xref: /openbmc/qemu/block/io.c (revision bf783261)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/write-threshold.h"
34 #include "qemu/cutils.h"
35 #include "qapi/error.h"
36 #include "qemu/error-report.h"
37 #include "qemu/main-loop.h"
38 #include "sysemu/replay.h"
39 
40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
42 
43 static void bdrv_parent_cb_resize(BlockDriverState *bs);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45     int64_t offset, int64_t bytes, BdrvRequestFlags flags);
46 
47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
48                                       bool ignore_bds_parents)
49 {
50     BdrvChild *c, *next;
51 
52     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
54             continue;
55         }
56         bdrv_parent_drained_begin_single(c, false);
57     }
58 }
59 
60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
61                                                    int *drained_end_counter)
62 {
63     assert(c->parent_quiesce_counter > 0);
64     c->parent_quiesce_counter--;
65     if (c->klass->drained_end) {
66         c->klass->drained_end(c, drained_end_counter);
67     }
68 }
69 
70 void bdrv_parent_drained_end_single(BdrvChild *c)
71 {
72     int drained_end_counter = 0;
73     bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
74     BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
75 }
76 
77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
78                                     bool ignore_bds_parents,
79                                     int *drained_end_counter)
80 {
81     BdrvChild *c;
82 
83     QLIST_FOREACH(c, &bs->parents, next_parent) {
84         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
85             continue;
86         }
87         bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
88     }
89 }
90 
91 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
92 {
93     if (c->klass->drained_poll) {
94         return c->klass->drained_poll(c);
95     }
96     return false;
97 }
98 
99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
100                                      bool ignore_bds_parents)
101 {
102     BdrvChild *c, *next;
103     bool busy = false;
104 
105     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
106         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
107             continue;
108         }
109         busy |= bdrv_parent_drained_poll_single(c);
110     }
111 
112     return busy;
113 }
114 
115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
116 {
117     c->parent_quiesce_counter++;
118     if (c->klass->drained_begin) {
119         c->klass->drained_begin(c);
120     }
121     if (poll) {
122         BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
123     }
124 }
125 
126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
127 {
128     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
129     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
130     dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
131                                         src->max_hw_transfer);
132     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
133                                  src->opt_mem_alignment);
134     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
135                                  src->min_mem_alignment);
136     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
137 }
138 
139 typedef struct BdrvRefreshLimitsState {
140     BlockDriverState *bs;
141     BlockLimits old_bl;
142 } BdrvRefreshLimitsState;
143 
144 static void bdrv_refresh_limits_abort(void *opaque)
145 {
146     BdrvRefreshLimitsState *s = opaque;
147 
148     s->bs->bl = s->old_bl;
149 }
150 
151 static TransactionActionDrv bdrv_refresh_limits_drv = {
152     .abort = bdrv_refresh_limits_abort,
153     .clean = g_free,
154 };
155 
156 /* @tran is allowed to be NULL, in this case no rollback is possible. */
157 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
158 {
159     ERRP_GUARD();
160     BlockDriver *drv = bs->drv;
161     BdrvChild *c;
162     bool have_limits;
163 
164     if (tran) {
165         BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
166         *s = (BdrvRefreshLimitsState) {
167             .bs = bs,
168             .old_bl = bs->bl,
169         };
170         tran_add(tran, &bdrv_refresh_limits_drv, s);
171     }
172 
173     memset(&bs->bl, 0, sizeof(bs->bl));
174 
175     if (!drv) {
176         return;
177     }
178 
179     /* Default alignment based on whether driver has byte interface */
180     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
181                                 drv->bdrv_aio_preadv ||
182                                 drv->bdrv_co_preadv_part) ? 1 : 512;
183 
184     /* Take some limits from the children as a default */
185     have_limits = false;
186     QLIST_FOREACH(c, &bs->children, next) {
187         if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
188         {
189             bdrv_refresh_limits(c->bs, tran, errp);
190             if (*errp) {
191                 return;
192             }
193             bdrv_merge_limits(&bs->bl, &c->bs->bl);
194             have_limits = true;
195         }
196     }
197 
198     if (!have_limits) {
199         bs->bl.min_mem_alignment = 512;
200         bs->bl.opt_mem_alignment = qemu_real_host_page_size;
201 
202         /* Safe default since most protocols use readv()/writev()/etc */
203         bs->bl.max_iov = IOV_MAX;
204     }
205 
206     /* Then let the driver override it */
207     if (drv->bdrv_refresh_limits) {
208         drv->bdrv_refresh_limits(bs, errp);
209         if (*errp) {
210             return;
211         }
212     }
213 
214     if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
215         error_setg(errp, "Driver requires too large request alignment");
216     }
217 }
218 
219 /**
220  * The copy-on-read flag is actually a reference count so multiple users may
221  * use the feature without worrying about clobbering its previous state.
222  * Copy-on-read stays enabled until all users have called to disable it.
223  */
224 void bdrv_enable_copy_on_read(BlockDriverState *bs)
225 {
226     qatomic_inc(&bs->copy_on_read);
227 }
228 
229 void bdrv_disable_copy_on_read(BlockDriverState *bs)
230 {
231     int old = qatomic_fetch_dec(&bs->copy_on_read);
232     assert(old >= 1);
233 }
234 
235 typedef struct {
236     Coroutine *co;
237     BlockDriverState *bs;
238     bool done;
239     bool begin;
240     bool recursive;
241     bool poll;
242     BdrvChild *parent;
243     bool ignore_bds_parents;
244     int *drained_end_counter;
245 } BdrvCoDrainData;
246 
247 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
248 {
249     BdrvCoDrainData *data = opaque;
250     BlockDriverState *bs = data->bs;
251 
252     if (data->begin) {
253         bs->drv->bdrv_co_drain_begin(bs);
254     } else {
255         bs->drv->bdrv_co_drain_end(bs);
256     }
257 
258     /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
259     qatomic_mb_set(&data->done, true);
260     if (!data->begin) {
261         qatomic_dec(data->drained_end_counter);
262     }
263     bdrv_dec_in_flight(bs);
264 
265     g_free(data);
266 }
267 
268 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
269 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
270                               int *drained_end_counter)
271 {
272     BdrvCoDrainData *data;
273 
274     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
275             (!begin && !bs->drv->bdrv_co_drain_end)) {
276         return;
277     }
278 
279     data = g_new(BdrvCoDrainData, 1);
280     *data = (BdrvCoDrainData) {
281         .bs = bs,
282         .done = false,
283         .begin = begin,
284         .drained_end_counter = drained_end_counter,
285     };
286 
287     if (!begin) {
288         qatomic_inc(drained_end_counter);
289     }
290 
291     /* Make sure the driver callback completes during the polling phase for
292      * drain_begin. */
293     bdrv_inc_in_flight(bs);
294     data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
295     aio_co_schedule(bdrv_get_aio_context(bs), data->co);
296 }
297 
298 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
299 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
300                      BdrvChild *ignore_parent, bool ignore_bds_parents)
301 {
302     BdrvChild *child, *next;
303 
304     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
305         return true;
306     }
307 
308     if (qatomic_read(&bs->in_flight)) {
309         return true;
310     }
311 
312     if (recursive) {
313         assert(!ignore_bds_parents);
314         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
315             if (bdrv_drain_poll(child->bs, recursive, child, false)) {
316                 return true;
317             }
318         }
319     }
320 
321     return false;
322 }
323 
324 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
325                                       BdrvChild *ignore_parent)
326 {
327     return bdrv_drain_poll(bs, recursive, ignore_parent, false);
328 }
329 
330 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
331                                   BdrvChild *parent, bool ignore_bds_parents,
332                                   bool poll);
333 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
334                                 BdrvChild *parent, bool ignore_bds_parents,
335                                 int *drained_end_counter);
336 
337 static void bdrv_co_drain_bh_cb(void *opaque)
338 {
339     BdrvCoDrainData *data = opaque;
340     Coroutine *co = data->co;
341     BlockDriverState *bs = data->bs;
342 
343     if (bs) {
344         AioContext *ctx = bdrv_get_aio_context(bs);
345         aio_context_acquire(ctx);
346         bdrv_dec_in_flight(bs);
347         if (data->begin) {
348             assert(!data->drained_end_counter);
349             bdrv_do_drained_begin(bs, data->recursive, data->parent,
350                                   data->ignore_bds_parents, data->poll);
351         } else {
352             assert(!data->poll);
353             bdrv_do_drained_end(bs, data->recursive, data->parent,
354                                 data->ignore_bds_parents,
355                                 data->drained_end_counter);
356         }
357         aio_context_release(ctx);
358     } else {
359         assert(data->begin);
360         bdrv_drain_all_begin();
361     }
362 
363     data->done = true;
364     aio_co_wake(co);
365 }
366 
367 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
368                                                 bool begin, bool recursive,
369                                                 BdrvChild *parent,
370                                                 bool ignore_bds_parents,
371                                                 bool poll,
372                                                 int *drained_end_counter)
373 {
374     BdrvCoDrainData data;
375     Coroutine *self = qemu_coroutine_self();
376     AioContext *ctx = bdrv_get_aio_context(bs);
377     AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
378 
379     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
380      * other coroutines run if they were queued by aio_co_enter(). */
381 
382     assert(qemu_in_coroutine());
383     data = (BdrvCoDrainData) {
384         .co = self,
385         .bs = bs,
386         .done = false,
387         .begin = begin,
388         .recursive = recursive,
389         .parent = parent,
390         .ignore_bds_parents = ignore_bds_parents,
391         .poll = poll,
392         .drained_end_counter = drained_end_counter,
393     };
394 
395     if (bs) {
396         bdrv_inc_in_flight(bs);
397     }
398 
399     /*
400      * Temporarily drop the lock across yield or we would get deadlocks.
401      * bdrv_co_drain_bh_cb() reaquires the lock as needed.
402      *
403      * When we yield below, the lock for the current context will be
404      * released, so if this is actually the lock that protects bs, don't drop
405      * it a second time.
406      */
407     if (ctx != co_ctx) {
408         aio_context_release(ctx);
409     }
410     replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
411 
412     qemu_coroutine_yield();
413     /* If we are resumed from some other event (such as an aio completion or a
414      * timer callback), it is a bug in the caller that should be fixed. */
415     assert(data.done);
416 
417     /* Reaquire the AioContext of bs if we dropped it */
418     if (ctx != co_ctx) {
419         aio_context_acquire(ctx);
420     }
421 }
422 
423 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
424                                    BdrvChild *parent, bool ignore_bds_parents)
425 {
426     assert(!qemu_in_coroutine());
427 
428     /* Stop things in parent-to-child order */
429     if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
430         aio_disable_external(bdrv_get_aio_context(bs));
431     }
432 
433     bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
434     bdrv_drain_invoke(bs, true, NULL);
435 }
436 
437 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
438                                   BdrvChild *parent, bool ignore_bds_parents,
439                                   bool poll)
440 {
441     BdrvChild *child, *next;
442 
443     if (qemu_in_coroutine()) {
444         bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
445                                poll, NULL);
446         return;
447     }
448 
449     bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
450 
451     if (recursive) {
452         assert(!ignore_bds_parents);
453         bs->recursive_quiesce_counter++;
454         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
455             bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
456                                   false);
457         }
458     }
459 
460     /*
461      * Wait for drained requests to finish.
462      *
463      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
464      * call is needed so things in this AioContext can make progress even
465      * though we don't return to the main AioContext loop - this automatically
466      * includes other nodes in the same AioContext and therefore all child
467      * nodes.
468      */
469     if (poll) {
470         assert(!ignore_bds_parents);
471         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
472     }
473 }
474 
475 void bdrv_drained_begin(BlockDriverState *bs)
476 {
477     bdrv_do_drained_begin(bs, false, NULL, false, true);
478 }
479 
480 void bdrv_subtree_drained_begin(BlockDriverState *bs)
481 {
482     bdrv_do_drained_begin(bs, true, NULL, false, true);
483 }
484 
485 /**
486  * This function does not poll, nor must any of its recursively called
487  * functions.  The *drained_end_counter pointee will be incremented
488  * once for every background operation scheduled, and decremented once
489  * the operation settles.  Therefore, the pointer must remain valid
490  * until the pointee reaches 0.  That implies that whoever sets up the
491  * pointee has to poll until it is 0.
