xref: /openbmc/qemu/block/io.c (revision ae3c12a0)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 
36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 
38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
40 
41 static void bdrv_parent_cb_resize(BlockDriverState *bs);
42 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
43     int64_t offset, int bytes, BdrvRequestFlags flags);
44 
45 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
46                                bool ignore_bds_parents)
47 {
48     BdrvChild *c, *next;
49 
50     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
51         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
52             continue;
53         }
54         bdrv_parent_drained_begin_single(c, false);
55     }
56 }
57 
58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
59                              bool ignore_bds_parents)
60 {
61     BdrvChild *c, *next;
62 
63     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
64         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
65             continue;
66         }
67         if (c->role->drained_end) {
68             c->role->drained_end(c);
69         }
70     }
71 }
72 
73 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
74 {
75     if (c->role->drained_poll) {
76         return c->role->drained_poll(c);
77     }
78     return false;
79 }
80 
81 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
82                                      bool ignore_bds_parents)
83 {
84     BdrvChild *c, *next;
85     bool busy = false;
86 
87     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
88         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
89             continue;
90         }
91         busy |= bdrv_parent_drained_poll_single(c);
92     }
93 
94     return busy;
95 }
96 
97 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
98 {
99     if (c->role->drained_begin) {
100         c->role->drained_begin(c);
101     }
102     if (poll) {
103         BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
104     }
105 }
106 
107 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
108 {
109     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
110     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
111     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
112                                  src->opt_mem_alignment);
113     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
114                                  src->min_mem_alignment);
115     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
116 }
117 
118 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
119 {
120     BlockDriver *drv = bs->drv;
121     Error *local_err = NULL;
122 
123     memset(&bs->bl, 0, sizeof(bs->bl));
124 
125     if (!drv) {
126         return;
127     }
128 
129     /* Default alignment based on whether driver has byte interface */
130     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
131                                 drv->bdrv_aio_preadv) ? 1 : 512;
132 
133     /* Take some limits from the children as a default */
134     if (bs->file) {
135         bdrv_refresh_limits(bs->file->bs, &local_err);
136         if (local_err) {
137             error_propagate(errp, local_err);
138             return;
139         }
140         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
141     } else {
142         bs->bl.min_mem_alignment = 512;
143         bs->bl.opt_mem_alignment = getpagesize();
144 
145         /* Safe default since most protocols use readv()/writev()/etc */
146         bs->bl.max_iov = IOV_MAX;
147     }
148 
149     if (bs->backing) {
150         bdrv_refresh_limits(bs->backing->bs, &local_err);
151         if (local_err) {
152             error_propagate(errp, local_err);
153             return;
154         }
155         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
156     }
157 
158     /* Then let the driver override it */
159     if (drv->bdrv_refresh_limits) {
160         drv->bdrv_refresh_limits(bs, errp);
161     }
162 }
163 
164 /**
165  * The copy-on-read flag is actually a reference count so multiple users may
166  * use the feature without worrying about clobbering its previous state.
167  * Copy-on-read stays enabled until all users have called to disable it.
168  */
169 void bdrv_enable_copy_on_read(BlockDriverState *bs)
170 {
171     atomic_inc(&bs->copy_on_read);
172 }
173 
174 void bdrv_disable_copy_on_read(BlockDriverState *bs)
175 {
176     int old = atomic_fetch_dec(&bs->copy_on_read);
177     assert(old >= 1);
178 }
179 
180 typedef struct {
181     Coroutine *co;
182     BlockDriverState *bs;
183     bool done;
184     bool begin;
185     bool recursive;
186     bool poll;
187     BdrvChild *parent;
188     bool ignore_bds_parents;
189 } BdrvCoDrainData;
190 
191 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
192 {
193     BdrvCoDrainData *data = opaque;
194     BlockDriverState *bs = data->bs;
195 
196     if (data->begin) {
197         bs->drv->bdrv_co_drain_begin(bs);
198     } else {
199         bs->drv->bdrv_co_drain_end(bs);
200     }
201 
202     /* Set data->done before reading bs->wakeup.  */
203     atomic_mb_set(&data->done, true);
204     bdrv_dec_in_flight(bs);
205 
206     if (data->begin) {
207         g_free(data);
208     }
209 }
210 
211 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
212 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin)
213 {
214     BdrvCoDrainData *data;
215 
216     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
217             (!begin && !bs->drv->bdrv_co_drain_end)) {
218         return;
219     }
220 
221     data = g_new(BdrvCoDrainData, 1);
222     *data = (BdrvCoDrainData) {
223         .bs = bs,
224         .done = false,
225         .begin = begin
226     };
227 
228     /* Make sure the driver callback completes during the polling phase for
229      * drain_begin. */
230     bdrv_inc_in_flight(bs);
231     data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
232     aio_co_schedule(bdrv_get_aio_context(bs), data->co);
233 
234     if (!begin) {
235         BDRV_POLL_WHILE(bs, !data->done);
236         g_free(data);
237     }
238 }
239 
240 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
241 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
242                      BdrvChild *ignore_parent, bool ignore_bds_parents)
243 {
244     BdrvChild *child, *next;
245 
246     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
247         return true;
248     }
249 
250     if (atomic_read(&bs->in_flight)) {
251         return true;
252     }
253 
254     if (recursive) {
255         assert(!ignore_bds_parents);
256         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
257             if (bdrv_drain_poll(child->bs, recursive, child, false)) {
258                 return true;
259             }
260         }
261     }
262 
263     return false;
264 }
265 
266 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
267                                       BdrvChild *ignore_parent)
268 {
269     return bdrv_drain_poll(bs, recursive, ignore_parent, false);
270 }
271 
272 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
273                                   BdrvChild *parent, bool ignore_bds_parents,
274                                   bool poll);
275 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
276                                 BdrvChild *parent, bool ignore_bds_parents);
277 
278 static void bdrv_co_drain_bh_cb(void *opaque)
279 {
280     BdrvCoDrainData *data = opaque;
281     Coroutine *co = data->co;
282     BlockDriverState *bs = data->bs;
283 
284     if (bs) {
285         AioContext *ctx = bdrv_get_aio_context(bs);
286         AioContext *co_ctx = qemu_coroutine_get_aio_context(co);
287 
288         /*
289          * When the coroutine yielded, the lock for its home context was
290          * released, so we need to re-acquire it here. If it explicitly
291          * acquired a different context, the lock is still held and we don't
292          * want to lock it a second time (or AIO_WAIT_WHILE() would hang).
293          */
294         if (ctx == co_ctx) {
295             aio_context_acquire(ctx);
296         }
297         bdrv_dec_in_flight(bs);
298         if (data->begin) {
299             bdrv_do_drained_begin(bs, data->recursive, data->parent,
300                                   data->ignore_bds_parents, data->poll);
301         } else {
302             bdrv_do_drained_end(bs, data->recursive, data->parent,
303                                 data->ignore_bds_parents);
304         }
305         if (ctx == co_ctx) {
306             aio_context_release(ctx);
307         }
308     } else {
309         assert(data->begin);
310         bdrv_drain_all_begin();
311     }
312 
313     data->done = true;
314     aio_co_wake(co);
315 }
316 
317 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
318                                                 bool begin, bool recursive,
319                                                 BdrvChild *parent,
320                                                 bool ignore_bds_parents,
321                                                 bool poll)
322 {
323     BdrvCoDrainData data;
324 
325     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
326      * other coroutines run if they were queued by aio_co_enter(). */
327 
328     assert(qemu_in_coroutine());
329     data = (BdrvCoDrainData) {
330         .co = qemu_coroutine_self(),
331         .bs = bs,
332         .done = false,
333         .begin = begin,
334         .recursive = recursive,
335         .parent = parent,
336         .ignore_bds_parents = ignore_bds_parents,
337         .poll = poll,
338     };
339     if (bs) {
340         bdrv_inc_in_flight(bs);
341     }
342     aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
343                             bdrv_co_drain_bh_cb, &data);
344 
345     qemu_coroutine_yield();
346     /* If we are resumed from some other event (such as an aio completion or a
347      * timer callback), it is a bug in the caller that should be fixed. */
348     assert(data.done);
349 }
350 
351 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
352                                    BdrvChild *parent, bool ignore_bds_parents)
353 {
354     assert(!qemu_in_coroutine());
355 
356     /* Stop things in parent-to-child order */
357     if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
358         aio_disable_external(bdrv_get_aio_context(bs));
359     }
360 
361     bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
362     bdrv_drain_invoke(bs, true);
363 }
364 
365 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
366                                   BdrvChild *parent, bool ignore_bds_parents,
367                                   bool poll)
368 {
369     BdrvChild *child, *next;
370 
371     if (qemu_in_coroutine()) {
372         bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
373                                poll);
374         return;
375     }
376 
377     bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
378 
379     if (recursive) {
380         assert(!ignore_bds_parents);
381         bs->recursive_quiesce_counter++;
382         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
383             bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
384                                   false);
385         }
386     }
387 
388     /*
389      * Wait for drained requests to finish.
390      *
391      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
392      * call is needed so things in this AioContext can make progress even
393      * though we don't return to the main AioContext loop - this automatically
394      * includes other nodes in the same AioContext and therefore all child
395      * nodes.
396      */
397     if (poll) {
398         assert(!ignore_bds_parents);
399         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
400     }
401 }
402 
403 void bdrv_drained_begin(BlockDriverState *bs)
404 {
405     bdrv_do_drained_begin(bs, false, NULL, false, true);
406 }
407 
408 void bdrv_subtree_drained_begin(BlockDriverState *bs)
409 {
410     bdrv_do_drained_begin(bs, true, NULL, false, true);
411 }
412 
413 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
414                                 BdrvChild *parent, bool ignore_bds_parents)
415 {
416     BdrvChild *child, *next;
417     int old_quiesce_counter;
418 
419     if (qemu_in_coroutine()) {
420         bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
421                                false);
422         return;
423     }
424     assert(bs->quiesce_counter > 0);
425     old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
426 
427     /* Re-enable things in child-to-parent order */
428     bdrv_drain_invoke(bs, false);
429     bdrv_parent_drained_end(bs, parent, ignore_bds_parents);
430     if (old_quiesce_counter == 1) {
431         aio_enable_external(bdrv_get_aio_context(bs));
432     }
433 
434     if (recursive) {
435         assert(!ignore_bds_parents);
436         bs->recursive_quiesce_counter--;
437         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
438             bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents);
439         }
440     }
441 }
442 
443 void bdrv_drained_end(BlockDriverState *bs)
444 {
445     bdrv_do_drained_end(bs, false, NULL, false);
446 }
447 
448 void bdrv_subtree_drained_end(BlockDriverState *bs)
449 {
450     bdrv_do_drained_end(bs, true, NULL, false);
451 }
452 
453 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
454 {
455     int i;
456 
457     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
458         bdrv_do_drained_begin(child->bs, true, child, false, true);
459     }
460 }
461 
462 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
463 {
464     int i;
465 
466     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
467         bdrv_do_drained_end(child->bs, true, child, false);
468     }
469 }
470 
471 /*
472  * Wait for pending requests to complete on a single BlockDriverState subtree,
473  * and suspend block driver's internal I/O until next request arrives.
