1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/blockjob.h" 29 #include "block/blockjob_int.h" 30 #include "block/block_int.h" 31 #include "qemu/cutils.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 36 37 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 38 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 39 40 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 41 int64_t offset, int bytes, BdrvRequestFlags flags); 42 43 void bdrv_parent_drained_begin(BlockDriverState *bs) 44 { 45 BdrvChild *c; 46 47 QLIST_FOREACH(c, &bs->parents, next_parent) { 48 if (c->role->drained_begin) { 49 c->role->drained_begin(c); 50 } 51 } 52 } 53 54 void bdrv_parent_drained_end(BlockDriverState *bs) 55 { 56 BdrvChild *c; 57 58 QLIST_FOREACH(c, &bs->parents, next_parent) { 59 if (c->role->drained_end) { 60 c->role->drained_end(c); 61 } 62 } 63 } 64 65 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 66 { 67 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 68 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 69 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 70 src->opt_mem_alignment); 71 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 72 src->min_mem_alignment); 73 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 74 } 75 76 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 77 { 78 BlockDriver *drv = bs->drv; 79 Error *local_err = NULL; 80 81 memset(&bs->bl, 0, sizeof(bs->bl)); 82 83 if (!drv) { 84 return; 85 } 86 87 /* Default alignment based on whether driver has byte interface */ 88 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512; 89 90 /* Take some limits from the children as a default */ 91 if (bs->file) { 92 bdrv_refresh_limits(bs->file->bs, &local_err); 93 if (local_err) { 94 error_propagate(errp, local_err); 95 return; 96 } 97 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 98 } else { 99 bs->bl.min_mem_alignment = 512; 100 bs->bl.opt_mem_alignment = getpagesize(); 101 102 /* Safe default since most protocols use readv()/writev()/etc */ 103 bs->bl.max_iov = IOV_MAX; 104 } 105 106 if (bs->backing) { 107 bdrv_refresh_limits(bs->backing->bs, &local_err); 108 if (local_err) { 109 error_propagate(errp, local_err); 110 return; 111 } 112 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 113 } 114 115 /* Then let the driver override it */ 116 if (drv->bdrv_refresh_limits) { 117 drv->bdrv_refresh_limits(bs, errp); 118 } 119 } 120 121 /** 122 * The copy-on-read flag is actually a reference count so multiple users may 123 * use the feature without worrying about clobbering its previous state. 124 * Copy-on-read stays enabled until all users have called to disable it. 125 */ 126 void bdrv_enable_copy_on_read(BlockDriverState *bs) 127 { 128 atomic_inc(&bs->copy_on_read); 129 } 130 131 void bdrv_disable_copy_on_read(BlockDriverState *bs) 132 { 133 int old = atomic_fetch_dec(&bs->copy_on_read); 134 assert(old >= 1); 135 } 136 137 /* Check if any requests are in-flight (including throttled requests) */ 138 bool bdrv_requests_pending(BlockDriverState *bs) 139 { 140 BdrvChild *child; 141 142 if (atomic_read(&bs->in_flight)) { 143 return true; 144 } 145 146 QLIST_FOREACH(child, &bs->children, next) { 147 if (bdrv_requests_pending(child->bs)) { 148 return true; 149 } 150 } 151 152 return false; 153 } 154 155 typedef struct { 156 Coroutine *co; 157 BlockDriverState *bs; 158 bool done; 159 } BdrvCoDrainData; 160 161 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 162 { 163 BdrvCoDrainData *data = opaque; 164 BlockDriverState *bs = data->bs; 165 166 bs->drv->bdrv_co_drain(bs); 167 168 /* Set data->done before reading bs->wakeup. */ 169 atomic_mb_set(&data->done, true); 170 bdrv_wakeup(bs); 171 } 172 173 static void bdrv_drain_invoke(BlockDriverState *bs) 174 { 175 BdrvCoDrainData data = { .bs = bs, .done = false }; 176 177 if (!bs->drv || !bs->drv->bdrv_co_drain) { 178 return; 179 } 180 181 data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data); 182 bdrv_coroutine_enter(bs, data.co); 183 BDRV_POLL_WHILE(bs, !data.done); 184 } 185 186 static bool bdrv_drain_recurse(BlockDriverState *bs) 187 { 188 BdrvChild *child, *tmp; 189 bool waited; 190 191 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0); 192 193 /* Ensure any pending metadata writes are submitted to bs->file. */ 194 bdrv_drain_invoke(bs); 195 196 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) { 197 BlockDriverState *bs = child->bs; 198 bool in_main_loop = 199 qemu_get_current_aio_context() == qemu_get_aio_context(); 200 assert(bs->refcnt > 0); 201 if (in_main_loop) { 202 /* In case the recursive bdrv_drain_recurse processes a 203 * block_job_defer_to_main_loop BH and modifies the graph, 204 * let's hold a reference to bs until we are done. 205 * 206 * IOThread doesn't have such a BH, and it is not safe to call 207 * bdrv_unref without BQL, so skip doing it there. 208 */ 209 bdrv_ref(bs); 210 } 211 waited |= bdrv_drain_recurse(bs); 212 if (in_main_loop) { 213 bdrv_unref(bs); 214 } 215 } 216 217 return waited; 218 } 219 220 static void bdrv_co_drain_bh_cb(void *opaque) 221 { 222 BdrvCoDrainData *data = opaque; 223 Coroutine *co = data->co; 224 BlockDriverState *bs = data->bs; 225 226 bdrv_dec_in_flight(bs); 227 bdrv_drained_begin(bs); 228 data->done = true; 229 aio_co_wake(co); 230 } 231 232 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs) 233 { 234 BdrvCoDrainData data; 235 236 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 237 * other coroutines run if they were queued from 238 * qemu_co_queue_run_restart(). */ 239 240 assert(qemu_in_coroutine()); 241 data = (BdrvCoDrainData) { 242 .co = qemu_coroutine_self(), 243 .bs = bs, 244 .done = false, 245 }; 246 bdrv_inc_in_flight(bs); 247 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 248 bdrv_co_drain_bh_cb, &data); 249 250 qemu_coroutine_yield(); 251 /* If we are resumed from some other event (such as an aio completion or a 252 * timer callback), it is a bug in the caller that should be fixed. */ 253 assert(data.done); 254 } 255 256 void bdrv_drained_begin(BlockDriverState *bs) 257 { 258 if (qemu_in_coroutine()) { 259 bdrv_co_yield_to_drain(bs); 260 return; 261 } 262 263 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 264 aio_disable_external(bdrv_get_aio_context(bs)); 265 bdrv_parent_drained_begin(bs); 266 } 267 268 bdrv_drain_recurse(bs); 269 } 270 271 void bdrv_drained_end(BlockDriverState *bs) 272 { 273 assert(bs->quiesce_counter > 0); 274 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) { 275 return; 276 } 277 278 bdrv_parent_drained_end(bs); 279 aio_enable_external(bdrv_get_aio_context(bs)); 280 } 281 282 /* 283 * Wait for pending requests to complete on a single BlockDriverState subtree, 284 * and suspend block driver's internal I/O until next request arrives. 285 * 286 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 287 * AioContext. 288 * 289 * Only this BlockDriverState's AioContext is run, so in-flight requests must 290 * not depend on events in other AioContexts. In that case, use 291 * bdrv_drain_all() instead. 292 */ 293 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 294 { 295 assert(qemu_in_coroutine()); 296 bdrv_drained_begin(bs); 297 bdrv_drained_end(bs); 298 } 299 300 void bdrv_drain(BlockDriverState *bs) 301 { 302 bdrv_drained_begin(bs); 303 bdrv_drained_end(bs); 304 } 305 306 /* 307 * Wait for pending requests to complete across all BlockDriverStates 308 * 309 * This function does not flush data to disk, use bdrv_flush_all() for that 310 * after calling this function. 311 * 312 * This pauses all block jobs and disables external clients. It must 313 * be paired with bdrv_drain_all_end(). 314 * 315 * NOTE: no new block jobs or BlockDriverStates can be created between 316 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 317 */ 318 void bdrv_drain_all_begin(void) 319 { 320 /* Always run first iteration so any pending completion BHs run */ 321 bool waited = true; 322 BlockDriverState *bs; 323 BdrvNextIterator it; 324 GSList *aio_ctxs = NULL, *ctx; 325 326 block_job_pause_all(); 327 328 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 329 AioContext *aio_context = bdrv_get_aio_context(bs); 330 331 aio_context_acquire(aio_context); 332 bdrv_parent_drained_begin(bs); 333 aio_disable_external(aio_context); 334 aio_context_release(aio_context); 335 336 if (!g_slist_find(aio_ctxs, aio_context)) { 337 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context); 338 } 339 } 340 341 /* Note that completion of an asynchronous I/O operation can trigger any 342 * number of other I/O operations on other devices---for example a 343 * coroutine can submit an I/O request to another device in response to 344 * request completion. Therefore we must keep looping until there was no 345 * more activity rather than simply draining each device independently. 