xref: /openbmc/qemu/block/io.c (revision b14df228)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/write-threshold.h"
34 #include "qemu/cutils.h"
35 #include "qemu/memalign.h"
36 #include "qapi/error.h"
37 #include "qemu/error-report.h"
38 #include "qemu/main-loop.h"
39 #include "sysemu/replay.h"
40 
41 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
42 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
43 
44 static void bdrv_parent_cb_resize(BlockDriverState *bs);
45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
46     int64_t offset, int64_t bytes, BdrvRequestFlags flags);
47 
48 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
49                                       bool ignore_bds_parents)
50 {
51     BdrvChild *c, *next;
52 
53     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
54         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
55             continue;
56         }
57         bdrv_parent_drained_begin_single(c, false);
58     }
59 }
60 
61 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
62                                                    int *drained_end_counter)
63 {
64     assert(c->parent_quiesce_counter > 0);
65     c->parent_quiesce_counter--;
66     if (c->klass->drained_end) {
67         c->klass->drained_end(c, drained_end_counter);
68     }
69 }
70 
71 void bdrv_parent_drained_end_single(BdrvChild *c)
72 {
73     int drained_end_counter = 0;
74     IO_OR_GS_CODE();
75     bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
76     BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
77 }
78 
79 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
80                                     bool ignore_bds_parents,
81                                     int *drained_end_counter)
82 {
83     BdrvChild *c;
84 
85     QLIST_FOREACH(c, &bs->parents, next_parent) {
86         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
87             continue;
88         }
89         bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
90     }
91 }
92 
93 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
94 {
95     if (c->klass->drained_poll) {
96         return c->klass->drained_poll(c);
97     }
98     return false;
99 }
100 
101 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
102                                      bool ignore_bds_parents)
103 {
104     BdrvChild *c, *next;
105     bool busy = false;
106 
107     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
108         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
109             continue;
110         }
111         busy |= bdrv_parent_drained_poll_single(c);
112     }
113 
114     return busy;
115 }
116 
117 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
118 {
119     IO_OR_GS_CODE();
120     c->parent_quiesce_counter++;
121     if (c->klass->drained_begin) {
122         c->klass->drained_begin(c);
123     }
124     if (poll) {
125         BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
126     }
127 }
128 
129 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
130 {
131     dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
132                                   src->pdiscard_alignment);
133     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
134     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
135     dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
136                                         src->max_hw_transfer);
137     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
138                                  src->opt_mem_alignment);
139     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
140                                  src->min_mem_alignment);
141     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
142     dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
143 }
144 
145 typedef struct BdrvRefreshLimitsState {
146     BlockDriverState *bs;
147     BlockLimits old_bl;
148 } BdrvRefreshLimitsState;
149 
150 static void bdrv_refresh_limits_abort(void *opaque)
151 {
152     BdrvRefreshLimitsState *s = opaque;
153 
154     s->bs->bl = s->old_bl;
155 }
156 
157 static TransactionActionDrv bdrv_refresh_limits_drv = {
158     .abort = bdrv_refresh_limits_abort,
159     .clean = g_free,
160 };
161 
162 /* @tran is allowed to be NULL, in this case no rollback is possible. */
163 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
164 {
165     ERRP_GUARD();
166     BlockDriver *drv = bs->drv;
167     BdrvChild *c;
168     bool have_limits;
169 
170     GLOBAL_STATE_CODE();
171 
172     if (tran) {
173         BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
174         *s = (BdrvRefreshLimitsState) {
175             .bs = bs,
176             .old_bl = bs->bl,
177         };
178         tran_add(tran, &bdrv_refresh_limits_drv, s);
179     }
180 
181     memset(&bs->bl, 0, sizeof(bs->bl));
182 
183     if (!drv) {
184         return;
185     }
186 
187     /* Default alignment based on whether driver has byte interface */
188     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
189                                 drv->bdrv_aio_preadv ||
190                                 drv->bdrv_co_preadv_part) ? 1 : 512;
191 
192     /* Take some limits from the children as a default */
193     have_limits = false;
194     QLIST_FOREACH(c, &bs->children, next) {
195         if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
196         {
197             bdrv_merge_limits(&bs->bl, &c->bs->bl);
198             have_limits = true;
199         }
200     }
201 
202     if (!have_limits) {
203         bs->bl.min_mem_alignment = 512;
204         bs->bl.opt_mem_alignment = qemu_real_host_page_size();
205 
206         /* Safe default since most protocols use readv()/writev()/etc */
207         bs->bl.max_iov = IOV_MAX;
208     }
209 
210     /* Then let the driver override it */
211     if (drv->bdrv_refresh_limits) {
212         drv->bdrv_refresh_limits(bs, errp);
213         if (*errp) {
214             return;
215         }
216     }
217 
218     if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
219         error_setg(errp, "Driver requires too large request alignment");
220     }
221 }
222 
223 /**
224  * The copy-on-read flag is actually a reference count so multiple users may
225  * use the feature without worrying about clobbering its previous state.
226  * Copy-on-read stays enabled until all users have called to disable it.
227  */
228 void bdrv_enable_copy_on_read(BlockDriverState *bs)
229 {
230     IO_CODE();
231     qatomic_inc(&bs->copy_on_read);
232 }
233 
234 void bdrv_disable_copy_on_read(BlockDriverState *bs)
235 {
236     int old = qatomic_fetch_dec(&bs->copy_on_read);
237     IO_CODE();
238     assert(old >= 1);
239 }
240 
241 typedef struct {
242     Coroutine *co;
243     BlockDriverState *bs;
244     bool done;
245     bool begin;
246     bool recursive;
247     bool poll;
248     BdrvChild *parent;
249     bool ignore_bds_parents;
250     int *drained_end_counter;
251 } BdrvCoDrainData;
252 
253 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
254 {
255     BdrvCoDrainData *data = opaque;
256     BlockDriverState *bs = data->bs;
257 
258     if (data->begin) {
259         bs->drv->bdrv_co_drain_begin(bs);
260     } else {
261         bs->drv->bdrv_co_drain_end(bs);
262     }
263 
264     /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
265     qatomic_mb_set(&data->done, true);
266     if (!data->begin) {
267         qatomic_dec(data->drained_end_counter);
268     }
269     bdrv_dec_in_flight(bs);
270 
271     g_free(data);
272 }
273 
274 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
275 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
276                               int *drained_end_counter)
277 {
278     BdrvCoDrainData *data;
279 
280     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
281             (!begin && !bs->drv->bdrv_co_drain_end)) {
282         return;
283     }
284 
285     data = g_new(BdrvCoDrainData, 1);
286     *data = (BdrvCoDrainData) {
287         .bs = bs,
288         .done = false,
289         .begin = begin,
290         .drained_end_counter = drained_end_counter,
291     };
292 
293     if (!begin) {
294         qatomic_inc(drained_end_counter);
295     }
296 
297     /* Make sure the driver callback completes during the polling phase for
298      * drain_begin. */
299     bdrv_inc_in_flight(bs);
300     data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
301     aio_co_schedule(bdrv_get_aio_context(bs), data->co);
302 }
303 
304 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
305 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
306                      BdrvChild *ignore_parent, bool ignore_bds_parents)
307 {
308     BdrvChild *child, *next;
309     IO_OR_GS_CODE();
310 
311     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
312         return true;
313     }
314 
315     if (qatomic_read(&bs->in_flight)) {
316         return true;
317     }
318 
319     if (recursive) {
320         assert(!ignore_bds_parents);
321         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
322             if (bdrv_drain_poll(child->bs, recursive, child, false)) {
323                 return true;
324             }
325         }
326     }
327 
328     return false;
329 }
330 
331 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
332                                       BdrvChild *ignore_parent)
333 {
334     return bdrv_drain_poll(bs, recursive, ignore_parent, false);
335 }
336 
337 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
338                                   BdrvChild *parent, bool ignore_bds_parents,
339                                   bool poll);
340 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
341                                 BdrvChild *parent, bool ignore_bds_parents,
342                                 int *drained_end_counter);
343 
344 static void bdrv_co_drain_bh_cb(void *opaque)
345 {
346     BdrvCoDrainData *data = opaque;
347     Coroutine *co = data->co;
348     BlockDriverState *bs = data->bs;
349 
350     if (bs) {
351         AioContext *ctx = bdrv_get_aio_context(bs);
352         aio_context_acquire(ctx);
353         bdrv_dec_in_flight(bs);
354         if (data->begin) {
355             assert(!data->drained_end_counter);
356             bdrv_do_drained_begin(bs, data->recursive, data->parent,
357                                   data->ignore_bds_parents, data->poll);
358         } else {
359             assert(!data->poll);
360             bdrv_do_drained_end(bs, data->recursive, data->parent,
361                                 data->ignore_bds_parents,
362                                 data->drained_end_counter);
363         }
364         aio_context_release(ctx);
365     } else {
366         assert(data->begin);
367         bdrv_drain_all_begin();
368     }
369 
370     data->done = true;
371     aio_co_wake(co);
372 }
373 
374 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
375                                                 bool begin, bool recursive,
376                                                 BdrvChild *parent,
377                                                 bool ignore_bds_parents,
378                                                 bool poll,
379                                                 int *drained_end_counter)
380 {
381     BdrvCoDrainData data;
382     Coroutine *self = qemu_coroutine_self();
383     AioContext *ctx = bdrv_get_aio_context(bs);
384     AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
385 
386     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
387      * other coroutines run if they were queued by aio_co_enter(). */
388 
389     assert(qemu_in_coroutine());
390     data = (BdrvCoDrainData) {
391         .co = self,
392         .bs = bs,
393         .done = false,
394         .begin = begin,
395         .recursive = recursive,
396         .parent = parent,
397         .ignore_bds_parents = ignore_bds_parents,
398         .poll = poll,
399         .drained_end_counter = drained_end_counter,
400     };
401 
402     if (bs) {
403         bdrv_inc_in_flight(bs);
404     }
405 
406     /*
407      * Temporarily drop the lock across yield or we would get deadlocks.
408      * bdrv_co_drain_bh_cb() reaquires the lock as needed.
409      *
410      * When we yield below, the lock for the current context will be
411      * released, so if this is actually the lock that protects bs, don't drop
412      * it a second time.
413      */
414     if (ctx != co_ctx) {
415         aio_context_release(ctx);
416     }
417     replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
418 
419     qemu_coroutine_yield();
420     /* If we are resumed from some other event (such as an aio completion or a
421      * timer callback), it is a bug in the caller that should be fixed. */
422     assert(data.done);
423 
424     /* Reaquire the AioContext of bs if we dropped it */
425     if (ctx != co_ctx) {
426         aio_context_acquire(ctx);
427     }
428 }
429 
430 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
431                                    BdrvChild *parent, bool ignore_bds_parents)
432 {
433     IO_OR_GS_CODE();
434     assert(!qemu_in_coroutine());
435 
436     /* Stop things in parent-to-child order */
437     if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
438         aio_disable_external(bdrv_get_aio_context(bs));
439     }
440 
441     bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
442     bdrv_drain_invoke(bs, true, NULL);
443 }
444 
445 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
446                                   BdrvChild *parent, bool ignore_bds_parents,
447                                   bool poll)
448 {
449     BdrvChild *child, *next;
450 
451     if (qemu_in_coroutine()) {
452         bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
453                                poll, NULL);
454         return;
455     }
456 
457     bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
458 
459     if (recursive) {
460         assert(!ignore_bds_parents);
461         bs->recursive_quiesce_counter++;
462         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
463             bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
464                                   false);
465         }
466     }
467 
468     /*
469      * Wait for drained requests to finish.
470      *
471      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
472      * call is needed so things in this AioContext can make progress even
473      * though we don't return to the main AioContext loop - this automatically
474      * includes other nodes in the same AioContext and therefore all child
475      * nodes.
476      */
477     if (poll) {
478         assert(!ignore_bds_parents);
479         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
480     }
481 }
482 
483 void bdrv_drained_begin(BlockDriverState *bs)
484 {
485     IO_OR_GS_CODE();
486     bdrv_do_drained_begin(bs, false, NULL, false, true);
487 }
488 
489 void bdrv_subtree_drained_begin(BlockDriverState *bs)
490 {
491     IO_OR_GS_CODE();
492     bdrv_do_drained_begin(bs, true, NULL, false, true);
493 }
494 
495 /**
496  * This function does not poll, nor must any of its recursively called
497  * functions.  The *drained_end_counter pointee will be incremented
498  * once for every background operation scheduled, and decremented once
499  * the operation settles.  Therefore, the pointer must remain valid
500  * until the pointee reaches 0.  That implies that whoever sets up the
501  * pointee has to poll until it is 0.
502  *
503  * We use atomic operations to access *drained_end_counter, because
504  * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
505  *     @bs may contain nodes in different AioContexts,
506  * (2) bdrv_drain_all_end() uses the same counter for all nodes,
507  *     regardless of which AioContext they are in.
