1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/blockjob.h" 29 #include "block/blockjob_int.h" 30 #include "block/block_int.h" 31 #include "qemu/cutils.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 36 37 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 38 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 39 40 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 41 int64_t offset, int bytes, BdrvRequestFlags flags); 42 43 void bdrv_parent_drained_begin(BlockDriverState *bs) 44 { 45 BdrvChild *c; 46 47 QLIST_FOREACH(c, &bs->parents, next_parent) { 48 if (c->role->drained_begin) { 49 c->role->drained_begin(c); 50 } 51 } 52 } 53 54 void bdrv_parent_drained_end(BlockDriverState *bs) 55 { 56 BdrvChild *c; 57 58 QLIST_FOREACH(c, &bs->parents, next_parent) { 59 if (c->role->drained_end) { 60 c->role->drained_end(c); 61 } 62 } 63 } 64 65 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 66 { 67 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 68 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 69 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 70 src->opt_mem_alignment); 71 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 72 src->min_mem_alignment); 73 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 74 } 75 76 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 77 { 78 BlockDriver *drv = bs->drv; 79 Error *local_err = NULL; 80 81 memset(&bs->bl, 0, sizeof(bs->bl)); 82 83 if (!drv) { 84 return; 85 } 86 87 /* Default alignment based on whether driver has byte interface */ 88 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512; 89 90 /* Take some limits from the children as a default */ 91 if (bs->file) { 92 bdrv_refresh_limits(bs->file->bs, &local_err); 93 if (local_err) { 94 error_propagate(errp, local_err); 95 return; 96 } 97 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 98 } else { 99 bs->bl.min_mem_alignment = 512; 100 bs->bl.opt_mem_alignment = getpagesize(); 101 102 /* Safe default since most protocols use readv()/writev()/etc */ 103 bs->bl.max_iov = IOV_MAX; 104 } 105 106 if (bs->backing) { 107 bdrv_refresh_limits(bs->backing->bs, &local_err); 108 if (local_err) { 109 error_propagate(errp, local_err); 110 return; 111 } 112 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 113 } 114 115 /* Then let the driver override it */ 116 if (drv->bdrv_refresh_limits) { 117 drv->bdrv_refresh_limits(bs, errp); 118 } 119 } 120 121 /** 122 * The copy-on-read flag is actually a reference count so multiple users may 123 * use the feature without worrying about clobbering its previous state. 124 * Copy-on-read stays enabled until all users have called to disable it. 125 */ 126 void bdrv_enable_copy_on_read(BlockDriverState *bs) 127 { 128 atomic_inc(&bs->copy_on_read); 129 } 130 131 void bdrv_disable_copy_on_read(BlockDriverState *bs) 132 { 133 int old = atomic_fetch_dec(&bs->copy_on_read); 134 assert(old >= 1); 135 } 136 137 /* Check if any requests are in-flight (including throttled requests) */ 138 bool bdrv_requests_pending(BlockDriverState *bs) 139 { 140 BdrvChild *child; 141 142 if (atomic_read(&bs->in_flight)) { 143 return true; 144 } 145 146 QLIST_FOREACH(child, &bs->children, next) { 147 if (bdrv_requests_pending(child->bs)) { 148 return true; 149 } 150 } 151 152 return false; 153 } 154 155 typedef struct { 156 Coroutine *co; 157 BlockDriverState *bs; 158 bool done; 159 bool begin; 160 } BdrvCoDrainData; 161 162 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 163 { 164 BdrvCoDrainData *data = opaque; 165 BlockDriverState *bs = data->bs; 166 167 if (data->begin) { 168 bs->drv->bdrv_co_drain_begin(bs); 169 } else { 170 bs->drv->bdrv_co_drain_end(bs); 171 } 172 173 /* Set data->done before reading bs->wakeup. */ 174 atomic_mb_set(&data->done, true); 175 bdrv_wakeup(bs); 176 } 177 178 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin) 179 { 180 BdrvCoDrainData data = { .bs = bs, .done = false, .begin = begin}; 181 182 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 183 (!begin && !bs->drv->bdrv_co_drain_end)) { 184 return; 185 } 186 187 data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data); 188 bdrv_coroutine_enter(bs, data.co); 189 BDRV_POLL_WHILE(bs, !data.done); 190 } 191 192 static bool bdrv_drain_recurse(BlockDriverState *bs, bool begin) 193 { 194 BdrvChild *child, *tmp; 195 bool waited; 196 197 /* Ensure any pending metadata writes are submitted to bs->file. */ 198 bdrv_drain_invoke(bs, begin); 199 200 /* Wait for drained requests to finish */ 201 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0); 202 203 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) { 204 BlockDriverState *bs = child->bs; 205 bool in_main_loop = 206 qemu_get_current_aio_context() == qemu_get_aio_context(); 207 assert(bs->refcnt > 0); 208 if (in_main_loop) { 209 /* In case the recursive bdrv_drain_recurse processes a 210 * block_job_defer_to_main_loop BH and modifies the graph, 211 * let's hold a reference to bs until we are done. 212 * 213 * IOThread doesn't have such a BH, and it is not safe to call 214 * bdrv_unref without BQL, so skip doing it there. 215 */ 216 bdrv_ref(bs); 217 } 218 waited |= bdrv_drain_recurse(bs, begin); 219 if (in_main_loop) { 220 bdrv_unref(bs); 221 } 222 } 223 224 return waited; 225 } 226 227 static void bdrv_co_drain_bh_cb(void *opaque) 228 { 229 BdrvCoDrainData *data = opaque; 230 Coroutine *co = data->co; 231 BlockDriverState *bs = data->bs; 232 233 bdrv_dec_in_flight(bs); 234 if (data->begin) { 235 bdrv_drained_begin(bs); 236 } else { 237 bdrv_drained_end(bs); 238 } 239 240 data->done = true; 241 aio_co_wake(co); 242 } 243 244 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 245 bool begin) 246 { 247 BdrvCoDrainData data; 248 249 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 250 * other coroutines run if they were queued from 251 * qemu_co_queue_run_restart(). */ 252 253 assert(qemu_in_coroutine()); 254 data = (BdrvCoDrainData) { 255 .co = qemu_coroutine_self(), 256 .bs = bs, 257 .done = false, 258 .begin = begin, 259 }; 260 bdrv_inc_in_flight(bs); 261 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 262 bdrv_co_drain_bh_cb, &data); 263 264 qemu_coroutine_yield(); 265 /* If we are resumed from some other event (such as an aio completion or a 266 * timer callback), it is a bug in the caller that should be fixed. */ 267 assert(data.done); 268 } 269 270 void bdrv_drained_begin(BlockDriverState *bs) 271 { 272 if (qemu_in_coroutine()) { 273 bdrv_co_yield_to_drain(bs, true); 274 return; 275 } 276 277 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 278 aio_disable_external(bdrv_get_aio_context(bs)); 279 bdrv_parent_drained_begin(bs); 280 } 281 282 bdrv_drain_recurse(bs, true); 283 } 284 285 void bdrv_drained_end(BlockDriverState *bs) 286 { 287 if (qemu_in_coroutine()) { 288 bdrv_co_yield_to_drain(bs, false); 289 return; 290 } 291 assert(bs->quiesce_counter > 0); 292 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) { 293 return; 294 } 295 296 bdrv_parent_drained_end(bs); 297 bdrv_drain_recurse(bs, false); 298 aio_enable_external(bdrv_get_aio_context(bs)); 299 } 300 301 /* 302 * Wait for pending requests to complete on a single BlockDriverState subtree, 303 * and suspend block driver's internal I/O until next request arrives. 304 * 305 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 306 * AioContext. 307 * 308 * Only this BlockDriverState's AioContext is run, so in-flight requests must 309 * not depend on events in other AioContexts. In that case, use 310 * bdrv_drain_all() instead. 311 */ 312 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 313 { 314 assert(qemu_in_coroutine()); 315 bdrv_drained_begin(bs); 316 bdrv_drained_end(bs); 317 } 318 319 void bdrv_drain(BlockDriverState *bs) 320 { 321 bdrv_drained_begin(bs); 322 bdrv_drained_end(bs); 323 } 324 325 /* 326 * Wait for pending requests to complete across all BlockDriverStates 327 * 328 * This function does not flush data to disk, use bdrv_flush_all() for that 329 * after calling this function. 330 * 331 * This pauses all block jobs and disables external clients. It must 332 * be paired with bdrv_drain_all_end(). 333 * 334 * NOTE: no new block jobs or BlockDriverStates can be created between 335 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 336 */ 337 void bdrv_drain_all_begin(void) 338 { 339 /* Always run first iteration so any pending completion BHs run */ 340 bool waited = true; 341 BlockDriverState *bs; 342 BdrvNextIterator it; 343 GSList *aio_ctxs = NULL, *ctx; 344 345 block_job_pause_all(); 346 347 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 348 AioContext *aio_context = bdrv_get_aio_context(bs); 349 350 aio_context_acquire(aio_context); 351 bdrv_parent_drained_begin(bs); 352 aio_disable_external(aio_context); 353 aio_context_release(aio_context); 354 355 if (!g_slist_find(aio_ctxs, aio_context)) { 356 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context); 357 } 358 } 359 360 /* Note that completion of an asynchronous I/O operation can trigger any 361 * number of other I/O operations on other devices---for example a 362 * coroutine can submit an I/O request to another device in response to 363 * request completion. Therefore we must keep looping until there was no 364 * more activity rather than simply draining each device independently. 