1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/write-threshold.h" 34 #include "qemu/cutils.h" 35 #include "qemu/memalign.h" 36 #include "qapi/error.h" 37 #include "qemu/error-report.h" 38 #include "qemu/main-loop.h" 39 #include "sysemu/replay.h" 40 41 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 42 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 43 44 static void bdrv_parent_cb_resize(BlockDriverState *bs); 45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 46 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 47 48 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 49 bool ignore_bds_parents) 50 { 51 BdrvChild *c, *next; 52 53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 54 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 55 continue; 56 } 57 bdrv_parent_drained_begin_single(c, false); 58 } 59 } 60 61 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 62 int *drained_end_counter) 63 { 64 assert(c->parent_quiesce_counter > 0); 65 c->parent_quiesce_counter--; 66 if (c->klass->drained_end) { 67 c->klass->drained_end(c, drained_end_counter); 68 } 69 } 70 71 void bdrv_parent_drained_end_single(BdrvChild *c) 72 { 73 int drained_end_counter = 0; 74 IO_OR_GS_CODE(); 75 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 76 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0); 77 } 78 79 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 80 bool ignore_bds_parents, 81 int *drained_end_counter) 82 { 83 BdrvChild *c; 84 85 QLIST_FOREACH(c, &bs->parents, next_parent) { 86 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 87 continue; 88 } 89 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 90 } 91 } 92 93 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 94 { 95 if (c->klass->drained_poll) { 96 return c->klass->drained_poll(c); 97 } 98 return false; 99 } 100 101 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 102 bool ignore_bds_parents) 103 { 104 BdrvChild *c, *next; 105 bool busy = false; 106 107 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 108 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 109 continue; 110 } 111 busy |= bdrv_parent_drained_poll_single(c); 112 } 113 114 return busy; 115 } 116 117 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 118 { 119 IO_OR_GS_CODE(); 120 c->parent_quiesce_counter++; 121 if (c->klass->drained_begin) { 122 c->klass->drained_begin(c); 123 } 124 if (poll) { 125 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 126 } 127 } 128 129 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 130 { 131 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 132 src->pdiscard_alignment); 133 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 134 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 135 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 136 src->max_hw_transfer); 137 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 138 src->opt_mem_alignment); 139 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 140 src->min_mem_alignment); 141 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 142 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 143 } 144 145 typedef struct BdrvRefreshLimitsState { 146 BlockDriverState *bs; 147 BlockLimits old_bl; 148 } BdrvRefreshLimitsState; 149 150 static void bdrv_refresh_limits_abort(void *opaque) 151 { 152 BdrvRefreshLimitsState *s = opaque; 153 154 s->bs->bl = s->old_bl; 155 } 156 157 static TransactionActionDrv bdrv_refresh_limits_drv = { 158 .abort = bdrv_refresh_limits_abort, 159 .clean = g_free, 160 }; 161 162 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 163 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 164 { 165 ERRP_GUARD(); 166 BlockDriver *drv = bs->drv; 167 BdrvChild *c; 168 bool have_limits; 169 170 GLOBAL_STATE_CODE(); 171 172 if (tran) { 173 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 174 *s = (BdrvRefreshLimitsState) { 175 .bs = bs, 176 .old_bl = bs->bl, 177 }; 178 tran_add(tran, &bdrv_refresh_limits_drv, s); 179 } 180 181 memset(&bs->bl, 0, sizeof(bs->bl)); 182 183 if (!drv) { 184 return; 185 } 186 187 /* Default alignment based on whether driver has byte interface */ 188 bs->bl.request_alignment = (drv->bdrv_co_preadv || 189 drv->bdrv_aio_preadv || 190 drv->bdrv_co_preadv_part) ? 1 : 512; 191 192 /* Take some limits from the children as a default */ 193 have_limits = false; 194 QLIST_FOREACH(c, &bs->children, next) { 195 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 196 { 197 bdrv_merge_limits(&bs->bl, &c->bs->bl); 198 have_limits = true; 199 } 200 } 201 202 if (!have_limits) { 203 bs->bl.min_mem_alignment = 512; 204 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 205 206 /* Safe default since most protocols use readv()/writev()/etc */ 207 bs->bl.max_iov = IOV_MAX; 208 } 209 210 /* Then let the driver override it */ 211 if (drv->bdrv_refresh_limits) { 212 drv->bdrv_refresh_limits(bs, errp); 213 if (*errp) { 214 return; 215 } 216 } 217 218 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 219 error_setg(errp, "Driver requires too large request alignment"); 220 } 221 } 222 223 /** 224 * The copy-on-read flag is actually a reference count so multiple users may 225 * use the feature without worrying about clobbering its previous state. 226 * Copy-on-read stays enabled until all users have called to disable it. 227 */ 228 void bdrv_enable_copy_on_read(BlockDriverState *bs) 229 { 230 IO_CODE(); 231 qatomic_inc(&bs->copy_on_read); 232 } 233 234 void bdrv_disable_copy_on_read(BlockDriverState *bs) 235 { 236 int old = qatomic_fetch_dec(&bs->copy_on_read); 237 IO_CODE(); 238 assert(old >= 1); 239 } 240 241 typedef struct { 242 Coroutine *co; 243 BlockDriverState *bs; 244 bool done; 245 bool begin; 246 bool recursive; 247 bool poll; 248 BdrvChild *parent; 249 bool ignore_bds_parents; 250 int *drained_end_counter; 251 } BdrvCoDrainData; 252 253 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 254 { 255 BdrvCoDrainData *data = opaque; 256 BlockDriverState *bs = data->bs; 257 258 if (data->begin) { 259 bs->drv->bdrv_co_drain_begin(bs); 260 } else { 261 bs->drv->bdrv_co_drain_end(bs); 262 } 263 264 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 265 qatomic_mb_set(&data->done, true); 266 if (!data->begin) { 267 qatomic_dec(data->drained_end_counter); 268 } 269 bdrv_dec_in_flight(bs); 270 271 g_free(data); 272 } 273 274 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 275 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 276 int *drained_end_counter) 277 { 278 BdrvCoDrainData *data; 279 280 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 281 (!begin && !bs->drv->bdrv_co_drain_end)) { 282 return; 283 } 284 285 data = g_new(BdrvCoDrainData, 1); 286 *data = (BdrvCoDrainData) { 287 .bs = bs, 288 .done = false, 289 .begin = begin, 290 .drained_end_counter = drained_end_counter, 291 }; 292 293 if (!begin) { 294 qatomic_inc(drained_end_counter); 295 } 296 297 /* Make sure the driver callback completes during the polling phase for 298 * drain_begin. */ 299 bdrv_inc_in_flight(bs); 300 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 301 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 302 } 303 304 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 305 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 306 BdrvChild *ignore_parent, bool ignore_bds_parents) 307 { 308 BdrvChild *child, *next; 309 IO_OR_GS_CODE(); 310 311 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 312 return true; 313 } 314 315 if (qatomic_read(&bs->in_flight)) { 316 return true; 317 } 318 319 if (recursive) { 320 assert(!ignore_bds_parents); 321 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 322 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 323 return true; 324 } 325 } 326 } 327 328 return false; 329 } 330 331 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 332 BdrvChild *ignore_parent) 333 { 334 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 335 } 336 337 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 338 BdrvChild *parent, bool ignore_bds_parents, 339 bool poll); 340 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 341 BdrvChild *parent, bool ignore_bds_parents, 342 int *drained_end_counter); 343 344 static void bdrv_co_drain_bh_cb(void *opaque) 345 { 346 BdrvCoDrainData *data = opaque; 347 Coroutine *co = data->co; 348 BlockDriverState *bs = data->bs; 349 350 if (bs) { 351 AioContext *ctx = bdrv_get_aio_context(bs); 352 aio_context_acquire(ctx); 353 bdrv_dec_in_flight(bs); 354 if (data->begin) { 355 assert(!data->drained_end_counter); 356 bdrv_do_drained_begin(bs, data->recursive, data->parent, 357 data->ignore_bds_parents, data->poll); 358 } else { 359 assert(!data->poll); 360 bdrv_do_drained_end(bs, data->recursive, data->parent, 361 data->ignore_bds_parents, 362 data->drained_end_counter); 363 } 364 aio_context_release(ctx); 365 } else { 366 assert(data->begin); 367 bdrv_drain_all_begin(); 368 } 369 370 data->done = true; 371 aio_co_wake(co); 372 } 373 374 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 375 bool begin, bool recursive, 376 BdrvChild *parent, 377 bool ignore_bds_parents, 378 bool poll, 379 int *drained_end_counter) 380 { 381 BdrvCoDrainData data; 382 Coroutine *self = qemu_coroutine_self(); 383 AioContext *ctx = bdrv_get_aio_context(bs); 384 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 385 386 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 387 * other coroutines run if they were queued by aio_co_enter(). */ 388 389 assert(qemu_in_coroutine()); 390 data = (BdrvCoDrainData) { 391 .co = self, 392 .bs = bs, 393 .done = false, 394 .begin = begin, 395 .recursive = recursive, 396 .parent = parent, 397 .ignore_bds_parents = ignore_bds_parents, 398 .poll = poll, 399 .drained_end_counter = drained_end_counter, 400 }; 401 402 if (bs) { 403 bdrv_inc_in_flight(bs); 404 } 405 406 /* 407 * Temporarily drop the lock across yield or we would get deadlocks. 408 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 409 * 410 * When we yield below, the lock for the current context will be 411 * released, so if this is actually the lock that protects bs, don't drop 412 * it a second time. 413 */ 414 if (ctx != co_ctx) { 415 aio_context_release(ctx); 416 } 417 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data); 418 419 qemu_coroutine_yield(); 420 /* If we are resumed from some other event (such as an aio completion or a 421 * timer callback), it is a bug in the caller that should be fixed. */ 422 assert(data.done); 423 424 /* Reaquire the AioContext of bs if we dropped it */ 425 if (ctx != co_ctx) { 426 aio_context_acquire(ctx); 427 } 428 } 429 430 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 431 BdrvChild *parent, bool ignore_bds_parents) 432 { 433 IO_OR_GS_CODE(); 434 assert(!qemu_in_coroutine()); 435 436 /* Stop things in parent-to-child order */ 437 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 438 aio_disable_external(bdrv_get_aio_context(bs)); 439 } 440 441 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 442 bdrv_drain_invoke(bs, true, NULL); 443 } 444 445 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 446 BdrvChild *parent, bool ignore_bds_parents, 447 bool poll) 448 { 449 BdrvChild *child, *next; 450 451 if (qemu_in_coroutine()) { 452 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 453 poll, NULL); 454 return; 455 } 456 457 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 458 459 if (recursive) { 460 assert(!ignore_bds_parents); 461 bs->recursive_quiesce_counter++; 462 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 463 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 464 false); 465 } 466 } 467 468 /* 469 * Wait for drained requests to finish. 470 * 471 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 472 * call is needed so things in this AioContext can make progress even 473 * though we don't return to the main AioContext loop - this automatically 474 * includes other nodes in the same AioContext and therefore all child 475 * nodes. 476 */ 477 if (poll) { 478 assert(!ignore_bds_parents); 479 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 480 } 481 } 482 483 void bdrv_drained_begin(BlockDriverState *bs) 484 { 485 IO_OR_GS_CODE(); 486 bdrv_do_drained_begin(bs, false, NULL, false, true); 487 } 488 489 void bdrv_subtree_drained_begin(BlockDriverState *bs) 490 { 491 IO_OR_GS_CODE(); 492 bdrv_do_drained_begin(bs, true, NULL, false, true); 493 } 494 495 /** 496 * This function does not poll, nor must any of its recursively called 497 * functions. The *drained_end_counter pointee will be incremented 498 * once for every background operation scheduled, and decremented once 499 * the operation settles. Therefore, the pointer must remain valid 500 * until the pointee reaches 0. That implies that whoever sets up the 501 * pointee has to poll until it is 0. 