1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/write-threshold.h" 34 #include "qemu/cutils.h" 35 #include "qemu/memalign.h" 36 #include "qapi/error.h" 37 #include "qemu/error-report.h" 38 #include "qemu/main-loop.h" 39 #include "sysemu/replay.h" 40 41 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 42 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 43 44 static void bdrv_parent_cb_resize(BlockDriverState *bs); 45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 46 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 47 48 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 49 bool ignore_bds_parents) 50 { 51 BdrvChild *c, *next; 52 53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 54 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 55 continue; 56 } 57 bdrv_parent_drained_begin_single(c, false); 58 } 59 } 60 61 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 62 int *drained_end_counter) 63 { 64 assert(c->parent_quiesce_counter > 0); 65 c->parent_quiesce_counter--; 66 if (c->klass->drained_end) { 67 c->klass->drained_end(c, drained_end_counter); 68 } 69 } 70 71 void bdrv_parent_drained_end_single(BdrvChild *c) 72 { 73 int drained_end_counter = 0; 74 IO_OR_GS_CODE(); 75 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 76 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0); 77 } 78 79 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 80 bool ignore_bds_parents, 81 int *drained_end_counter) 82 { 83 BdrvChild *c; 84 85 QLIST_FOREACH(c, &bs->parents, next_parent) { 86 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 87 continue; 88 } 89 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 90 } 91 } 92 93 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 94 { 95 if (c->klass->drained_poll) { 96 return c->klass->drained_poll(c); 97 } 98 return false; 99 } 100 101 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 102 bool ignore_bds_parents) 103 { 104 BdrvChild *c, *next; 105 bool busy = false; 106 107 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 108 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 109 continue; 110 } 111 busy |= bdrv_parent_drained_poll_single(c); 112 } 113 114 return busy; 115 } 116 117 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 118 { 119 IO_OR_GS_CODE(); 120 c->parent_quiesce_counter++; 121 if (c->klass->drained_begin) { 122 c->klass->drained_begin(c); 123 } 124 if (poll) { 125 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 126 } 127 } 128 129 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 130 { 131 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 132 src->pdiscard_alignment); 133 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 134 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 135 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 136 src->max_hw_transfer); 137 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 138 src->opt_mem_alignment); 139 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 140 src->min_mem_alignment); 141 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 142 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 143 } 144 145 typedef struct BdrvRefreshLimitsState { 146 BlockDriverState *bs; 147 BlockLimits old_bl; 148 } BdrvRefreshLimitsState; 149 150 static void bdrv_refresh_limits_abort(void *opaque) 151 { 152 BdrvRefreshLimitsState *s = opaque; 153 154 s->bs->bl = s->old_bl; 155 } 156 157 static TransactionActionDrv bdrv_refresh_limits_drv = { 158 .abort = bdrv_refresh_limits_abort, 159 .clean = g_free, 160 }; 161 162 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 163 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 164 { 165 ERRP_GUARD(); 166 BlockDriver *drv = bs->drv; 167 BdrvChild *c; 168 bool have_limits; 169 170 GLOBAL_STATE_CODE(); 171 172 if (tran) { 173 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 174 *s = (BdrvRefreshLimitsState) { 175 .bs = bs, 176 .old_bl = bs->bl, 177 }; 178 tran_add(tran, &bdrv_refresh_limits_drv, s); 179 } 180 181 memset(&bs->bl, 0, sizeof(bs->bl)); 182 183 if (!drv) { 184 return; 185 } 186 187 /* Default alignment based on whether driver has byte interface */ 188 bs->bl.request_alignment = (drv->bdrv_co_preadv || 189 drv->bdrv_aio_preadv || 190 drv->bdrv_co_preadv_part) ? 1 : 512; 191 192 /* Take some limits from the children as a default */ 193 have_limits = false; 194 QLIST_FOREACH(c, &bs->children, next) { 195 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 196 { 197 bdrv_merge_limits(&bs->bl, &c->bs->bl); 198 have_limits = true; 199 } 200 } 201 202 if (!have_limits) { 203 bs->bl.min_mem_alignment = 512; 204 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 205 206 /* Safe default since most protocols use readv()/writev()/etc */ 207 bs->bl.max_iov = IOV_MAX; 208 } 209 210 /* Then let the driver override it */ 211 if (drv->bdrv_refresh_limits) { 212 drv->bdrv_refresh_limits(bs, errp); 213 if (*errp) { 214 return; 215 } 216 } 217 218 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 219 error_setg(errp, "Driver requires too large request alignment"); 220 } 221 } 222 223 /** 224 * The copy-on-read flag is actually a reference count so multiple users may 225 * use the feature without worrying about clobbering its previous state. 226 * Copy-on-read stays enabled until all users have called to disable it. 227 */ 228 void bdrv_enable_copy_on_read(BlockDriverState *bs) 229 { 230 IO_CODE(); 231 qatomic_inc(&bs->copy_on_read); 232 } 233 234 void bdrv_disable_copy_on_read(BlockDriverState *bs) 235 { 236 int old = qatomic_fetch_dec(&bs->copy_on_read); 237 IO_CODE(); 238 assert(old >= 1); 239 } 240 241 typedef struct { 242 Coroutine *co; 243 BlockDriverState *bs; 244 bool done; 245 bool begin; 246 bool recursive; 247 bool poll; 248 BdrvChild *parent; 249 bool ignore_bds_parents; 250 int *drained_end_counter; 251 } BdrvCoDrainData; 252 253 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 254 { 255 BdrvCoDrainData *data = opaque; 256 BlockDriverState *bs = data->bs; 257 258 if (data->begin) { 259 bs->drv->bdrv_co_drain_begin(bs); 260 } else { 261 bs->drv->bdrv_co_drain_end(bs); 262 } 263 264 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 265 qatomic_mb_set(&data->done, true); 266 if (!data->begin) { 267 qatomic_dec(data->drained_end_counter); 268 } 269 bdrv_dec_in_flight(bs); 270 271 g_free(data); 272 } 273 274 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 275 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 276 int *drained_end_counter) 277 { 278 BdrvCoDrainData *data; 279 280 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 281 (!begin && !bs->drv->bdrv_co_drain_end)) { 282 return; 283 } 284 285 data = g_new(BdrvCoDrainData, 1); 286 *data = (BdrvCoDrainData) { 287 .bs = bs, 288 .done = false, 289 .begin = begin, 290 .drained_end_counter = drained_end_counter, 291 }; 292 293 if (!begin) { 294 qatomic_inc(drained_end_counter); 295 } 296 297 /* Make sure the driver callback completes during the polling phase for 298 * drain_begin. */ 299 bdrv_inc_in_flight(bs); 300 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 301 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 302 } 303 304 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 305 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 306 BdrvChild *ignore_parent, bool ignore_bds_parents) 307 { 308 BdrvChild *child, *next; 309 IO_OR_GS_CODE(); 310 311 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 312 return true; 313 } 314 315 if (qatomic_read(&bs->in_flight)) { 316 return true; 317 } 318 319 if (recursive) { 320 assert(!ignore_bds_parents); 321 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 322 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 323 return true; 324 } 325 } 326 } 327 328 return false; 329 } 330 331 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 332 BdrvChild *ignore_parent) 333 { 334 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 335 } 336 337 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 338 BdrvChild *parent, bool ignore_bds_parents, 339 bool poll); 340 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 341 BdrvChild *parent, bool ignore_bds_parents, 342 int *drained_end_counter); 343 344 static void bdrv_co_drain_bh_cb(void *opaque) 345 { 346 BdrvCoDrainData *data = opaque; 347 Coroutine *co = data->co; 348 BlockDriverState *bs = data->bs; 349 350 if (bs) { 351 AioContext *ctx = bdrv_get_aio_context(bs); 352 aio_context_acquire(ctx); 353 bdrv_dec_in_flight(bs); 354 if (data->begin) { 355 assert(!data->drained_end_counter); 356 bdrv_do_drained_begin(bs, data->recursive, data->parent, 357 data->ignore_bds_parents, data->poll); 358 } else { 359 assert(!data->poll); 360 bdrv_do_drained_end(bs, data->recursive, data->parent, 361 data->ignore_bds_parents, 362 data->drained_end_counter); 363 } 364 aio_context_release(ctx); 365 } else { 366 assert(data->begin); 367 bdrv_drain_all_begin(); 368 } 369 370 data->done = true; 371 aio_co_wake(co); 372 } 373 374 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 375 bool begin, bool recursive, 376 BdrvChild *parent, 377 bool ignore_bds_parents, 378 bool poll, 379 int *drained_end_counter) 380 { 381 BdrvCoDrainData data; 382 Coroutine *self = qemu_coroutine_self(); 383 AioContext *ctx = bdrv_get_aio_context(bs); 384 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 385 386 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 387 * other coroutines run if they were queued by aio_co_enter(). */ 388 389 assert(qemu_in_coroutine()); 390 data = (BdrvCoDrainData) { 391 .co = self, 392 .bs = bs, 393 .done = false, 394 .begin = begin, 395 .recursive = recursive, 396 .parent = parent, 397 .ignore_bds_parents = ignore_bds_parents, 398 .poll = poll, 399 .drained_end_counter = drained_end_counter, 400 }; 401 402 if (bs) { 403 bdrv_inc_in_flight(bs); 404 } 405 406 /* 407 * Temporarily drop the lock across yield or we would get deadlocks. 408 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 409 * 410 * When we yield below, the lock for the current context will be 411 * released, so if this is actually the lock that protects bs, don't drop 412 * it a second time. 413 */ 414 if (ctx != co_ctx) { 415 aio_context_release(ctx); 416 } 417 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data); 418 419 qemu_coroutine_yield(); 420 /* If we are resumed from some other event (such as an aio completion or a 421 * timer callback), it is a bug in the caller that should be fixed. */ 422 assert(data.done); 423 424 /* Reaquire the AioContext of bs if we dropped it */ 425 if (ctx != co_ctx) { 426 aio_context_acquire(ctx); 427 } 428 } 429 430 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 431 BdrvChild *parent, bool ignore_bds_parents) 432 { 433 IO_OR_GS_CODE(); 434 assert(!qemu_in_coroutine()); 435 436 /* Stop things in parent-to-child order */ 437 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 438 aio_disable_external(bdrv_get_aio_context(bs)); 439 } 440 441 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 442 bdrv_drain_invoke(bs, true, NULL); 443 } 444 445 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 446 BdrvChild *parent, bool ignore_bds_parents, 447 bool poll) 448 { 449 BdrvChild *child, *next; 450 451 if (qemu_in_coroutine()) { 452 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 453 poll, NULL); 454 return; 455 } 456 457 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 458 459 if (recursive) { 460 assert(!ignore_bds_parents); 461 bs->recursive_quiesce_counter++; 462 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 463 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 464 false); 465 } 466 } 467 468 /* 469 * Wait for drained requests to finish. 470 * 471 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 472 * call is needed so things in this AioContext can make progress even 473 * though we don't return to the main AioContext loop - this automatically 474 * includes other nodes in the same AioContext and therefore all child 475 * nodes. 476 */ 477 if (poll) { 478 assert(!ignore_bds_parents); 479 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 480 } 481 } 482 483 void bdrv_drained_begin(BlockDriverState *bs) 484 { 485 IO_OR_GS_CODE(); 486 bdrv_do_drained_begin(bs, false, NULL, false, true); 487 } 488 489 void bdrv_subtree_drained_begin(BlockDriverState *bs) 490 { 491 IO_OR_GS_CODE(); 492 bdrv_do_drained_begin(bs, true, NULL, false, true); 493 } 494 495 /** 496 * This function does not poll, nor must any of its recursively called 497 * functions. The *drained_end_counter pointee will be incremented 498 * once for every background operation scheduled, and decremented once 499 * the operation settles. Therefore, the pointer must remain valid 500 * until the pointee reaches 0. That implies that whoever sets up the 501 * pointee has to poll until it is 0. 