346 */ 347 while (waited) { 348 waited = false; 349 350 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) { 351 AioContext *aio_context = ctx->data; 352 353 aio_context_acquire(aio_context); 354 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 355 if (aio_context == bdrv_get_aio_context(bs)) { 356 waited |= bdrv_drain_recurse(bs); 357 } 358 } 359 aio_context_release(aio_context); 360 } 361 } 362 363 g_slist_free(aio_ctxs); 364 } 365 366 void bdrv_drain_all_end(void) 367 { 368 BlockDriverState *bs; 369 BdrvNextIterator it; 370 371 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 372 AioContext *aio_context = bdrv_get_aio_context(bs); 373 374 aio_context_acquire(aio_context); 375 aio_enable_external(aio_context); 376 bdrv_parent_drained_end(bs); 377 aio_context_release(aio_context); 378 } 379 380 block_job_resume_all(); 381 } 382 383 void bdrv_drain_all(void) 384 { 385 bdrv_drain_all_begin(); 386 bdrv_drain_all_end(); 387 } 388 389 /** 390 * Remove an active request from the tracked requests list 391 * 392 * This function should be called when a tracked request is completing. 393 */ 394 static void tracked_request_end(BdrvTrackedRequest *req) 395 { 396 if (req->serialising) { 397 atomic_dec(&req->bs->serialising_in_flight); 398 } 399 400 qemu_co_mutex_lock(&req->bs->reqs_lock); 401 QLIST_REMOVE(req, list); 402 qemu_co_queue_restart_all(&req->wait_queue); 403 qemu_co_mutex_unlock(&req->bs->reqs_lock); 404 } 405 406 /** 407 * Add an active request to the tracked requests list 408 */ 409 static void tracked_request_begin(BdrvTrackedRequest *req, 410 BlockDriverState *bs, 411 int64_t offset, 412 unsigned int bytes, 413 enum BdrvTrackedRequestType type) 414 { 415 *req = (BdrvTrackedRequest){ 416 .bs = bs, 417 .offset = offset, 418 .bytes = bytes, 419 .type = type, 420 .co = qemu_coroutine_self(), 421 .serialising = false, 422 .overlap_offset = offset, 423 .overlap_bytes = bytes, 424 }; 425 426 qemu_co_queue_init(&req->wait_queue); 427 428 qemu_co_mutex_lock(&bs->reqs_lock); 429 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 430 qemu_co_mutex_unlock(&bs->reqs_lock); 431 } 432 433 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 434 { 435 int64_t overlap_offset = req->offset & ~(align - 1); 436 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 437 - overlap_offset; 438 439 if (!req->serialising) { 440 atomic_inc(&req->bs->serialising_in_flight); 441 req->serialising = true; 442 } 443 444 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 445 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 446 } 447 448 /** 449 * Round a region to cluster boundaries 450 */ 451 void bdrv_round_to_clusters(BlockDriverState *bs, 452 int64_t offset, unsigned int bytes, 453 int64_t *cluster_offset, 454 unsigned int *cluster_bytes) 455 { 456 BlockDriverInfo bdi; 457 458 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 459 *cluster_offset = offset; 460 *cluster_bytes = bytes; 461 } else { 462 int64_t c = bdi.cluster_size; 463 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 464 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 465 } 466 } 467 468 static int bdrv_get_cluster_size(BlockDriverState *bs) 469 { 470 BlockDriverInfo bdi; 471 int ret; 472 473 ret = bdrv_get_info(bs, &bdi); 474 if (ret < 0 || bdi.cluster_size == 0) { 475 return bs->bl.request_alignment; 476 } else { 477 return bdi.cluster_size; 478 } 479 } 480 481 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 482 int64_t offset, unsigned int bytes) 483 { 484 /* aaaa bbbb */ 485 if (offset >= req->overlap_offset + req->overlap_bytes) { 486 return false; 487 } 488 /* bbbb aaaa */ 489 if (req->overlap_offset >= offset + bytes) { 490 return false; 491 } 492 return true; 493 } 494 495 void bdrv_inc_in_flight(BlockDriverState *bs) 496 { 497 atomic_inc(&bs->in_flight); 498 } 499 500 static void dummy_bh_cb(void *opaque) 501 { 502 } 503 504 void bdrv_wakeup(BlockDriverState *bs) 505 { 506 /* The barrier (or an atomic op) is in the caller. */ 507 if (atomic_read(&bs->wakeup)) { 508 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL); 509 } 510 } 511 512 void bdrv_dec_in_flight(BlockDriverState *bs) 513 { 514 atomic_dec(&bs->in_flight); 515 bdrv_wakeup(bs); 516 } 517 518 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 519 { 520 BlockDriverState *bs = self->bs; 521 BdrvTrackedRequest *req; 522 bool retry; 523 bool waited = false; 524 525 if (!atomic_read(&bs->serialising_in_flight)) { 526 return false; 527 } 528 529 do { 530 retry = false; 531 qemu_co_mutex_lock(&bs->reqs_lock); 532 QLIST_FOREACH(req, &bs->tracked_requests, list) { 533 if (req == self || (!req->serialising && !self->serialising)) { 534 continue; 535 } 536 if (tracked_request_overlaps(req, self->overlap_offset, 537 self->overlap_bytes)) 538 { 539 /* Hitting this means there was a reentrant request, for 540 * example, a block driver issuing nested requests. This must 541 * never happen since it means deadlock. 542 */ 543 assert(qemu_coroutine_self() != req->co); 544 545 /* If the request is already (indirectly) waiting for us, or 546 * will wait for us as soon as it wakes up, then just go on 547 * (instead of producing a deadlock in the former case). */ 548 if (!req->waiting_for) { 549 self->waiting_for = req; 550 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 551 self->waiting_for = NULL; 552 retry = true; 553 waited = true; 554 break; 555 } 556 } 557 } 558 qemu_co_mutex_unlock(&bs->reqs_lock); 559 } while (retry); 560 561 return waited; 562 } 563 564 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 565 size_t size) 566 { 567 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 568 return -EIO; 569 } 570 571 if (!bdrv_is_inserted(bs)) { 572 return -ENOMEDIUM; 573 } 574 575 if (offset < 0) { 576 return -EIO; 577 } 578 579 return 0; 580 } 581 582 typedef struct RwCo { 583 BdrvChild *child; 584 int64_t offset; 585 QEMUIOVector *qiov; 586 bool is_write; 587 int ret; 588 BdrvRequestFlags flags; 589 } RwCo; 590 591 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 592 { 593 RwCo *rwco = opaque; 594 595 if (!rwco->is_write) { 596 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 597 rwco->qiov->size, rwco->qiov, 598 rwco->flags); 599 } else { 600 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 601 rwco->qiov->size, rwco->qiov, 602 rwco->flags); 603 } 604 } 605 606 /* 607 * Process a vectored synchronous request using coroutines 608 */ 609 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 610 QEMUIOVector *qiov, bool is_write, 611 BdrvRequestFlags flags) 612 { 613 Coroutine *co; 614 RwCo rwco = { 615 .child = child, 616 .offset = offset, 617 .qiov = qiov, 618 .is_write = is_write, 619 .ret = NOT_DONE, 620 .flags = flags, 621 }; 622 623 if (qemu_in_coroutine()) { 624 /* Fast-path if already in coroutine context */ 625 bdrv_rw_co_entry(&rwco); 626 } else { 627 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 628 bdrv_coroutine_enter(child->bs, co); 629 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 630 } 631 return rwco.ret; 632 } 633 634 /* 635 * Process a synchronous request using coroutines 636 */ 637 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, 638 int nb_sectors, bool is_write, BdrvRequestFlags flags) 639 { 640 QEMUIOVector qiov; 641 struct iovec iov = { 642 .iov_base = (void *)buf, 643 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 644 }; 645 646 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 647 return -EINVAL; 648 } 649 650 qemu_iovec_init_external(&qiov, &iov, 1); 651 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, 652 &qiov, is_write, flags); 653 } 654 655 /* return < 0 if error. See bdrv_write() for the return codes */ 656 int bdrv_read(BdrvChild *child, int64_t sector_num, 657 uint8_t *buf, int nb_sectors) 658 { 659 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); 660 } 661 662 /* Return < 0 if error. Important errors are: 663 -EIO generic I/O error (may happen for all errors) 664 -ENOMEDIUM No media inserted. 665 -EINVAL Invalid sector number or nb_sectors 666 -EACCES Trying to write a read-only device 667 */ 668 int bdrv_write(BdrvChild *child, int64_t sector_num, 669 const uint8_t *buf, int nb_sectors) 670 { 671 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 672 } 673 674 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 675 int bytes, BdrvRequestFlags flags) 676 { 677 QEMUIOVector qiov; 678 struct iovec iov = { 679 .iov_base = NULL, 680 .iov_len = bytes, 681 }; 682 683 qemu_iovec_init_external(&qiov, &iov, 1); 684 return bdrv_prwv_co(child, offset, &qiov, true, 685 BDRV_REQ_ZERO_WRITE | flags); 686 } 687 688 /* 689 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 690 * The operation is sped up by checking the block status and only writing 691 * zeroes to the device if they currently do not return zeroes. Optional 692 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 693 * BDRV_REQ_FUA). 