502 * 503 * We use atomic operations to access *drained_end_counter, because 504 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 505 * @bs may contain nodes in different AioContexts, 506 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 507 * regardless of which AioContext they are in. 508 */ 509 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 510 BdrvChild *parent, bool ignore_bds_parents, 511 int *drained_end_counter) 512 { 513 BdrvChild *child; 514 int old_quiesce_counter; 515 516 assert(drained_end_counter != NULL); 517 518 if (qemu_in_coroutine()) { 519 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 520 false, drained_end_counter); 521 return; 522 } 523 assert(bs->quiesce_counter > 0); 524 525 /* Re-enable things in child-to-parent order */ 526 bdrv_drain_invoke(bs, false, drained_end_counter); 527 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 528 drained_end_counter); 529 530 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 531 if (old_quiesce_counter == 1) { 532 aio_enable_external(bdrv_get_aio_context(bs)); 533 } 534 535 if (recursive) { 536 assert(!ignore_bds_parents); 537 bs->recursive_quiesce_counter--; 538 QLIST_FOREACH(child, &bs->children, next) { 539 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 540 drained_end_counter); 541 } 542 } 543 } 544 545 void bdrv_drained_end(BlockDriverState *bs) 546 { 547 int drained_end_counter = 0; 548 IO_OR_GS_CODE(); 549 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 550 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 551 } 552 553 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 554 { 555 IO_CODE(); 556 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 557 } 558 559 void bdrv_subtree_drained_end(BlockDriverState *bs) 560 { 561 int drained_end_counter = 0; 562 IO_OR_GS_CODE(); 563 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 564 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 565 } 566 567 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 568 { 569 int i; 570 IO_OR_GS_CODE(); 571 572 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 573 bdrv_do_drained_begin(child->bs, true, child, false, true); 574 } 575 } 576 577 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 578 { 579 int drained_end_counter = 0; 580 int i; 581 IO_OR_GS_CODE(); 582 583 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 584 bdrv_do_drained_end(child->bs, true, child, false, 585 &drained_end_counter); 586 } 587 588 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0); 589 } 590 591 /* 592 * Wait for pending requests to complete on a single BlockDriverState subtree, 593 * and suspend block driver's internal I/O until next request arrives. 594 * 595 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 596 * AioContext. 597 */ 598 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 599 { 600 IO_OR_GS_CODE(); 601 assert(qemu_in_coroutine()); 602 bdrv_drained_begin(bs); 603 bdrv_drained_end(bs); 604 } 605 606 void bdrv_drain(BlockDriverState *bs) 607 { 608 IO_OR_GS_CODE(); 609 bdrv_drained_begin(bs); 610 bdrv_drained_end(bs); 611 } 612 613 static void bdrv_drain_assert_idle(BlockDriverState *bs) 614 { 615 BdrvChild *child, *next; 616 617 assert(qatomic_read(&bs->in_flight) == 0); 618 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 619 bdrv_drain_assert_idle(child->bs); 620 } 621 } 622 623 unsigned int bdrv_drain_all_count = 0; 624 625 static bool bdrv_drain_all_poll(void) 626 { 627 BlockDriverState *bs = NULL; 628 bool result = false; 629 GLOBAL_STATE_CODE(); 630 631 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 632 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 633 while ((bs = bdrv_next_all_states(bs))) { 634 AioContext *aio_context = bdrv_get_aio_context(bs); 635 aio_context_acquire(aio_context); 636 result |= bdrv_drain_poll(bs, false, NULL, true); 637 aio_context_release(aio_context); 638 } 639 640 return result; 641 } 642 643 /* 644 * Wait for pending requests to complete across all BlockDriverStates 645 * 646 * This function does not flush data to disk, use bdrv_flush_all() for that 647 * after calling this function. 648 * 649 * This pauses all block jobs and disables external clients. It must 650 * be paired with bdrv_drain_all_end(). 651 * 652 * NOTE: no new block jobs or BlockDriverStates can be created between 653 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 654 */ 655 void bdrv_drain_all_begin(void) 656 { 657 BlockDriverState *bs = NULL; 658 GLOBAL_STATE_CODE(); 659 660 if (qemu_in_coroutine()) { 661 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 662 return; 663 } 664 665 /* 666 * bdrv queue is managed by record/replay, 667 * waiting for finishing the I/O requests may 668 * be infinite 669 */ 670 if (replay_events_enabled()) { 671 return; 672 } 673 674 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 675 * loop AioContext, so make sure we're in the main context. */ 676 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 677 assert(bdrv_drain_all_count < INT_MAX); 678 bdrv_drain_all_count++; 679 680 /* Quiesce all nodes, without polling in-flight requests yet. The graph 681 * cannot change during this loop. */ 682 while ((bs = bdrv_next_all_states(bs))) { 683 AioContext *aio_context = bdrv_get_aio_context(bs); 684 685 aio_context_acquire(aio_context); 686 bdrv_do_drained_begin(bs, false, NULL, true, false); 687 aio_context_release(aio_context); 688 } 689 690 /* Now poll the in-flight requests */ 691 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 692 693 while ((bs = bdrv_next_all_states(bs))) { 694 bdrv_drain_assert_idle(bs); 695 } 696 } 697 698 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 699 { 700 int drained_end_counter = 0; 701 GLOBAL_STATE_CODE(); 702 703 g_assert(bs->quiesce_counter > 0); 704 g_assert(!bs->refcnt); 705 706 while (bs->quiesce_counter) { 707 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 708 } 709 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 710 } 711 712 void bdrv_drain_all_end(void) 713 { 714 BlockDriverState *bs = NULL; 715 int drained_end_counter = 0; 716 GLOBAL_STATE_CODE(); 717 718 /* 719 * bdrv queue is managed by record/replay, 720 * waiting for finishing the I/O requests may 721 * be endless 722 */ 723 if (replay_events_enabled()) { 724 return; 725 } 726 727 while ((bs = bdrv_next_all_states(bs))) { 728 AioContext *aio_context = bdrv_get_aio_context(bs); 729 730 aio_context_acquire(aio_context); 731 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 732 aio_context_release(aio_context); 733 } 734 735 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 736 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0); 737 738 assert(bdrv_drain_all_count > 0); 739 bdrv_drain_all_count--; 740 } 741 742 void bdrv_drain_all(void) 743 { 744 GLOBAL_STATE_CODE(); 745 bdrv_drain_all_begin(); 746 bdrv_drain_all_end(); 747 } 748 749 /** 750 * Remove an active request from the tracked requests list 751 * 752 * This function should be called when a tracked request is completing. 753 */ 754 static void tracked_request_end(BdrvTrackedRequest *req) 755 { 756 if (req->serialising) { 757 qatomic_dec(&req->bs->serialising_in_flight); 758 } 759 760 qemu_co_mutex_lock(&req->bs->reqs_lock); 761 QLIST_REMOVE(req, list); 762 qemu_co_queue_restart_all(&req->wait_queue); 763 qemu_co_mutex_unlock(&req->bs->reqs_lock); 764 } 765 766 /** 767 * Add an active request to the tracked requests list 768 */ 769 static void tracked_request_begin(BdrvTrackedRequest *req, 770 BlockDriverState *bs, 771 int64_t offset, 772 int64_t bytes, 773 enum BdrvTrackedRequestType type) 774 { 775 bdrv_check_request(offset, bytes, &error_abort); 776 777 *req = (BdrvTrackedRequest){ 778 .bs = bs, 779 .offset = offset, 780 .bytes = bytes, 781 .type = type, 782 .co = qemu_coroutine_self(), 783 .serialising = false, 784 .overlap_offset = offset, 785 .overlap_bytes = bytes, 786 }; 787 788 qemu_co_queue_init(&req->wait_queue); 789 790 qemu_co_mutex_lock(&bs->reqs_lock); 791 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 792 qemu_co_mutex_unlock(&bs->reqs_lock); 793 } 794 795 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 796 int64_t offset, int64_t bytes) 797 { 798 bdrv_check_request(offset, bytes, &error_abort); 799 800 /* aaaa bbbb */ 801 if (offset >= req->overlap_offset + req->overlap_bytes) { 802 return false; 803 } 804 /* bbbb aaaa */ 805 if (req->overlap_offset >= offset + bytes) { 806 return false; 807 } 808 return true; 809 } 810 811 /* Called with self->bs->reqs_lock held */ 812 static BdrvTrackedRequest * 813 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 814 { 815 BdrvTrackedRequest *req; 816 817 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 818 if (req == self || (!req->serialising && !self->serialising)) { 819 continue; 820 } 821 if (tracked_request_overlaps(req, self->overlap_offset, 822 self->overlap_bytes)) 823 { 824 /* 825 * Hitting this means there was a reentrant request, for 826 * example, a block driver issuing nested requests. This must 827 * never happen since it means deadlock. 828 */ 829 assert(qemu_coroutine_self() != req->co); 830 831 /* 832 * If the request is already (indirectly) waiting for us, or 833 * will wait for us as soon as it wakes up, then just go on 834 * (instead of producing a deadlock in the former case). 835 */ 836 if (!req->waiting_for) { 837 return req; 838 } 839 } 840 } 841 842 return NULL; 843 } 844 845 /* Called with self->bs->reqs_lock held */ 846 static bool coroutine_fn 847 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 848 { 849 BdrvTrackedRequest *req; 850 bool waited = false; 851 852 while ((req = bdrv_find_conflicting_request(self))) { 853 self->waiting_for = req; 854 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 855 self->waiting_for = NULL; 856 waited = true; 857 } 858 859 return waited; 860 } 861 862 /* Called with req->bs->reqs_lock held */ 863 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 864 uint64_t align) 865 { 866 int64_t overlap_offset = req->offset & ~(align - 1); 867 int64_t overlap_bytes = 868 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 869 870 bdrv_check_request(req->offset, req->bytes, &error_abort); 871 872 if (!req->serialising) { 873 qatomic_inc(&req->bs->serialising_in_flight); 874 req->serialising = true; 875 } 876 877 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 878 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 879 } 880 881 /** 882 * Return the tracked request on @bs for the current coroutine, or 883 * NULL if there is none. 884 */ 885 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 886 { 887 BdrvTrackedRequest *req; 888 Coroutine *self = qemu_coroutine_self(); 889 IO_CODE(); 890 891 QLIST_FOREACH(req, &bs->tracked_requests, list) { 892 if (req->co == self) { 893 return req; 894 } 895 } 896 897 return NULL; 898 } 899 900 /** 901 * Round a region to cluster boundaries 902 */ 903 void bdrv_round_to_clusters(BlockDriverState *bs, 904 int64_t offset, int64_t bytes, 905 int64_t *cluster_offset, 906 int64_t *cluster_bytes) 907 { 908 BlockDriverInfo bdi; 909 IO_CODE(); 910 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 911 *cluster_offset = offset; 912 *cluster_bytes = bytes; 913 } else { 914 int64_t c = bdi.cluster_size; 915 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 916 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 917 } 918 } 919 920 static int bdrv_get_cluster_size(BlockDriverState *bs) 921 { 922 BlockDriverInfo bdi; 923 int ret; 924 925 ret = bdrv_get_info(bs, &bdi); 926 if (ret < 0 || bdi.cluster_size == 0) { 927 return bs->bl.request_alignment; 928 } else { 929 return bdi.cluster_size; 930 } 931 } 932 933 void bdrv_inc_in_flight(BlockDriverState *bs) 934 { 935 IO_CODE(); 936 qatomic_inc(&bs->in_flight); 937 } 938 939 void bdrv_wakeup(BlockDriverState *bs) 940 { 941 IO_CODE(); 942 aio_wait_kick(); 943 } 944 945 void bdrv_dec_in_flight(BlockDriverState *bs) 946 { 947 IO_CODE(); 948 qatomic_dec(&bs->in_flight); 949 bdrv_wakeup(bs); 950 } 951 952 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 953 { 954 BlockDriverState *bs = self->bs; 955 bool waited = false; 956 957 if (!qatomic_read(&bs->serialising_in_flight)) { 958 return false; 959 } 960 961 qemu_co_mutex_lock(&bs->reqs_lock); 962 waited = bdrv_wait_serialising_requests_locked(self); 963 qemu_co_mutex_unlock(&bs->reqs_lock); 964 965 return waited; 966 } 967 968 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 969 uint64_t align) 970 { 971 bool waited; 972 IO_CODE(); 973 974 qemu_co_mutex_lock(&req->bs->reqs_lock); 975 976 tracked_request_set_serialising(req, align); 977 waited = bdrv_wait_serialising_requests_locked(req); 978 979 qemu_co_mutex_unlock(&req->bs->reqs_lock); 980 981 return waited; 982 } 983 984 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 985 QEMUIOVector *qiov, size_t qiov_offset, 986 Error **errp) 987 { 988 /* 989 * Check generic offset/bytes correctness 