474  *
475  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
476  * AioContext.
477  */
478 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
479 {
480     assert(qemu_in_coroutine());
481     bdrv_drained_begin(bs);
482     bdrv_drained_end(bs);
483 }
484 
485 void bdrv_drain(BlockDriverState *bs)
486 {
487     bdrv_drained_begin(bs);
488     bdrv_drained_end(bs);
489 }
490 
491 static void bdrv_drain_assert_idle(BlockDriverState *bs)
492 {
493     BdrvChild *child, *next;
494 
495     assert(atomic_read(&bs->in_flight) == 0);
496     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
497         bdrv_drain_assert_idle(child->bs);
498     }
499 }
500 
501 unsigned int bdrv_drain_all_count = 0;
502 
503 static bool bdrv_drain_all_poll(void)
504 {
505     BlockDriverState *bs = NULL;
506     bool result = false;
507 
508     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
509      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
510     while ((bs = bdrv_next_all_states(bs))) {
511         AioContext *aio_context = bdrv_get_aio_context(bs);
512         aio_context_acquire(aio_context);
513         result |= bdrv_drain_poll(bs, false, NULL, true);
514         aio_context_release(aio_context);
515     }
516 
517     return result;
518 }
519 
520 /*
521  * Wait for pending requests to complete across all BlockDriverStates
522  *
523  * This function does not flush data to disk, use bdrv_flush_all() for that
524  * after calling this function.
525  *
526  * This pauses all block jobs and disables external clients. It must
527  * be paired with bdrv_drain_all_end().
528  *
529  * NOTE: no new block jobs or BlockDriverStates can be created between
530  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
531  */
532 void bdrv_drain_all_begin(void)
533 {
534     BlockDriverState *bs = NULL;
535 
536     if (qemu_in_coroutine()) {
537         bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true);
538         return;
539     }
540 
541     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
542      * loop AioContext, so make sure we're in the main context. */
543     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
544     assert(bdrv_drain_all_count < INT_MAX);
545     bdrv_drain_all_count++;
546 
547     /* Quiesce all nodes, without polling in-flight requests yet. The graph
548      * cannot change during this loop. */
549     while ((bs = bdrv_next_all_states(bs))) {
550         AioContext *aio_context = bdrv_get_aio_context(bs);
551 
552         aio_context_acquire(aio_context);
553         bdrv_do_drained_begin(bs, false, NULL, true, false);
554         aio_context_release(aio_context);
555     }
556 
557     /* Now poll the in-flight requests */
558     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
559 
560     while ((bs = bdrv_next_all_states(bs))) {
561         bdrv_drain_assert_idle(bs);
562     }
563 }
564 
565 void bdrv_drain_all_end(void)
566 {
567     BlockDriverState *bs = NULL;
568 
569     while ((bs = bdrv_next_all_states(bs))) {
570         AioContext *aio_context = bdrv_get_aio_context(bs);
571 
572         aio_context_acquire(aio_context);
573         bdrv_do_drained_end(bs, false, NULL, true);
574         aio_context_release(aio_context);
575     }
576 
577     assert(bdrv_drain_all_count > 0);
578     bdrv_drain_all_count--;
579 }
580 
581 void bdrv_drain_all(void)
582 {
583     bdrv_drain_all_begin();
584     bdrv_drain_all_end();
585 }
586 
587 /**
588  * Remove an active request from the tracked requests list
589  *
590  * This function should be called when a tracked request is completing.
591  */
592 static void tracked_request_end(BdrvTrackedRequest *req)
593 {
594     if (req->serialising) {
595         atomic_dec(&req->bs->serialising_in_flight);
596     }
597 
598     qemu_co_mutex_lock(&req->bs->reqs_lock);
599     QLIST_REMOVE(req, list);
600     qemu_co_queue_restart_all(&req->wait_queue);
601     qemu_co_mutex_unlock(&req->bs->reqs_lock);
602 }
603 
604 /**
605  * Add an active request to the tracked requests list
606  */
607 static void tracked_request_begin(BdrvTrackedRequest *req,
608                                   BlockDriverState *bs,
609                                   int64_t offset,
610                                   uint64_t bytes,
611                                   enum BdrvTrackedRequestType type)
612 {
613     assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
614 
615     *req = (BdrvTrackedRequest){
616         .bs = bs,
617         .offset         = offset,
618         .bytes          = bytes,
619         .type           = type,
620         .co             = qemu_coroutine_self(),
621         .serialising    = false,
622         .overlap_offset = offset,
623         .overlap_bytes  = bytes,
624     };
625 
626     qemu_co_queue_init(&req->wait_queue);
627 
628     qemu_co_mutex_lock(&bs->reqs_lock);
629     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
630     qemu_co_mutex_unlock(&bs->reqs_lock);
631 }
632 
633 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
634 {
635     int64_t overlap_offset = req->offset & ~(align - 1);
636     uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
637                                - overlap_offset;
638 
639     if (!req->serialising) {
640         atomic_inc(&req->bs->serialising_in_flight);
641         req->serialising = true;
642     }
643 
644     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
645     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
646 }
647 
648 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req)
649 {
650     /*
651      * If the request is serialising, overlap_offset and overlap_bytes are set,
652      * so we can check if the request is aligned. Otherwise, don't care and
653      * return false.
654      */
655 
656     return req->serialising && (req->offset == req->overlap_offset) &&
657            (req->bytes == req->overlap_bytes);
658 }
659 
660 /**
661  * Round a region to cluster boundaries
662  */
663 void bdrv_round_to_clusters(BlockDriverState *bs,
664                             int64_t offset, int64_t bytes,
665                             int64_t *cluster_offset,
666                             int64_t *cluster_bytes)
667 {
668     BlockDriverInfo bdi;
669 
670     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
671         *cluster_offset = offset;
672         *cluster_bytes = bytes;
673     } else {
674         int64_t c = bdi.cluster_size;
675         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
676         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
677     }
678 }
679 
680 static int bdrv_get_cluster_size(BlockDriverState *bs)
681 {
682     BlockDriverInfo bdi;
683     int ret;
684 
685     ret = bdrv_get_info(bs, &bdi);
686     if (ret < 0 || bdi.cluster_size == 0) {
687         return bs->bl.request_alignment;
688     } else {
689         return bdi.cluster_size;
690     }
691 }
692 
693 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
694                                      int64_t offset, uint64_t bytes)
695 {
696     /*        aaaa   bbbb */
697     if (offset >= req->overlap_offset + req->overlap_bytes) {
698         return false;
699     }
700     /* bbbb   aaaa        */
701     if (req->overlap_offset >= offset + bytes) {
702         return false;
703     }
704     return true;
705 }
706 
707 void bdrv_inc_in_flight(BlockDriverState *bs)
708 {
709     atomic_inc(&bs->in_flight);
710 }
711 
712 void bdrv_wakeup(BlockDriverState *bs)
713 {
714     aio_wait_kick();
715 }
716 
717 void bdrv_dec_in_flight(BlockDriverState *bs)
718 {
719     atomic_dec(&bs->in_flight);
720     bdrv_wakeup(bs);
721 }
722 
723 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
724 {
725     BlockDriverState *bs = self->bs;
726     BdrvTrackedRequest *req;
727     bool retry;
728     bool waited = false;
729 
730     if (!atomic_read(&bs->serialising_in_flight)) {
731         return false;
732     }
733 
734     do {
735         retry = false;
736         qemu_co_mutex_lock(&bs->reqs_lock);
737         QLIST_FOREACH(req, &bs->tracked_requests, list) {
738             if (req == self || (!req->serialising && !self->serialising)) {
739                 continue;
740             }
741             if (tracked_request_overlaps(req, self->overlap_offset,
742                                          self->overlap_bytes))
743             {
744                 /* Hitting this means there was a reentrant request, for
745                  * example, a block driver issuing nested requests.  This must
746                  * never happen since it means deadlock.
747                  */
748                 assert(qemu_coroutine_self() != req->co);
749 
750                 /* If the request is already (indirectly) waiting for us, or
751                  * will wait for us as soon as it wakes up, then just go on
752                  * (instead of producing a deadlock in the former case). */
753                 if (!req->waiting_for) {
754                     self->waiting_for = req;
755                     qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
756                     self->waiting_for = NULL;
757                     retry = true;
758                     waited = true;
759                     break;
760                 }
761             }
762         }
763         qemu_co_mutex_unlock(&bs->reqs_lock);
764     } while (retry);
765 
766     return waited;
767 }
768 
769 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
770                                    size_t size)
771 {
772     if (size > BDRV_REQUEST_MAX_BYTES) {
773         return -EIO;
774     }
775 
776     if (!bdrv_is_inserted(bs)) {
777         return -ENOMEDIUM;
778     }
779 
780     if (offset < 0) {
781         return -EIO;
782     }
783 
784     return 0;
785 }
786 
787 typedef struct RwCo {
788     BdrvChild *child;
789     int64_t offset;
790     QEMUIOVector *qiov;
791     bool is_write;
792     int ret;
793     BdrvRequestFlags flags;
794 } RwCo;
795 
796 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
797 {
798     RwCo *rwco = opaque;
799 
800     if (!rwco->is_write) {
801         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
802                                    rwco->qiov->size, rwco->qiov,
803                                    rwco->flags);
804     } else {
805         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
806                                     rwco->qiov->size, rwco->qiov,
807                                     rwco->flags);
808     }
809     aio_wait_kick();
810 }
811 
812 /*
813  * Process a vectored synchronous request using coroutines
814  */
815 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
816                         QEMUIOVector *qiov, bool is_write,
817                         BdrvRequestFlags flags)
818 {
819     Coroutine *co;
820     RwCo rwco = {
821         .child = child,
822         .offset = offset,
823         .qiov = qiov,
824         .is_write = is_write,
825         .ret = NOT_DONE,
826         .flags = flags,
827     };
828 
829     if (qemu_in_coroutine()) {
830         /* Fast-path if already in coroutine context */
831         bdrv_rw_co_entry(&rwco);
832     } else {
833         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
834         bdrv_coroutine_enter(child->bs, co);
835         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
836     }
837     return rwco.ret;
838 }
839 
840 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
841                        int bytes, BdrvRequestFlags flags)
842 {
843     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
844 
845     return bdrv_prwv_co(child, offset, &qiov, true,
846                         BDRV_REQ_ZERO_WRITE | flags);
847 }
848 
849 /*
850  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
851  * The operation is sped up by checking the block status and only writing
852  * zeroes to the device if they currently do not return zeroes. Optional
853  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
854  * BDRV_REQ_FUA).
