {
291         qatomic_inc(drained_end_counter);
292     }
293 
294     /* Make sure the driver callback completes during the polling phase for
295      * drain_begin. */
296     bdrv_inc_in_flight(bs);
297     data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
298     aio_co_schedule(bdrv_get_aio_context(bs), data->co);
299 }
300 
301 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
302 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
303                      BdrvChild *ignore_parent, bool ignore_bds_parents)
304 {
305     BdrvChild *child, *next;
306 
307     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
308         return true;
309     }
310 
311     if (qatomic_read(&bs->in_flight)) {
312         return true;
313     }
314 
315     if (recursive) {
316         assert(!ignore_bds_parents);
317         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
318             if (bdrv_drain_poll(child->bs, recursive, child, false)) {
319                 return true;
320             }
321         }
322     }
323 
324     return false;
325 }
326 
327 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
328                                       BdrvChild *ignore_parent)
329 {
330     return bdrv_drain_poll(bs, recursive, ignore_parent, false);
331 }
332 
333 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
334                                   BdrvChild *parent, bool ignore_bds_parents,
335                                   bool poll);
336 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
337                                 BdrvChild *parent, bool ignore_bds_parents,
338                                 int *drained_end_counter);
339 
340 static void bdrv_co_drain_bh_cb(void *opaque)
341 {
342     BdrvCoDrainData *data = opaque;
343     Coroutine *co = data->co;
344     BlockDriverState *bs = data->bs;
345 
346     if (bs) {
347         AioContext *ctx = bdrv_get_aio_context(bs);
348         aio_context_acquire(ctx);
349         bdrv_dec_in_flight(bs);
350         if (data->begin) {
351             assert(!data->drained_end_counter);
352             bdrv_do_drained_begin(bs, data->recursive, data->parent,
353                                   data->ignore_bds_parents, data->poll);
354         } else {
355             assert(!data->poll);
356             bdrv_do_drained_end(bs, data->recursive, data->parent,
357                                 data->ignore_bds_parents,
358                                 data->drained_end_counter);
359         }
360         aio_context_release(ctx);
361     } else {
362         assert(data->begin);
363         bdrv_drain_all_begin();
364     }
365 
366     data->done = true;
367     aio_co_wake(co);
368 }
369 
370 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
371                                                 bool begin, bool recursive,
372                                                 BdrvChild *parent,
373                                                 bool ignore_bds_parents,
374                                                 bool poll,
375                                                 int *drained_end_counter)
376 {
377     BdrvCoDrainData data;
378     Coroutine *self = qemu_coroutine_self();
379     AioContext *ctx = bdrv_get_aio_context(bs);
380     AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
381 
382     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
383      * other coroutines run if they were queued by aio_co_enter(). */
384 
385     assert(qemu_in_coroutine());
386     data = (BdrvCoDrainData) {
387         .co = self,
388         .bs = bs,
389         .done = false,
390         .begin = begin,
391         .recursive = recursive,
392         .parent = parent,
393         .ignore_bds_parents = ignore_bds_parents,
394         .poll = poll,
395         .drained_end_counter = drained_end_counter,
396     };
397 
398     if (bs) {
399         bdrv_inc_in_flight(bs);
400     }
401 
402     /*
403      * Temporarily drop the lock across yield or we would get deadlocks.
404      * bdrv_co_drain_bh_cb() reaquires the lock as needed.
405      *
406      * When we yield below, the lock for the current context will be
407      * released, so if this is actually the lock that protects bs, don't drop
408      * it a second time.
409      */
410     if (ctx != co_ctx) {
411         aio_context_release(ctx);
412     }
413     replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
414 
415     qemu_coroutine_yield();
416     /* If we are resumed from some other event (such as an aio completion or a
417      * timer callback), it is a bug in the caller that should be fixed. */
418     assert(data.done);
419 
420     /* Reaquire the AioContext of bs if we dropped it */
421     if (ctx != co_ctx) {
422         aio_context_acquire(ctx);
423     }
424 }
425 
426 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
427                                    BdrvChild *parent, bool ignore_bds_parents)
428 {
429     assert(!qemu_in_coroutine());
430 
431     /* Stop things in parent-to-child order */
432     if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
433         aio_disable_external(bdrv_get_aio_context(bs));
434     }
435 
436     bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
437     bdrv_drain_invoke(bs, true, NULL);
438 }
439 
440 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
441                                   BdrvChild *parent, bool ignore_bds_parents,
442                                   bool poll)
443 {
444     BdrvChild *child, *next;
445 
446     if (qemu_in_coroutine()) {
447         bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
448                                poll, NULL);
449         return;
450     }
451 
452     bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
453 
454     if (recursive) {
455         assert(!ignore_bds_parents);
456         bs->recursive_quiesce_counter++;
457         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
458             bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
459                                   false);
460         }
461     }
462 
463     /*
464      * Wait for drained requests to finish.
465      *
466      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
467      * call is needed so things in this AioContext can make progress even
468      * though we don't return to the main AioContext loop - this automatically
469      * includes other nodes in the same AioContext and therefore all child
470      * nodes.
471      */
472     if (poll) {
473         assert(!ignore_bds_parents);
474         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
475     }
476 }
477 
478 void bdrv_drained_begin(BlockDriverState *bs)
479 {
480     bdrv_do_drained_begin(bs, false, NULL, false, true);
481 }
482 
483 void bdrv_subtree_drained_begin(BlockDriverState *bs)
484 {
485     bdrv_do_drained_begin(bs, true, NULL, false, true);
486 }
487 
488 /**
489  * This function does not poll, nor must any of its recursively called
490  * functions.  The *drained_end_counter pointee will be incremented
491  * once for every background operation scheduled, and decremented once
492  * the operation settles.  Therefore, the pointer must remain valid
493  * until the pointee reaches 0.  That implies that whoever sets up the
494  * pointee has to poll until it is 0.
495  *
496  * We use atomic operations to access *drained_end_counter, because
497  * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
498  *     @bs may contain nodes in different AioContexts,
499  * (2) bdrv_drain_all_end() uses the same counter for all nodes,
500  *     regardless of which AioContext they are in.
501  */
502 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
503                                 BdrvChild *parent, bool ignore_bds_parents,
504                                 int *drained_end_counter)
505 {
506     BdrvChild *child;
507     int old_quiesce_counter;
508 
509     assert(drained_end_counter != NULL);
510 
511     if (qemu_in_coroutine()) {
512         bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
513                                false, drained_end_counter);
514         return;
515     }
516     assert(bs->quiesce_counter > 0);
517 
518     /* Re-enable things in child-to-parent order */
519     bdrv_drain_invoke(bs, false, drained_end_counter);
520     bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
521                             drained_end_counter);
522 
523     old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
524     if (old_quiesce_counter == 1) {
525         aio_enable_external(bdrv_get_aio_context(bs));
526     }
527 
528     if (recursive) {
529         assert(!ignore_bds_parents);
530         bs->recursive_quiesce_counter--;
531         QLIST_FOREACH(child, &bs->children, next) {
532             bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
533                                 drained_end_counter);
534         }
535     }
536 }
537 
538 void bdrv_drained_end(BlockDriverState *bs)
539 {
540     int drained_end_counter = 0;
541     bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
542     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
543 }
544 
545 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
546 {
547     bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
548 }
549 
550 void bdrv_subtree_drained_end(BlockDriverState *bs)
551 {
552     int drained_end_counter = 0;
553     bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
554     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
555 }
556 
557 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
558 {
559     int i;
560 
561     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
562         bdrv_do_drained_begin(child->bs, true, child, false, true);
563     }
564 }
565 
566 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
567 {
568     int drained_end_counter = 0;
569     int i;
570 
571     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
572         bdrv_do_drained_end(child->bs, true, child, false,
573                             &drained_end_counter);
574     }
575 
576     BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
577 }
578 
579 /*
580  * Wait for pending requests to complete on a single BlockDriverState subtree,
581  * and suspend block driver's internal I/O until next request arrives.
582  *
583  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
584  * AioContext.
585  */
586 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
587 {
588     assert(qemu_in_coroutine());
589     bdrv_drained_begin(bs);
590     bdrv_drained_end(bs);
591 }
592 
593 void bdrv_drain(BlockDriverState *bs)
594 {
595     bdrv_drained_begin(bs);
596     bdrv_drained_end(bs);
597 }
598 
599 static void bdrv_drain_assert_idle(BlockDriverState *bs)
600 {
601     BdrvChild *child, *next;
602 
603     assert(qatomic_read(&bs->in_flight) == 0);
604     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
605         bdrv_drain_assert_idle(child->bs);
606     }
607 }
608 
609 unsigned int bdrv_drain_all_count = 0;
610 
611 static bool bdrv_drain_all_poll(void)
612 {
613     BlockDriverState *bs = NULL;
614     bool result = false;
615 
616     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
617      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
618     while ((bs = bdrv_next_all_states(bs))) {
619         AioContext *aio_context = bdrv_get_aio_context(bs);
620         aio_context_acquire(aio_context);
621         result |= bdrv_drain_poll(bs, false, NULL, true);
622         aio_context_release(aio_context);
623     }
624 
625     return result;
626 }
627 
628 /*
629  * Wait for pending requests to complete across all BlockDriverStates
630  *
631  * This function does not flush data to disk, use bdrv_flush_all() for that
632  * after calling this function.
633  *
634  * This pauses all block jobs and disables external clients. It must
635  * be paired with bdrv_drain_all_end().
636  *
637  * NOTE: no new block jobs or BlockDriverStates can be created between
638  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
639  */
640 void bdrv_drain_all_begin(void)
641 {
642     BlockDriverState *bs = NULL;
643 
644     if (qemu_in_coroutine()) {
645         bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
646         return;
647     }
648 
649     /*
650      * bdrv queue is managed by record/replay,
651      * waiting for finishing the I/O requests may
652      * be infinite
653      */
654     if (replay_events_enabled()) {
655         return;
656     }
657 
658     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
659      * loop AioContext, so make sure we're in the main context. */
660     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
661     assert(bdrv_drain_all_count < INT_MAX);
662     bdrv_drain_all_count++;
663 
664     /* Quiesce all nodes, without polling in-flight requests yet. The graph
665      * cannot change during this loop. */
666     while ((bs = bdrv_next_all_states(bs))) {
667         AioContext *aio_context = bdrv_get_aio_context(bs);
668 
669         aio_context_acquire(aio_context);
670         bdrv_do_drained_begin(bs, false, NULL, true, false);
671         aio_context_release(aio_context);
672     }
673 
674     /* Now poll the in-flight requests */
675     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
676 
677     while ((bs = bdrv_next_all_states(bs))) {
678         bdrv_drain_assert_idle(bs);
679     }
680 }
681 
682 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
683 {
684     int drained_end_counter = 0;
685 
686     g_assert(bs->quiesce_counter > 0);
687     g_assert(!bs->refcnt);
688 
689     while (bs->quiesce_counter) {
690         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
691     }
692     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
693 }
694 
695 void bdrv_drain_all_end(void)
696 {
697     BlockDriverState *bs = NULL;
698     int drained_end_counter = 0;
699 
700     /*
701      * bdrv queue is managed by record/replay,
702      * waiting for finishing the I/O requests may
703      * be endless
704      */
705     if (replay_events_enabled()) {
706         return;
707     }
708 
709     while ((bs = bdrv_next_all_states(bs))) {
710         AioContext *aio_context = bdrv_get_aio_context(bs);
711 
712         aio_context_acquire(aio_context);
713         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
714         aio_context_release(aio_context);
715     }
716 
717     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
718     AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
719 
720     assert(bdrv_drain_all_count > 0);
721     bdrv_drain_all_count--;
722 }
723 
724 void bdrv_drain_all(void)
725 {
726     bdrv_drain_all_begin();
727     bdrv_drain_all_end();
728 }
729 
730 /**
731  * Remove an active request from the tracked requests list
732  *
733  * This function should be called when a tracked request is completing.