508  */
509 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
510                                 BdrvChild *parent, bool ignore_bds_parents,
511                                 int *drained_end_counter)
512 {
513     BdrvChild *child;
514     int old_quiesce_counter;
515 
516     assert(drained_end_counter != NULL);
517 
518     if (qemu_in_coroutine()) {
519         bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
520                                false, drained_end_counter);
521         return;
522     }
523     assert(bs->quiesce_counter > 0);
524 
525     /* Re-enable things in child-to-parent order */
526     bdrv_drain_invoke(bs, false, drained_end_counter);
527     bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
528                             drained_end_counter);
529 
530     old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
531     if (old_quiesce_counter == 1) {
532         aio_enable_external(bdrv_get_aio_context(bs));
533     }
534 
535     if (recursive) {
536         assert(!ignore_bds_parents);
537         bs->recursive_quiesce_counter--;
538         QLIST_FOREACH(child, &bs->children, next) {
539             bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
540                                 drained_end_counter);
541         }
542     }
543 }
544 
545 void bdrv_drained_end(BlockDriverState *bs)
546 {
547     int drained_end_counter = 0;
548     IO_OR_GS_CODE();
549     bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
550     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
551 }
552 
553 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
554 {
555     IO_CODE();
556     bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
557 }
558 
559 void bdrv_subtree_drained_end(BlockDriverState *bs)
560 {
561     int drained_end_counter = 0;
562     IO_OR_GS_CODE();
563     bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
564     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
565 }
566 
567 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
568 {
569     int i;
570     IO_OR_GS_CODE();
571 
572     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
573         bdrv_do_drained_begin(child->bs, true, child, false, true);
574     }
575 }
576 
577 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
578 {
579     int drained_end_counter = 0;
580     int i;
581     IO_OR_GS_CODE();
582 
583     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
584         bdrv_do_drained_end(child->bs, true, child, false,
585                             &drained_end_counter);
586     }
587 
588     BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
589 }
590 
591 void bdrv_drain(BlockDriverState *bs)
592 {
593     IO_OR_GS_CODE();
594     bdrv_drained_begin(bs);
595     bdrv_drained_end(bs);
596 }
597 
598 static void bdrv_drain_assert_idle(BlockDriverState *bs)
599 {
600     BdrvChild *child, *next;
601 
602     assert(qatomic_read(&bs->in_flight) == 0);
603     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
604         bdrv_drain_assert_idle(child->bs);
605     }
606 }
607 
608 unsigned int bdrv_drain_all_count = 0;
609 
610 static bool bdrv_drain_all_poll(void)
611 {
612     BlockDriverState *bs = NULL;
613     bool result = false;
614     GLOBAL_STATE_CODE();
615 
616     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
617      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
618     while ((bs = bdrv_next_all_states(bs))) {
619         AioContext *aio_context = bdrv_get_aio_context(bs);
620         aio_context_acquire(aio_context);
621         result |= bdrv_drain_poll(bs, false, NULL, true);
622         aio_context_release(aio_context);
623     }
624 
625     return result;
626 }
627 
628 /*
629  * Wait for pending requests to complete across all BlockDriverStates
630  *
631  * This function does not flush data to disk, use bdrv_flush_all() for that
632  * after calling this function.
633  *
634  * This pauses all block jobs and disables external clients. It must
635  * be paired with bdrv_drain_all_end().
636  *
637  * NOTE: no new block jobs or BlockDriverStates can be created between
638  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
639  */
640 void bdrv_drain_all_begin(void)
641 {
642     BlockDriverState *bs = NULL;
643     GLOBAL_STATE_CODE();
644 
645     if (qemu_in_coroutine()) {
646         bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
647         return;
648     }
649 
650     /*
651      * bdrv queue is managed by record/replay,
652      * waiting for finishing the I/O requests may
653      * be infinite
654      */
655     if (replay_events_enabled()) {
656         return;
657     }
658 
659     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
660      * loop AioContext, so make sure we're in the main context. */
661     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
662     assert(bdrv_drain_all_count < INT_MAX);
663     bdrv_drain_all_count++;
664 
665     /* Quiesce all nodes, without polling in-flight requests yet. The graph
666      * cannot change during this loop. */
667     while ((bs = bdrv_next_all_states(bs))) {
668         AioContext *aio_context = bdrv_get_aio_context(bs);
669 
670         aio_context_acquire(aio_context);
671         bdrv_do_drained_begin(bs, false, NULL, true, false);
672         aio_context_release(aio_context);
673     }
674 
675     /* Now poll the in-flight requests */
676     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
677 
678     while ((bs = bdrv_next_all_states(bs))) {
679         bdrv_drain_assert_idle(bs);
680     }
681 }
682 
683 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
684 {
685     int drained_end_counter = 0;
686     GLOBAL_STATE_CODE();
687 
688     g_assert(bs->quiesce_counter > 0);
689     g_assert(!bs->refcnt);
690 
691     while (bs->quiesce_counter) {
692         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
693     }
694     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
695 }
696 
697 void bdrv_drain_all_end(void)
698 {
699     BlockDriverState *bs = NULL;
700     int drained_end_counter = 0;
701     GLOBAL_STATE_CODE();
702 
703     /*
704      * bdrv queue is managed by record/replay,
705      * waiting for finishing the I/O requests may
706      * be endless
707      */
708     if (replay_events_enabled()) {
709         return;
710     }
711 
712     while ((bs = bdrv_next_all_states(bs))) {
713         AioContext *aio_context = bdrv_get_aio_context(bs);
714 
715         aio_context_acquire(aio_context);
716         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
717         aio_context_release(aio_context);
718     }
719 
720     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
721     AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
722 
723     assert(bdrv_drain_all_count > 0);
724     bdrv_drain_all_count--;
725 }
726 
727 void bdrv_drain_all(void)
728 {
729     GLOBAL_STATE_CODE();
730     bdrv_drain_all_begin();
731     bdrv_drain_all_end();
732 }
733 
734 /**
735  * Remove an active request from the tracked requests list
736  *
737  * This function should be called when a tracked request is completing.
738  */
739 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
740 {
741     if (req->serialising) {
742         qatomic_dec(&req->bs->serialising_in_flight);
743     }
744 
745     qemu_co_mutex_lock(&req->bs->reqs_lock);
746     QLIST_REMOVE(req, list);
747     qemu_co_queue_restart_all(&req->wait_queue);
748     qemu_co_mutex_unlock(&req->bs->reqs_lock);
749 }
750 
751 /**
752  * Add an active request to the tracked requests list
753  */
754 static void tracked_request_begin(BdrvTrackedRequest *req,
755                                   BlockDriverState *bs,
756                                   int64_t offset,
757                                   int64_t bytes,
758                                   enum BdrvTrackedRequestType type)
759 {
760     bdrv_check_request(offset, bytes, &error_abort);
761 
762     *req = (BdrvTrackedRequest){
763         .bs = bs,
764         .offset         = offset,
765         .bytes          = bytes,
766         .type           = type,
767         .co             = qemu_coroutine_self(),
768         .serialising    = false,
769         .overlap_offset = offset,
770         .overlap_bytes  = bytes,
771     };
772 
773     qemu_co_queue_init(&req->wait_queue);
774 
775     qemu_co_mutex_lock(&bs->reqs_lock);
776     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
777     qemu_co_mutex_unlock(&bs->reqs_lock);
778 }
779 
780 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
781                                      int64_t offset, int64_t bytes)
782 {
783     bdrv_check_request(offset, bytes, &error_abort);
784 
785     /*        aaaa   bbbb */
786     if (offset >= req->overlap_offset + req->overlap_bytes) {
787         return false;
788     }
789     /* bbbb   aaaa        */
790     if (req->overlap_offset >= offset + bytes) {
791         return false;
792     }
793     return true;
794 }
795 
796 /* Called with self->bs->reqs_lock held */
797 static BdrvTrackedRequest *
798 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
799 {
800     BdrvTrackedRequest *req;
801 
802     QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
803         if (req == self || (!req->serialising && !self->serialising)) {
804             continue;
805         }
806         if (tracked_request_overlaps(req, self->overlap_offset,
807                                      self->overlap_bytes))
808         {
809             /*
810              * Hitting this means there was a reentrant request, for
811              * example, a block driver issuing nested requests.  This must
812              * never happen since it means deadlock.
813              */
814             assert(qemu_coroutine_self() != req->co);
815 
816             /*
817              * If the request is already (indirectly) waiting for us, or
818              * will wait for us as soon as it wakes up, then just go on
819              * (instead of producing a deadlock in the former case).
820              */
821             if (!req->waiting_for) {
822                 return req;
823             }
824         }
825     }
826 
827     return NULL;
828 }
829 
830 /* Called with self->bs->reqs_lock held */
831 static bool coroutine_fn
832 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
833 {
834     BdrvTrackedRequest *req;
835     bool waited = false;
836 
837     while ((req = bdrv_find_conflicting_request(self))) {
838         self->waiting_for = req;
839         qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
840         self->waiting_for = NULL;
841         waited = true;
842     }
843 
844     return waited;
845 }
846 
847 /* Called with req->bs->reqs_lock held */
848 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
849                                             uint64_t align)
850 {
851     int64_t overlap_offset = req->offset & ~(align - 1);
852     int64_t overlap_bytes =
853         ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
854 
855     bdrv_check_request(req->offset, req->bytes, &error_abort);
856 
857     if (!req->serialising) {
858         qatomic_inc(&req->bs->serialising_in_flight);
859         req->serialising = true;
860     }
861 
862     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
863     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
864 }
865 
866 /**
867  * Return the tracked request on @bs for the current coroutine, or
868  * NULL if there is none.
869  */
870 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
871 {
872     BdrvTrackedRequest *req;
873     Coroutine *self = qemu_coroutine_self();
874     IO_CODE();
875 
876     QLIST_FOREACH(req, &bs->tracked_requests, list) {
877         if (req->co == self) {
878             return req;
879         }
880     }
881 
882     return NULL;
883 }
884 
885 /**
886  * Round a region to cluster boundaries
887  */
888 void bdrv_round_to_clusters(BlockDriverState *bs,
889                             int64_t offset, int64_t bytes,
890                             int64_t *cluster_offset,
891                             int64_t *cluster_bytes)
892 {
893     BlockDriverInfo bdi;
894     IO_CODE();
895     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
896         *cluster_offset = offset;
897         *cluster_bytes = bytes;
898     } else {
899         int64_t c = bdi.cluster_size;
900         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
901         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
902     }
903 }
904 
905 static int bdrv_get_cluster_size(BlockDriverState *bs)
906 {
907     BlockDriverInfo bdi;
908     int ret;
909 
910     ret = bdrv_get_info(bs, &bdi);
911     if (ret < 0 || bdi.cluster_size == 0) {
912         return bs->bl.request_alignment;
913     } else {
914         return bdi.cluster_size;
915     }
916 }
917 
918 void bdrv_inc_in_flight(BlockDriverState *bs)
919 {
920     IO_CODE();
921     qatomic_inc(&bs->in_flight);
922 }
923 
924 void bdrv_wakeup(BlockDriverState *bs)
925 {
926     IO_CODE();
927     aio_wait_kick();
928 }
929 
930 void bdrv_dec_in_flight(BlockDriverState *bs)
931 {
932     IO_CODE();
933     qatomic_dec(&bs->in_flight);
934     bdrv_wakeup(bs);
935 }
936 
937 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
938 {
939     BlockDriverState *bs = self->bs;
940     bool waited = false;
941 
942     if (!qatomic_read(&bs->serialising_in_flight)) {
943         return false;
944     }
945 
946     qemu_co_mutex_lock(&bs->reqs_lock);
947     waited = bdrv_wait_serialising_requests_locked(self);
948     qemu_co_mutex_unlock(&bs->reqs_lock);
949 
950     return waited;
951 }
952 
953 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
954                                                 uint64_t align)
955 {
956     bool waited;
957     IO_CODE();
958 
959     qemu_co_mutex_lock(&req->bs->reqs_lock);
960 
961     tracked_request_set_serialising(req, align);
962     waited = bdrv_wait_serialising_requests_locked(req);
963 
964     qemu_co_mutex_unlock(&req->bs->reqs_lock);
965 
966     return waited;
967 }
968 
969 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
970                             QEMUIOVector *qiov, size_t qiov_offset,
971                             Error **errp)
972 {
973     /*
974      * Check generic offset/bytes correctness
975      */
976 
977     if (offset < 0) {
978         error_setg(errp, "offset is negative: %" PRIi64, offset);
979         return -EIO;
980     }
981 
982     if (bytes < 0) {
983         error_setg(errp, "bytes is negative: %" PRIi64, bytes);
984         return -EIO;
985     }
986 
987     if (bytes > BDRV_MAX_LENGTH) {
988         error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
989                    bytes, BDRV_MAX_LENGTH);
990         return -EIO;
991     }
992 
993     if (offset > BDRV_MAX_LENGTH) {
994         error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
995                    offset, BDRV_MAX_LENGTH);
996         return -EIO;
997     }
998 
999     if (offset > BDRV_MAX_LENGTH - bytes) {
1000         error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
1001                    "exceeds maximum(%" PRIi64 ")", offset, bytes,
1002                    BDRV_MAX_LENGTH);
1003         return -EIO;
1004     }
1005 
1006     if (!qiov) {
1007         return 0;
1008     }
1009 
1010     /*
1011      * Check qiov and qiov_offset
1012      */
1013 
1014     if (qiov_offset > qiov->size) {
1015         error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
1016                    qiov_offset, qiov->size);
1017         return -EIO;
1018     }
1019 
1020     if (bytes > qiov->size - qiov_offset) {
1021         error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
1022                    "vector size(%zu)", bytes, qiov_offset, qiov->size);
1023         return -EIO;
1024     }
1025 
1026     return 0;
1027 }
1028 
1029 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
1030 {
1031     return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
1032 }
1033 
1034 static int bdrv_check_request32(int64_t offset, int64_t bytes,
1035                                 QEMUIOVector *qiov, size_t qiov_offset)
1036 {
1037     int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
1038     if (ret < 0) {
1039         return ret;
1040     }
1041 
1042     if (bytes > BDRV_REQUEST_MAX_BYTES) {
1043         return -EIO;
1044     }
1045 
1046     return 0;
1047 }
1048 
1049 /*
1050  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
1051  * The operation is sped up by checking the block status and only writing
1052  * zeroes to the device if they currently do not return zeroes. Optional
1053  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
1054  * BDRV_REQ_FUA).