502 * 503 * We use atomic operations to access *drained_end_counter, because 504 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 505 * @bs may contain nodes in different AioContexts, 506 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 507 * regardless of which AioContext they are in. 508 */ 509 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 510 BdrvChild *parent, bool ignore_bds_parents, 511 int *drained_end_counter) 512 { 513 BdrvChild *child; 514 int old_quiesce_counter; 515 516 assert(drained_end_counter != NULL); 517 518 if (qemu_in_coroutine()) { 519 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 520 false, drained_end_counter); 521 return; 522 } 523 assert(bs->quiesce_counter > 0); 524 525 /* Re-enable things in child-to-parent order */ 526 bdrv_drain_invoke(bs, false, drained_end_counter); 527 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 528 drained_end_counter); 529 530 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 531 if (old_quiesce_counter == 1) { 532 aio_enable_external(bdrv_get_aio_context(bs)); 533 } 534 535 if (recursive) { 536 assert(!ignore_bds_parents); 537 bs->recursive_quiesce_counter--; 538 QLIST_FOREACH(child, &bs->children, next) { 539 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 540 drained_end_counter); 541 } 542 } 543 } 544 545 void bdrv_drained_end(BlockDriverState *bs) 546 { 547 int drained_end_counter = 0; 548 IO_OR_GS_CODE(); 549 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 550 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 551 } 552 553 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 554 { 555 IO_CODE(); 556 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 557 } 558 559 void bdrv_subtree_drained_end(BlockDriverState *bs) 560 { 561 int drained_end_counter = 0; 562 IO_OR_GS_CODE(); 563 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 564 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 565 } 566 567 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 568 { 569 int i; 570 IO_OR_GS_CODE(); 571 572 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 573 bdrv_do_drained_begin(child->bs, true, child, false, true); 574 } 575 } 576 577 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 578 { 579 int drained_end_counter = 0; 580 int i; 581 IO_OR_GS_CODE(); 582 583 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 584 bdrv_do_drained_end(child->bs, true, child, false, 585 &drained_end_counter); 586 } 587 588 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0); 589 } 590 591 void bdrv_drain(BlockDriverState *bs) 592 { 593 IO_OR_GS_CODE(); 594 bdrv_drained_begin(bs); 595 bdrv_drained_end(bs); 596 } 597 598 static void bdrv_drain_assert_idle(BlockDriverState *bs) 599 { 600 BdrvChild *child, *next; 601 602 assert(qatomic_read(&bs->in_flight) == 0); 603 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 604 bdrv_drain_assert_idle(child->bs); 605 } 606 } 607 608 unsigned int bdrv_drain_all_count = 0; 609 610 static bool bdrv_drain_all_poll(void) 611 { 612 BlockDriverState *bs = NULL; 613 bool result = false; 614 GLOBAL_STATE_CODE(); 615 616 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 617 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 618 while ((bs = bdrv_next_all_states(bs))) { 619 AioContext *aio_context = bdrv_get_aio_context(bs); 620 aio_context_acquire(aio_context); 621 result |= bdrv_drain_poll(bs, false, NULL, true); 622 aio_context_release(aio_context); 623 } 624 625 return result; 626 } 627 628 /* 629 * Wait for pending requests to complete across all BlockDriverStates 630 * 631 * This function does not flush data to disk, use bdrv_flush_all() for that 632 * after calling this function. 633 * 634 * This pauses all block jobs and disables external clients. It must 635 * be paired with bdrv_drain_all_end(). 636 * 637 * NOTE: no new block jobs or BlockDriverStates can be created between 638 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 639 */ 640 void bdrv_drain_all_begin(void) 641 { 642 BlockDriverState *bs = NULL; 643 GLOBAL_STATE_CODE(); 644 645 if (qemu_in_coroutine()) { 646 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 647 return; 648 } 649 650 /* 651 * bdrv queue is managed by record/replay, 652 * waiting for finishing the I/O requests may 653 * be infinite 654 */ 655 if (replay_events_enabled()) { 656 return; 657 } 658 659 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 660 * loop AioContext, so make sure we're in the main context. */ 661 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 662 assert(bdrv_drain_all_count < INT_MAX); 663 bdrv_drain_all_count++; 664 665 /* Quiesce all nodes, without polling in-flight requests yet. The graph 666 * cannot change during this loop. */ 667 while ((bs = bdrv_next_all_states(bs))) { 668 AioContext *aio_context = bdrv_get_aio_context(bs); 669 670 aio_context_acquire(aio_context); 671 bdrv_do_drained_begin(bs, false, NULL, true, false); 672 aio_context_release(aio_context); 673 } 674 675 /* Now poll the in-flight requests */ 676 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 677 678 while ((bs = bdrv_next_all_states(bs))) { 679 bdrv_drain_assert_idle(bs); 680 } 681 } 682 683 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 684 { 685 int drained_end_counter = 0; 686 GLOBAL_STATE_CODE(); 687 688 g_assert(bs->quiesce_counter > 0); 689 g_assert(!bs->refcnt); 690 691 while (bs->quiesce_counter) { 692 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 693 } 694 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 695 } 696 697 void bdrv_drain_all_end(void) 698 { 699 BlockDriverState *bs = NULL; 700 int drained_end_counter = 0; 701 GLOBAL_STATE_CODE(); 702 703 /* 704 * bdrv queue is managed by record/replay, 705 * waiting for finishing the I/O requests may 706 * be endless 707 */ 708 if (replay_events_enabled()) { 709 return; 710 } 711 712 while ((bs = bdrv_next_all_states(bs))) { 713 AioContext *aio_context = bdrv_get_aio_context(bs); 714 715 aio_context_acquire(aio_context); 716 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 717 aio_context_release(aio_context); 718 } 719 720 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 721 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0); 722 723 assert(bdrv_drain_all_count > 0); 724 bdrv_drain_all_count--; 725 } 726 727 void bdrv_drain_all(void) 728 { 729 GLOBAL_STATE_CODE(); 730 bdrv_drain_all_begin(); 731 bdrv_drain_all_end(); 732 } 733 734 /** 735 * Remove an active request from the tracked requests list 736 * 737 * This function should be called when a tracked request is completing. 738 */ 739 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 740 { 741 if (req->serialising) { 742 qatomic_dec(&req->bs->serialising_in_flight); 743 } 744 745 qemu_co_mutex_lock(&req->bs->reqs_lock); 746 QLIST_REMOVE(req, list); 747 qemu_co_queue_restart_all(&req->wait_queue); 748 qemu_co_mutex_unlock(&req->bs->reqs_lock); 749 } 750 751 /** 752 * Add an active request to the tracked requests list 753 */ 754 static void tracked_request_begin(BdrvTrackedRequest *req, 755 BlockDriverState *bs, 756 int64_t offset, 757 int64_t bytes, 758 enum BdrvTrackedRequestType type) 759 { 760 bdrv_check_request(offset, bytes, &error_abort); 761 762 *req = (BdrvTrackedRequest){ 763 .bs = bs, 764 .offset = offset, 765 .bytes = bytes, 766 .type = type, 767 .co = qemu_coroutine_self(), 768 .serialising = false, 769 .overlap_offset = offset, 770 .overlap_bytes = bytes, 771 }; 772 773 qemu_co_queue_init(&req->wait_queue); 774 775 qemu_co_mutex_lock(&bs->reqs_lock); 776 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 777 qemu_co_mutex_unlock(&bs->reqs_lock); 778 } 779 780 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 781 int64_t offset, int64_t bytes) 782 { 783 bdrv_check_request(offset, bytes, &error_abort); 784 785 /* aaaa bbbb */ 786 if (offset >= req->overlap_offset + req->overlap_bytes) { 787 return false; 788 } 789 /* bbbb aaaa */ 790 if (req->overlap_offset >= offset + bytes) { 791 return false; 792 } 793 return true; 794 } 795 796 /* Called with self->bs->reqs_lock held */ 797 static BdrvTrackedRequest * 798 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 799 { 800 BdrvTrackedRequest *req; 801 802 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 803 if (req == self || (!req->serialising && !self->serialising)) { 804 continue; 805 } 806 if (tracked_request_overlaps(req, self->overlap_offset, 807 self->overlap_bytes)) 808 { 809 /* 810 * Hitting this means there was a reentrant request, for 811 * example, a block driver issuing nested requests. This must 812 * never happen since it means deadlock. 