990 */ 991 992 if (offset < 0) { 993 error_setg(errp, "offset is negative: %" PRIi64, offset); 994 return -EIO; 995 } 996 997 if (bytes < 0) { 998 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 999 return -EIO; 1000 } 1001 1002 if (bytes > BDRV_MAX_LENGTH) { 1003 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 1004 bytes, BDRV_MAX_LENGTH); 1005 return -EIO; 1006 } 1007 1008 if (offset > BDRV_MAX_LENGTH) { 1009 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 1010 offset, BDRV_MAX_LENGTH); 1011 return -EIO; 1012 } 1013 1014 if (offset > BDRV_MAX_LENGTH - bytes) { 1015 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 1016 "exceeds maximum(%" PRIi64 ")", offset, bytes, 1017 BDRV_MAX_LENGTH); 1018 return -EIO; 1019 } 1020 1021 if (!qiov) { 1022 return 0; 1023 } 1024 1025 /* 1026 * Check qiov and qiov_offset 1027 */ 1028 1029 if (qiov_offset > qiov->size) { 1030 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 1031 qiov_offset, qiov->size); 1032 return -EIO; 1033 } 1034 1035 if (bytes > qiov->size - qiov_offset) { 1036 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 1037 "vector size(%zu)", bytes, qiov_offset, qiov->size); 1038 return -EIO; 1039 } 1040 1041 return 0; 1042 } 1043 1044 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 1045 { 1046 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 1047 } 1048 1049 static int bdrv_check_request32(int64_t offset, int64_t bytes, 1050 QEMUIOVector *qiov, size_t qiov_offset) 1051 { 1052 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 1053 if (ret < 0) { 1054 return ret; 1055 } 1056 1057 if (bytes > BDRV_REQUEST_MAX_BYTES) { 1058 return -EIO; 1059 } 1060 1061 return 0; 1062 } 1063 1064 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 1065 int64_t bytes, BdrvRequestFlags flags) 1066 { 1067 IO_CODE(); 1068 return bdrv_pwritev(child, offset, bytes, NULL, 1069 BDRV_REQ_ZERO_WRITE | flags); 1070 } 1071 1072 /* 1073 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 1074 * The operation is sped up by checking the block status and only writing 1075 * zeroes to the device if they currently do not return zeroes. Optional 1076 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 1077 * BDRV_REQ_FUA). 1078 * 1079 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 1080 */ 1081 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 1082 { 1083 int ret; 1084 int64_t target_size, bytes, offset = 0; 1085 BlockDriverState *bs = child->bs; 1086 IO_CODE(); 1087 1088 target_size = bdrv_getlength(bs); 1089 if (target_size < 0) { 1090 return target_size; 1091 } 1092 1093 for (;;) { 1094 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 1095 if (bytes <= 0) { 1096 return 0; 1097 } 1098 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 1099 if (ret < 0) { 1100 return ret; 1101 } 1102 if (ret & BDRV_BLOCK_ZERO) { 1103 offset += bytes; 1104 continue; 1105 } 1106 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 1107 if (ret < 0) { 1108 return ret; 1109 } 1110 offset += bytes; 1111 } 1112 } 1113 1114 /* See bdrv_pwrite() for the return codes */ 1115 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes) 1116 { 1117 int ret; 1118 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1119 IO_CODE(); 1120 1121 if (bytes < 0) { 1122 return -EINVAL; 1123 } 1124 1125 ret = bdrv_preadv(child, offset, bytes, &qiov, 0); 1126 1127 return ret < 0 ? ret : bytes; 1128 } 1129 1130 /* Return no. of bytes on success or < 0 on error. Important errors are: 1131 -EIO generic I/O error (may happen for all errors) 1132 -ENOMEDIUM No media inserted. 1133 -EINVAL Invalid offset or number of bytes 1134 -EACCES Trying to write a read-only device 1135 */ 1136 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, 1137 int64_t bytes) 1138 { 1139 int ret; 1140 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1141 IO_CODE(); 1142 1143 if (bytes < 0) { 1144 return -EINVAL; 1145 } 1146 1147 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0); 1148 1149 return ret < 0 ? ret : bytes; 1150 } 1151 1152 /* 1153 * Writes to the file and ensures that no writes are reordered across this 1154 * request (acts as a barrier) 1155 * 1156 * Returns 0 on success, -errno in error cases. 1157 */ 1158 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1159 const void *buf, int64_t count) 1160 { 1161 int ret; 1162 IO_CODE(); 1163 1164 ret = bdrv_pwrite(child, offset, buf, count); 1165 if (ret < 0) { 1166 return ret; 1167 } 1168 1169 ret = bdrv_flush(child->bs); 1170 if (ret < 0) { 1171 return ret; 1172 } 1173 1174 return 0; 1175 } 1176 1177 typedef struct CoroutineIOCompletion { 1178 Coroutine *coroutine; 1179 int ret; 1180 } CoroutineIOCompletion; 1181 1182 static void bdrv_co_io_em_complete(void *opaque, int ret) 1183 { 1184 CoroutineIOCompletion *co = opaque; 1185 1186 co->ret = ret; 1187 aio_co_wake(co->coroutine); 1188 } 1189 1190 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1191 int64_t offset, int64_t bytes, 1192 QEMUIOVector *qiov, 1193 size_t qiov_offset, int flags) 1194 { 1195 BlockDriver *drv = bs->drv; 1196 int64_t sector_num; 1197 unsigned int nb_sectors; 1198 QEMUIOVector local_qiov; 1199 int ret; 1200 1201 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1202 assert(!(flags & ~BDRV_REQ_MASK)); 1203 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1204 1205 if (!drv) { 1206 return -ENOMEDIUM; 1207 } 1208 1209 if (drv->bdrv_co_preadv_part) { 1210 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1211 flags); 1212 } 1213 1214 if (qiov_offset > 0 || bytes != qiov->size) { 1215 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1216 qiov = &local_qiov; 1217 } 1218 1219 if (drv->bdrv_co_preadv) { 1220 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1221 goto out; 1222 } 1223 1224 if (drv->bdrv_aio_preadv) { 1225 BlockAIOCB *acb; 1226 CoroutineIOCompletion co = { 1227 .coroutine = qemu_coroutine_self(), 1228 }; 1229 1230 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1231 bdrv_co_io_em_complete, &co); 1232 if (acb == NULL) { 1233 ret = -EIO; 1234 goto out; 1235 } else { 1236 qemu_coroutine_yield(); 1237 ret = co.ret; 1238 goto out; 1239 } 1240 } 1241 1242 sector_num = offset >> BDRV_SECTOR_BITS; 1243 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1244 1245 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1246 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1247 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1248 assert(drv->bdrv_co_readv); 1249 1250 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1251 1252 out: 1253 if (qiov == &local_qiov) { 1254 qemu_iovec_destroy(&local_qiov); 1255 } 1256 1257 return ret; 1258 } 1259 1260 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1261 int64_t offset, int64_t bytes, 1262 QEMUIOVector *qiov, 1263 size_t qiov_offset, 1264 BdrvRequestFlags flags) 1265 { 1266 BlockDriver *drv = bs->drv; 1267 int64_t sector_num; 1268 unsigned int nb_sectors; 1269 QEMUIOVector local_qiov; 1270 int ret; 1271 1272 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1273 assert(!(flags & ~BDRV_REQ_MASK)); 1274 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1275 1276 if (!drv) { 1277 return -ENOMEDIUM; 1278 } 1279 1280 if (drv->bdrv_co_pwritev_part) { 1281 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1282 flags & bs->supported_write_flags); 1283 flags &= ~bs->supported_write_flags; 1284 goto emulate_flags; 1285 } 1286 1287 if (qiov_offset > 0 || bytes != qiov->size) { 1288 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1289 qiov = &local_qiov; 1290 } 1291 1292 if (drv->bdrv_co_pwritev) { 1293 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1294 flags & bs->supported_write_flags); 1295 flags &= ~bs->supported_write_flags; 1296 goto emulate_flags; 1297 } 1298 1299 if (drv->bdrv_aio_pwritev) { 1300 BlockAIOCB *acb; 1301 CoroutineIOCompletion co = { 1302 .coroutine = qemu_coroutine_self(), 1303 }; 1304 1305 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1306 flags & bs->supported_write_flags, 1307 bdrv_co_io_em_complete, &co); 1308 flags &= ~bs->supported_write_flags; 1309 if (acb == NULL) { 1310 ret = -EIO; 1311 } else { 1312 qemu_coroutine_yield(); 1313 ret = co.ret; 1314 } 1315 goto emulate_flags; 1316 } 1317 1318 sector_num = offset >> BDRV_SECTOR_BITS; 1319 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1320 1321 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1322 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1323 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1324 1325 assert(drv->bdrv_co_writev); 1326 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1327 flags & bs->supported_write_flags); 1328 flags &= ~bs->supported_write_flags; 1329 1330 emulate_flags: 1331 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1332 ret = bdrv_co_flush(bs); 1333 } 1334 1335 if (qiov == &local_qiov) { 1336 qemu_iovec_destroy(&local_qiov); 1337 } 1338 1339 return ret; 1340 } 1341 1342 static int coroutine_fn 1343 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1344 int64_t bytes, QEMUIOVector *qiov, 1345 size_t qiov_offset) 1346 { 1347 BlockDriver *drv = bs->drv; 1348 QEMUIOVector local_qiov; 1349 int ret; 1350 1351 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1352 1353 if (!drv) { 1354 return -ENOMEDIUM; 1355 } 1356 1357 if (!block_driver_can_compress(drv)) { 1358 return -ENOTSUP; 1359 } 1360 1361 if (drv->bdrv_co_pwritev_compressed_part) { 1362 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1363 qiov, qiov_offset); 1364 } 1365 1366 if (qiov_offset == 0) { 1367 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1368 } 1369 1370 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1371 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1372 qemu_iovec_destroy(&local_qiov); 1373 1374 return ret; 1375 } 1376 1377 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1378 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1379 size_t qiov_offset, int flags) 1380 { 1381 BlockDriverState *bs = child->bs; 1382 1383 /* Perform I/O through a temporary buffer so that users who scribble over 1384 * their read buffer while the operation is in progress do not end up 1385 * modifying the image file. This is critical for zero-copy guest I/O 1386 * where anything might happen inside guest memory. 1387 */ 1388 void *bounce_buffer = NULL; 1389 1390 BlockDriver *drv = bs->drv; 1391 int64_t cluster_offset; 1392 int64_t cluster_bytes; 1393 int64_t skip_bytes; 1394 int ret; 1395 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1396 BDRV_REQUEST_MAX_BYTES); 1397 int64_t progress = 0; 1398 bool skip_write; 1399 1400 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1401 1402 if (!drv) { 1403 return -ENOMEDIUM; 1404 } 1405 1406 /* 1407 * Do not write anything when the BDS is inactive. That is not 1408 * allowed, and it would not help. 1409 */ 1410 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1411 1412 /* FIXME We cannot require callers to have write permissions when all they 1413 * are doing is a read request. If we did things right, write permissions 1414 * would be obtained anyway, but internally by the copy-on-read code. As 1415 * long as it is implemented here rather than in a separate filter driver, 1416 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1417 * it could request permissions. Therefore we have to bypass the permission 1418 * system for the moment. */ 1419 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1420 1421 /* Cover entire cluster so no additional backing file I/O is required when 1422 * allocating cluster in the image file. Note that this value may exceed 1423 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1424 * is one reason we loop rather than doing it all at once. 1425 */ 1426 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1427 skip_bytes = offset - cluster_offset; 1428 1429 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1430 cluster_offset, cluster_bytes); 1431 1432 while (cluster_bytes) { 1433 int64_t pnum; 1434 1435 if (skip_write) { 1436 ret = 1; /* "already allocated", so nothing will be copied */ 1437 pnum = MIN(cluster_bytes, max_transfer); 1438 } else { 1439 ret = bdrv_is_allocated(bs, cluster_offset, 1440 MIN(cluster_bytes, max_transfer), &pnum); 1441 if (ret < 0) { 1442 /* 1443 * Safe to treat errors in querying allocation as if 1444 * unallocated; we'll probably fail again soon on the 1445 * read, but at least that will set a decent errno. 