734  */
735 static void tracked_request_end(BdrvTrackedRequest *req)
736 {
737     if (req->serialising) {
738         qatomic_dec(&req->bs->serialising_in_flight);
739     }
740 
741     qemu_co_mutex_lock(&req->bs->reqs_lock);
742     QLIST_REMOVE(req, list);
743     qemu_co_queue_restart_all(&req->wait_queue);
744     qemu_co_mutex_unlock(&req->bs->reqs_lock);
745 }
746 
747 /**
748  * Add an active request to the tracked requests list
749  */
750 static void tracked_request_begin(BdrvTrackedRequest *req,
751                                   BlockDriverState *bs,
752                                   int64_t offset,
753                                   int64_t bytes,
754                                   enum BdrvTrackedRequestType type)
755 {
756     bdrv_check_request(offset, bytes, &error_abort);
757 
758     *req = (BdrvTrackedRequest){
759         .bs = bs,
760         .offset         = offset,
761         .bytes          = bytes,
762         .type           = type,
763         .co             = qemu_coroutine_self(),
764         .serialising    = false,
765         .overlap_offset = offset,
766         .overlap_bytes  = bytes,
767     };
768 
769     qemu_co_queue_init(&req->wait_queue);
770 
771     qemu_co_mutex_lock(&bs->reqs_lock);
772     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
773     qemu_co_mutex_unlock(&bs->reqs_lock);
774 }
775 
776 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
777                                      int64_t offset, int64_t bytes)
778 {
779     bdrv_check_request(offset, bytes, &error_abort);
780 
781     /*        aaaa   bbbb */
782     if (offset >= req->overlap_offset + req->overlap_bytes) {
783         return false;
784     }
785     /* bbbb   aaaa        */
786     if (req->overlap_offset >= offset + bytes) {
787         return false;
788     }
789     return true;
790 }
791 
792 /* Called with self->bs->reqs_lock held */
793 static BdrvTrackedRequest *
794 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
795 {
796     BdrvTrackedRequest *req;
797 
798     QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
799         if (req == self || (!req->serialising && !self->serialising)) {
800             continue;
801         }
802         if (tracked_request_overlaps(req, self->overlap_offset,
803                                      self->overlap_bytes))
804         {
805             /*
806              * Hitting this means there was a reentrant request, for
807              * example, a block driver issuing nested requests.  This must
808              * never happen since it means deadlock.
809              */
810             assert(qemu_coroutine_self() != req->co);
811 
812             /*
813              * If the request is already (indirectly) waiting for us, or
814              * will wait for us as soon as it wakes up, then just go on
815              * (instead of producing a deadlock in the former case).
816              */
817             if (!req->waiting_for) {
818                 return req;
819             }
820         }
821     }
822 
823     return NULL;
824 }
825 
826 /* Called with self->bs->reqs_lock held */
827 static bool coroutine_fn
828 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
829 {
830     BdrvTrackedRequest *req;
831     bool waited = false;
832 
833     while ((req = bdrv_find_conflicting_request(self))) {
834         self->waiting_for = req;
835         qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
836         self->waiting_for = NULL;
837         waited = true;
838     }
839 
840     return waited;
841 }
842 
843 /* Called with req->bs->reqs_lock held */
844 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
845                                             uint64_t align)
846 {
847     int64_t overlap_offset = req->offset & ~(align - 1);
848     int64_t overlap_bytes =
849         ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
850 
851     bdrv_check_request(req->offset, req->bytes, &error_abort);
852 
853     if (!req->serialising) {
854         qatomic_inc(&req->bs->serialising_in_flight);
855         req->serialising = true;
856     }
857 
858     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
859     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
860 }
861 
862 /**
863  * Return the tracked request on @bs for the current coroutine, or
864  * NULL if there is none.
865  */
866 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
867 {
868     BdrvTrackedRequest *req;
869     Coroutine *self = qemu_coroutine_self();
870 
871     QLIST_FOREACH(req, &bs->tracked_requests, list) {
872         if (req->co == self) {
873             return req;
874         }
875     }
876 
877     return NULL;
878 }
879 
880 /**
881  * Round a region to cluster boundaries
882  */
883 void bdrv_round_to_clusters(BlockDriverState *bs,
884                             int64_t offset, int64_t bytes,
885                             int64_t *cluster_offset,
886                             int64_t *cluster_bytes)
887 {
888     BlockDriverInfo bdi;
889 
890     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
891         *cluster_offset = offset;
892         *cluster_bytes = bytes;
893     } else {
894         int64_t c = bdi.cluster_size;
895         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
896         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
897     }
898 }
899 
900 static int bdrv_get_cluster_size(BlockDriverState *bs)
901 {
902     BlockDriverInfo bdi;
903     int ret;
904 
905     ret = bdrv_get_info(bs, &bdi);
906     if (ret < 0 || bdi.cluster_size == 0) {
907         return bs->bl.request_alignment;
908     } else {
909         return bdi.cluster_size;
910     }
911 }
912 
913 void bdrv_inc_in_flight(BlockDriverState *bs)
914 {
915     qatomic_inc(&bs->in_flight);
916 }
917 
918 void bdrv_wakeup(BlockDriverState *bs)
919 {
920     aio_wait_kick();
921 }
922 
923 void bdrv_dec_in_flight(BlockDriverState *bs)
924 {
925     qatomic_dec(&bs->in_flight);
926     bdrv_wakeup(bs);
927 }
928 
929 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
930 {
931     BlockDriverState *bs = self->bs;
932     bool waited = false;
933 
934     if (!qatomic_read(&bs->serialising_in_flight)) {
935         return false;
936     }
937 
938     qemu_co_mutex_lock(&bs->reqs_lock);
939     waited = bdrv_wait_serialising_requests_locked(self);
940     qemu_co_mutex_unlock(&bs->reqs_lock);
941 
942     return waited;
943 }
944 
945 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
946                                                 uint64_t align)
947 {
948     bool waited;
949 
950     qemu_co_mutex_lock(&req->bs->reqs_lock);
951 
952     tracked_request_set_serialising(req, align);
953     waited = bdrv_wait_serialising_requests_locked(req);
954 
955     qemu_co_mutex_unlock(&req->bs->reqs_lock);
956 
957     return waited;
958 }
959 
960 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
961                             QEMUIOVector *qiov, size_t qiov_offset,
962                             Error **errp)
963 {
964     /*
965      * Check generic offset/bytes correctness
966      */
967 
968     if (offset < 0) {
969         error_setg(errp, "offset is negative: %" PRIi64, offset);
970         return -EIO;
971     }
972 
973     if (bytes < 0) {
974         error_setg(errp, "bytes is negative: %" PRIi64, bytes);
975         return -EIO;
976     }
977 
978     if (bytes > BDRV_MAX_LENGTH) {
979         error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
980                    bytes, BDRV_MAX_LENGTH);
981         return -EIO;
982     }
983 
984     if (offset > BDRV_MAX_LENGTH) {
985         error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
986                    offset, BDRV_MAX_LENGTH);
987         return -EIO;
988     }
989 
990     if (offset > BDRV_MAX_LENGTH - bytes) {
991         error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
992                    "exceeds maximum(%" PRIi64 ")", offset, bytes,
993                    BDRV_MAX_LENGTH);
994         return -EIO;
995     }
996 
997     if (!qiov) {
998         return 0;
999     }
1000 
1001     /*
1002      * Check qiov and qiov_offset
1003      */
1004 
1005     if (qiov_offset > qiov->size) {
1006         error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
1007                    qiov_offset, qiov->size);
1008         return -EIO;
1009     }
1010 
1011     if (bytes > qiov->size - qiov_offset) {
1012         error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
1013                    "vector size(%zu)", bytes, qiov_offset, qiov->size);
1014         return -EIO;
1015     }
1016 
1017     return 0;
1018 }
1019 
1020 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
1021 {
1022     return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
1023 }
1024 
1025 static int bdrv_check_request32(int64_t offset, int64_t bytes,
1026                                 QEMUIOVector *qiov, size_t qiov_offset)
1027 {
1028     int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
1029     if (ret < 0) {
1030         return ret;
1031     }
1032 
1033     if (bytes > BDRV_REQUEST_MAX_BYTES) {
1034         return -EIO;
1035     }
1036 
1037     return 0;
1038 }
1039 
1040 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
1041                        int64_t bytes, BdrvRequestFlags flags)
1042 {
1043     return bdrv_pwritev(child, offset, bytes, NULL,
1044                         BDRV_REQ_ZERO_WRITE | flags);
1045 }
1046 
1047 /*
1048  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
1049  * The operation is sped up by checking the block status and only writing
1050  * zeroes to the device if they currently do not return zeroes. Optional
1051  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
1052  * BDRV_REQ_FUA).
1053  *
1054  * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
1055  */
1056 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
1057 {
1058     int ret;
1059     int64_t target_size, bytes, offset = 0;
1060     BlockDriverState *bs = child->bs;
1061 
1062     target_size = bdrv_getlength(bs);
1063     if (target_size < 0) {
1064         return target_size;
1065     }
1066 
1067     for (;;) {
1068         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1069         if (bytes <= 0) {
1070             return 0;
1071         }
1072         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1073         if (ret < 0) {
1074             return ret;
1075         }
1076         if (ret & BDRV_BLOCK_ZERO) {
1077             offset += bytes;
1078             continue;
1079         }
1080         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1081         if (ret < 0) {
1082             return ret;
1083         }
1084         offset += bytes;
1085     }
1086 }
1087 
1088 /* See bdrv_pwrite() for the return codes */
1089 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes)
1090 {
1091     int ret;
1092     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1093 
1094     if (bytes < 0) {
1095         return -EINVAL;
1096     }
1097 
1098     ret = bdrv_preadv(child, offset, bytes, &qiov,  0);
1099 
1100     return ret < 0 ? ret : bytes;
1101 }
1102 
1103 /* Return no. of bytes on success or < 0 on error. Important errors are:
1104   -EIO         generic I/O error (may happen for all errors)
1105   -ENOMEDIUM   No media inserted.
1106   -EINVAL      Invalid offset or number of bytes
1107   -EACCES      Trying to write a read-only device
1108 */
1109 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf,
1110                 int64_t bytes)
1111 {
1112     int ret;
1113     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1114 
1115     if (bytes < 0) {
1116         return -EINVAL;
1117     }
1118 
1119     ret = bdrv_pwritev(child, offset, bytes, &qiov, 0);
1120 
1121     return ret < 0 ? ret : bytes;
1122 }
1123 
1124 /*
1125  * Writes to the file and ensures that no writes are reordered across this
1126  * request (acts as a barrier)
1127  *
1128  * Returns 0 on success, -errno in error cases.