694 * 695 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 696 */ 697 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 698 { 699 int64_t target_sectors, ret, nb_sectors, sector_num = 0; 700 BlockDriverState *bs = child->bs; 701 BlockDriverState *file; 702 int n; 703 704 target_sectors = bdrv_nb_sectors(bs); 705 if (target_sectors < 0) { 706 return target_sectors; 707 } 708 709 for (;;) { 710 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS); 711 if (nb_sectors <= 0) { 712 return 0; 713 } 714 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file); 715 if (ret < 0) { 716 error_report("error getting block status at sector %" PRId64 ": %s", 717 sector_num, strerror(-ret)); 718 return ret; 719 } 720 if (ret & BDRV_BLOCK_ZERO) { 721 sector_num += n; 722 continue; 723 } 724 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS, 725 n << BDRV_SECTOR_BITS, flags); 726 if (ret < 0) { 727 error_report("error writing zeroes at sector %" PRId64 ": %s", 728 sector_num, strerror(-ret)); 729 return ret; 730 } 731 sector_num += n; 732 } 733 } 734 735 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 736 { 737 int ret; 738 739 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 740 if (ret < 0) { 741 return ret; 742 } 743 744 return qiov->size; 745 } 746 747 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 748 { 749 QEMUIOVector qiov; 750 struct iovec iov = { 751 .iov_base = (void *)buf, 752 .iov_len = bytes, 753 }; 754 755 if (bytes < 0) { 756 return -EINVAL; 757 } 758 759 qemu_iovec_init_external(&qiov, &iov, 1); 760 return bdrv_preadv(child, offset, &qiov); 761 } 762 763 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 764 { 765 int ret; 766 767 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 768 if (ret < 0) { 769 return ret; 770 } 771 772 return qiov->size; 773 } 774 775 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 776 { 777 QEMUIOVector qiov; 778 struct iovec iov = { 779 .iov_base = (void *) buf, 780 .iov_len = bytes, 781 }; 782 783 if (bytes < 0) { 784 return -EINVAL; 785 } 786 787 qemu_iovec_init_external(&qiov, &iov, 1); 788 return bdrv_pwritev(child, offset, &qiov); 789 } 790 791 /* 792 * Writes to the file and ensures that no writes are reordered across this 793 * request (acts as a barrier) 794 * 795 * Returns 0 on success, -errno in error cases. 796 */ 797 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 798 const void *buf, int count) 799 { 800 int ret; 801 802 ret = bdrv_pwrite(child, offset, buf, count); 803 if (ret < 0) { 804 return ret; 805 } 806 807 ret = bdrv_flush(child->bs); 808 if (ret < 0) { 809 return ret; 810 } 811 812 return 0; 813 } 814 815 typedef struct CoroutineIOCompletion { 816 Coroutine *coroutine; 817 int ret; 818 } CoroutineIOCompletion; 819 820 static void bdrv_co_io_em_complete(void *opaque, int ret) 821 { 822 CoroutineIOCompletion *co = opaque; 823 824 co->ret = ret; 825 aio_co_wake(co->coroutine); 826 } 827 828 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 829 uint64_t offset, uint64_t bytes, 830 QEMUIOVector *qiov, int flags) 831 { 832 BlockDriver *drv = bs->drv; 833 int64_t sector_num; 834 unsigned int nb_sectors; 835 836 assert(!(flags & ~BDRV_REQ_MASK)); 837 838 if (drv->bdrv_co_preadv) { 839 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 840 } 841 842 sector_num = offset >> BDRV_SECTOR_BITS; 843 nb_sectors = bytes >> BDRV_SECTOR_BITS; 844 845 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 846 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 847 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 848 849 if (drv->bdrv_co_readv) { 850 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 851 } else { 852 BlockAIOCB *acb; 853 CoroutineIOCompletion co = { 854 .coroutine = qemu_coroutine_self(), 855 }; 856 857 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors, 858 bdrv_co_io_em_complete, &co); 859 if (acb == NULL) { 860 return -EIO; 861 } else { 862 qemu_coroutine_yield(); 863 return co.ret; 864 } 865 } 866 } 867 868 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 869 uint64_t offset, uint64_t bytes, 870 QEMUIOVector *qiov, int flags) 871 { 872 BlockDriver *drv = bs->drv; 873 int64_t sector_num; 874 unsigned int nb_sectors; 875 int ret; 876 877 assert(!(flags & ~BDRV_REQ_MASK)); 878 879 if (drv->bdrv_co_pwritev) { 880 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 881 flags & bs->supported_write_flags); 882 flags &= ~bs->supported_write_flags; 883 goto emulate_flags; 884 } 885 886 sector_num = offset >> BDRV_SECTOR_BITS; 887 nb_sectors = bytes >> BDRV_SECTOR_BITS; 888 889 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 890 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 891 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 892 893 if (drv->bdrv_co_writev_flags) { 894 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov, 895 flags & bs->supported_write_flags); 896 flags &= ~bs->supported_write_flags; 897 } else if (drv->bdrv_co_writev) { 898 assert(!bs->supported_write_flags); 899 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 900 } else { 901 BlockAIOCB *acb; 902 CoroutineIOCompletion co = { 903 .coroutine = qemu_coroutine_self(), 904 }; 905 906 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors, 907 bdrv_co_io_em_complete, &co); 908 if (acb == NULL) { 909 ret = -EIO; 910 } else { 911 qemu_coroutine_yield(); 912 ret = co.ret; 913 } 914 } 915 916 emulate_flags: 917 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 918 ret = bdrv_co_flush(bs); 919 } 920 921 return ret; 922 } 923 924 static int coroutine_fn 925 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 926 uint64_t bytes, QEMUIOVector *qiov) 927 { 928 BlockDriver *drv = bs->drv; 929 930 if (!drv->bdrv_co_pwritev_compressed) { 931 return -ENOTSUP; 932 } 933 934 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 935 } 936 937 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 938 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 939 { 940 BlockDriverState *bs = child->bs; 941 942 /* Perform I/O through a temporary buffer so that users who scribble over 943 * their read buffer while the operation is in progress do not end up 944 * modifying the image file. This is critical for zero-copy guest I/O 945 * where anything might happen inside guest memory. 946 */ 947 void *bounce_buffer; 948 949 BlockDriver *drv = bs->drv; 950 struct iovec iov; 951 QEMUIOVector local_qiov; 952 int64_t cluster_offset; 953 unsigned int cluster_bytes; 954 size_t skip_bytes; 955 int ret; 956 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 957 BDRV_REQUEST_MAX_BYTES); 958 unsigned int progress = 0; 959 960 /* FIXME We cannot require callers to have write permissions when all they 961 * are doing is a read request. If we did things right, write permissions 962 * would be obtained anyway, but internally by the copy-on-read code. As 963 * long as it is implemented here rather than in a separate filter driver, 964 * the copy-on-read code doesn't have its own BdrvChild, however, for which 965 * it could request permissions. Therefore we have to bypass the permission 966 * system for the moment. */ 967 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 968 969 /* Cover entire cluster so no additional backing file I/O is required when 970 * allocating cluster in the image file. Note that this value may exceed 971 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 972 * is one reason we loop rather than doing it all at once. 973 */ 974 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 975 skip_bytes = offset - cluster_offset; 976 977 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 978 cluster_offset, cluster_bytes); 979 980 bounce_buffer = qemu_try_blockalign(bs, 981 MIN(MIN(max_transfer, cluster_bytes), 982 MAX_BOUNCE_BUFFER)); 983 if (bounce_buffer == NULL) { 984 ret = -ENOMEM; 985 goto err; 986 } 987 988 while (cluster_bytes) { 989 int64_t pnum; 990 991 ret = bdrv_is_allocated(bs, cluster_offset, 992 MIN(cluster_bytes, max_transfer), &pnum); 993 if (ret < 0) { 994 /* Safe to treat errors in querying allocation as if 995 * unallocated; we'll probably fail again soon on the 996 * read, but at least that will set a decent errno. 997 */ 998 pnum = MIN(cluster_bytes, max_transfer); 999 } 1000 1001 assert(skip_bytes < pnum); 1002 1003 if (ret <= 0) { 1004 /* Must copy-on-read; use the bounce buffer */ 1005 iov.iov_base = bounce_buffer; 1006 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1007 qemu_iovec_init_external(&local_qiov, &iov, 1); 1008 1009 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1010 &local_qiov, 0); 1011 if (ret < 0) { 1012 goto err; 1013 } 1014 1015 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1016 if (drv->bdrv_co_pwrite_zeroes && 1017 buffer_is_zero(bounce_buffer, pnum)) { 1018 /* FIXME: Should we (perhaps conditionally) be setting 1019 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1020 * that still correctly reads as zero? */ 1021 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 0); 1022 } else { 1023 /* This does not change the data on the disk, it is not 1024 * necessary to flush even in cache=writethrough mode. 1025 */ 1026 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1027 &local_qiov, 0); 1028 } 1029 1030 if (ret < 0) { 1031 /* It might be okay to ignore write errors for guest 1032 * requests. If this is a deliberate copy-on-read 1033 * then we don't want to ignore the error. Simply 1034 * report it in all cases. 