855  *
856  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
857  */
858 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
859 {
860     int ret;
861     int64_t target_size, bytes, offset = 0;
862     BlockDriverState *bs = child->bs;
863 
864     target_size = bdrv_getlength(bs);
865     if (target_size < 0) {
866         return target_size;
867     }
868 
869     for (;;) {
870         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
871         if (bytes <= 0) {
872             return 0;
873         }
874         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
875         if (ret < 0) {
876             return ret;
877         }
878         if (ret & BDRV_BLOCK_ZERO) {
879             offset += bytes;
880             continue;
881         }
882         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
883         if (ret < 0) {
884             return ret;
885         }
886         offset += bytes;
887     }
888 }
889 
890 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
891 {
892     int ret;
893 
894     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
895     if (ret < 0) {
896         return ret;
897     }
898 
899     return qiov->size;
900 }
901 
902 /* See bdrv_pwrite() for the return codes */
903 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
904 {
905     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
906 
907     if (bytes < 0) {
908         return -EINVAL;
909     }
910 
911     return bdrv_preadv(child, offset, &qiov);
912 }
913 
914 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
915 {
916     int ret;
917 
918     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
919     if (ret < 0) {
920         return ret;
921     }
922 
923     return qiov->size;
924 }
925 
926 /* Return no. of bytes on success or < 0 on error. Important errors are:
927   -EIO         generic I/O error (may happen for all errors)
928   -ENOMEDIUM   No media inserted.
929   -EINVAL      Invalid offset or number of bytes
930   -EACCES      Trying to write a read-only device
931 */
932 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
933 {
934     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
935 
936     if (bytes < 0) {
937         return -EINVAL;
938     }
939 
940     return bdrv_pwritev(child, offset, &qiov);
941 }
942 
943 /*
944  * Writes to the file and ensures that no writes are reordered across this
945  * request (acts as a barrier)
946  *
947  * Returns 0 on success, -errno in error cases.
948  */
949 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
950                      const void *buf, int count)
951 {
952     int ret;
953 
954     ret = bdrv_pwrite(child, offset, buf, count);
955     if (ret < 0) {
956         return ret;
957     }
958 
959     ret = bdrv_flush(child->bs);
960     if (ret < 0) {
961         return ret;
962     }
963 
964     return 0;
965 }
966 
967 typedef struct CoroutineIOCompletion {
968     Coroutine *coroutine;
969     int ret;
970 } CoroutineIOCompletion;
971 
972 static void bdrv_co_io_em_complete(void *opaque, int ret)
973 {
974     CoroutineIOCompletion *co = opaque;
975 
976     co->ret = ret;
977     aio_co_wake(co->coroutine);
978 }
979 
980 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
981                                            uint64_t offset, uint64_t bytes,
982                                            QEMUIOVector *qiov, int flags)
983 {
984     BlockDriver *drv = bs->drv;
985     int64_t sector_num;
986     unsigned int nb_sectors;
987 
988     assert(!(flags & ~BDRV_REQ_MASK));
989     assert(!(flags & BDRV_REQ_NO_FALLBACK));
990 
991     if (!drv) {
992         return -ENOMEDIUM;
993     }
994 
995     if (drv->bdrv_co_preadv) {
996         return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
997     }
998 
999     if (drv->bdrv_aio_preadv) {
1000         BlockAIOCB *acb;
1001         CoroutineIOCompletion co = {
1002             .coroutine = qemu_coroutine_self(),
1003         };
1004 
1005         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1006                                    bdrv_co_io_em_complete, &co);
1007         if (acb == NULL) {
1008             return -EIO;
1009         } else {
1010             qemu_coroutine_yield();
1011             return co.ret;
1012         }
1013     }
1014 
1015     sector_num = offset >> BDRV_SECTOR_BITS;
1016     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1017 
1018     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1019     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1020     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1021     assert(drv->bdrv_co_readv);
1022 
1023     return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1024 }
1025 
1026 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1027                                             uint64_t offset, uint64_t bytes,
1028                                             QEMUIOVector *qiov, int flags)
1029 {
1030     BlockDriver *drv = bs->drv;
1031     int64_t sector_num;
1032     unsigned int nb_sectors;
1033     int ret;
1034 
1035     assert(!(flags & ~BDRV_REQ_MASK));
1036     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1037 
1038     if (!drv) {
1039         return -ENOMEDIUM;
1040     }
1041 
1042     if (drv->bdrv_co_pwritev) {
1043         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1044                                    flags & bs->supported_write_flags);
1045         flags &= ~bs->supported_write_flags;
1046         goto emulate_flags;
1047     }
1048 
1049     if (drv->bdrv_aio_pwritev) {
1050         BlockAIOCB *acb;
1051         CoroutineIOCompletion co = {
1052             .coroutine = qemu_coroutine_self(),
1053         };
1054 
1055         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1056                                     flags & bs->supported_write_flags,
1057                                     bdrv_co_io_em_complete, &co);
1058         flags &= ~bs->supported_write_flags;
1059         if (acb == NULL) {
1060             ret = -EIO;
1061         } else {
1062             qemu_coroutine_yield();
1063             ret = co.ret;
1064         }
1065         goto emulate_flags;
1066     }
1067 
1068     sector_num = offset >> BDRV_SECTOR_BITS;
1069     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1070 
1071     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1072     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1073     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1074 
1075     assert(drv->bdrv_co_writev);
1076     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1077                               flags & bs->supported_write_flags);
1078     flags &= ~bs->supported_write_flags;
1079 
1080 emulate_flags:
1081     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1082         ret = bdrv_co_flush(bs);
1083     }
1084 
1085     return ret;
1086 }
1087 
1088 static int coroutine_fn
1089 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1090                                uint64_t bytes, QEMUIOVector *qiov)
1091 {
1092     BlockDriver *drv = bs->drv;
1093 
1094     if (!drv) {
1095         return -ENOMEDIUM;
1096     }
1097 
1098     if (!drv->bdrv_co_pwritev_compressed) {
1099         return -ENOTSUP;
1100     }
1101 
1102     return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1103 }
1104 
1105 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1106         int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
1107 {
1108     BlockDriverState *bs = child->bs;
1109 
1110     /* Perform I/O through a temporary buffer so that users who scribble over
1111      * their read buffer while the operation is in progress do not end up
1112      * modifying the image file.  This is critical for zero-copy guest I/O
1113      * where anything might happen inside guest memory.
1114      */
1115     void *bounce_buffer;
1116 
1117     BlockDriver *drv = bs->drv;
1118     QEMUIOVector local_qiov;
1119     int64_t cluster_offset;
1120     int64_t cluster_bytes;
1121     size_t skip_bytes;
1122     int ret;
1123     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1124                                     BDRV_REQUEST_MAX_BYTES);
1125     unsigned int progress = 0;
1126 
1127     if (!drv) {
1128         return -ENOMEDIUM;
1129     }
1130 
1131     /* FIXME We cannot require callers to have write permissions when all they
1132      * are doing is a read request. If we did things right, write permissions
1133      * would be obtained anyway, but internally by the copy-on-read code. As
1134      * long as it is implemented here rather than in a separate filter driver,
1135      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1136      * it could request permissions. Therefore we have to bypass the permission
1137      * system for the moment. */
1138     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1139 
1140     /* Cover entire cluster so no additional backing file I/O is required when
1141      * allocating cluster in the image file.  Note that this value may exceed
1142      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1143      * is one reason we loop rather than doing it all at once.
1144      */
1145     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1146     skip_bytes = offset - cluster_offset;
1147 
1148     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1149                                    cluster_offset, cluster_bytes);
1150 
1151     bounce_buffer = qemu_try_blockalign(bs,
1152                                         MIN(MIN(max_transfer, cluster_bytes),
1153                                             MAX_BOUNCE_BUFFER));
1154     if (bounce_buffer == NULL) {
1155         ret = -ENOMEM;
1156         goto err;
1157     }
1158 
1159     while (cluster_bytes) {
1160         int64_t pnum;
1161 
1162         ret = bdrv_is_allocated(bs, cluster_offset,
1163                                 MIN(cluster_bytes, max_transfer), &pnum);
1164         if (ret < 0) {
1165             /* Safe to treat errors in querying allocation as if
1166              * unallocated; we'll probably fail again soon on the
1167              * read, but at least that will set a decent errno.
1168              */
1169             pnum = MIN(cluster_bytes, max_transfer);
1170         }
1171 
1172         /* Stop at EOF if the image ends in the middle of the cluster */
1173         if (ret == 0 && pnum == 0) {
1174             assert(progress >= bytes);
1175             break;
1176         }
1177 
1178         assert(skip_bytes < pnum);
1179 
1180         if (ret <= 0) {
1181             /* Must copy-on-read; use the bounce buffer */
1182             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1183             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1184 
1185             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1186                                      &local_qiov, 0);
1187             if (ret < 0) {
1188                 goto err;
1189             }
1190 
1191             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1192             if (drv->bdrv_co_pwrite_zeroes &&
1193                 buffer_is_zero(bounce_buffer, pnum)) {
1194                 /* FIXME: Should we (perhaps conditionally) be setting
1195                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1196                  * that still correctly reads as zero? */
1197                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1198                                                BDRV_REQ_WRITE_UNCHANGED);
1199             } else {
1200                 /* This does not change the data on the disk, it is not
1201                  * necessary to flush even in cache=writethrough mode.
1202                  */
1203                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1204                                           &local_qiov,
1205                                           BDRV_REQ_WRITE_UNCHANGED);
1206             }
1207 
1208             if (ret < 0) {
1209                 /* It might be okay to ignore write errors for guest
1210                  * requests.  If this is a deliberate copy-on-read
1211                  * then we don't want to ignore the error.  Simply
1212                  * report it in all cases.
1213                  */
1214                 goto err;
1215             }
1216 
1217             qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1218                                 pnum - skip_bytes);
1219         } else {
1220             /* Read directly into the destination */
1221             qemu_iovec_init(&local_qiov, qiov->niov);
1222             qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1223             ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1224                                      &local_qiov, 0);
1225             qemu_iovec_destroy(&local_qiov);
1226             if (ret < 0) {
1227                 goto err;
1228             }
1229         }
1230 
1231         cluster_offset += pnum;
1232         cluster_bytes -= pnum;
1233         progress += pnum - skip_bytes;
1234         skip_bytes = 0;
1235     }
1236     ret = 0;
1237 
1238 err:
1239     qemu_vfree(bounce_buffer);
1240     return ret;
1241 }
1242 
1243 /*
1244  * Forwards an already correctly aligned request to the BlockDriver. This
1245  * handles copy on read, zeroing after EOF, and fragmentation of large
1246  * reads; any other features must be implemented by the caller.