1055  *
1056  * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
1057  */
1058 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
1059 {
1060     int ret;
1061     int64_t target_size, bytes, offset = 0;
1062     BlockDriverState *bs = child->bs;
1063     IO_CODE();
1064 
1065     target_size = bdrv_getlength(bs);
1066     if (target_size < 0) {
1067         return target_size;
1068     }
1069 
1070     for (;;) {
1071         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1072         if (bytes <= 0) {
1073             return 0;
1074         }
1075         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1076         if (ret < 0) {
1077             return ret;
1078         }
1079         if (ret & BDRV_BLOCK_ZERO) {
1080             offset += bytes;
1081             continue;
1082         }
1083         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1084         if (ret < 0) {
1085             return ret;
1086         }
1087         offset += bytes;
1088     }
1089 }
1090 
1091 /*
1092  * Writes to the file and ensures that no writes are reordered across this
1093  * request (acts as a barrier)
1094  *
1095  * Returns 0 on success, -errno in error cases.
1096  */
1097 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
1098                                      int64_t bytes, const void *buf,
1099                                      BdrvRequestFlags flags)
1100 {
1101     int ret;
1102     IO_CODE();
1103 
1104     ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
1105     if (ret < 0) {
1106         return ret;
1107     }
1108 
1109     ret = bdrv_co_flush(child->bs);
1110     if (ret < 0) {
1111         return ret;
1112     }
1113 
1114     return 0;
1115 }
1116 
1117 typedef struct CoroutineIOCompletion {
1118     Coroutine *coroutine;
1119     int ret;
1120 } CoroutineIOCompletion;
1121 
1122 static void bdrv_co_io_em_complete(void *opaque, int ret)
1123 {
1124     CoroutineIOCompletion *co = opaque;
1125 
1126     co->ret = ret;
1127     aio_co_wake(co->coroutine);
1128 }
1129 
1130 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1131                                            int64_t offset, int64_t bytes,
1132                                            QEMUIOVector *qiov,
1133                                            size_t qiov_offset, int flags)
1134 {
1135     BlockDriver *drv = bs->drv;
1136     int64_t sector_num;
1137     unsigned int nb_sectors;
1138     QEMUIOVector local_qiov;
1139     int ret;
1140 
1141     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1142     assert(!(flags & ~BDRV_REQ_MASK));
1143     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1144 
1145     if (!drv) {
1146         return -ENOMEDIUM;
1147     }
1148 
1149     if (drv->bdrv_co_preadv_part) {
1150         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1151                                         flags);
1152     }
1153 
1154     if (qiov_offset > 0 || bytes != qiov->size) {
1155         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1156         qiov = &local_qiov;
1157     }
1158 
1159     if (drv->bdrv_co_preadv) {
1160         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1161         goto out;
1162     }
1163 
1164     if (drv->bdrv_aio_preadv) {
1165         BlockAIOCB *acb;
1166         CoroutineIOCompletion co = {
1167             .coroutine = qemu_coroutine_self(),
1168         };
1169 
1170         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1171                                    bdrv_co_io_em_complete, &co);
1172         if (acb == NULL) {
1173             ret = -EIO;
1174             goto out;
1175         } else {
1176             qemu_coroutine_yield();
1177             ret = co.ret;
1178             goto out;
1179         }
1180     }
1181 
1182     sector_num = offset >> BDRV_SECTOR_BITS;
1183     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1184 
1185     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1186     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1187     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1188     assert(drv->bdrv_co_readv);
1189 
1190     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1191 
1192 out:
1193     if (qiov == &local_qiov) {
1194         qemu_iovec_destroy(&local_qiov);
1195     }
1196 
1197     return ret;
1198 }
1199 
1200 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1201                                             int64_t offset, int64_t bytes,
1202                                             QEMUIOVector *qiov,
1203                                             size_t qiov_offset,
1204                                             BdrvRequestFlags flags)
1205 {
1206     BlockDriver *drv = bs->drv;
1207     int64_t sector_num;
1208     unsigned int nb_sectors;
1209     QEMUIOVector local_qiov;
1210     int ret;
1211 
1212     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1213     assert(!(flags & ~BDRV_REQ_MASK));
1214     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1215 
1216     if (!drv) {
1217         return -ENOMEDIUM;
1218     }
1219 
1220     if (drv->bdrv_co_pwritev_part) {
1221         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1222                                         flags & bs->supported_write_flags);
1223         flags &= ~bs->supported_write_flags;
1224         goto emulate_flags;
1225     }
1226 
1227     if (qiov_offset > 0 || bytes != qiov->size) {
1228         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1229         qiov = &local_qiov;
1230     }
1231 
1232     if (drv->bdrv_co_pwritev) {
1233         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1234                                    flags & bs->supported_write_flags);
1235         flags &= ~bs->supported_write_flags;
1236         goto emulate_flags;
1237     }
1238 
1239     if (drv->bdrv_aio_pwritev) {
1240         BlockAIOCB *acb;
1241         CoroutineIOCompletion co = {
1242             .coroutine = qemu_coroutine_self(),
1243         };
1244 
1245         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1246                                     flags & bs->supported_write_flags,
1247                                     bdrv_co_io_em_complete, &co);
1248         flags &= ~bs->supported_write_flags;
1249         if (acb == NULL) {
1250             ret = -EIO;
1251         } else {
1252             qemu_coroutine_yield();
1253             ret = co.ret;
1254         }
1255         goto emulate_flags;
1256     }
1257 
1258     sector_num = offset >> BDRV_SECTOR_BITS;
1259     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1260 
1261     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1262     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1263     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1264 
1265     assert(drv->bdrv_co_writev);
1266     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1267                               flags & bs->supported_write_flags);
1268     flags &= ~bs->supported_write_flags;
1269 
1270 emulate_flags:
1271     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1272         ret = bdrv_co_flush(bs);
1273     }
1274 
1275     if (qiov == &local_qiov) {
1276         qemu_iovec_destroy(&local_qiov);
1277     }
1278 
1279     return ret;
1280 }
1281 
1282 static int coroutine_fn
1283 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1284                                int64_t bytes, QEMUIOVector *qiov,
1285                                size_t qiov_offset)
1286 {
1287     BlockDriver *drv = bs->drv;
1288     QEMUIOVector local_qiov;
1289     int ret;
1290 
1291     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1292 
1293     if (!drv) {
1294         return -ENOMEDIUM;
1295     }
1296 
1297     if (!block_driver_can_compress(drv)) {
1298         return -ENOTSUP;
1299     }
1300 
1301     if (drv->bdrv_co_pwritev_compressed_part) {
1302         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1303                                                     qiov, qiov_offset);
1304     }
1305 
1306     if (qiov_offset == 0) {
1307         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1308     }
1309 
1310     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1311     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1312     qemu_iovec_destroy(&local_qiov);
1313 
1314     return ret;
1315 }
1316 
1317 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1318         int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1319         size_t qiov_offset, int flags)
1320 {
1321     BlockDriverState *bs = child->bs;
1322 
1323     /* Perform I/O through a temporary buffer so that users who scribble over
1324      * their read buffer while the operation is in progress do not end up
1325      * modifying the image file.  This is critical for zero-copy guest I/O
1326      * where anything might happen inside guest memory.
1327      */
1328     void *bounce_buffer = NULL;
1329 
1330     BlockDriver *drv = bs->drv;
1331     int64_t cluster_offset;
1332     int64_t cluster_bytes;
1333     int64_t skip_bytes;
1334     int ret;
1335     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1336                                     BDRV_REQUEST_MAX_BYTES);
1337     int64_t progress = 0;
1338     bool skip_write;
1339 
1340     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1341 
1342     if (!drv) {
1343         return -ENOMEDIUM;
1344     }
1345 
1346     /*
1347      * Do not write anything when the BDS is inactive.  That is not
1348      * allowed, and it would not help.
1349      */
1350     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1351 
1352     /* FIXME We cannot require callers to have write permissions when all they
1353      * are doing is a read request. If we did things right, write permissions
1354      * would be obtained anyway, but internally by the copy-on-read code. As
1355      * long as it is implemented here rather than in a separate filter driver,
1356      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1357      * it could request permissions. Therefore we have to bypass the permission
1358      * system for the moment. */
1359     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1360 
1361     /* Cover entire cluster so no additional backing file I/O is required when
1362      * allocating cluster in the image file.  Note that this value may exceed
1363      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1364      * is one reason we loop rather than doing it all at once.
1365      */
1366     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1367     skip_bytes = offset - cluster_offset;
1368 
1369     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1370                                    cluster_offset, cluster_bytes);
1371 
1372     while (cluster_bytes) {
1373         int64_t pnum;
1374 
1375         if (skip_write) {
1376             ret = 1; /* "already allocated", so nothing will be copied */
1377             pnum = MIN(cluster_bytes, max_transfer);
1378         } else {
1379             ret = bdrv_is_allocated(bs, cluster_offset,
1380                                     MIN(cluster_bytes, max_transfer), &pnum);
1381             if (ret < 0) {
1382                 /*
1383                  * Safe to treat errors in querying allocation as if
1384                  * unallocated; we'll probably fail again soon on the
1385                  * read, but at least that will set a decent errno.
1386                  */
1387                 pnum = MIN(cluster_bytes, max_transfer);
1388             }
1389 
1390             /* Stop at EOF if the image ends in the middle of the cluster */
1391             if (ret == 0 && pnum == 0) {
1392                 assert(progress >= bytes);
1393                 break;
1394             }
1395 
1396             assert(skip_bytes < pnum);
1397         }
1398 
1399         if (ret <= 0) {
1400             QEMUIOVector local_qiov;
1401 
1402             /* Must copy-on-read; use the bounce buffer */
1403             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1404             if (!bounce_buffer) {
1405                 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1406                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1407                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1408 
1409                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1410                 if (!bounce_buffer) {
1411                     ret = -ENOMEM;
1412                     goto err;
1413                 }
1414             }
1415             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1416 
1417             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1418                                      &local_qiov, 0, 0);
1419             if (ret < 0) {
1420                 goto err;
1421             }
1422 
1423             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1424             if (drv->bdrv_co_pwrite_zeroes &&
1425                 buffer_is_zero(bounce_buffer, pnum)) {
1426                 /* FIXME: Should we (perhaps conditionally) be setting
1427                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1428                  * that still correctly reads as zero? */
1429                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1430                                                BDRV_REQ_WRITE_UNCHANGED);
1431             } else {
1432                 /* This does not change the data on the disk, it is not
1433                  * necessary to flush even in cache=writethrough mode.
1434                  */
1435                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1436                                           &local_qiov, 0,
1437                                           BDRV_REQ_WRITE_UNCHANGED);
1438             }
1439 
1440             if (ret < 0) {
1441                 /* It might be okay to ignore write errors for guest
1442                  * requests.  If this is a deliberate copy-on-read
1443                  * then we don't want to ignore the error.  Simply
1444                  * report it in all cases.