1129  */
1130 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1131                      const void *buf, int64_t count)
1132 {
1133     int ret;
1134 
1135     ret = bdrv_pwrite(child, offset, buf, count);
1136     if (ret < 0) {
1137         return ret;
1138     }
1139 
1140     ret = bdrv_flush(child->bs);
1141     if (ret < 0) {
1142         return ret;
1143     }
1144 
1145     return 0;
1146 }
1147 
1148 typedef struct CoroutineIOCompletion {
1149     Coroutine *coroutine;
1150     int ret;
1151 } CoroutineIOCompletion;
1152 
1153 static void bdrv_co_io_em_complete(void *opaque, int ret)
1154 {
1155     CoroutineIOCompletion *co = opaque;
1156 
1157     co->ret = ret;
1158     aio_co_wake(co->coroutine);
1159 }
1160 
1161 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1162                                            int64_t offset, int64_t bytes,
1163                                            QEMUIOVector *qiov,
1164                                            size_t qiov_offset, int flags)
1165 {
1166     BlockDriver *drv = bs->drv;
1167     int64_t sector_num;
1168     unsigned int nb_sectors;
1169     QEMUIOVector local_qiov;
1170     int ret;
1171 
1172     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1173     assert(!(flags & ~BDRV_REQ_MASK));
1174     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1175 
1176     if (!drv) {
1177         return -ENOMEDIUM;
1178     }
1179 
1180     if (drv->bdrv_co_preadv_part) {
1181         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1182                                         flags);
1183     }
1184 
1185     if (qiov_offset > 0 || bytes != qiov->size) {
1186         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1187         qiov = &local_qiov;
1188     }
1189 
1190     if (drv->bdrv_co_preadv) {
1191         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1192         goto out;
1193     }
1194 
1195     if (drv->bdrv_aio_preadv) {
1196         BlockAIOCB *acb;
1197         CoroutineIOCompletion co = {
1198             .coroutine = qemu_coroutine_self(),
1199         };
1200 
1201         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1202                                    bdrv_co_io_em_complete, &co);
1203         if (acb == NULL) {
1204             ret = -EIO;
1205             goto out;
1206         } else {
1207             qemu_coroutine_yield();
1208             ret = co.ret;
1209             goto out;
1210         }
1211     }
1212 
1213     sector_num = offset >> BDRV_SECTOR_BITS;
1214     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1215 
1216     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1217     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1218     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1219     assert(drv->bdrv_co_readv);
1220 
1221     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1222 
1223 out:
1224     if (qiov == &local_qiov) {
1225         qemu_iovec_destroy(&local_qiov);
1226     }
1227 
1228     return ret;
1229 }
1230 
1231 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1232                                             int64_t offset, int64_t bytes,
1233                                             QEMUIOVector *qiov,
1234                                             size_t qiov_offset,
1235                                             BdrvRequestFlags flags)
1236 {
1237     BlockDriver *drv = bs->drv;
1238     int64_t sector_num;
1239     unsigned int nb_sectors;
1240     QEMUIOVector local_qiov;
1241     int ret;
1242 
1243     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1244     assert(!(flags & ~BDRV_REQ_MASK));
1245     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1246 
1247     if (!drv) {
1248         return -ENOMEDIUM;
1249     }
1250 
1251     if (drv->bdrv_co_pwritev_part) {
1252         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1253                                         flags & bs->supported_write_flags);
1254         flags &= ~bs->supported_write_flags;
1255         goto emulate_flags;
1256     }
1257 
1258     if (qiov_offset > 0 || bytes != qiov->size) {
1259         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1260         qiov = &local_qiov;
1261     }
1262 
1263     if (drv->bdrv_co_pwritev) {
1264         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1265                                    flags & bs->supported_write_flags);
1266         flags &= ~bs->supported_write_flags;
1267         goto emulate_flags;
1268     }
1269 
1270     if (drv->bdrv_aio_pwritev) {
1271         BlockAIOCB *acb;
1272         CoroutineIOCompletion co = {
1273             .coroutine = qemu_coroutine_self(),
1274         };
1275 
1276         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1277                                     flags & bs->supported_write_flags,
1278                                     bdrv_co_io_em_complete, &co);
1279         flags &= ~bs->supported_write_flags;
1280         if (acb == NULL) {
1281             ret = -EIO;
1282         } else {
1283             qemu_coroutine_yield();
1284             ret = co.ret;
1285         }
1286         goto emulate_flags;
1287     }
1288 
1289     sector_num = offset >> BDRV_SECTOR_BITS;
1290     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1291 
1292     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1293     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1294     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1295 
1296     assert(drv->bdrv_co_writev);
1297     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1298                               flags & bs->supported_write_flags);
1299     flags &= ~bs->supported_write_flags;
1300 
1301 emulate_flags:
1302     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1303         ret = bdrv_co_flush(bs);
1304     }
1305 
1306     if (qiov == &local_qiov) {
1307         qemu_iovec_destroy(&local_qiov);
1308     }
1309 
1310     return ret;
1311 }
1312 
1313 static int coroutine_fn
1314 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1315                                int64_t bytes, QEMUIOVector *qiov,
1316                                size_t qiov_offset)
1317 {
1318     BlockDriver *drv = bs->drv;
1319     QEMUIOVector local_qiov;
1320     int ret;
1321 
1322     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1323 
1324     if (!drv) {
1325         return -ENOMEDIUM;
1326     }
1327 
1328     if (!block_driver_can_compress(drv)) {
1329         return -ENOTSUP;
1330     }
1331 
1332     if (drv->bdrv_co_pwritev_compressed_part) {
1333         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1334                                                     qiov, qiov_offset);
1335     }
1336 
1337     if (qiov_offset == 0) {
1338         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1339     }
1340 
1341     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1342     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1343     qemu_iovec_destroy(&local_qiov);
1344 
1345     return ret;
1346 }
1347 
1348 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1349         int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1350         size_t qiov_offset, int flags)
1351 {
1352     BlockDriverState *bs = child->bs;
1353 
1354     /* Perform I/O through a temporary buffer so that users who scribble over
1355      * their read buffer while the operation is in progress do not end up
1356      * modifying the image file.  This is critical for zero-copy guest I/O
1357      * where anything might happen inside guest memory.
1358      */
1359     void *bounce_buffer = NULL;
1360 
1361     BlockDriver *drv = bs->drv;
1362     int64_t cluster_offset;
1363     int64_t cluster_bytes;
1364     int64_t skip_bytes;
1365     int ret;
1366     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1367                                     BDRV_REQUEST_MAX_BYTES);
1368     int64_t progress = 0;
1369     bool skip_write;
1370 
1371     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1372 
1373     if (!drv) {
1374         return -ENOMEDIUM;
1375     }
1376 
1377     /*
1378      * Do not write anything when the BDS is inactive.  That is not
1379      * allowed, and it would not help.
1380      */
1381     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1382 
1383     /* FIXME We cannot require callers to have write permissions when all they
1384      * are doing is a read request. If we did things right, write permissions
1385      * would be obtained anyway, but internally by the copy-on-read code. As
1386      * long as it is implemented here rather than in a separate filter driver,
1387      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1388      * it could request permissions. Therefore we have to bypass the permission
1389      * system for the moment. */
1390     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1391 
1392     /* Cover entire cluster so no additional backing file I/O is required when
1393      * allocating cluster in the image file.  Note that this value may exceed
1394      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1395      * is one reason we loop rather than doing it all at once.
1396      */
1397     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1398     skip_bytes = offset - cluster_offset;
1399 
1400     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1401                                    cluster_offset, cluster_bytes);
1402 
1403     while (cluster_bytes) {
1404         int64_t pnum;
1405 
1406         if (skip_write) {
1407             ret = 1; /* "already allocated", so nothing will be copied */
1408             pnum = MIN(cluster_bytes, max_transfer);
1409         } else {
1410             ret = bdrv_is_allocated(bs, cluster_offset,
1411                                     MIN(cluster_bytes, max_transfer), &pnum);
1412             if (ret < 0) {
1413                 /*
1414                  * Safe to treat errors in querying allocation as if
1415                  * unallocated; we'll probably fail again soon on the
1416                  * read, but at least that will set a decent errno.
1417                  */
1418                 pnum = MIN(cluster_bytes, max_transfer);
1419             }
1420 
1421             /* Stop at EOF if the image ends in the middle of the cluster */
1422             if (ret == 0 && pnum == 0) {
1423                 assert(progress >= bytes);
1424                 break;
1425             }
1426 
1427             assert(skip_bytes < pnum);
1428         }
1429 
1430         if (ret <= 0) {
1431             QEMUIOVector local_qiov;
1432 
1433             /* Must copy-on-read; use the bounce buffer */
1434             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1435             if (!bounce_buffer) {
1436                 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1437                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1438                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1439 
1440                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1441                 if (!bounce_buffer) {
1442                     ret = -ENOMEM;
1443                     goto err;
1444                 }
1445             }
1446             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1447 
1448             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1449                                      &local_qiov, 0, 0);
1450             if (ret < 0) {
1451                 goto err;
1452             }
1453 
1454             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1455             if (drv->bdrv_co_pwrite_zeroes &&
1456                 buffer_is_zero(bounce_buffer, pnum)) {
1457                 /* FIXME: Should we (perhaps conditionally) be setting
1458                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1459                  * that still correctly reads as zero? */
1460                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1461                                                BDRV_REQ_WRITE_UNCHANGED);
1462             } else {
1463                 /* This does not change the data on the disk, it is not
1464                  * necessary to flush even in cache=writethrough mode.
1465                  */
1466                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1467                                           &local_qiov, 0,
1468                                           BDRV_REQ_WRITE_UNCHANGED);
1469             }
1470 
1471             if (ret < 0) {
1472                 /* It might be okay to ignore write errors for guest
1473                  * requests.  If this is a deliberate copy-on-read
1474                  * then we don't want to ignore the error.  Simply
1475                  * report it in all cases.
1476                  */
1477                 goto err;
1478             }
1479 
1480             if (!(flags & BDRV_REQ_PREFETCH)) {
1481                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1482                                     bounce_buffer + skip_bytes,
1483                                     MIN(pnum - skip_bytes, bytes - progress));
1484             }
1485         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1486             /* Read directly into the destination */
1487             ret = bdrv_driver_preadv(bs, offset + progress,
1488                                      MIN(pnum - skip_bytes, bytes - progress),
1489                                      qiov, qiov_offset + progress, 0);
1490             if (ret < 0) {
1491                 goto err;
1492             }
1493         }
1494 
1495         cluster_offset += pnum;
1496         cluster_bytes -= pnum;
1497         progress += pnum - skip_bytes;
1498         skip_bytes = 0;
1499     }
1500     ret = 0;
1501 
1502 err:
1503     qemu_vfree(bounce_buffer);
1504     return ret;
1505 }
1506 
1507 /*
1508  * Forwards an already correctly aligned request to the BlockDriver. This
1509  * handles copy on read, zeroing after EOF, and fragmentation of large
1510  * reads; any other features must be implemented by the caller.