1035 */ 1036 goto err; 1037 } 1038 1039 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes, 1040 pnum - skip_bytes); 1041 } else { 1042 /* Read directly into the destination */ 1043 qemu_iovec_init(&local_qiov, qiov->niov); 1044 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes); 1045 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size, 1046 &local_qiov, 0); 1047 qemu_iovec_destroy(&local_qiov); 1048 if (ret < 0) { 1049 goto err; 1050 } 1051 } 1052 1053 cluster_offset += pnum; 1054 cluster_bytes -= pnum; 1055 progress += pnum - skip_bytes; 1056 skip_bytes = 0; 1057 } 1058 ret = 0; 1059 1060 err: 1061 qemu_vfree(bounce_buffer); 1062 return ret; 1063 } 1064 1065 /* 1066 * Forwards an already correctly aligned request to the BlockDriver. This 1067 * handles copy on read, zeroing after EOF, and fragmentation of large 1068 * reads; any other features must be implemented by the caller. 1069 */ 1070 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1071 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1072 int64_t align, QEMUIOVector *qiov, int flags) 1073 { 1074 BlockDriverState *bs = child->bs; 1075 int64_t total_bytes, max_bytes; 1076 int ret = 0; 1077 uint64_t bytes_remaining = bytes; 1078 int max_transfer; 1079 1080 assert(is_power_of_2(align)); 1081 assert((offset & (align - 1)) == 0); 1082 assert((bytes & (align - 1)) == 0); 1083 assert(!qiov || bytes == qiov->size); 1084 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1085 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1086 align); 1087 1088 /* TODO: We would need a per-BDS .supported_read_flags and 1089 * potential fallback support, if we ever implement any read flags 1090 * to pass through to drivers. For now, there aren't any 1091 * passthrough flags. */ 1092 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 1093 1094 /* Handle Copy on Read and associated serialisation */ 1095 if (flags & BDRV_REQ_COPY_ON_READ) { 1096 /* If we touch the same cluster it counts as an overlap. This 1097 * guarantees that allocating writes will be serialized and not race 1098 * with each other for the same cluster. For example, in copy-on-read 1099 * it ensures that the CoR read and write operations are atomic and 1100 * guest writes cannot interleave between them. */ 1101 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1102 } 1103 1104 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1105 wait_serialising_requests(req); 1106 } 1107 1108 if (flags & BDRV_REQ_COPY_ON_READ) { 1109 /* TODO: Simplify further once bdrv_is_allocated no longer 1110 * requires sector alignment */ 1111 int64_t start = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE); 1112 int64_t end = QEMU_ALIGN_UP(offset + bytes, BDRV_SECTOR_SIZE); 1113 int64_t pnum; 1114 1115 ret = bdrv_is_allocated(bs, start, end - start, &pnum); 1116 if (ret < 0) { 1117 goto out; 1118 } 1119 1120 if (!ret || pnum != end - start) { 1121 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); 1122 goto out; 1123 } 1124 } 1125 1126 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1127 total_bytes = bdrv_getlength(bs); 1128 if (total_bytes < 0) { 1129 ret = total_bytes; 1130 goto out; 1131 } 1132 1133 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1134 if (bytes <= max_bytes && bytes <= max_transfer) { 1135 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1136 goto out; 1137 } 1138 1139 while (bytes_remaining) { 1140 int num; 1141 1142 if (max_bytes) { 1143 QEMUIOVector local_qiov; 1144 1145 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1146 assert(num); 1147 qemu_iovec_init(&local_qiov, qiov->niov); 1148 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1149 1150 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1151 num, &local_qiov, 0); 1152 max_bytes -= num; 1153 qemu_iovec_destroy(&local_qiov); 1154 } else { 1155 num = bytes_remaining; 1156 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1157 bytes_remaining); 1158 } 1159 if (ret < 0) { 1160 goto out; 1161 } 1162 bytes_remaining -= num; 1163 } 1164 1165 out: 1166 return ret < 0 ? ret : 0; 1167 } 1168 1169 /* 1170 * Handle a read request in coroutine context 1171 */ 1172 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1173 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1174 BdrvRequestFlags flags) 1175 { 1176 BlockDriverState *bs = child->bs; 1177 BlockDriver *drv = bs->drv; 1178 BdrvTrackedRequest req; 1179 1180 uint64_t align = bs->bl.request_alignment; 1181 uint8_t *head_buf = NULL; 1182 uint8_t *tail_buf = NULL; 1183 QEMUIOVector local_qiov; 1184 bool use_local_qiov = false; 1185 int ret; 1186 1187 trace_bdrv_co_preadv(child->bs, offset, bytes, flags); 1188 1189 if (!drv) { 1190 return -ENOMEDIUM; 1191 } 1192 1193 ret = bdrv_check_byte_request(bs, offset, bytes); 1194 if (ret < 0) { 1195 return ret; 1196 } 1197 1198 bdrv_inc_in_flight(bs); 1199 1200 /* Don't do copy-on-read if we read data before write operation */ 1201 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1202 flags |= BDRV_REQ_COPY_ON_READ; 1203 } 1204 1205 /* Align read if necessary by padding qiov */ 1206 if (offset & (align - 1)) { 1207 head_buf = qemu_blockalign(bs, align); 1208 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1209 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1210 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1211 use_local_qiov = true; 1212 1213 bytes += offset & (align - 1); 1214 offset = offset & ~(align - 1); 1215 } 1216 1217 if ((offset + bytes) & (align - 1)) { 1218 if (!use_local_qiov) { 1219 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1220 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1221 use_local_qiov = true; 1222 } 1223 tail_buf = qemu_blockalign(bs, align); 1224 qemu_iovec_add(&local_qiov, tail_buf, 1225 align - ((offset + bytes) & (align - 1))); 1226 1227 bytes = ROUND_UP(bytes, align); 1228 } 1229 1230 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1231 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1232 use_local_qiov ? &local_qiov : qiov, 1233 flags); 1234 tracked_request_end(&req); 1235 bdrv_dec_in_flight(bs); 1236 1237 if (use_local_qiov) { 1238 qemu_iovec_destroy(&local_qiov); 1239 qemu_vfree(head_buf); 1240 qemu_vfree(tail_buf); 1241 } 1242 1243 return ret; 1244 } 1245 1246 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child, 1247 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1248 BdrvRequestFlags flags) 1249 { 1250 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1251 return -EINVAL; 1252 } 1253 1254 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS, 1255 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1256 } 1257 1258 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num, 1259 int nb_sectors, QEMUIOVector *qiov) 1260 { 1261 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0); 1262 } 1263 1264 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1265 int64_t offset, int bytes, BdrvRequestFlags flags) 1266 { 1267 BlockDriver *drv = bs->drv; 1268 QEMUIOVector qiov; 1269 struct iovec iov = {0}; 1270 int ret = 0; 1271 bool need_flush = false; 1272 int head = 0; 1273 int tail = 0; 1274 1275 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1276 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1277 bs->bl.request_alignment); 1278 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1279 1280 assert(alignment % bs->bl.request_alignment == 0); 1281 head = offset % alignment; 1282 tail = (offset + bytes) % alignment; 1283 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1284 assert(max_write_zeroes >= bs->bl.request_alignment); 1285 1286 while (bytes > 0 && !ret) { 1287 int num = bytes; 1288 1289 /* Align request. Block drivers can expect the "bulk" of the request 1290 * to be aligned, and that unaligned requests do not cross cluster 1291 * boundaries. 1292 */ 1293 if (head) { 1294 /* Make a small request up to the first aligned sector. For 1295 * convenience, limit this request to max_transfer even if 1296 * we don't need to fall back to writes. */ 1297 num = MIN(MIN(bytes, max_transfer), alignment - head); 1298 head = (head + num) % alignment; 1299 assert(num < max_write_zeroes); 1300 } else if (tail && num > alignment) { 1301 /* Shorten the request to the last aligned sector. */ 1302 num -= tail; 1303 } 1304 1305 /* limit request size */ 1306 if (num > max_write_zeroes) { 1307 num = max_write_zeroes; 1308 } 1309 1310 ret = -ENOTSUP; 1311 /* First try the efficient write zeroes operation */ 1312 if (drv->bdrv_co_pwrite_zeroes) { 1313 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1314 flags & bs->supported_zero_flags); 1315 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1316 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1317 need_flush = true; 1318 } 1319 } else { 1320 assert(!bs->supported_zero_flags); 1321 } 1322 1323 if (ret == -ENOTSUP) { 1324 /* Fall back to bounce buffer if write zeroes is unsupported */ 1325 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1326 1327 if ((flags & BDRV_REQ_FUA) && 1328 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1329 /* No need for bdrv_driver_pwrite() to do a fallback 1330 * flush on each chunk; use just one at the end */ 1331 write_flags &= ~BDRV_REQ_FUA; 1332 need_flush = true; 1333 } 1334 num = MIN(num, max_transfer); 1335 iov.iov_len = num; 1336 if (iov.iov_base == NULL) { 1337 iov.iov_base = qemu_try_blockalign(bs, num); 1338 if (iov.iov_base == NULL) { 1339 ret = -ENOMEM; 1340 goto fail; 1341 } 1342 memset(iov.iov_base, 0, num); 1343 } 1344 qemu_iovec_init_external(&qiov, &iov, 1); 1345 1346 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1347 1348 /* Keep bounce buffer around if it is big enough for all 1349 * all future requests. 