1445                  */
1446                 goto err;
1447             }
1448 
1449             if (!(flags & BDRV_REQ_PREFETCH)) {
1450                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1451                                     bounce_buffer + skip_bytes,
1452                                     MIN(pnum - skip_bytes, bytes - progress));
1453             }
1454         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1455             /* Read directly into the destination */
1456             ret = bdrv_driver_preadv(bs, offset + progress,
1457                                      MIN(pnum - skip_bytes, bytes - progress),
1458                                      qiov, qiov_offset + progress, 0);
1459             if (ret < 0) {
1460                 goto err;
1461             }
1462         }
1463 
1464         cluster_offset += pnum;
1465         cluster_bytes -= pnum;
1466         progress += pnum - skip_bytes;
1467         skip_bytes = 0;
1468     }
1469     ret = 0;
1470 
1471 err:
1472     qemu_vfree(bounce_buffer);
1473     return ret;
1474 }
1475 
1476 /*
1477  * Forwards an already correctly aligned request to the BlockDriver. This
1478  * handles copy on read, zeroing after EOF, and fragmentation of large
1479  * reads; any other features must be implemented by the caller.
1480  */
1481 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1482     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1483     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1484 {
1485     BlockDriverState *bs = child->bs;
1486     int64_t total_bytes, max_bytes;
1487     int ret = 0;
1488     int64_t bytes_remaining = bytes;
1489     int max_transfer;
1490 
1491     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1492     assert(is_power_of_2(align));
1493     assert((offset & (align - 1)) == 0);
1494     assert((bytes & (align - 1)) == 0);
1495     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1496     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1497                                    align);
1498 
1499     /* TODO: We would need a per-BDS .supported_read_flags and
1500      * potential fallback support, if we ever implement any read flags
1501      * to pass through to drivers.  For now, there aren't any
1502      * passthrough flags.  */
1503     assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1504 
1505     /* Handle Copy on Read and associated serialisation */
1506     if (flags & BDRV_REQ_COPY_ON_READ) {
1507         /* If we touch the same cluster it counts as an overlap.  This
1508          * guarantees that allocating writes will be serialized and not race
1509          * with each other for the same cluster.  For example, in copy-on-read
1510          * it ensures that the CoR read and write operations are atomic and
1511          * guest writes cannot interleave between them. */
1512         bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1513     } else {
1514         bdrv_wait_serialising_requests(req);
1515     }
1516 
1517     if (flags & BDRV_REQ_COPY_ON_READ) {
1518         int64_t pnum;
1519 
1520         /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1521         flags &= ~BDRV_REQ_COPY_ON_READ;
1522 
1523         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1524         if (ret < 0) {
1525             goto out;
1526         }
1527 
1528         if (!ret || pnum != bytes) {
1529             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1530                                            qiov, qiov_offset, flags);
1531             goto out;
1532         } else if (flags & BDRV_REQ_PREFETCH) {
1533             goto out;
1534         }
1535     }
1536 
1537     /* Forward the request to the BlockDriver, possibly fragmenting it */
1538     total_bytes = bdrv_getlength(bs);
1539     if (total_bytes < 0) {
1540         ret = total_bytes;
1541         goto out;
1542     }
1543 
1544     assert(!(flags & ~bs->supported_read_flags));
1545 
1546     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1547     if (bytes <= max_bytes && bytes <= max_transfer) {
1548         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1549         goto out;
1550     }
1551 
1552     while (bytes_remaining) {
1553         int64_t num;
1554 
1555         if (max_bytes) {
1556             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1557             assert(num);
1558 
1559             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1560                                      num, qiov,
1561                                      qiov_offset + bytes - bytes_remaining,
1562                                      flags);
1563             max_bytes -= num;
1564         } else {
1565             num = bytes_remaining;
1566             ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1567                                     0, bytes_remaining);
1568         }
1569         if (ret < 0) {
1570             goto out;
1571         }
1572         bytes_remaining -= num;
1573     }
1574 
1575 out:
1576     return ret < 0 ? ret : 0;
1577 }
1578 
1579 /*
1580  * Request padding
1581  *
1582  *  |<---- align ----->|                     |<----- align ---->|
1583  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1584  *  |          |       |                     |     |            |
1585  * -*----------$-------*-------- ... --------*-----$------------*---
1586  *  |          |       |                     |     |            |
1587  *  |          offset  |                     |     end          |
1588  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1589  *  [buf   ... )                             [tail_buf          )
1590  *
1591  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1592  * is placed at the beginning of @buf and @tail at the @end.
1593  *
1594  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1595  * around tail, if tail exists.
1596  *
1597  * @merge_reads is true for small requests,
1598  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1599  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1600  */
1601 typedef struct BdrvRequestPadding {
1602     uint8_t *buf;
1603     size_t buf_len;
1604     uint8_t *tail_buf;
1605     size_t head;
1606     size_t tail;
1607     bool merge_reads;
1608     QEMUIOVector local_qiov;
1609 } BdrvRequestPadding;
1610 
1611 static bool bdrv_init_padding(BlockDriverState *bs,
1612                               int64_t offset, int64_t bytes,
1613                               BdrvRequestPadding *pad)
1614 {
1615     int64_t align = bs->bl.request_alignment;
1616     int64_t sum;
1617 
1618     bdrv_check_request(offset, bytes, &error_abort);
1619     assert(align <= INT_MAX); /* documented in block/block_int.h */
1620     assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1621 
1622     memset(pad, 0, sizeof(*pad));
1623 
1624     pad->head = offset & (align - 1);
1625     pad->tail = ((offset + bytes) & (align - 1));
1626     if (pad->tail) {
1627         pad->tail = align - pad->tail;
1628     }
1629 
1630     if (!pad->head && !pad->tail) {
1631         return false;
1632     }
1633 
1634     assert(bytes); /* Nothing good in aligning zero-length requests */
1635 
1636     sum = pad->head + bytes + pad->tail;
1637     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1638     pad->buf = qemu_blockalign(bs, pad->buf_len);
1639     pad->merge_reads = sum == pad->buf_len;
1640     if (pad->tail) {
1641         pad->tail_buf = pad->buf + pad->buf_len - align;
1642     }
1643 
1644     return true;
1645 }
1646 
1647 static int bdrv_padding_rmw_read(BdrvChild *child,
1648                                  BdrvTrackedRequest *req,
1649                                  BdrvRequestPadding *pad,
1650                                  bool zero_middle)
1651 {
1652     QEMUIOVector local_qiov;
1653     BlockDriverState *bs = child->bs;
1654     uint64_t align = bs->bl.request_alignment;
1655     int ret;
1656 
1657     assert(req->serialising && pad->buf);
1658 
1659     if (pad->head || pad->merge_reads) {
1660         int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1661 
1662         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1663 
1664         if (pad->head) {
1665             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1666         }
1667         if (pad->merge_reads && pad->tail) {
1668             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1669         }
1670         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1671                                   align, &local_qiov, 0, 0);
1672         if (ret < 0) {
1673             return ret;
1674         }
1675         if (pad->head) {
1676             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1677         }
1678         if (pad->merge_reads && pad->tail) {
1679             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1680         }
1681 
1682         if (pad->merge_reads) {
1683             goto zero_mem;
1684         }
1685     }
1686 
1687     if (pad->tail) {
1688         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1689 
1690         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1691         ret = bdrv_aligned_preadv(
1692                 child, req,
1693                 req->overlap_offset + req->overlap_bytes - align,
1694                 align, align, &local_qiov, 0, 0);
1695         if (ret < 0) {
1696             return ret;
1697         }
1698         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1699     }
1700 
1701 zero_mem:
1702     if (zero_middle) {
1703         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1704     }
1705 
1706     return 0;
1707 }
1708 
1709 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1710 {
1711     if (pad->buf) {
1712         qemu_vfree(pad->buf);
1713         qemu_iovec_destroy(&pad->local_qiov);
1714     }
1715     memset(pad, 0, sizeof(*pad));
1716 }
1717 
1718 /*
1719  * bdrv_pad_request
1720  *
1721  * Exchange request parameters with padded request if needed. Don't include RMW
1722  * read of padding, bdrv_padding_rmw_read() should be called separately if
1723  * needed.
1724  *
1725  * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1726  *  - on function start they represent original request
1727  *  - on failure or when padding is not needed they are unchanged
1728  *  - on success when padding is needed they represent padded request
1729  */
1730 static int bdrv_pad_request(BlockDriverState *bs,
1731                             QEMUIOVector **qiov, size_t *qiov_offset,
1732                             int64_t *offset, int64_t *bytes,
1733                             BdrvRequestPadding *pad, bool *padded)
1734 {
1735     int ret;
1736 
1737     bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1738 
1739     if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1740         if (padded) {
1741             *padded = false;
1742         }
1743         return 0;
1744     }
1745 
1746     ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1747                                    *qiov, *qiov_offset, *bytes,
1748                                    pad->buf + pad->buf_len - pad->tail,
1749                                    pad->tail);
1750     if (ret < 0) {
1751         bdrv_padding_destroy(pad);
1752         return ret;
1753     }
1754     *bytes += pad->head + pad->tail;
1755     *offset -= pad->head;
1756     *qiov = &pad->local_qiov;
1757     *qiov_offset = 0;
1758     if (padded) {
1759         *padded = true;
1760     }
1761 
1762     return 0;
1763 }
1764 
1765 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1766     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1767     BdrvRequestFlags flags)
1768 {
1769     IO_CODE();
1770     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1771 }
1772 
1773 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1774     int64_t offset, int64_t bytes,
1775     QEMUIOVector *qiov, size_t qiov_offset,
1776     BdrvRequestFlags flags)
1777 {
1778     BlockDriverState *bs = child->bs;
1779     BdrvTrackedRequest req;
1780     BdrvRequestPadding pad;
1781     int ret;
1782     IO_CODE();
1783 
1784     trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1785 
1786     if (!bdrv_is_inserted(bs)) {
1787         return -ENOMEDIUM;
1788     }
1789 
1790     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1791     if (ret < 0) {
1792         return ret;
1793     }
1794 
1795     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1796         /*
1797          * Aligning zero request is nonsense. Even if driver has special meaning
1798          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1799          * it to driver due to request_alignment.
1800          *
1801          * Still, no reason to return an error if someone do unaligned
1802          * zero-length read occasionally.
1803          */
1804         return 0;
1805     }
1806 
1807     bdrv_inc_in_flight(bs);
1808 
1809     /* Don't do copy-on-read if we read data before write operation */
1810     if (qatomic_read(&bs->copy_on_read)) {
1811         flags |= BDRV_REQ_COPY_ON_READ;
1812     }
1813 
1814     ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1815                            NULL);
1816     if (ret < 0) {
1817         goto fail;
1818     }
1819 
1820     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1821     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1822                               bs->bl.request_alignment,
1823                               qiov, qiov_offset, flags);
1824     tracked_request_end(&req);
1825     bdrv_padding_destroy(&pad);
1826 
1827 fail:
1828     bdrv_dec_in_flight(bs);
1829 
1830     return ret;
1831 }
1832 
1833 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1834     int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1835 {
1836     BlockDriver *drv = bs->drv;
1837     QEMUIOVector qiov;
1838     void *buf = NULL;
1839     int ret = 0;
1840     bool need_flush = false;
1841     int head = 0;
1842     int tail = 0;
1843 
1844     int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1845                                             INT64_MAX);
1846     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1847                         bs->bl.request_alignment);
1848     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1849 
1850     bdrv_check_request(offset, bytes, &error_abort);
1851 
1852     if (!drv) {
1853         return -ENOMEDIUM;
1854     }
1855 
1856     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1857         return -ENOTSUP;
1858     }
1859 
1860     /* Invalidate the cached block-status data range if this write overlaps */
1861     bdrv_bsc_invalidate_range(bs, offset, bytes);
1862 
1863     assert(alignment % bs->bl.request_alignment == 0);
1864     head = offset % alignment;
1865     tail = (offset + bytes) % alignment;
1866     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1867     assert(max_write_zeroes >= bs->bl.request_alignment);
1868 
1869     while (bytes > 0 && !ret) {
1870         int64_t num = bytes;
1871 
1872         /* Align request.  Block drivers can expect the "bulk" of the request
1873          * to be aligned, and that unaligned requests do not cross cluster
1874          * boundaries.