365 */ 366 while (waited) { 367 waited = false; 368 369 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) { 370 AioContext *aio_context = ctx->data; 371 372 aio_context_acquire(aio_context); 373 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 374 if (aio_context == bdrv_get_aio_context(bs)) { 375 waited |= bdrv_drain_recurse(bs, true); 376 } 377 } 378 aio_context_release(aio_context); 379 } 380 } 381 382 g_slist_free(aio_ctxs); 383 } 384 385 void bdrv_drain_all_end(void) 386 { 387 BlockDriverState *bs; 388 BdrvNextIterator it; 389 390 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 391 AioContext *aio_context = bdrv_get_aio_context(bs); 392 393 aio_context_acquire(aio_context); 394 aio_enable_external(aio_context); 395 bdrv_parent_drained_end(bs); 396 bdrv_drain_recurse(bs, false); 397 aio_context_release(aio_context); 398 } 399 400 block_job_resume_all(); 401 } 402 403 void bdrv_drain_all(void) 404 { 405 bdrv_drain_all_begin(); 406 bdrv_drain_all_end(); 407 } 408 409 /** 410 * Remove an active request from the tracked requests list 411 * 412 * This function should be called when a tracked request is completing. 413 */ 414 static void tracked_request_end(BdrvTrackedRequest *req) 415 { 416 if (req->serialising) { 417 atomic_dec(&req->bs->serialising_in_flight); 418 } 419 420 qemu_co_mutex_lock(&req->bs->reqs_lock); 421 QLIST_REMOVE(req, list); 422 qemu_co_queue_restart_all(&req->wait_queue); 423 qemu_co_mutex_unlock(&req->bs->reqs_lock); 424 } 425 426 /** 427 * Add an active request to the tracked requests list 428 */ 429 static void tracked_request_begin(BdrvTrackedRequest *req, 430 BlockDriverState *bs, 431 int64_t offset, 432 unsigned int bytes, 433 enum BdrvTrackedRequestType type) 434 { 435 *req = (BdrvTrackedRequest){ 436 .bs = bs, 437 .offset = offset, 438 .bytes = bytes, 439 .type = type, 440 .co = qemu_coroutine_self(), 441 .serialising = false, 442 .overlap_offset = offset, 443 .overlap_bytes = bytes, 444 }; 445 446 qemu_co_queue_init(&req->wait_queue); 447 448 qemu_co_mutex_lock(&bs->reqs_lock); 449 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 450 qemu_co_mutex_unlock(&bs->reqs_lock); 451 } 452 453 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 454 { 455 int64_t overlap_offset = req->offset & ~(align - 1); 456 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 457 - overlap_offset; 458 459 if (!req->serialising) { 460 atomic_inc(&req->bs->serialising_in_flight); 461 req->serialising = true; 462 } 463 464 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 465 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 466 } 467 468 /** 469 * Round a region to cluster boundaries 470 */ 471 void bdrv_round_to_clusters(BlockDriverState *bs, 472 int64_t offset, unsigned int bytes, 473 int64_t *cluster_offset, 474 unsigned int *cluster_bytes) 475 { 476 BlockDriverInfo bdi; 477 478 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 479 *cluster_offset = offset; 480 *cluster_bytes = bytes; 481 } else { 482 int64_t c = bdi.cluster_size; 483 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 484 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 485 } 486 } 487 488 static int bdrv_get_cluster_size(BlockDriverState *bs) 489 { 490 BlockDriverInfo bdi; 491 int ret; 492 493 ret = bdrv_get_info(bs, &bdi); 494 if (ret < 0 || bdi.cluster_size == 0) { 495 return bs->bl.request_alignment; 496 } else { 497 return bdi.cluster_size; 498 } 499 } 500 501 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 502 int64_t offset, unsigned int bytes) 503 { 504 /* aaaa bbbb */ 505 if (offset >= req->overlap_offset + req->overlap_bytes) { 506 return false; 507 } 508 /* bbbb aaaa */ 509 if (req->overlap_offset >= offset + bytes) { 510 return false; 511 } 512 return true; 513 } 514 515 void bdrv_inc_in_flight(BlockDriverState *bs) 516 { 517 atomic_inc(&bs->in_flight); 518 } 519 520 static void dummy_bh_cb(void *opaque) 521 { 522 } 523 524 void bdrv_wakeup(BlockDriverState *bs) 525 { 526 /* The barrier (or an atomic op) is in the caller. */ 527 if (atomic_read(&bs->wakeup)) { 528 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL); 529 } 530 } 531 532 void bdrv_dec_in_flight(BlockDriverState *bs) 533 { 534 atomic_dec(&bs->in_flight); 535 bdrv_wakeup(bs); 536 } 537 538 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 539 { 540 BlockDriverState *bs = self->bs; 541 BdrvTrackedRequest *req; 542 bool retry; 543 bool waited = false; 544 545 if (!atomic_read(&bs->serialising_in_flight)) { 546 return false; 547 } 548 549 do { 550 retry = false; 551 qemu_co_mutex_lock(&bs->reqs_lock); 552 QLIST_FOREACH(req, &bs->tracked_requests, list) { 553 if (req == self || (!req->serialising && !self->serialising)) { 554 continue; 555 } 556 if (tracked_request_overlaps(req, self->overlap_offset, 557 self->overlap_bytes)) 558 { 559 /* Hitting this means there was a reentrant request, for 560 * example, a block driver issuing nested requests. This must 561 * never happen since it means deadlock. 562 */ 563 assert(qemu_coroutine_self() != req->co); 564 565 /* If the request is already (indirectly) waiting for us, or 566 * will wait for us as soon as it wakes up, then just go on 567 * (instead of producing a deadlock in the former case). */ 568 if (!req->waiting_for) { 569 self->waiting_for = req; 570 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 571 self->waiting_for = NULL; 572 retry = true; 573 waited = true; 574 break; 575 } 576 } 577 } 578 qemu_co_mutex_unlock(&bs->reqs_lock); 579 } while (retry); 580 581 return waited; 582 } 583 584 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 585 size_t size) 586 { 587 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 588 return -EIO; 589 } 590 591 if (!bdrv_is_inserted(bs)) { 592 return -ENOMEDIUM; 593 } 594 595 if (offset < 0) { 596 return -EIO; 597 } 598 599 return 0; 600 } 601 602 typedef struct RwCo { 603 BdrvChild *child; 604 int64_t offset; 605 QEMUIOVector *qiov; 606 bool is_write; 607 int ret; 608 BdrvRequestFlags flags; 609 } RwCo; 610 611 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 612 { 613 RwCo *rwco = opaque; 614 615 if (!rwco->is_write) { 616 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 617 rwco->qiov->size, rwco->qiov, 618 rwco->flags); 619 } else { 620 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 621 rwco->qiov->size, rwco->qiov, 622 rwco->flags); 623 } 624 } 625 626 /* 627 * Process a vectored synchronous request using coroutines 628 */ 629 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 630 QEMUIOVector *qiov, bool is_write, 631 BdrvRequestFlags flags) 632 { 633 Coroutine *co; 634 RwCo rwco = { 635 .child = child, 636 .offset = offset, 637 .qiov = qiov, 638 .is_write = is_write, 639 .ret = NOT_DONE, 640 .flags = flags, 641 }; 642 643 if (qemu_in_coroutine()) { 644 /* Fast-path if already in coroutine context */ 645 bdrv_rw_co_entry(&rwco); 646 } else { 647 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 648 bdrv_coroutine_enter(child->bs, co); 649 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 650 } 651 return rwco.ret; 652 } 653 654 /* 655 * Process a synchronous request using coroutines 656 */ 657 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, 658 int nb_sectors, bool is_write, BdrvRequestFlags flags) 659 { 660 QEMUIOVector qiov; 661 struct iovec iov = { 662 .iov_base = (void *)buf, 663 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 664 }; 665 666 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 667 return -EINVAL; 668 } 669 670 qemu_iovec_init_external(&qiov, &iov, 1); 671 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, 672 &qiov, is_write, flags); 673 } 674 675 /* return < 0 if error. See bdrv_write() for the return codes */ 676 int bdrv_read(BdrvChild *child, int64_t sector_num, 677 uint8_t *buf, int nb_sectors) 678 { 679 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); 680 } 681 682 /* Return < 0 if error. Important errors are: 683 -EIO generic I/O error (may happen for all errors) 684 -ENOMEDIUM No media inserted. 685 -EINVAL Invalid sector number or nb_sectors 686 -EACCES Trying to write a read-only device 687 */ 688 int bdrv_write(BdrvChild *child, int64_t sector_num, 689 const uint8_t *buf, int nb_sectors) 690 { 691 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 692 } 693 694 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 695 int bytes, BdrvRequestFlags flags) 696 { 697 QEMUIOVector qiov; 698 struct iovec iov = { 699 .iov_base = NULL, 700 .iov_len = bytes, 701 }; 702 703 qemu_iovec_init_external(&qiov, &iov, 1); 704 return bdrv_prwv_co(child, offset, &qiov, true, 705 BDRV_REQ_ZERO_WRITE | flags); 706 } 707 708 /* 709 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 710 * The operation is sped up by checking the block status and only writing 711 * zeroes to the device if they currently do not return zeroes. Optional 712 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 713 * BDRV_REQ_FUA). 