1446 */ 1447 pnum = MIN(cluster_bytes, max_transfer); 1448 } 1449 1450 /* Stop at EOF if the image ends in the middle of the cluster */ 1451 if (ret == 0 && pnum == 0) { 1452 assert(progress >= bytes); 1453 break; 1454 } 1455 1456 assert(skip_bytes < pnum); 1457 } 1458 1459 if (ret <= 0) { 1460 QEMUIOVector local_qiov; 1461 1462 /* Must copy-on-read; use the bounce buffer */ 1463 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1464 if (!bounce_buffer) { 1465 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1466 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1467 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1468 1469 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1470 if (!bounce_buffer) { 1471 ret = -ENOMEM; 1472 goto err; 1473 } 1474 } 1475 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1476 1477 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1478 &local_qiov, 0, 0); 1479 if (ret < 0) { 1480 goto err; 1481 } 1482 1483 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1484 if (drv->bdrv_co_pwrite_zeroes && 1485 buffer_is_zero(bounce_buffer, pnum)) { 1486 /* FIXME: Should we (perhaps conditionally) be setting 1487 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1488 * that still correctly reads as zero? */ 1489 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1490 BDRV_REQ_WRITE_UNCHANGED); 1491 } else { 1492 /* This does not change the data on the disk, it is not 1493 * necessary to flush even in cache=writethrough mode. 1494 */ 1495 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1496 &local_qiov, 0, 1497 BDRV_REQ_WRITE_UNCHANGED); 1498 } 1499 1500 if (ret < 0) { 1501 /* It might be okay to ignore write errors for guest 1502 * requests. If this is a deliberate copy-on-read 1503 * then we don't want to ignore the error. Simply 1504 * report it in all cases. 1505 */ 1506 goto err; 1507 } 1508 1509 if (!(flags & BDRV_REQ_PREFETCH)) { 1510 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1511 bounce_buffer + skip_bytes, 1512 MIN(pnum - skip_bytes, bytes - progress)); 1513 } 1514 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1515 /* Read directly into the destination */ 1516 ret = bdrv_driver_preadv(bs, offset + progress, 1517 MIN(pnum - skip_bytes, bytes - progress), 1518 qiov, qiov_offset + progress, 0); 1519 if (ret < 0) { 1520 goto err; 1521 } 1522 } 1523 1524 cluster_offset += pnum; 1525 cluster_bytes -= pnum; 1526 progress += pnum - skip_bytes; 1527 skip_bytes = 0; 1528 } 1529 ret = 0; 1530 1531 err: 1532 qemu_vfree(bounce_buffer); 1533 return ret; 1534 } 1535 1536 /* 1537 * Forwards an already correctly aligned request to the BlockDriver. This 1538 * handles copy on read, zeroing after EOF, and fragmentation of large 1539 * reads; any other features must be implemented by the caller. 1540 */ 1541 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1542 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1543 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1544 { 1545 BlockDriverState *bs = child->bs; 1546 int64_t total_bytes, max_bytes; 1547 int ret = 0; 1548 int64_t bytes_remaining = bytes; 1549 int max_transfer; 1550 1551 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1552 assert(is_power_of_2(align)); 1553 assert((offset & (align - 1)) == 0); 1554 assert((bytes & (align - 1)) == 0); 1555 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1556 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1557 align); 1558 1559 /* TODO: We would need a per-BDS .supported_read_flags and 1560 * potential fallback support, if we ever implement any read flags 1561 * to pass through to drivers. For now, there aren't any 1562 * passthrough flags. */ 1563 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH))); 1564 1565 /* Handle Copy on Read and associated serialisation */ 1566 if (flags & BDRV_REQ_COPY_ON_READ) { 1567 /* If we touch the same cluster it counts as an overlap. This 1568 * guarantees that allocating writes will be serialized and not race 1569 * with each other for the same cluster. For example, in copy-on-read 1570 * it ensures that the CoR read and write operations are atomic and 1571 * guest writes cannot interleave between them. */ 1572 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1573 } else { 1574 bdrv_wait_serialising_requests(req); 1575 } 1576 1577 if (flags & BDRV_REQ_COPY_ON_READ) { 1578 int64_t pnum; 1579 1580 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1581 flags &= ~BDRV_REQ_COPY_ON_READ; 1582 1583 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1584 if (ret < 0) { 1585 goto out; 1586 } 1587 1588 if (!ret || pnum != bytes) { 1589 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1590 qiov, qiov_offset, flags); 1591 goto out; 1592 } else if (flags & BDRV_REQ_PREFETCH) { 1593 goto out; 1594 } 1595 } 1596 1597 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1598 total_bytes = bdrv_getlength(bs); 1599 if (total_bytes < 0) { 1600 ret = total_bytes; 1601 goto out; 1602 } 1603 1604 assert(!(flags & ~bs->supported_read_flags)); 1605 1606 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1607 if (bytes <= max_bytes && bytes <= max_transfer) { 1608 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1609 goto out; 1610 } 1611 1612 while (bytes_remaining) { 1613 int64_t num; 1614 1615 if (max_bytes) { 1616 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1617 assert(num); 1618 1619 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1620 num, qiov, 1621 qiov_offset + bytes - bytes_remaining, 1622 flags); 1623 max_bytes -= num; 1624 } else { 1625 num = bytes_remaining; 1626 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1627 0, bytes_remaining); 1628 } 1629 if (ret < 0) { 1630 goto out; 1631 } 1632 bytes_remaining -= num; 1633 } 1634 1635 out: 1636 return ret < 0 ? ret : 0; 1637 } 1638 1639 /* 1640 * Request padding 1641 * 1642 * |<---- align ----->| |<----- align ---->| 1643 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1644 * | | | | | | 1645 * -*----------$-------*-------- ... --------*-----$------------*--- 1646 * | | | | | | 1647 * | offset | | end | 1648 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1649 * [buf ... ) [tail_buf ) 1650 * 1651 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1652 * is placed at the beginning of @buf and @tail at the @end. 1653 * 1654 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1655 * around tail, if tail exists. 1656 * 1657 * @merge_reads is true for small requests, 1658 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1659 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1660 */ 1661 typedef struct BdrvRequestPadding { 1662 uint8_t *buf; 1663 size_t buf_len; 1664 uint8_t *tail_buf; 1665 size_t head; 1666 size_t tail; 1667 bool merge_reads; 1668 QEMUIOVector local_qiov; 1669 } BdrvRequestPadding; 1670 1671 static bool bdrv_init_padding(BlockDriverState *bs, 1672 int64_t offset, int64_t bytes, 1673 BdrvRequestPadding *pad) 1674 { 1675 int64_t align = bs->bl.request_alignment; 1676 int64_t sum; 1677 1678 bdrv_check_request(offset, bytes, &error_abort); 1679 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1680 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1681 1682 memset(pad, 0, sizeof(*pad)); 1683 1684 pad->head = offset & (align - 1); 1685 pad->tail = ((offset + bytes) & (align - 1)); 1686 if (pad->tail) { 1687 pad->tail = align - pad->tail; 1688 } 1689 1690 if (!pad->head && !pad->tail) { 1691 return false; 1692 } 1693 1694 assert(bytes); /* Nothing good in aligning zero-length requests */ 1695 1696 sum = pad->head + bytes + pad->tail; 1697 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1698 pad->buf = qemu_blockalign(bs, pad->buf_len); 1699 pad->merge_reads = sum == pad->buf_len; 1700 if (pad->tail) { 1701 pad->tail_buf = pad->buf + pad->buf_len - align; 1702 } 1703 1704 return true; 1705 } 1706 1707 static int bdrv_padding_rmw_read(BdrvChild *child, 1708 BdrvTrackedRequest *req, 1709 BdrvRequestPadding *pad, 1710 bool zero_middle) 1711 { 1712 QEMUIOVector local_qiov; 1713 BlockDriverState *bs = child->bs; 1714 uint64_t align = bs->bl.request_alignment; 1715 int ret; 1716 1717 assert(req->serialising && pad->buf); 1718 1719 if (pad->head || pad->merge_reads) { 1720 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1721 1722 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1723 1724 if (pad->head) { 1725 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1726 } 1727 if (pad->merge_reads && pad->tail) { 1728 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1729 } 1730 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1731 align, &local_qiov, 0, 0); 1732 if (ret < 0) { 1733 return ret; 1734 } 1735 if (pad->head) { 1736 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1737 } 1738 if (pad->merge_reads && pad->tail) { 1739 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1740 } 1741 1742 if (pad->merge_reads) { 1743 goto zero_mem; 1744 } 1745 } 1746 1747 if (pad->tail) { 1748 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1749 1750 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1751 ret = bdrv_aligned_preadv( 1752 child, req, 1753 req->overlap_offset + req->overlap_bytes - align, 1754 align, align, &local_qiov, 0, 0); 1755 if (ret < 0) { 1756 return ret; 1757 } 1758 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1759 } 1760 1761 zero_mem: 1762 if (zero_middle) { 1763 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1764 } 1765 1766 return 0; 1767 } 1768 1769 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1770 { 1771 if (pad->buf) { 1772 qemu_vfree(pad->buf); 1773 qemu_iovec_destroy(&pad->local_qiov); 1774 } 1775 memset(pad, 0, sizeof(*pad)); 1776 } 1777 1778 /* 1779 * bdrv_pad_request 1780 * 1781 * Exchange request parameters with padded request if needed. Don't include RMW 1782 * read of padding, bdrv_padding_rmw_read() should be called separately if 1783 * needed. 1784 * 1785 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1786 * - on function start they represent original request 1787 * - on failure or when padding is not needed they are unchanged 1788 * - on success when padding is needed they represent padded request 1789 */ 1790 static int bdrv_pad_request(BlockDriverState *bs, 1791 QEMUIOVector **qiov, size_t *qiov_offset, 1792 int64_t *offset, int64_t *bytes, 1793 BdrvRequestPadding *pad, bool *padded) 1794 { 1795 int ret; 1796 1797 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1798 1799 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1800 if (padded) { 1801 *padded = false; 1802 } 1803 return 0; 1804 } 1805 1806 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1807 *qiov, *qiov_offset, *bytes, 1808 pad->buf + pad->buf_len - pad->tail, 1809 pad->tail); 1810 if (ret < 0) { 1811 bdrv_padding_destroy(pad); 1812 return ret; 1813 } 1814 *bytes += pad->head + pad->tail; 1815 *offset -= pad->head; 1816 *qiov = &pad->local_qiov; 1817 *qiov_offset = 0; 1818 if (padded) { 1819 *padded = true; 1820 } 1821 1822 return 0; 1823 } 1824 1825 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1826 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1827 BdrvRequestFlags flags) 1828 { 1829 IO_CODE(); 1830 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1831 } 1832 1833 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1834 int64_t offset, int64_t bytes, 1835 QEMUIOVector *qiov, size_t qiov_offset, 1836 BdrvRequestFlags flags) 1837 { 1838 BlockDriverState *bs = child->bs; 1839 BdrvTrackedRequest req; 1840 BdrvRequestPadding pad; 1841 int ret; 1842 IO_CODE(); 1843 1844 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1845 1846 if (!bdrv_is_inserted(bs)) { 1847 return -ENOMEDIUM; 1848 } 1849 1850 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1851 if (ret < 0) { 1852 return ret; 1853 } 1854 1855 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1856 /* 1857 * Aligning zero request is nonsense. Even if driver has special meaning 1858 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1859 * it to driver due to request_alignment. 1860 * 1861 * Still, no reason to return an error if someone do unaligned 1862 * zero-length read occasionally. 1863 */ 1864 return 0; 1865 } 1866 1867 bdrv_inc_in_flight(bs); 1868 1869 /* Don't do copy-on-read if we read data before write operation */ 1870 if (qatomic_read(&bs->copy_on_read)) { 1871 flags |= BDRV_REQ_COPY_ON_READ; 1872 } 1873 1874 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 1875 NULL); 1876 if (ret < 0) { 1877 goto fail; 1878 } 1879 1880 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1881 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1882 bs->bl.request_alignment, 1883 qiov, qiov_offset, flags); 1884 tracked_request_end(&req); 1885 bdrv_padding_destroy(&pad); 1886 1887 fail: 1888 bdrv_dec_in_flight(bs); 1889 1890 return ret; 1891 } 1892 1893 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1894 int64_t offset, int64_t bytes, BdrvRequestFlags flags) 1895 { 1896 BlockDriver *drv = bs->drv; 1897 QEMUIOVector qiov; 1898 void *buf = NULL; 1899 int ret = 0; 1900 bool need_flush = false; 1901 int head = 0; 1902 int tail = 0; 1903 1904 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1905 INT64_MAX); 1906 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1907 bs->bl.request_alignment); 1908 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1909 1910 bdrv_check_request(offset, bytes, &error_abort); 1911 1912 if (!drv) { 1913 return -ENOMEDIUM; 1914 } 1915 1916 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1917 return -ENOTSUP; 1918 } 1919 1920 /* Invalidate the cached block-status data range if this write overlaps */ 1921 bdrv_bsc_invalidate_range(bs, offset, bytes); 1922 1923 assert(alignment % bs->bl.request_alignment == 0); 1924 head = offset % alignment; 1925 tail = (offset + bytes) % alignment; 1926 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1927 assert(max_write_zeroes >= bs->bl.request_alignment); 1928 1929 while (bytes > 0 && !ret) { 1930 int64_t num = bytes; 1931 1932 /* Align request. Block drivers can expect the "bulk" of the request 1933 * to be aligned, and that unaligned requests do not cross cluster 1934 * boundaries. 