1875          */
1876         if (head) {
1877             /* Make a small request up to the first aligned sector. For
1878              * convenience, limit this request to max_transfer even if
1879              * we don't need to fall back to writes.  */
1880             num = MIN(MIN(bytes, max_transfer), alignment - head);
1881             head = (head + num) % alignment;
1882             assert(num < max_write_zeroes);
1883         } else if (tail && num > alignment) {
1884             /* Shorten the request to the last aligned sector.  */
1885             num -= tail;
1886         }
1887 
1888         /* limit request size */
1889         if (num > max_write_zeroes) {
1890             num = max_write_zeroes;
1891         }
1892 
1893         ret = -ENOTSUP;
1894         /* First try the efficient write zeroes operation */
1895         if (drv->bdrv_co_pwrite_zeroes) {
1896             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1897                                              flags & bs->supported_zero_flags);
1898             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1899                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1900                 need_flush = true;
1901             }
1902         } else {
1903             assert(!bs->supported_zero_flags);
1904         }
1905 
1906         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1907             /* Fall back to bounce buffer if write zeroes is unsupported */
1908             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1909 
1910             if ((flags & BDRV_REQ_FUA) &&
1911                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1912                 /* No need for bdrv_driver_pwrite() to do a fallback
1913                  * flush on each chunk; use just one at the end */
1914                 write_flags &= ~BDRV_REQ_FUA;
1915                 need_flush = true;
1916             }
1917             num = MIN(num, max_transfer);
1918             if (buf == NULL) {
1919                 buf = qemu_try_blockalign0(bs, num);
1920                 if (buf == NULL) {
1921                     ret = -ENOMEM;
1922                     goto fail;
1923                 }
1924             }
1925             qemu_iovec_init_buf(&qiov, buf, num);
1926 
1927             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1928 
1929             /* Keep bounce buffer around if it is big enough for all
1930              * all future requests.
1931              */
1932             if (num < max_transfer) {
1933                 qemu_vfree(buf);
1934                 buf = NULL;
1935             }
1936         }
1937 
1938         offset += num;
1939         bytes -= num;
1940     }
1941 
1942 fail:
1943     if (ret == 0 && need_flush) {
1944         ret = bdrv_co_flush(bs);
1945     }
1946     qemu_vfree(buf);
1947     return ret;
1948 }
1949 
1950 static inline int coroutine_fn
1951 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1952                           BdrvTrackedRequest *req, int flags)
1953 {
1954     BlockDriverState *bs = child->bs;
1955 
1956     bdrv_check_request(offset, bytes, &error_abort);
1957 
1958     if (bdrv_is_read_only(bs)) {
1959         return -EPERM;
1960     }
1961 
1962     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1963     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1964     assert(!(flags & ~BDRV_REQ_MASK));
1965     assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1966 
1967     if (flags & BDRV_REQ_SERIALISING) {
1968         QEMU_LOCK_GUARD(&bs->reqs_lock);
1969 
1970         tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1971 
1972         if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1973             return -EBUSY;
1974         }
1975 
1976         bdrv_wait_serialising_requests_locked(req);
1977     } else {
1978         bdrv_wait_serialising_requests(req);
1979     }
1980 
1981     assert(req->overlap_offset <= offset);
1982     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1983     assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1984            child->perm & BLK_PERM_RESIZE);
1985 
1986     switch (req->type) {
1987     case BDRV_TRACKED_WRITE:
1988     case BDRV_TRACKED_DISCARD:
1989         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1990             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1991         } else {
1992             assert(child->perm & BLK_PERM_WRITE);
1993         }
1994         bdrv_write_threshold_check_write(bs, offset, bytes);
1995         return 0;
1996     case BDRV_TRACKED_TRUNCATE:
1997         assert(child->perm & BLK_PERM_RESIZE);
1998         return 0;
1999     default:
2000         abort();
2001     }
2002 }
2003 
2004 static inline void coroutine_fn
2005 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2006                          BdrvTrackedRequest *req, int ret)
2007 {
2008     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2009     BlockDriverState *bs = child->bs;
2010 
2011     bdrv_check_request(offset, bytes, &error_abort);
2012 
2013     qatomic_inc(&bs->write_gen);
2014 
2015     /*
2016      * Discard cannot extend the image, but in error handling cases, such as
2017      * when reverting a qcow2 cluster allocation, the discarded range can pass
2018      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2019      * here. Instead, just skip it, since semantically a discard request
2020      * beyond EOF cannot expand the image anyway.
2021      */
2022     if (ret == 0 &&
2023         (req->type == BDRV_TRACKED_TRUNCATE ||
2024          end_sector > bs->total_sectors) &&
2025         req->type != BDRV_TRACKED_DISCARD) {
2026         bs->total_sectors = end_sector;
2027         bdrv_parent_cb_resize(bs);
2028         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2029     }
2030     if (req->bytes) {
2031         switch (req->type) {
2032         case BDRV_TRACKED_WRITE:
2033             stat64_max(&bs->wr_highest_offset, offset + bytes);
2034             /* fall through, to set dirty bits */
2035         case BDRV_TRACKED_DISCARD:
2036             bdrv_set_dirty(bs, offset, bytes);
2037             break;
2038         default:
2039             break;
2040         }
2041     }
2042 }
2043 
2044 /*
2045  * Forwards an already correctly aligned write request to the BlockDriver,
2046  * after possibly fragmenting it.
2047  */
2048 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
2049     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
2050     int64_t align, QEMUIOVector *qiov, size_t qiov_offset,
2051     BdrvRequestFlags flags)
2052 {
2053     BlockDriverState *bs = child->bs;
2054     BlockDriver *drv = bs->drv;
2055     int ret;
2056 
2057     int64_t bytes_remaining = bytes;
2058     int max_transfer;
2059 
2060     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2061 
2062     if (!drv) {
2063         return -ENOMEDIUM;
2064     }
2065 
2066     if (bdrv_has_readonly_bitmaps(bs)) {
2067         return -EPERM;
2068     }
2069 
2070     assert(is_power_of_2(align));
2071     assert((offset & (align - 1)) == 0);
2072     assert((bytes & (align - 1)) == 0);
2073     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2074                                    align);
2075 
2076     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2077 
2078     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2079         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2080         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2081         flags |= BDRV_REQ_ZERO_WRITE;
2082         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2083             flags |= BDRV_REQ_MAY_UNMAP;
2084         }
2085     }
2086 
2087     if (ret < 0) {
2088         /* Do nothing, write notifier decided to fail this request */
2089     } else if (flags & BDRV_REQ_ZERO_WRITE) {
2090         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2091         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2092     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2093         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2094                                              qiov, qiov_offset);
2095     } else if (bytes <= max_transfer) {
2096         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2097         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2098     } else {
2099         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2100         while (bytes_remaining) {
2101             int num = MIN(bytes_remaining, max_transfer);
2102             int local_flags = flags;
2103 
2104             assert(num);
2105             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2106                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2107                 /* If FUA is going to be emulated by flush, we only
2108                  * need to flush on the last iteration */
2109                 local_flags &= ~BDRV_REQ_FUA;
2110             }
2111 
2112             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2113                                       num, qiov,
2114                                       qiov_offset + bytes - bytes_remaining,
2115                                       local_flags);
2116             if (ret < 0) {
2117                 break;
2118             }
2119             bytes_remaining -= num;
2120         }
2121     }
2122     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2123 
2124     if (ret >= 0) {
2125         ret = 0;
2126     }
2127     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2128 
2129     return ret;
2130 }
2131 
2132 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2133                                                 int64_t offset,
2134                                                 int64_t bytes,
2135                                                 BdrvRequestFlags flags,
2136                                                 BdrvTrackedRequest *req)
2137 {
2138     BlockDriverState *bs = child->bs;
2139     QEMUIOVector local_qiov;
2140     uint64_t align = bs->bl.request_alignment;
2141     int ret = 0;
2142     bool padding;
2143     BdrvRequestPadding pad;
2144 
2145     padding = bdrv_init_padding(bs, offset, bytes, &pad);
2146     if (padding) {
2147         assert(!(flags & BDRV_REQ_NO_WAIT));
2148         bdrv_make_request_serialising(req, align);
2149 
2150         bdrv_padding_rmw_read(child, req, &pad, true);
2151 
2152         if (pad.head || pad.merge_reads) {
2153             int64_t aligned_offset = offset & ~(align - 1);
2154             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2155 
2156             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2157             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2158                                        align, &local_qiov, 0,
2159                                        flags & ~BDRV_REQ_ZERO_WRITE);
2160             if (ret < 0 || pad.merge_reads) {
2161                 /* Error or all work is done */
2162                 goto out;
2163             }
2164             offset += write_bytes - pad.head;
2165             bytes -= write_bytes - pad.head;
2166         }
2167     }
2168 
2169     assert(!bytes || (offset & (align - 1)) == 0);
2170     if (bytes >= align) {
2171         /* Write the aligned part in the middle. */
2172         int64_t aligned_bytes = bytes & ~(align - 1);
2173         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2174                                    NULL, 0, flags);
2175         if (ret < 0) {
2176             goto out;
2177         }
2178         bytes -= aligned_bytes;
2179         offset += aligned_bytes;
2180     }
2181 
2182     assert(!bytes || (offset & (align - 1)) == 0);
2183     if (bytes) {
2184         assert(align == pad.tail + bytes);
2185 
2186         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2187         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2188                                    &local_qiov, 0,
2189                                    flags & ~BDRV_REQ_ZERO_WRITE);
2190     }
2191 
2192 out:
2193     bdrv_padding_destroy(&pad);
2194 
2195     return ret;
2196 }
2197 
2198 /*
2199  * Handle a write request in coroutine context
2200  */
2201 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2202     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2203     BdrvRequestFlags flags)
2204 {
2205     IO_CODE();
2206     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2207 }
2208 
2209 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2210     int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2211     BdrvRequestFlags flags)
2212 {
2213     BlockDriverState *bs = child->bs;
2214     BdrvTrackedRequest req;
2215     uint64_t align = bs->bl.request_alignment;
2216     BdrvRequestPadding pad;
2217     int ret;
2218     bool padded = false;
2219     IO_CODE();
2220 
2221     trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2222 
2223     if (!bdrv_is_inserted(bs)) {
2224         return -ENOMEDIUM;
2225     }
2226 
2227     if (flags & BDRV_REQ_ZERO_WRITE) {
2228         ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2229     } else {
2230         ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2231     }
2232     if (ret < 0) {
2233         return ret;
2234     }
2235 
2236     /* If the request is misaligned then we can't make it efficient */
2237     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2238         !QEMU_IS_ALIGNED(offset | bytes, align))
2239     {
2240         return -ENOTSUP;
2241     }
2242 
2243     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2244         /*
2245          * Aligning zero request is nonsense. Even if driver has special meaning
2246          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2247          * it to driver due to request_alignment.
2248          *
2249          * Still, no reason to return an error if someone do unaligned
2250          * zero-length write occasionally.
2251          */
2252         return 0;
2253     }
2254 
2255     if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2256         /*
2257          * Pad request for following read-modify-write cycle.
2258          * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2259          * alignment only if there is no ZERO flag.
2260          */
2261         ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2262                                &padded);
2263         if (ret < 0) {
2264             return ret;
2265         }
2266     }
2267 
2268     bdrv_inc_in_flight(bs);
2269     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2270 
2271     if (flags & BDRV_REQ_ZERO_WRITE) {
2272         assert(!padded);
2273         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2274         goto out;
2275     }
2276 
2277     if (padded) {
2278         /*
2279          * Request was unaligned to request_alignment and therefore
2280          * padded.  We are going to do read-modify-write, and must
2281          * serialize the request to prevent interactions of the
2282          * widened region with other transactions.
2283          */
2284         assert(!(flags & BDRV_REQ_NO_WAIT));
2285         bdrv_make_request_serialising(&req, align);
2286         bdrv_padding_rmw_read(child, &req, &pad, false);
2287     }
2288 
2289     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2290                                qiov, qiov_offset, flags);
2291 
2292     bdrv_padding_destroy(&pad);
2293 
2294 out:
2295     tracked_request_end(&req);
2296     bdrv_dec_in_flight(bs);
2297 
2298     return ret;
2299 }
2300 
2301 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2302                                        int64_t bytes, BdrvRequestFlags flags)
2303 {
2304     IO_CODE();
2305     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2306 
2307     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2308         flags &= ~BDRV_REQ_MAY_UNMAP;
2309     }
2310 
2311     return bdrv_co_pwritev(child, offset, bytes, NULL,
2312                            BDRV_REQ_ZERO_WRITE | flags);
2313 }
2314 
2315 /*
2316  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2317  */
2318 int bdrv_flush_all(void)
2319 {
2320     BdrvNextIterator it;
2321     BlockDriverState *bs = NULL;
2322     int result = 0;
2323 
2324     GLOBAL_STATE_CODE();
2325 
2326     /*
2327      * bdrv queue is managed by record/replay,
2328      * creating new flush request for stopping
2329      * the VM may break the determinism
2330      */
2331     if (replay_events_enabled()) {
2332         return result;
2333     }
2334 
2335     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2336         AioContext *aio_context = bdrv_get_aio_context(bs);
2337         int ret;
2338 
2339         aio_context_acquire(aio_context);
2340         ret = bdrv_flush(bs);
2341         if (ret < 0 && !result) {
2342             result = ret;
2343         }
2344         aio_context_release(aio_context);
2345     }
2346 
2347     return result;
2348 }
2349 
2350 /*
2351  * Returns the allocation status of the specified sectors.