714 * 715 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 716 */ 717 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 718 { 719 int64_t target_sectors, ret, nb_sectors, sector_num = 0; 720 BlockDriverState *bs = child->bs; 721 BlockDriverState *file; 722 int n; 723 724 target_sectors = bdrv_nb_sectors(bs); 725 if (target_sectors < 0) { 726 return target_sectors; 727 } 728 729 for (;;) { 730 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS); 731 if (nb_sectors <= 0) { 732 return 0; 733 } 734 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file); 735 if (ret < 0) { 736 error_report("error getting block status at sector %" PRId64 ": %s", 737 sector_num, strerror(-ret)); 738 return ret; 739 } 740 if (ret & BDRV_BLOCK_ZERO) { 741 sector_num += n; 742 continue; 743 } 744 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS, 745 n << BDRV_SECTOR_BITS, flags); 746 if (ret < 0) { 747 error_report("error writing zeroes at sector %" PRId64 ": %s", 748 sector_num, strerror(-ret)); 749 return ret; 750 } 751 sector_num += n; 752 } 753 } 754 755 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 756 { 757 int ret; 758 759 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 760 if (ret < 0) { 761 return ret; 762 } 763 764 return qiov->size; 765 } 766 767 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 768 { 769 QEMUIOVector qiov; 770 struct iovec iov = { 771 .iov_base = (void *)buf, 772 .iov_len = bytes, 773 }; 774 775 if (bytes < 0) { 776 return -EINVAL; 777 } 778 779 qemu_iovec_init_external(&qiov, &iov, 1); 780 return bdrv_preadv(child, offset, &qiov); 781 } 782 783 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 784 { 785 int ret; 786 787 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 788 if (ret < 0) { 789 return ret; 790 } 791 792 return qiov->size; 793 } 794 795 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 796 { 797 QEMUIOVector qiov; 798 struct iovec iov = { 799 .iov_base = (void *) buf, 800 .iov_len = bytes, 801 }; 802 803 if (bytes < 0) { 804 return -EINVAL; 805 } 806 807 qemu_iovec_init_external(&qiov, &iov, 1); 808 return bdrv_pwritev(child, offset, &qiov); 809 } 810 811 /* 812 * Writes to the file and ensures that no writes are reordered across this 813 * request (acts as a barrier) 814 * 815 * Returns 0 on success, -errno in error cases. 816 */ 817 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 818 const void *buf, int count) 819 { 820 int ret; 821 822 ret = bdrv_pwrite(child, offset, buf, count); 823 if (ret < 0) { 824 return ret; 825 } 826 827 ret = bdrv_flush(child->bs); 828 if (ret < 0) { 829 return ret; 830 } 831 832 return 0; 833 } 834 835 typedef struct CoroutineIOCompletion { 836 Coroutine *coroutine; 837 int ret; 838 } CoroutineIOCompletion; 839 840 static void bdrv_co_io_em_complete(void *opaque, int ret) 841 { 842 CoroutineIOCompletion *co = opaque; 843 844 co->ret = ret; 845 aio_co_wake(co->coroutine); 846 } 847 848 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 849 uint64_t offset, uint64_t bytes, 850 QEMUIOVector *qiov, int flags) 851 { 852 BlockDriver *drv = bs->drv; 853 int64_t sector_num; 854 unsigned int nb_sectors; 855 856 assert(!(flags & ~BDRV_REQ_MASK)); 857 858 if (drv->bdrv_co_preadv) { 859 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 860 } 861 862 sector_num = offset >> BDRV_SECTOR_BITS; 863 nb_sectors = bytes >> BDRV_SECTOR_BITS; 864 865 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 866 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 867 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 868 869 if (drv->bdrv_co_readv) { 870 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 871 } else { 872 BlockAIOCB *acb; 873 CoroutineIOCompletion co = { 874 .coroutine = qemu_coroutine_self(), 875 }; 876 877 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors, 878 bdrv_co_io_em_complete, &co); 879 if (acb == NULL) { 880 return -EIO; 881 } else { 882 qemu_coroutine_yield(); 883 return co.ret; 884 } 885 } 886 } 887 888 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 889 uint64_t offset, uint64_t bytes, 890 QEMUIOVector *qiov, int flags) 891 { 892 BlockDriver *drv = bs->drv; 893 int64_t sector_num; 894 unsigned int nb_sectors; 895 int ret; 896 897 assert(!(flags & ~BDRV_REQ_MASK)); 898 899 if (drv->bdrv_co_pwritev) { 900 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 901 flags & bs->supported_write_flags); 902 flags &= ~bs->supported_write_flags; 903 goto emulate_flags; 904 } 905 906 sector_num = offset >> BDRV_SECTOR_BITS; 907 nb_sectors = bytes >> BDRV_SECTOR_BITS; 908 909 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 910 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 911 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 912 913 if (drv->bdrv_co_writev_flags) { 914 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov, 915 flags & bs->supported_write_flags); 916 flags &= ~bs->supported_write_flags; 917 } else if (drv->bdrv_co_writev) { 918 assert(!bs->supported_write_flags); 919 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 920 } else { 921 BlockAIOCB *acb; 922 CoroutineIOCompletion co = { 923 .coroutine = qemu_coroutine_self(), 924 }; 925 926 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors, 927 bdrv_co_io_em_complete, &co); 928 if (acb == NULL) { 929 ret = -EIO; 930 } else { 931 qemu_coroutine_yield(); 932 ret = co.ret; 933 } 934 } 935 936 emulate_flags: 937 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 938 ret = bdrv_co_flush(bs); 939 } 940 941 return ret; 942 } 943 944 static int coroutine_fn 945 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 946 uint64_t bytes, QEMUIOVector *qiov) 947 { 948 BlockDriver *drv = bs->drv; 949 950 if (!drv->bdrv_co_pwritev_compressed) { 951 return -ENOTSUP; 952 } 953 954 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 955 } 956 957 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 958 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 959 { 960 BlockDriverState *bs = child->bs; 961 962 /* Perform I/O through a temporary buffer so that users who scribble over 963 * their read buffer while the operation is in progress do not end up 964 * modifying the image file. This is critical for zero-copy guest I/O 965 * where anything might happen inside guest memory. 966 */ 967 void *bounce_buffer; 968 969 BlockDriver *drv = bs->drv; 970 struct iovec iov; 971 QEMUIOVector local_qiov; 972 int64_t cluster_offset; 973 unsigned int cluster_bytes; 974 size_t skip_bytes; 975 int ret; 976 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 977 BDRV_REQUEST_MAX_BYTES); 978 unsigned int progress = 0; 979 980 /* FIXME We cannot require callers to have write permissions when all they 981 * are doing is a read request. If we did things right, write permissions 982 * would be obtained anyway, but internally by the copy-on-read code. As 983 * long as it is implemented here rather than in a separate filter driver, 984 * the copy-on-read code doesn't have its own BdrvChild, however, for which 985 * it could request permissions. Therefore we have to bypass the permission 986 * system for the moment. */ 987 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 988 989 /* Cover entire cluster so no additional backing file I/O is required when 990 * allocating cluster in the image file. Note that this value may exceed 991 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 992 * is one reason we loop rather than doing it all at once. 993 */ 994 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 995 skip_bytes = offset - cluster_offset; 996 997 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 998 cluster_offset, cluster_bytes); 999 1000 bounce_buffer = qemu_try_blockalign(bs, 1001 MIN(MIN(max_transfer, cluster_bytes), 1002 MAX_BOUNCE_BUFFER)); 1003 if (bounce_buffer == NULL) { 1004 ret = -ENOMEM; 1005 goto err; 1006 } 1007 1008 while (cluster_bytes) { 1009 int64_t pnum; 1010 1011 ret = bdrv_is_allocated(bs, cluster_offset, 1012 MIN(cluster_bytes, max_transfer), &pnum); 1013 if (ret < 0) { 1014 /* Safe to treat errors in querying allocation as if 1015 * unallocated; we'll probably fail again soon on the 1016 * read, but at least that will set a decent errno. 1017 */ 1018 pnum = MIN(cluster_bytes, max_transfer); 1019 } 1020 1021 assert(skip_bytes < pnum); 1022 1023 if (ret <= 0) { 1024 /* Must copy-on-read; use the bounce buffer */ 1025 iov.iov_base = bounce_buffer; 1026 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1027 qemu_iovec_init_external(&local_qiov, &iov, 1); 1028 1029 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1030 &local_qiov, 0); 1031 if (ret < 0) { 1032 goto err; 1033 } 1034 1035 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1036 if (drv->bdrv_co_pwrite_zeroes && 1037 buffer_is_zero(bounce_buffer, pnum)) { 1038 /* FIXME: Should we (perhaps conditionally) be setting 1039 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1040 * that still correctly reads as zero? */ 1041 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 0); 1042 } else { 1043 /* This does not change the data on the disk, it is not 1044 * necessary to flush even in cache=writethrough mode. 1045 */ 1046 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1047 &local_qiov, 0); 1048 } 1049 1050 if (ret < 0) { 1051 /* It might be okay to ignore write errors for guest 1052 * requests. If this is a deliberate copy-on-read 1053 * then we don't want to ignore the error. Simply 1054 * report it in all cases. 