1935 */ 1936 if (head) { 1937 /* Make a small request up to the first aligned sector. For 1938 * convenience, limit this request to max_transfer even if 1939 * we don't need to fall back to writes. */ 1940 num = MIN(MIN(bytes, max_transfer), alignment - head); 1941 head = (head + num) % alignment; 1942 assert(num < max_write_zeroes); 1943 } else if (tail && num > alignment) { 1944 /* Shorten the request to the last aligned sector. */ 1945 num -= tail; 1946 } 1947 1948 /* limit request size */ 1949 if (num > max_write_zeroes) { 1950 num = max_write_zeroes; 1951 } 1952 1953 ret = -ENOTSUP; 1954 /* First try the efficient write zeroes operation */ 1955 if (drv->bdrv_co_pwrite_zeroes) { 1956 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1957 flags & bs->supported_zero_flags); 1958 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1959 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1960 need_flush = true; 1961 } 1962 } else { 1963 assert(!bs->supported_zero_flags); 1964 } 1965 1966 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1967 /* Fall back to bounce buffer if write zeroes is unsupported */ 1968 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1969 1970 if ((flags & BDRV_REQ_FUA) && 1971 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1972 /* No need for bdrv_driver_pwrite() to do a fallback 1973 * flush on each chunk; use just one at the end */ 1974 write_flags &= ~BDRV_REQ_FUA; 1975 need_flush = true; 1976 } 1977 num = MIN(num, max_transfer); 1978 if (buf == NULL) { 1979 buf = qemu_try_blockalign0(bs, num); 1980 if (buf == NULL) { 1981 ret = -ENOMEM; 1982 goto fail; 1983 } 1984 } 1985 qemu_iovec_init_buf(&qiov, buf, num); 1986 1987 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1988 1989 /* Keep bounce buffer around if it is big enough for all 1990 * all future requests. 1991 */ 1992 if (num < max_transfer) { 1993 qemu_vfree(buf); 1994 buf = NULL; 1995 } 1996 } 1997 1998 offset += num; 1999 bytes -= num; 2000 } 2001 2002 fail: 2003 if (ret == 0 && need_flush) { 2004 ret = bdrv_co_flush(bs); 2005 } 2006 qemu_vfree(buf); 2007 return ret; 2008 } 2009 2010 static inline int coroutine_fn 2011 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 2012 BdrvTrackedRequest *req, int flags) 2013 { 2014 BlockDriverState *bs = child->bs; 2015 2016 bdrv_check_request(offset, bytes, &error_abort); 2017 2018 if (bdrv_is_read_only(bs)) { 2019 return -EPERM; 2020 } 2021 2022 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2023 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 2024 assert(!(flags & ~BDRV_REQ_MASK)); 2025 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 2026 2027 if (flags & BDRV_REQ_SERIALISING) { 2028 QEMU_LOCK_GUARD(&bs->reqs_lock); 2029 2030 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 2031 2032 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 2033 return -EBUSY; 2034 } 2035 2036 bdrv_wait_serialising_requests_locked(req); 2037 } else { 2038 bdrv_wait_serialising_requests(req); 2039 } 2040 2041 assert(req->overlap_offset <= offset); 2042 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 2043 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 2044 child->perm & BLK_PERM_RESIZE); 2045 2046 switch (req->type) { 2047 case BDRV_TRACKED_WRITE: 2048 case BDRV_TRACKED_DISCARD: 2049 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 2050 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 2051 } else { 2052 assert(child->perm & BLK_PERM_WRITE); 2053 } 2054 bdrv_write_threshold_check_write(bs, offset, bytes); 2055 return 0; 2056 case BDRV_TRACKED_TRUNCATE: 2057 assert(child->perm & BLK_PERM_RESIZE); 2058 return 0; 2059 default: 2060 abort(); 2061 } 2062 } 2063 2064 static inline void coroutine_fn 2065 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2066 BdrvTrackedRequest *req, int ret) 2067 { 2068 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2069 BlockDriverState *bs = child->bs; 2070 2071 bdrv_check_request(offset, bytes, &error_abort); 2072 2073 qatomic_inc(&bs->write_gen); 2074 2075 /* 2076 * Discard cannot extend the image, but in error handling cases, such as 2077 * when reverting a qcow2 cluster allocation, the discarded range can pass 2078 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2079 * here. Instead, just skip it, since semantically a discard request 2080 * beyond EOF cannot expand the image anyway. 2081 */ 2082 if (ret == 0 && 2083 (req->type == BDRV_TRACKED_TRUNCATE || 2084 end_sector > bs->total_sectors) && 2085 req->type != BDRV_TRACKED_DISCARD) { 2086 bs->total_sectors = end_sector; 2087 bdrv_parent_cb_resize(bs); 2088 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2089 } 2090 if (req->bytes) { 2091 switch (req->type) { 2092 case BDRV_TRACKED_WRITE: 2093 stat64_max(&bs->wr_highest_offset, offset + bytes); 2094 /* fall through, to set dirty bits */ 2095 case BDRV_TRACKED_DISCARD: 2096 bdrv_set_dirty(bs, offset, bytes); 2097 break; 2098 default: 2099 break; 2100 } 2101 } 2102 } 2103 2104 /* 2105 * Forwards an already correctly aligned write request to the BlockDriver, 2106 * after possibly fragmenting it. 2107 */ 2108 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 2109 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 2110 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, 2111 BdrvRequestFlags flags) 2112 { 2113 BlockDriverState *bs = child->bs; 2114 BlockDriver *drv = bs->drv; 2115 int ret; 2116 2117 int64_t bytes_remaining = bytes; 2118 int max_transfer; 2119 2120 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2121 2122 if (!drv) { 2123 return -ENOMEDIUM; 2124 } 2125 2126 if (bdrv_has_readonly_bitmaps(bs)) { 2127 return -EPERM; 2128 } 2129 2130 assert(is_power_of_2(align)); 2131 assert((offset & (align - 1)) == 0); 2132 assert((bytes & (align - 1)) == 0); 2133 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2134 align); 2135 2136 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2137 2138 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2139 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2140 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2141 flags |= BDRV_REQ_ZERO_WRITE; 2142 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2143 flags |= BDRV_REQ_MAY_UNMAP; 2144 } 2145 } 2146 2147 if (ret < 0) { 2148 /* Do nothing, write notifier decided to fail this request */ 2149 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2150 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2151 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2152 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2153 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2154 qiov, qiov_offset); 2155 } else if (bytes <= max_transfer) { 2156 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2157 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2158 } else { 2159 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2160 while (bytes_remaining) { 2161 int num = MIN(bytes_remaining, max_transfer); 2162 int local_flags = flags; 2163 2164 assert(num); 2165 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2166 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2167 /* If FUA is going to be emulated by flush, we only 2168 * need to flush on the last iteration */ 2169 local_flags &= ~BDRV_REQ_FUA; 2170 } 2171 2172 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2173 num, qiov, 2174 qiov_offset + bytes - bytes_remaining, 2175 local_flags); 2176 if (ret < 0) { 2177 break; 2178 } 2179 bytes_remaining -= num; 2180 } 2181 } 2182 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 2183 2184 if (ret >= 0) { 2185 ret = 0; 2186 } 2187 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2188 2189 return ret; 2190 } 2191 2192 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 2193 int64_t offset, 2194 int64_t bytes, 2195 BdrvRequestFlags flags, 2196 BdrvTrackedRequest *req) 2197 { 2198 BlockDriverState *bs = child->bs; 2199 QEMUIOVector local_qiov; 2200 uint64_t align = bs->bl.request_alignment; 2201 int ret = 0; 2202 bool padding; 2203 BdrvRequestPadding pad; 2204 2205 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2206 if (padding) { 2207 assert(!(flags & BDRV_REQ_NO_WAIT)); 2208 bdrv_make_request_serialising(req, align); 2209 2210 bdrv_padding_rmw_read(child, req, &pad, true); 2211 2212 if (pad.head || pad.merge_reads) { 2213 int64_t aligned_offset = offset & ~(align - 1); 2214 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2215 2216 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2217 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2218 align, &local_qiov, 0, 2219 flags & ~BDRV_REQ_ZERO_WRITE); 2220 if (ret < 0 || pad.merge_reads) { 2221 /* Error or all work is done */ 2222 goto out; 2223 } 2224 offset += write_bytes - pad.head; 2225 bytes -= write_bytes - pad.head; 2226 } 2227 } 2228 2229 assert(!bytes || (offset & (align - 1)) == 0); 2230 if (bytes >= align) { 2231 /* Write the aligned part in the middle. */ 2232 int64_t aligned_bytes = bytes & ~(align - 1); 2233 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2234 NULL, 0, flags); 2235 if (ret < 0) { 2236 goto out; 2237 } 2238 bytes -= aligned_bytes; 2239 offset += aligned_bytes; 2240 } 2241 2242 assert(!bytes || (offset & (align - 1)) == 0); 2243 if (bytes) { 2244 assert(align == pad.tail + bytes); 2245 2246 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2247 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2248 &local_qiov, 0, 2249 flags & ~BDRV_REQ_ZERO_WRITE); 2250 } 2251 2252 out: 2253 bdrv_padding_destroy(&pad); 2254 2255 return ret; 2256 } 2257 2258 /* 2259 * Handle a write request in coroutine context 2260 */ 2261 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2262 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2263 BdrvRequestFlags flags) 2264 { 2265 IO_CODE(); 2266 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2267 } 2268 2269 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2270 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2271 BdrvRequestFlags flags) 2272 { 2273 BlockDriverState *bs = child->bs; 2274 BdrvTrackedRequest req; 2275 uint64_t align = bs->bl.request_alignment; 2276 BdrvRequestPadding pad; 2277 int ret; 2278 bool padded = false; 2279 IO_CODE(); 2280 2281 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2282 2283 if (!bdrv_is_inserted(bs)) { 2284 return -ENOMEDIUM; 2285 } 2286 2287 if (flags & BDRV_REQ_ZERO_WRITE) { 2288 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2289 } else { 2290 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2291 } 2292 if (ret < 0) { 2293 return ret; 2294 } 2295 2296 /* If the request is misaligned then we can't make it efficient */ 2297 if ((flags & BDRV_REQ_NO_FALLBACK) && 2298 !QEMU_IS_ALIGNED(offset | bytes, align)) 2299 { 2300 return -ENOTSUP; 2301 } 2302 2303 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2304 /* 2305 * Aligning zero request is nonsense. Even if driver has special meaning 2306 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2307 * it to driver due to request_alignment. 2308 * 2309 * Still, no reason to return an error if someone do unaligned 2310 * zero-length write occasionally. 2311 */ 2312 return 0; 2313 } 2314 2315 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2316 /* 2317 * Pad request for following read-modify-write cycle. 2318 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2319 * alignment only if there is no ZERO flag. 2320 */ 2321 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 2322 &padded); 2323 if (ret < 0) { 2324 return ret; 2325 } 2326 } 2327 2328 bdrv_inc_in_flight(bs); 2329 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2330 2331 if (flags & BDRV_REQ_ZERO_WRITE) { 2332 assert(!padded); 2333 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2334 goto out; 2335 } 2336 2337 if (padded) { 2338 /* 2339 * Request was unaligned to request_alignment and therefore 2340 * padded. We are going to do read-modify-write, and must 2341 * serialize the request to prevent interactions of the 2342 * widened region with other transactions. 2343 */ 2344 assert(!