1511  */
1512 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1513     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1514     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1515 {
1516     BlockDriverState *bs = child->bs;
1517     int64_t total_bytes, max_bytes;
1518     int ret = 0;
1519     int64_t bytes_remaining = bytes;
1520     int max_transfer;
1521 
1522     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1523     assert(is_power_of_2(align));
1524     assert((offset & (align - 1)) == 0);
1525     assert((bytes & (align - 1)) == 0);
1526     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1527     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1528                                    align);
1529 
1530     /* TODO: We would need a per-BDS .supported_read_flags and
1531      * potential fallback support, if we ever implement any read flags
1532      * to pass through to drivers.  For now, there aren't any
1533      * passthrough flags.  */
1534     assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1535 
1536     /* Handle Copy on Read and associated serialisation */
1537     if (flags & BDRV_REQ_COPY_ON_READ) {
1538         /* If we touch the same cluster it counts as an overlap.  This
1539          * guarantees that allocating writes will be serialized and not race
1540          * with each other for the same cluster.  For example, in copy-on-read
1541          * it ensures that the CoR read and write operations are atomic and
1542          * guest writes cannot interleave between them. */
1543         bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1544     } else {
1545         bdrv_wait_serialising_requests(req);
1546     }
1547 
1548     if (flags & BDRV_REQ_COPY_ON_READ) {
1549         int64_t pnum;
1550 
1551         /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1552         flags &= ~BDRV_REQ_COPY_ON_READ;
1553 
1554         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1555         if (ret < 0) {
1556             goto out;
1557         }
1558 
1559         if (!ret || pnum != bytes) {
1560             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1561                                            qiov, qiov_offset, flags);
1562             goto out;
1563         } else if (flags & BDRV_REQ_PREFETCH) {
1564             goto out;
1565         }
1566     }
1567 
1568     /* Forward the request to the BlockDriver, possibly fragmenting it */
1569     total_bytes = bdrv_getlength(bs);
1570     if (total_bytes < 0) {
1571         ret = total_bytes;
1572         goto out;
1573     }
1574 
1575     assert(!(flags & ~bs->supported_read_flags));
1576 
1577     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1578     if (bytes <= max_bytes && bytes <= max_transfer) {
1579         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1580         goto out;
1581     }
1582 
1583     while (bytes_remaining) {
1584         int64_t num;
1585 
1586         if (max_bytes) {
1587             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1588             assert(num);
1589 
1590             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1591                                      num, qiov,
1592                                      qiov_offset + bytes - bytes_remaining,
1593                                      flags);
1594             max_bytes -= num;
1595         } else {
1596             num = bytes_remaining;
1597             ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1598                                     0, bytes_remaining);
1599         }
1600         if (ret < 0) {
1601             goto out;
1602         }
1603         bytes_remaining -= num;
1604     }
1605 
1606 out:
1607     return ret < 0 ? ret : 0;
1608 }
1609 
1610 /*
1611  * Request padding
1612  *
1613  *  |<---- align ----->|                     |<----- align ---->|
1614  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1615  *  |          |       |                     |     |            |
1616  * -*----------$-------*-------- ... --------*-----$------------*---
1617  *  |          |       |                     |     |            |
1618  *  |          offset  |                     |     end          |
1619  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1620  *  [buf   ... )                             [tail_buf          )
1621  *
1622  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1623  * is placed at the beginning of @buf and @tail at the @end.
1624  *
1625  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1626  * around tail, if tail exists.
1627  *
1628  * @merge_reads is true for small requests,
1629  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1630  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1631  */
1632 typedef struct BdrvRequestPadding {
1633     uint8_t *buf;
1634     size_t buf_len;
1635     uint8_t *tail_buf;
1636     size_t head;
1637     size_t tail;
1638     bool merge_reads;
1639     QEMUIOVector local_qiov;
1640 } BdrvRequestPadding;
1641 
1642 static bool bdrv_init_padding(BlockDriverState *bs,
1643                               int64_t offset, int64_t bytes,
1644                               BdrvRequestPadding *pad)
1645 {
1646     int64_t align = bs->bl.request_alignment;
1647     int64_t sum;
1648 
1649     bdrv_check_request(offset, bytes, &error_abort);
1650     assert(align <= INT_MAX); /* documented in block/block_int.h */
1651     assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1652 
1653     memset(pad, 0, sizeof(*pad));
1654 
1655     pad->head = offset & (align - 1);
1656     pad->tail = ((offset + bytes) & (align - 1));
1657     if (pad->tail) {
1658         pad->tail = align - pad->tail;
1659     }
1660 
1661     if (!pad->head && !pad->tail) {
1662         return false;
1663     }
1664 
1665     assert(bytes); /* Nothing good in aligning zero-length requests */
1666 
1667     sum = pad->head + bytes + pad->tail;
1668     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1669     pad->buf = qemu_blockalign(bs, pad->buf_len);
1670     pad->merge_reads = sum == pad->buf_len;
1671     if (pad->tail) {
1672         pad->tail_buf = pad->buf + pad->buf_len - align;
1673     }
1674 
1675     return true;
1676 }
1677 
1678 static int bdrv_padding_rmw_read(BdrvChild *child,
1679                                  BdrvTrackedRequest *req,
1680                                  BdrvRequestPadding *pad,
1681                                  bool zero_middle)
1682 {
1683     QEMUIOVector local_qiov;
1684     BlockDriverState *bs = child->bs;
1685     uint64_t align = bs->bl.request_alignment;
1686     int ret;
1687 
1688     assert(req->serialising && pad->buf);
1689 
1690     if (pad->head || pad->merge_reads) {
1691         int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1692 
1693         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1694 
1695         if (pad->head) {
1696             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1697         }
1698         if (pad->merge_reads && pad->tail) {
1699             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1700         }
1701         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1702                                   align, &local_qiov, 0, 0);
1703         if (ret < 0) {
1704             return ret;
1705         }
1706         if (pad->head) {
1707             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1708         }
1709         if (pad->merge_reads && pad->tail) {
1710             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1711         }
1712 
1713         if (pad->merge_reads) {
1714             goto zero_mem;
1715         }
1716     }
1717 
1718     if (pad->tail) {
1719         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1720 
1721         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1722         ret = bdrv_aligned_preadv(
1723                 child, req,
1724                 req->overlap_offset + req->overlap_bytes - align,
1725                 align, align, &local_qiov, 0, 0);
1726         if (ret < 0) {
1727             return ret;
1728         }
1729         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1730     }
1731 
1732 zero_mem:
1733     if (zero_middle) {
1734         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1735     }
1736 
1737     return 0;
1738 }
1739 
1740 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1741 {
1742     if (pad->buf) {
1743         qemu_vfree(pad->buf);
1744         qemu_iovec_destroy(&pad->local_qiov);
1745     }
1746     memset(pad, 0, sizeof(*pad));
1747 }
1748 
1749 /*
1750  * bdrv_pad_request
1751  *
1752  * Exchange request parameters with padded request if needed. Don't include RMW
1753  * read of padding, bdrv_padding_rmw_read() should be called separately if
1754  * needed.
1755  *
1756  * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1757  *  - on function start they represent original request
1758  *  - on failure or when padding is not needed they are unchanged
1759  *  - on success when padding is needed they represent padded request
1760  */
1761 static int bdrv_pad_request(BlockDriverState *bs,
1762                             QEMUIOVector **qiov, size_t *qiov_offset,
1763                             int64_t *offset, int64_t *bytes,
1764                             BdrvRequestPadding *pad, bool *padded)
1765 {
1766     int ret;
1767 
1768     bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1769 
1770     if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1771         if (padded) {
1772             *padded = false;
1773         }
1774         return 0;
1775     }
1776 
1777     ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1778                                    *qiov, *qiov_offset, *bytes,
1779                                    pad->buf + pad->buf_len - pad->tail,
1780                                    pad->tail);
1781     if (ret < 0) {
1782         bdrv_padding_destroy(pad);
1783         return ret;
1784     }
1785     *bytes += pad->head + pad->tail;
1786     *offset -= pad->head;
1787     *qiov = &pad->local_qiov;
1788     *qiov_offset = 0;
1789     if (padded) {
1790         *padded = true;
1791     }
1792 
1793     return 0;
1794 }
1795 
1796 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1797     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1798     BdrvRequestFlags flags)
1799 {
1800     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1801 }
1802 
1803 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1804     int64_t offset, int64_t bytes,
1805     QEMUIOVector *qiov, size_t qiov_offset,
1806     BdrvRequestFlags flags)
1807 {
1808     BlockDriverState *bs = child->bs;
1809     BdrvTrackedRequest req;
1810     BdrvRequestPadding pad;
1811     int ret;
1812 
1813     trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1814 
1815     if (!bdrv_is_inserted(bs)) {
1816         return -ENOMEDIUM;
1817     }
1818 
1819     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1820     if (ret < 0) {
1821         return ret;
1822     }
1823 
1824     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1825         /*
1826          * Aligning zero request is nonsense. Even if driver has special meaning
1827          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1828          * it to driver due to request_alignment.
1829          *
1830          * Still, no reason to return an error if someone do unaligned
1831          * zero-length read occasionally.
1832          */
1833         return 0;
1834     }
1835 
1836     bdrv_inc_in_flight(bs);
1837 
1838     /* Don't do copy-on-read if we read data before write operation */
1839     if (qatomic_read(&bs->copy_on_read)) {
1840         flags |= BDRV_REQ_COPY_ON_READ;
1841     }
1842 
1843     ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1844                            NULL);
1845     if (ret < 0) {
1846         goto fail;
1847     }
1848 
1849     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1850     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1851                               bs->bl.request_alignment,
1852                               qiov, qiov_offset, flags);
1853     tracked_request_end(&req);
1854     bdrv_padding_destroy(&pad);
1855 
1856 fail:
1857     bdrv_dec_in_flight(bs);
1858 
1859     return ret;
1860 }
1861 
1862 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1863     int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1864 {
1865     BlockDriver *drv = bs->drv;
1866     QEMUIOVector qiov;
1867     void *buf = NULL;
1868     int ret = 0;
1869     bool need_flush = false;
1870     int head = 0;
1871     int tail = 0;
1872 
1873     int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1874                                             INT64_MAX);
1875     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1876                         bs->bl.request_alignment);
1877     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1878 
1879     bdrv_check_request(offset, bytes, &error_abort);
1880 
1881     if (!drv) {
1882         return -ENOMEDIUM;
1883     }
1884 
1885     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1886         return -ENOTSUP;
1887     }
1888 
1889     /* Invalidate the cached block-status data range if this write overlaps */
1890     bdrv_bsc_invalidate_range(bs, offset, bytes);
1891 
1892     assert(alignment % bs->bl.request_alignment == 0);
1893     head = offset % alignment;
1894     tail = (offset + bytes) % alignment;
1895     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1896     assert(max_write_zeroes >= bs->bl.request_alignment);
1897 
1898     while (bytes > 0 && !ret) {
1899         int64_t num = bytes;
1900 
1901         /* Align request.  Block drivers can expect the "bulk" of the request
1902          * to be aligned, and that unaligned requests do not cross cluster
1903          * boundaries.
1904          */
1905         if (head) {
1906             /* Make a small request up to the first aligned sector. For
1907              * convenience, limit this request to max_transfer even if
1908              * we don't need to fall back to writes.  */
1909             num = MIN(MIN(bytes, max_transfer), alignment - head);
1910             head = (head + num) % alignment;
1911             assert(num < max_write_zeroes);
1912         } else if (tail && num > alignment) {
1913             /* Shorten the request to the last aligned sector.  */
1914             num -= tail;
1915         }
1916 
1917         /* limit request size */
1918         if (num > max_write_zeroes) {
1919             num = max_write_zeroes;
1920         }
1921 
1922         ret = -ENOTSUP;
1923         /* First try the efficient write zeroes operation */
1924         if (drv->bdrv_co_pwrite_zeroes) {
1925             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1926                                              flags & bs->supported_zero_flags);
1927             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1928                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1929                 need_flush = true;
1930             }
1931         } else {
1932             assert(!bs->supported_zero_flags);
1933         }
1934 
1935         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1936             /* Fall back to bounce buffer if write zeroes is unsupported */
1937             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1938 
1939             if ((flags & BDRV_REQ_FUA) &&
1940                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1941                 /* No need for bdrv_driver_pwrite() to do a fallback
1942                  * flush on each chunk; use just one at the end */
1943                 write_flags &= ~BDRV_REQ_FUA;
1944                 need_flush = true;
1945             }
1946             num = MIN(num, max_transfer);
1947             if (buf == NULL) {
1948                 buf = qemu_try_blockalign0(bs, num);
1949                 if (buf == NULL) {
1950                     ret = -ENOMEM;
1951                     goto fail;
1952                 }
1953             }
1954             qemu_iovec_init_buf(&qiov, buf, num);
1955 
1956             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1957 
1958             /* Keep bounce buffer around if it is big enough for all
1959              * all future requests.