492  *
493  * We use atomic operations to access *drained_end_counter, because
494  * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
495  *     @bs may contain nodes in different AioContexts,
496  * (2) bdrv_drain_all_end() uses the same counter for all nodes,
497  *     regardless of which AioContext they are in.
498  */
499 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
500                                 BdrvChild *parent, bool ignore_bds_parents,
501                                 int *drained_end_counter)
502 {
503     BdrvChild *child;
504     int old_quiesce_counter;
505 
506     assert(drained_end_counter != NULL);
507 
508     if (qemu_in_coroutine()) {
509         bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
510                                false, drained_end_counter);
511         return;
512     }
513     assert(bs->quiesce_counter > 0);
514 
515     /* Re-enable things in child-to-parent order */
516     bdrv_drain_invoke(bs, false, drained_end_counter);
517     bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
518                             drained_end_counter);
519 
520     old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
521     if (old_quiesce_counter == 1) {
522         aio_enable_external(bdrv_get_aio_context(bs));
523     }
524 
525     if (recursive) {
526         assert(!ignore_bds_parents);
527         bs->recursive_quiesce_counter--;
528         QLIST_FOREACH(child, &bs->children, next) {
529             bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
530                                 drained_end_counter);
531         }
532     }
533 }
534 
535 void bdrv_drained_end(BlockDriverState *bs)
536 {
537     int drained_end_counter = 0;
538     bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
539     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
540 }
541 
542 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
543 {
544     bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
545 }
546 
547 void bdrv_subtree_drained_end(BlockDriverState *bs)
548 {
549     int drained_end_counter = 0;
550     bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
551     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
552 }
553 
554 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
555 {
556     int i;
557 
558     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
559         bdrv_do_drained_begin(child->bs, true, child, false, true);
560     }
561 }
562 
563 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
564 {
565     int drained_end_counter = 0;
566     int i;
567 
568     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
569         bdrv_do_drained_end(child->bs, true, child, false,
570                             &drained_end_counter);
571     }
572 
573     BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
574 }
575 
576 /*
577  * Wait for pending requests to complete on a single BlockDriverState subtree,
578  * and suspend block driver's internal I/O until next request arrives.
579  *
580  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
581  * AioContext.
582  */
583 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
584 {
585     assert(qemu_in_coroutine());
586     bdrv_drained_begin(bs);
587     bdrv_drained_end(bs);
588 }
589 
590 void bdrv_drain(BlockDriverState *bs)
591 {
592     bdrv_drained_begin(bs);
593     bdrv_drained_end(bs);
594 }
595 
596 static void bdrv_drain_assert_idle(BlockDriverState *bs)
597 {
598     BdrvChild *child, *next;
599 
600     assert(qatomic_read(&bs->in_flight) == 0);
601     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
602         bdrv_drain_assert_idle(child->bs);
603     }
604 }
605 
606 unsigned int bdrv_drain_all_count = 0;
607 
608 static bool bdrv_drain_all_poll(void)
609 {
610     BlockDriverState *bs = NULL;
611     bool result = false;
612 
613     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
614      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
615     while ((bs = bdrv_next_all_states(bs))) {
616         AioContext *aio_context = bdrv_get_aio_context(bs);
617         aio_context_acquire(aio_context);
618         result |= bdrv_drain_poll(bs, false, NULL, true);
619         aio_context_release(aio_context);
620     }
621 
622     return result;
623 }
624 
625 /*
626  * Wait for pending requests to complete across all BlockDriverStates
627  *
628  * This function does not flush data to disk, use bdrv_flush_all() for that
629  * after calling this function.
630  *
631  * This pauses all block jobs and disables external clients. It must
632  * be paired with bdrv_drain_all_end().
633  *
634  * NOTE: no new block jobs or BlockDriverStates can be created between
635  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
636  */
637 void bdrv_drain_all_begin(void)
638 {
639     BlockDriverState *bs = NULL;
640 
641     if (qemu_in_coroutine()) {
642         bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
643         return;
644     }
645 
646     /*
647      * bdrv queue is managed by record/replay,
648      * waiting for finishing the I/O requests may
649      * be infinite
650      */
651     if (replay_events_enabled()) {
652         return;
653     }
654 
655     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
656      * loop AioContext, so make sure we're in the main context. */
657     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
658     assert(bdrv_drain_all_count < INT_MAX);
659     bdrv_drain_all_count++;
660 
661     /* Quiesce all nodes, without polling in-flight requests yet. The graph
662      * cannot change during this loop. */
663     while ((bs = bdrv_next_all_states(bs))) {
664         AioContext *aio_context = bdrv_get_aio_context(bs);
665 
666         aio_context_acquire(aio_context);
667         bdrv_do_drained_begin(bs, false, NULL, true, false);
668         aio_context_release(aio_context);
669     }
670 
671     /* Now poll the in-flight requests */
672     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
673 
674     while ((bs = bdrv_next_all_states(bs))) {
675         bdrv_drain_assert_idle(bs);
676     }
677 }
678 
679 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
680 {
681     int drained_end_counter = 0;
682 
683     g_assert(bs->quiesce_counter > 0);
684     g_assert(!bs->refcnt);
685 
686     while (bs->quiesce_counter) {
687         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
688     }
689     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
690 }
691 
692 void bdrv_drain_all_end(void)
693 {
694     BlockDriverState *bs = NULL;
695     int drained_end_counter = 0;
696 
697     /*
698      * bdrv queue is managed by record/replay,
699      * waiting for finishing the I/O requests may
700      * be endless
701      */
702     if (replay_events_enabled()) {
703         return;
704     }
705 
706     while ((bs = bdrv_next_all_states(bs))) {
707         AioContext *aio_context = bdrv_get_aio_context(bs);
708 
709         aio_context_acquire(aio_context);
710         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
711         aio_context_release(aio_context);
712     }
713 
714     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
715     AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
716 
717     assert(bdrv_drain_all_count > 0);
718     bdrv_drain_all_count--;
719 }
720 
721 void bdrv_drain_all(void)
722 {
723     bdrv_drain_all_begin();
724     bdrv_drain_all_end();
725 }
726 
727 /**
728  * Remove an active request from the tracked requests list
729  *
730  * This function should be called when a tracked request is completing.
731  */
732 static void tracked_request_end(BdrvTrackedRequest *req)
733 {
734     if (req->serialising) {
735         qatomic_dec(&req->bs->serialising_in_flight);
736     }
737 
738     qemu_co_mutex_lock(&req->bs->reqs_lock);
739     QLIST_REMOVE(req, list);
740     qemu_co_queue_restart_all(&req->wait_queue);
741     qemu_co_mutex_unlock(&req->bs->reqs_lock);
742 }
743 
744 /**
745  * Add an active request to the tracked requests list
746  */
747 static void tracked_request_begin(BdrvTrackedRequest *req,
748                                   BlockDriverState *bs,
749                                   int64_t offset,
750                                   int64_t bytes,
751                                   enum BdrvTrackedRequestType type)
752 {
753     bdrv_check_request(offset, bytes, &error_abort);
754 
755     *req = (BdrvTrackedRequest){
756         .bs = bs,
757         .offset         = offset,
758         .bytes          = bytes,
759         .type           = type,
760         .co             = qemu_coroutine_self(),
761         .serialising    = false,
762         .overlap_offset = offset,
763         .overlap_bytes  = bytes,
764     };
765 
766     qemu_co_queue_init(&req->wait_queue);
767 
768     qemu_co_mutex_lock(&bs->reqs_lock);
769     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
770     qemu_co_mutex_unlock(&bs->reqs_lock);
771 }
772 
773 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
774                                      int64_t offset, int64_t bytes)
775 {
776     bdrv_check_request(offset, bytes, &error_abort);
777 
778     /*        aaaa   bbbb */
779     if (offset >= req->overlap_offset + req->overlap_bytes) {
780         return false;
781     }
782     /* bbbb   aaaa        */
783     if (req->overlap_offset >= offset + bytes) {
784         return false;
785     }
786     return true;
787 }
788 
789 /* Called with self->bs->reqs_lock held */
790 static BdrvTrackedRequest *
791 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
792 {
793     BdrvTrackedRequest *req;
794 
795     QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
796         if (req == self || (!req->serialising && !self->serialising)) {
797             continue;
798         }
799         if (tracked_request_overlaps(req, self->overlap_offset,
800                                      self->overlap_bytes))
801         {
802             /*
803              * Hitting this means there was a reentrant request, for
804              * example, a block driver issuing nested requests.  This must
805              * never happen since it means deadlock.
806              */
807             assert(qemu_coroutine_self() != req->co);
808 
809             /*
810              * If the request is already (indirectly) waiting for us, or
811              * will wait for us as soon as it wakes up, then just go on
812              * (instead of producing a deadlock in the former case).
813              */
814             if (!req->waiting_for) {
815                 return req;
816             }
817         }
818     }
819 
820     return NULL;
821 }
822 
823 /* Called with self->bs->reqs_lock held */
824 static bool coroutine_fn
825 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
826 {
827     BdrvTrackedRequest *req;
828     bool waited = false;
829 
830     while ((req = bdrv_find_conflicting_request(self))) {
831         self->waiting_for = req;
832         qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
833         self->waiting_for = NULL;
834         waited = true;
835     }
836 
837     return waited;
838 }
839 
840 /* Called with req->bs->reqs_lock held */
841 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
842                                             uint64_t align)
843 {
844     int64_t overlap_offset = req->offset & ~(align - 1);
845     int64_t overlap_bytes =
846         ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
847 
848     bdrv_check_request(req->offset, req->bytes, &error_abort);
849 
850     if (!req->serialising) {
851         qatomic_inc(&req->bs->serialising_in_flight);
852         req->serialising = true;
853     }
854 
855     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
856     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
857 }
858 
859 /**
860  * Return the tracked request on @bs for the current coroutine, or
861  * NULL if there is none.