(flags & BDRV_REQ_NO_WAIT)); 2345 bdrv_make_request_serialising(&req, align); 2346 bdrv_padding_rmw_read(child, &req, &pad, false); 2347 } 2348 2349 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2350 qiov, qiov_offset, flags); 2351 2352 bdrv_padding_destroy(&pad); 2353 2354 out: 2355 tracked_request_end(&req); 2356 bdrv_dec_in_flight(bs); 2357 2358 return ret; 2359 } 2360 2361 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2362 int64_t bytes, BdrvRequestFlags flags) 2363 { 2364 IO_CODE(); 2365 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2366 2367 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2368 flags &= ~BDRV_REQ_MAY_UNMAP; 2369 } 2370 2371 return bdrv_co_pwritev(child, offset, bytes, NULL, 2372 BDRV_REQ_ZERO_WRITE | flags); 2373 } 2374 2375 /* 2376 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2377 */ 2378 int bdrv_flush_all(void) 2379 { 2380 BdrvNextIterator it; 2381 BlockDriverState *bs = NULL; 2382 int result = 0; 2383 2384 GLOBAL_STATE_CODE(); 2385 2386 /* 2387 * bdrv queue is managed by record/replay, 2388 * creating new flush request for stopping 2389 * the VM may break the determinism 2390 */ 2391 if (replay_events_enabled()) { 2392 return result; 2393 } 2394 2395 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2396 AioContext *aio_context = bdrv_get_aio_context(bs); 2397 int ret; 2398 2399 aio_context_acquire(aio_context); 2400 ret = bdrv_flush(bs); 2401 if (ret < 0 && !result) { 2402 result = ret; 2403 } 2404 aio_context_release(aio_context); 2405 } 2406 2407 return result; 2408 } 2409 2410 /* 2411 * Returns the allocation status of the specified sectors. 2412 * Drivers not implementing the functionality are assumed to not support 2413 * backing files, hence all their sectors are reported as allocated. 2414 * 2415 * If 'want_zero' is true, the caller is querying for mapping 2416 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2417 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2418 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2419 * 2420 * If 'offset' is beyond the end of the disk image the return value is 2421 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2422 * 2423 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2424 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2425 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2426 * 2427 * 'pnum' is set to the number of bytes (including and immediately 2428 * following the specified offset) that are easily known to be in the 2429 * same allocated/unallocated state. Note that a second call starting 2430 * at the original offset plus returned pnum may have the same status. 2431 * The returned value is non-zero on success except at end-of-file. 2432 * 2433 * Returns negative errno on failure. Otherwise, if the 2434 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2435 * set to the host mapping and BDS corresponding to the guest offset. 2436 */ 2437 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2438 bool want_zero, 2439 int64_t offset, int64_t bytes, 2440 int64_t *pnum, int64_t *map, 2441 BlockDriverState **file) 2442 { 2443 int64_t total_size; 2444 int64_t n; /* bytes */ 2445 int ret; 2446 int64_t local_map = 0; 2447 BlockDriverState *local_file = NULL; 2448 int64_t aligned_offset, aligned_bytes; 2449 uint32_t align; 2450 bool has_filtered_child; 2451 2452 assert(pnum); 2453 *pnum = 0; 2454 total_size = bdrv_getlength(bs); 2455 if (total_size < 0) { 2456 ret = total_size; 2457 goto early_out; 2458 } 2459 2460 if (offset >= total_size) { 2461 ret = BDRV_BLOCK_EOF; 2462 goto early_out; 2463 } 2464 if (!bytes) { 2465 ret = 0; 2466 goto early_out; 2467 } 2468 2469 n = total_size - offset; 2470 if (n < bytes) { 2471 bytes = n; 2472 } 2473 2474 /* Must be non-NULL or bdrv_getlength() would have failed */ 2475 assert(bs->drv); 2476 has_filtered_child = bdrv_filter_child(bs); 2477 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2478 *pnum = bytes; 2479 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2480 if (offset + bytes == total_size) { 2481 ret |= BDRV_BLOCK_EOF; 2482 } 2483 if (bs->drv->protocol_name) { 2484 ret |= BDRV_BLOCK_OFFSET_VALID; 2485 local_map = offset; 2486 local_file = bs; 2487 } 2488 goto early_out; 2489 } 2490 2491 bdrv_inc_in_flight(bs); 2492 2493 /* Round out to request_alignment boundaries */ 2494 align = bs->bl.request_alignment; 2495 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2496 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2497 2498 if (bs->drv->bdrv_co_block_status) { 2499 /* 2500 * Use the block-status cache only for protocol nodes: Format 2501 * drivers are generally quick to inquire the status, but protocol 2502 * drivers often need to get information from outside of qemu, so 2503 * we do not have control over the actual implementation. There 2504 * have been cases where inquiring the status took an unreasonably 2505 * long time, and we can do nothing in qemu to fix it. 2506 * This is especially problematic for images with large data areas, 2507 * because finding the few holes in them and giving them special 2508 * treatment does not gain much performance. Therefore, we try to 2509 * cache the last-identified data region. 2510 * 2511 * Second, limiting ourselves to protocol nodes allows us to assume 2512 * the block status for data regions to be DATA | OFFSET_VALID, and 2513 * that the host offset is the same as the guest offset. 2514 * 2515 * Note that it is possible that external writers zero parts of 2516 * the cached regions without the cache being invalidated, and so 2517 * we may report zeroes as data. This is not catastrophic, 2518 * however, because reporting zeroes as data is fine. 2519 */ 2520 if (QLIST_EMPTY(&bs->children) && 2521 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2522 { 2523 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2524 local_file = bs; 2525 local_map = aligned_offset; 2526 } else { 2527 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2528 aligned_bytes, pnum, &local_map, 2529 &local_file); 2530 2531 /* 2532 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2533 * the cache is queried above. Technically, we do not need to check 2534 * it here; the worst that can happen is that we fill the cache for 2535 * non-protocol nodes, and then it is never used. However, filling 2536 * the cache requires an RCU update, so double check here to avoid 2537 * such an update if possible. 2538 * 2539 * Check want_zero, because we only want to update the cache when we 2540 * have accurate information about what is zero and what is data. 2541 */ 2542 if (want_zero && 2543 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2544 QLIST_EMPTY(&bs->children)) 2545 { 2546 /* 2547 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2548 * returned local_map value must be the same as the offset we 2549 * have passed (aligned_offset), and local_bs must be the node 2550 * itself. 2551 * Assert this, because we follow this rule when reading from 2552 * the cache (see the `local_file = bs` and 2553 * `local_map = aligned_offset` assignments above), and the 2554 * result the cache delivers must be the same as the driver 2555 * would deliver. 2556 */ 2557 assert(local_file == bs); 2558 assert(local_map == aligned_offset); 2559 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2560 } 2561 } 2562 } else { 2563 /* Default code for filters */ 2564 2565 local_file = bdrv_filter_bs(bs); 2566 assert(local_file); 2567 2568 *pnum = aligned_bytes; 2569 local_map = aligned_offset; 2570 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2571 } 2572 if (ret < 0) { 2573 *pnum = 0; 2574 goto out; 2575 } 2576 2577 /* 2578 * The driver's result must be a non-zero multiple of request_alignment. 2579 * Clamp pnum and adjust map to original request. 2580 */ 2581 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2582 align > offset - aligned_offset); 2583 if (ret & BDRV_BLOCK_RECURSE) { 2584 assert(ret & BDRV_BLOCK_DATA); 2585 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2586 assert(!(ret & BDRV_BLOCK_ZERO)); 2587 } 2588 2589 *pnum -= offset - aligned_offset; 2590 if (*pnum > bytes) { 2591 *pnum = bytes; 2592 } 2593 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2594 local_map += offset - aligned_offset; 2595 } 2596 2597 if (ret & BDRV_BLOCK_RAW) { 2598 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2599 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2600 *pnum, pnum, &local_map, &local_file); 2601 goto out; 2602 } 2603 2604 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2605 ret |= BDRV_BLOCK_ALLOCATED; 2606 } else if (bs->drv->supports_backing) { 2607 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2608 2609 if (!cow_bs) { 2610 ret |= BDRV_BLOCK_ZERO; 2611 } else if (want_zero) { 2612 int64_t size2 = bdrv_getlength(cow_bs); 2613 2614 if (size2 >= 0 && offset >= size2) { 2615 ret |= BDRV_BLOCK_ZERO; 2616 } 2617 } 2618 } 2619 2620 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2621 local_file && local_file != bs && 2622 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2623 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2624 int64_t file_pnum; 2625 int ret2; 2626 2627 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2628 *pnum, &file_pnum, NULL, NULL); 2629 if (ret2 >= 0) { 2630 /* Ignore errors. This is just providing extra information, it 2631 * is useful but not necessary. 2632 */ 2633 if (ret2 & BDRV_BLOCK_EOF && 2634 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2635 /* 2636 * It is valid for the format block driver to read 2637 * beyond the end of the underlying file's current 2638 * size; such areas read as zero. 2639 */ 2640 ret |= BDRV_BLOCK_ZERO; 2641 } else { 2642 /* Limit request to the range reported by the protocol driver */ 2643 *pnum = file_pnum; 2644 ret |= (ret2 & BDRV_BLOCK_ZERO); 2645 } 2646 } 2647 } 2648 2649 out: 2650 bdrv_dec_in_flight(bs); 2651 if (ret >= 0 && offset + *pnum == total_size) { 2652 ret |= BDRV_BLOCK_EOF; 2653 } 2654 early_out: 2655 if (file) { 2656 *file = local_file; 2657 } 2658 if (map) { 2659 *map = local_map; 2660 } 2661 return ret; 2662 } 2663 2664 int coroutine_fn 2665 bdrv_co_common_block_status_above(BlockDriverState *bs, 2666 BlockDriverState *base, 2667 bool include_base, 2668 bool want_zero, 2669 int64_t offset, 2670 int64_t bytes, 2671 int64_t *pnum, 2672 int64_t *map, 2673 BlockDriverState **file, 2674 int *depth) 2675 { 2676 int ret; 2677 BlockDriverState *p; 2678 int64_t eof = 0; 2679 int dummy; 2680 IO_CODE(); 2681 2682 assert(!include_base || base); /* Can't include NULL base */ 2683 2684 if (!depth) { 2685 depth = &dummy; 2686 } 2687 *depth = 0; 2688 2689 if (!include_base && bs == base) { 2690 *pnum = bytes; 2691 return 0; 2692 } 2693 2694 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2695 ++*depth; 2696 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2697 return ret; 2698 } 2699 2700 if (ret & BDRV_BLOCK_EOF) { 2701 eof = offset + *pnum; 2702 } 2703 2704 assert(*pnum <= bytes); 2705 bytes = *pnum; 2706 2707 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2708 p = bdrv_filter_or_cow_bs(p)) 2709 { 2710 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2711 file); 2712 ++*depth; 2713 if (ret < 0) { 2714 return ret; 2715 } 2716 if (*pnum == 0) { 2717 /* 2718 * The top layer deferred to this layer, and because this layer is 2719 * short, any zeroes that we synthesize beyond EOF behave as if they 2720 * were allocated at this layer. 2721 * 2722 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2723 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2724 * below. 2725 */ 2726 assert(ret & BDRV_BLOCK_EOF); 2727 *pnum = bytes; 2728 if (file) { 2729 *file = p; 2730 } 2731 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2732 break; 2733 } 2734 if (ret & BDRV_BLOCK_ALLOCATED) { 2735 /* 2736 * We've found the node and the status, we must break. 2737 * 2738 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2739 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2740 * below. 2741 */ 2742 ret &= ~BDRV_BLOCK_EOF; 2743 break; 2744 } 2745 2746 if (p == base) { 2747 assert(include_base); 2748 break; 2749 } 2750 2751 /* 2752 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2753 * let's continue the diving. 2754 */ 2755 assert(*pnum <= bytes); 2756 bytes = *pnum; 2757 } 2758 2759 if (offset + *pnum == eof) { 2760 ret |= BDRV_BLOCK_EOF; 2761 } 2762 2763 return ret; 2764 } 2765 2766 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2767 int64_t offset, int64_t bytes, int64_t *pnum, 2768 int64_t *map, BlockDriverState **file) 2769 { 2770 IO_CODE(); 2771 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2772 pnum, map, file, NULL); 2773 } 2774 2775 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2776 int64_t *pnum, int64_t *map, BlockDriverState **file) 2777 { 2778 IO_CODE(); 2779 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2780 offset, bytes, pnum, map, file); 2781 } 2782 2783 /* 2784 * Check @bs (and its backing chain) to see if the range defined 2785 * by @offset and @bytes is known to read as zeroes. 