1247  */
1248 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1249     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1250     int64_t align, QEMUIOVector *qiov, int flags)
1251 {
1252     BlockDriverState *bs = child->bs;
1253     int64_t total_bytes, max_bytes;
1254     int ret = 0;
1255     uint64_t bytes_remaining = bytes;
1256     int max_transfer;
1257 
1258     assert(is_power_of_2(align));
1259     assert((offset & (align - 1)) == 0);
1260     assert((bytes & (align - 1)) == 0);
1261     assert(!qiov || bytes == qiov->size);
1262     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1263     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1264                                    align);
1265 
1266     /* TODO: We would need a per-BDS .supported_read_flags and
1267      * potential fallback support, if we ever implement any read flags
1268      * to pass through to drivers.  For now, there aren't any
1269      * passthrough flags.  */
1270     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1271 
1272     /* Handle Copy on Read and associated serialisation */
1273     if (flags & BDRV_REQ_COPY_ON_READ) {
1274         /* If we touch the same cluster it counts as an overlap.  This
1275          * guarantees that allocating writes will be serialized and not race
1276          * with each other for the same cluster.  For example, in copy-on-read
1277          * it ensures that the CoR read and write operations are atomic and
1278          * guest writes cannot interleave between them. */
1279         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1280     }
1281 
1282     /* BDRV_REQ_SERIALISING is only for write operation */
1283     assert(!(flags & BDRV_REQ_SERIALISING));
1284 
1285     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1286         wait_serialising_requests(req);
1287     }
1288 
1289     if (flags & BDRV_REQ_COPY_ON_READ) {
1290         int64_t pnum;
1291 
1292         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1293         if (ret < 0) {
1294             goto out;
1295         }
1296 
1297         if (!ret || pnum != bytes) {
1298             ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1299             goto out;
1300         }
1301     }
1302 
1303     /* Forward the request to the BlockDriver, possibly fragmenting it */
1304     total_bytes = bdrv_getlength(bs);
1305     if (total_bytes < 0) {
1306         ret = total_bytes;
1307         goto out;
1308     }
1309 
1310     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1311     if (bytes <= max_bytes && bytes <= max_transfer) {
1312         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1313         goto out;
1314     }
1315 
1316     while (bytes_remaining) {
1317         int num;
1318 
1319         if (max_bytes) {
1320             QEMUIOVector local_qiov;
1321 
1322             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1323             assert(num);
1324             qemu_iovec_init(&local_qiov, qiov->niov);
1325             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1326 
1327             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1328                                      num, &local_qiov, 0);
1329             max_bytes -= num;
1330             qemu_iovec_destroy(&local_qiov);
1331         } else {
1332             num = bytes_remaining;
1333             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1334                                     bytes_remaining);
1335         }
1336         if (ret < 0) {
1337             goto out;
1338         }
1339         bytes_remaining -= num;
1340     }
1341 
1342 out:
1343     return ret < 0 ? ret : 0;
1344 }
1345 
1346 /*
1347  * Handle a read request in coroutine context
1348  */
1349 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1350     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1351     BdrvRequestFlags flags)
1352 {
1353     BlockDriverState *bs = child->bs;
1354     BlockDriver *drv = bs->drv;
1355     BdrvTrackedRequest req;
1356 
1357     uint64_t align = bs->bl.request_alignment;
1358     uint8_t *head_buf = NULL;
1359     uint8_t *tail_buf = NULL;
1360     QEMUIOVector local_qiov;
1361     bool use_local_qiov = false;
1362     int ret;
1363 
1364     trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1365 
1366     if (!drv) {
1367         return -ENOMEDIUM;
1368     }
1369 
1370     ret = bdrv_check_byte_request(bs, offset, bytes);
1371     if (ret < 0) {
1372         return ret;
1373     }
1374 
1375     bdrv_inc_in_flight(bs);
1376 
1377     /* Don't do copy-on-read if we read data before write operation */
1378     if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1379         flags |= BDRV_REQ_COPY_ON_READ;
1380     }
1381 
1382     /* Align read if necessary by padding qiov */
1383     if (offset & (align - 1)) {
1384         head_buf = qemu_blockalign(bs, align);
1385         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1386         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1387         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1388         use_local_qiov = true;
1389 
1390         bytes += offset & (align - 1);
1391         offset = offset & ~(align - 1);
1392     }
1393 
1394     if ((offset + bytes) & (align - 1)) {
1395         if (!use_local_qiov) {
1396             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1397             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1398             use_local_qiov = true;
1399         }
1400         tail_buf = qemu_blockalign(bs, align);
1401         qemu_iovec_add(&local_qiov, tail_buf,
1402                        align - ((offset + bytes) & (align - 1)));
1403 
1404         bytes = ROUND_UP(bytes, align);
1405     }
1406 
1407     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1408     ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1409                               use_local_qiov ? &local_qiov : qiov,
1410                               flags);
1411     tracked_request_end(&req);
1412     bdrv_dec_in_flight(bs);
1413 
1414     if (use_local_qiov) {
1415         qemu_iovec_destroy(&local_qiov);
1416         qemu_vfree(head_buf);
1417         qemu_vfree(tail_buf);
1418     }
1419 
1420     return ret;
1421 }
1422 
1423 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1424     int64_t offset, int bytes, BdrvRequestFlags flags)
1425 {
1426     BlockDriver *drv = bs->drv;
1427     QEMUIOVector qiov;
1428     void *buf = NULL;
1429     int ret = 0;
1430     bool need_flush = false;
1431     int head = 0;
1432     int tail = 0;
1433 
1434     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1435     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1436                         bs->bl.request_alignment);
1437     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1438 
1439     if (!drv) {
1440         return -ENOMEDIUM;
1441     }
1442 
1443     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1444         return -ENOTSUP;
1445     }
1446 
1447     assert(alignment % bs->bl.request_alignment == 0);
1448     head = offset % alignment;
1449     tail = (offset + bytes) % alignment;
1450     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1451     assert(max_write_zeroes >= bs->bl.request_alignment);
1452 
1453     while (bytes > 0 && !ret) {
1454         int num = bytes;
1455 
1456         /* Align request.  Block drivers can expect the "bulk" of the request
1457          * to be aligned, and that unaligned requests do not cross cluster
1458          * boundaries.
1459          */
1460         if (head) {
1461             /* Make a small request up to the first aligned sector. For
1462              * convenience, limit this request to max_transfer even if
1463              * we don't need to fall back to writes.  */
1464             num = MIN(MIN(bytes, max_transfer), alignment - head);
1465             head = (head + num) % alignment;
1466             assert(num < max_write_zeroes);
1467         } else if (tail && num > alignment) {
1468             /* Shorten the request to the last aligned sector.  */
1469             num -= tail;
1470         }
1471 
1472         /* limit request size */
1473         if (num > max_write_zeroes) {
1474             num = max_write_zeroes;
1475         }
1476 
1477         ret = -ENOTSUP;
1478         /* First try the efficient write zeroes operation */
1479         if (drv->bdrv_co_pwrite_zeroes) {
1480             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1481                                              flags & bs->supported_zero_flags);
1482             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1483                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1484                 need_flush = true;
1485             }
1486         } else {
1487             assert(!bs->supported_zero_flags);
1488         }
1489 
1490         if (ret < 0 && !(flags & BDRV_REQ_NO_FALLBACK)) {
1491             /* Fall back to bounce buffer if write zeroes is unsupported */
1492             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1493 
1494             if ((flags & BDRV_REQ_FUA) &&
1495                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1496                 /* No need for bdrv_driver_pwrite() to do a fallback
1497                  * flush on each chunk; use just one at the end */
1498                 write_flags &= ~BDRV_REQ_FUA;
1499                 need_flush = true;
1500             }
1501             num = MIN(num, max_transfer);
1502             if (buf == NULL) {
1503                 buf = qemu_try_blockalign0(bs, num);
1504                 if (buf == NULL) {
1505                     ret = -ENOMEM;
1506                     goto fail;
1507                 }
1508             }
1509             qemu_iovec_init_buf(&qiov, buf, num);
1510 
1511             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1512 
1513             /* Keep bounce buffer around if it is big enough for all
1514              * all future requests.
1515              */
1516             if (num < max_transfer) {
1517                 qemu_vfree(buf);
1518                 buf = NULL;
1519             }
1520         }
1521 
1522         offset += num;
1523         bytes -= num;
1524     }
1525 
1526 fail:
1527     if (ret == 0 && need_flush) {
1528         ret = bdrv_co_flush(bs);
1529     }
1530     qemu_vfree(buf);
1531     return ret;
1532 }
1533 
1534 static inline int coroutine_fn
1535 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1536                           BdrvTrackedRequest *req, int flags)
1537 {
1538     BlockDriverState *bs = child->bs;
1539     bool waited;
1540     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1541 
1542     if (bs->read_only) {
1543         return -EPERM;
1544     }
1545 
1546     /* BDRV_REQ_NO_SERIALISING is only for read operation */
1547     assert(!(flags & BDRV_REQ_NO_SERIALISING));
1548     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1549     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1550     assert(!(flags & ~BDRV_REQ_MASK));
1551 
1552     if (flags & BDRV_REQ_SERIALISING) {
1553         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1554     }
1555 
1556     waited = wait_serialising_requests(req);
1557 
1558     assert(!waited || !req->serialising ||
1559            is_request_serialising_and_aligned(req));
1560     assert(req->overlap_offset <= offset);
1561     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1562     assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1563 
1564     switch (req->type) {
1565     case BDRV_TRACKED_WRITE:
1566     case BDRV_TRACKED_DISCARD:
1567         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1568             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1569         } else {
1570             assert(child->perm & BLK_PERM_WRITE);
1571         }
1572         return notifier_with_return_list_notify(&bs->before_write_notifiers,
1573                                                 req);
1574     case BDRV_TRACKED_TRUNCATE:
1575         assert(child->perm & BLK_PERM_RESIZE);
1576         return 0;
1577     default:
1578         abort();
1579     }
1580 }
1581 
1582 static inline void coroutine_fn
1583 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1584                          BdrvTrackedRequest *req, int ret)
1585 {
1586     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1587     BlockDriverState *bs = child->bs;
1588 
1589     atomic_inc(&bs->write_gen);
1590 
1591     /*
1592      * Discard cannot extend the image, but in error handling cases, such as
1593      * when reverting a qcow2 cluster allocation, the discarded range can pass
1594      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1595      * here. Instead, just skip it, since semantically a discard request
1596      * beyond EOF cannot expand the image anyway.
1597      */
1598     if (ret == 0 &&
1599         (req->type == BDRV_TRACKED_TRUNCATE ||
1600          end_sector > bs->total_sectors) &&
1601         req->type != BDRV_TRACKED_DISCARD) {
1602         bs->total_sectors = end_sector;
1603         bdrv_parent_cb_resize(bs);
1604         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1605     }
1606     if (req->bytes) {
1607         switch (req->type) {
1608         case BDRV_TRACKED_WRITE:
1609             stat64_max(&bs->wr_highest_offset, offset + bytes);
1610             /* fall through, to set dirty bits */
1611         case BDRV_TRACKED_DISCARD:
1612             bdrv_set_dirty(bs, offset, bytes);
1613             break;
1614         default:
1615             break;
1616         }
1617     }
1618 }
1619 
1620 /*
1621  * Forwards an already correctly aligned write request to the BlockDriver,
1622  * after possibly fragmenting it.