1350 */ 1351 if (num < max_transfer) { 1352 qemu_vfree(iov.iov_base); 1353 iov.iov_base = NULL; 1354 } 1355 } 1356 1357 offset += num; 1358 bytes -= num; 1359 } 1360 1361 fail: 1362 if (ret == 0 && need_flush) { 1363 ret = bdrv_co_flush(bs); 1364 } 1365 qemu_vfree(iov.iov_base); 1366 return ret; 1367 } 1368 1369 /* 1370 * Forwards an already correctly aligned write request to the BlockDriver, 1371 * after possibly fragmenting it. 1372 */ 1373 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1374 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1375 int64_t align, QEMUIOVector *qiov, int flags) 1376 { 1377 BlockDriverState *bs = child->bs; 1378 BlockDriver *drv = bs->drv; 1379 bool waited; 1380 int ret; 1381 1382 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1383 uint64_t bytes_remaining = bytes; 1384 int max_transfer; 1385 1386 if (bdrv_has_readonly_bitmaps(bs)) { 1387 return -EPERM; 1388 } 1389 1390 assert(is_power_of_2(align)); 1391 assert((offset & (align - 1)) == 0); 1392 assert((bytes & (align - 1)) == 0); 1393 assert(!qiov || bytes == qiov->size); 1394 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1395 assert(!(flags & ~BDRV_REQ_MASK)); 1396 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1397 align); 1398 1399 waited = wait_serialising_requests(req); 1400 assert(!waited || !req->serialising); 1401 assert(req->overlap_offset <= offset); 1402 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1403 assert(child->perm & BLK_PERM_WRITE); 1404 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1405 1406 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); 1407 1408 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1409 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1410 qemu_iovec_is_zero(qiov)) { 1411 flags |= BDRV_REQ_ZERO_WRITE; 1412 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1413 flags |= BDRV_REQ_MAY_UNMAP; 1414 } 1415 } 1416 1417 if (ret < 0) { 1418 /* Do nothing, write notifier decided to fail this request */ 1419 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1420 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1421 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1422 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1423 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1424 } else if (bytes <= max_transfer) { 1425 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1426 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1427 } else { 1428 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1429 while (bytes_remaining) { 1430 int num = MIN(bytes_remaining, max_transfer); 1431 QEMUIOVector local_qiov; 1432 int local_flags = flags; 1433 1434 assert(num); 1435 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1436 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1437 /* If FUA is going to be emulated by flush, we only 1438 * need to flush on the last iteration */ 1439 local_flags &= ~BDRV_REQ_FUA; 1440 } 1441 qemu_iovec_init(&local_qiov, qiov->niov); 1442 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1443 1444 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1445 num, &local_qiov, local_flags); 1446 qemu_iovec_destroy(&local_qiov); 1447 if (ret < 0) { 1448 break; 1449 } 1450 bytes_remaining -= num; 1451 } 1452 } 1453 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1454 1455 atomic_inc(&bs->write_gen); 1456 bdrv_set_dirty(bs, offset, bytes); 1457 1458 stat64_max(&bs->wr_highest_offset, offset + bytes); 1459 1460 if (ret >= 0) { 1461 bs->total_sectors = MAX(bs->total_sectors, end_sector); 1462 ret = 0; 1463 } 1464 1465 return ret; 1466 } 1467 1468 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1469 int64_t offset, 1470 unsigned int bytes, 1471 BdrvRequestFlags flags, 1472 BdrvTrackedRequest *req) 1473 { 1474 BlockDriverState *bs = child->bs; 1475 uint8_t *buf = NULL; 1476 QEMUIOVector local_qiov; 1477 struct iovec iov; 1478 uint64_t align = bs->bl.request_alignment; 1479 unsigned int head_padding_bytes, tail_padding_bytes; 1480 int ret = 0; 1481 1482 head_padding_bytes = offset & (align - 1); 1483 tail_padding_bytes = (align - (offset + bytes)) & (align - 1); 1484 1485 1486 assert(flags & BDRV_REQ_ZERO_WRITE); 1487 if (head_padding_bytes || tail_padding_bytes) { 1488 buf = qemu_blockalign(bs, align); 1489 iov = (struct iovec) { 1490 .iov_base = buf, 1491 .iov_len = align, 1492 }; 1493 qemu_iovec_init_external(&local_qiov, &iov, 1); 1494 } 1495 if (head_padding_bytes) { 1496 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1497 1498 /* RMW the unaligned part before head. */ 1499 mark_request_serialising(req, align); 1500 wait_serialising_requests(req); 1501 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1502 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1503 align, &local_qiov, 0); 1504 if (ret < 0) { 1505 goto fail; 1506 } 1507 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1508 1509 memset(buf + head_padding_bytes, 0, zero_bytes); 1510 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1511 align, &local_qiov, 1512 flags & ~BDRV_REQ_ZERO_WRITE); 1513 if (ret < 0) { 1514 goto fail; 1515 } 1516 offset += zero_bytes; 1517 bytes -= zero_bytes; 1518 } 1519 1520 assert(!bytes || (offset & (align - 1)) == 0); 1521 if (bytes >= align) { 1522 /* Write the aligned part in the middle. */ 1523 uint64_t aligned_bytes = bytes & ~(align - 1); 1524 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1525 NULL, flags); 1526 if (ret < 0) { 1527 goto fail; 1528 } 1529 bytes -= aligned_bytes; 1530 offset += aligned_bytes; 1531 } 1532 1533 assert(!bytes || (offset & (align - 1)) == 0); 1534 if (bytes) { 1535 assert(align == tail_padding_bytes + bytes); 1536 /* RMW the unaligned part after tail. */ 1537 mark_request_serialising(req, align); 1538 wait_serialising_requests(req); 1539 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1540 ret = bdrv_aligned_preadv(child, req, offset, align, 1541 align, &local_qiov, 0); 1542 if (ret < 0) { 1543 goto fail; 1544 } 1545 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1546 1547 memset(buf, 0, bytes); 1548 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1549 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1550 } 1551 fail: 1552 qemu_vfree(buf); 1553 return ret; 1554 1555 } 1556 1557 /* 1558 * Handle a write request in coroutine context 1559 */ 1560 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1561 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1562 BdrvRequestFlags flags) 1563 { 1564 BlockDriverState *bs = child->bs; 1565 BdrvTrackedRequest req; 1566 uint64_t align = bs->bl.request_alignment; 1567 uint8_t *head_buf = NULL; 1568 uint8_t *tail_buf = NULL; 1569 QEMUIOVector local_qiov; 1570 bool use_local_qiov = false; 1571 int ret; 1572 1573 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 1574 1575 if (!bs->drv) { 1576 return -ENOMEDIUM; 1577 } 1578 if (bs->read_only) { 1579 return -EPERM; 1580 } 1581 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1582 1583 ret = bdrv_check_byte_request(bs, offset, bytes); 1584 if (ret < 0) { 1585 return ret; 1586 } 1587 1588 bdrv_inc_in_flight(bs); 1589 /* 1590 * Align write if necessary by performing a read-modify-write cycle. 1591 * Pad qiov with the read parts and be sure to have a tracked request not 1592 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1593 */ 1594 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1595 1596 if (!qiov) { 1597 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1598 goto out; 1599 } 1600 1601 if (offset & (align - 1)) { 1602 QEMUIOVector head_qiov; 1603 struct iovec head_iov; 1604 1605 mark_request_serialising(&req, align); 1606 wait_serialising_requests(&req); 1607 1608 head_buf = qemu_blockalign(bs, align); 1609 head_iov = (struct iovec) { 1610 .iov_base = head_buf, 1611 .iov_len = align, 1612 }; 1613 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1614 1615 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1616 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1617 align, &head_qiov, 0); 1618 if (ret < 0) { 1619 goto fail; 1620 } 1621 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1622 1623 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1624 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1625 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1626 use_local_qiov = true; 1627 1628 bytes += offset & (align - 1); 1629 offset = offset & ~(align - 1); 1630 1631 /* We have read the tail already if the request is smaller 1632 * than one aligned block. 