1960              */
1961             if (num < max_transfer) {
1962                 qemu_vfree(buf);
1963                 buf = NULL;
1964             }
1965         }
1966 
1967         offset += num;
1968         bytes -= num;
1969     }
1970 
1971 fail:
1972     if (ret == 0 && need_flush) {
1973         ret = bdrv_co_flush(bs);
1974     }
1975     qemu_vfree(buf);
1976     return ret;
1977 }
1978 
1979 static inline int coroutine_fn
1980 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1981                           BdrvTrackedRequest *req, int flags)
1982 {
1983     BlockDriverState *bs = child->bs;
1984 
1985     bdrv_check_request(offset, bytes, &error_abort);
1986 
1987     if (bdrv_is_read_only(bs)) {
1988         return -EPERM;
1989     }
1990 
1991     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1992     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1993     assert(!(flags & ~BDRV_REQ_MASK));
1994     assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1995 
1996     if (flags & BDRV_REQ_SERIALISING) {
1997         QEMU_LOCK_GUARD(&bs->reqs_lock);
1998 
1999         tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
2000 
2001         if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
2002             return -EBUSY;
2003         }
2004 
2005         bdrv_wait_serialising_requests_locked(req);
2006     } else {
2007         bdrv_wait_serialising_requests(req);
2008     }
2009 
2010     assert(req->overlap_offset <= offset);
2011     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
2012     assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
2013            child->perm & BLK_PERM_RESIZE);
2014 
2015     switch (req->type) {
2016     case BDRV_TRACKED_WRITE:
2017     case BDRV_TRACKED_DISCARD:
2018         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
2019             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
2020         } else {
2021             assert(child->perm & BLK_PERM_WRITE);
2022         }
2023         bdrv_write_threshold_check_write(bs, offset, bytes);
2024         return 0;
2025     case BDRV_TRACKED_TRUNCATE:
2026         assert(child->perm & BLK_PERM_RESIZE);
2027         return 0;
2028     default:
2029         abort();
2030     }
2031 }
2032 
2033 static inline void coroutine_fn
2034 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2035                          BdrvTrackedRequest *req, int ret)
2036 {
2037     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2038     BlockDriverState *bs = child->bs;
2039 
2040     bdrv_check_request(offset, bytes, &error_abort);
2041 
2042     qatomic_inc(&bs->write_gen);
2043 
2044     /*
2045      * Discard cannot extend the image, but in error handling cases, such as
2046      * when reverting a qcow2 cluster allocation, the discarded range can pass
2047      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2048      * here. Instead, just skip it, since semantically a discard request
2049      * beyond EOF cannot expand the image anyway.
2050      */
2051     if (ret == 0 &&
2052         (req->type == BDRV_TRACKED_TRUNCATE ||
2053          end_sector > bs->total_sectors) &&
2054         req->type != BDRV_TRACKED_DISCARD) {
2055         bs->total_sectors = end_sector;
2056         bdrv_parent_cb_resize(bs);
2057         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2058     }
2059     if (req->bytes) {
2060         switch (req->type) {
2061         case BDRV_TRACKED_WRITE:
2062             stat64_max(&bs->wr_highest_offset, offset + bytes);
2063             /* fall through, to set dirty bits */
2064         case BDRV_TRACKED_DISCARD:
2065             bdrv_set_dirty(bs, offset, bytes);
2066             break;
2067         default:
2068             break;
2069         }
2070     }
2071 }
2072 
2073 /*
2074  * Forwards an already correctly aligned write request to the BlockDriver,
2075  * after possibly fragmenting it.
2076  */
2077 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
2078     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
2079     int64_t align, QEMUIOVector *qiov, size_t qiov_offset,
2080     BdrvRequestFlags flags)
2081 {
2082     BlockDriverState *bs = child->bs;
2083     BlockDriver *drv = bs->drv;
2084     int ret;
2085 
2086     int64_t bytes_remaining = bytes;
2087     int max_transfer;
2088 
2089     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2090 
2091     if (!drv) {
2092         return -ENOMEDIUM;
2093     }
2094 
2095     if (bdrv_has_readonly_bitmaps(bs)) {
2096         return -EPERM;
2097     }
2098 
2099     assert(is_power_of_2(align));
2100     assert((offset & (align - 1)) == 0);
2101     assert((bytes & (align - 1)) == 0);
2102     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2103                                    align);
2104 
2105     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2106 
2107     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2108         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2109         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2110         flags |= BDRV_REQ_ZERO_WRITE;
2111         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2112             flags |= BDRV_REQ_MAY_UNMAP;
2113         }
2114     }
2115 
2116     if (ret < 0) {
2117         /* Do nothing, write notifier decided to fail this request */
2118     } else if (flags & BDRV_REQ_ZERO_WRITE) {
2119         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2120         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2121     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2122         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2123                                              qiov, qiov_offset);
2124     } else if (bytes <= max_transfer) {
2125         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2126         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2127     } else {
2128         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2129         while (bytes_remaining) {
2130             int num = MIN(bytes_remaining, max_transfer);
2131             int local_flags = flags;
2132 
2133             assert(num);
2134             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2135                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2136                 /* If FUA is going to be emulated by flush, we only
2137                  * need to flush on the last iteration */
2138                 local_flags &= ~BDRV_REQ_FUA;
2139             }
2140 
2141             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2142                                       num, qiov,
2143                                       qiov_offset + bytes - bytes_remaining,
2144                                       local_flags);
2145             if (ret < 0) {
2146                 break;
2147             }
2148             bytes_remaining -= num;
2149         }
2150     }
2151     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2152 
2153     if (ret >= 0) {
2154         ret = 0;
2155     }
2156     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2157 
2158     return ret;
2159 }
2160 
2161 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2162                                                 int64_t offset,
2163                                                 int64_t bytes,
2164                                                 BdrvRequestFlags flags,
2165                                                 BdrvTrackedRequest *req)
2166 {
2167     BlockDriverState *bs = child->bs;
2168     QEMUIOVector local_qiov;
2169     uint64_t align = bs->bl.request_alignment;
2170     int ret = 0;
2171     bool padding;
2172     BdrvRequestPadding pad;
2173 
2174     padding = bdrv_init_padding(bs, offset, bytes, &pad);
2175     if (padding) {
2176         bdrv_make_request_serialising(req, align);
2177 
2178         bdrv_padding_rmw_read(child, req, &pad, true);
2179 
2180         if (pad.head || pad.merge_reads) {
2181             int64_t aligned_offset = offset & ~(align - 1);
2182             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2183 
2184             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2185             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2186                                        align, &local_qiov, 0,
2187                                        flags & ~BDRV_REQ_ZERO_WRITE);
2188             if (ret < 0 || pad.merge_reads) {
2189                 /* Error or all work is done */
2190                 goto out;
2191             }
2192             offset += write_bytes - pad.head;
2193             bytes -= write_bytes - pad.head;
2194         }
2195     }
2196 
2197     assert(!bytes || (offset & (align - 1)) == 0);
2198     if (bytes >= align) {
2199         /* Write the aligned part in the middle. */
2200         int64_t aligned_bytes = bytes & ~(align - 1);
2201         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2202                                    NULL, 0, flags);
2203         if (ret < 0) {
2204             goto out;
2205         }
2206         bytes -= aligned_bytes;
2207         offset += aligned_bytes;
2208     }
2209 
2210     assert(!bytes || (offset & (align - 1)) == 0);
2211     if (bytes) {
2212         assert(align == pad.tail + bytes);
2213 
2214         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2215         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2216                                    &local_qiov, 0,
2217                                    flags & ~BDRV_REQ_ZERO_WRITE);
2218     }
2219 
2220 out:
2221     bdrv_padding_destroy(&pad);
2222 
2223     return ret;
2224 }
2225 
2226 /*
2227  * Handle a write request in coroutine context
2228  */
2229 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2230     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2231     BdrvRequestFlags flags)
2232 {
2233     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2234 }
2235 
2236 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2237     int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2238     BdrvRequestFlags flags)
2239 {
2240     BlockDriverState *bs = child->bs;
2241     BdrvTrackedRequest req;
2242     uint64_t align = bs->bl.request_alignment;
2243     BdrvRequestPadding pad;
2244     int ret;
2245     bool padded = false;
2246 
2247     trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2248 
2249     if (!bdrv_is_inserted(bs)) {
2250         return -ENOMEDIUM;
2251     }
2252 
2253     if (flags & BDRV_REQ_ZERO_WRITE) {
2254         ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2255     } else {
2256         ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2257     }
2258     if (ret < 0) {
2259         return ret;
2260     }
2261 
2262     /* If the request is misaligned then we can't make it efficient */
2263     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2264         !QEMU_IS_ALIGNED(offset | bytes, align))
2265     {
2266         return -ENOTSUP;
2267     }
2268 
2269     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2270         /*
2271          * Aligning zero request is nonsense. Even if driver has special meaning
2272          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2273          * it to driver due to request_alignment.
2274          *
2275          * Still, no reason to return an error if someone do unaligned
2276          * zero-length write occasionally.
2277          */
2278         return 0;
2279     }
2280 
2281     if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2282         /*
2283          * Pad request for following read-modify-write cycle.
2284          * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2285          * alignment only if there is no ZERO flag.
2286          */
2287         ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2288                                &padded);
2289         if (ret < 0) {
2290             return ret;
2291         }
2292     }
2293 
2294     bdrv_inc_in_flight(bs);
2295     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2296 
2297     if (flags & BDRV_REQ_ZERO_WRITE) {
2298         assert(!padded);
2299         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2300         goto out;
2301     }
2302 
2303     if (padded) {
2304         /*
2305          * Request was unaligned to request_alignment and therefore
2306          * padded.  We are going to do read-modify-write, and must
2307          * serialize the request to prevent interactions of the
2308          * widened region with other transactions.
2309          */
2310         bdrv_make_request_serialising(&req, align);
2311         bdrv_padding_rmw_read(child, &req, &pad, false);
2312     }
2313 
2314     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2315                                qiov, qiov_offset, flags);
2316 
2317     bdrv_padding_destroy(&pad);
2318 
2319 out:
2320     tracked_request_end(&req);
2321     bdrv_dec_in_flight(bs);
2322 
2323     return ret;
2324 }
2325 
2326 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2327                                        int64_t bytes, BdrvRequestFlags flags)
2328 {
2329     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2330 
2331     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2332         flags &= ~BDRV_REQ_MAY_UNMAP;
2333     }
2334 
2335     return bdrv_co_pwritev(child, offset, bytes, NULL,
2336                            BDRV_REQ_ZERO_WRITE | flags);
2337 }
2338 
2339 /*
2340  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2341  */
2342 int bdrv_flush_all(void)
2343 {
2344     BdrvNextIterator it;
2345     BlockDriverState *bs = NULL;
2346     int result = 0;
2347 
2348     /*
2349      * bdrv queue is managed by record/replay,
2350      * creating new flush request for stopping
2351      * the VM may break the determinism
2352      */
2353     if (replay_events_enabled()) {
2354         return result;
2355     }
2356 
2357     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2358         AioContext *aio_context = bdrv_get_aio_context(bs);
2359         int ret;
2360 
2361         aio_context_acquire(aio_context);
2362         ret = bdrv_flush(bs);
2363         if (ret < 0 && !result) {
2364             result = ret;
2365         }
2366         aio_context_release(aio_context);
2367     }
2368 
2369     return result;
2370 }
2371 
2372 /*
2373  * Returns the allocation status of the specified sectors.
2374  * Drivers not implementing the functionality are assumed to not support
2375  * backing files, hence all their sectors are reported as allocated.