1055 */ 1056 goto err; 1057 } 1058 1059 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes, 1060 pnum - skip_bytes); 1061 } else { 1062 /* Read directly into the destination */ 1063 qemu_iovec_init(&local_qiov, qiov->niov); 1064 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes); 1065 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size, 1066 &local_qiov, 0); 1067 qemu_iovec_destroy(&local_qiov); 1068 if (ret < 0) { 1069 goto err; 1070 } 1071 } 1072 1073 cluster_offset += pnum; 1074 cluster_bytes -= pnum; 1075 progress += pnum - skip_bytes; 1076 skip_bytes = 0; 1077 } 1078 ret = 0; 1079 1080 err: 1081 qemu_vfree(bounce_buffer); 1082 return ret; 1083 } 1084 1085 /* 1086 * Forwards an already correctly aligned request to the BlockDriver. This 1087 * handles copy on read, zeroing after EOF, and fragmentation of large 1088 * reads; any other features must be implemented by the caller. 1089 */ 1090 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1091 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1092 int64_t align, QEMUIOVector *qiov, int flags) 1093 { 1094 BlockDriverState *bs = child->bs; 1095 int64_t total_bytes, max_bytes; 1096 int ret = 0; 1097 uint64_t bytes_remaining = bytes; 1098 int max_transfer; 1099 1100 assert(is_power_of_2(align)); 1101 assert((offset & (align - 1)) == 0); 1102 assert((bytes & (align - 1)) == 0); 1103 assert(!qiov || bytes == qiov->size); 1104 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1105 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1106 align); 1107 1108 /* TODO: We would need a per-BDS .supported_read_flags and 1109 * potential fallback support, if we ever implement any read flags 1110 * to pass through to drivers. For now, there aren't any 1111 * passthrough flags. */ 1112 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 1113 1114 /* Handle Copy on Read and associated serialisation */ 1115 if (flags & BDRV_REQ_COPY_ON_READ) { 1116 /* If we touch the same cluster it counts as an overlap. This 1117 * guarantees that allocating writes will be serialized and not race 1118 * with each other for the same cluster. For example, in copy-on-read 1119 * it ensures that the CoR read and write operations are atomic and 1120 * guest writes cannot interleave between them. */ 1121 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1122 } 1123 1124 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1125 wait_serialising_requests(req); 1126 } 1127 1128 if (flags & BDRV_REQ_COPY_ON_READ) { 1129 /* TODO: Simplify further once bdrv_is_allocated no longer 1130 * requires sector alignment */ 1131 int64_t start = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE); 1132 int64_t end = QEMU_ALIGN_UP(offset + bytes, BDRV_SECTOR_SIZE); 1133 int64_t pnum; 1134 1135 ret = bdrv_is_allocated(bs, start, end - start, &pnum); 1136 if (ret < 0) { 1137 goto out; 1138 } 1139 1140 if (!ret || pnum != end - start) { 1141 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); 1142 goto out; 1143 } 1144 } 1145 1146 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1147 total_bytes = bdrv_getlength(bs); 1148 if (total_bytes < 0) { 1149 ret = total_bytes; 1150 goto out; 1151 } 1152 1153 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1154 if (bytes <= max_bytes && bytes <= max_transfer) { 1155 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1156 goto out; 1157 } 1158 1159 while (bytes_remaining) { 1160 int num; 1161 1162 if (max_bytes) { 1163 QEMUIOVector local_qiov; 1164 1165 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1166 assert(num); 1167 qemu_iovec_init(&local_qiov, qiov->niov); 1168 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1169 1170 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1171 num, &local_qiov, 0); 1172 max_bytes -= num; 1173 qemu_iovec_destroy(&local_qiov); 1174 } else { 1175 num = bytes_remaining; 1176 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1177 bytes_remaining); 1178 } 1179 if (ret < 0) { 1180 goto out; 1181 } 1182 bytes_remaining -= num; 1183 } 1184 1185 out: 1186 return ret < 0 ? ret : 0; 1187 } 1188 1189 /* 1190 * Handle a read request in coroutine context 1191 */ 1192 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1193 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1194 BdrvRequestFlags flags) 1195 { 1196 BlockDriverState *bs = child->bs; 1197 BlockDriver *drv = bs->drv; 1198 BdrvTrackedRequest req; 1199 1200 uint64_t align = bs->bl.request_alignment; 1201 uint8_t *head_buf = NULL; 1202 uint8_t *tail_buf = NULL; 1203 QEMUIOVector local_qiov; 1204 bool use_local_qiov = false; 1205 int ret; 1206 1207 trace_bdrv_co_preadv(child->bs, offset, bytes, flags); 1208 1209 if (!drv) { 1210 return -ENOMEDIUM; 1211 } 1212 1213 ret = bdrv_check_byte_request(bs, offset, bytes); 1214 if (ret < 0) { 1215 return ret; 1216 } 1217 1218 bdrv_inc_in_flight(bs); 1219 1220 /* Don't do copy-on-read if we read data before write operation */ 1221 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1222 flags |= BDRV_REQ_COPY_ON_READ; 1223 } 1224 1225 /* Align read if necessary by padding qiov */ 1226 if (offset & (align - 1)) { 1227 head_buf = qemu_blockalign(bs, align); 1228 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1229 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1230 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1231 use_local_qiov = true; 1232 1233 bytes += offset & (align - 1); 1234 offset = offset & ~(align - 1); 1235 } 1236 1237 if ((offset + bytes) & (align - 1)) { 1238 if (!use_local_qiov) { 1239 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1240 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1241 use_local_qiov = true; 1242 } 1243 tail_buf = qemu_blockalign(bs, align); 1244 qemu_iovec_add(&local_qiov, tail_buf, 1245 align - ((offset + bytes) & (align - 1))); 1246 1247 bytes = ROUND_UP(bytes, align); 1248 } 1249 1250 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1251 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1252 use_local_qiov ? &local_qiov : qiov, 1253 flags); 1254 tracked_request_end(&req); 1255 bdrv_dec_in_flight(bs); 1256 1257 if (use_local_qiov) { 1258 qemu_iovec_destroy(&local_qiov); 1259 qemu_vfree(head_buf); 1260 qemu_vfree(tail_buf); 1261 } 1262 1263 return ret; 1264 } 1265 1266 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child, 1267 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1268 BdrvRequestFlags flags) 1269 { 1270 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1271 return -EINVAL; 1272 } 1273 1274 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS, 1275 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1276 } 1277 1278 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num, 1279 int nb_sectors, QEMUIOVector *qiov) 1280 { 1281 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0); 1282 } 1283 1284 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1285 int64_t offset, int bytes, BdrvRequestFlags flags) 1286 { 1287 BlockDriver *drv = bs->drv; 1288 QEMUIOVector qiov; 1289 struct iovec iov = {0}; 1290 int ret = 0; 1291 bool need_flush = false; 1292 int head = 0; 1293 int tail = 0; 1294 1295 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1296 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1297 bs->bl.request_alignment); 1298 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1299 1300 assert(alignment % bs->bl.request_alignment == 0); 1301 head = offset % alignment; 1302 tail = (offset + bytes) % alignment; 1303 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1304 assert(max_write_zeroes >= bs->bl.request_alignment); 1305 1306 while (bytes > 0 && !ret) { 1307 int num = bytes; 1308 1309 /* Align request. Block drivers can expect the "bulk" of the request 1310 * to be aligned, and that unaligned requests do not cross cluster 1311 * boundaries. 