2786 * Return 1 if that is the case, 0 otherwise and -errno on error. 2787 * This test is meant to be fast rather than accurate so returning 0 2788 * does not guarantee non-zero data. 2789 */ 2790 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2791 int64_t bytes) 2792 { 2793 int ret; 2794 int64_t pnum = bytes; 2795 IO_CODE(); 2796 2797 if (!bytes) { 2798 return 1; 2799 } 2800 2801 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset, 2802 bytes, &pnum, NULL, NULL, NULL); 2803 2804 if (ret < 0) { 2805 return ret; 2806 } 2807 2808 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2809 } 2810 2811 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2812 int64_t bytes, int64_t *pnum) 2813 { 2814 int ret; 2815 int64_t dummy; 2816 IO_CODE(); 2817 2818 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2819 bytes, pnum ? pnum : &dummy, NULL, 2820 NULL, NULL); 2821 if (ret < 0) { 2822 return ret; 2823 } 2824 return !!(ret & BDRV_BLOCK_ALLOCATED); 2825 } 2826 2827 /* 2828 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2829 * 2830 * Return a positive depth if (a prefix of) the given range is allocated 2831 * in any image between BASE and TOP (BASE is only included if include_base 2832 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2833 * BASE can be NULL to check if the given offset is allocated in any 2834 * image of the chain. Return 0 otherwise, or negative errno on 2835 * failure. 2836 * 2837 * 'pnum' is set to the number of bytes (including and immediately 2838 * following the specified offset) that are known to be in the same 2839 * allocated/unallocated state. Note that a subsequent call starting 2840 * at 'offset + *pnum' may return the same allocation status (in other 2841 * words, the result is not necessarily the maximum possible range); 2842 * but 'pnum' will only be 0 when end of file is reached. 2843 */ 2844 int bdrv_is_allocated_above(BlockDriverState *top, 2845 BlockDriverState *base, 2846 bool include_base, int64_t offset, 2847 int64_t bytes, int64_t *pnum) 2848 { 2849 int depth; 2850 int ret = bdrv_common_block_status_above(top, base, include_base, false, 2851 offset, bytes, pnum, NULL, NULL, 2852 &depth); 2853 IO_CODE(); 2854 if (ret < 0) { 2855 return ret; 2856 } 2857 2858 if (ret & BDRV_BLOCK_ALLOCATED) { 2859 return depth; 2860 } 2861 return 0; 2862 } 2863 2864 int coroutine_fn 2865 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2866 { 2867 BlockDriver *drv = bs->drv; 2868 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2869 int ret; 2870 IO_CODE(); 2871 2872 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2873 if (ret < 0) { 2874 return ret; 2875 } 2876 2877 if (!drv) { 2878 return -ENOMEDIUM; 2879 } 2880 2881 bdrv_inc_in_flight(bs); 2882 2883 if (drv->bdrv_load_vmstate) { 2884 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2885 } else if (child_bs) { 2886 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2887 } else { 2888 ret = -ENOTSUP; 2889 } 2890 2891 bdrv_dec_in_flight(bs); 2892 2893 return ret; 2894 } 2895 2896 int coroutine_fn 2897 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2898 { 2899 BlockDriver *drv = bs->drv; 2900 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2901 int ret; 2902 IO_CODE(); 2903 2904 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2905 if (ret < 0) { 2906 return ret; 2907 } 2908 2909 if (!drv) { 2910 return -ENOMEDIUM; 2911 } 2912 2913 bdrv_inc_in_flight(bs); 2914 2915 if (drv->bdrv_save_vmstate) { 2916 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2917 } else if (child_bs) { 2918 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2919 } else { 2920 ret = -ENOTSUP; 2921 } 2922 2923 bdrv_dec_in_flight(bs); 2924 2925 return ret; 2926 } 2927 2928 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2929 int64_t pos, int size) 2930 { 2931 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2932 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2933 IO_CODE(); 2934 2935 return ret < 0 ? ret : size; 2936 } 2937 2938 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2939 int64_t pos, int size) 2940 { 2941 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2942 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2943 IO_CODE(); 2944 2945 return ret < 0 ? ret : size; 2946 } 2947 2948 /**************************************************************/ 2949 /* async I/Os */ 2950 2951 void bdrv_aio_cancel(BlockAIOCB *acb) 2952 { 2953 IO_CODE(); 2954 qemu_aio_ref(acb); 2955 bdrv_aio_cancel_async(acb); 2956 while (acb->refcnt > 1) { 2957 if (acb->aiocb_info->get_aio_context) { 2958 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2959 } else if (acb->bs) { 2960 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2961 * assert that we're not using an I/O thread. Thread-safe 2962 * code should use bdrv_aio_cancel_async exclusively. 2963 */ 2964 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2965 aio_poll(bdrv_get_aio_context(acb->bs), true); 2966 } else { 2967 abort(); 2968 } 2969 } 2970 qemu_aio_unref(acb); 2971 } 2972 2973 /* Async version of aio cancel. The caller is not blocked if the acb implements 2974 * cancel_async, otherwise we do nothing and let the request normally complete. 2975 * In either case the completion callback must be called. */ 2976 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2977 { 2978 IO_CODE(); 2979 if (acb->aiocb_info->cancel_async) { 2980 acb->aiocb_info->cancel_async(acb); 2981 } 2982 } 2983 2984 /**************************************************************/ 2985 /* Coroutine block device emulation */ 2986 2987 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2988 { 2989 BdrvChild *primary_child = bdrv_primary_child(bs); 2990 BdrvChild *child; 2991 int current_gen; 2992 int ret = 0; 2993 IO_CODE(); 2994 2995 bdrv_inc_in_flight(bs); 2996 2997 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2998 bdrv_is_sg(bs)) { 2999 goto early_exit; 3000 } 3001 3002 qemu_co_mutex_lock(&bs->reqs_lock); 3003 current_gen = qatomic_read(&bs->write_gen); 3004 3005 /* Wait until any previous flushes are completed */ 3006 while (bs->active_flush_req) { 3007 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 3008 } 3009 3010 /* Flushes reach this point in nondecreasing current_gen order. */ 3011 bs->active_flush_req = true; 3012 qemu_co_mutex_unlock(&bs->reqs_lock); 3013 3014 /* Write back all layers by calling one driver function */ 3015 if (bs->drv->bdrv_co_flush) { 3016 ret = bs->drv->bdrv_co_flush(bs); 3017 goto out; 3018 } 3019 3020 /* Write back cached data to the OS even with cache=unsafe */ 3021 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 3022 if (bs->drv->bdrv_co_flush_to_os) { 3023 ret = bs->drv->bdrv_co_flush_to_os(bs); 3024 if (ret < 0) { 3025 goto out; 3026 } 3027 } 3028 3029 /* But don't actually force it to the disk with cache=unsafe */ 3030 if (bs->open_flags & BDRV_O_NO_FLUSH) { 3031 goto flush_children; 3032 } 3033 3034 /* Check if we really need to flush anything */ 3035 if (bs->flushed_gen == current_gen) { 3036 goto flush_children; 3037 } 3038 3039 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 3040 if (!bs->drv) { 3041 /* bs->drv->bdrv_co_flush() might have ejected the BDS 3042 * (even in case of apparent success) */ 3043 ret = -ENOMEDIUM; 3044 goto out; 3045 } 3046 if (bs->drv->bdrv_co_flush_to_disk) { 3047 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3048 } else if (bs->drv->bdrv_aio_flush) { 3049 BlockAIOCB *acb; 3050 CoroutineIOCompletion co = { 3051 .coroutine = qemu_coroutine_self(), 3052 }; 3053 3054 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3055 if (acb == NULL) { 3056 ret = -EIO; 3057 } else { 3058 qemu_coroutine_yield(); 3059 ret = co.ret; 3060 } 3061 } else { 3062 /* 3063 * Some block drivers always operate in either writethrough or unsafe 3064 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3065 * know how the server works (because the behaviour is hardcoded or 3066 * depends on server-side configuration), so we can't ensure that 3067 * everything is safe on disk. Returning an error doesn't work because 3068 * that would break guests even if the server operates in writethrough 3069 * mode. 3070 * 3071 * Let's hope the user knows what he's doing. 3072 */ 3073 ret = 0; 3074 } 3075 3076 if (ret < 0) { 3077 goto out; 3078 } 3079 3080 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3081 * in the case of cache=unsafe, so there are no useless flushes. 3082 */ 3083 flush_children: 3084 ret = 0; 3085 QLIST_FOREACH(child, &bs->children, next) { 3086 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3087 int this_child_ret = bdrv_co_flush(child->bs); 3088 if (!ret) { 3089 ret = this_child_ret; 3090 } 3091 } 3092 } 3093 3094 out: 3095 /* Notify any pending flushes that we have completed */ 3096 if (ret == 0) { 3097 bs->flushed_gen = current_gen; 3098 } 3099 3100 qemu_co_mutex_lock(&bs->reqs_lock); 3101 bs->active_flush_req = false; 3102 /* Return value is ignored - it's ok if wait queue is empty */ 3103 qemu_co_queue_next(&bs->flush_queue); 3104 qemu_co_mutex_unlock(&bs->reqs_lock); 3105 3106 early_exit: 3107 bdrv_dec_in_flight(bs); 3108 return ret; 3109 } 3110 3111 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3112 int64_t bytes) 3113 { 3114 BdrvTrackedRequest req; 3115 int ret; 3116 int64_t max_pdiscard; 3117 int head, tail, align; 3118 BlockDriverState *bs = child->bs; 3119 IO_CODE(); 3120 3121 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 3122 return -ENOMEDIUM; 3123 } 3124 3125 if (bdrv_has_readonly_bitmaps(bs)) { 3126 return -EPERM; 3127 } 3128 3129 ret = bdrv_check_request(offset, bytes, NULL); 3130 if (ret < 0) { 3131 return ret; 3132 } 3133 3134 /* Do nothing if disabled. */ 3135 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3136 return 0; 3137 } 3138 3139 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 3140 return 0; 3141 } 3142 3143 /* Invalidate the cached block-status data range if this discard overlaps */ 3144 bdrv_bsc_invalidate_range(bs, offset, bytes); 3145 3146 /* Discard is advisory, but some devices track and coalesce 3147 * unaligned requests, so we must pass everything down rather than 3148 * round here. Still, most devices will just silently ignore 3149 * unaligned requests (by returning -ENOTSUP), so we must fragment 3150 * the request accordingly. */ 3151 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3152 assert(align % bs->bl.request_alignment == 0); 3153 head = offset % align; 3154 tail = (offset + bytes) % align; 3155 3156 bdrv_inc_in_flight(bs); 3157 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3158 3159 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3160 if (ret < 0) { 3161 goto out; 3162 } 3163 3164 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3165 align); 3166 assert(max_pdiscard >= bs->bl.request_alignment); 3167 3168 while (bytes > 0) { 3169 int64_t num = bytes; 3170 3171 if (head) { 3172 /* Make small requests to get to alignment boundaries. */ 3173 num = MIN(bytes, align - head); 3174 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3175 num %= bs->bl.request_alignment; 3176 } 3177 head = (head + num) % align; 3178 assert(num < max_pdiscard); 3179 } else if (tail) { 3180 if (num > align) { 3181 /* Shorten the request to the last aligned cluster. */ 3182 num -= tail; 3183 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3184 tail > bs->bl.request_alignment) { 3185 tail %= bs->bl.request_alignment; 3186 num -= tail; 3187 } 3188 } 3189 /* limit request size */ 3190 if (num > max_pdiscard) { 3191 num = max_pdiscard; 3192 } 3193 3194 if (!bs->drv) { 3195 ret = -ENOMEDIUM; 3196 goto out; 3197 } 3198 if (bs->drv->bdrv_co_pdiscard) { 3199 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3200 } else { 3201 BlockAIOCB *acb; 3202 CoroutineIOCompletion co = { 3203 .coroutine = qemu_coroutine_self(), 3204 }; 3205 3206 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3207 bdrv_co_io_em_complete, &co); 3208 if (acb == NULL) { 3209 ret = -EIO; 3210 goto out; 3211 } else { 3212 qemu_coroutine_yield(); 3213 ret = co.ret; 3214 } 3215 } 3216 if (ret && ret != -ENOTSUP) { 3217 goto out; 3218 } 3219 3220 offset += num; 3221 bytes -= num; 3222 } 3223 ret = 0; 3224 out: 3225 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3226 tracked_request_end(&req); 3227 bdrv_dec_in_flight(bs); 3228 return ret; 3229 } 3230 3231 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3232 { 3233 BlockDriver *drv = bs->drv; 3234 CoroutineIOCompletion co = { 3235 .coroutine = qemu_coroutine_self(), 3236 }; 3237 BlockAIOCB *acb; 3238 IO_CODE(); 3239 3240 bdrv_inc_in_flight(bs); 3241 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3242 co.ret = -ENOTSUP; 3243 goto out; 3244 } 3245 3246 if (drv->bdrv_co_ioctl) { 3247 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3248 } else { 3249 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3250 if (!acb) { 3251 co.ret = -ENOTSUP; 3252 goto out; 3253 } 3254 qemu_coroutine_yield(); 3255 } 3256 out: 3257 bdrv_dec_in_flight(bs); 3258 return co.ret; 3259 } 3260 3261 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3262 { 3263 IO_CODE(); 3264 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3265 } 3266 3267 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3268 { 3269 IO_CODE(); 3270 return memset(qemu_blockalign(bs, size), 0, size); 3271 } 3272 3273 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3274 { 3275 size_t align = bdrv_opt_mem_align(bs); 3276 IO_CODE(); 3277 3278 /* Ensure that NULL is never returned on success */ 3279 assert(align > 0); 3280 if (size == 0) { 3281 size = align; 3282 } 3283 3284 return qemu_try_memalign(align, size); 3285 } 3286 3287 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3288 { 3289 void *mem = qemu_try_blockalign(bs, size); 3290 IO_CODE(); 3291 3292 if (mem) { 3293 memset(mem, 0, size); 3294 } 3295 3296 return mem; 3297 } 3298 3299 /* 3300 * Check if all memory in this vector is sector aligned. 