1633 */ 1634 if (bytes < align) { 1635 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1636 bytes = align; 1637 } 1638 } 1639 1640 if ((offset + bytes) & (align - 1)) { 1641 QEMUIOVector tail_qiov; 1642 struct iovec tail_iov; 1643 size_t tail_bytes; 1644 bool waited; 1645 1646 mark_request_serialising(&req, align); 1647 waited = wait_serialising_requests(&req); 1648 assert(!waited || !use_local_qiov); 1649 1650 tail_buf = qemu_blockalign(bs, align); 1651 tail_iov = (struct iovec) { 1652 .iov_base = tail_buf, 1653 .iov_len = align, 1654 }; 1655 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1656 1657 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1658 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1659 align, align, &tail_qiov, 0); 1660 if (ret < 0) { 1661 goto fail; 1662 } 1663 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1664 1665 if (!use_local_qiov) { 1666 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1667 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1668 use_local_qiov = true; 1669 } 1670 1671 tail_bytes = (offset + bytes) & (align - 1); 1672 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1673 1674 bytes = ROUND_UP(bytes, align); 1675 } 1676 1677 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1678 use_local_qiov ? &local_qiov : qiov, 1679 flags); 1680 1681 fail: 1682 1683 if (use_local_qiov) { 1684 qemu_iovec_destroy(&local_qiov); 1685 } 1686 qemu_vfree(head_buf); 1687 qemu_vfree(tail_buf); 1688 out: 1689 tracked_request_end(&req); 1690 bdrv_dec_in_flight(bs); 1691 return ret; 1692 } 1693 1694 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child, 1695 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1696 BdrvRequestFlags flags) 1697 { 1698 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1699 return -EINVAL; 1700 } 1701 1702 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS, 1703 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1704 } 1705 1706 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num, 1707 int nb_sectors, QEMUIOVector *qiov) 1708 { 1709 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0); 1710 } 1711 1712 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1713 int bytes, BdrvRequestFlags flags) 1714 { 1715 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 1716 1717 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1718 flags &= ~BDRV_REQ_MAY_UNMAP; 1719 } 1720 1721 return bdrv_co_pwritev(child, offset, bytes, NULL, 1722 BDRV_REQ_ZERO_WRITE | flags); 1723 } 1724 1725 /* 1726 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1727 */ 1728 int bdrv_flush_all(void) 1729 { 1730 BdrvNextIterator it; 1731 BlockDriverState *bs = NULL; 1732 int result = 0; 1733 1734 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 1735 AioContext *aio_context = bdrv_get_aio_context(bs); 1736 int ret; 1737 1738 aio_context_acquire(aio_context); 1739 ret = bdrv_flush(bs); 1740 if (ret < 0 && !result) { 1741 result = ret; 1742 } 1743 aio_context_release(aio_context); 1744 } 1745 1746 return result; 1747 } 1748 1749 1750 typedef struct BdrvCoGetBlockStatusData { 1751 BlockDriverState *bs; 1752 BlockDriverState *base; 1753 BlockDriverState **file; 1754 int64_t sector_num; 1755 int nb_sectors; 1756 int *pnum; 1757 int64_t ret; 1758 bool done; 1759 } BdrvCoGetBlockStatusData; 1760 1761 int64_t coroutine_fn bdrv_co_get_block_status_from_file(BlockDriverState *bs, 1762 int64_t sector_num, 1763 int nb_sectors, 1764 int *pnum, 1765 BlockDriverState **file) 1766 { 1767 assert(bs->file && bs->file->bs); 1768 *pnum = nb_sectors; 1769 *file = bs->file->bs; 1770 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID | 1771 (sector_num << BDRV_SECTOR_BITS); 1772 } 1773 1774 int64_t coroutine_fn bdrv_co_get_block_status_from_backing(BlockDriverState *bs, 1775 int64_t sector_num, 1776 int nb_sectors, 1777 int *pnum, 1778 BlockDriverState **file) 1779 { 1780 assert(bs->backing && bs->backing->bs); 1781 *pnum = nb_sectors; 1782 *file = bs->backing->bs; 1783 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID | 1784 (sector_num << BDRV_SECTOR_BITS); 1785 } 1786 1787 /* 1788 * Returns the allocation status of the specified sectors. 1789 * Drivers not implementing the functionality are assumed to not support 1790 * backing files, hence all their sectors are reported as allocated. 1791 * 1792 * If 'sector_num' is beyond the end of the disk image the return value is 1793 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 1794 * 1795 * 'pnum' is set to the number of sectors (including and immediately following 1796 * the specified sector) that are known to be in the same 1797 * allocated/unallocated state. 1798 * 1799 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 1800 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 1801 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 1802 * 1803 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file' 1804 * points to the BDS which the sector range is allocated in. 1805 */ 1806 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs, 1807 int64_t sector_num, 1808 int nb_sectors, int *pnum, 1809 BlockDriverState **file) 1810 { 1811 int64_t total_sectors; 1812 int64_t n; 1813 int64_t ret, ret2; 1814 1815 *file = NULL; 1816 total_sectors = bdrv_nb_sectors(bs); 1817 if (total_sectors < 0) { 1818 return total_sectors; 1819 } 1820 1821 if (sector_num >= total_sectors) { 1822 *pnum = 0; 1823 return BDRV_BLOCK_EOF; 1824 } 1825 if (!nb_sectors) { 1826 *pnum = 0; 1827 return 0; 1828 } 1829 1830 n = total_sectors - sector_num; 1831 if (n < nb_sectors) { 1832 nb_sectors = n; 1833 } 1834 1835 if (!bs->drv->bdrv_co_get_block_status) { 1836 *pnum = nb_sectors; 1837 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 1838 if (sector_num + nb_sectors == total_sectors) { 1839 ret |= BDRV_BLOCK_EOF; 1840 } 1841 if (bs->drv->protocol_name) { 1842 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE); 1843 *file = bs; 1844 } 1845 return ret; 1846 } 1847 1848 bdrv_inc_in_flight(bs); 1849 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum, 1850 file); 1851 if (ret < 0) { 1852 *pnum = 0; 1853 goto out; 1854 } 1855 1856 if (ret & BDRV_BLOCK_RAW) { 1857 assert(ret & BDRV_BLOCK_OFFSET_VALID && *file); 1858 ret = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1859 *pnum, pnum, file); 1860 goto out; 1861 } 1862 1863 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 1864 ret |= BDRV_BLOCK_ALLOCATED; 1865 } else { 1866 if (bdrv_unallocated_blocks_are_zero(bs)) { 1867 ret |= BDRV_BLOCK_ZERO; 1868 } else if (bs->backing) { 1869 BlockDriverState *bs2 = bs->backing->bs; 1870 int64_t nb_sectors2 = bdrv_nb_sectors(bs2); 1871 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) { 1872 ret |= BDRV_BLOCK_ZERO; 1873 } 1874 } 1875 } 1876 1877 if (*file && *file != bs && 1878 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 1879 (ret & BDRV_BLOCK_OFFSET_VALID)) { 1880 BlockDriverState *file2; 1881 int file_pnum; 1882 1883 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1884 *pnum, &file_pnum, &file2); 1885 if (ret2 >= 0) { 1886 /* Ignore errors. This is just providing extra information, it 1887 * is useful but not necessary. 1888 */ 1889 if (ret2 & BDRV_BLOCK_EOF && 1890 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 1891 /* 1892 * It is valid for the format block driver to read 1893 * beyond the end of the underlying file's current 1894 * size; such areas read as zero. 1895 */ 1896 ret |= BDRV_BLOCK_ZERO; 1897 } else { 1898 /* Limit request to the range reported by the protocol driver */ 1899 *pnum = file_pnum; 1900 ret |= (ret2 & BDRV_BLOCK_ZERO); 1901 } 1902 } 1903 } 1904 1905 out: 1906 bdrv_dec_in_flight(bs); 1907 if (ret >= 0 && sector_num + *pnum == total_sectors) { 1908 ret |= BDRV_BLOCK_EOF; 1909 } 1910 return ret; 1911 } 1912 1913 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs, 1914 BlockDriverState *base, 1915 int64_t sector_num, 1916 int nb_sectors, 1917 int *pnum, 1918 BlockDriverState **file) 1919 { 1920 BlockDriverState *p; 1921 int64_t ret = 0; 1922 bool first = true; 1923 1924 assert(bs != base); 1925 for (p = bs; p != base; p = backing_bs(p)) { 1926 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file); 1927 if (ret < 0) { 1928 break; 1929 } 1930 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 1931 /* 1932 * Reading beyond the end of the file continues to read 1933 * zeroes, but we can only widen the result to the 1934 * unallocated length we learned from an earlier 1935 * iteration. 1936 */ 1937 *pnum = nb_sectors; 1938 } 1939 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 1940 break; 1941 } 1942 /* [sector_num, pnum] unallocated on this layer, which could be only 1943 * the first part of [sector_num, nb_sectors]. */ 1944 nb_sectors = MIN(nb_sectors, *pnum); 1945 first = false; 1946 } 1947 return ret; 1948 } 1949 1950 /* Coroutine wrapper for bdrv_get_block_status_above() */ 1951 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque) 1952 { 1953 BdrvCoGetBlockStatusData *data = opaque; 1954 1955 data->ret = bdrv_co_get_block_status_above(data->bs, data->base, 1956 data->sector_num, 1957 data->nb_sectors, 1958 data->pnum, 1959 data->file); 1960 data->done = true; 1961 } 1962 1963 /* 1964 * Synchronous wrapper around bdrv_co_get_block_status_above(). 