813 */ 814 assert(qemu_coroutine_self() != req->co); 815 816 /* 817 * If the request is already (indirectly) waiting for us, or 818 * will wait for us as soon as it wakes up, then just go on 819 * (instead of producing a deadlock in the former case). 820 */ 821 if (!req->waiting_for) { 822 return req; 823 } 824 } 825 } 826 827 return NULL; 828 } 829 830 /* Called with self->bs->reqs_lock held */ 831 static bool coroutine_fn 832 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 833 { 834 BdrvTrackedRequest *req; 835 bool waited = false; 836 837 while ((req = bdrv_find_conflicting_request(self))) { 838 self->waiting_for = req; 839 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 840 self->waiting_for = NULL; 841 waited = true; 842 } 843 844 return waited; 845 } 846 847 /* Called with req->bs->reqs_lock held */ 848 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 849 uint64_t align) 850 { 851 int64_t overlap_offset = req->offset & ~(align - 1); 852 int64_t overlap_bytes = 853 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 854 855 bdrv_check_request(req->offset, req->bytes, &error_abort); 856 857 if (!req->serialising) { 858 qatomic_inc(&req->bs->serialising_in_flight); 859 req->serialising = true; 860 } 861 862 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 863 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 864 } 865 866 /** 867 * Return the tracked request on @bs for the current coroutine, or 868 * NULL if there is none. 869 */ 870 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 871 { 872 BdrvTrackedRequest *req; 873 Coroutine *self = qemu_coroutine_self(); 874 IO_CODE(); 875 876 QLIST_FOREACH(req, &bs->tracked_requests, list) { 877 if (req->co == self) { 878 return req; 879 } 880 } 881 882 return NULL; 883 } 884 885 /** 886 * Round a region to cluster boundaries 887 */ 888 void bdrv_round_to_clusters(BlockDriverState *bs, 889 int64_t offset, int64_t bytes, 890 int64_t *cluster_offset, 891 int64_t *cluster_bytes) 892 { 893 BlockDriverInfo bdi; 894 IO_CODE(); 895 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 896 *cluster_offset = offset; 897 *cluster_bytes = bytes; 898 } else { 899 int64_t c = bdi.cluster_size; 900 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 901 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 902 } 903 } 904 905 static int bdrv_get_cluster_size(BlockDriverState *bs) 906 { 907 BlockDriverInfo bdi; 908 int ret; 909 910 ret = bdrv_get_info(bs, &bdi); 911 if (ret < 0 || bdi.cluster_size == 0) { 912 return bs->bl.request_alignment; 913 } else { 914 return bdi.cluster_size; 915 } 916 } 917 918 void bdrv_inc_in_flight(BlockDriverState *bs) 919 { 920 IO_CODE(); 921 qatomic_inc(&bs->in_flight); 922 } 923 924 void bdrv_wakeup(BlockDriverState *bs) 925 { 926 IO_CODE(); 927 aio_wait_kick(); 928 } 929 930 void bdrv_dec_in_flight(BlockDriverState *bs) 931 { 932 IO_CODE(); 933 qatomic_dec(&bs->in_flight); 934 bdrv_wakeup(bs); 935 } 936 937 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 938 { 939 BlockDriverState *bs = self->bs; 940 bool waited = false; 941 942 if (!qatomic_read(&bs->serialising_in_flight)) { 943 return false; 944 } 945 946 qemu_co_mutex_lock(&bs->reqs_lock); 947 waited = bdrv_wait_serialising_requests_locked(self); 948 qemu_co_mutex_unlock(&bs->reqs_lock); 949 950 return waited; 951 } 952 953 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 954 uint64_t align) 955 { 956 bool waited; 957 IO_CODE(); 958 959 qemu_co_mutex_lock(&req->bs->reqs_lock); 960 961 tracked_request_set_serialising(req, align); 962 waited = bdrv_wait_serialising_requests_locked(req); 963 964 qemu_co_mutex_unlock(&req->bs->reqs_lock); 965 966 return waited; 967 } 968 969 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 970 QEMUIOVector *qiov, size_t qiov_offset, 971 Error **errp) 972 { 973 /* 974 * Check generic offset/bytes correctness 975 */ 976 977 if (offset < 0) { 978 error_setg(errp, "offset is negative: %" PRIi64, offset); 979 return -EIO; 980 } 981 982 if (bytes < 0) { 983 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 984 return -EIO; 985 } 986 987 if (bytes > BDRV_MAX_LENGTH) { 988 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 989 bytes, BDRV_MAX_LENGTH); 990 return -EIO; 991 } 992 993 if (offset > BDRV_MAX_LENGTH) { 994 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 995 offset, BDRV_MAX_LENGTH); 996 return -EIO; 997 } 998 999 if (offset > BDRV_MAX_LENGTH - bytes) { 1000 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 1001 "exceeds maximum(%" PRIi64 ")", offset, bytes, 1002 BDRV_MAX_LENGTH); 1003 return -EIO; 1004 } 1005 1006 if (!qiov) { 1007 return 0; 1008 } 1009 1010 /* 1011 * Check qiov and qiov_offset 1012 */ 1013 1014 if (qiov_offset > qiov->size) { 1015 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 1016 qiov_offset, qiov->size); 1017 return -EIO; 1018 } 1019 1020 if (bytes > qiov->size - qiov_offset) { 1021 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 1022 "vector size(%zu)", bytes, qiov_offset, qiov->size); 1023 return -EIO; 1024 } 1025 1026 return 0; 1027 } 1028 1029 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 1030 { 1031 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 1032 } 1033 1034 static int bdrv_check_request32(int64_t offset, int64_t bytes, 1035 QEMUIOVector *qiov, size_t qiov_offset) 1036 { 1037 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 1038 if (ret < 0) { 1039 return ret; 1040 } 1041 1042 if (bytes > BDRV_REQUEST_MAX_BYTES) { 1043 return -EIO; 1044 } 1045 1046 return 0; 1047 } 1048 1049 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 1050 int64_t bytes, BdrvRequestFlags flags) 1051 { 1052 IO_CODE(); 1053 return bdrv_pwritev(child, offset, bytes, NULL, 1054 BDRV_REQ_ZERO_WRITE | flags); 1055 } 1056 1057 /* 1058 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 1059 * The operation is sped up by checking the block status and only writing 1060 * zeroes to the device if they currently do not return zeroes. Optional 1061 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 1062 * BDRV_REQ_FUA). 