1623  */
1624 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1625     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1626     int64_t align, QEMUIOVector *qiov, int flags)
1627 {
1628     BlockDriverState *bs = child->bs;
1629     BlockDriver *drv = bs->drv;
1630     int ret;
1631 
1632     uint64_t bytes_remaining = bytes;
1633     int max_transfer;
1634 
1635     if (!drv) {
1636         return -ENOMEDIUM;
1637     }
1638 
1639     if (bdrv_has_readonly_bitmaps(bs)) {
1640         return -EPERM;
1641     }
1642 
1643     assert(is_power_of_2(align));
1644     assert((offset & (align - 1)) == 0);
1645     assert((bytes & (align - 1)) == 0);
1646     assert(!qiov || bytes == qiov->size);
1647     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1648                                    align);
1649 
1650     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1651 
1652     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1653         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1654         qemu_iovec_is_zero(qiov)) {
1655         flags |= BDRV_REQ_ZERO_WRITE;
1656         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1657             flags |= BDRV_REQ_MAY_UNMAP;
1658         }
1659     }
1660 
1661     if (ret < 0) {
1662         /* Do nothing, write notifier decided to fail this request */
1663     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1664         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1665         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1666     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1667         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1668     } else if (bytes <= max_transfer) {
1669         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1670         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1671     } else {
1672         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1673         while (bytes_remaining) {
1674             int num = MIN(bytes_remaining, max_transfer);
1675             QEMUIOVector local_qiov;
1676             int local_flags = flags;
1677 
1678             assert(num);
1679             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1680                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1681                 /* If FUA is going to be emulated by flush, we only
1682                  * need to flush on the last iteration */
1683                 local_flags &= ~BDRV_REQ_FUA;
1684             }
1685             qemu_iovec_init(&local_qiov, qiov->niov);
1686             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1687 
1688             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1689                                       num, &local_qiov, local_flags);
1690             qemu_iovec_destroy(&local_qiov);
1691             if (ret < 0) {
1692                 break;
1693             }
1694             bytes_remaining -= num;
1695         }
1696     }
1697     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1698 
1699     if (ret >= 0) {
1700         ret = 0;
1701     }
1702     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1703 
1704     return ret;
1705 }
1706 
1707 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1708                                                 int64_t offset,
1709                                                 unsigned int bytes,
1710                                                 BdrvRequestFlags flags,
1711                                                 BdrvTrackedRequest *req)
1712 {
1713     BlockDriverState *bs = child->bs;
1714     uint8_t *buf = NULL;
1715     QEMUIOVector local_qiov;
1716     uint64_t align = bs->bl.request_alignment;
1717     unsigned int head_padding_bytes, tail_padding_bytes;
1718     int ret = 0;
1719 
1720     head_padding_bytes = offset & (align - 1);
1721     tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1722 
1723 
1724     assert(flags & BDRV_REQ_ZERO_WRITE);
1725     if (head_padding_bytes || tail_padding_bytes) {
1726         buf = qemu_blockalign(bs, align);
1727         qemu_iovec_init_buf(&local_qiov, buf, align);
1728     }
1729     if (head_padding_bytes) {
1730         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1731 
1732         /* RMW the unaligned part before head. */
1733         mark_request_serialising(req, align);
1734         wait_serialising_requests(req);
1735         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1736         ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1737                                   align, &local_qiov, 0);
1738         if (ret < 0) {
1739             goto fail;
1740         }
1741         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1742 
1743         memset(buf + head_padding_bytes, 0, zero_bytes);
1744         ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1745                                    align, &local_qiov,
1746                                    flags & ~BDRV_REQ_ZERO_WRITE);
1747         if (ret < 0) {
1748             goto fail;
1749         }
1750         offset += zero_bytes;
1751         bytes -= zero_bytes;
1752     }
1753 
1754     assert(!bytes || (offset & (align - 1)) == 0);
1755     if (bytes >= align) {
1756         /* Write the aligned part in the middle. */
1757         uint64_t aligned_bytes = bytes & ~(align - 1);
1758         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1759                                    NULL, flags);
1760         if (ret < 0) {
1761             goto fail;
1762         }
1763         bytes -= aligned_bytes;
1764         offset += aligned_bytes;
1765     }
1766 
1767     assert(!bytes || (offset & (align - 1)) == 0);
1768     if (bytes) {
1769         assert(align == tail_padding_bytes + bytes);
1770         /* RMW the unaligned part after tail. */
1771         mark_request_serialising(req, align);
1772         wait_serialising_requests(req);
1773         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1774         ret = bdrv_aligned_preadv(child, req, offset, align,
1775                                   align, &local_qiov, 0);
1776         if (ret < 0) {
1777             goto fail;
1778         }
1779         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1780 
1781         memset(buf, 0, bytes);
1782         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1783                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1784     }
1785 fail:
1786     qemu_vfree(buf);
1787     return ret;
1788 
1789 }
1790 
1791 /*
1792  * Handle a write request in coroutine context
1793  */
1794 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1795     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1796     BdrvRequestFlags flags)
1797 {
1798     BlockDriverState *bs = child->bs;
1799     BdrvTrackedRequest req;
1800     uint64_t align = bs->bl.request_alignment;
1801     uint8_t *head_buf = NULL;
1802     uint8_t *tail_buf = NULL;
1803     QEMUIOVector local_qiov;
1804     bool use_local_qiov = false;
1805     int ret;
1806 
1807     trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1808 
1809     if (!bs->drv) {
1810         return -ENOMEDIUM;
1811     }
1812 
1813     ret = bdrv_check_byte_request(bs, offset, bytes);
1814     if (ret < 0) {
1815         return ret;
1816     }
1817 
1818     bdrv_inc_in_flight(bs);
1819     /*
1820      * Align write if necessary by performing a read-modify-write cycle.
1821      * Pad qiov with the read parts and be sure to have a tracked request not
1822      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1823      */
1824     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1825 
1826     if (flags & BDRV_REQ_ZERO_WRITE) {
1827         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1828         goto out;
1829     }
1830 
1831     if (offset & (align - 1)) {
1832         QEMUIOVector head_qiov;
1833 
1834         mark_request_serialising(&req, align);
1835         wait_serialising_requests(&req);
1836 
1837         head_buf = qemu_blockalign(bs, align);
1838         qemu_iovec_init_buf(&head_qiov, head_buf, align);
1839 
1840         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1841         ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1842                                   align, &head_qiov, 0);
1843         if (ret < 0) {
1844             goto fail;
1845         }
1846         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1847 
1848         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1849         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1850         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1851         use_local_qiov = true;
1852 
1853         bytes += offset & (align - 1);
1854         offset = offset & ~(align - 1);
1855 
1856         /* We have read the tail already if the request is smaller
1857          * than one aligned block.
1858          */
1859         if (bytes < align) {
1860             qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1861             bytes = align;
1862         }
1863     }
1864 
1865     if ((offset + bytes) & (align - 1)) {
1866         QEMUIOVector tail_qiov;
1867         size_t tail_bytes;
1868         bool waited;
1869 
1870         mark_request_serialising(&req, align);
1871         waited = wait_serialising_requests(&req);
1872         assert(!waited || !use_local_qiov);
1873 
1874         tail_buf = qemu_blockalign(bs, align);
1875         qemu_iovec_init_buf(&tail_qiov, tail_buf, align);
1876 
1877         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1878         ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1879                                   align, align, &tail_qiov, 0);
1880         if (ret < 0) {
1881             goto fail;
1882         }
1883         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1884 
1885         if (!use_local_qiov) {
1886             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1887             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1888             use_local_qiov = true;
1889         }
1890 
1891         tail_bytes = (offset + bytes) & (align - 1);
1892         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1893 
1894         bytes = ROUND_UP(bytes, align);
1895     }
1896 
1897     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1898                                use_local_qiov ? &local_qiov : qiov,
1899                                flags);
1900 
1901 fail:
1902 
1903     if (use_local_qiov) {
1904         qemu_iovec_destroy(&local_qiov);
1905     }
1906     qemu_vfree(head_buf);
1907     qemu_vfree(tail_buf);
1908 out:
1909     tracked_request_end(&req);
1910     bdrv_dec_in_flight(bs);
1911     return ret;
1912 }
1913 
1914 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1915                                        int bytes, BdrvRequestFlags flags)
1916 {
1917     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1918 
1919     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1920         flags &= ~BDRV_REQ_MAY_UNMAP;
1921     }
1922 
1923     return bdrv_co_pwritev(child, offset, bytes, NULL,
1924                            BDRV_REQ_ZERO_WRITE | flags);
1925 }
1926 
1927 /*
1928  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1929  */
1930 int bdrv_flush_all(void)
1931 {
1932     BdrvNextIterator it;
1933     BlockDriverState *bs = NULL;
1934     int result = 0;
1935 
1936     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1937         AioContext *aio_context = bdrv_get_aio_context(bs);
1938         int ret;
1939 
1940         aio_context_acquire(aio_context);
1941         ret = bdrv_flush(bs);
1942         if (ret < 0 && !result) {
1943             result = ret;
1944         }
1945         aio_context_release(aio_context);
1946     }
1947 
1948     return result;
1949 }
1950 
1951 
1952 typedef struct BdrvCoBlockStatusData {
1953     BlockDriverState *bs;
1954     BlockDriverState *base;
1955     bool want_zero;
1956     int64_t offset;
1957     int64_t bytes;
1958     int64_t *pnum;
1959     int64_t *map;
1960     BlockDriverState **file;
1961     int ret;
1962     bool done;
1963 } BdrvCoBlockStatusData;
1964 
1965 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
1966                                                 bool want_zero,
1967                                                 int64_t offset,
1968                                                 int64_t bytes,
1969                                                 int64_t *pnum,
1970                                                 int64_t *map,
1971                                                 BlockDriverState **file)
1972 {
1973     assert(bs->file && bs->file->bs);
1974     *pnum = bytes;
1975     *map = offset;
1976     *file = bs->file->bs;
1977     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1978 }
1979 
1980 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
1981                                                    bool want_zero,
1982                                                    int64_t offset,
1983                                                    int64_t bytes,
1984                                                    int64_t *pnum,
1985                                                    int64_t *map,
1986                                                    BlockDriverState **file)
1987 {
1988     assert(bs->backing && bs->backing->bs);
1989     *pnum = bytes;
1990     *map = offset;
1991     *file = bs->backing->bs;
1992     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1993 }
1994 
1995 /*
1996  * Returns the allocation status of the specified sectors.
1997  * Drivers not implementing the functionality are assumed to not support
1998  * backing files, hence all their sectors are reported as allocated.
1999  *
2000  * If 'want_zero' is true, the caller is querying for mapping
2001  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2002  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2003  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2004  *
2005  * If 'offset' is beyond the end of the disk image the return value is
2006  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2007  *
2008  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2009  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2010  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2011  *
2012  * 'pnum' is set to the number of bytes (including and immediately
2013  * following the specified offset) that are easily known to be in the
2014  * same allocated/unallocated state.  Note that a second call starting
2015  * at the original offset plus returned pnum may have the same status.
2016  * The returned value is non-zero on success except at end-of-file.
2017  *
2018  * Returns negative errno on failure.  Otherwise, if the
2019  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2020  * set to the host mapping and BDS corresponding to the guest offset.