2352  * Drivers not implementing the functionality are assumed to not support
2353  * backing files, hence all their sectors are reported as allocated.
2354  *
2355  * If 'want_zero' is true, the caller is querying for mapping
2356  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2357  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2358  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2359  *
2360  * If 'offset' is beyond the end of the disk image the return value is
2361  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2362  *
2363  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2364  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2365  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2366  *
2367  * 'pnum' is set to the number of bytes (including and immediately
2368  * following the specified offset) that are easily known to be in the
2369  * same allocated/unallocated state.  Note that a second call starting
2370  * at the original offset plus returned pnum may have the same status.
2371  * The returned value is non-zero on success except at end-of-file.
2372  *
2373  * Returns negative errno on failure.  Otherwise, if the
2374  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2375  * set to the host mapping and BDS corresponding to the guest offset.
2376  */
2377 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2378                                              bool want_zero,
2379                                              int64_t offset, int64_t bytes,
2380                                              int64_t *pnum, int64_t *map,
2381                                              BlockDriverState **file)
2382 {
2383     int64_t total_size;
2384     int64_t n; /* bytes */
2385     int ret;
2386     int64_t local_map = 0;
2387     BlockDriverState *local_file = NULL;
2388     int64_t aligned_offset, aligned_bytes;
2389     uint32_t align;
2390     bool has_filtered_child;
2391 
2392     assert(pnum);
2393     *pnum = 0;
2394     total_size = bdrv_getlength(bs);
2395     if (total_size < 0) {
2396         ret = total_size;
2397         goto early_out;
2398     }
2399 
2400     if (offset >= total_size) {
2401         ret = BDRV_BLOCK_EOF;
2402         goto early_out;
2403     }
2404     if (!bytes) {
2405         ret = 0;
2406         goto early_out;
2407     }
2408 
2409     n = total_size - offset;
2410     if (n < bytes) {
2411         bytes = n;
2412     }
2413 
2414     /* Must be non-NULL or bdrv_getlength() would have failed */
2415     assert(bs->drv);
2416     has_filtered_child = bdrv_filter_child(bs);
2417     if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2418         *pnum = bytes;
2419         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2420         if (offset + bytes == total_size) {
2421             ret |= BDRV_BLOCK_EOF;
2422         }
2423         if (bs->drv->protocol_name) {
2424             ret |= BDRV_BLOCK_OFFSET_VALID;
2425             local_map = offset;
2426             local_file = bs;
2427         }
2428         goto early_out;
2429     }
2430 
2431     bdrv_inc_in_flight(bs);
2432 
2433     /* Round out to request_alignment boundaries */
2434     align = bs->bl.request_alignment;
2435     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2436     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2437 
2438     if (bs->drv->bdrv_co_block_status) {
2439         /*
2440          * Use the block-status cache only for protocol nodes: Format
2441          * drivers are generally quick to inquire the status, but protocol
2442          * drivers often need to get information from outside of qemu, so
2443          * we do not have control over the actual implementation.  There
2444          * have been cases where inquiring the status took an unreasonably
2445          * long time, and we can do nothing in qemu to fix it.
2446          * This is especially problematic for images with large data areas,
2447          * because finding the few holes in them and giving them special
2448          * treatment does not gain much performance.  Therefore, we try to
2449          * cache the last-identified data region.
2450          *
2451          * Second, limiting ourselves to protocol nodes allows us to assume
2452          * the block status for data regions to be DATA | OFFSET_VALID, and
2453          * that the host offset is the same as the guest offset.
2454          *
2455          * Note that it is possible that external writers zero parts of
2456          * the cached regions without the cache being invalidated, and so
2457          * we may report zeroes as data.  This is not catastrophic,
2458          * however, because reporting zeroes as data is fine.
2459          */
2460         if (QLIST_EMPTY(&bs->children) &&
2461             bdrv_bsc_is_data(bs, aligned_offset, pnum))
2462         {
2463             ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2464             local_file = bs;
2465             local_map = aligned_offset;
2466         } else {
2467             ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2468                                                 aligned_bytes, pnum, &local_map,
2469                                                 &local_file);
2470 
2471             /*
2472              * Note that checking QLIST_EMPTY(&bs->children) is also done when
2473              * the cache is queried above.  Technically, we do not need to check
2474              * it here; the worst that can happen is that we fill the cache for
2475              * non-protocol nodes, and then it is never used.  However, filling
2476              * the cache requires an RCU update, so double check here to avoid
2477              * such an update if possible.
2478              *
2479              * Check want_zero, because we only want to update the cache when we
2480              * have accurate information about what is zero and what is data.
2481              */
2482             if (want_zero &&
2483                 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2484                 QLIST_EMPTY(&bs->children))
2485             {
2486                 /*
2487                  * When a protocol driver reports BLOCK_OFFSET_VALID, the
2488                  * returned local_map value must be the same as the offset we
2489                  * have passed (aligned_offset), and local_bs must be the node
2490                  * itself.
2491                  * Assert this, because we follow this rule when reading from
2492                  * the cache (see the `local_file = bs` and
2493                  * `local_map = aligned_offset` assignments above), and the
2494                  * result the cache delivers must be the same as the driver
2495                  * would deliver.
2496                  */
2497                 assert(local_file == bs);
2498                 assert(local_map == aligned_offset);
2499                 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2500             }
2501         }
2502     } else {
2503         /* Default code for filters */
2504 
2505         local_file = bdrv_filter_bs(bs);
2506         assert(local_file);
2507 
2508         *pnum = aligned_bytes;
2509         local_map = aligned_offset;
2510         ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2511     }
2512     if (ret < 0) {
2513         *pnum = 0;
2514         goto out;
2515     }
2516 
2517     /*
2518      * The driver's result must be a non-zero multiple of request_alignment.
2519      * Clamp pnum and adjust map to original request.
2520      */
2521     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2522            align > offset - aligned_offset);
2523     if (ret & BDRV_BLOCK_RECURSE) {
2524         assert(ret & BDRV_BLOCK_DATA);
2525         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2526         assert(!(ret & BDRV_BLOCK_ZERO));
2527     }
2528 
2529     *pnum -= offset - aligned_offset;
2530     if (*pnum > bytes) {
2531         *pnum = bytes;
2532     }
2533     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2534         local_map += offset - aligned_offset;
2535     }
2536 
2537     if (ret & BDRV_BLOCK_RAW) {
2538         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2539         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2540                                    *pnum, pnum, &local_map, &local_file);
2541         goto out;
2542     }
2543 
2544     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2545         ret |= BDRV_BLOCK_ALLOCATED;
2546     } else if (bs->drv->supports_backing) {
2547         BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2548 
2549         if (!cow_bs) {
2550             ret |= BDRV_BLOCK_ZERO;
2551         } else if (want_zero) {
2552             int64_t size2 = bdrv_getlength(cow_bs);
2553 
2554             if (size2 >= 0 && offset >= size2) {
2555                 ret |= BDRV_BLOCK_ZERO;
2556             }
2557         }
2558     }
2559 
2560     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2561         local_file && local_file != bs &&
2562         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2563         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2564         int64_t file_pnum;
2565         int ret2;
2566 
2567         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2568                                     *pnum, &file_pnum, NULL, NULL);
2569         if (ret2 >= 0) {
2570             /* Ignore errors.  This is just providing extra information, it
2571              * is useful but not necessary.
2572              */
2573             if (ret2 & BDRV_BLOCK_EOF &&
2574                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2575                 /*
2576                  * It is valid for the format block driver to read
2577                  * beyond the end of the underlying file's current
2578                  * size; such areas read as zero.
2579                  */
2580                 ret |= BDRV_BLOCK_ZERO;
2581             } else {
2582                 /* Limit request to the range reported by the protocol driver */
2583                 *pnum = file_pnum;
2584                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2585             }
2586         }
2587     }
2588 
2589 out:
2590     bdrv_dec_in_flight(bs);
2591     if (ret >= 0 && offset + *pnum == total_size) {
2592         ret |= BDRV_BLOCK_EOF;
2593     }
2594 early_out:
2595     if (file) {
2596         *file = local_file;
2597     }
2598     if (map) {
2599         *map = local_map;
2600     }
2601     return ret;
2602 }
2603 
2604 int coroutine_fn
2605 bdrv_co_common_block_status_above(BlockDriverState *bs,
2606                                   BlockDriverState *base,
2607                                   bool include_base,
2608                                   bool want_zero,
2609                                   int64_t offset,
2610                                   int64_t bytes,
2611                                   int64_t *pnum,
2612                                   int64_t *map,
2613                                   BlockDriverState **file,
2614                                   int *depth)
2615 {
2616     int ret;
2617     BlockDriverState *p;
2618     int64_t eof = 0;
2619     int dummy;
2620     IO_CODE();
2621 
2622     assert(!include_base || base); /* Can't include NULL base */
2623 
2624     if (!depth) {
2625         depth = &dummy;
2626     }
2627     *depth = 0;
2628 
2629     if (!include_base && bs == base) {
2630         *pnum = bytes;
2631         return 0;
2632     }
2633 
2634     ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2635     ++*depth;
2636     if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2637         return ret;
2638     }
2639 
2640     if (ret & BDRV_BLOCK_EOF) {
2641         eof = offset + *pnum;
2642     }
2643 
2644     assert(*pnum <= bytes);
2645     bytes = *pnum;
2646 
2647     for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2648          p = bdrv_filter_or_cow_bs(p))
2649     {
2650         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2651                                    file);
2652         ++*depth;
2653         if (ret < 0) {
2654             return ret;
2655         }
2656         if (*pnum == 0) {
2657             /*
2658              * The top layer deferred to this layer, and because this layer is
2659              * short, any zeroes that we synthesize beyond EOF behave as if they
2660              * were allocated at this layer.
2661              *
2662              * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2663              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2664              * below.
2665              */
2666             assert(ret & BDRV_BLOCK_EOF);
2667             *pnum = bytes;
2668             if (file) {
2669                 *file = p;
2670             }
2671             ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2672             break;
2673         }
2674         if (ret & BDRV_BLOCK_ALLOCATED) {
2675             /*
2676              * We've found the node and the status, we must break.
2677              *
2678              * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2679              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2680              * below.
2681              */
2682             ret &= ~BDRV_BLOCK_EOF;
2683             break;
2684         }
2685 
2686         if (p == base) {
2687             assert(include_base);
2688             break;
2689         }
2690 
2691         /*
2692          * OK, [offset, offset + *pnum) region is unallocated on this layer,
2693          * let's continue the diving.
2694          */
2695         assert(*pnum <= bytes);
2696         bytes = *pnum;
2697     }
2698 
2699     if (offset + *pnum == eof) {
2700         ret |= BDRV_BLOCK_EOF;
2701     }
2702 
2703     return ret;
2704 }
2705 
2706 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2707                             int64_t offset, int64_t bytes, int64_t *pnum,
2708                             int64_t *map, BlockDriverState **file)
2709 {
2710     IO_CODE();
2711     return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2712                                           pnum, map, file, NULL);
2713 }
2714 
2715 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2716                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2717 {
2718     IO_CODE();
2719     return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2720                                    offset, bytes, pnum, map, file);
2721 }
2722 
2723 /*
2724  * Check @bs (and its backing chain) to see if the range defined
2725  * by @offset and @bytes is known to read as zeroes.
2726  * Return 1 if that is the case, 0 otherwise and -errno on error.
2727  * This test is meant to be fast rather than accurate so returning 0
2728  * does not guarantee non-zero data.
2729  */
2730 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2731                                       int64_t bytes)
2732 {
2733     int ret;
2734     int64_t pnum = bytes;
2735     IO_CODE();
2736 
2737     if (!bytes) {
2738         return 1;
2739     }
2740 
2741     ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2742                                          bytes, &pnum, NULL, NULL, NULL);
2743 
2744     if (ret < 0) {
2745         return ret;
2746     }
2747 
2748     return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2749 }
2750 
2751 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2752                                    int64_t bytes, int64_t *pnum)
2753 {
2754     int ret;
2755     int64_t dummy;
2756     IO_CODE();
2757 
2758     ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2759                                          bytes, pnum ? pnum : &dummy, NULL,
2760                                          NULL, NULL);
2761     if (ret < 0) {
2762         return ret;
2763     }
2764     return !!(ret & BDRV_BLOCK_ALLOCATED);
2765 }
2766 
2767 /*
2768  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2769  *
2770  * Return a positive depth if (a prefix of) the given range is allocated
2771  * in any image between BASE and TOP (BASE is only included if include_base
2772  * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2773  * BASE can be NULL to check if the given offset is allocated in any
2774  * image of the chain.  Return 0 otherwise, or negative errno on
2775  * failure.