862  */
863 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
864 {
865     BdrvTrackedRequest *req;
866     Coroutine *self = qemu_coroutine_self();
867 
868     QLIST_FOREACH(req, &bs->tracked_requests, list) {
869         if (req->co == self) {
870             return req;
871         }
872     }
873 
874     return NULL;
875 }
876 
877 /**
878  * Round a region to cluster boundaries
879  */
880 void bdrv_round_to_clusters(BlockDriverState *bs,
881                             int64_t offset, int64_t bytes,
882                             int64_t *cluster_offset,
883                             int64_t *cluster_bytes)
884 {
885     BlockDriverInfo bdi;
886 
887     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
888         *cluster_offset = offset;
889         *cluster_bytes = bytes;
890     } else {
891         int64_t c = bdi.cluster_size;
892         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
893         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
894     }
895 }
896 
897 static int bdrv_get_cluster_size(BlockDriverState *bs)
898 {
899     BlockDriverInfo bdi;
900     int ret;
901 
902     ret = bdrv_get_info(bs, &bdi);
903     if (ret < 0 || bdi.cluster_size == 0) {
904         return bs->bl.request_alignment;
905     } else {
906         return bdi.cluster_size;
907     }
908 }
909 
910 void bdrv_inc_in_flight(BlockDriverState *bs)
911 {
912     qatomic_inc(&bs->in_flight);
913 }
914 
915 void bdrv_wakeup(BlockDriverState *bs)
916 {
917     aio_wait_kick();
918 }
919 
920 void bdrv_dec_in_flight(BlockDriverState *bs)
921 {
922     qatomic_dec(&bs->in_flight);
923     bdrv_wakeup(bs);
924 }
925 
926 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
927 {
928     BlockDriverState *bs = self->bs;
929     bool waited = false;
930 
931     if (!qatomic_read(&bs->serialising_in_flight)) {
932         return false;
933     }
934 
935     qemu_co_mutex_lock(&bs->reqs_lock);
936     waited = bdrv_wait_serialising_requests_locked(self);
937     qemu_co_mutex_unlock(&bs->reqs_lock);
938 
939     return waited;
940 }
941 
942 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
943                                                 uint64_t align)
944 {
945     bool waited;
946 
947     qemu_co_mutex_lock(&req->bs->reqs_lock);
948 
949     tracked_request_set_serialising(req, align);
950     waited = bdrv_wait_serialising_requests_locked(req);
951 
952     qemu_co_mutex_unlock(&req->bs->reqs_lock);
953 
954     return waited;
955 }
956 
957 static int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
958                                    QEMUIOVector *qiov, size_t qiov_offset,
959                                    Error **errp)
960 {
961     /*
962      * Check generic offset/bytes correctness
963      */
964 
965     if (offset < 0) {
966         error_setg(errp, "offset is negative: %" PRIi64, offset);
967         return -EIO;
968     }
969 
970     if (bytes < 0) {
971         error_setg(errp, "bytes is negative: %" PRIi64, bytes);
972         return -EIO;
973     }
974 
975     if (bytes > BDRV_MAX_LENGTH) {
976         error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
977                    bytes, BDRV_MAX_LENGTH);
978         return -EIO;
979     }
980 
981     if (offset > BDRV_MAX_LENGTH) {
982         error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
983                    offset, BDRV_MAX_LENGTH);
984         return -EIO;
985     }
986 
987     if (offset > BDRV_MAX_LENGTH - bytes) {
988         error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
989                    "exceeds maximum(%" PRIi64 ")", offset, bytes,
990                    BDRV_MAX_LENGTH);
991         return -EIO;
992     }
993 
994     if (!qiov) {
995         return 0;
996     }
997 
998     /*
999      * Check qiov and qiov_offset
1000      */
1001 
1002     if (qiov_offset > qiov->size) {
1003         error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
1004                    qiov_offset, qiov->size);
1005         return -EIO;
1006     }
1007 
1008     if (bytes > qiov->size - qiov_offset) {
1009         error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
1010                    "vector size(%zu)", bytes, qiov_offset, qiov->size);
1011         return -EIO;
1012     }
1013 
1014     return 0;
1015 }
1016 
1017 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
1018 {
1019     return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
1020 }
1021 
1022 static int bdrv_check_request32(int64_t offset, int64_t bytes,
1023                                 QEMUIOVector *qiov, size_t qiov_offset)
1024 {
1025     int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
1026     if (ret < 0) {
1027         return ret;
1028     }
1029 
1030     if (bytes > BDRV_REQUEST_MAX_BYTES) {
1031         return -EIO;
1032     }
1033 
1034     return 0;
1035 }
1036 
1037 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
1038                        int64_t bytes, BdrvRequestFlags flags)
1039 {
1040     return bdrv_pwritev(child, offset, bytes, NULL,
1041                         BDRV_REQ_ZERO_WRITE | flags);
1042 }
1043 
1044 /*
1045  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
1046  * The operation is sped up by checking the block status and only writing
1047  * zeroes to the device if they currently do not return zeroes. Optional
1048  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
1049  * BDRV_REQ_FUA).
1050  *
1051  * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
1052  */
1053 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
1054 {
1055     int ret;
1056     int64_t target_size, bytes, offset = 0;
1057     BlockDriverState *bs = child->bs;
1058 
1059     target_size = bdrv_getlength(bs);
1060     if (target_size < 0) {
1061         return target_size;
1062     }
1063 
1064     for (;;) {
1065         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1066         if (bytes <= 0) {
1067             return 0;
1068         }
1069         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1070         if (ret < 0) {
1071             return ret;
1072         }
1073         if (ret & BDRV_BLOCK_ZERO) {
1074             offset += bytes;
1075             continue;
1076         }
1077         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1078         if (ret < 0) {
1079             return ret;
1080         }
1081         offset += bytes;
1082     }
1083 }
1084 
1085 /* See bdrv_pwrite() for the return codes */
1086 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes)
1087 {
1088     int ret;
1089     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1090 
1091     if (bytes < 0) {
1092         return -EINVAL;
1093     }
1094 
1095     ret = bdrv_preadv(child, offset, bytes, &qiov,  0);
1096 
1097     return ret < 0 ? ret : bytes;
1098 }
1099 
1100 /* Return no. of bytes on success or < 0 on error. Important errors are:
1101   -EIO         generic I/O error (may happen for all errors)
1102   -ENOMEDIUM   No media inserted.
1103   -EINVAL      Invalid offset or number of bytes
1104   -EACCES      Trying to write a read-only device
1105 */
1106 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf,
1107                 int64_t bytes)
1108 {
1109     int ret;
1110     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1111 
1112     if (bytes < 0) {
1113         return -EINVAL;
1114     }
1115 
1116     ret = bdrv_pwritev(child, offset, bytes, &qiov, 0);
1117 
1118     return ret < 0 ? ret : bytes;
1119 }
1120 
1121 /*
1122  * Writes to the file and ensures that no writes are reordered across this
1123  * request (acts as a barrier)
1124  *
1125  * Returns 0 on success, -errno in error cases.
1126  */
1127 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1128                      const void *buf, int64_t count)
1129 {
1130     int ret;
1131 
1132     ret = bdrv_pwrite(child, offset, buf, count);
1133     if (ret < 0) {
1134         return ret;
1135     }
1136 
1137     ret = bdrv_flush(child->bs);
1138     if (ret < 0) {
1139         return ret;
1140     }
1141 
1142     return 0;
1143 }
1144 
1145 typedef struct CoroutineIOCompletion {
1146     Coroutine *coroutine;
1147     int ret;
1148 } CoroutineIOCompletion;
1149 
1150 static void bdrv_co_io_em_complete(void *opaque, int ret)
1151 {
1152     CoroutineIOCompletion *co = opaque;
1153 
1154     co->ret = ret;
1155     aio_co_wake(co->coroutine);
1156 }
1157 
1158 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1159                                            int64_t offset, int64_t bytes,
1160                                            QEMUIOVector *qiov,
1161                                            size_t qiov_offset, int flags)
1162 {
1163     BlockDriver *drv = bs->drv;
1164     int64_t sector_num;
1165     unsigned int nb_sectors;
1166     QEMUIOVector local_qiov;
1167     int ret;
1168 
1169     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1170     assert(!(flags & ~BDRV_REQ_MASK));
1171     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1172 
1173     if (!drv) {
1174         return -ENOMEDIUM;
1175     }
1176 
1177     if (drv->bdrv_co_preadv_part) {
1178         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1179                                         flags);
1180     }
1181 
1182     if (qiov_offset > 0 || bytes != qiov->size) {
1183         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1184         qiov = &local_qiov;
1185     }
1186 
1187     if (drv->bdrv_co_preadv) {
1188         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1189         goto out;
1190     }
1191 
1192     if (drv->bdrv_aio_preadv) {
1193         BlockAIOCB *acb;
1194         CoroutineIOCompletion co = {
1195             .coroutine = qemu_coroutine_self(),
1196         };
1197 
1198         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1199                                    bdrv_co_io_em_complete, &co);
1200         if (acb == NULL) {
1201             ret = -EIO;
1202             goto out;
1203         } else {
1204             qemu_coroutine_yield();
1205             ret = co.ret;
1206             goto out;
1207         }
1208     }
1209 
1210     sector_num = offset >> BDRV_SECTOR_BITS;
1211     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1212 
1213     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1214     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1215     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1216     assert(drv->bdrv_co_readv);
1217 
1218     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1219 
1220 out:
1221     if (qiov == &local_qiov) {
1222         qemu_iovec_destroy(&local_qiov);
1223     }
1224 
1225     return ret;
1226 }
1227 
1228 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1229                                             int64_t offset, int64_t bytes,
1230                                             QEMUIOVector *qiov,
1231                                             size_t qiov_offset, int flags)
1232 {
1233     BlockDriver *drv = bs->drv;
1234     int64_t sector_num;
1235     unsigned int nb_sectors;
1236     QEMUIOVector local_qiov;
1237     int ret;
1238 
1239     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1240     assert(!(flags & ~BDRV_REQ_MASK));
1241     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1242 
1243     if (!drv) {
1244         return -ENOMEDIUM;
1245     }
1246 
1247     if (drv->bdrv_co_pwritev_part) {
1248         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1249                                         flags & bs->supported_write_flags);
1250         flags &= ~bs->supported_write_flags;
1251         goto emulate_flags;
1252     }
1253 
1254     if (qiov_offset > 0 || bytes != qiov->size) {
1255         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1256         qiov = &local_qiov;
1257     }
1258 
1259     if (drv->bdrv_co_pwritev) {
1260         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1261                                    flags & bs->supported_write_flags);
1262         flags &= ~bs->supported_write_flags;
1263         goto emulate_flags;
1264     }
1265 
1266     if (drv->bdrv_aio_pwritev) {
1267         BlockAIOCB *acb;
1268         CoroutineIOCompletion co = {
1269             .coroutine = qemu_coroutine_self(),
1270         };
1271 
1272         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1273                                     flags & bs->supported_write_flags,
1274                                     bdrv_co_io_em_complete, &co);
1275         flags &= ~bs->supported_write_flags;
1276         if (acb == NULL) {
1277             ret = -EIO;
1278         } else {
1279             qemu_coroutine_yield();
1280             ret = co.ret;
1281         }
1282         goto emulate_flags;
1283     }
1284 
1285     sector_num = offset >> BDRV_SECTOR_BITS;
1286     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1287 
1288     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1289     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1290     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1291 
1292     assert(drv->bdrv_co_writev);
1293     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1294                               flags & bs->supported_write_flags);
1295     flags &= ~bs->supported_write_flags;
1296 
1297 emulate_flags:
1298     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1299         ret = bdrv_co_flush(bs);
1300     }
1301 
1302     if (qiov == &local_qiov) {
1303         qemu_iovec_destroy(&local_qiov);
1304     }
1305 
1306     return ret;
1307 }
1308 
1309 static int coroutine_fn
1310 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1311                                int64_t bytes, QEMUIOVector *qiov,
1312                                size_t qiov_offset)
1313 {
1314     BlockDriver *drv = bs->drv;
1315     QEMUIOVector local_qiov;
1316     int ret;
1317 
1318     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1319 
1320     if (!drv) {
1321         return -ENOMEDIUM;
1322     }
1323 
1324     if (!block_driver_can_compress(drv)) {
1325         return -ENOTSUP;
1326     }
1327 
1328     if (drv->bdrv_co_pwritev_compressed_part) {
1329         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1330                                                     qiov, qiov_offset);
1331     }
1332 
1333     if (qiov_offset == 0) {
1334         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1335     }
1336 
1337     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1338     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1339     qemu_iovec_destroy(&local_qiov);
1340 
1341     return ret;
1342 }
1343 
1344 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1345         int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1346         size_t qiov_offset, int flags)
1347 {
1348     BlockDriverState *bs = child->bs;
1349 
1350     /* Perform I/O through a temporary buffer so that users who scribble over
1351      * their read buffer while the operation is in progress do not end up
1352      * modifying the image file.  This is critical for zero-copy guest I/O
1353      * where anything might happen inside guest memory.
1354      */
1355     void *bounce_buffer = NULL;
1356 
1357     BlockDriver *drv = bs->drv;
1358     int64_t cluster_offset;
1359     int64_t cluster_bytes;
1360     int64_t skip_bytes;
1361     int ret;
1362     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1363                                     BDRV_REQUEST_MAX_BYTES);
1364     int64_t progress = 0;
1365     bool skip_write;
1366 
1367     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1368 
1369     if (!drv) {
1370         return -ENOMEDIUM;
1371     }
1372 
1373     /*
1374      * Do not write anything when the BDS is inactive.  That is not
1375      * allowed, and it would not help.
1376      */
1377     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1378 
1379     /* FIXME We cannot require callers to have write permissions when all they
1380      * are doing is a read request. If we did things right, write permissions
1381      * would be obtained anyway, but internally by the copy-on-read code. As
1382      * long as it is implemented here rather than in a separate filter driver,
1383      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1384      * it could request permissions. Therefore we have to bypass the permission
1385      * system for the moment. */
1386     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1387 
1388     /* Cover entire cluster so no additional backing file I/O is required when
1389      * allocating cluster in the image file.  Note that this value may exceed
1390      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1391      * is one reason we loop rather than doing it all at once.