2376  *
2377  * If 'want_zero' is true, the caller is querying for mapping
2378  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2379  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2380  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2381  *
2382  * If 'offset' is beyond the end of the disk image the return value is
2383  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2384  *
2385  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2386  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2387  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2388  *
2389  * 'pnum' is set to the number of bytes (including and immediately
2390  * following the specified offset) that are easily known to be in the
2391  * same allocated/unallocated state.  Note that a second call starting
2392  * at the original offset plus returned pnum may have the same status.
2393  * The returned value is non-zero on success except at end-of-file.
2394  *
2395  * Returns negative errno on failure.  Otherwise, if the
2396  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2397  * set to the host mapping and BDS corresponding to the guest offset.
2398  */
2399 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2400                                              bool want_zero,
2401                                              int64_t offset, int64_t bytes,
2402                                              int64_t *pnum, int64_t *map,
2403                                              BlockDriverState **file)
2404 {
2405     int64_t total_size;
2406     int64_t n; /* bytes */
2407     int ret;
2408     int64_t local_map = 0;
2409     BlockDriverState *local_file = NULL;
2410     int64_t aligned_offset, aligned_bytes;
2411     uint32_t align;
2412     bool has_filtered_child;
2413 
2414     assert(pnum);
2415     *pnum = 0;
2416     total_size = bdrv_getlength(bs);
2417     if (total_size < 0) {
2418         ret = total_size;
2419         goto early_out;
2420     }
2421 
2422     if (offset >= total_size) {
2423         ret = BDRV_BLOCK_EOF;
2424         goto early_out;
2425     }
2426     if (!bytes) {
2427         ret = 0;
2428         goto early_out;
2429     }
2430 
2431     n = total_size - offset;
2432     if (n < bytes) {
2433         bytes = n;
2434     }
2435 
2436     /* Must be non-NULL or bdrv_getlength() would have failed */
2437     assert(bs->drv);
2438     has_filtered_child = bdrv_filter_child(bs);
2439     if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2440         *pnum = bytes;
2441         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2442         if (offset + bytes == total_size) {
2443             ret |= BDRV_BLOCK_EOF;
2444         }
2445         if (bs->drv->protocol_name) {
2446             ret |= BDRV_BLOCK_OFFSET_VALID;
2447             local_map = offset;
2448             local_file = bs;
2449         }
2450         goto early_out;
2451     }
2452 
2453     bdrv_inc_in_flight(bs);
2454 
2455     /* Round out to request_alignment boundaries */
2456     align = bs->bl.request_alignment;
2457     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2458     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2459 
2460     if (bs->drv->bdrv_co_block_status) {
2461         /*
2462          * Use the block-status cache only for protocol nodes: Format
2463          * drivers are generally quick to inquire the status, but protocol
2464          * drivers often need to get information from outside of qemu, so
2465          * we do not have control over the actual implementation.  There
2466          * have been cases where inquiring the status took an unreasonably
2467          * long time, and we can do nothing in qemu to fix it.
2468          * This is especially problematic for images with large data areas,
2469          * because finding the few holes in them and giving them special
2470          * treatment does not gain much performance.  Therefore, we try to
2471          * cache the last-identified data region.
2472          *
2473          * Second, limiting ourselves to protocol nodes allows us to assume
2474          * the block status for data regions to be DATA | OFFSET_VALID, and
2475          * that the host offset is the same as the guest offset.
2476          *
2477          * Note that it is possible that external writers zero parts of
2478          * the cached regions without the cache being invalidated, and so
2479          * we may report zeroes as data.  This is not catastrophic,
2480          * however, because reporting zeroes as data is fine.
2481          */
2482         if (QLIST_EMPTY(&bs->children) &&
2483             bdrv_bsc_is_data(bs, aligned_offset, pnum))
2484         {
2485             ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2486             local_file = bs;
2487             local_map = aligned_offset;
2488         } else {
2489             ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2490                                                 aligned_bytes, pnum, &local_map,
2491                                                 &local_file);
2492 
2493             /*
2494              * Note that checking QLIST_EMPTY(&bs->children) is also done when
2495              * the cache is queried above.  Technically, we do not need to check
2496              * it here; the worst that can happen is that we fill the cache for
2497              * non-protocol nodes, and then it is never used.  However, filling
2498              * the cache requires an RCU update, so double check here to avoid
2499              * such an update if possible.
2500              */
2501             if (ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2502                 QLIST_EMPTY(&bs->children))
2503             {
2504                 /*
2505                  * When a protocol driver reports BLOCK_OFFSET_VALID, the
2506                  * returned local_map value must be the same as the offset we
2507                  * have passed (aligned_offset), and local_bs must be the node
2508                  * itself.
2509                  * Assert this, because we follow this rule when reading from
2510                  * the cache (see the `local_file = bs` and
2511                  * `local_map = aligned_offset` assignments above), and the
2512                  * result the cache delivers must be the same as the driver
2513                  * would deliver.
2514                  */
2515                 assert(local_file == bs);
2516                 assert(local_map == aligned_offset);
2517                 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2518             }
2519         }
2520     } else {
2521         /* Default code for filters */
2522 
2523         local_file = bdrv_filter_bs(bs);
2524         assert(local_file);
2525 
2526         *pnum = aligned_bytes;
2527         local_map = aligned_offset;
2528         ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2529     }
2530     if (ret < 0) {
2531         *pnum = 0;
2532         goto out;
2533     }
2534 
2535     /*
2536      * The driver's result must be a non-zero multiple of request_alignment.
2537      * Clamp pnum and adjust map to original request.
2538      */
2539     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2540            align > offset - aligned_offset);
2541     if (ret & BDRV_BLOCK_RECURSE) {
2542         assert(ret & BDRV_BLOCK_DATA);
2543         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2544         assert(!(ret & BDRV_BLOCK_ZERO));
2545     }
2546 
2547     *pnum -= offset - aligned_offset;
2548     if (*pnum > bytes) {
2549         *pnum = bytes;
2550     }
2551     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2552         local_map += offset - aligned_offset;
2553     }
2554 
2555     if (ret & BDRV_BLOCK_RAW) {
2556         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2557         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2558                                    *pnum, pnum, &local_map, &local_file);
2559         goto out;
2560     }
2561 
2562     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2563         ret |= BDRV_BLOCK_ALLOCATED;
2564     } else if (bs->drv->supports_backing) {
2565         BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2566 
2567         if (!cow_bs) {
2568             ret |= BDRV_BLOCK_ZERO;
2569         } else if (want_zero) {
2570             int64_t size2 = bdrv_getlength(cow_bs);
2571 
2572             if (size2 >= 0 && offset >= size2) {
2573                 ret |= BDRV_BLOCK_ZERO;
2574             }
2575         }
2576     }
2577 
2578     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2579         local_file && local_file != bs &&
2580         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2581         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2582         int64_t file_pnum;
2583         int ret2;
2584 
2585         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2586                                     *pnum, &file_pnum, NULL, NULL);
2587         if (ret2 >= 0) {
2588             /* Ignore errors.  This is just providing extra information, it
2589              * is useful but not necessary.
2590              */
2591             if (ret2 & BDRV_BLOCK_EOF &&
2592                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2593                 /*
2594                  * It is valid for the format block driver to read
2595                  * beyond the end of the underlying file's current
2596                  * size; such areas read as zero.
2597                  */
2598                 ret |= BDRV_BLOCK_ZERO;
2599             } else {
2600                 /* Limit request to the range reported by the protocol driver */
2601                 *pnum = file_pnum;
2602                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2603             }
2604         }
2605     }
2606 
2607 out:
2608     bdrv_dec_in_flight(bs);
2609     if (ret >= 0 && offset + *pnum == total_size) {
2610         ret |= BDRV_BLOCK_EOF;
2611     }
2612 early_out:
2613     if (file) {
2614         *file = local_file;
2615     }
2616     if (map) {
2617         *map = local_map;
2618     }
2619     return ret;
2620 }
2621 
2622 int coroutine_fn
2623 bdrv_co_common_block_status_above(BlockDriverState *bs,
2624                                   BlockDriverState *base,
2625                                   bool include_base,
2626                                   bool want_zero,
2627                                   int64_t offset,
2628                                   int64_t bytes,
2629                                   int64_t *pnum,
2630                                   int64_t *map,
2631                                   BlockDriverState **file,
2632                                   int *depth)
2633 {
2634     int ret;
2635     BlockDriverState *p;
2636     int64_t eof = 0;
2637     int dummy;
2638 
2639     assert(!include_base || base); /* Can't include NULL base */
2640 
2641     if (!depth) {
2642         depth = &dummy;
2643     }
2644     *depth = 0;
2645 
2646     if (!include_base && bs == base) {
2647         *pnum = bytes;
2648         return 0;
2649     }
2650 
2651     ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2652     ++*depth;
2653     if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2654         return ret;
2655     }
2656 
2657     if (ret & BDRV_BLOCK_EOF) {
2658         eof = offset + *pnum;
2659     }
2660 
2661     assert(*pnum <= bytes);
2662     bytes = *pnum;
2663 
2664     for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2665          p = bdrv_filter_or_cow_bs(p))
2666     {
2667         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2668                                    file);
2669         ++*depth;
2670         if (ret < 0) {
2671             return ret;
2672         }
2673         if (*pnum == 0) {
2674             /*
2675              * The top layer deferred to this layer, and because this layer is
2676              * short, any zeroes that we synthesize beyond EOF behave as if they
2677              * were allocated at this layer.
2678              *
2679              * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2680              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2681              * below.
2682              */
2683             assert(ret & BDRV_BLOCK_EOF);
2684             *pnum = bytes;
2685             if (file) {
2686                 *file = p;
2687             }
2688             ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2689             break;
2690         }
2691         if (ret & BDRV_BLOCK_ALLOCATED) {
2692             /*
2693              * We've found the node and the status, we must break.
2694              *
2695              * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2696              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2697              * below.
2698              */
2699             ret &= ~BDRV_BLOCK_EOF;
2700             break;
2701         }
2702 
2703         if (p == base) {
2704             assert(include_base);
2705             break;
2706         }
2707 
2708         /*
2709          * OK, [offset, offset + *pnum) region is unallocated on this layer,
2710          * let's continue the diving.
2711          */
2712         assert(*pnum <= bytes);
2713         bytes = *pnum;
2714     }
2715 
2716     if (offset + *pnum == eof) {
2717         ret |= BDRV_BLOCK_EOF;
2718     }
2719 
2720     return ret;
2721 }
2722 
2723 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2724                             int64_t offset, int64_t bytes, int64_t *pnum,
2725                             int64_t *map, BlockDriverState **file)
2726 {
2727     return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2728                                           pnum, map, file, NULL);
2729 }
2730 
2731 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2732                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2733 {
2734     return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2735                                    offset, bytes, pnum, map, file);
2736 }
2737 
2738 /*
2739  * Check @bs (and its backing chain) to see if the range defined
2740  * by @offset and @bytes is known to read as zeroes.
2741  * Return 1 if that is the case, 0 otherwise and -errno on error.
2742  * This test is meant to be fast rather than accurate so returning 0
2743  * does not guarantee non-zero data.
2744  */
2745 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2746                                       int64_t bytes)
2747 {
2748     int ret;
2749     int64_t pnum = bytes;
2750 
2751     if (!bytes) {
2752         return 1;
2753     }
2754 
2755     ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2756                                          bytes, &pnum, NULL, NULL, NULL);
2757 
2758     if (ret < 0) {
2759         return ret;
2760     }
2761 
2762     return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2763 }
2764 
2765 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2766                                    int64_t bytes, int64_t *pnum)
2767 {
2768     int ret;
2769     int64_t dummy;
2770 
2771     ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2772                                          bytes, pnum ? pnum : &dummy, NULL,
2773                                          NULL, NULL);
2774     if (ret < 0) {
2775         return ret;
2776     }
2777     return !!(ret & BDRV_BLOCK_ALLOCATED);
2778 }
2779 
2780 /*
2781  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2782  *
2783  * Return a positive depth if (a prefix of) the given range is allocated
2784  * in any image between BASE and TOP (BASE is only included if include_base
2785  * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2786  * BASE can be NULL to check if the given offset is allocated in any
2787  * image of the chain.  Return 0 otherwise, or negative errno on
2788  * failure.