1063 * 1064 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 1065 */ 1066 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 1067 { 1068 int ret; 1069 int64_t target_size, bytes, offset = 0; 1070 BlockDriverState *bs = child->bs; 1071 IO_CODE(); 1072 1073 target_size = bdrv_getlength(bs); 1074 if (target_size < 0) { 1075 return target_size; 1076 } 1077 1078 for (;;) { 1079 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 1080 if (bytes <= 0) { 1081 return 0; 1082 } 1083 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 1084 if (ret < 0) { 1085 return ret; 1086 } 1087 if (ret & BDRV_BLOCK_ZERO) { 1088 offset += bytes; 1089 continue; 1090 } 1091 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 1092 if (ret < 0) { 1093 return ret; 1094 } 1095 offset += bytes; 1096 } 1097 } 1098 1099 /* See bdrv_pwrite() for the return codes */ 1100 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes) 1101 { 1102 int ret; 1103 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1104 IO_CODE(); 1105 1106 if (bytes < 0) { 1107 return -EINVAL; 1108 } 1109 1110 ret = bdrv_preadv(child, offset, bytes, &qiov, 0); 1111 1112 return ret < 0 ? ret : bytes; 1113 } 1114 1115 /* Return no. of bytes on success or < 0 on error. Important errors are: 1116 -EIO generic I/O error (may happen for all errors) 1117 -ENOMEDIUM No media inserted. 1118 -EINVAL Invalid offset or number of bytes 1119 -EACCES Trying to write a read-only device 1120 */ 1121 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, 1122 int64_t bytes) 1123 { 1124 int ret; 1125 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1126 IO_CODE(); 1127 1128 if (bytes < 0) { 1129 return -EINVAL; 1130 } 1131 1132 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0); 1133 1134 return ret < 0 ? ret : bytes; 1135 } 1136 1137 /* 1138 * Writes to the file and ensures that no writes are reordered across this 1139 * request (acts as a barrier) 1140 * 1141 * Returns 0 on success, -errno in error cases. 1142 */ 1143 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1144 const void *buf, int64_t count) 1145 { 1146 int ret; 1147 IO_CODE(); 1148 1149 ret = bdrv_pwrite(child, offset, buf, count); 1150 if (ret < 0) { 1151 return ret; 1152 } 1153 1154 ret = bdrv_flush(child->bs); 1155 if (ret < 0) { 1156 return ret; 1157 } 1158 1159 return 0; 1160 } 1161 1162 typedef struct CoroutineIOCompletion { 1163 Coroutine *coroutine; 1164 int ret; 1165 } CoroutineIOCompletion; 1166 1167 static void bdrv_co_io_em_complete(void *opaque, int ret) 1168 { 1169 CoroutineIOCompletion *co = opaque; 1170 1171 co->ret = ret; 1172 aio_co_wake(co->coroutine); 1173 } 1174 1175 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1176 int64_t offset, int64_t bytes, 1177 QEMUIOVector *qiov, 1178 size_t qiov_offset, int flags) 1179 { 1180 BlockDriver *drv = bs->drv; 1181 int64_t sector_num; 1182 unsigned int nb_sectors; 1183 QEMUIOVector local_qiov; 1184 int ret; 1185 1186 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1187 assert(!(flags & ~BDRV_REQ_MASK)); 1188 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1189 1190 if (!drv) { 1191 return -ENOMEDIUM; 1192 } 1193 1194 if (drv->bdrv_co_preadv_part) { 1195 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1196 flags); 1197 } 1198 1199 if (qiov_offset > 0 || bytes != qiov->size) { 1200 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1201 qiov = &local_qiov; 1202 } 1203 1204 if (drv->bdrv_co_preadv) { 1205 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1206 goto out; 1207 } 1208 1209 if (drv->bdrv_aio_preadv) { 1210 BlockAIOCB *acb; 1211 CoroutineIOCompletion co = { 1212 .coroutine = qemu_coroutine_self(), 1213 }; 1214 1215 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1216 bdrv_co_io_em_complete, &co); 1217 if (acb == NULL) { 1218 ret = -EIO; 1219 goto out; 1220 } else { 1221 qemu_coroutine_yield(); 1222 ret = co.ret; 1223 goto out; 1224 } 1225 } 1226 1227 sector_num = offset >> BDRV_SECTOR_BITS; 1228 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1229 1230 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1231 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1232 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1233 assert(drv->bdrv_co_readv); 1234 1235 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1236 1237 out: 1238 if (qiov == &local_qiov) { 1239 qemu_iovec_destroy(&local_qiov); 1240 } 1241 1242 return ret; 1243 } 1244 1245 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1246 int64_t offset, int64_t bytes, 1247 QEMUIOVector *qiov, 1248 size_t qiov_offset, 1249 BdrvRequestFlags flags) 1250 { 1251 BlockDriver *drv = bs->drv; 1252 int64_t sector_num; 1253 unsigned int nb_sectors; 1254 QEMUIOVector local_qiov; 1255 int ret; 1256 1257 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1258 assert(!(flags & ~BDRV_REQ_MASK)); 1259 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1260 1261 if (!drv) { 1262 return -ENOMEDIUM; 1263 } 1264 1265 if (drv->bdrv_co_pwritev_part) { 1266 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1267 flags & bs->supported_write_flags); 1268 flags &= ~bs->supported_write_flags; 1269 goto emulate_flags; 1270 } 1271 1272 if (qiov_offset > 0 || bytes != qiov->size) { 1273 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1274 qiov = &local_qiov; 1275 } 1276 1277 if (drv->bdrv_co_pwritev) { 1278 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1279 flags & bs->supported_write_flags); 1280 flags &= ~bs->supported_write_flags; 1281 goto emulate_flags; 1282 } 1283 1284 if (drv->bdrv_aio_pwritev) { 1285 BlockAIOCB *acb; 1286 CoroutineIOCompletion co = { 1287 .coroutine = qemu_coroutine_self(), 1288 }; 1289 1290 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1291 flags & bs->supported_write_flags, 1292 bdrv_co_io_em_complete, &co); 1293 flags &= ~bs->supported_write_flags; 1294 if (acb == NULL) { 1295 ret = -EIO; 1296 } else { 1297 qemu_coroutine_yield(); 1298 ret = co.ret; 1299 } 1300 goto emulate_flags; 1301 } 1302 1303 sector_num = offset >> BDRV_SECTOR_BITS; 1304 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1305 1306 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1307 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1308 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1309 1310 assert(drv->bdrv_co_writev); 1311 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1312 flags & bs->supported_write_flags); 1313 flags &= ~bs->supported_write_flags; 1314 1315 emulate_flags: 1316 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1317 ret = bdrv_co_flush(bs); 1318 } 1319 1320 if (qiov == &local_qiov) { 1321 qemu_iovec_destroy(&local_qiov); 1322 } 1323 1324 return ret; 1325 } 1326 1327 static int coroutine_fn 1328 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1329 int64_t bytes, QEMUIOVector *qiov, 1330 size_t qiov_offset) 1331 { 1332 BlockDriver *drv = bs->drv; 1333 QEMUIOVector local_qiov; 1334 int ret; 1335 1336 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1337 1338 if (!drv) { 1339 return -ENOMEDIUM; 1340 } 1341 1342 if (!block_driver_can_compress(drv)) { 1343 return -ENOTSUP; 1344 } 1345 1346 if (drv->bdrv_co_pwritev_compressed_part) { 1347 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1348 qiov, qiov_offset); 1349 } 1350 1351 if (qiov_offset == 0) { 1352 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1353 } 1354 1355 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1356 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1357 qemu_iovec_destroy(&local_qiov); 1358 1359 return ret; 1360 } 1361 1362 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1363 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1364 size_t qiov_offset, int flags) 1365 { 1366 BlockDriverState *bs = child->bs; 1367 1368 /* Perform I/O through a temporary buffer so that users who scribble over 1369 * their read buffer while the operation is in progress do not end up 1370 * modifying the image file. This is critical for zero-copy guest I/O 1371 * where anything might happen inside guest memory. 1372 */ 1373 void *bounce_buffer = NULL; 1374 1375 BlockDriver *drv = bs->drv; 1376 int64_t cluster_offset; 1377 int64_t cluster_bytes; 1378 int64_t skip_bytes; 1379 int ret; 1380 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1381 BDRV_REQUEST_MAX_BYTES); 1382 int64_t progress = 0; 1383 bool skip_write; 1384 1385 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1386 1387 if (!drv) { 1388 return -ENOMEDIUM; 1389 } 1390 1391 /* 1392 * Do not write anything when the BDS is inactive. That is not 1393 * allowed, and it would not help. 1394 */ 1395 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1396 1397 /* FIXME We cannot require callers to have write permissions when all they 1398 * are doing is a read request. If we did things right, write permissions 1399 * would be obtained anyway, but internally by the copy-on-read code. As 1400 * long as it is implemented here rather than in a separate filter driver, 1401 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1402 * it could request permissions. Therefore we have to bypass the permission 1403 * system for the moment. */ 1404 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1405 1406 /* Cover entire cluster so no additional backing file I/O is required when 1407 * allocating cluster in the image file. Note that this value may exceed 1408 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1409 * is one reason we loop rather than doing it all at once. 1410 */ 1411 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1412 skip_bytes = offset - cluster_offset; 1413 1414 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1415 cluster_offset, cluster_bytes); 1416 1417 while (cluster_bytes) { 1418 int64_t pnum; 1419 1420 if (skip_write) { 1421 ret = 1; /* "already allocated", so nothing will be copied */ 1422 pnum = MIN(cluster_bytes, max_transfer); 1423 } else { 1424 ret = bdrv_is_allocated(bs, cluster_offset, 1425 MIN(cluster_bytes, max_transfer), &pnum); 1426 if (ret < 0) { 1427 /* 1428 * Safe to treat errors in querying allocation as if 1429 * unallocated; we'll probably fail again soon on the 1430 * read, but at least that will set a decent errno. 1431 */ 1432 pnum = MIN(cluster_bytes, max_transfer); 1433 } 1434 1435 /* Stop at EOF if the image ends in the middle of the cluster */ 1436 if (ret == 0 && pnum == 0) { 1437 assert(progress >= bytes); 1438 break; 1439 } 1440 1441 assert(skip_bytes < pnum); 1442 } 1443 1444 if (ret <= 0) { 1445 QEMUIOVector local_qiov; 1446 1447 /* Must copy-on-read; use the bounce buffer */ 1448 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1449 if (!bounce_buffer) { 1450 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1451 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1452 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1453 1454 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1455 if (!bounce_buffer) { 1456 ret = -ENOMEM; 1457 goto err; 1458 } 1459 } 1460 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1461 1462 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1463 &local_qiov, 0, 0); 1464 if (ret < 0) { 1465 goto err; 1466 } 1467 1468 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1469 if (drv->bdrv_co_pwrite_zeroes && 1470 buffer_is_zero(bounce_buffer, pnum)) { 1471 /* FIXME: Should we (perhaps conditionally) be setting 1472 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1473 * that still correctly reads as zero? */ 1474 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1475 BDRV_REQ_WRITE_UNCHANGED); 1476 } else { 1477 /* This does not change the data on the disk, it is not 1478 * necessary to flush even in cache=writethrough mode. 1479 */ 1480 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1481 &local_qiov, 0, 1482 BDRV_REQ_WRITE_UNCHANGED); 1483 } 1484 1485 if (ret < 0) { 1486 /* It might be okay to ignore write errors for guest 1487 * requests. If this is a deliberate copy-on-read 1488 * then we don't want to ignore the error. Simply 1489 * report it in all cases. 1490 */ 1491 goto err; 1492 } 1493 1494 if (!(flags & BDRV_REQ_PREFETCH)) { 1495 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1496 bounce_buffer + skip_bytes, 1497 MIN(pnum - skip_bytes, bytes - progress)); 1498 } 1499 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1500 /* Read directly into the destination */ 1501 ret = bdrv_driver_preadv(bs, offset + progress, 1502 MIN(pnum - skip_bytes, bytes - progress), 1503 qiov, qiov_offset + progress, 0); 1504 if (ret < 0) { 1505 goto err; 1506 } 1507 } 1508 1509 cluster_offset += pnum; 1510 cluster_bytes -= pnum; 1511 progress += pnum - skip_bytes; 1512 skip_bytes = 0; 1513 } 1514 ret = 0; 1515 1516 err: 1517 qemu_vfree(bounce_buffer); 1518 return ret; 1519 } 1520 1521 /* 1522 * Forwards an already correctly aligned request to the BlockDriver. This 1523 * handles copy on read, zeroing after EOF, and fragmentation of large 1524 * reads; any other features must be implemented by the caller. 