2776  *
2777  * 'pnum' is set to the number of bytes (including and immediately
2778  * following the specified offset) that are known to be in the same
2779  * allocated/unallocated state.  Note that a subsequent call starting
2780  * at 'offset + *pnum' may return the same allocation status (in other
2781  * words, the result is not necessarily the maximum possible range);
2782  * but 'pnum' will only be 0 when end of file is reached.
2783  */
2784 int bdrv_is_allocated_above(BlockDriverState *top,
2785                             BlockDriverState *base,
2786                             bool include_base, int64_t offset,
2787                             int64_t bytes, int64_t *pnum)
2788 {
2789     int depth;
2790     int ret = bdrv_common_block_status_above(top, base, include_base, false,
2791                                              offset, bytes, pnum, NULL, NULL,
2792                                              &depth);
2793     IO_CODE();
2794     if (ret < 0) {
2795         return ret;
2796     }
2797 
2798     if (ret & BDRV_BLOCK_ALLOCATED) {
2799         return depth;
2800     }
2801     return 0;
2802 }
2803 
2804 int coroutine_fn
2805 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2806 {
2807     BlockDriver *drv = bs->drv;
2808     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2809     int ret;
2810     IO_CODE();
2811 
2812     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2813     if (ret < 0) {
2814         return ret;
2815     }
2816 
2817     if (!drv) {
2818         return -ENOMEDIUM;
2819     }
2820 
2821     bdrv_inc_in_flight(bs);
2822 
2823     if (drv->bdrv_load_vmstate) {
2824         ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2825     } else if (child_bs) {
2826         ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2827     } else {
2828         ret = -ENOTSUP;
2829     }
2830 
2831     bdrv_dec_in_flight(bs);
2832 
2833     return ret;
2834 }
2835 
2836 int coroutine_fn
2837 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2838 {
2839     BlockDriver *drv = bs->drv;
2840     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2841     int ret;
2842     IO_CODE();
2843 
2844     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2845     if (ret < 0) {
2846         return ret;
2847     }
2848 
2849     if (!drv) {
2850         return -ENOMEDIUM;
2851     }
2852 
2853     bdrv_inc_in_flight(bs);
2854 
2855     if (drv->bdrv_save_vmstate) {
2856         ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2857     } else if (child_bs) {
2858         ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2859     } else {
2860         ret = -ENOTSUP;
2861     }
2862 
2863     bdrv_dec_in_flight(bs);
2864 
2865     return ret;
2866 }
2867 
2868 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2869                       int64_t pos, int size)
2870 {
2871     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2872     int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2873     IO_CODE();
2874 
2875     return ret < 0 ? ret : size;
2876 }
2877 
2878 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2879                       int64_t pos, int size)
2880 {
2881     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2882     int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2883     IO_CODE();
2884 
2885     return ret < 0 ? ret : size;
2886 }
2887 
2888 /**************************************************************/
2889 /* async I/Os */
2890 
2891 void bdrv_aio_cancel(BlockAIOCB *acb)
2892 {
2893     IO_CODE();
2894     qemu_aio_ref(acb);
2895     bdrv_aio_cancel_async(acb);
2896     while (acb->refcnt > 1) {
2897         if (acb->aiocb_info->get_aio_context) {
2898             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2899         } else if (acb->bs) {
2900             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2901              * assert that we're not using an I/O thread.  Thread-safe
2902              * code should use bdrv_aio_cancel_async exclusively.
2903              */
2904             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2905             aio_poll(bdrv_get_aio_context(acb->bs), true);
2906         } else {
2907             abort();
2908         }
2909     }
2910     qemu_aio_unref(acb);
2911 }
2912 
2913 /* Async version of aio cancel. The caller is not blocked if the acb implements
2914  * cancel_async, otherwise we do nothing and let the request normally complete.
2915  * In either case the completion callback must be called. */
2916 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2917 {
2918     IO_CODE();
2919     if (acb->aiocb_info->cancel_async) {
2920         acb->aiocb_info->cancel_async(acb);
2921     }
2922 }
2923 
2924 /**************************************************************/
2925 /* Coroutine block device emulation */
2926 
2927 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2928 {
2929     BdrvChild *primary_child = bdrv_primary_child(bs);
2930     BdrvChild *child;
2931     int current_gen;
2932     int ret = 0;
2933     IO_CODE();
2934 
2935     bdrv_inc_in_flight(bs);
2936 
2937     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2938         bdrv_is_sg(bs)) {
2939         goto early_exit;
2940     }
2941 
2942     qemu_co_mutex_lock(&bs->reqs_lock);
2943     current_gen = qatomic_read(&bs->write_gen);
2944 
2945     /* Wait until any previous flushes are completed */
2946     while (bs->active_flush_req) {
2947         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2948     }
2949 
2950     /* Flushes reach this point in nondecreasing current_gen order.  */
2951     bs->active_flush_req = true;
2952     qemu_co_mutex_unlock(&bs->reqs_lock);
2953 
2954     /* Write back all layers by calling one driver function */
2955     if (bs->drv->bdrv_co_flush) {
2956         ret = bs->drv->bdrv_co_flush(bs);
2957         goto out;
2958     }
2959 
2960     /* Write back cached data to the OS even with cache=unsafe */
2961     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2962     if (bs->drv->bdrv_co_flush_to_os) {
2963         ret = bs->drv->bdrv_co_flush_to_os(bs);
2964         if (ret < 0) {
2965             goto out;
2966         }
2967     }
2968 
2969     /* But don't actually force it to the disk with cache=unsafe */
2970     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2971         goto flush_children;
2972     }
2973 
2974     /* Check if we really need to flush anything */
2975     if (bs->flushed_gen == current_gen) {
2976         goto flush_children;
2977     }
2978 
2979     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2980     if (!bs->drv) {
2981         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2982          * (even in case of apparent success) */
2983         ret = -ENOMEDIUM;
2984         goto out;
2985     }
2986     if (bs->drv->bdrv_co_flush_to_disk) {
2987         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2988     } else if (bs->drv->bdrv_aio_flush) {
2989         BlockAIOCB *acb;
2990         CoroutineIOCompletion co = {
2991             .coroutine = qemu_coroutine_self(),
2992         };
2993 
2994         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2995         if (acb == NULL) {
2996             ret = -EIO;
2997         } else {
2998             qemu_coroutine_yield();
2999             ret = co.ret;
3000         }
3001     } else {
3002         /*
3003          * Some block drivers always operate in either writethrough or unsafe
3004          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3005          * know how the server works (because the behaviour is hardcoded or
3006          * depends on server-side configuration), so we can't ensure that
3007          * everything is safe on disk. Returning an error doesn't work because
3008          * that would break guests even if the server operates in writethrough
3009          * mode.
3010          *
3011          * Let's hope the user knows what he's doing.
3012          */
3013         ret = 0;
3014     }
3015 
3016     if (ret < 0) {
3017         goto out;
3018     }
3019 
3020     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
3021      * in the case of cache=unsafe, so there are no useless flushes.
3022      */
3023 flush_children:
3024     ret = 0;
3025     QLIST_FOREACH(child, &bs->children, next) {
3026         if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3027             int this_child_ret = bdrv_co_flush(child->bs);
3028             if (!ret) {
3029                 ret = this_child_ret;
3030             }
3031         }
3032     }
3033 
3034 out:
3035     /* Notify any pending flushes that we have completed */
3036     if (ret == 0) {
3037         bs->flushed_gen = current_gen;
3038     }
3039 
3040     qemu_co_mutex_lock(&bs->reqs_lock);
3041     bs->active_flush_req = false;
3042     /* Return value is ignored - it's ok if wait queue is empty */
3043     qemu_co_queue_next(&bs->flush_queue);
3044     qemu_co_mutex_unlock(&bs->reqs_lock);
3045 
3046 early_exit:
3047     bdrv_dec_in_flight(bs);
3048     return ret;
3049 }
3050 
3051 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3052                                   int64_t bytes)
3053 {
3054     BdrvTrackedRequest req;
3055     int ret;
3056     int64_t max_pdiscard;
3057     int head, tail, align;
3058     BlockDriverState *bs = child->bs;
3059     IO_CODE();
3060 
3061     if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
3062         return -ENOMEDIUM;
3063     }
3064 
3065     if (bdrv_has_readonly_bitmaps(bs)) {
3066         return -EPERM;
3067     }
3068 
3069     ret = bdrv_check_request(offset, bytes, NULL);
3070     if (ret < 0) {
3071         return ret;
3072     }
3073 
3074     /* Do nothing if disabled.  */
3075     if (!(bs->open_flags & BDRV_O_UNMAP)) {
3076         return 0;
3077     }
3078 
3079     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3080         return 0;
3081     }
3082 
3083     /* Invalidate the cached block-status data range if this discard overlaps */
3084     bdrv_bsc_invalidate_range(bs, offset, bytes);
3085 
3086     /* Discard is advisory, but some devices track and coalesce
3087      * unaligned requests, so we must pass everything down rather than
3088      * round here.  Still, most devices will just silently ignore
3089      * unaligned requests (by returning -ENOTSUP), so we must fragment
3090      * the request accordingly.  */
3091     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3092     assert(align % bs->bl.request_alignment == 0);
3093     head = offset % align;
3094     tail = (offset + bytes) % align;
3095 
3096     bdrv_inc_in_flight(bs);
3097     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3098 
3099     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3100     if (ret < 0) {
3101         goto out;
3102     }
3103 
3104     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3105                                    align);
3106     assert(max_pdiscard >= bs->bl.request_alignment);
3107 
3108     while (bytes > 0) {
3109         int64_t num = bytes;
3110 
3111         if (head) {
3112             /* Make small requests to get to alignment boundaries. */
3113             num = MIN(bytes, align - head);
3114             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3115                 num %= bs->bl.request_alignment;
3116             }
3117             head = (head + num) % align;
3118             assert(num < max_pdiscard);
3119         } else if (tail) {
3120             if (num > align) {
3121                 /* Shorten the request to the last aligned cluster.  */
3122                 num -= tail;
3123             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3124                        tail > bs->bl.request_alignment) {
3125                 tail %= bs->bl.request_alignment;
3126                 num -= tail;
3127             }
3128         }
3129         /* limit request size */
3130         if (num > max_pdiscard) {
3131             num = max_pdiscard;
3132         }
3133 
3134         if (!bs->drv) {
3135             ret = -ENOMEDIUM;
3136             goto out;
3137         }
3138         if (bs->drv->bdrv_co_pdiscard) {
3139             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3140         } else {
3141             BlockAIOCB *acb;
3142             CoroutineIOCompletion co = {
3143                 .coroutine = qemu_coroutine_self(),
3144             };
3145 
3146             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3147                                              bdrv_co_io_em_complete, &co);
3148             if (acb == NULL) {
3149                 ret = -EIO;
3150                 goto out;
3151             } else {
3152                 qemu_coroutine_yield();
3153                 ret = co.ret;
3154             }
3155         }
3156         if (ret && ret != -ENOTSUP) {
3157             goto out;
3158         }
3159 
3160         offset += num;
3161         bytes -= num;
3162     }
3163     ret = 0;
3164 out:
3165     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3166     tracked_request_end(&req);
3167     bdrv_dec_in_flight(bs);
3168     return ret;
3169 }
3170 
3171 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3172 {
3173     BlockDriver *drv = bs->drv;
3174     CoroutineIOCompletion co = {
3175         .coroutine = qemu_coroutine_self(),
3176     };
3177     BlockAIOCB *acb;
3178     IO_CODE();
3179 
3180     bdrv_inc_in_flight(bs);
3181     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3182         co.ret = -ENOTSUP;
3183         goto out;
3184     }
3185 
3186     if (drv->bdrv_co_ioctl) {
3187         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3188     } else {
3189         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3190         if (!acb) {
3191             co.ret = -ENOTSUP;
3192             goto out;
3193         }
3194         qemu_coroutine_yield();
3195     }
3196 out:
3197     bdrv_dec_in_flight(bs);
3198     return co.ret;
3199 }
3200 
3201 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3202 {
3203     IO_CODE();
3204     return qemu_memalign(bdrv_opt_mem_align(bs), size);
3205 }
3206 
3207 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3208 {
3209     IO_CODE();
3210     return memset(qemu_blockalign(bs, size), 0, size);
3211 }
3212 
3213 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3214 {
3215     size_t align = bdrv_opt_mem_align(bs);
3216     IO_CODE();
3217 
3218     /* Ensure that NULL is never returned on success */
3219     assert(align > 0);
3220     if (size == 0) {
3221         size = align;
3222     }
3223 
3224     return qemu_try_memalign(align, size);
3225 }
3226 
3227 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3228 {
3229     void *mem = qemu_try_blockalign(bs, size);
3230     IO_CODE();
3231 
3232     if (mem) {
3233         memset(mem, 0, size);
3234     }
3235 
3236     return mem;
3237 }
3238 
3239 /*
3240  * Check if all memory in this vector is sector aligned.