1392      */
1393     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1394     skip_bytes = offset - cluster_offset;
1395 
1396     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1397                                    cluster_offset, cluster_bytes);
1398 
1399     while (cluster_bytes) {
1400         int64_t pnum;
1401 
1402         if (skip_write) {
1403             ret = 1; /* "already allocated", so nothing will be copied */
1404             pnum = MIN(cluster_bytes, max_transfer);
1405         } else {
1406             ret = bdrv_is_allocated(bs, cluster_offset,
1407                                     MIN(cluster_bytes, max_transfer), &pnum);
1408             if (ret < 0) {
1409                 /*
1410                  * Safe to treat errors in querying allocation as if
1411                  * unallocated; we'll probably fail again soon on the
1412                  * read, but at least that will set a decent errno.
1413                  */
1414                 pnum = MIN(cluster_bytes, max_transfer);
1415             }
1416 
1417             /* Stop at EOF if the image ends in the middle of the cluster */
1418             if (ret == 0 && pnum == 0) {
1419                 assert(progress >= bytes);
1420                 break;
1421             }
1422 
1423             assert(skip_bytes < pnum);
1424         }
1425 
1426         if (ret <= 0) {
1427             QEMUIOVector local_qiov;
1428 
1429             /* Must copy-on-read; use the bounce buffer */
1430             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1431             if (!bounce_buffer) {
1432                 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1433                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1434                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1435 
1436                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1437                 if (!bounce_buffer) {
1438                     ret = -ENOMEM;
1439                     goto err;
1440                 }
1441             }
1442             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1443 
1444             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1445                                      &local_qiov, 0, 0);
1446             if (ret < 0) {
1447                 goto err;
1448             }
1449 
1450             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1451             if (drv->bdrv_co_pwrite_zeroes &&
1452                 buffer_is_zero(bounce_buffer, pnum)) {
1453                 /* FIXME: Should we (perhaps conditionally) be setting
1454                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1455                  * that still correctly reads as zero? */
1456                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1457                                                BDRV_REQ_WRITE_UNCHANGED);
1458             } else {
1459                 /* This does not change the data on the disk, it is not
1460                  * necessary to flush even in cache=writethrough mode.
1461                  */
1462                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1463                                           &local_qiov, 0,
1464                                           BDRV_REQ_WRITE_UNCHANGED);
1465             }
1466 
1467             if (ret < 0) {
1468                 /* It might be okay to ignore write errors for guest
1469                  * requests.  If this is a deliberate copy-on-read
1470                  * then we don't want to ignore the error.  Simply
1471                  * report it in all cases.
1472                  */
1473                 goto err;
1474             }
1475 
1476             if (!(flags & BDRV_REQ_PREFETCH)) {
1477                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1478                                     bounce_buffer + skip_bytes,
1479                                     MIN(pnum - skip_bytes, bytes - progress));
1480             }
1481         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1482             /* Read directly into the destination */
1483             ret = bdrv_driver_preadv(bs, offset + progress,
1484                                      MIN(pnum - skip_bytes, bytes - progress),
1485                                      qiov, qiov_offset + progress, 0);
1486             if (ret < 0) {
1487                 goto err;
1488             }
1489         }
1490 
1491         cluster_offset += pnum;
1492         cluster_bytes -= pnum;
1493         progress += pnum - skip_bytes;
1494         skip_bytes = 0;
1495     }
1496     ret = 0;
1497 
1498 err:
1499     qemu_vfree(bounce_buffer);
1500     return ret;
1501 }
1502 
1503 /*
1504  * Forwards an already correctly aligned request to the BlockDriver. This
1505  * handles copy on read, zeroing after EOF, and fragmentation of large
1506  * reads; any other features must be implemented by the caller.
1507  */
1508 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1509     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1510     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1511 {
1512     BlockDriverState *bs = child->bs;
1513     int64_t total_bytes, max_bytes;
1514     int ret = 0;
1515     int64_t bytes_remaining = bytes;
1516     int max_transfer;
1517 
1518     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1519     assert(is_power_of_2(align));
1520     assert((offset & (align - 1)) == 0);
1521     assert((bytes & (align - 1)) == 0);
1522     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1523     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1524                                    align);
1525 
1526     /* TODO: We would need a per-BDS .supported_read_flags and
1527      * potential fallback support, if we ever implement any read flags
1528      * to pass through to drivers.  For now, there aren't any
1529      * passthrough flags.  */
1530     assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1531 
1532     /* Handle Copy on Read and associated serialisation */
1533     if (flags & BDRV_REQ_COPY_ON_READ) {
1534         /* If we touch the same cluster it counts as an overlap.  This
1535          * guarantees that allocating writes will be serialized and not race
1536          * with each other for the same cluster.  For example, in copy-on-read
1537          * it ensures that the CoR read and write operations are atomic and
1538          * guest writes cannot interleave between them. */
1539         bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1540     } else {
1541         bdrv_wait_serialising_requests(req);
1542     }
1543 
1544     if (flags & BDRV_REQ_COPY_ON_READ) {
1545         int64_t pnum;
1546 
1547         /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1548         flags &= ~BDRV_REQ_COPY_ON_READ;
1549 
1550         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1551         if (ret < 0) {
1552             goto out;
1553         }
1554 
1555         if (!ret || pnum != bytes) {
1556             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1557                                            qiov, qiov_offset, flags);
1558             goto out;
1559         } else if (flags & BDRV_REQ_PREFETCH) {
1560             goto out;
1561         }
1562     }
1563 
1564     /* Forward the request to the BlockDriver, possibly fragmenting it */
1565     total_bytes = bdrv_getlength(bs);
1566     if (total_bytes < 0) {
1567         ret = total_bytes;
1568         goto out;
1569     }
1570 
1571     assert(!(flags & ~bs->supported_read_flags));
1572 
1573     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1574     if (bytes <= max_bytes && bytes <= max_transfer) {
1575         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1576         goto out;
1577     }
1578 
1579     while (bytes_remaining) {
1580         int64_t num;
1581 
1582         if (max_bytes) {
1583             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1584             assert(num);
1585 
1586             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1587                                      num, qiov,
1588                                      qiov_offset + bytes - bytes_remaining,
1589                                      flags);
1590             max_bytes -= num;
1591         } else {
1592             num = bytes_remaining;
1593             ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1594                                     0, bytes_remaining);
1595         }
1596         if (ret < 0) {
1597             goto out;
1598         }
1599         bytes_remaining -= num;
1600     }
1601 
1602 out:
1603     return ret < 0 ? ret : 0;
1604 }
1605 
1606 /*
1607  * Request padding
1608  *
1609  *  |<---- align ----->|                     |<----- align ---->|
1610  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1611  *  |          |       |                     |     |            |
1612  * -*----------$-------*-------- ... --------*-----$------------*---
1613  *  |          |       |                     |     |            |
1614  *  |          offset  |                     |     end          |
1615  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1616  *  [buf   ... )                             [tail_buf          )
1617  *
1618  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1619  * is placed at the beginning of @buf and @tail at the @end.
1620  *
1621  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1622  * around tail, if tail exists.
1623  *
1624  * @merge_reads is true for small requests,
1625  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1626  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1627  */
1628 typedef struct BdrvRequestPadding {
1629     uint8_t *buf;
1630     size_t buf_len;
1631     uint8_t *tail_buf;
1632     size_t head;
1633     size_t tail;
1634     bool merge_reads;
1635     QEMUIOVector local_qiov;
1636 } BdrvRequestPadding;
1637 
1638 static bool bdrv_init_padding(BlockDriverState *bs,
1639                               int64_t offset, int64_t bytes,
1640                               BdrvRequestPadding *pad)
1641 {
1642     int64_t align = bs->bl.request_alignment;
1643     int64_t sum;
1644 
1645     bdrv_check_request(offset, bytes, &error_abort);
1646     assert(align <= INT_MAX); /* documented in block/block_int.h */
1647     assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1648 
1649     memset(pad, 0, sizeof(*pad));
1650 
1651     pad->head = offset & (align - 1);
1652     pad->tail = ((offset + bytes) & (align - 1));
1653     if (pad->tail) {
1654         pad->tail = align - pad->tail;
1655     }
1656 
1657     if (!pad->head && !pad->tail) {
1658         return false;
1659     }
1660 
1661     assert(bytes); /* Nothing good in aligning zero-length requests */
1662 
1663     sum = pad->head + bytes + pad->tail;
1664     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1665     pad->buf = qemu_blockalign(bs, pad->buf_len);
1666     pad->merge_reads = sum == pad->buf_len;
1667     if (pad->tail) {
1668         pad->tail_buf = pad->buf + pad->buf_len - align;
1669     }
1670 
1671     return true;
1672 }
1673 
1674 static int bdrv_padding_rmw_read(BdrvChild *child,
1675                                  BdrvTrackedRequest *req,
1676                                  BdrvRequestPadding *pad,
1677                                  bool zero_middle)
1678 {
1679     QEMUIOVector local_qiov;
1680     BlockDriverState *bs = child->bs;
1681     uint64_t align = bs->bl.request_alignment;
1682     int ret;
1683 
1684     assert(req->serialising && pad->buf);
1685 
1686     if (pad->head || pad->merge_reads) {
1687         int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1688 
1689         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1690 
1691         if (pad->head) {
1692             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1693         }
1694         if (pad->merge_reads && pad->tail) {
1695             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1696         }
1697         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1698                                   align, &local_qiov, 0, 0);
1699         if (ret < 0) {
1700             return ret;
1701         }
1702         if (pad->head) {
1703             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1704         }
1705         if (pad->merge_reads && pad->tail) {
1706             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1707         }
1708 
1709         if (pad->merge_reads) {
1710             goto zero_mem;
1711         }
1712     }
1713 
1714     if (pad->tail) {
1715         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1716 
1717         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1718         ret = bdrv_aligned_preadv(
1719                 child, req,
1720                 req->overlap_offset + req->overlap_bytes - align,
1721                 align, align, &local_qiov, 0, 0);
1722         if (ret < 0) {
1723             return ret;
1724         }
1725         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1726     }
1727 
1728 zero_mem:
1729     if (zero_middle) {
1730         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1731     }
1732 
1733     return 0;
1734 }
1735 
1736 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1737 {
1738     if (pad->buf) {
1739         qemu_vfree(pad->buf);
1740         qemu_iovec_destroy(&pad->local_qiov);
1741     }
1742     memset(pad, 0, sizeof(*pad));
1743 }
1744 
1745 /*
1746  * bdrv_pad_request
1747  *
1748  * Exchange request parameters with padded request if needed. Don't include RMW
1749  * read of padding, bdrv_padding_rmw_read() should be called separately if
1750  * needed.
1751  *
1752  * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1753  *  - on function start they represent original request
1754  *  - on failure or when padding is not needed they are unchanged
1755  *  - on success when padding is needed they represent padded request
1756  */
1757 static int bdrv_pad_request(BlockDriverState *bs,
1758                             QEMUIOVector **qiov, size_t *qiov_offset,
1759                             int64_t *offset, int64_t *bytes,
1760                             BdrvRequestPadding *pad, bool *padded)
1761 {
1762     int ret;
1763 
1764     bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1765 
1766     if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1767         if (padded) {
1768             *padded = false;
1769         }
1770         return 0;
1771     }
1772 
1773     ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1774                                    *qiov, *qiov_offset, *bytes,
1775                                    pad->buf + pad->buf_len - pad->tail,
1776                                    pad->tail);
1777     if (ret < 0) {
1778         bdrv_padding_destroy(pad);
1779         return ret;
1780     }
1781     *bytes += pad->head + pad->tail;
1782     *offset -= pad->head;
1783     *qiov = &pad->local_qiov;
1784     *qiov_offset = 0;
1785     if (padded) {
1786         *padded = true;
1787     }
1788 
1789     return 0;
1790 }
1791 
1792 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1793     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1794     BdrvRequestFlags flags)
1795 {
1796     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1797 }
1798 
1799 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1800     int64_t offset, int64_t bytes,
1801     QEMUIOVector *qiov, size_t qiov_offset,
1802     BdrvRequestFlags flags)
1803 {
1804     BlockDriverState *bs = child->bs;
1805     BdrvTrackedRequest req;
1806     BdrvRequestPadding pad;
1807     int ret;
1808 
1809     trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1810 
1811     if (!bdrv_is_inserted(bs)) {
1812         return -ENOMEDIUM;
1813     }
1814 
1815     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1816     if (ret < 0) {
1817         return ret;
1818     }
1819 
1820     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1821         /*
1822          * Aligning zero request is nonsense. Even if driver has special meaning
1823          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1824          * it to driver due to request_alignment.