1525 */ 1526 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1527 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1528 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1529 { 1530 BlockDriverState *bs = child->bs; 1531 int64_t total_bytes, max_bytes; 1532 int ret = 0; 1533 int64_t bytes_remaining = bytes; 1534 int max_transfer; 1535 1536 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1537 assert(is_power_of_2(align)); 1538 assert((offset & (align - 1)) == 0); 1539 assert((bytes & (align - 1)) == 0); 1540 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1541 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1542 align); 1543 1544 /* TODO: We would need a per-BDS .supported_read_flags and 1545 * potential fallback support, if we ever implement any read flags 1546 * to pass through to drivers. For now, there aren't any 1547 * passthrough flags. */ 1548 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH))); 1549 1550 /* Handle Copy on Read and associated serialisation */ 1551 if (flags & BDRV_REQ_COPY_ON_READ) { 1552 /* If we touch the same cluster it counts as an overlap. This 1553 * guarantees that allocating writes will be serialized and not race 1554 * with each other for the same cluster. For example, in copy-on-read 1555 * it ensures that the CoR read and write operations are atomic and 1556 * guest writes cannot interleave between them. */ 1557 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1558 } else { 1559 bdrv_wait_serialising_requests(req); 1560 } 1561 1562 if (flags & BDRV_REQ_COPY_ON_READ) { 1563 int64_t pnum; 1564 1565 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1566 flags &= ~BDRV_REQ_COPY_ON_READ; 1567 1568 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1569 if (ret < 0) { 1570 goto out; 1571 } 1572 1573 if (!ret || pnum != bytes) { 1574 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1575 qiov, qiov_offset, flags); 1576 goto out; 1577 } else if (flags & BDRV_REQ_PREFETCH) { 1578 goto out; 1579 } 1580 } 1581 1582 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1583 total_bytes = bdrv_getlength(bs); 1584 if (total_bytes < 0) { 1585 ret = total_bytes; 1586 goto out; 1587 } 1588 1589 assert(!(flags & ~bs->supported_read_flags)); 1590 1591 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1592 if (bytes <= max_bytes && bytes <= max_transfer) { 1593 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1594 goto out; 1595 } 1596 1597 while (bytes_remaining) { 1598 int64_t num; 1599 1600 if (max_bytes) { 1601 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1602 assert(num); 1603 1604 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1605 num, qiov, 1606 qiov_offset + bytes - bytes_remaining, 1607 flags); 1608 max_bytes -= num; 1609 } else { 1610 num = bytes_remaining; 1611 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1612 0, bytes_remaining); 1613 } 1614 if (ret < 0) { 1615 goto out; 1616 } 1617 bytes_remaining -= num; 1618 } 1619 1620 out: 1621 return ret < 0 ? ret : 0; 1622 } 1623 1624 /* 1625 * Request padding 1626 * 1627 * |<---- align ----->| |<----- align ---->| 1628 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1629 * | | | | | | 1630 * -*----------$-------*-------- ... --------*-----$------------*--- 1631 * | | | | | | 1632 * | offset | | end | 1633 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1634 * [buf ... ) [tail_buf ) 1635 * 1636 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1637 * is placed at the beginning of @buf and @tail at the @end. 1638 * 1639 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1640 * around tail, if tail exists. 1641 * 1642 * @merge_reads is true for small requests, 1643 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1644 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1645 */ 1646 typedef struct BdrvRequestPadding { 1647 uint8_t *buf; 1648 size_t buf_len; 1649 uint8_t *tail_buf; 1650 size_t head; 1651 size_t tail; 1652 bool merge_reads; 1653 QEMUIOVector local_qiov; 1654 } BdrvRequestPadding; 1655 1656 static bool bdrv_init_padding(BlockDriverState *bs, 1657 int64_t offset, int64_t bytes, 1658 BdrvRequestPadding *pad) 1659 { 1660 int64_t align = bs->bl.request_alignment; 1661 int64_t sum; 1662 1663 bdrv_check_request(offset, bytes, &error_abort); 1664 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1665 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1666 1667 memset(pad, 0, sizeof(*pad)); 1668 1669 pad->head = offset & (align - 1); 1670 pad->tail = ((offset + bytes) & (align - 1)); 1671 if (pad->tail) { 1672 pad->tail = align - pad->tail; 1673 } 1674 1675 if (!pad->head && !pad->tail) { 1676 return false; 1677 } 1678 1679 assert(bytes); /* Nothing good in aligning zero-length requests */ 1680 1681 sum = pad->head + bytes + pad->tail; 1682 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1683 pad->buf = qemu_blockalign(bs, pad->buf_len); 1684 pad->merge_reads = sum == pad->buf_len; 1685 if (pad->tail) { 1686 pad->tail_buf = pad->buf + pad->buf_len - align; 1687 } 1688 1689 return true; 1690 } 1691 1692 static int bdrv_padding_rmw_read(BdrvChild *child, 1693 BdrvTrackedRequest *req, 1694 BdrvRequestPadding *pad, 1695 bool zero_middle) 1696 { 1697 QEMUIOVector local_qiov; 1698 BlockDriverState *bs = child->bs; 1699 uint64_t align = bs->bl.request_alignment; 1700 int ret; 1701 1702 assert(req->serialising && pad->buf); 1703 1704 if (pad->head || pad->merge_reads) { 1705 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1706 1707 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1708 1709 if (pad->head) { 1710 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1711 } 1712 if (pad->merge_reads && pad->tail) { 1713 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1714 } 1715 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1716 align, &local_qiov, 0, 0); 1717 if (ret < 0) { 1718 return ret; 1719 } 1720 if (pad->head) { 1721 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1722 } 1723 if (pad->merge_reads && pad->tail) { 1724 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1725 } 1726 1727 if (pad->merge_reads) { 1728 goto zero_mem; 1729 } 1730 } 1731 1732 if (pad->tail) { 1733 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1734 1735 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1736 ret = bdrv_aligned_preadv( 1737 child, req, 1738 req->overlap_offset + req->overlap_bytes - align, 1739 align, align, &local_qiov, 0, 0); 1740 if (ret < 0) { 1741 return ret; 1742 } 1743 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1744 } 1745 1746 zero_mem: 1747 if (zero_middle) { 1748 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1749 } 1750 1751 return 0; 1752 } 1753 1754 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1755 { 1756 if (pad->buf) { 1757 qemu_vfree(pad->buf); 1758 qemu_iovec_destroy(&pad->local_qiov); 1759 } 1760 memset(pad, 0, sizeof(*pad)); 1761 } 1762 1763 /* 1764 * bdrv_pad_request 1765 * 1766 * Exchange request parameters with padded request if needed. Don't include RMW 1767 * read of padding, bdrv_padding_rmw_read() should be called separately if 1768 * needed. 