1312 */ 1313 if (head) { 1314 /* Make a small request up to the first aligned sector. For 1315 * convenience, limit this request to max_transfer even if 1316 * we don't need to fall back to writes. */ 1317 num = MIN(MIN(bytes, max_transfer), alignment - head); 1318 head = (head + num) % alignment; 1319 assert(num < max_write_zeroes); 1320 } else if (tail && num > alignment) { 1321 /* Shorten the request to the last aligned sector. */ 1322 num -= tail; 1323 } 1324 1325 /* limit request size */ 1326 if (num > max_write_zeroes) { 1327 num = max_write_zeroes; 1328 } 1329 1330 ret = -ENOTSUP; 1331 /* First try the efficient write zeroes operation */ 1332 if (drv->bdrv_co_pwrite_zeroes) { 1333 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1334 flags & bs->supported_zero_flags); 1335 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1336 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1337 need_flush = true; 1338 } 1339 } else { 1340 assert(!bs->supported_zero_flags); 1341 } 1342 1343 if (ret == -ENOTSUP) { 1344 /* Fall back to bounce buffer if write zeroes is unsupported */ 1345 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1346 1347 if ((flags & BDRV_REQ_FUA) && 1348 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1349 /* No need for bdrv_driver_pwrite() to do a fallback 1350 * flush on each chunk; use just one at the end */ 1351 write_flags &= ~BDRV_REQ_FUA; 1352 need_flush = true; 1353 } 1354 num = MIN(num, max_transfer); 1355 iov.iov_len = num; 1356 if (iov.iov_base == NULL) { 1357 iov.iov_base = qemu_try_blockalign(bs, num); 1358 if (iov.iov_base == NULL) { 1359 ret = -ENOMEM; 1360 goto fail; 1361 } 1362 memset(iov.iov_base, 0, num); 1363 } 1364 qemu_iovec_init_external(&qiov, &iov, 1); 1365 1366 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1367 1368 /* Keep bounce buffer around if it is big enough for all 1369 * all future requests. 1370 */ 1371 if (num < max_transfer) { 1372 qemu_vfree(iov.iov_base); 1373 iov.iov_base = NULL; 1374 } 1375 } 1376 1377 offset += num; 1378 bytes -= num; 1379 } 1380 1381 fail: 1382 if (ret == 0 && need_flush) { 1383 ret = bdrv_co_flush(bs); 1384 } 1385 qemu_vfree(iov.iov_base); 1386 return ret; 1387 } 1388 1389 /* 1390 * Forwards an already correctly aligned write request to the BlockDriver, 1391 * after possibly fragmenting it. 1392 */ 1393 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1394 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1395 int64_t align, QEMUIOVector *qiov, int flags) 1396 { 1397 BlockDriverState *bs = child->bs; 1398 BlockDriver *drv = bs->drv; 1399 bool waited; 1400 int ret; 1401 1402 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1403 uint64_t bytes_remaining = bytes; 1404 int max_transfer; 1405 1406 if (bdrv_has_readonly_bitmaps(bs)) { 1407 return -EPERM; 1408 } 1409 1410 assert(is_power_of_2(align)); 1411 assert((offset & (align - 1)) == 0); 1412 assert((bytes & (align - 1)) == 0); 1413 assert(!qiov || bytes == qiov->size); 1414 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1415 assert(!(flags & ~BDRV_REQ_MASK)); 1416 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1417 align); 1418 1419 waited = wait_serialising_requests(req); 1420 assert(!waited || !req->serialising); 1421 assert(req->overlap_offset <= offset); 1422 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1423 assert(child->perm & BLK_PERM_WRITE); 1424 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1425 1426 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); 1427 1428 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1429 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1430 qemu_iovec_is_zero(qiov)) { 1431 flags |= BDRV_REQ_ZERO_WRITE; 1432 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1433 flags |= BDRV_REQ_MAY_UNMAP; 1434 } 1435 } 1436 1437 if (ret < 0) { 1438 /* Do nothing, write notifier decided to fail this request */ 1439 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1440 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1441 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1442 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1443 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1444 } else if (bytes <= max_transfer) { 1445 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1446 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1447 } else { 1448 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1449 while (bytes_remaining) { 1450 int num = MIN(bytes_remaining, max_transfer); 1451 QEMUIOVector local_qiov; 1452 int local_flags = flags; 1453 1454 assert(num); 1455 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1456 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1457 /* If FUA is going to be emulated by flush, we only 1458 * need to flush on the last iteration */ 1459 local_flags &= ~BDRV_REQ_FUA; 1460 } 1461 qemu_iovec_init(&local_qiov, qiov->niov); 1462 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1463 1464 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1465 num, &local_qiov, local_flags); 1466 qemu_iovec_destroy(&local_qiov); 1467 if (ret < 0) { 1468 break; 1469 } 1470 bytes_remaining -= num; 1471 } 1472 } 1473 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1474 1475 atomic_inc(&bs->write_gen); 1476 bdrv_set_dirty(bs, offset, bytes); 1477 1478 stat64_max(&bs->wr_highest_offset, offset + bytes); 1479 1480 if (ret >= 0) { 1481 bs->total_sectors = MAX(bs->total_sectors, end_sector); 1482 ret = 0; 1483 } 1484 1485 return ret; 1486 } 1487 1488 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1489 int64_t offset, 1490 unsigned int bytes, 1491 BdrvRequestFlags flags, 1492 BdrvTrackedRequest *req) 1493 { 1494 BlockDriverState *bs = child->bs; 1495 uint8_t *buf = NULL; 1496 QEMUIOVector local_qiov; 1497 struct iovec iov; 1498 uint64_t align = bs->bl.request_alignment; 1499 unsigned int head_padding_bytes, tail_padding_bytes; 1500 int ret = 0; 1501 1502 head_padding_bytes = offset & (align - 1); 1503 tail_padding_bytes = (align - (offset + bytes)) & (align - 1); 1504 1505 1506 assert(flags & BDRV_REQ_ZERO_WRITE); 1507 if (head_padding_bytes || tail_padding_bytes) { 1508 buf = qemu_blockalign(bs, align); 1509 iov = (struct iovec) { 1510 .iov_base = buf, 1511 .iov_len = align, 1512 }; 1513 qemu_iovec_init_external(&local_qiov, &iov, 1); 1514 } 1515 if (head_padding_bytes) { 1516 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1517 1518 /* RMW the unaligned part before head. */ 1519 mark_request_serialising(req, align); 1520 wait_serialising_requests(req); 1521 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1522 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1523 align, &local_qiov, 0); 1524 if (ret < 0) { 1525 goto fail; 1526 } 1527 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1528 1529 memset(buf + head_padding_bytes, 0, zero_bytes); 1530 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1531 align, &local_qiov, 1532 flags & ~BDRV_REQ_ZERO_WRITE); 1533 if (ret < 0) { 1534 goto fail; 1535 } 1536 offset += zero_bytes; 1537 bytes -= zero_bytes; 1538 } 1539 1540 assert(!bytes || (offset & (align - 1)) == 0); 1541 if (bytes >= align) { 1542 /* Write the aligned part in the middle. */ 1543 uint64_t aligned_bytes = bytes & ~(align - 1); 1544 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1545 NULL, flags); 1546 if (ret < 0) { 1547 goto fail; 1548 } 1549 bytes -= aligned_bytes; 1550 offset += aligned_bytes; 1551 } 1552 1553 assert(!bytes || (offset & (align - 1)) == 0); 1554 if (bytes) { 1555 assert(align == tail_padding_bytes + bytes); 1556 /* RMW the unaligned part after tail. */ 1557 mark_request_serialising(req, align); 1558 wait_serialising_requests(req); 1559 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1560 ret = bdrv_aligned_preadv(child, req, offset, align, 1561 align, &local_qiov, 0); 1562 if (ret < 0) { 1563 goto fail; 1564 } 1565 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1566 1567 memset(buf, 0, bytes); 1568 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1569 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1570 } 1571 fail: 1572 qemu_vfree(buf); 1573 return ret; 1574 1575 } 1576 1577 /* 1578 * Handle a write request in coroutine context 1579 */ 1580 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1581 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1582 BdrvRequestFlags flags) 1583 { 1584 BlockDriverState *bs = child->bs; 1585 BdrvTrackedRequest req; 1586 uint64_t align = bs->bl.request_alignment; 1587 uint8_t *head_buf = NULL; 1588 uint8_t *tail_buf = NULL; 1589 QEMUIOVector local_qiov; 1590 bool use_local_qiov = false; 1591 int ret; 1592 1593 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 1594 1595 if (!bs->drv) { 1596 return -ENOMEDIUM; 1597 } 1598 if (bs->read_only) { 1599 return -EPERM; 1600 } 1601 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1602 1603 ret = bdrv_check_byte_request(bs, offset, bytes); 1604 if (ret < 0) { 1605 return ret; 1606 } 1607 1608 bdrv_inc_in_flight(bs); 1609 /* 1610 * Align write if necessary by performing a read-modify-write cycle. 1611 * Pad qiov with the read parts and be sure to have a tracked request not 1612 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1613 */ 1614 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1615 1616 if (!qiov) { 1617 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1618 goto out; 1619 } 1620 1621 if (offset & (align - 1)) { 1622 QEMUIOVector head_qiov; 1623 struct iovec head_iov; 1624 1625 mark_request_serialising(&req, align); 1626 wait_serialising_requests(&req); 1627 1628 head_buf = qemu_blockalign(bs, align); 1629 head_iov = (struct iovec) { 1630 .iov_base = head_buf, 1631 .iov_len = align, 1632 }; 1633 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1634 1635 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1636 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1637 align, &head_qiov, 0); 1638 if (ret < 0) { 1639 goto fail; 1640 } 1641 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1642 1643 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1644 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1645 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1646 use_local_qiov = true; 1647 1648 bytes += offset & (align - 1); 1649 offset = offset & ~(align - 1); 1650 1651 /* We have read the tail already if the request is smaller 1652 * than one aligned block. 