1965 * 1966 * See bdrv_co_get_block_status_above() for details. 1967 */ 1968 int64_t bdrv_get_block_status_above(BlockDriverState *bs, 1969 BlockDriverState *base, 1970 int64_t sector_num, 1971 int nb_sectors, int *pnum, 1972 BlockDriverState **file) 1973 { 1974 Coroutine *co; 1975 BdrvCoGetBlockStatusData data = { 1976 .bs = bs, 1977 .base = base, 1978 .file = file, 1979 .sector_num = sector_num, 1980 .nb_sectors = nb_sectors, 1981 .pnum = pnum, 1982 .done = false, 1983 }; 1984 1985 if (qemu_in_coroutine()) { 1986 /* Fast-path if already in coroutine context */ 1987 bdrv_get_block_status_above_co_entry(&data); 1988 } else { 1989 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry, 1990 &data); 1991 bdrv_coroutine_enter(bs, co); 1992 BDRV_POLL_WHILE(bs, !data.done); 1993 } 1994 return data.ret; 1995 } 1996 1997 int64_t bdrv_get_block_status(BlockDriverState *bs, 1998 int64_t sector_num, 1999 int nb_sectors, int *pnum, 2000 BlockDriverState **file) 2001 { 2002 return bdrv_get_block_status_above(bs, backing_bs(bs), 2003 sector_num, nb_sectors, pnum, file); 2004 } 2005 2006 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2007 int64_t bytes, int64_t *pnum) 2008 { 2009 BlockDriverState *file; 2010 int64_t sector_num = offset >> BDRV_SECTOR_BITS; 2011 int nb_sectors = bytes >> BDRV_SECTOR_BITS; 2012 int64_t ret; 2013 int psectors; 2014 2015 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 2016 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE) && bytes < INT_MAX); 2017 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &psectors, 2018 &file); 2019 if (ret < 0) { 2020 return ret; 2021 } 2022 if (pnum) { 2023 *pnum = psectors * BDRV_SECTOR_SIZE; 2024 } 2025 return !!(ret & BDRV_BLOCK_ALLOCATED); 2026 } 2027 2028 /* 2029 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2030 * 2031 * Return true if (a prefix of) the given range is allocated in any image 2032 * between BASE and TOP (inclusive). BASE can be NULL to check if the given 2033 * offset is allocated in any image of the chain. Return false otherwise, 2034 * or negative errno on failure. 2035 * 2036 * 'pnum' is set to the number of bytes (including and immediately 2037 * following the specified offset) that are known to be in the same 2038 * allocated/unallocated state. Note that a subsequent call starting 2039 * at 'offset + *pnum' may return the same allocation status (in other 2040 * words, the result is not necessarily the maximum possible range); 2041 * but 'pnum' will only be 0 when end of file is reached. 2042 * 2043 */ 2044 int bdrv_is_allocated_above(BlockDriverState *top, 2045 BlockDriverState *base, 2046 int64_t offset, int64_t bytes, int64_t *pnum) 2047 { 2048 BlockDriverState *intermediate; 2049 int ret; 2050 int64_t n = bytes; 2051 2052 intermediate = top; 2053 while (intermediate && intermediate != base) { 2054 int64_t pnum_inter; 2055 int64_t size_inter; 2056 2057 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2058 if (ret < 0) { 2059 return ret; 2060 } 2061 if (ret) { 2062 *pnum = pnum_inter; 2063 return 1; 2064 } 2065 2066 size_inter = bdrv_getlength(intermediate); 2067 if (size_inter < 0) { 2068 return size_inter; 2069 } 2070 if (n > pnum_inter && 2071 (intermediate == top || offset + pnum_inter < size_inter)) { 2072 n = pnum_inter; 2073 } 2074 2075 intermediate = backing_bs(intermediate); 2076 } 2077 2078 *pnum = n; 2079 return 0; 2080 } 2081 2082 typedef struct BdrvVmstateCo { 2083 BlockDriverState *bs; 2084 QEMUIOVector *qiov; 2085 int64_t pos; 2086 bool is_read; 2087 int ret; 2088 } BdrvVmstateCo; 2089 2090 static int coroutine_fn 2091 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2092 bool is_read) 2093 { 2094 BlockDriver *drv = bs->drv; 2095 int ret = -ENOTSUP; 2096 2097 bdrv_inc_in_flight(bs); 2098 2099 if (!drv) { 2100 ret = -ENOMEDIUM; 2101 } else if (drv->bdrv_load_vmstate) { 2102 if (is_read) { 2103 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2104 } else { 2105 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2106 } 2107 } else if (bs->file) { 2108 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2109 } 2110 2111 bdrv_dec_in_flight(bs); 2112 return ret; 2113 } 2114 2115 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2116 { 2117 BdrvVmstateCo *co = opaque; 2118 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2119 } 2120 2121 static inline int 2122 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2123 bool is_read) 2124 { 2125 if (qemu_in_coroutine()) { 2126 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2127 } else { 2128 BdrvVmstateCo data = { 2129 .bs = bs, 2130 .qiov = qiov, 2131 .pos = pos, 2132 .is_read = is_read, 2133 .ret = -EINPROGRESS, 2134 }; 2135 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2136 2137 bdrv_coroutine_enter(bs, co); 2138 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2139 return data.ret; 2140 } 2141 } 2142 2143 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2144 int64_t pos, int size) 2145 { 2146 QEMUIOVector qiov; 2147 struct iovec iov = { 2148 .iov_base = (void *) buf, 2149 .iov_len = size, 2150 }; 2151 int ret; 2152 2153 qemu_iovec_init_external(&qiov, &iov, 1); 2154 2155 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2156 if (ret < 0) { 2157 return ret; 2158 } 2159 2160 return size; 2161 } 2162 2163 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2164 { 2165 return bdrv_rw_vmstate(bs, qiov, pos, false); 2166 } 2167 2168 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2169 int64_t pos, int size) 2170 { 2171 QEMUIOVector qiov; 2172 struct iovec iov = { 2173 .iov_base = buf, 2174 .iov_len = size, 2175 }; 2176 int ret; 2177 2178 qemu_iovec_init_external(&qiov, &iov, 1); 2179 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2180 if (ret < 0) { 2181 return ret; 2182 } 2183 2184 return size; 2185 } 2186 2187 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2188 { 2189 return bdrv_rw_vmstate(bs, qiov, pos, true); 2190 } 2191 2192 /**************************************************************/ 2193 /* async I/Os */ 2194 2195 void bdrv_aio_cancel(BlockAIOCB *acb) 2196 { 2197 qemu_aio_ref(acb); 2198 bdrv_aio_cancel_async(acb); 2199 while (acb->refcnt > 1) { 2200 if (acb->aiocb_info->get_aio_context) { 2201 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2202 } else if (acb->bs) { 2203 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2204 * assert that we're not using an I/O thread. Thread-safe 2205 * code should use bdrv_aio_cancel_async exclusively. 2206 */ 2207 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2208 aio_poll(bdrv_get_aio_context(acb->bs), true); 2209 } else { 2210 abort(); 2211 } 2212 } 2213 qemu_aio_unref(acb); 2214 } 2215 2216 /* Async version of aio cancel. The caller is not blocked if the acb implements 2217 * cancel_async, otherwise we do nothing and let the request normally complete. 2218 * In either case the completion callback must be called. */ 2219 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2220 { 2221 if (acb->aiocb_info->cancel_async) { 2222 acb->aiocb_info->cancel_async(acb); 2223 } 2224 } 2225 2226 /**************************************************************/ 2227 /* Coroutine block device emulation */ 2228 2229 typedef struct FlushCo { 2230 BlockDriverState *bs; 2231 int ret; 2232 } FlushCo; 2233 2234 2235 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2236 { 2237 FlushCo *rwco = opaque; 2238 2239 rwco->ret = bdrv_co_flush(rwco->bs); 2240 } 2241 2242 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2243 { 2244 int current_gen; 2245 int ret = 0; 2246 2247 bdrv_inc_in_flight(bs); 2248 2249 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2250 bdrv_is_sg(bs)) { 2251 goto early_exit; 2252 } 2253 2254 qemu_co_mutex_lock(&bs->reqs_lock); 2255 current_gen = atomic_read(&bs->write_gen); 2256 2257 /* Wait until any previous flushes are completed */ 2258 while (bs->active_flush_req) { 2259 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2260 } 2261 2262 /* Flushes reach this point in nondecreasing current_gen order. */ 2263 bs->active_flush_req = true; 2264 qemu_co_mutex_unlock(&bs->reqs_lock); 2265 2266 /* Write back all layers by calling one driver function */ 2267 if (bs->drv->bdrv_co_flush) { 2268 ret = bs->drv->bdrv_co_flush(bs); 2269 goto out; 2270 } 2271 2272 /* Write back cached data to the OS even with cache=unsafe */ 2273 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2274 if (bs->drv->bdrv_co_flush_to_os) { 2275 ret = bs->drv->bdrv_co_flush_to_os(bs); 2276 if (ret < 0) { 2277 goto out; 2278 } 2279 } 2280 2281 /* But don't actually force it to the disk with cache=unsafe */ 2282 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2283 goto flush_parent; 2284 } 2285 2286 /* Check if we really need to flush anything */ 2287 if (bs->flushed_gen == current_gen) { 2288 goto flush_parent; 2289 } 2290 2291 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2292 if (bs->drv->bdrv_co_flush_to_disk) { 2293 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2294 } else if (bs->drv->bdrv_aio_flush) { 2295 BlockAIOCB *acb; 2296 CoroutineIOCompletion co = { 2297 .coroutine = qemu_coroutine_self(), 2298 }; 2299 2300 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2301 if (acb == NULL) { 2302 ret = -EIO; 2303 } else { 2304 qemu_coroutine_yield(); 2305 ret = co.ret; 2306 } 2307 } else { 2308 /* 2309 * Some block drivers always operate in either writethrough or unsafe 2310 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2311 * know how the server works (because the behaviour is hardcoded or 2312 * depends on server-side configuration), so we can't ensure that 2313 * everything is safe on disk. Returning an error doesn't work because 2314 * that would break guests even if the server operates in writethrough 2315 * mode. 2316 * 2317 * Let's hope the user knows what he's doing. 