1825          *
1826          * Still, no reason to return an error if someone do unaligned
1827          * zero-length read occasionally.
1828          */
1829         return 0;
1830     }
1831 
1832     bdrv_inc_in_flight(bs);
1833 
1834     /* Don't do copy-on-read if we read data before write operation */
1835     if (qatomic_read(&bs->copy_on_read)) {
1836         flags |= BDRV_REQ_COPY_ON_READ;
1837     }
1838 
1839     ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1840                            NULL);
1841     if (ret < 0) {
1842         return ret;
1843     }
1844 
1845     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1846     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1847                               bs->bl.request_alignment,
1848                               qiov, qiov_offset, flags);
1849     tracked_request_end(&req);
1850     bdrv_dec_in_flight(bs);
1851 
1852     bdrv_padding_destroy(&pad);
1853 
1854     return ret;
1855 }
1856 
1857 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1858     int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1859 {
1860     BlockDriver *drv = bs->drv;
1861     QEMUIOVector qiov;
1862     void *buf = NULL;
1863     int ret = 0;
1864     bool need_flush = false;
1865     int head = 0;
1866     int tail = 0;
1867 
1868     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1869     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1870                         bs->bl.request_alignment);
1871     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1872 
1873     bdrv_check_request(offset, bytes, &error_abort);
1874 
1875     if (!drv) {
1876         return -ENOMEDIUM;
1877     }
1878 
1879     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1880         return -ENOTSUP;
1881     }
1882 
1883     assert(alignment % bs->bl.request_alignment == 0);
1884     head = offset % alignment;
1885     tail = (offset + bytes) % alignment;
1886     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1887     assert(max_write_zeroes >= bs->bl.request_alignment);
1888 
1889     while (bytes > 0 && !ret) {
1890         int64_t num = bytes;
1891 
1892         /* Align request.  Block drivers can expect the "bulk" of the request
1893          * to be aligned, and that unaligned requests do not cross cluster
1894          * boundaries.
1895          */
1896         if (head) {
1897             /* Make a small request up to the first aligned sector. For
1898              * convenience, limit this request to max_transfer even if
1899              * we don't need to fall back to writes.  */
1900             num = MIN(MIN(bytes, max_transfer), alignment - head);
1901             head = (head + num) % alignment;
1902             assert(num < max_write_zeroes);
1903         } else if (tail && num > alignment) {
1904             /* Shorten the request to the last aligned sector.  */
1905             num -= tail;
1906         }
1907 
1908         /* limit request size */
1909         if (num > max_write_zeroes) {
1910             num = max_write_zeroes;
1911         }
1912 
1913         ret = -ENOTSUP;
1914         /* First try the efficient write zeroes operation */
1915         if (drv->bdrv_co_pwrite_zeroes) {
1916             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1917                                              flags & bs->supported_zero_flags);
1918             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1919                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1920                 need_flush = true;
1921             }
1922         } else {
1923             assert(!bs->supported_zero_flags);
1924         }
1925 
1926         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1927             /* Fall back to bounce buffer if write zeroes is unsupported */
1928             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1929 
1930             if ((flags & BDRV_REQ_FUA) &&
1931                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1932                 /* No need for bdrv_driver_pwrite() to do a fallback
1933                  * flush on each chunk; use just one at the end */
1934                 write_flags &= ~BDRV_REQ_FUA;
1935                 need_flush = true;
1936             }
1937             num = MIN(num, max_transfer);
1938             if (buf == NULL) {
1939                 buf = qemu_try_blockalign0(bs, num);
1940                 if (buf == NULL) {
1941                     ret = -ENOMEM;
1942                     goto fail;
1943                 }
1944             }
1945             qemu_iovec_init_buf(&qiov, buf, num);
1946 
1947             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1948 
1949             /* Keep bounce buffer around if it is big enough for all
1950              * all future requests.
1951              */
1952             if (num < max_transfer) {
1953                 qemu_vfree(buf);
1954                 buf = NULL;
1955             }
1956         }
1957 
1958         offset += num;
1959         bytes -= num;
1960     }
1961 
1962 fail:
1963     if (ret == 0 && need_flush) {
1964         ret = bdrv_co_flush(bs);
1965     }
1966     qemu_vfree(buf);
1967     return ret;
1968 }
1969 
1970 static inline int coroutine_fn
1971 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1972                           BdrvTrackedRequest *req, int flags)
1973 {
1974     BlockDriverState *bs = child->bs;
1975 
1976     bdrv_check_request(offset, bytes, &error_abort);
1977 
1978     if (bdrv_is_read_only(bs)) {
1979         return -EPERM;
1980     }
1981 
1982     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1983     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1984     assert(!(flags & ~BDRV_REQ_MASK));
1985     assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1986 
1987     if (flags & BDRV_REQ_SERIALISING) {
1988         QEMU_LOCK_GUARD(&bs->reqs_lock);
1989 
1990         tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1991 
1992         if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1993             return -EBUSY;
1994         }
1995 
1996         bdrv_wait_serialising_requests_locked(req);
1997     } else {
1998         bdrv_wait_serialising_requests(req);
1999     }
2000 
2001     assert(req->overlap_offset <= offset);
2002     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
2003     assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
2004            child->perm & BLK_PERM_RESIZE);
2005 
2006     switch (req->type) {
2007     case BDRV_TRACKED_WRITE:
2008     case BDRV_TRACKED_DISCARD:
2009         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
2010             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
2011         } else {
2012             assert(child->perm & BLK_PERM_WRITE);
2013         }
2014         bdrv_write_threshold_check_write(bs, offset, bytes);
2015         return 0;
2016     case BDRV_TRACKED_TRUNCATE:
2017         assert(child->perm & BLK_PERM_RESIZE);
2018         return 0;
2019     default:
2020         abort();
2021     }
2022 }
2023 
2024 static inline void coroutine_fn
2025 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2026                          BdrvTrackedRequest *req, int ret)
2027 {
2028     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2029     BlockDriverState *bs = child->bs;
2030 
2031     bdrv_check_request(offset, bytes, &error_abort);
2032 
2033     qatomic_inc(&bs->write_gen);
2034 
2035     /*
2036      * Discard cannot extend the image, but in error handling cases, such as
2037      * when reverting a qcow2 cluster allocation, the discarded range can pass
2038      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2039      * here. Instead, just skip it, since semantically a discard request
2040      * beyond EOF cannot expand the image anyway.
2041      */
2042     if (ret == 0 &&
2043         (req->type == BDRV_TRACKED_TRUNCATE ||
2044          end_sector > bs->total_sectors) &&
2045         req->type != BDRV_TRACKED_DISCARD) {
2046         bs->total_sectors = end_sector;
2047         bdrv_parent_cb_resize(bs);
2048         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2049     }
2050     if (req->bytes) {
2051         switch (req->type) {
2052         case BDRV_TRACKED_WRITE:
2053             stat64_max(&bs->wr_highest_offset, offset + bytes);
2054             /* fall through, to set dirty bits */
2055         case BDRV_TRACKED_DISCARD:
2056             bdrv_set_dirty(bs, offset, bytes);
2057             break;
2058         default:
2059             break;
2060         }
2061     }
2062 }
2063 
2064 /*
2065  * Forwards an already correctly aligned write request to the BlockDriver,
2066  * after possibly fragmenting it.
2067  */
2068 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
2069     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
2070     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
2071 {
2072     BlockDriverState *bs = child->bs;
2073     BlockDriver *drv = bs->drv;
2074     int ret;
2075 
2076     int64_t bytes_remaining = bytes;
2077     int max_transfer;
2078 
2079     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2080 
2081     if (!drv) {
2082         return -ENOMEDIUM;
2083     }
2084 
2085     if (bdrv_has_readonly_bitmaps(bs)) {
2086         return -EPERM;
2087     }
2088 
2089     assert(is_power_of_2(align));
2090     assert((offset & (align - 1)) == 0);
2091     assert((bytes & (align - 1)) == 0);
2092     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2093                                    align);
2094 
2095     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2096 
2097     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2098         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2099         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2100         flags |= BDRV_REQ_ZERO_WRITE;
2101         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2102             flags |= BDRV_REQ_MAY_UNMAP;
2103         }
2104     }
2105 
2106     if (ret < 0) {
2107         /* Do nothing, write notifier decided to fail this request */
2108     } else if (flags & BDRV_REQ_ZERO_WRITE) {
2109         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2110         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2111     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2112         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2113                                              qiov, qiov_offset);
2114     } else if (bytes <= max_transfer) {
2115         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2116         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2117     } else {
2118         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2119         while (bytes_remaining) {
2120             int num = MIN(bytes_remaining, max_transfer);
2121             int local_flags = flags;
2122 
2123             assert(num);
2124             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2125                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2126                 /* If FUA is going to be emulated by flush, we only
2127                  * need to flush on the last iteration */
2128                 local_flags &= ~BDRV_REQ_FUA;
2129             }
2130 
2131             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2132                                       num, qiov,
2133                                       qiov_offset + bytes - bytes_remaining,
2134                                       local_flags);
2135             if (ret < 0) {
2136                 break;
2137             }
2138             bytes_remaining -= num;
2139         }
2140     }
2141     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2142 
2143     if (ret >= 0) {
2144         ret = 0;
2145     }
2146     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2147 
2148     return ret;
2149 }
2150 
2151 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2152                                                 int64_t offset,
2153                                                 int64_t bytes,
2154                                                 BdrvRequestFlags flags,
2155                                                 BdrvTrackedRequest *req)
2156 {
2157     BlockDriverState *bs = child->bs;
2158     QEMUIOVector local_qiov;
2159     uint64_t align = bs->bl.request_alignment;
2160     int ret = 0;
2161     bool padding;
2162     BdrvRequestPadding pad;
2163 
2164     padding = bdrv_init_padding(bs, offset, bytes, &pad);
2165     if (padding) {
2166         bdrv_make_request_serialising(req, align);
2167 
2168         bdrv_padding_rmw_read(child, req, &pad, true);
2169 
2170         if (pad.head || pad.merge_reads) {
2171             int64_t aligned_offset = offset & ~(align - 1);
2172             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2173 
2174             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2175             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2176                                        align, &local_qiov, 0,
2177                                        flags & ~BDRV_REQ_ZERO_WRITE);
2178             if (ret < 0 || pad.merge_reads) {
2179                 /* Error or all work is done */
2180                 goto out;
2181             }
2182             offset += write_bytes - pad.head;
2183             bytes -= write_bytes - pad.head;
2184         }
2185     }
2186 
2187     assert(!bytes || (offset & (align - 1)) == 0);
2188     if (bytes >= align) {
2189         /* Write the aligned part in the middle. */
2190         int64_t aligned_bytes = bytes & ~(align - 1);
2191         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2192                                    NULL, 0, flags);
2193         if (ret < 0) {
2194             goto out;
2195         }
2196         bytes -= aligned_bytes;
2197         offset += aligned_bytes;
2198     }
2199 
2200     assert(!bytes || (offset & (align - 1)) == 0);
2201     if (bytes) {
2202         assert(align == pad.tail + bytes);
2203 
2204         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2205         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2206                                    &local_qiov, 0,
2207                                    flags & ~BDRV_REQ_ZERO_WRITE);
2208     }
2209 
2210 out:
2211     bdrv_padding_destroy(&pad);
2212 
2213     return ret;
2214 }
2215 
2216 /*
2217  * Handle a write request in coroutine context
2218  */
2219 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2220     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2221     BdrvRequestFlags flags)
2222 {
2223     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2224 }
2225 
2226 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2227     int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2228     BdrvRequestFlags flags)
2229 {
2230     BlockDriverState *bs = child->bs;
2231     BdrvTrackedRequest req;
2232     uint64_t align = bs->bl.request_alignment;
2233     BdrvRequestPadding pad;
2234     int ret;
2235     bool padded = false;
2236 
2237     trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2238 
2239     if (!bdrv_is_inserted(bs)) {
2240         return -ENOMEDIUM;
2241     }
2242 
2243     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2244     if (ret < 0) {
2245         return ret;
2246     }
2247 
2248     /* If the request is misaligned then we can't make it efficient */
2249     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2250         !QEMU_IS_ALIGNED(offset | bytes, align))
2251     {
2252         return -ENOTSUP;
2253     }
2254 
2255     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2256         /*
2257          * Aligning zero request is nonsense. Even if driver has special meaning
2258          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2259          * it to driver due to request_alignment.