1653 */ 1654 if (bytes < align) { 1655 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1656 bytes = align; 1657 } 1658 } 1659 1660 if ((offset + bytes) & (align - 1)) { 1661 QEMUIOVector tail_qiov; 1662 struct iovec tail_iov; 1663 size_t tail_bytes; 1664 bool waited; 1665 1666 mark_request_serialising(&req, align); 1667 waited = wait_serialising_requests(&req); 1668 assert(!waited || !use_local_qiov); 1669 1670 tail_buf = qemu_blockalign(bs, align); 1671 tail_iov = (struct iovec) { 1672 .iov_base = tail_buf, 1673 .iov_len = align, 1674 }; 1675 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1676 1677 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1678 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1679 align, align, &tail_qiov, 0); 1680 if (ret < 0) { 1681 goto fail; 1682 } 1683 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1684 1685 if (!use_local_qiov) { 1686 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1687 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1688 use_local_qiov = true; 1689 } 1690 1691 tail_bytes = (offset + bytes) & (align - 1); 1692 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1693 1694 bytes = ROUND_UP(bytes, align); 1695 } 1696 1697 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1698 use_local_qiov ? &local_qiov : qiov, 1699 flags); 1700 1701 fail: 1702 1703 if (use_local_qiov) { 1704 qemu_iovec_destroy(&local_qiov); 1705 } 1706 qemu_vfree(head_buf); 1707 qemu_vfree(tail_buf); 1708 out: 1709 tracked_request_end(&req); 1710 bdrv_dec_in_flight(bs); 1711 return ret; 1712 } 1713 1714 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child, 1715 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1716 BdrvRequestFlags flags) 1717 { 1718 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1719 return -EINVAL; 1720 } 1721 1722 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS, 1723 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1724 } 1725 1726 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num, 1727 int nb_sectors, QEMUIOVector *qiov) 1728 { 1729 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0); 1730 } 1731 1732 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1733 int bytes, BdrvRequestFlags flags) 1734 { 1735 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 1736 1737 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1738 flags &= ~BDRV_REQ_MAY_UNMAP; 1739 } 1740 1741 return bdrv_co_pwritev(child, offset, bytes, NULL, 1742 BDRV_REQ_ZERO_WRITE | flags); 1743 } 1744 1745 /* 1746 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1747 */ 1748 int bdrv_flush_all(void) 1749 { 1750 BdrvNextIterator it; 1751 BlockDriverState *bs = NULL; 1752 int result = 0; 1753 1754 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 1755 AioContext *aio_context = bdrv_get_aio_context(bs); 1756 int ret; 1757 1758 aio_context_acquire(aio_context); 1759 ret = bdrv_flush(bs); 1760 if (ret < 0 && !result) { 1761 result = ret; 1762 } 1763 aio_context_release(aio_context); 1764 } 1765 1766 return result; 1767 } 1768 1769 1770 typedef struct BdrvCoGetBlockStatusData { 1771 BlockDriverState *bs; 1772 BlockDriverState *base; 1773 BlockDriverState **file; 1774 int64_t sector_num; 1775 int nb_sectors; 1776 int *pnum; 1777 int64_t ret; 1778 bool done; 1779 } BdrvCoGetBlockStatusData; 1780 1781 int64_t coroutine_fn bdrv_co_get_block_status_from_file(BlockDriverState *bs, 1782 int64_t sector_num, 1783 int nb_sectors, 1784 int *pnum, 1785 BlockDriverState **file) 1786 { 1787 assert(bs->file && bs->file->bs); 1788 *pnum = nb_sectors; 1789 *file = bs->file->bs; 1790 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID | 1791 (sector_num << BDRV_SECTOR_BITS); 1792 } 1793 1794 int64_t coroutine_fn bdrv_co_get_block_status_from_backing(BlockDriverState *bs, 1795 int64_t sector_num, 1796 int nb_sectors, 1797 int *pnum, 1798 BlockDriverState **file) 1799 { 1800 assert(bs->backing && bs->backing->bs); 1801 *pnum = nb_sectors; 1802 *file = bs->backing->bs; 1803 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID | 1804 (sector_num << BDRV_SECTOR_BITS); 1805 } 1806 1807 /* 1808 * Returns the allocation status of the specified sectors. 1809 * Drivers not implementing the functionality are assumed to not support 1810 * backing files, hence all their sectors are reported as allocated. 1811 * 1812 * If 'sector_num' is beyond the end of the disk image the return value is 1813 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 1814 * 1815 * 'pnum' is set to the number of sectors (including and immediately following 1816 * the specified sector) that are known to be in the same 1817 * allocated/unallocated state. 1818 * 1819 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 1820 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 1821 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 1822 * 1823 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file' 1824 * points to the BDS which the sector range is allocated in. 1825 */ 1826 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs, 1827 int64_t sector_num, 1828 int nb_sectors, int *pnum, 1829 BlockDriverState **file) 1830 { 1831 int64_t total_sectors; 1832 int64_t n; 1833 int64_t ret, ret2; 1834 1835 *file = NULL; 1836 total_sectors = bdrv_nb_sectors(bs); 1837 if (total_sectors < 0) { 1838 return total_sectors; 1839 } 1840 1841 if (sector_num >= total_sectors) { 1842 *pnum = 0; 1843 return BDRV_BLOCK_EOF; 1844 } 1845 if (!nb_sectors) { 1846 *pnum = 0; 1847 return 0; 1848 } 1849 1850 n = total_sectors - sector_num; 1851 if (n < nb_sectors) { 1852 nb_sectors = n; 1853 } 1854 1855 if (!bs->drv->bdrv_co_get_block_status) { 1856 *pnum = nb_sectors; 1857 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 1858 if (sector_num + nb_sectors == total_sectors) { 1859 ret |= BDRV_BLOCK_EOF; 1860 } 1861 if (bs->drv->protocol_name) { 1862 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE); 1863 *file = bs; 1864 } 1865 return ret; 1866 } 1867 1868 bdrv_inc_in_flight(bs); 1869 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum, 1870 file); 1871 if (ret < 0) { 1872 *pnum = 0; 1873 goto out; 1874 } 1875 1876 if (ret & BDRV_BLOCK_RAW) { 1877 assert(ret & BDRV_BLOCK_OFFSET_VALID && *file); 1878 ret = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1879 *pnum, pnum, file); 1880 goto out; 1881 } 1882 1883 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 1884 ret |= BDRV_BLOCK_ALLOCATED; 1885 } else { 1886 if (bdrv_unallocated_blocks_are_zero(bs)) { 1887 ret |= BDRV_BLOCK_ZERO; 1888 } else if (bs->backing) { 1889 BlockDriverState *bs2 = bs->backing->bs; 1890 int64_t nb_sectors2 = bdrv_nb_sectors(bs2); 1891 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) { 1892 ret |= BDRV_BLOCK_ZERO; 1893 } 1894 } 1895 } 1896 1897 if (*file && *file != bs && 1898 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 1899 (ret & BDRV_BLOCK_OFFSET_VALID)) { 1900 BlockDriverState *file2; 1901 int file_pnum; 1902 1903 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1904 *pnum, &file_pnum, &file2); 1905 if (ret2 >= 0) { 1906 /* Ignore errors. This is just providing extra information, it 1907 * is useful but not necessary. 1908 */ 1909 if (ret2 & BDRV_BLOCK_EOF && 1910 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 1911 /* 1912 * It is valid for the format block driver to read 1913 * beyond the end of the underlying file's current 1914 * size; such areas read as zero. 1915 */ 1916 ret |= BDRV_BLOCK_ZERO; 1917 } else { 1918 /* Limit request to the range reported by the protocol driver */ 1919 *pnum = file_pnum; 1920 ret |= (ret2 & BDRV_BLOCK_ZERO); 1921 } 1922 } 1923 } 1924 1925 out: 1926 bdrv_dec_in_flight(bs); 1927 if (ret >= 0 && sector_num + *pnum == total_sectors) { 1928 ret |= BDRV_BLOCK_EOF; 1929 } 1930 return ret; 1931 } 1932 1933 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs, 1934 BlockDriverState *base, 1935 int64_t sector_num, 1936 int nb_sectors, 1937 int *pnum, 1938 BlockDriverState **file) 1939 { 1940 BlockDriverState *p; 1941 int64_t ret = 0; 1942 bool first = true; 1943 1944 assert(bs != base); 1945 for (p = bs; p != base; p = backing_bs(p)) { 1946 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file); 1947 if (ret < 0) { 1948 break; 1949 } 1950 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 1951 /* 1952 * Reading beyond the end of the file continues to read 1953 * zeroes, but we can only widen the result to the 1954 * unallocated length we learned from an earlier 1955 * iteration. 