2021  */
2022 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2023                                              bool want_zero,
2024                                              int64_t offset, int64_t bytes,
2025                                              int64_t *pnum, int64_t *map,
2026                                              BlockDriverState **file)
2027 {
2028     int64_t total_size;
2029     int64_t n; /* bytes */
2030     int ret;
2031     int64_t local_map = 0;
2032     BlockDriverState *local_file = NULL;
2033     int64_t aligned_offset, aligned_bytes;
2034     uint32_t align;
2035 
2036     assert(pnum);
2037     *pnum = 0;
2038     total_size = bdrv_getlength(bs);
2039     if (total_size < 0) {
2040         ret = total_size;
2041         goto early_out;
2042     }
2043 
2044     if (offset >= total_size) {
2045         ret = BDRV_BLOCK_EOF;
2046         goto early_out;
2047     }
2048     if (!bytes) {
2049         ret = 0;
2050         goto early_out;
2051     }
2052 
2053     n = total_size - offset;
2054     if (n < bytes) {
2055         bytes = n;
2056     }
2057 
2058     /* Must be non-NULL or bdrv_getlength() would have failed */
2059     assert(bs->drv);
2060     if (!bs->drv->bdrv_co_block_status) {
2061         *pnum = bytes;
2062         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2063         if (offset + bytes == total_size) {
2064             ret |= BDRV_BLOCK_EOF;
2065         }
2066         if (bs->drv->protocol_name) {
2067             ret |= BDRV_BLOCK_OFFSET_VALID;
2068             local_map = offset;
2069             local_file = bs;
2070         }
2071         goto early_out;
2072     }
2073 
2074     bdrv_inc_in_flight(bs);
2075 
2076     /* Round out to request_alignment boundaries */
2077     align = bs->bl.request_alignment;
2078     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2079     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2080 
2081     ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2082                                         aligned_bytes, pnum, &local_map,
2083                                         &local_file);
2084     if (ret < 0) {
2085         *pnum = 0;
2086         goto out;
2087     }
2088 
2089     /*
2090      * The driver's result must be a non-zero multiple of request_alignment.
2091      * Clamp pnum and adjust map to original request.
2092      */
2093     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2094            align > offset - aligned_offset);
2095     *pnum -= offset - aligned_offset;
2096     if (*pnum > bytes) {
2097         *pnum = bytes;
2098     }
2099     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2100         local_map += offset - aligned_offset;
2101     }
2102 
2103     if (ret & BDRV_BLOCK_RAW) {
2104         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2105         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2106                                    *pnum, pnum, &local_map, &local_file);
2107         goto out;
2108     }
2109 
2110     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2111         ret |= BDRV_BLOCK_ALLOCATED;
2112     } else if (want_zero) {
2113         if (bdrv_unallocated_blocks_are_zero(bs)) {
2114             ret |= BDRV_BLOCK_ZERO;
2115         } else if (bs->backing) {
2116             BlockDriverState *bs2 = bs->backing->bs;
2117             int64_t size2 = bdrv_getlength(bs2);
2118 
2119             if (size2 >= 0 && offset >= size2) {
2120                 ret |= BDRV_BLOCK_ZERO;
2121             }
2122         }
2123     }
2124 
2125     if (want_zero && local_file && local_file != bs &&
2126         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2127         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2128         int64_t file_pnum;
2129         int ret2;
2130 
2131         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2132                                     *pnum, &file_pnum, NULL, NULL);
2133         if (ret2 >= 0) {
2134             /* Ignore errors.  This is just providing extra information, it
2135              * is useful but not necessary.
2136              */
2137             if (ret2 & BDRV_BLOCK_EOF &&
2138                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2139                 /*
2140                  * It is valid for the format block driver to read
2141                  * beyond the end of the underlying file's current
2142                  * size; such areas read as zero.
2143                  */
2144                 ret |= BDRV_BLOCK_ZERO;
2145             } else {
2146                 /* Limit request to the range reported by the protocol driver */
2147                 *pnum = file_pnum;
2148                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2149             }
2150         }
2151     }
2152 
2153 out:
2154     bdrv_dec_in_flight(bs);
2155     if (ret >= 0 && offset + *pnum == total_size) {
2156         ret |= BDRV_BLOCK_EOF;
2157     }
2158 early_out:
2159     if (file) {
2160         *file = local_file;
2161     }
2162     if (map) {
2163         *map = local_map;
2164     }
2165     return ret;
2166 }
2167 
2168 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2169                                                    BlockDriverState *base,
2170                                                    bool want_zero,
2171                                                    int64_t offset,
2172                                                    int64_t bytes,
2173                                                    int64_t *pnum,
2174                                                    int64_t *map,
2175                                                    BlockDriverState **file)
2176 {
2177     BlockDriverState *p;
2178     int ret = 0;
2179     bool first = true;
2180 
2181     assert(bs != base);
2182     for (p = bs; p != base; p = backing_bs(p)) {
2183         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2184                                    file);
2185         if (ret < 0) {
2186             break;
2187         }
2188         if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2189             /*
2190              * Reading beyond the end of the file continues to read
2191              * zeroes, but we can only widen the result to the
2192              * unallocated length we learned from an earlier
2193              * iteration.
2194              */
2195             *pnum = bytes;
2196         }
2197         if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2198             break;
2199         }
2200         /* [offset, pnum] unallocated on this layer, which could be only
2201          * the first part of [offset, bytes].  */
2202         bytes = MIN(bytes, *pnum);
2203         first = false;
2204     }
2205     return ret;
2206 }
2207 
2208 /* Coroutine wrapper for bdrv_block_status_above() */
2209 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2210 {
2211     BdrvCoBlockStatusData *data = opaque;
2212 
2213     data->ret = bdrv_co_block_status_above(data->bs, data->base,
2214                                            data->want_zero,
2215                                            data->offset, data->bytes,
2216                                            data->pnum, data->map, data->file);
2217     data->done = true;
2218     aio_wait_kick();
2219 }
2220 
2221 /*
2222  * Synchronous wrapper around bdrv_co_block_status_above().
2223  *
2224  * See bdrv_co_block_status_above() for details.
2225  */
2226 static int bdrv_common_block_status_above(BlockDriverState *bs,
2227                                           BlockDriverState *base,
2228                                           bool want_zero, int64_t offset,
2229                                           int64_t bytes, int64_t *pnum,
2230                                           int64_t *map,
2231                                           BlockDriverState **file)
2232 {
2233     Coroutine *co;
2234     BdrvCoBlockStatusData data = {
2235         .bs = bs,
2236         .base = base,
2237         .want_zero = want_zero,
2238         .offset = offset,
2239         .bytes = bytes,
2240         .pnum = pnum,
2241         .map = map,
2242         .file = file,
2243         .done = false,
2244     };
2245 
2246     if (qemu_in_coroutine()) {
2247         /* Fast-path if already in coroutine context */
2248         bdrv_block_status_above_co_entry(&data);
2249     } else {
2250         co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2251         bdrv_coroutine_enter(bs, co);
2252         BDRV_POLL_WHILE(bs, !data.done);
2253     }
2254     return data.ret;
2255 }
2256 
2257 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2258                             int64_t offset, int64_t bytes, int64_t *pnum,
2259                             int64_t *map, BlockDriverState **file)
2260 {
2261     return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2262                                           pnum, map, file);
2263 }
2264 
2265 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2266                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2267 {
2268     return bdrv_block_status_above(bs, backing_bs(bs),
2269                                    offset, bytes, pnum, map, file);
2270 }
2271 
2272 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2273                                    int64_t bytes, int64_t *pnum)
2274 {
2275     int ret;
2276     int64_t dummy;
2277 
2278     ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2279                                          bytes, pnum ? pnum : &dummy, NULL,
2280                                          NULL);
2281     if (ret < 0) {
2282         return ret;
2283     }
2284     return !!(ret & BDRV_BLOCK_ALLOCATED);
2285 }
2286 
2287 /*
2288  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2289  *
2290  * Return true if (a prefix of) the given range is allocated in any image
2291  * between BASE and TOP (inclusive).  BASE can be NULL to check if the given
2292  * offset is allocated in any image of the chain.  Return false otherwise,
2293  * or negative errno on failure.
2294  *
2295  * 'pnum' is set to the number of bytes (including and immediately
2296  * following the specified offset) that are known to be in the same
2297  * allocated/unallocated state.  Note that a subsequent call starting
2298  * at 'offset + *pnum' may return the same allocation status (in other
2299  * words, the result is not necessarily the maximum possible range);
2300  * but 'pnum' will only be 0 when end of file is reached.
2301  *
2302  */
2303 int bdrv_is_allocated_above(BlockDriverState *top,
2304                             BlockDriverState *base,
2305                             int64_t offset, int64_t bytes, int64_t *pnum)
2306 {
2307     BlockDriverState *intermediate;
2308     int ret;
2309     int64_t n = bytes;
2310 
2311     intermediate = top;
2312     while (intermediate && intermediate != base) {
2313         int64_t pnum_inter;
2314         int64_t size_inter;
2315 
2316         ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2317         if (ret < 0) {
2318             return ret;
2319         }
2320         if (ret) {
2321             *pnum = pnum_inter;
2322             return 1;
2323         }
2324 
2325         size_inter = bdrv_getlength(intermediate);
2326         if (size_inter < 0) {
2327             return size_inter;
2328         }
2329         if (n > pnum_inter &&
2330             (intermediate == top || offset + pnum_inter < size_inter)) {
2331             n = pnum_inter;
2332         }
2333 
2334         intermediate = backing_bs(intermediate);
2335     }
2336 
2337     *pnum = n;
2338     return 0;
2339 }
2340 
2341 typedef struct BdrvVmstateCo {
2342     BlockDriverState    *bs;
2343     QEMUIOVector        *qiov;
2344     int64_t             pos;
2345     bool                is_read;
2346     int                 ret;
2347 } BdrvVmstateCo;
2348 
2349 static int coroutine_fn
2350 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2351                    bool is_read)
2352 {
2353     BlockDriver *drv = bs->drv;
2354     int ret = -ENOTSUP;
2355 
2356     bdrv_inc_in_flight(bs);
2357 
2358     if (!drv) {
2359         ret = -ENOMEDIUM;
2360     } else if (drv->bdrv_load_vmstate) {
2361         if (is_read) {
2362             ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2363         } else {
2364             ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2365         }
2366     } else if (bs->file) {
2367         ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2368     }
2369 
2370     bdrv_dec_in_flight(bs);
2371     return ret;
2372 }
2373 
2374 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2375 {
2376     BdrvVmstateCo *co = opaque;
2377     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2378     aio_wait_kick();
2379 }
2380 
2381 static inline int
2382 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2383                 bool is_read)
2384 {
2385     if (qemu_in_coroutine()) {
2386         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2387     } else {
2388         BdrvVmstateCo data = {
2389             .bs         = bs,
2390             .qiov       = qiov,
2391             .pos        = pos,
2392             .is_read    = is_read,
2393             .ret        = -EINPROGRESS,
2394         };
2395         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2396 
2397         bdrv_coroutine_enter(bs, co);
2398         BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2399         return data.ret;
2400     }
2401 }
2402 
2403 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2404                       int64_t pos, int size)
2405 {
2406     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2407     int ret;
2408 
2409     ret = bdrv_writev_vmstate(bs, &qiov, pos);
2410     if (ret < 0) {
2411         return ret;
2412     }
2413 
2414     return size;
2415 }
2416 
2417 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2418 {
2419     return bdrv_rw_vmstate(bs, qiov, pos, false);
2420 }
2421 
2422 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2423                       int64_t pos, int size)
2424 {
2425     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2426     int ret;
2427 
2428     ret = bdrv_readv_vmstate(bs, &qiov, pos);
2429     if (ret < 0) {
2430         return ret;
2431     }
2432 
2433     return size;
2434 }
2435 
2436 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2437 {
2438     return bdrv_rw_vmstate(bs, qiov, pos, true);
2439 }
2440 
2441 /**************************************************************/
2442 /* async I/Os */
2443 
2444 void bdrv_aio_cancel(BlockAIOCB *acb)
2445 {
2446     qemu_aio_ref(acb);
2447     bdrv_aio_cancel_async(acb);
2448     while (acb->refcnt > 1) {
2449         if (acb->aiocb_info->get_aio_context) {
2450             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2451         } else if (acb->bs) {
2452             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2453              * assert that we're not using an I/O thread.  Thread-safe
2454              * code should use bdrv_aio_cancel_async exclusively.