2260          *
2261          * Still, no reason to return an error if someone do unaligned
2262          * zero-length write occasionally.
2263          */
2264         return 0;
2265     }
2266 
2267     if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2268         /*
2269          * Pad request for following read-modify-write cycle.
2270          * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2271          * alignment only if there is no ZERO flag.
2272          */
2273         ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2274                                &padded);
2275         if (ret < 0) {
2276             return ret;
2277         }
2278     }
2279 
2280     bdrv_inc_in_flight(bs);
2281     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2282 
2283     if (flags & BDRV_REQ_ZERO_WRITE) {
2284         assert(!padded);
2285         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2286         goto out;
2287     }
2288 
2289     if (padded) {
2290         /*
2291          * Request was unaligned to request_alignment and therefore
2292          * padded.  We are going to do read-modify-write, and must
2293          * serialize the request to prevent interactions of the
2294          * widened region with other transactions.
2295          */
2296         bdrv_make_request_serialising(&req, align);
2297         bdrv_padding_rmw_read(child, &req, &pad, false);
2298     }
2299 
2300     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2301                                qiov, qiov_offset, flags);
2302 
2303     bdrv_padding_destroy(&pad);
2304 
2305 out:
2306     tracked_request_end(&req);
2307     bdrv_dec_in_flight(bs);
2308 
2309     return ret;
2310 }
2311 
2312 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2313                                        int64_t bytes, BdrvRequestFlags flags)
2314 {
2315     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2316 
2317     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2318         flags &= ~BDRV_REQ_MAY_UNMAP;
2319     }
2320 
2321     return bdrv_co_pwritev(child, offset, bytes, NULL,
2322                            BDRV_REQ_ZERO_WRITE | flags);
2323 }
2324 
2325 /*
2326  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2327  */
2328 int bdrv_flush_all(void)
2329 {
2330     BdrvNextIterator it;
2331     BlockDriverState *bs = NULL;
2332     int result = 0;
2333 
2334     /*
2335      * bdrv queue is managed by record/replay,
2336      * creating new flush request for stopping
2337      * the VM may break the determinism
2338      */
2339     if (replay_events_enabled()) {
2340         return result;
2341     }
2342 
2343     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2344         AioContext *aio_context = bdrv_get_aio_context(bs);
2345         int ret;
2346 
2347         aio_context_acquire(aio_context);
2348         ret = bdrv_flush(bs);
2349         if (ret < 0 && !result) {
2350             result = ret;
2351         }
2352         aio_context_release(aio_context);
2353     }
2354 
2355     return result;
2356 }
2357 
2358 /*
2359  * Returns the allocation status of the specified sectors.
2360  * Drivers not implementing the functionality are assumed to not support
2361  * backing files, hence all their sectors are reported as allocated.
2362  *
2363  * If 'want_zero' is true, the caller is querying for mapping
2364  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2365  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2366  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2367  *
2368  * If 'offset' is beyond the end of the disk image the return value is
2369  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2370  *
2371  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2372  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2373  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2374  *
2375  * 'pnum' is set to the number of bytes (including and immediately
2376  * following the specified offset) that are easily known to be in the
2377  * same allocated/unallocated state.  Note that a second call starting
2378  * at the original offset plus returned pnum may have the same status.
2379  * The returned value is non-zero on success except at end-of-file.
2380  *
2381  * Returns negative errno on failure.  Otherwise, if the
2382  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2383  * set to the host mapping and BDS corresponding to the guest offset.
2384  */
2385 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2386                                              bool want_zero,
2387                                              int64_t offset, int64_t bytes,
2388                                              int64_t *pnum, int64_t *map,
2389                                              BlockDriverState **file)
2390 {
2391     int64_t total_size;
2392     int64_t n; /* bytes */
2393     int ret;
2394     int64_t local_map = 0;
2395     BlockDriverState *local_file = NULL;
2396     int64_t aligned_offset, aligned_bytes;
2397     uint32_t align;
2398     bool has_filtered_child;
2399 
2400     assert(pnum);
2401     *pnum = 0;
2402     total_size = bdrv_getlength(bs);
2403     if (total_size < 0) {
2404         ret = total_size;
2405         goto early_out;
2406     }
2407 
2408     if (offset >= total_size) {
2409         ret = BDRV_BLOCK_EOF;
2410         goto early_out;
2411     }
2412     if (!bytes) {
2413         ret = 0;
2414         goto early_out;
2415     }
2416 
2417     n = total_size - offset;
2418     if (n < bytes) {
2419         bytes = n;
2420     }
2421 
2422     /* Must be non-NULL or bdrv_getlength() would have failed */
2423     assert(bs->drv);
2424     has_filtered_child = bdrv_filter_child(bs);
2425     if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2426         *pnum = bytes;
2427         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2428         if (offset + bytes == total_size) {
2429             ret |= BDRV_BLOCK_EOF;
2430         }
2431         if (bs->drv->protocol_name) {
2432             ret |= BDRV_BLOCK_OFFSET_VALID;
2433             local_map = offset;
2434             local_file = bs;
2435         }
2436         goto early_out;
2437     }
2438 
2439     bdrv_inc_in_flight(bs);
2440 
2441     /* Round out to request_alignment boundaries */
2442     align = bs->bl.request_alignment;
2443     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2444     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2445 
2446     if (bs->drv->bdrv_co_block_status) {
2447         ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2448                                             aligned_bytes, pnum, &local_map,
2449                                             &local_file);
2450     } else {
2451         /* Default code for filters */
2452 
2453         local_file = bdrv_filter_bs(bs);
2454         assert(local_file);
2455 
2456         *pnum = aligned_bytes;
2457         local_map = aligned_offset;
2458         ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2459     }
2460     if (ret < 0) {
2461         *pnum = 0;
2462         goto out;
2463     }
2464 
2465     /*
2466      * The driver's result must be a non-zero multiple of request_alignment.
2467      * Clamp pnum and adjust map to original request.
2468      */
2469     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2470            align > offset - aligned_offset);
2471     if (ret & BDRV_BLOCK_RECURSE) {
2472         assert(ret & BDRV_BLOCK_DATA);
2473         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2474         assert(!(ret & BDRV_BLOCK_ZERO));
2475     }
2476 
2477     *pnum -= offset - aligned_offset;
2478     if (*pnum > bytes) {
2479         *pnum = bytes;
2480     }
2481     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2482         local_map += offset - aligned_offset;
2483     }
2484 
2485     if (ret & BDRV_BLOCK_RAW) {
2486         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2487         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2488                                    *pnum, pnum, &local_map, &local_file);
2489         goto out;
2490     }
2491 
2492     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2493         ret |= BDRV_BLOCK_ALLOCATED;
2494     } else if (bs->drv->supports_backing) {
2495         BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2496 
2497         if (!cow_bs) {
2498             ret |= BDRV_BLOCK_ZERO;
2499         } else if (want_zero) {
2500             int64_t size2 = bdrv_getlength(cow_bs);
2501 
2502             if (size2 >= 0 && offset >= size2) {
2503                 ret |= BDRV_BLOCK_ZERO;
2504             }
2505         }
2506     }
2507 
2508     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2509         local_file && local_file != bs &&
2510         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2511         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2512         int64_t file_pnum;
2513         int ret2;
2514 
2515         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2516                                     *pnum, &file_pnum, NULL, NULL);
2517         if (ret2 >= 0) {
2518             /* Ignore errors.  This is just providing extra information, it
2519              * is useful but not necessary.
2520              */
2521             if (ret2 & BDRV_BLOCK_EOF &&
2522                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2523                 /*
2524                  * It is valid for the format block driver to read
2525                  * beyond the end of the underlying file's current
2526                  * size; such areas read as zero.
2527                  */
2528                 ret |= BDRV_BLOCK_ZERO;
2529             } else {
2530                 /* Limit request to the range reported by the protocol driver */
2531                 *pnum = file_pnum;
2532                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2533             }
2534         }
2535     }
2536 
2537 out:
2538     bdrv_dec_in_flight(bs);
2539     if (ret >= 0 && offset + *pnum == total_size) {
2540         ret |= BDRV_BLOCK_EOF;
2541     }
2542 early_out:
2543     if (file) {
2544         *file = local_file;
2545     }
2546     if (map) {
2547         *map = local_map;
2548     }
2549     return ret;
2550 }
2551 
2552 int coroutine_fn
2553 bdrv_co_common_block_status_above(BlockDriverState *bs,
2554                                   BlockDriverState *base,
2555                                   bool include_base,
2556                                   bool want_zero,
2557                                   int64_t offset,
2558                                   int64_t bytes,
2559                                   int64_t *pnum,
2560                                   int64_t *map,
2561                                   BlockDriverState **file,
2562                                   int *depth)
2563 {
2564     int ret;
2565     BlockDriverState *p;
2566     int64_t eof = 0;
2567     int dummy;
2568 
2569     assert(!include_base || base); /* Can't include NULL base */
2570 
2571     if (!depth) {
2572         depth = &dummy;
2573     }
2574     *depth = 0;
2575 
2576     if (!include_base && bs == base) {
2577         *pnum = bytes;
2578         return 0;
2579     }
2580 
2581     ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2582     ++*depth;
2583     if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2584         return ret;
2585     }
2586 
2587     if (ret & BDRV_BLOCK_EOF) {
2588         eof = offset + *pnum;
2589     }
2590 
2591     assert(*pnum <= bytes);
2592     bytes = *pnum;
2593 
2594     for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2595          p = bdrv_filter_or_cow_bs(p))
2596     {
2597         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2598                                    file);
2599         ++*depth;
2600         if (ret < 0) {
2601             return ret;
2602         }
2603         if (*pnum == 0) {
2604             /*
2605              * The top layer deferred to this layer, and because this layer is
2606              * short, any zeroes that we synthesize beyond EOF behave as if they
2607              * were allocated at this layer.
2608              *
2609              * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2610              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2611              * below.
2612              */
2613             assert(ret & BDRV_BLOCK_EOF);
2614             *pnum = bytes;
2615             if (file) {
2616                 *file = p;
2617             }
2618             ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2619             break;
2620         }
2621         if (ret & BDRV_BLOCK_ALLOCATED) {
2622             /*
2623              * We've found the node and the status, we must break.
2624              *
2625              * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2626              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2627              * below.
2628              */
2629             ret &= ~BDRV_BLOCK_EOF;
2630             break;
2631         }
2632 
2633         if (p == base) {
2634             assert(include_base);
2635             break;
2636         }
2637 
2638         /*
2639          * OK, [offset, offset + *pnum) region is unallocated on this layer,
2640          * let's continue the diving.