1956 */ 1957 *pnum = nb_sectors; 1958 } 1959 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 1960 break; 1961 } 1962 /* [sector_num, pnum] unallocated on this layer, which could be only 1963 * the first part of [sector_num, nb_sectors]. */ 1964 nb_sectors = MIN(nb_sectors, *pnum); 1965 first = false; 1966 } 1967 return ret; 1968 } 1969 1970 /* Coroutine wrapper for bdrv_get_block_status_above() */ 1971 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque) 1972 { 1973 BdrvCoGetBlockStatusData *data = opaque; 1974 1975 data->ret = bdrv_co_get_block_status_above(data->bs, data->base, 1976 data->sector_num, 1977 data->nb_sectors, 1978 data->pnum, 1979 data->file); 1980 data->done = true; 1981 } 1982 1983 /* 1984 * Synchronous wrapper around bdrv_co_get_block_status_above(). 1985 * 1986 * See bdrv_co_get_block_status_above() for details. 1987 */ 1988 int64_t bdrv_get_block_status_above(BlockDriverState *bs, 1989 BlockDriverState *base, 1990 int64_t sector_num, 1991 int nb_sectors, int *pnum, 1992 BlockDriverState **file) 1993 { 1994 Coroutine *co; 1995 BdrvCoGetBlockStatusData data = { 1996 .bs = bs, 1997 .base = base, 1998 .file = file, 1999 .sector_num = sector_num, 2000 .nb_sectors = nb_sectors, 2001 .pnum = pnum, 2002 .done = false, 2003 }; 2004 2005 if (qemu_in_coroutine()) { 2006 /* Fast-path if already in coroutine context */ 2007 bdrv_get_block_status_above_co_entry(&data); 2008 } else { 2009 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry, 2010 &data); 2011 bdrv_coroutine_enter(bs, co); 2012 BDRV_POLL_WHILE(bs, !data.done); 2013 } 2014 return data.ret; 2015 } 2016 2017 int64_t bdrv_get_block_status(BlockDriverState *bs, 2018 int64_t sector_num, 2019 int nb_sectors, int *pnum, 2020 BlockDriverState **file) 2021 { 2022 return bdrv_get_block_status_above(bs, backing_bs(bs), 2023 sector_num, nb_sectors, pnum, file); 2024 } 2025 2026 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2027 int64_t bytes, int64_t *pnum) 2028 { 2029 BlockDriverState *file; 2030 int64_t sector_num = offset >> BDRV_SECTOR_BITS; 2031 int nb_sectors = bytes >> BDRV_SECTOR_BITS; 2032 int64_t ret; 2033 int psectors; 2034 2035 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 2036 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE) && bytes < INT_MAX); 2037 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &psectors, 2038 &file); 2039 if (ret < 0) { 2040 return ret; 2041 } 2042 if (pnum) { 2043 *pnum = psectors * BDRV_SECTOR_SIZE; 2044 } 2045 return !!(ret & BDRV_BLOCK_ALLOCATED); 2046 } 2047 2048 /* 2049 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2050 * 2051 * Return true if (a prefix of) the given range is allocated in any image 2052 * between BASE and TOP (inclusive). BASE can be NULL to check if the given 2053 * offset is allocated in any image of the chain. Return false otherwise, 2054 * or negative errno on failure. 2055 * 2056 * 'pnum' is set to the number of bytes (including and immediately 2057 * following the specified offset) that are known to be in the same 2058 * allocated/unallocated state. Note that a subsequent call starting 2059 * at 'offset + *pnum' may return the same allocation status (in other 2060 * words, the result is not necessarily the maximum possible range); 2061 * but 'pnum' will only be 0 when end of file is reached. 2062 * 2063 */ 2064 int bdrv_is_allocated_above(BlockDriverState *top, 2065 BlockDriverState *base, 2066 int64_t offset, int64_t bytes, int64_t *pnum) 2067 { 2068 BlockDriverState *intermediate; 2069 int ret; 2070 int64_t n = bytes; 2071 2072 intermediate = top; 2073 while (intermediate && intermediate != base) { 2074 int64_t pnum_inter; 2075 int64_t size_inter; 2076 2077 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2078 if (ret < 0) { 2079 return ret; 2080 } 2081 if (ret) { 2082 *pnum = pnum_inter; 2083 return 1; 2084 } 2085 2086 size_inter = bdrv_getlength(intermediate); 2087 if (size_inter < 0) { 2088 return size_inter; 2089 } 2090 if (n > pnum_inter && 2091 (intermediate == top || offset + pnum_inter < size_inter)) { 2092 n = pnum_inter; 2093 } 2094 2095 intermediate = backing_bs(intermediate); 2096 } 2097 2098 *pnum = n; 2099 return 0; 2100 } 2101 2102 typedef struct BdrvVmstateCo { 2103 BlockDriverState *bs; 2104 QEMUIOVector *qiov; 2105 int64_t pos; 2106 bool is_read; 2107 int ret; 2108 } BdrvVmstateCo; 2109 2110 static int coroutine_fn 2111 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2112 bool is_read) 2113 { 2114 BlockDriver *drv = bs->drv; 2115 int ret = -ENOTSUP; 2116 2117 bdrv_inc_in_flight(bs); 2118 2119 if (!drv) { 2120 ret = -ENOMEDIUM; 2121 } else if (drv->bdrv_load_vmstate) { 2122 if (is_read) { 2123 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2124 } else { 2125 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2126 } 2127 } else if (bs->file) { 2128 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2129 } 2130 2131 bdrv_dec_in_flight(bs); 2132 return ret; 2133 } 2134 2135 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2136 { 2137 BdrvVmstateCo *co = opaque; 2138 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2139 } 2140 2141 static inline int 2142 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2143 bool is_read) 2144 { 2145 if (qemu_in_coroutine()) { 2146 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2147 } else { 2148 BdrvVmstateCo data = { 2149 .bs = bs, 2150 .qiov = qiov, 2151 .pos = pos, 2152 .is_read = is_read, 2153 .ret = -EINPROGRESS, 2154 }; 2155 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2156 2157 bdrv_coroutine_enter(bs, co); 2158 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2159 return data.ret; 2160 } 2161 } 2162 2163 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2164 int64_t pos, int size) 2165 { 2166 QEMUIOVector qiov; 2167 struct iovec iov = { 2168 .iov_base = (void *) buf, 2169 .iov_len = size, 2170 }; 2171 int ret; 2172 2173 qemu_iovec_init_external(&qiov, &iov, 1); 2174 2175 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2176 if (ret < 0) { 2177 return ret; 2178 } 2179 2180 return size; 2181 } 2182 2183 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2184 { 2185 return bdrv_rw_vmstate(bs, qiov, pos, false); 2186 } 2187 2188 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2189 int64_t pos, int size) 2190 { 2191 QEMUIOVector qiov; 2192 struct iovec iov = { 2193 .iov_base = buf, 2194 .iov_len = size, 2195 }; 2196 int ret; 2197 2198 qemu_iovec_init_external(&qiov, &iov, 1); 2199 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2200 if (ret < 0) { 2201 return ret; 2202 } 2203 2204 return size; 2205 } 2206 2207 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2208 { 2209 return bdrv_rw_vmstate(bs, qiov, pos, true); 2210 } 2211 2212 /**************************************************************/ 2213 /* async I/Os */ 2214 2215 void bdrv_aio_cancel(BlockAIOCB *acb) 2216 { 2217 qemu_aio_ref(acb); 2218 bdrv_aio_cancel_async(acb); 2219 while (acb->refcnt > 1) { 2220 if (acb->aiocb_info->get_aio_context) { 2221 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2222 } else if (acb->bs) { 2223 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2224 * assert that we're not using an I/O thread. Thread-safe 2225 * code should use bdrv_aio_cancel_async exclusively. 2226 */ 2227 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2228 aio_poll(bdrv_get_aio_context(acb->bs), true); 2229 } else { 2230 abort(); 2231 } 2232 } 2233 qemu_aio_unref(acb); 2234 } 2235 2236 /* Async version of aio cancel. The caller is not blocked if the acb implements 2237 * cancel_async, otherwise we do nothing and let the request normally complete. 2238 * In either case the completion callback must be called. */ 2239 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2240 { 2241 if (acb->aiocb_info->cancel_async) { 2242 acb->aiocb_info->cancel_async(acb); 2243 } 2244 } 2245 2246 /**************************************************************/ 2247 /* Coroutine block device emulation */ 2248 2249 typedef struct FlushCo { 2250 BlockDriverState *bs; 2251 int ret; 2252 } FlushCo; 2253 2254 2255 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2256 { 2257 FlushCo *rwco = opaque; 2258 2259 rwco->ret = bdrv_co_flush(rwco->bs); 2260 } 2261 2262 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2263 { 2264 int current_gen; 2265 int ret = 0; 2266 2267 bdrv_inc_in_flight(bs); 2268 2269 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2270 bdrv_is_sg(bs)) { 2271 goto early_exit; 2272 } 2273 2274 qemu_co_mutex_lock(&bs->reqs_lock); 2275 current_gen = atomic_read(&bs->write_gen); 2276 2277 /* Wait until any previous flushes are completed */ 2278 while (bs->active_flush_req) { 2279 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2280 } 2281 2282 /* Flushes reach this point in nondecreasing current_gen order. */ 2283 bs->active_flush_req = true; 2284 qemu_co_mutex_unlock(&bs->reqs_lock); 2285 2286 /* Write back all layers by calling one driver function */ 2287 if (bs->drv->bdrv_co_flush) { 2288 ret = bs->drv->bdrv_co_flush(bs); 2289 goto out; 2290 } 2291 2292 /* Write back cached data to the OS even with cache=unsafe */ 2293 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2294 if (bs->drv->bdrv_co_flush_to_os) { 2295 ret = bs->drv->bdrv_co_flush_to_os(bs); 2296 if (ret < 0) { 2297 goto out; 2298 } 2299 } 2300 2301 /* But don't actually force it to the disk with cache=unsafe */ 2302 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2303 goto flush_parent; 2304 } 2305 2306 /* Check if we really need to flush anything */ 2307 if (bs->flushed_gen == current_gen) { 2308 goto flush_parent; 2309 } 2310 2311 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2312 if (bs->drv->bdrv_co_flush_to_disk) { 2313 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2314 } else if (bs->drv->bdrv_aio_flush) { 2315 BlockAIOCB *acb; 2316 CoroutineIOCompletion co = { 2317 .coroutine = qemu_coroutine_self(), 2318 }; 2319 2320 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2321 if (acb == NULL) { 2322 ret = -EIO; 2323 } else { 2324 qemu_coroutine_yield(); 2325 ret = co.ret; 2326 } 2327 } else { 2328 /* 2329 * Some block drivers always operate in either writethrough or unsafe 2330 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2331 * know how the server works (because the behaviour is hardcoded or 2332 * depends on server-side configuration), so we can't ensure that 2333 * everything is safe on disk. Returning an error doesn't work because 2334 * that would break guests even if the server operates in writethrough 2335 * mode. 2336 * 2337 * Let's hope the user knows what he's doing. 