2455              */
2456             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2457             aio_poll(bdrv_get_aio_context(acb->bs), true);
2458         } else {
2459             abort();
2460         }
2461     }
2462     qemu_aio_unref(acb);
2463 }
2464 
2465 /* Async version of aio cancel. The caller is not blocked if the acb implements
2466  * cancel_async, otherwise we do nothing and let the request normally complete.
2467  * In either case the completion callback must be called. */
2468 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2469 {
2470     if (acb->aiocb_info->cancel_async) {
2471         acb->aiocb_info->cancel_async(acb);
2472     }
2473 }
2474 
2475 /**************************************************************/
2476 /* Coroutine block device emulation */
2477 
2478 typedef struct FlushCo {
2479     BlockDriverState *bs;
2480     int ret;
2481 } FlushCo;
2482 
2483 
2484 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2485 {
2486     FlushCo *rwco = opaque;
2487 
2488     rwco->ret = bdrv_co_flush(rwco->bs);
2489     aio_wait_kick();
2490 }
2491 
2492 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2493 {
2494     int current_gen;
2495     int ret = 0;
2496 
2497     bdrv_inc_in_flight(bs);
2498 
2499     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2500         bdrv_is_sg(bs)) {
2501         goto early_exit;
2502     }
2503 
2504     qemu_co_mutex_lock(&bs->reqs_lock);
2505     current_gen = atomic_read(&bs->write_gen);
2506 
2507     /* Wait until any previous flushes are completed */
2508     while (bs->active_flush_req) {
2509         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2510     }
2511 
2512     /* Flushes reach this point in nondecreasing current_gen order.  */
2513     bs->active_flush_req = true;
2514     qemu_co_mutex_unlock(&bs->reqs_lock);
2515 
2516     /* Write back all layers by calling one driver function */
2517     if (bs->drv->bdrv_co_flush) {
2518         ret = bs->drv->bdrv_co_flush(bs);
2519         goto out;
2520     }
2521 
2522     /* Write back cached data to the OS even with cache=unsafe */
2523     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2524     if (bs->drv->bdrv_co_flush_to_os) {
2525         ret = bs->drv->bdrv_co_flush_to_os(bs);
2526         if (ret < 0) {
2527             goto out;
2528         }
2529     }
2530 
2531     /* But don't actually force it to the disk with cache=unsafe */
2532     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2533         goto flush_parent;
2534     }
2535 
2536     /* Check if we really need to flush anything */
2537     if (bs->flushed_gen == current_gen) {
2538         goto flush_parent;
2539     }
2540 
2541     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2542     if (!bs->drv) {
2543         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2544          * (even in case of apparent success) */
2545         ret = -ENOMEDIUM;
2546         goto out;
2547     }
2548     if (bs->drv->bdrv_co_flush_to_disk) {
2549         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2550     } else if (bs->drv->bdrv_aio_flush) {
2551         BlockAIOCB *acb;
2552         CoroutineIOCompletion co = {
2553             .coroutine = qemu_coroutine_self(),
2554         };
2555 
2556         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2557         if (acb == NULL) {
2558             ret = -EIO;
2559         } else {
2560             qemu_coroutine_yield();
2561             ret = co.ret;
2562         }
2563     } else {
2564         /*
2565          * Some block drivers always operate in either writethrough or unsafe
2566          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2567          * know how the server works (because the behaviour is hardcoded or
2568          * depends on server-side configuration), so we can't ensure that
2569          * everything is safe on disk. Returning an error doesn't work because
2570          * that would break guests even if the server operates in writethrough
2571          * mode.
2572          *
2573          * Let's hope the user knows what he's doing.
2574          */
2575         ret = 0;
2576     }
2577 
2578     if (ret < 0) {
2579         goto out;
2580     }
2581 
2582     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2583      * in the case of cache=unsafe, so there are no useless flushes.
2584      */
2585 flush_parent:
2586     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2587 out:
2588     /* Notify any pending flushes that we have completed */
2589     if (ret == 0) {
2590         bs->flushed_gen = current_gen;
2591     }
2592 
2593     qemu_co_mutex_lock(&bs->reqs_lock);
2594     bs->active_flush_req = false;
2595     /* Return value is ignored - it's ok if wait queue is empty */
2596     qemu_co_queue_next(&bs->flush_queue);
2597     qemu_co_mutex_unlock(&bs->reqs_lock);
2598 
2599 early_exit:
2600     bdrv_dec_in_flight(bs);
2601     return ret;
2602 }
2603 
2604 int bdrv_flush(BlockDriverState *bs)
2605 {
2606     Coroutine *co;
2607     FlushCo flush_co = {
2608         .bs = bs,
2609         .ret = NOT_DONE,
2610     };
2611 
2612     if (qemu_in_coroutine()) {
2613         /* Fast-path if already in coroutine context */
2614         bdrv_flush_co_entry(&flush_co);
2615     } else {
2616         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2617         bdrv_coroutine_enter(bs, co);
2618         BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2619     }
2620 
2621     return flush_co.ret;
2622 }
2623 
2624 typedef struct DiscardCo {
2625     BdrvChild *child;
2626     int64_t offset;
2627     int bytes;
2628     int ret;
2629 } DiscardCo;
2630 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2631 {
2632     DiscardCo *rwco = opaque;
2633 
2634     rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
2635     aio_wait_kick();
2636 }
2637 
2638 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, int bytes)
2639 {
2640     BdrvTrackedRequest req;
2641     int max_pdiscard, ret;
2642     int head, tail, align;
2643     BlockDriverState *bs = child->bs;
2644 
2645     if (!bs || !bs->drv) {
2646         return -ENOMEDIUM;
2647     }
2648 
2649     if (bdrv_has_readonly_bitmaps(bs)) {
2650         return -EPERM;
2651     }
2652 
2653     ret = bdrv_check_byte_request(bs, offset, bytes);
2654     if (ret < 0) {
2655         return ret;
2656     }
2657 
2658     /* Do nothing if disabled.  */
2659     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2660         return 0;
2661     }
2662 
2663     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2664         return 0;
2665     }
2666 
2667     /* Discard is advisory, but some devices track and coalesce
2668      * unaligned requests, so we must pass everything down rather than
2669      * round here.  Still, most devices will just silently ignore
2670      * unaligned requests (by returning -ENOTSUP), so we must fragment
2671      * the request accordingly.  */
2672     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2673     assert(align % bs->bl.request_alignment == 0);
2674     head = offset % align;
2675     tail = (offset + bytes) % align;
2676 
2677     bdrv_inc_in_flight(bs);
2678     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2679 
2680     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2681     if (ret < 0) {
2682         goto out;
2683     }
2684 
2685     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2686                                    align);
2687     assert(max_pdiscard >= bs->bl.request_alignment);
2688 
2689     while (bytes > 0) {
2690         int num = bytes;
2691 
2692         if (head) {
2693             /* Make small requests to get to alignment boundaries. */
2694             num = MIN(bytes, align - head);
2695             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2696                 num %= bs->bl.request_alignment;
2697             }
2698             head = (head + num) % align;
2699             assert(num < max_pdiscard);
2700         } else if (tail) {
2701             if (num > align) {
2702                 /* Shorten the request to the last aligned cluster.  */
2703                 num -= tail;
2704             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2705                        tail > bs->bl.request_alignment) {
2706                 tail %= bs->bl.request_alignment;
2707                 num -= tail;
2708             }
2709         }
2710         /* limit request size */
2711         if (num > max_pdiscard) {
2712             num = max_pdiscard;
2713         }
2714 
2715         if (!bs->drv) {
2716             ret = -ENOMEDIUM;
2717             goto out;
2718         }
2719         if (bs->drv->bdrv_co_pdiscard) {
2720             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2721         } else {
2722             BlockAIOCB *acb;
2723             CoroutineIOCompletion co = {
2724                 .coroutine = qemu_coroutine_self(),
2725             };
2726 
2727             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2728                                              bdrv_co_io_em_complete, &co);
2729             if (acb == NULL) {
2730                 ret = -EIO;
2731                 goto out;
2732             } else {
2733                 qemu_coroutine_yield();
2734                 ret = co.ret;
2735             }
2736         }
2737         if (ret && ret != -ENOTSUP) {
2738             goto out;
2739         }
2740 
2741         offset += num;
2742         bytes -= num;
2743     }
2744     ret = 0;
2745 out:
2746     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
2747     tracked_request_end(&req);
2748     bdrv_dec_in_flight(bs);
2749     return ret;
2750 }
2751 
2752 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int bytes)
2753 {
2754     Coroutine *co;
2755     DiscardCo rwco = {
2756         .child = child,
2757         .offset = offset,
2758         .bytes = bytes,
2759         .ret = NOT_DONE,
2760     };
2761 
2762     if (qemu_in_coroutine()) {
2763         /* Fast-path if already in coroutine context */
2764         bdrv_pdiscard_co_entry(&rwco);
2765     } else {
2766         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2767         bdrv_coroutine_enter(child->bs, co);
2768         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
2769     }
2770 
2771     return rwco.ret;
2772 }
2773 
2774 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2775 {
2776     BlockDriver *drv = bs->drv;
2777     CoroutineIOCompletion co = {
2778         .coroutine = qemu_coroutine_self(),
2779     };
2780     BlockAIOCB *acb;
2781 
2782     bdrv_inc_in_flight(bs);
2783     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2784         co.ret = -ENOTSUP;
2785         goto out;
2786     }
2787 
2788     if (drv->bdrv_co_ioctl) {
2789         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2790     } else {
2791         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2792         if (!acb) {
2793             co.ret = -ENOTSUP;
2794             goto out;
2795         }
2796         qemu_coroutine_yield();
2797     }
2798 out:
2799     bdrv_dec_in_flight(bs);
2800     return co.ret;
2801 }
2802 
2803 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2804 {
2805     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2806 }
2807 
2808 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2809 {
2810     return memset(qemu_blockalign(bs, size), 0, size);
2811 }
2812 
2813 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2814 {
2815     size_t align = bdrv_opt_mem_align(bs);
2816 
2817     /* Ensure that NULL is never returned on success */
2818     assert(align > 0);
2819     if (size == 0) {
2820         size = align;
2821     }
2822 
2823     return qemu_try_memalign(align, size);
2824 }
2825 
2826 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2827 {
2828     void *mem = qemu_try_blockalign(bs, size);
2829 
2830     if (mem) {
2831         memset(mem, 0, size);
2832     }
2833 
2834     return mem;
2835 }
2836 
2837 /*
2838  * Check if all memory in this vector is sector aligned.