2641          */
2642         assert(*pnum <= bytes);
2643         bytes = *pnum;
2644     }
2645 
2646     if (offset + *pnum == eof) {
2647         ret |= BDRV_BLOCK_EOF;
2648     }
2649 
2650     return ret;
2651 }
2652 
2653 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2654                             int64_t offset, int64_t bytes, int64_t *pnum,
2655                             int64_t *map, BlockDriverState **file)
2656 {
2657     return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2658                                           pnum, map, file, NULL);
2659 }
2660 
2661 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2662                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2663 {
2664     return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2665                                    offset, bytes, pnum, map, file);
2666 }
2667 
2668 /*
2669  * Check @bs (and its backing chain) to see if the range defined
2670  * by @offset and @bytes is known to read as zeroes.
2671  * Return 1 if that is the case, 0 otherwise and -errno on error.
2672  * This test is meant to be fast rather than accurate so returning 0
2673  * does not guarantee non-zero data.
2674  */
2675 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2676                                       int64_t bytes)
2677 {
2678     int ret;
2679     int64_t pnum = bytes;
2680 
2681     if (!bytes) {
2682         return 1;
2683     }
2684 
2685     ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2686                                          bytes, &pnum, NULL, NULL, NULL);
2687 
2688     if (ret < 0) {
2689         return ret;
2690     }
2691 
2692     return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2693 }
2694 
2695 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2696                                    int64_t bytes, int64_t *pnum)
2697 {
2698     int ret;
2699     int64_t dummy;
2700 
2701     ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2702                                          bytes, pnum ? pnum : &dummy, NULL,
2703                                          NULL, NULL);
2704     if (ret < 0) {
2705         return ret;
2706     }
2707     return !!(ret & BDRV_BLOCK_ALLOCATED);
2708 }
2709 
2710 /*
2711  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2712  *
2713  * Return a positive depth if (a prefix of) the given range is allocated
2714  * in any image between BASE and TOP (BASE is only included if include_base
2715  * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2716  * BASE can be NULL to check if the given offset is allocated in any
2717  * image of the chain.  Return 0 otherwise, or negative errno on
2718  * failure.
2719  *
2720  * 'pnum' is set to the number of bytes (including and immediately
2721  * following the specified offset) that are known to be in the same
2722  * allocated/unallocated state.  Note that a subsequent call starting
2723  * at 'offset + *pnum' may return the same allocation status (in other
2724  * words, the result is not necessarily the maximum possible range);
2725  * but 'pnum' will only be 0 when end of file is reached.
2726  */
2727 int bdrv_is_allocated_above(BlockDriverState *top,
2728                             BlockDriverState *base,
2729                             bool include_base, int64_t offset,
2730                             int64_t bytes, int64_t *pnum)
2731 {
2732     int depth;
2733     int ret = bdrv_common_block_status_above(top, base, include_base, false,
2734                                              offset, bytes, pnum, NULL, NULL,
2735                                              &depth);
2736     if (ret < 0) {
2737         return ret;
2738     }
2739 
2740     if (ret & BDRV_BLOCK_ALLOCATED) {
2741         return depth;
2742     }
2743     return 0;
2744 }
2745 
2746 int coroutine_fn
2747 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2748 {
2749     BlockDriver *drv = bs->drv;
2750     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2751     int ret = -ENOTSUP;
2752 
2753     if (!drv) {
2754         return -ENOMEDIUM;
2755     }
2756 
2757     bdrv_inc_in_flight(bs);
2758 
2759     if (drv->bdrv_load_vmstate) {
2760         ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2761     } else if (child_bs) {
2762         ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2763     }
2764 
2765     bdrv_dec_in_flight(bs);
2766 
2767     return ret;
2768 }
2769 
2770 int coroutine_fn
2771 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2772 {
2773     BlockDriver *drv = bs->drv;
2774     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2775     int ret = -ENOTSUP;
2776 
2777     if (!drv) {
2778         return -ENOMEDIUM;
2779     }
2780 
2781     bdrv_inc_in_flight(bs);
2782 
2783     if (drv->bdrv_save_vmstate) {
2784         ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2785     } else if (child_bs) {
2786         ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2787     }
2788 
2789     bdrv_dec_in_flight(bs);
2790 
2791     return ret;
2792 }
2793 
2794 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2795                       int64_t pos, int size)
2796 {
2797     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2798     int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2799 
2800     return ret < 0 ? ret : size;
2801 }
2802 
2803 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2804                       int64_t pos, int size)
2805 {
2806     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2807     int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2808 
2809     return ret < 0 ? ret : size;
2810 }
2811 
2812 /**************************************************************/
2813 /* async I/Os */
2814 
2815 void bdrv_aio_cancel(BlockAIOCB *acb)
2816 {
2817     qemu_aio_ref(acb);
2818     bdrv_aio_cancel_async(acb);
2819     while (acb->refcnt > 1) {
2820         if (acb->aiocb_info->get_aio_context) {
2821             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2822         } else if (acb->bs) {
2823             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2824              * assert that we're not using an I/O thread.  Thread-safe
2825              * code should use bdrv_aio_cancel_async exclusively.
2826              */
2827             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2828             aio_poll(bdrv_get_aio_context(acb->bs), true);
2829         } else {
2830             abort();
2831         }
2832     }
2833     qemu_aio_unref(acb);
2834 }
2835 
2836 /* Async version of aio cancel. The caller is not blocked if the acb implements
2837  * cancel_async, otherwise we do nothing and let the request normally complete.
2838  * In either case the completion callback must be called. */
2839 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2840 {
2841     if (acb->aiocb_info->cancel_async) {
2842         acb->aiocb_info->cancel_async(acb);
2843     }
2844 }
2845 
2846 /**************************************************************/
2847 /* Coroutine block device emulation */
2848 
2849 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2850 {
2851     BdrvChild *primary_child = bdrv_primary_child(bs);
2852     BdrvChild *child;
2853     int current_gen;
2854     int ret = 0;
2855 
2856     bdrv_inc_in_flight(bs);
2857 
2858     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2859         bdrv_is_sg(bs)) {
2860         goto early_exit;
2861     }
2862 
2863     qemu_co_mutex_lock(&bs->reqs_lock);
2864     current_gen = qatomic_read(&bs->write_gen);
2865 
2866     /* Wait until any previous flushes are completed */
2867     while (bs->active_flush_req) {
2868         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2869     }
2870 
2871     /* Flushes reach this point in nondecreasing current_gen order.  */
2872     bs->active_flush_req = true;
2873     qemu_co_mutex_unlock(&bs->reqs_lock);
2874 
2875     /* Write back all layers by calling one driver function */
2876     if (bs->drv->bdrv_co_flush) {
2877         ret = bs->drv->bdrv_co_flush(bs);
2878         goto out;
2879     }
2880 
2881     /* Write back cached data to the OS even with cache=unsafe */
2882     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2883     if (bs->drv->bdrv_co_flush_to_os) {
2884         ret = bs->drv->bdrv_co_flush_to_os(bs);
2885         if (ret < 0) {
2886             goto out;
2887         }
2888     }
2889 
2890     /* But don't actually force it to the disk with cache=unsafe */
2891     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2892         goto flush_children;
2893     }
2894 
2895     /* Check if we really need to flush anything */
2896     if (bs->flushed_gen == current_gen) {
2897         goto flush_children;
2898     }
2899 
2900     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2901     if (!bs->drv) {
2902         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2903          * (even in case of apparent success) */
2904         ret = -ENOMEDIUM;
2905         goto out;
2906     }
2907     if (bs->drv->bdrv_co_flush_to_disk) {
2908         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2909     } else if (bs->drv->bdrv_aio_flush) {
2910         BlockAIOCB *acb;
2911         CoroutineIOCompletion co = {
2912             .coroutine = qemu_coroutine_self(),
2913         };
2914 
2915         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2916         if (acb == NULL) {
2917             ret = -EIO;
2918         } else {
2919             qemu_coroutine_yield();
2920             ret = co.ret;
2921         }
2922     } else {
2923         /*
2924          * Some block drivers always operate in either writethrough or unsafe
2925          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2926          * know how the server works (because the behaviour is hardcoded or
2927          * depends on server-side configuration), so we can't ensure that
2928          * everything is safe on disk. Returning an error doesn't work because
2929          * that would break guests even if the server operates in writethrough
2930          * mode.
2931          *
2932          * Let's hope the user knows what he's doing.
2933          */
2934         ret = 0;
2935     }
2936 
2937     if (ret < 0) {
2938         goto out;
2939     }
2940 
2941     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2942      * in the case of cache=unsafe, so there are no useless flushes.
2943      */
2944 flush_children:
2945     ret = 0;
2946     QLIST_FOREACH(child, &bs->children, next) {
2947         if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2948             int this_child_ret = bdrv_co_flush(child->bs);
2949             if (!ret) {
2950                 ret = this_child_ret;
2951             }
2952         }
2953     }
2954 
2955 out:
2956     /* Notify any pending flushes that we have completed */
2957     if (ret == 0) {
2958         bs->flushed_gen = current_gen;
2959     }
2960 
2961     qemu_co_mutex_lock(&bs->reqs_lock);
2962     bs->active_flush_req = false;
2963     /* Return value is ignored - it's ok if wait queue is empty */
2964     qemu_co_queue_next(&bs->flush_queue);
2965     qemu_co_mutex_unlock(&bs->reqs_lock);
2966 
2967 early_exit:
2968     bdrv_dec_in_flight(bs);
2969     return ret;
2970 }
2971 
2972 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2973                                   int64_t bytes)
2974 {
2975     BdrvTrackedRequest req;
2976     int max_pdiscard, ret;
2977     int head, tail, align;
2978     BlockDriverState *bs = child->bs;
2979 
2980     if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2981         return -ENOMEDIUM;
2982     }
2983 
2984     if (bdrv_has_readonly_bitmaps(bs)) {
2985         return -EPERM;
2986     }
2987 
2988     ret = bdrv_check_request(offset, bytes, NULL);
2989     if (ret < 0) {
2990         return ret;
2991     }
2992 
2993     /* Do nothing if disabled.  */
2994     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2995         return 0;
2996     }
2997 
2998     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2999         return 0;
3000     }
3001 
3002     /* Discard is advisory, but some devices track and coalesce
3003      * unaligned requests, so we must pass everything down rather than
3004      * round here.  Still, most devices will just silently ignore
3005      * unaligned requests (by returning -ENOTSUP), so we must fragment
3006      * the request accordingly.  */
3007     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3008     assert(align % bs->bl.request_alignment == 0);
3009     head = offset % align;
3010     tail = (offset + bytes) % align;
3011 
3012     bdrv_inc_in_flight(bs);
3013     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3014 
3015     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3016     if (ret < 0) {
3017         goto out;
3018     }
3019 
3020     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
3021                                    align);
3022     assert(max_pdiscard >= bs->bl.request_alignment);
3023 
3024     while (bytes > 0) {
3025         int64_t num = bytes;
3026 
3027         if (head) {
3028             /* Make small requests to get to alignment boundaries. */
3029             num = MIN(bytes, align - head);
3030             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3031                 num %= bs->bl.request_alignment;
3032             }
3033             head = (head + num) % align;
3034             assert(num < max_pdiscard);
3035         } else if (tail) {
3036             if (num > align) {
3037                 /* Shorten the request to the last aligned cluster.  */
3038                 num -= tail;
3039             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3040                        tail > bs->bl.request_alignment) {
3041                 tail %= bs->bl.request_alignment;
3042                 num -= tail;
3043             }
3044         }
3045         /* limit request size */
3046         if (num > max_pdiscard) {
3047             num = max_pdiscard;
3048         }
3049 
3050         if (!bs->drv) {
3051             ret = -ENOMEDIUM;
3052             goto out;
3053         }
3054         if (bs->drv->bdrv_co_pdiscard) {
3055             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3056         } else {
3057             BlockAIOCB *acb;
3058             CoroutineIOCompletion co = {
3059                 .coroutine = qemu_coroutine_self(),
3060             };
3061 
3062             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3063                                              bdrv_co_io_em_complete, &co);
3064             if (acb == NULL) {
3065                 ret = -EIO;
3066                 goto out;
3067             } else {
3068                 qemu_coroutine_yield();
3069                 ret = co.ret;
3070             }
3071         }
3072         if (ret && ret != -ENOTSUP) {
3073             goto out;
3074         }
3075 
3076         offset += num;
3077         bytes -= num;
3078     }
3079     ret = 0;
3080 out:
3081     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3082     tracked_request_end(&req);
3083     bdrv_dec_in_flight(bs);
3084     return ret;
3085 }
3086 
3087 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3088 {
3089     BlockDriver *drv = bs->drv;
3090     CoroutineIOCompletion co = {
3091         .coroutine = qemu_coroutine_self(),
3092     };
3093     BlockAIOCB *acb;
3094 
3095     bdrv_inc_in_flight(bs);
3096     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3097         co.ret = -ENOTSUP;
3098         goto out;
3099     }
3100 
3101     if (drv->bdrv_co_ioctl) {
3102         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3103     } else {
3104         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3105         if (!acb) {
3106             co.ret = -ENOTSUP;
3107             goto out;
3108         }
3109         qemu_coroutine_yield();
3110     }
3111 out:
3112     bdrv_dec_in_flight(bs);
3113     return co.ret;
3114 }
3115 
3116 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3117 {
3118     return qemu_memalign(bdrv_opt_mem_align(bs), size);
3119 }
3120 
3121 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3122 {
3123     return memset(qemu_blockalign(bs, size), 0, size);
3124 }
3125 
3126 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3127 {
3128     size_t align = bdrv_opt_mem_align(bs);
3129 
3130     /* Ensure that NULL is never returned on success */
3131     assert(align > 0);
3132     if (size == 0) {
3133         size = align;
3134     }
3135 
3136     return qemu_try_memalign(align, size);
3137 }
3138 
3139 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3140 {
3141     void *mem = qemu_try_blockalign(bs, size);
3142 
3143     if (mem) {
3144         memset(mem, 0, size);
3145     }
3146 
3147     return mem;
3148 }
3149 
3150 /*
3151  * Check if all memory in this vector is sector aligned.