2338 */ 2339 ret = 0; 2340 } 2341 2342 if (ret < 0) { 2343 goto out; 2344 } 2345 2346 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2347 * in the case of cache=unsafe, so there are no useless flushes. 2348 */ 2349 flush_parent: 2350 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2351 out: 2352 /* Notify any pending flushes that we have completed */ 2353 if (ret == 0) { 2354 bs->flushed_gen = current_gen; 2355 } 2356 2357 qemu_co_mutex_lock(&bs->reqs_lock); 2358 bs->active_flush_req = false; 2359 /* Return value is ignored - it's ok if wait queue is empty */ 2360 qemu_co_queue_next(&bs->flush_queue); 2361 qemu_co_mutex_unlock(&bs->reqs_lock); 2362 2363 early_exit: 2364 bdrv_dec_in_flight(bs); 2365 return ret; 2366 } 2367 2368 int bdrv_flush(BlockDriverState *bs) 2369 { 2370 Coroutine *co; 2371 FlushCo flush_co = { 2372 .bs = bs, 2373 .ret = NOT_DONE, 2374 }; 2375 2376 if (qemu_in_coroutine()) { 2377 /* Fast-path if already in coroutine context */ 2378 bdrv_flush_co_entry(&flush_co); 2379 } else { 2380 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2381 bdrv_coroutine_enter(bs, co); 2382 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2383 } 2384 2385 return flush_co.ret; 2386 } 2387 2388 typedef struct DiscardCo { 2389 BlockDriverState *bs; 2390 int64_t offset; 2391 int bytes; 2392 int ret; 2393 } DiscardCo; 2394 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2395 { 2396 DiscardCo *rwco = opaque; 2397 2398 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes); 2399 } 2400 2401 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset, 2402 int bytes) 2403 { 2404 BdrvTrackedRequest req; 2405 int max_pdiscard, ret; 2406 int head, tail, align; 2407 2408 if (!bs->drv) { 2409 return -ENOMEDIUM; 2410 } 2411 2412 if (bdrv_has_readonly_bitmaps(bs)) { 2413 return -EPERM; 2414 } 2415 2416 ret = bdrv_check_byte_request(bs, offset, bytes); 2417 if (ret < 0) { 2418 return ret; 2419 } else if (bs->read_only) { 2420 return -EPERM; 2421 } 2422 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2423 2424 /* Do nothing if disabled. */ 2425 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2426 return 0; 2427 } 2428 2429 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2430 return 0; 2431 } 2432 2433 /* Discard is advisory, but some devices track and coalesce 2434 * unaligned requests, so we must pass everything down rather than 2435 * round here. Still, most devices will just silently ignore 2436 * unaligned requests (by returning -ENOTSUP), so we must fragment 2437 * the request accordingly. */ 2438 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2439 assert(align % bs->bl.request_alignment == 0); 2440 head = offset % align; 2441 tail = (offset + bytes) % align; 2442 2443 bdrv_inc_in_flight(bs); 2444 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2445 2446 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req); 2447 if (ret < 0) { 2448 goto out; 2449 } 2450 2451 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2452 align); 2453 assert(max_pdiscard >= bs->bl.request_alignment); 2454 2455 while (bytes > 0) { 2456 int num = bytes; 2457 2458 if (head) { 2459 /* Make small requests to get to alignment boundaries. */ 2460 num = MIN(bytes, align - head); 2461 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2462 num %= bs->bl.request_alignment; 2463 } 2464 head = (head + num) % align; 2465 assert(num < max_pdiscard); 2466 } else if (tail) { 2467 if (num > align) { 2468 /* Shorten the request to the last aligned cluster. */ 2469 num -= tail; 2470 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2471 tail > bs->bl.request_alignment) { 2472 tail %= bs->bl.request_alignment; 2473 num -= tail; 2474 } 2475 } 2476 /* limit request size */ 2477 if (num > max_pdiscard) { 2478 num = max_pdiscard; 2479 } 2480 2481 if (bs->drv->bdrv_co_pdiscard) { 2482 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2483 } else { 2484 BlockAIOCB *acb; 2485 CoroutineIOCompletion co = { 2486 .coroutine = qemu_coroutine_self(), 2487 }; 2488 2489 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2490 bdrv_co_io_em_complete, &co); 2491 if (acb == NULL) { 2492 ret = -EIO; 2493 goto out; 2494 } else { 2495 qemu_coroutine_yield(); 2496 ret = co.ret; 2497 } 2498 } 2499 if (ret && ret != -ENOTSUP) { 2500 goto out; 2501 } 2502 2503 offset += num; 2504 bytes -= num; 2505 } 2506 ret = 0; 2507 out: 2508 atomic_inc(&bs->write_gen); 2509 bdrv_set_dirty(bs, req.offset, req.bytes); 2510 tracked_request_end(&req); 2511 bdrv_dec_in_flight(bs); 2512 return ret; 2513 } 2514 2515 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes) 2516 { 2517 Coroutine *co; 2518 DiscardCo rwco = { 2519 .bs = bs, 2520 .offset = offset, 2521 .bytes = bytes, 2522 .ret = NOT_DONE, 2523 }; 2524 2525 if (qemu_in_coroutine()) { 2526 /* Fast-path if already in coroutine context */ 2527 bdrv_pdiscard_co_entry(&rwco); 2528 } else { 2529 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2530 bdrv_coroutine_enter(bs, co); 2531 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE); 2532 } 2533 2534 return rwco.ret; 2535 } 2536 2537 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2538 { 2539 BlockDriver *drv = bs->drv; 2540 CoroutineIOCompletion co = { 2541 .coroutine = qemu_coroutine_self(), 2542 }; 2543 BlockAIOCB *acb; 2544 2545 bdrv_inc_in_flight(bs); 2546 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2547 co.ret = -ENOTSUP; 2548 goto out; 2549 } 2550 2551 if (drv->bdrv_co_ioctl) { 2552 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2553 } else { 2554 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2555 if (!acb) { 2556 co.ret = -ENOTSUP; 2557 goto out; 2558 } 2559 qemu_coroutine_yield(); 2560 } 2561 out: 2562 bdrv_dec_in_flight(bs); 2563 return co.ret; 2564 } 2565 2566 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2567 { 2568 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2569 } 2570 2571 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2572 { 2573 return memset(qemu_blockalign(bs, size), 0, size); 2574 } 2575 2576 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2577 { 2578 size_t align = bdrv_opt_mem_align(bs); 2579 2580 /* Ensure that NULL is never returned on success */ 2581 assert(align > 0); 2582 if (size == 0) { 2583 size = align; 2584 } 2585 2586 return qemu_try_memalign(align, size); 2587 } 2588 2589 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2590 { 2591 void *mem = qemu_try_blockalign(bs, size); 2592 2593 if (mem) { 2594 memset(mem, 0, size); 2595 } 2596 2597 return mem; 2598 } 2599 2600 /* 2601 * Check if all memory in this vector is sector aligned. 2602 */ 2603 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2604 { 2605 int i; 2606 size_t alignment = bdrv_min_mem_align(bs); 2607 2608 for (i = 0; i < qiov->niov; i++) { 2609 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2610 return false; 2611 } 2612 if (qiov->iov[i].iov_len % alignment) { 2613 return false; 2614 } 2615 } 2616 2617 return true; 2618 } 2619 2620 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2621 NotifierWithReturn *notifier) 2622 { 2623 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2624 } 2625 2626 void bdrv_io_plug(BlockDriverState *bs) 2627 { 2628 BdrvChild *child; 2629 2630 QLIST_FOREACH(child, &bs->children, next) { 2631 bdrv_io_plug(child->bs); 2632 } 2633 2634 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 2635 BlockDriver *drv = bs->drv; 2636 if (drv && drv->bdrv_io_plug) { 2637 drv->bdrv_io_plug(bs); 2638 } 2639 } 2640 } 2641 2642 void bdrv_io_unplug(BlockDriverState *bs) 2643 { 2644 BdrvChild *child; 2645 2646 assert(bs->io_plugged); 2647 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 2648 BlockDriver *drv = bs->drv; 2649 if (drv && drv->bdrv_io_unplug) { 2650 drv->bdrv_io_unplug(bs); 2651 } 2652 } 2653 2654 QLIST_FOREACH(child, &bs->children, next) { 2655 bdrv_io_unplug(child->bs); 2656 } 2657 } 2658