3301 */ 3302 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 3303 { 3304 int i; 3305 size_t alignment = bdrv_min_mem_align(bs); 3306 IO_CODE(); 3307 3308 for (i = 0; i < qiov->niov; i++) { 3309 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 3310 return false; 3311 } 3312 if (qiov->iov[i].iov_len % alignment) { 3313 return false; 3314 } 3315 } 3316 3317 return true; 3318 } 3319 3320 void bdrv_io_plug(BlockDriverState *bs) 3321 { 3322 BdrvChild *child; 3323 IO_CODE(); 3324 3325 QLIST_FOREACH(child, &bs->children, next) { 3326 bdrv_io_plug(child->bs); 3327 } 3328 3329 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3330 BlockDriver *drv = bs->drv; 3331 if (drv && drv->bdrv_io_plug) { 3332 drv->bdrv_io_plug(bs); 3333 } 3334 } 3335 } 3336 3337 void bdrv_io_unplug(BlockDriverState *bs) 3338 { 3339 BdrvChild *child; 3340 IO_CODE(); 3341 3342 assert(bs->io_plugged); 3343 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3344 BlockDriver *drv = bs->drv; 3345 if (drv && drv->bdrv_io_unplug) { 3346 drv->bdrv_io_unplug(bs); 3347 } 3348 } 3349 3350 QLIST_FOREACH(child, &bs->children, next) { 3351 bdrv_io_unplug(child->bs); 3352 } 3353 } 3354 3355 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 3356 { 3357 BdrvChild *child; 3358 3359 GLOBAL_STATE_CODE(); 3360 if (bs->drv && bs->drv->bdrv_register_buf) { 3361 bs->drv->bdrv_register_buf(bs, host, size); 3362 } 3363 QLIST_FOREACH(child, &bs->children, next) { 3364 bdrv_register_buf(child->bs, host, size); 3365 } 3366 } 3367 3368 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 3369 { 3370 BdrvChild *child; 3371 3372 GLOBAL_STATE_CODE(); 3373 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3374 bs->drv->bdrv_unregister_buf(bs, host); 3375 } 3376 QLIST_FOREACH(child, &bs->children, next) { 3377 bdrv_unregister_buf(child->bs, host); 3378 } 3379 } 3380 3381 static int coroutine_fn bdrv_co_copy_range_internal( 3382 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3383 int64_t dst_offset, int64_t bytes, 3384 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3385 bool recurse_src) 3386 { 3387 BdrvTrackedRequest req; 3388 int ret; 3389 3390 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3391 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3392 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3393 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3394 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3395 3396 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) { 3397 return -ENOMEDIUM; 3398 } 3399 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3400 if (ret) { 3401 return ret; 3402 } 3403 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3404 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3405 } 3406 3407 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) { 3408 return -ENOMEDIUM; 3409 } 3410 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3411 if (ret) { 3412 return ret; 3413 } 3414 3415 if (!src->bs->drv->bdrv_co_copy_range_from 3416 || !dst->bs->drv->bdrv_co_copy_range_to 3417 || src->bs->encrypted || dst->bs->encrypted) { 3418 return -ENOTSUP; 3419 } 3420 3421 if (recurse_src) { 3422 bdrv_inc_in_flight(src->bs); 3423 tracked_request_begin(&req, src->bs, src_offset, bytes, 3424 BDRV_TRACKED_READ); 3425 3426 /* BDRV_REQ_SERIALISING is only for write operation */ 3427 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3428 bdrv_wait_serialising_requests(&req); 3429 3430 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3431 src, src_offset, 3432 dst, dst_offset, 3433 bytes, 3434 read_flags, write_flags); 3435 3436 tracked_request_end(&req); 3437 bdrv_dec_in_flight(src->bs); 3438 } else { 3439 bdrv_inc_in_flight(dst->bs); 3440 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3441 BDRV_TRACKED_WRITE); 3442 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3443 write_flags); 3444 if (!ret) { 3445 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3446 src, src_offset, 3447 dst, dst_offset, 3448 bytes, 3449 read_flags, write_flags); 3450 } 3451 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3452 tracked_request_end(&req); 3453 bdrv_dec_in_flight(dst->bs); 3454 } 3455 3456 return ret; 3457 } 3458 3459 /* Copy range from @src to @dst. 3460 * 3461 * See the comment of bdrv_co_copy_range for the parameter and return value 3462 * semantics. */ 3463 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3464 BdrvChild *dst, int64_t dst_offset, 3465 int64_t bytes, 3466 BdrvRequestFlags read_flags, 3467 BdrvRequestFlags write_flags) 3468 { 3469 IO_CODE(); 3470 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3471 read_flags, write_flags); 3472 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3473 bytes, read_flags, write_flags, true); 3474 } 3475 3476 /* Copy range from @src to @dst. 3477 * 3478 * See the comment of bdrv_co_copy_range for the parameter and return value 3479 * semantics. */ 3480 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3481 BdrvChild *dst, int64_t dst_offset, 3482 int64_t bytes, 3483 BdrvRequestFlags read_flags, 3484 BdrvRequestFlags write_flags) 3485 { 3486 IO_CODE(); 3487 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3488 read_flags, write_flags); 3489 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3490 bytes, read_flags, write_flags, false); 3491 } 3492 3493 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3494 BdrvChild *dst, int64_t dst_offset, 3495 int64_t bytes, BdrvRequestFlags read_flags, 3496 BdrvRequestFlags write_flags) 3497 { 3498 IO_CODE(); 3499 return bdrv_co_copy_range_from(src, src_offset, 3500 dst, dst_offset, 3501 bytes, read_flags, write_flags); 3502 } 3503 3504 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3505 { 3506 BdrvChild *c; 3507 QLIST_FOREACH(c, &bs->parents, next_parent) { 3508 if (c->klass->resize) { 3509 c->klass->resize(c); 3510 } 3511 } 3512 } 3513 3514 /** 3515 * Truncate file to 'offset' bytes (needed only for file protocols) 3516 * 3517 * If 'exact' is true, the file must be resized to exactly the given 3518 * 'offset'. Otherwise, it is sufficient for the node to be at least 3519 * 'offset' bytes in length. 3520 */ 3521 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3522 PreallocMode prealloc, BdrvRequestFlags flags, 3523 Error **errp) 3524 { 3525 BlockDriverState *bs = child->bs; 3526 BdrvChild *filtered, *backing; 3527 BlockDriver *drv = bs->drv; 3528 BdrvTrackedRequest req; 3529 int64_t old_size, new_bytes; 3530 int ret; 3531 IO_CODE(); 3532 3533 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3534 if (!drv) { 3535 error_setg(errp, "No medium inserted"); 3536 return -ENOMEDIUM; 3537 } 3538 if (offset < 0) { 3539 error_setg(errp, "Image size cannot be negative"); 3540 return -EINVAL; 3541 } 3542 3543 ret = bdrv_check_request(offset, 0, errp); 3544 if (ret < 0) { 3545 return ret; 3546 } 3547 3548 old_size = bdrv_getlength(bs); 3549 if (old_size < 0) { 3550 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3551 return old_size; 3552 } 3553 3554 if (bdrv_is_read_only(bs)) { 3555 error_setg(errp, "Image is read-only"); 3556 return -EACCES; 3557 } 3558 3559 if (offset > old_size) { 3560 new_bytes = offset - old_size; 3561 } else { 3562 new_bytes = 0; 3563 } 3564 3565 bdrv_inc_in_flight(bs); 3566 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3567 BDRV_TRACKED_TRUNCATE); 3568 3569 /* If we are growing the image and potentially using preallocation for the 3570 * new area, we need to make sure that no write requests are made to it 3571 * concurrently or they might be overwritten by preallocation. */ 3572 if (new_bytes) { 3573 bdrv_make_request_serialising(&req, 1); 3574 } 3575 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3576 0); 3577 if (ret < 0) { 3578 error_setg_errno(errp, -ret, 3579 "Failed to prepare request for truncation"); 3580 goto out; 3581 } 3582 3583 filtered = bdrv_filter_child(bs); 3584 backing = bdrv_cow_child(bs); 3585 3586 /* 3587 * If the image has a backing file that is large enough that it would 3588 * provide data for the new area, we cannot leave it unallocated because 3589 * then the backing file content would become visible. Instead, zero-fill 3590 * the new area. 3591 * 3592 * Note that if the image has a backing file, but was opened without the 3593 * backing file, taking care of keeping things consistent with that backing 3594 * file is the user's responsibility. 3595 */ 3596 if (new_bytes && backing) { 3597 int64_t backing_len; 3598 3599 backing_len = bdrv_getlength(backing->bs); 3600 if (backing_len < 0) { 3601 ret = backing_len; 3602 error_setg_errno(errp, -ret, "Could not get backing file size"); 3603 goto out; 3604 } 3605 3606 if (backing_len > old_size) { 3607 flags |= BDRV_REQ_ZERO_WRITE; 3608 } 3609 } 3610 3611 if (drv->bdrv_co_truncate) { 3612 if (flags & ~bs->supported_truncate_flags) { 3613 error_setg(errp, "Block driver does not support requested flags"); 3614 ret = -ENOTSUP; 3615 goto out; 3616 } 3617 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3618 } else if (filtered) { 3619 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3620 } else { 3621 error_setg(errp, "Image format driver does not support resize"); 3622 ret = -ENOTSUP; 3623 goto out; 3624 } 3625 if (ret < 0) { 3626 goto out; 3627 } 3628 3629 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3630 if (ret < 0) { 3631 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3632 } else { 3633 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3634 } 3635 /* It's possible that truncation succeeded but refresh_total_sectors 3636 * failed, but the latter doesn't affect how we should finish the request. 3637 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3638 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3639 3640 out: 3641 tracked_request_end(&req); 3642 bdrv_dec_in_flight(bs); 3643 3644 return ret; 3645 } 3646 3647 void bdrv_cancel_in_flight(BlockDriverState *bs) 3648 { 3649 GLOBAL_STATE_CODE(); 3650 if (!bs || !bs->drv) { 3651 return; 3652 } 3653 3654 if (bs->drv->bdrv_cancel_in_flight) { 3655 bs->drv->bdrv_cancel_in_flight(bs); 3656 } 3657 } 3658 3659 int coroutine_fn 3660 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3661 QEMUIOVector *qiov, size_t qiov_offset) 3662 { 3663 BlockDriverState *bs = child->bs; 3664 BlockDriver *drv = bs->drv; 3665 int ret; 3666 IO_CODE(); 3667 3668 if (!drv) { 3669 return -ENOMEDIUM; 3670 } 3671 3672 if (!drv->bdrv_co_preadv_snapshot) { 3673 return -ENOTSUP; 3674 } 3675 3676 bdrv_inc_in_flight(bs); 3677 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3678 bdrv_dec_in_flight(bs); 3679 3680 return ret; 3681 } 3682 3683 int coroutine_fn 3684 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3685 bool want_zero, int64_t offset, int64_t bytes, 3686 int64_t *pnum, int64_t *map, 3687 BlockDriverState **file) 3688 { 3689 BlockDriver *drv = bs->drv; 3690 int ret; 3691 IO_CODE(); 3692 3693 if (!drv) { 3694 return -ENOMEDIUM; 3695 } 3696 3697 if (!drv->bdrv_co_snapshot_block_status) { 3698 return -ENOTSUP; 3699 } 3700 3701 bdrv_inc_in_flight(bs); 3702 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3703 pnum, map, file); 3704 bdrv_dec_in_flight(bs); 3705 3706 return ret; 3707 } 3708 3709 int coroutine_fn 3710 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3711 { 3712 BlockDriver *drv = bs->drv; 3713 int ret; 3714 IO_CODE(); 3715 3716 if (!drv) { 3717 return -ENOMEDIUM; 3718 } 3719 3720 if (!drv->bdrv_co_pdiscard_snapshot) { 3721 return -ENOTSUP; 3722 } 3723 3724 bdrv_inc_in_flight(bs); 3725 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3726 bdrv_dec_in_flight(bs); 3727 3728 return ret; 3729 } 3730