3241  */
3242 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3243 {
3244     int i;
3245     size_t alignment = bdrv_min_mem_align(bs);
3246     IO_CODE();
3247 
3248     for (i = 0; i < qiov->niov; i++) {
3249         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3250             return false;
3251         }
3252         if (qiov->iov[i].iov_len % alignment) {
3253             return false;
3254         }
3255     }
3256 
3257     return true;
3258 }
3259 
3260 void bdrv_io_plug(BlockDriverState *bs)
3261 {
3262     BdrvChild *child;
3263     IO_CODE();
3264 
3265     QLIST_FOREACH(child, &bs->children, next) {
3266         bdrv_io_plug(child->bs);
3267     }
3268 
3269     if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3270         BlockDriver *drv = bs->drv;
3271         if (drv && drv->bdrv_io_plug) {
3272             drv->bdrv_io_plug(bs);
3273         }
3274     }
3275 }
3276 
3277 void bdrv_io_unplug(BlockDriverState *bs)
3278 {
3279     BdrvChild *child;
3280     IO_CODE();
3281 
3282     assert(bs->io_plugged);
3283     if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3284         BlockDriver *drv = bs->drv;
3285         if (drv && drv->bdrv_io_unplug) {
3286             drv->bdrv_io_unplug(bs);
3287         }
3288     }
3289 
3290     QLIST_FOREACH(child, &bs->children, next) {
3291         bdrv_io_unplug(child->bs);
3292     }
3293 }
3294 
3295 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3296 {
3297     BdrvChild *child;
3298 
3299     GLOBAL_STATE_CODE();
3300     if (bs->drv && bs->drv->bdrv_register_buf) {
3301         bs->drv->bdrv_register_buf(bs, host, size);
3302     }
3303     QLIST_FOREACH(child, &bs->children, next) {
3304         bdrv_register_buf(child->bs, host, size);
3305     }
3306 }
3307 
3308 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3309 {
3310     BdrvChild *child;
3311 
3312     GLOBAL_STATE_CODE();
3313     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3314         bs->drv->bdrv_unregister_buf(bs, host);
3315     }
3316     QLIST_FOREACH(child, &bs->children, next) {
3317         bdrv_unregister_buf(child->bs, host);
3318     }
3319 }
3320 
3321 static int coroutine_fn bdrv_co_copy_range_internal(
3322         BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3323         int64_t dst_offset, int64_t bytes,
3324         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3325         bool recurse_src)
3326 {
3327     BdrvTrackedRequest req;
3328     int ret;
3329 
3330     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3331     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3332     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3333     assert(!(read_flags & BDRV_REQ_NO_WAIT));
3334     assert(!(write_flags & BDRV_REQ_NO_WAIT));
3335 
3336     if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3337         return -ENOMEDIUM;
3338     }
3339     ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3340     if (ret) {
3341         return ret;
3342     }
3343     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3344         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3345     }
3346 
3347     if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3348         return -ENOMEDIUM;
3349     }
3350     ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3351     if (ret) {
3352         return ret;
3353     }
3354 
3355     if (!src->bs->drv->bdrv_co_copy_range_from
3356         || !dst->bs->drv->bdrv_co_copy_range_to
3357         || src->bs->encrypted || dst->bs->encrypted) {
3358         return -ENOTSUP;
3359     }
3360 
3361     if (recurse_src) {
3362         bdrv_inc_in_flight(src->bs);
3363         tracked_request_begin(&req, src->bs, src_offset, bytes,
3364                               BDRV_TRACKED_READ);
3365 
3366         /* BDRV_REQ_SERIALISING is only for write operation */
3367         assert(!(read_flags & BDRV_REQ_SERIALISING));
3368         bdrv_wait_serialising_requests(&req);
3369 
3370         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3371                                                     src, src_offset,
3372                                                     dst, dst_offset,
3373                                                     bytes,
3374                                                     read_flags, write_flags);
3375 
3376         tracked_request_end(&req);
3377         bdrv_dec_in_flight(src->bs);
3378     } else {
3379         bdrv_inc_in_flight(dst->bs);
3380         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3381                               BDRV_TRACKED_WRITE);
3382         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3383                                         write_flags);
3384         if (!ret) {
3385             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3386                                                       src, src_offset,
3387                                                       dst, dst_offset,
3388                                                       bytes,
3389                                                       read_flags, write_flags);
3390         }
3391         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3392         tracked_request_end(&req);
3393         bdrv_dec_in_flight(dst->bs);
3394     }
3395 
3396     return ret;
3397 }
3398 
3399 /* Copy range from @src to @dst.
3400  *
3401  * See the comment of bdrv_co_copy_range for the parameter and return value
3402  * semantics. */
3403 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3404                                          BdrvChild *dst, int64_t dst_offset,
3405                                          int64_t bytes,
3406                                          BdrvRequestFlags read_flags,
3407                                          BdrvRequestFlags write_flags)
3408 {
3409     IO_CODE();
3410     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3411                                   read_flags, write_flags);
3412     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3413                                        bytes, read_flags, write_flags, true);
3414 }
3415 
3416 /* Copy range from @src to @dst.
3417  *
3418  * See the comment of bdrv_co_copy_range for the parameter and return value
3419  * semantics. */
3420 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3421                                        BdrvChild *dst, int64_t dst_offset,
3422                                        int64_t bytes,
3423                                        BdrvRequestFlags read_flags,
3424                                        BdrvRequestFlags write_flags)
3425 {
3426     IO_CODE();
3427     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3428                                 read_flags, write_flags);
3429     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3430                                        bytes, read_flags, write_flags, false);
3431 }
3432 
3433 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3434                                     BdrvChild *dst, int64_t dst_offset,
3435                                     int64_t bytes, BdrvRequestFlags read_flags,
3436                                     BdrvRequestFlags write_flags)
3437 {
3438     IO_CODE();
3439     return bdrv_co_copy_range_from(src, src_offset,
3440                                    dst, dst_offset,
3441                                    bytes, read_flags, write_flags);
3442 }
3443 
3444 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3445 {
3446     BdrvChild *c;
3447     QLIST_FOREACH(c, &bs->parents, next_parent) {
3448         if (c->klass->resize) {
3449             c->klass->resize(c);
3450         }
3451     }
3452 }
3453 
3454 /**
3455  * Truncate file to 'offset' bytes (needed only for file protocols)
3456  *
3457  * If 'exact' is true, the file must be resized to exactly the given
3458  * 'offset'.  Otherwise, it is sufficient for the node to be at least
3459  * 'offset' bytes in length.
3460  */
3461 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3462                                   PreallocMode prealloc, BdrvRequestFlags flags,
3463                                   Error **errp)
3464 {
3465     BlockDriverState *bs = child->bs;
3466     BdrvChild *filtered, *backing;
3467     BlockDriver *drv = bs->drv;
3468     BdrvTrackedRequest req;
3469     int64_t old_size, new_bytes;
3470     int ret;
3471     IO_CODE();
3472 
3473     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3474     if (!drv) {
3475         error_setg(errp, "No medium inserted");
3476         return -ENOMEDIUM;
3477     }
3478     if (offset < 0) {
3479         error_setg(errp, "Image size cannot be negative");
3480         return -EINVAL;
3481     }
3482 
3483     ret = bdrv_check_request(offset, 0, errp);
3484     if (ret < 0) {
3485         return ret;
3486     }
3487 
3488     old_size = bdrv_getlength(bs);
3489     if (old_size < 0) {
3490         error_setg_errno(errp, -old_size, "Failed to get old image size");
3491         return old_size;
3492     }
3493 
3494     if (bdrv_is_read_only(bs)) {
3495         error_setg(errp, "Image is read-only");
3496         return -EACCES;
3497     }
3498 
3499     if (offset > old_size) {
3500         new_bytes = offset - old_size;
3501     } else {
3502         new_bytes = 0;
3503     }
3504 
3505     bdrv_inc_in_flight(bs);
3506     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3507                           BDRV_TRACKED_TRUNCATE);
3508 
3509     /* If we are growing the image and potentially using preallocation for the
3510      * new area, we need to make sure that no write requests are made to it
3511      * concurrently or they might be overwritten by preallocation. */
3512     if (new_bytes) {
3513         bdrv_make_request_serialising(&req, 1);
3514     }
3515     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3516                                     0);
3517     if (ret < 0) {
3518         error_setg_errno(errp, -ret,
3519                          "Failed to prepare request for truncation");
3520         goto out;
3521     }
3522 
3523     filtered = bdrv_filter_child(bs);
3524     backing = bdrv_cow_child(bs);
3525 
3526     /*
3527      * If the image has a backing file that is large enough that it would
3528      * provide data for the new area, we cannot leave it unallocated because
3529      * then the backing file content would become visible. Instead, zero-fill
3530      * the new area.
3531      *
3532      * Note that if the image has a backing file, but was opened without the
3533      * backing file, taking care of keeping things consistent with that backing
3534      * file is the user's responsibility.
3535      */
3536     if (new_bytes && backing) {
3537         int64_t backing_len;
3538 
3539         backing_len = bdrv_getlength(backing->bs);
3540         if (backing_len < 0) {
3541             ret = backing_len;
3542             error_setg_errno(errp, -ret, "Could not get backing file size");
3543             goto out;
3544         }
3545 
3546         if (backing_len > old_size) {
3547             flags |= BDRV_REQ_ZERO_WRITE;
3548         }
3549     }
3550 
3551     if (drv->bdrv_co_truncate) {
3552         if (flags & ~bs->supported_truncate_flags) {
3553             error_setg(errp, "Block driver does not support requested flags");
3554             ret = -ENOTSUP;
3555             goto out;
3556         }
3557         ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3558     } else if (filtered) {
3559         ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3560     } else {
3561         error_setg(errp, "Image format driver does not support resize");
3562         ret = -ENOTSUP;
3563         goto out;
3564     }
3565     if (ret < 0) {
3566         goto out;
3567     }
3568 
3569     ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3570     if (ret < 0) {
3571         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3572     } else {
3573         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3574     }
3575     /* It's possible that truncation succeeded but refresh_total_sectors
3576      * failed, but the latter doesn't affect how we should finish the request.
3577      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3578     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3579 
3580 out:
3581     tracked_request_end(&req);
3582     bdrv_dec_in_flight(bs);
3583 
3584     return ret;
3585 }
3586 
3587 void bdrv_cancel_in_flight(BlockDriverState *bs)
3588 {
3589     GLOBAL_STATE_CODE();
3590     if (!bs || !bs->drv) {
3591         return;
3592     }
3593 
3594     if (bs->drv->bdrv_cancel_in_flight) {
3595         bs->drv->bdrv_cancel_in_flight(bs);
3596     }
3597 }
3598 
3599 int coroutine_fn
3600 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3601                         QEMUIOVector *qiov, size_t qiov_offset)
3602 {
3603     BlockDriverState *bs = child->bs;
3604     BlockDriver *drv = bs->drv;
3605     int ret;
3606     IO_CODE();
3607 
3608     if (!drv) {
3609         return -ENOMEDIUM;
3610     }
3611 
3612     if (!drv->bdrv_co_preadv_snapshot) {
3613         return -ENOTSUP;
3614     }
3615 
3616     bdrv_inc_in_flight(bs);
3617     ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3618     bdrv_dec_in_flight(bs);
3619 
3620     return ret;
3621 }
3622 
3623 int coroutine_fn
3624 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3625                               bool want_zero, int64_t offset, int64_t bytes,
3626                               int64_t *pnum, int64_t *map,
3627                               BlockDriverState **file)
3628 {
3629     BlockDriver *drv = bs->drv;
3630     int ret;
3631     IO_CODE();
3632 
3633     if (!drv) {
3634         return -ENOMEDIUM;
3635     }
3636 
3637     if (!drv->bdrv_co_snapshot_block_status) {
3638         return -ENOTSUP;
3639     }
3640 
3641     bdrv_inc_in_flight(bs);
3642     ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3643                                              pnum, map, file);
3644     bdrv_dec_in_flight(bs);
3645 
3646     return ret;
3647 }
3648 
3649 int coroutine_fn
3650 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3651 {
3652     BlockDriver *drv = bs->drv;
3653     int ret;
3654     IO_CODE();
3655 
3656     if (!drv) {
3657         return -ENOMEDIUM;
3658     }
3659 
3660     if (!drv->bdrv_co_pdiscard_snapshot) {
3661         return -ENOTSUP;
3662     }
3663 
3664     bdrv_inc_in_flight(bs);
3665     ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3666     bdrv_dec_in_flight(bs);
3667 
3668     return ret;
3669 }
3670