2789  *
2790  * 'pnum' is set to the number of bytes (including and immediately
2791  * following the specified offset) that are known to be in the same
2792  * allocated/unallocated state.  Note that a subsequent call starting
2793  * at 'offset + *pnum' may return the same allocation status (in other
2794  * words, the result is not necessarily the maximum possible range);
2795  * but 'pnum' will only be 0 when end of file is reached.
2796  */
2797 int bdrv_is_allocated_above(BlockDriverState *top,
2798                             BlockDriverState *base,
2799                             bool include_base, int64_t offset,
2800                             int64_t bytes, int64_t *pnum)
2801 {
2802     int depth;
2803     int ret = bdrv_common_block_status_above(top, base, include_base, false,
2804                                              offset, bytes, pnum, NULL, NULL,
2805                                              &depth);
2806     if (ret < 0) {
2807         return ret;
2808     }
2809 
2810     if (ret & BDRV_BLOCK_ALLOCATED) {
2811         return depth;
2812     }
2813     return 0;
2814 }
2815 
2816 int coroutine_fn
2817 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2818 {
2819     BlockDriver *drv = bs->drv;
2820     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2821     int ret;
2822 
2823     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2824     if (ret < 0) {
2825         return ret;
2826     }
2827 
2828     if (!drv) {
2829         return -ENOMEDIUM;
2830     }
2831 
2832     bdrv_inc_in_flight(bs);
2833 
2834     if (drv->bdrv_load_vmstate) {
2835         ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2836     } else if (child_bs) {
2837         ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2838     } else {
2839         ret = -ENOTSUP;
2840     }
2841 
2842     bdrv_dec_in_flight(bs);
2843 
2844     return ret;
2845 }
2846 
2847 int coroutine_fn
2848 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2849 {
2850     BlockDriver *drv = bs->drv;
2851     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2852     int ret;
2853 
2854     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2855     if (ret < 0) {
2856         return ret;
2857     }
2858 
2859     if (!drv) {
2860         return -ENOMEDIUM;
2861     }
2862 
2863     bdrv_inc_in_flight(bs);
2864 
2865     if (drv->bdrv_save_vmstate) {
2866         ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2867     } else if (child_bs) {
2868         ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2869     } else {
2870         ret = -ENOTSUP;
2871     }
2872 
2873     bdrv_dec_in_flight(bs);
2874 
2875     return ret;
2876 }
2877 
2878 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2879                       int64_t pos, int size)
2880 {
2881     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2882     int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2883 
2884     return ret < 0 ? ret : size;
2885 }
2886 
2887 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2888                       int64_t pos, int size)
2889 {
2890     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2891     int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2892 
2893     return ret < 0 ? ret : size;
2894 }
2895 
2896 /**************************************************************/
2897 /* async I/Os */
2898 
2899 void bdrv_aio_cancel(BlockAIOCB *acb)
2900 {
2901     qemu_aio_ref(acb);
2902     bdrv_aio_cancel_async(acb);
2903     while (acb->refcnt > 1) {
2904         if (acb->aiocb_info->get_aio_context) {
2905             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2906         } else if (acb->bs) {
2907             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2908              * assert that we're not using an I/O thread.  Thread-safe
2909              * code should use bdrv_aio_cancel_async exclusively.
2910              */
2911             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2912             aio_poll(bdrv_get_aio_context(acb->bs), true);
2913         } else {
2914             abort();
2915         }
2916     }
2917     qemu_aio_unref(acb);
2918 }
2919 
2920 /* Async version of aio cancel. The caller is not blocked if the acb implements
2921  * cancel_async, otherwise we do nothing and let the request normally complete.
2922  * In either case the completion callback must be called. */
2923 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2924 {
2925     if (acb->aiocb_info->cancel_async) {
2926         acb->aiocb_info->cancel_async(acb);
2927     }
2928 }
2929 
2930 /**************************************************************/
2931 /* Coroutine block device emulation */
2932 
2933 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2934 {
2935     BdrvChild *primary_child = bdrv_primary_child(bs);
2936     BdrvChild *child;
2937     int current_gen;
2938     int ret = 0;
2939 
2940     bdrv_inc_in_flight(bs);
2941 
2942     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2943         bdrv_is_sg(bs)) {
2944         goto early_exit;
2945     }
2946 
2947     qemu_co_mutex_lock(&bs->reqs_lock);
2948     current_gen = qatomic_read(&bs->write_gen);
2949 
2950     /* Wait until any previous flushes are completed */
2951     while (bs->active_flush_req) {
2952         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2953     }
2954 
2955     /* Flushes reach this point in nondecreasing current_gen order.  */
2956     bs->active_flush_req = true;
2957     qemu_co_mutex_unlock(&bs->reqs_lock);
2958 
2959     /* Write back all layers by calling one driver function */
2960     if (bs->drv->bdrv_co_flush) {
2961         ret = bs->drv->bdrv_co_flush(bs);
2962         goto out;
2963     }
2964 
2965     /* Write back cached data to the OS even with cache=unsafe */
2966     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2967     if (bs->drv->bdrv_co_flush_to_os) {
2968         ret = bs->drv->bdrv_co_flush_to_os(bs);
2969         if (ret < 0) {
2970             goto out;
2971         }
2972     }
2973 
2974     /* But don't actually force it to the disk with cache=unsafe */
2975     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2976         goto flush_children;
2977     }
2978 
2979     /* Check if we really need to flush anything */
2980     if (bs->flushed_gen == current_gen) {
2981         goto flush_children;
2982     }
2983 
2984     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2985     if (!bs->drv) {
2986         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2987          * (even in case of apparent success) */
2988         ret = -ENOMEDIUM;
2989         goto out;
2990     }
2991     if (bs->drv->bdrv_co_flush_to_disk) {
2992         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2993     } else if (bs->drv->bdrv_aio_flush) {
2994         BlockAIOCB *acb;
2995         CoroutineIOCompletion co = {
2996             .coroutine = qemu_coroutine_self(),
2997         };
2998 
2999         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3000         if (acb == NULL) {
3001             ret = -EIO;
3002         } else {
3003             qemu_coroutine_yield();
3004             ret = co.ret;
3005         }
3006     } else {
3007         /*
3008          * Some block drivers always operate in either writethrough or unsafe
3009          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3010          * know how the server works (because the behaviour is hardcoded or
3011          * depends on server-side configuration), so we can't ensure that
3012          * everything is safe on disk. Returning an error doesn't work because
3013          * that would break guests even if the server operates in writethrough
3014          * mode.
3015          *
3016          * Let's hope the user knows what he's doing.
3017          */
3018         ret = 0;
3019     }
3020 
3021     if (ret < 0) {
3022         goto out;
3023     }
3024 
3025     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
3026      * in the case of cache=unsafe, so there are no useless flushes.
3027      */
3028 flush_children:
3029     ret = 0;
3030     QLIST_FOREACH(child, &bs->children, next) {
3031         if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3032             int this_child_ret = bdrv_co_flush(child->bs);
3033             if (!ret) {
3034                 ret = this_child_ret;
3035             }
3036         }
3037     }
3038 
3039 out:
3040     /* Notify any pending flushes that we have completed */
3041     if (ret == 0) {
3042         bs->flushed_gen = current_gen;
3043     }
3044 
3045     qemu_co_mutex_lock(&bs->reqs_lock);
3046     bs->active_flush_req = false;
3047     /* Return value is ignored - it's ok if wait queue is empty */
3048     qemu_co_queue_next(&bs->flush_queue);
3049     qemu_co_mutex_unlock(&bs->reqs_lock);
3050 
3051 early_exit:
3052     bdrv_dec_in_flight(bs);
3053     return ret;
3054 }
3055 
3056 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3057                                   int64_t bytes)
3058 {
3059     BdrvTrackedRequest req;
3060     int ret;
3061     int64_t max_pdiscard;
3062     int head, tail, align;
3063     BlockDriverState *bs = child->bs;
3064 
3065     if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
3066         return -ENOMEDIUM;
3067     }
3068 
3069     if (bdrv_has_readonly_bitmaps(bs)) {
3070         return -EPERM;
3071     }
3072 
3073     ret = bdrv_check_request(offset, bytes, NULL);
3074     if (ret < 0) {
3075         return ret;
3076     }
3077 
3078     /* Do nothing if disabled.  */
3079     if (!(bs->open_flags & BDRV_O_UNMAP)) {
3080         return 0;
3081     }
3082 
3083     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3084         return 0;
3085     }
3086 
3087     /* Invalidate the cached block-status data range if this discard overlaps */
3088     bdrv_bsc_invalidate_range(bs, offset, bytes);
3089 
3090     /* Discard is advisory, but some devices track and coalesce
3091      * unaligned requests, so we must pass everything down rather than
3092      * round here.  Still, most devices will just silently ignore
3093      * unaligned requests (by returning -ENOTSUP), so we must fragment
3094      * the request accordingly.  */
3095     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3096     assert(align % bs->bl.request_alignment == 0);
3097     head = offset % align;
3098     tail = (offset + bytes) % align;
3099 
3100     bdrv_inc_in_flight(bs);
3101     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3102 
3103     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3104     if (ret < 0) {
3105         goto out;
3106     }
3107 
3108     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3109                                    align);
3110     assert(max_pdiscard >= bs->bl.request_alignment);
3111 
3112     while (bytes > 0) {
3113         int64_t num = bytes;
3114 
3115         if (head) {
3116             /* Make small requests to get to alignment boundaries. */
3117             num = MIN(bytes, align - head);
3118             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3119                 num %= bs->bl.request_alignment;
3120             }
3121             head = (head + num) % align;
3122             assert(num < max_pdiscard);
3123         } else if (tail) {
3124             if (num > align) {
3125                 /* Shorten the request to the last aligned cluster.  */
3126                 num -= tail;
3127             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3128                        tail > bs->bl.request_alignment) {
3129                 tail %= bs->bl.request_alignment;
3130                 num -= tail;
3131             }
3132         }
3133         /* limit request size */
3134         if (num > max_pdiscard) {
3135             num = max_pdiscard;
3136         }
3137 
3138         if (!bs->drv) {
3139             ret = -ENOMEDIUM;
3140             goto out;
3141         }
3142         if (bs->drv->bdrv_co_pdiscard) {
3143             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3144         } else {
3145             BlockAIOCB *acb;
3146             CoroutineIOCompletion co = {
3147                 .coroutine = qemu_coroutine_self(),
3148             };
3149 
3150             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3151                                              bdrv_co_io_em_complete, &co);
3152             if (acb == NULL) {
3153                 ret = -EIO;
3154                 goto out;
3155             } else {
3156                 qemu_coroutine_yield();
3157                 ret = co.ret;
3158             }
3159         }
3160         if (ret && ret != -ENOTSUP) {
3161             goto out;
3162         }
3163 
3164         offset += num;
3165         bytes -= num;
3166     }
3167     ret = 0;
3168 out:
3169     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3170     tracked_request_end(&req);
3171     bdrv_dec_in_flight(bs);
3172     return ret;
3173 }
3174 
3175 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3176 {
3177     BlockDriver *drv = bs->drv;
3178     CoroutineIOCompletion co = {
3179         .coroutine = qemu_coroutine_self(),
3180     };
3181     BlockAIOCB *acb;
3182 
3183     bdrv_inc_in_flight(bs);
3184     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3185         co.ret = -ENOTSUP;
3186         goto out;
3187     }
3188 
3189     if (drv->bdrv_co_ioctl) {
3190         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3191     } else {
3192         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3193         if (!acb) {
3194             co.ret = -ENOTSUP;
3195             goto out;
3196         }
3197         qemu_coroutine_yield();
3198     }
3199 out:
3200     bdrv_dec_in_flight(bs);
3201     return co.ret;
3202 }
3203 
3204 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3205 {
3206     return qemu_memalign(bdrv_opt_mem_align(bs), size);
3207 }
3208 
3209 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3210 {
3211     return memset(qemu_blockalign(bs, size), 0, size);
3212 }
3213 
3214 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3215 {
3216     size_t align = bdrv_opt_mem_align(bs);
3217 
3218     /* Ensure that NULL is never returned on success */
3219     assert(align > 0);
3220     if (size == 0) {
3221         size = align;
3222     }
3223 
3224     return qemu_try_memalign(align, size);
3225 }
3226 
3227 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3228 {
3229     void *mem = qemu_try_blockalign(bs, size);
3230 
3231     if (mem) {
3232         memset(mem, 0, size);
3233     }
3234 
3235     return mem;
3236 }
3237 
3238 /*
3239  * Check if all memory in this vector is sector aligned.