3152  */
3153 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3154 {
3155     int i;
3156     size_t alignment = bdrv_min_mem_align(bs);
3157 
3158     for (i = 0; i < qiov->niov; i++) {
3159         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3160             return false;
3161         }
3162         if (qiov->iov[i].iov_len % alignment) {
3163             return false;
3164         }
3165     }
3166 
3167     return true;
3168 }
3169 
3170 void bdrv_io_plug(BlockDriverState *bs)
3171 {
3172     BdrvChild *child;
3173 
3174     QLIST_FOREACH(child, &bs->children, next) {
3175         bdrv_io_plug(child->bs);
3176     }
3177 
3178     if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3179         BlockDriver *drv = bs->drv;
3180         if (drv && drv->bdrv_io_plug) {
3181             drv->bdrv_io_plug(bs);
3182         }
3183     }
3184 }
3185 
3186 void bdrv_io_unplug(BlockDriverState *bs)
3187 {
3188     BdrvChild *child;
3189 
3190     assert(bs->io_plugged);
3191     if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3192         BlockDriver *drv = bs->drv;
3193         if (drv && drv->bdrv_io_unplug) {
3194             drv->bdrv_io_unplug(bs);
3195         }
3196     }
3197 
3198     QLIST_FOREACH(child, &bs->children, next) {
3199         bdrv_io_unplug(child->bs);
3200     }
3201 }
3202 
3203 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3204 {
3205     BdrvChild *child;
3206 
3207     if (bs->drv && bs->drv->bdrv_register_buf) {
3208         bs->drv->bdrv_register_buf(bs, host, size);
3209     }
3210     QLIST_FOREACH(child, &bs->children, next) {
3211         bdrv_register_buf(child->bs, host, size);
3212     }
3213 }
3214 
3215 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3216 {
3217     BdrvChild *child;
3218 
3219     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3220         bs->drv->bdrv_unregister_buf(bs, host);
3221     }
3222     QLIST_FOREACH(child, &bs->children, next) {
3223         bdrv_unregister_buf(child->bs, host);
3224     }
3225 }
3226 
3227 static int coroutine_fn bdrv_co_copy_range_internal(
3228         BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3229         int64_t dst_offset, int64_t bytes,
3230         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3231         bool recurse_src)
3232 {
3233     BdrvTrackedRequest req;
3234     int ret;
3235 
3236     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3237     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3238     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3239 
3240     if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3241         return -ENOMEDIUM;
3242     }
3243     ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3244     if (ret) {
3245         return ret;
3246     }
3247     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3248         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3249     }
3250 
3251     if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3252         return -ENOMEDIUM;
3253     }
3254     ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3255     if (ret) {
3256         return ret;
3257     }
3258 
3259     if (!src->bs->drv->bdrv_co_copy_range_from
3260         || !dst->bs->drv->bdrv_co_copy_range_to
3261         || src->bs->encrypted || dst->bs->encrypted) {
3262         return -ENOTSUP;
3263     }
3264 
3265     if (recurse_src) {
3266         bdrv_inc_in_flight(src->bs);
3267         tracked_request_begin(&req, src->bs, src_offset, bytes,
3268                               BDRV_TRACKED_READ);
3269 
3270         /* BDRV_REQ_SERIALISING is only for write operation */
3271         assert(!(read_flags & BDRV_REQ_SERIALISING));
3272         bdrv_wait_serialising_requests(&req);
3273 
3274         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3275                                                     src, src_offset,
3276                                                     dst, dst_offset,
3277                                                     bytes,
3278                                                     read_flags, write_flags);
3279 
3280         tracked_request_end(&req);
3281         bdrv_dec_in_flight(src->bs);
3282     } else {
3283         bdrv_inc_in_flight(dst->bs);
3284         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3285                               BDRV_TRACKED_WRITE);
3286         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3287                                         write_flags);
3288         if (!ret) {
3289             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3290                                                       src, src_offset,
3291                                                       dst, dst_offset,
3292                                                       bytes,
3293                                                       read_flags, write_flags);
3294         }
3295         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3296         tracked_request_end(&req);
3297         bdrv_dec_in_flight(dst->bs);
3298     }
3299 
3300     return ret;
3301 }
3302 
3303 /* Copy range from @src to @dst.
3304  *
3305  * See the comment of bdrv_co_copy_range for the parameter and return value
3306  * semantics. */
3307 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3308                                          BdrvChild *dst, int64_t dst_offset,
3309                                          int64_t bytes,
3310                                          BdrvRequestFlags read_flags,
3311                                          BdrvRequestFlags write_flags)
3312 {
3313     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3314                                   read_flags, write_flags);
3315     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3316                                        bytes, read_flags, write_flags, true);
3317 }
3318 
3319 /* Copy range from @src to @dst.
3320  *
3321  * See the comment of bdrv_co_copy_range for the parameter and return value
3322  * semantics. */
3323 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3324                                        BdrvChild *dst, int64_t dst_offset,
3325                                        int64_t bytes,
3326                                        BdrvRequestFlags read_flags,
3327                                        BdrvRequestFlags write_flags)
3328 {
3329     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3330                                 read_flags, write_flags);
3331     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3332                                        bytes, read_flags, write_flags, false);
3333 }
3334 
3335 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3336                                     BdrvChild *dst, int64_t dst_offset,
3337                                     int64_t bytes, BdrvRequestFlags read_flags,
3338                                     BdrvRequestFlags write_flags)
3339 {
3340     return bdrv_co_copy_range_from(src, src_offset,
3341                                    dst, dst_offset,
3342                                    bytes, read_flags, write_flags);
3343 }
3344 
3345 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3346 {
3347     BdrvChild *c;
3348     QLIST_FOREACH(c, &bs->parents, next_parent) {
3349         if (c->klass->resize) {
3350             c->klass->resize(c);
3351         }
3352     }
3353 }
3354 
3355 /**
3356  * Truncate file to 'offset' bytes (needed only for file protocols)
3357  *
3358  * If 'exact' is true, the file must be resized to exactly the given
3359  * 'offset'.  Otherwise, it is sufficient for the node to be at least
3360  * 'offset' bytes in length.
3361  */
3362 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3363                                   PreallocMode prealloc, BdrvRequestFlags flags,
3364                                   Error **errp)
3365 {
3366     BlockDriverState *bs = child->bs;
3367     BdrvChild *filtered, *backing;
3368     BlockDriver *drv = bs->drv;
3369     BdrvTrackedRequest req;
3370     int64_t old_size, new_bytes;
3371     int ret;
3372 
3373 
3374     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3375     if (!drv) {
3376         error_setg(errp, "No medium inserted");
3377         return -ENOMEDIUM;
3378     }
3379     if (offset < 0) {
3380         error_setg(errp, "Image size cannot be negative");
3381         return -EINVAL;
3382     }
3383 
3384     ret = bdrv_check_request(offset, 0, errp);
3385     if (ret < 0) {
3386         return ret;
3387     }
3388 
3389     old_size = bdrv_getlength(bs);
3390     if (old_size < 0) {
3391         error_setg_errno(errp, -old_size, "Failed to get old image size");
3392         return old_size;
3393     }
3394 
3395     if (bdrv_is_read_only(bs)) {
3396         error_setg(errp, "Image is read-only");
3397         return -EACCES;
3398     }
3399 
3400     if (offset > old_size) {
3401         new_bytes = offset - old_size;
3402     } else {
3403         new_bytes = 0;
3404     }
3405 
3406     bdrv_inc_in_flight(bs);
3407     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3408                           BDRV_TRACKED_TRUNCATE);
3409 
3410     /* If we are growing the image and potentially using preallocation for the
3411      * new area, we need to make sure that no write requests are made to it
3412      * concurrently or they might be overwritten by preallocation. */
3413     if (new_bytes) {
3414         bdrv_make_request_serialising(&req, 1);
3415     }
3416     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3417                                     0);
3418     if (ret < 0) {
3419         error_setg_errno(errp, -ret,
3420                          "Failed to prepare request for truncation");
3421         goto out;
3422     }
3423 
3424     filtered = bdrv_filter_child(bs);
3425     backing = bdrv_cow_child(bs);
3426 
3427     /*
3428      * If the image has a backing file that is large enough that it would
3429      * provide data for the new area, we cannot leave it unallocated because
3430      * then the backing file content would become visible. Instead, zero-fill
3431      * the new area.
3432      *
3433      * Note that if the image has a backing file, but was opened without the
3434      * backing file, taking care of keeping things consistent with that backing
3435      * file is the user's responsibility.
3436      */
3437     if (new_bytes && backing) {
3438         int64_t backing_len;
3439 
3440         backing_len = bdrv_getlength(backing->bs);
3441         if (backing_len < 0) {
3442             ret = backing_len;
3443             error_setg_errno(errp, -ret, "Could not get backing file size");
3444             goto out;
3445         }
3446 
3447         if (backing_len > old_size) {
3448             flags |= BDRV_REQ_ZERO_WRITE;
3449         }
3450     }
3451 
3452     if (drv->bdrv_co_truncate) {
3453         if (flags & ~bs->supported_truncate_flags) {
3454             error_setg(errp, "Block driver does not support requested flags");
3455             ret = -ENOTSUP;
3456             goto out;
3457         }
3458         ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3459     } else if (filtered) {
3460         ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3461     } else {
3462         error_setg(errp, "Image format driver does not support resize");
3463         ret = -ENOTSUP;
3464         goto out;
3465     }
3466     if (ret < 0) {
3467         goto out;
3468     }
3469 
3470     ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3471     if (ret < 0) {
3472         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3473     } else {
3474         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3475     }
3476     /* It's possible that truncation succeeded but refresh_total_sectors
3477      * failed, but the latter doesn't affect how we should finish the request.
3478      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3479     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3480 
3481 out:
3482     tracked_request_end(&req);
3483     bdrv_dec_in_flight(bs);
3484 
3485     return ret;
3486 }
3487 
3488 void bdrv_cancel_in_flight(BlockDriverState *bs)
3489 {
3490     if (!bs || !bs->drv) {
3491         return;
3492     }
3493 
3494     if (bs->drv->bdrv_cancel_in_flight) {
3495         bs->drv->bdrv_cancel_in_flight(bs);
3496     }
3497 }
3498