2839  */
2840 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2841 {
2842     int i;
2843     size_t alignment = bdrv_min_mem_align(bs);
2844 
2845     for (i = 0; i < qiov->niov; i++) {
2846         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2847             return false;
2848         }
2849         if (qiov->iov[i].iov_len % alignment) {
2850             return false;
2851         }
2852     }
2853 
2854     return true;
2855 }
2856 
2857 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2858                                     NotifierWithReturn *notifier)
2859 {
2860     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2861 }
2862 
2863 void bdrv_io_plug(BlockDriverState *bs)
2864 {
2865     BdrvChild *child;
2866 
2867     QLIST_FOREACH(child, &bs->children, next) {
2868         bdrv_io_plug(child->bs);
2869     }
2870 
2871     if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2872         BlockDriver *drv = bs->drv;
2873         if (drv && drv->bdrv_io_plug) {
2874             drv->bdrv_io_plug(bs);
2875         }
2876     }
2877 }
2878 
2879 void bdrv_io_unplug(BlockDriverState *bs)
2880 {
2881     BdrvChild *child;
2882 
2883     assert(bs->io_plugged);
2884     if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2885         BlockDriver *drv = bs->drv;
2886         if (drv && drv->bdrv_io_unplug) {
2887             drv->bdrv_io_unplug(bs);
2888         }
2889     }
2890 
2891     QLIST_FOREACH(child, &bs->children, next) {
2892         bdrv_io_unplug(child->bs);
2893     }
2894 }
2895 
2896 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2897 {
2898     BdrvChild *child;
2899 
2900     if (bs->drv && bs->drv->bdrv_register_buf) {
2901         bs->drv->bdrv_register_buf(bs, host, size);
2902     }
2903     QLIST_FOREACH(child, &bs->children, next) {
2904         bdrv_register_buf(child->bs, host, size);
2905     }
2906 }
2907 
2908 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2909 {
2910     BdrvChild *child;
2911 
2912     if (bs->drv && bs->drv->bdrv_unregister_buf) {
2913         bs->drv->bdrv_unregister_buf(bs, host);
2914     }
2915     QLIST_FOREACH(child, &bs->children, next) {
2916         bdrv_unregister_buf(child->bs, host);
2917     }
2918 }
2919 
2920 static int coroutine_fn bdrv_co_copy_range_internal(
2921         BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
2922         uint64_t dst_offset, uint64_t bytes,
2923         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
2924         bool recurse_src)
2925 {
2926     BdrvTrackedRequest req;
2927     int ret;
2928 
2929     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
2930     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
2931     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
2932 
2933     if (!dst || !dst->bs) {
2934         return -ENOMEDIUM;
2935     }
2936     ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
2937     if (ret) {
2938         return ret;
2939     }
2940     if (write_flags & BDRV_REQ_ZERO_WRITE) {
2941         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
2942     }
2943 
2944     if (!src || !src->bs) {
2945         return -ENOMEDIUM;
2946     }
2947     ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
2948     if (ret) {
2949         return ret;
2950     }
2951 
2952     if (!src->bs->drv->bdrv_co_copy_range_from
2953         || !dst->bs->drv->bdrv_co_copy_range_to
2954         || src->bs->encrypted || dst->bs->encrypted) {
2955         return -ENOTSUP;
2956     }
2957 
2958     if (recurse_src) {
2959         bdrv_inc_in_flight(src->bs);
2960         tracked_request_begin(&req, src->bs, src_offset, bytes,
2961                               BDRV_TRACKED_READ);
2962 
2963         /* BDRV_REQ_SERIALISING is only for write operation */
2964         assert(!(read_flags & BDRV_REQ_SERIALISING));
2965         if (!(read_flags & BDRV_REQ_NO_SERIALISING)) {
2966             wait_serialising_requests(&req);
2967         }
2968 
2969         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
2970                                                     src, src_offset,
2971                                                     dst, dst_offset,
2972                                                     bytes,
2973                                                     read_flags, write_flags);
2974 
2975         tracked_request_end(&req);
2976         bdrv_dec_in_flight(src->bs);
2977     } else {
2978         bdrv_inc_in_flight(dst->bs);
2979         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
2980                               BDRV_TRACKED_WRITE);
2981         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
2982                                         write_flags);
2983         if (!ret) {
2984             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
2985                                                       src, src_offset,
2986                                                       dst, dst_offset,
2987                                                       bytes,
2988                                                       read_flags, write_flags);
2989         }
2990         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
2991         tracked_request_end(&req);
2992         bdrv_dec_in_flight(dst->bs);
2993     }
2994 
2995     return ret;
2996 }
2997 
2998 /* Copy range from @src to @dst.
2999  *
3000  * See the comment of bdrv_co_copy_range for the parameter and return value
3001  * semantics. */
3002 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3003                                          BdrvChild *dst, uint64_t dst_offset,
3004                                          uint64_t bytes,
3005                                          BdrvRequestFlags read_flags,
3006                                          BdrvRequestFlags write_flags)
3007 {
3008     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3009                                   read_flags, write_flags);
3010     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3011                                        bytes, read_flags, write_flags, true);
3012 }
3013 
3014 /* Copy range from @src to @dst.
3015  *
3016  * See the comment of bdrv_co_copy_range for the parameter and return value
3017  * semantics. */
3018 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3019                                        BdrvChild *dst, uint64_t dst_offset,
3020                                        uint64_t bytes,
3021                                        BdrvRequestFlags read_flags,
3022                                        BdrvRequestFlags write_flags)
3023 {
3024     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3025                                 read_flags, write_flags);
3026     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3027                                        bytes, read_flags, write_flags, false);
3028 }
3029 
3030 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3031                                     BdrvChild *dst, uint64_t dst_offset,
3032                                     uint64_t bytes, BdrvRequestFlags read_flags,
3033                                     BdrvRequestFlags write_flags)
3034 {
3035     return bdrv_co_copy_range_from(src, src_offset,
3036                                    dst, dst_offset,
3037                                    bytes, read_flags, write_flags);
3038 }
3039 
3040 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3041 {
3042     BdrvChild *c;
3043     QLIST_FOREACH(c, &bs->parents, next_parent) {
3044         if (c->role->resize) {
3045             c->role->resize(c);
3046         }
3047     }
3048 }
3049 
3050 /**
3051  * Truncate file to 'offset' bytes (needed only for file protocols)
3052  */
3053 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset,
3054                                   PreallocMode prealloc, Error **errp)
3055 {
3056     BlockDriverState *bs = child->bs;
3057     BlockDriver *drv = bs->drv;
3058     BdrvTrackedRequest req;
3059     int64_t old_size, new_bytes;
3060     int ret;
3061 
3062 
3063     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3064     if (!drv) {
3065         error_setg(errp, "No medium inserted");
3066         return -ENOMEDIUM;
3067     }
3068     if (offset < 0) {
3069         error_setg(errp, "Image size cannot be negative");
3070         return -EINVAL;
3071     }
3072 
3073     old_size = bdrv_getlength(bs);
3074     if (old_size < 0) {
3075         error_setg_errno(errp, -old_size, "Failed to get old image size");
3076         return old_size;
3077     }
3078 
3079     if (offset > old_size) {
3080         new_bytes = offset - old_size;
3081     } else {
3082         new_bytes = 0;
3083     }
3084 
3085     bdrv_inc_in_flight(bs);
3086     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3087                           BDRV_TRACKED_TRUNCATE);
3088 
3089     /* If we are growing the image and potentially using preallocation for the
3090      * new area, we need to make sure that no write requests are made to it
3091      * concurrently or they might be overwritten by preallocation. */
3092     if (new_bytes) {
3093         mark_request_serialising(&req, 1);
3094     }
3095     if (bs->read_only) {
3096         error_setg(errp, "Image is read-only");
3097         ret = -EACCES;
3098         goto out;
3099     }
3100     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3101                                     0);
3102     if (ret < 0) {
3103         error_setg_errno(errp, -ret,
3104                          "Failed to prepare request for truncation");
3105         goto out;
3106     }
3107 
3108     if (!drv->bdrv_co_truncate) {
3109         if (bs->file && drv->is_filter) {
3110             ret = bdrv_co_truncate(bs->file, offset, prealloc, errp);
3111             goto out;
3112         }
3113         error_setg(errp, "Image format driver does not support resize");
3114         ret = -ENOTSUP;
3115         goto out;
3116     }
3117 
3118     ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp);
3119     if (ret < 0) {
3120         goto out;
3121     }
3122     ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3123     if (ret < 0) {
3124         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3125     } else {
3126         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3127     }
3128     /* It's possible that truncation succeeded but refresh_total_sectors
3129      * failed, but the latter doesn't affect how we should finish the request.
3130      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3131     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3132 
3133 out:
3134     tracked_request_end(&req);
3135     bdrv_dec_in_flight(bs);
3136 
3137     return ret;
3138 }
3139 
3140 typedef struct TruncateCo {
3141     BdrvChild *child;
3142     int64_t offset;
3143     PreallocMode prealloc;
3144     Error **errp;
3145     int ret;
3146 } TruncateCo;
3147 
3148 static void coroutine_fn bdrv_truncate_co_entry(void *opaque)
3149 {
3150     TruncateCo *tco = opaque;
3151     tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc,
3152                                 tco->errp);
3153     aio_wait_kick();
3154 }
3155 
3156 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc,
3157                   Error **errp)
3158 {
3159     Coroutine *co;
3160     TruncateCo tco = {
3161         .child      = child,
3162         .offset     = offset,
3163         .prealloc   = prealloc,
3164         .errp       = errp,
3165         .ret        = NOT_DONE,
3166     };
3167 
3168     if (qemu_in_coroutine()) {
3169         /* Fast-path if already in coroutine context */
3170         bdrv_truncate_co_entry(&tco);
3171     } else {
3172         co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco);
3173         bdrv_coroutine_enter(child->bs, co);
3174         BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE);
3175     }
3176 
3177     return tco.ret;
3178 }
3179