3240  */
3241 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3242 {
3243     int i;
3244     size_t alignment = bdrv_min_mem_align(bs);
3245 
3246     for (i = 0; i < qiov->niov; i++) {
3247         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3248             return false;
3249         }
3250         if (qiov->iov[i].iov_len % alignment) {
3251             return false;
3252         }
3253     }
3254 
3255     return true;
3256 }
3257 
3258 void bdrv_io_plug(BlockDriverState *bs)
3259 {
3260     BdrvChild *child;
3261 
3262     QLIST_FOREACH(child, &bs->children, next) {
3263         bdrv_io_plug(child->bs);
3264     }
3265 
3266     if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3267         BlockDriver *drv = bs->drv;
3268         if (drv && drv->bdrv_io_plug) {
3269             drv->bdrv_io_plug(bs);
3270         }
3271     }
3272 }
3273 
3274 void bdrv_io_unplug(BlockDriverState *bs)
3275 {
3276     BdrvChild *child;
3277 
3278     assert(bs->io_plugged);
3279     if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3280         BlockDriver *drv = bs->drv;
3281         if (drv && drv->bdrv_io_unplug) {
3282             drv->bdrv_io_unplug(bs);
3283         }
3284     }
3285 
3286     QLIST_FOREACH(child, &bs->children, next) {
3287         bdrv_io_unplug(child->bs);
3288     }
3289 }
3290 
3291 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3292 {
3293     BdrvChild *child;
3294 
3295     if (bs->drv && bs->drv->bdrv_register_buf) {
3296         bs->drv->bdrv_register_buf(bs, host, size);
3297     }
3298     QLIST_FOREACH(child, &bs->children, next) {
3299         bdrv_register_buf(child->bs, host, size);
3300     }
3301 }
3302 
3303 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3304 {
3305     BdrvChild *child;
3306 
3307     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3308         bs->drv->bdrv_unregister_buf(bs, host);
3309     }
3310     QLIST_FOREACH(child, &bs->children, next) {
3311         bdrv_unregister_buf(child->bs, host);
3312     }
3313 }
3314 
3315 static int coroutine_fn bdrv_co_copy_range_internal(
3316         BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3317         int64_t dst_offset, int64_t bytes,
3318         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3319         bool recurse_src)
3320 {
3321     BdrvTrackedRequest req;
3322     int ret;
3323 
3324     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3325     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3326     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3327 
3328     if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3329         return -ENOMEDIUM;
3330     }
3331     ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3332     if (ret) {
3333         return ret;
3334     }
3335     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3336         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3337     }
3338 
3339     if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3340         return -ENOMEDIUM;
3341     }
3342     ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3343     if (ret) {
3344         return ret;
3345     }
3346 
3347     if (!src->bs->drv->bdrv_co_copy_range_from
3348         || !dst->bs->drv->bdrv_co_copy_range_to
3349         || src->bs->encrypted || dst->bs->encrypted) {
3350         return -ENOTSUP;
3351     }
3352 
3353     if (recurse_src) {
3354         bdrv_inc_in_flight(src->bs);
3355         tracked_request_begin(&req, src->bs, src_offset, bytes,
3356                               BDRV_TRACKED_READ);
3357 
3358         /* BDRV_REQ_SERIALISING is only for write operation */
3359         assert(!(read_flags & BDRV_REQ_SERIALISING));
3360         bdrv_wait_serialising_requests(&req);
3361 
3362         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3363                                                     src, src_offset,
3364                                                     dst, dst_offset,
3365                                                     bytes,
3366                                                     read_flags, write_flags);
3367 
3368         tracked_request_end(&req);
3369         bdrv_dec_in_flight(src->bs);
3370     } else {
3371         bdrv_inc_in_flight(dst->bs);
3372         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3373                               BDRV_TRACKED_WRITE);
3374         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3375                                         write_flags);
3376         if (!ret) {
3377             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3378                                                       src, src_offset,
3379                                                       dst, dst_offset,
3380                                                       bytes,
3381                                                       read_flags, write_flags);
3382         }
3383         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3384         tracked_request_end(&req);
3385         bdrv_dec_in_flight(dst->bs);
3386     }
3387 
3388     return ret;
3389 }
3390 
3391 /* Copy range from @src to @dst.
3392  *
3393  * See the comment of bdrv_co_copy_range for the parameter and return value
3394  * semantics. */
3395 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3396                                          BdrvChild *dst, int64_t dst_offset,
3397                                          int64_t bytes,
3398                                          BdrvRequestFlags read_flags,
3399                                          BdrvRequestFlags write_flags)
3400 {
3401     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3402                                   read_flags, write_flags);
3403     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3404                                        bytes, read_flags, write_flags, true);
3405 }
3406 
3407 /* Copy range from @src to @dst.
3408  *
3409  * See the comment of bdrv_co_copy_range for the parameter and return value
3410  * semantics. */
3411 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3412                                        BdrvChild *dst, int64_t dst_offset,
3413                                        int64_t bytes,
3414                                        BdrvRequestFlags read_flags,
3415                                        BdrvRequestFlags write_flags)
3416 {
3417     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3418                                 read_flags, write_flags);
3419     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3420                                        bytes, read_flags, write_flags, false);
3421 }
3422 
3423 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3424                                     BdrvChild *dst, int64_t dst_offset,
3425                                     int64_t bytes, BdrvRequestFlags read_flags,
3426                                     BdrvRequestFlags write_flags)
3427 {
3428     return bdrv_co_copy_range_from(src, src_offset,
3429                                    dst, dst_offset,
3430                                    bytes, read_flags, write_flags);
3431 }
3432 
3433 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3434 {
3435     BdrvChild *c;
3436     QLIST_FOREACH(c, &bs->parents, next_parent) {
3437         if (c->klass->resize) {
3438             c->klass->resize(c);
3439         }
3440     }
3441 }
3442 
3443 /**
3444  * Truncate file to 'offset' bytes (needed only for file protocols)
3445  *
3446  * If 'exact' is true, the file must be resized to exactly the given
3447  * 'offset'.  Otherwise, it is sufficient for the node to be at least
3448  * 'offset' bytes in length.
3449  */
3450 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3451                                   PreallocMode prealloc, BdrvRequestFlags flags,
3452                                   Error **errp)
3453 {
3454     BlockDriverState *bs = child->bs;
3455     BdrvChild *filtered, *backing;
3456     BlockDriver *drv = bs->drv;
3457     BdrvTrackedRequest req;
3458     int64_t old_size, new_bytes;
3459     int ret;
3460 
3461 
3462     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3463     if (!drv) {
3464         error_setg(errp, "No medium inserted");
3465         return -ENOMEDIUM;
3466     }
3467     if (offset < 0) {
3468         error_setg(errp, "Image size cannot be negative");
3469         return -EINVAL;
3470     }
3471 
3472     ret = bdrv_check_request(offset, 0, errp);
3473     if (ret < 0) {
3474         return ret;
3475     }
3476 
3477     old_size = bdrv_getlength(bs);
3478     if (old_size < 0) {
3479         error_setg_errno(errp, -old_size, "Failed to get old image size");
3480         return old_size;
3481     }
3482 
3483     if (bdrv_is_read_only(bs)) {
3484         error_setg(errp, "Image is read-only");
3485         return -EACCES;
3486     }
3487 
3488     if (offset > old_size) {
3489         new_bytes = offset - old_size;
3490     } else {
3491         new_bytes = 0;
3492     }
3493 
3494     bdrv_inc_in_flight(bs);
3495     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3496                           BDRV_TRACKED_TRUNCATE);
3497 
3498     /* If we are growing the image and potentially using preallocation for the
3499      * new area, we need to make sure that no write requests are made to it
3500      * concurrently or they might be overwritten by preallocation. */
3501     if (new_bytes) {
3502         bdrv_make_request_serialising(&req, 1);
3503     }
3504     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3505                                     0);
3506     if (ret < 0) {
3507         error_setg_errno(errp, -ret,
3508                          "Failed to prepare request for truncation");
3509         goto out;
3510     }
3511 
3512     filtered = bdrv_filter_child(bs);
3513     backing = bdrv_cow_child(bs);
3514 
3515     /*
3516      * If the image has a backing file that is large enough that it would
3517      * provide data for the new area, we cannot leave it unallocated because
3518      * then the backing file content would become visible. Instead, zero-fill
3519      * the new area.
3520      *
3521      * Note that if the image has a backing file, but was opened without the
3522      * backing file, taking care of keeping things consistent with that backing
3523      * file is the user's responsibility.
3524      */
3525     if (new_bytes && backing) {
3526         int64_t backing_len;
3527 
3528         backing_len = bdrv_getlength(backing->bs);
3529         if (backing_len < 0) {
3530             ret = backing_len;
3531             error_setg_errno(errp, -ret, "Could not get backing file size");
3532             goto out;
3533         }
3534 
3535         if (backing_len > old_size) {
3536             flags |= BDRV_REQ_ZERO_WRITE;
3537         }
3538     }
3539 
3540     if (drv->bdrv_co_truncate) {
3541         if (flags & ~bs->supported_truncate_flags) {
3542             error_setg(errp, "Block driver does not support requested flags");
3543             ret = -ENOTSUP;
3544             goto out;
3545         }
3546         ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3547     } else if (filtered) {
3548         ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3549     } else {
3550         error_setg(errp, "Image format driver does not support resize");
3551         ret = -ENOTSUP;
3552         goto out;
3553     }
3554     if (ret < 0) {
3555         goto out;
3556     }
3557 
3558     ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3559     if (ret < 0) {
3560         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3561     } else {
3562         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3563     }
3564     /* It's possible that truncation succeeded but refresh_total_sectors
3565      * failed, but the latter doesn't affect how we should finish the request.
3566      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3567     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3568 
3569 out:
3570     tracked_request_end(&req);
3571     bdrv_dec_in_flight(bs);
3572 
3573     return ret;
3574 }
3575 
3576 void bdrv_cancel_in_flight(BlockDriverState *bs)
3577 {
3578     if (!bs || !bs->drv) {
3579         return;
3580     }
3581 
3582     if (bs->drv->bdrv_cancel_in_flight) {
3583         bs->drv->bdrv_cancel_in_flight(bs);
3584     }
3585 }
3586