2318 */ 2319 ret = 0; 2320 } 2321 2322 if (ret < 0) { 2323 goto out; 2324 } 2325 2326 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2327 * in the case of cache=unsafe, so there are no useless flushes. 2328 */ 2329 flush_parent: 2330 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2331 out: 2332 /* Notify any pending flushes that we have completed */ 2333 if (ret == 0) { 2334 bs->flushed_gen = current_gen; 2335 } 2336 2337 qemu_co_mutex_lock(&bs->reqs_lock); 2338 bs->active_flush_req = false; 2339 /* Return value is ignored - it's ok if wait queue is empty */ 2340 qemu_co_queue_next(&bs->flush_queue); 2341 qemu_co_mutex_unlock(&bs->reqs_lock); 2342 2343 early_exit: 2344 bdrv_dec_in_flight(bs); 2345 return ret; 2346 } 2347 2348 int bdrv_flush(BlockDriverState *bs) 2349 { 2350 Coroutine *co; 2351 FlushCo flush_co = { 2352 .bs = bs, 2353 .ret = NOT_DONE, 2354 }; 2355 2356 if (qemu_in_coroutine()) { 2357 /* Fast-path if already in coroutine context */ 2358 bdrv_flush_co_entry(&flush_co); 2359 } else { 2360 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2361 bdrv_coroutine_enter(bs, co); 2362 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2363 } 2364 2365 return flush_co.ret; 2366 } 2367 2368 typedef struct DiscardCo { 2369 BlockDriverState *bs; 2370 int64_t offset; 2371 int bytes; 2372 int ret; 2373 } DiscardCo; 2374 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2375 { 2376 DiscardCo *rwco = opaque; 2377 2378 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes); 2379 } 2380 2381 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset, 2382 int bytes) 2383 { 2384 BdrvTrackedRequest req; 2385 int max_pdiscard, ret; 2386 int head, tail, align; 2387 2388 if (!bs->drv) { 2389 return -ENOMEDIUM; 2390 } 2391 2392 if (bdrv_has_readonly_bitmaps(bs)) { 2393 return -EPERM; 2394 } 2395 2396 ret = bdrv_check_byte_request(bs, offset, bytes); 2397 if (ret < 0) { 2398 return ret; 2399 } else if (bs->read_only) { 2400 return -EPERM; 2401 } 2402 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2403 2404 /* Do nothing if disabled. */ 2405 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2406 return 0; 2407 } 2408 2409 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2410 return 0; 2411 } 2412 2413 /* Discard is advisory, but some devices track and coalesce 2414 * unaligned requests, so we must pass everything down rather than 2415 * round here. Still, most devices will just silently ignore 2416 * unaligned requests (by returning -ENOTSUP), so we must fragment 2417 * the request accordingly. */ 2418 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2419 assert(align % bs->bl.request_alignment == 0); 2420 head = offset % align; 2421 tail = (offset + bytes) % align; 2422 2423 bdrv_inc_in_flight(bs); 2424 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2425 2426 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req); 2427 if (ret < 0) { 2428 goto out; 2429 } 2430 2431 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2432 align); 2433 assert(max_pdiscard >= bs->bl.request_alignment); 2434 2435 while (bytes > 0) { 2436 int num = bytes; 2437 2438 if (head) { 2439 /* Make small requests to get to alignment boundaries. */ 2440 num = MIN(bytes, align - head); 2441 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2442 num %= bs->bl.request_alignment; 2443 } 2444 head = (head + num) % align; 2445 assert(num < max_pdiscard); 2446 } else if (tail) { 2447 if (num > align) { 2448 /* Shorten the request to the last aligned cluster. */ 2449 num -= tail; 2450 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2451 tail > bs->bl.request_alignment) { 2452 tail %= bs->bl.request_alignment; 2453 num -= tail; 2454 } 2455 } 2456 /* limit request size */ 2457 if (num > max_pdiscard) { 2458 num = max_pdiscard; 2459 } 2460 2461 if (bs->drv->bdrv_co_pdiscard) { 2462 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2463 } else { 2464 BlockAIOCB *acb; 2465 CoroutineIOCompletion co = { 2466 .coroutine = qemu_coroutine_self(), 2467 }; 2468 2469 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2470 bdrv_co_io_em_complete, &co); 2471 if (acb == NULL) { 2472 ret = -EIO; 2473 goto out; 2474 } else { 2475 qemu_coroutine_yield(); 2476 ret = co.ret; 2477 } 2478 } 2479 if (ret && ret != -ENOTSUP) { 2480 goto out; 2481 } 2482 2483 offset += num; 2484 bytes -= num; 2485 } 2486 ret = 0; 2487 out: 2488 atomic_inc(&bs->write_gen); 2489 bdrv_set_dirty(bs, req.offset, req.bytes); 2490 tracked_request_end(&req); 2491 bdrv_dec_in_flight(bs); 2492 return ret; 2493 } 2494 2495 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes) 2496 { 2497 Coroutine *co; 2498 DiscardCo rwco = { 2499 .bs = bs, 2500 .offset = offset, 2501 .bytes = bytes, 2502 .ret = NOT_DONE, 2503 }; 2504 2505 if (qemu_in_coroutine()) { 2506 /* Fast-path if already in coroutine context */ 2507 bdrv_pdiscard_co_entry(&rwco); 2508 } else { 2509 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2510 bdrv_coroutine_enter(bs, co); 2511 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE); 2512 } 2513 2514 return rwco.ret; 2515 } 2516 2517 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2518 { 2519 BlockDriver *drv = bs->drv; 2520 CoroutineIOCompletion co = { 2521 .coroutine = qemu_coroutine_self(), 2522 }; 2523 BlockAIOCB *acb; 2524 2525 bdrv_inc_in_flight(bs); 2526 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2527 co.ret = -ENOTSUP; 2528 goto out; 2529 } 2530 2531 if (drv->bdrv_co_ioctl) { 2532 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2533 } else { 2534 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2535 if (!acb) { 2536 co.ret = -ENOTSUP; 2537 goto out; 2538 } 2539 qemu_coroutine_yield(); 2540 } 2541 out: 2542 bdrv_dec_in_flight(bs); 2543 return co.ret; 2544 } 2545 2546 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2547 { 2548 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2549 } 2550 2551 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2552 { 2553 return memset(qemu_blockalign(bs, size), 0, size); 2554 } 2555 2556 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2557 { 2558 size_t align = bdrv_opt_mem_align(bs); 2559 2560 /* Ensure that NULL is never returned on success */ 2561 assert(align > 0); 2562 if (size == 0) { 2563 size = align; 2564 } 2565 2566 return qemu_try_memalign(align, size); 2567 } 2568 2569 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2570 { 2571 void *mem = qemu_try_blockalign(bs, size); 2572 2573 if (mem) { 2574 memset(mem, 0, size); 2575 } 2576 2577 return mem; 2578 } 2579 2580 /* 2581 * Check if all memory in this vector is sector aligned. 2582 */ 2583 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2584 { 2585 int i; 2586 size_t alignment = bdrv_min_mem_align(bs); 2587 2588 for (i = 0; i < qiov->niov; i++) { 2589 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2590 return false; 2591 } 2592 if (qiov->iov[i].iov_len % alignment) { 2593 return false; 2594 } 2595 } 2596 2597 return true; 2598 } 2599 2600 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2601 NotifierWithReturn *notifier) 2602 { 2603 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2604 } 2605 2606 void bdrv_io_plug(BlockDriverState *bs) 2607 { 2608 BdrvChild *child; 2609 2610 QLIST_FOREACH(child, &bs->children, next) { 2611 bdrv_io_plug(child->bs); 2612 } 2613 2614 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 2615 BlockDriver *drv = bs->drv; 2616 if (drv && drv->bdrv_io_plug) { 2617 drv->bdrv_io_plug(bs); 2618 } 2619 } 2620 } 2621 2622 void bdrv_io_unplug(BlockDriverState *bs) 2623 { 2624 BdrvChild *child; 2625 2626 assert(bs->io_plugged); 2627 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 2628 BlockDriver *drv = bs->drv; 2629 if (drv && drv->bdrv_io_unplug) { 2630 drv->bdrv_io_unplug(bs); 2631 } 2632 } 2633 2634 QLIST_FOREACH(child, &bs->children, next) { 2635 bdrv_io_unplug(child->bs); 2636 } 2637 } 2638