1769 * 1770 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1771 * - on function start they represent original request 1772 * - on failure or when padding is not needed they are unchanged 1773 * - on success when padding is needed they represent padded request 1774 */ 1775 static int bdrv_pad_request(BlockDriverState *bs, 1776 QEMUIOVector **qiov, size_t *qiov_offset, 1777 int64_t *offset, int64_t *bytes, 1778 BdrvRequestPadding *pad, bool *padded) 1779 { 1780 int ret; 1781 1782 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1783 1784 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1785 if (padded) { 1786 *padded = false; 1787 } 1788 return 0; 1789 } 1790 1791 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1792 *qiov, *qiov_offset, *bytes, 1793 pad->buf + pad->buf_len - pad->tail, 1794 pad->tail); 1795 if (ret < 0) { 1796 bdrv_padding_destroy(pad); 1797 return ret; 1798 } 1799 *bytes += pad->head + pad->tail; 1800 *offset -= pad->head; 1801 *qiov = &pad->local_qiov; 1802 *qiov_offset = 0; 1803 if (padded) { 1804 *padded = true; 1805 } 1806 1807 return 0; 1808 } 1809 1810 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1811 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1812 BdrvRequestFlags flags) 1813 { 1814 IO_CODE(); 1815 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1816 } 1817 1818 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1819 int64_t offset, int64_t bytes, 1820 QEMUIOVector *qiov, size_t qiov_offset, 1821 BdrvRequestFlags flags) 1822 { 1823 BlockDriverState *bs = child->bs; 1824 BdrvTrackedRequest req; 1825 BdrvRequestPadding pad; 1826 int ret; 1827 IO_CODE(); 1828 1829 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1830 1831 if (!bdrv_is_inserted(bs)) { 1832 return -ENOMEDIUM; 1833 } 1834 1835 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1836 if (ret < 0) { 1837 return ret; 1838 } 1839 1840 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1841 /* 1842 * Aligning zero request is nonsense. Even if driver has special meaning 1843 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1844 * it to driver due to request_alignment. 1845 * 1846 * Still, no reason to return an error if someone do unaligned 1847 * zero-length read occasionally. 1848 */ 1849 return 0; 1850 } 1851 1852 bdrv_inc_in_flight(bs); 1853 1854 /* Don't do copy-on-read if we read data before write operation */ 1855 if (qatomic_read(&bs->copy_on_read)) { 1856 flags |= BDRV_REQ_COPY_ON_READ; 1857 } 1858 1859 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 1860 NULL); 1861 if (ret < 0) { 1862 goto fail; 1863 } 1864 1865 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1866 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1867 bs->bl.request_alignment, 1868 qiov, qiov_offset, flags); 1869 tracked_request_end(&req); 1870 bdrv_padding_destroy(&pad); 1871 1872 fail: 1873 bdrv_dec_in_flight(bs); 1874 1875 return ret; 1876 } 1877 1878 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1879 int64_t offset, int64_t bytes, BdrvRequestFlags flags) 1880 { 1881 BlockDriver *drv = bs->drv; 1882 QEMUIOVector qiov; 1883 void *buf = NULL; 1884 int ret = 0; 1885 bool need_flush = false; 1886 int head = 0; 1887 int tail = 0; 1888 1889 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1890 INT64_MAX); 1891 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1892 bs->bl.request_alignment); 1893 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1894 1895 bdrv_check_request(offset, bytes, &error_abort); 1896 1897 if (!drv) { 1898 return -ENOMEDIUM; 1899 } 1900 1901 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1902 return -ENOTSUP; 1903 } 1904 1905 /* Invalidate the cached block-status data range if this write overlaps */ 1906 bdrv_bsc_invalidate_range(bs, offset, bytes); 1907 1908 assert(alignment % bs->bl.request_alignment == 0); 1909 head = offset % alignment; 1910 tail = (offset + bytes) % alignment; 1911 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1912 assert(max_write_zeroes >= bs->bl.request_alignment); 1913 1914 while (bytes > 0 && !ret) { 1915 int64_t num = bytes; 1916 1917 /* Align request. Block drivers can expect the "bulk" of the request 1918 * to be aligned, and that unaligned requests do not cross cluster 1919 * boundaries. 1920 */ 1921 if (head) { 1922 /* Make a small request up to the first aligned sector. For 1923 * convenience, limit this request to max_transfer even if 1924 * we don't need to fall back to writes. */ 1925 num = MIN(MIN(bytes, max_transfer), alignment - head); 1926 head = (head + num) % alignment; 1927 assert(num < max_write_zeroes); 1928 } else if (tail && num > alignment) { 1929 /* Shorten the request to the last aligned sector. */ 1930 num -= tail; 1931 } 1932 1933 /* limit request size */ 1934 if (num > max_write_zeroes) { 1935 num = max_write_zeroes; 1936 } 1937 1938 ret = -ENOTSUP; 1939 /* First try the efficient write zeroes operation */ 1940 if (drv->bdrv_co_pwrite_zeroes) { 1941 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1942 flags & bs->supported_zero_flags); 1943 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1944 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1945 need_flush = true; 1946 } 1947 } else { 1948 assert(!bs->supported_zero_flags); 1949 } 1950 1951 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1952 /* Fall back to bounce buffer if write zeroes is unsupported */ 1953 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1954 1955 if ((flags & BDRV_REQ_FUA) && 1956 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1957 /* No need for bdrv_driver_pwrite() to do a fallback 1958 * flush on each chunk; use just one at the end */ 1959 write_flags &= ~BDRV_REQ_FUA; 1960 need_flush = true; 1961 } 1962 num = MIN(num, max_transfer); 1963 if (buf == NULL) { 1964 buf = qemu_try_blockalign0(bs, num); 1965 if (buf == NULL) { 1966 ret = -ENOMEM; 1967 goto fail; 1968 } 1969 } 1970 qemu_iovec_init_buf(&qiov, buf, num); 1971 1972 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1973 1974 /* Keep bounce buffer around if it is big enough for all 1975 * all future requests. 1976 */ 1977 if (num < max_transfer) { 1978 qemu_vfree(buf); 1979 buf = NULL; 1980 } 1981 } 1982 1983 offset += num; 1984 bytes -= num; 1985 } 1986 1987 fail: 1988 if (ret == 0 && need_flush) { 1989 ret = bdrv_co_flush(bs); 1990 } 1991 qemu_vfree(buf); 1992 return ret; 1993 } 1994 1995 static inline int coroutine_fn 1996 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1997 BdrvTrackedRequest *req, int flags) 1998 { 1999 BlockDriverState *bs = child->bs; 2000 2001 bdrv_check_request(offset, bytes, &error_abort); 2002 2003 if (bdrv_is_read_only(bs)) { 2004 return -EPERM; 2005 } 2006 2007 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2008 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 2009 assert(!(flags & ~BDRV_REQ_MASK)); 2010 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 2011 2012 if (flags & BDRV_REQ_SERIALISING) { 2013 QEMU_LOCK_GUARD(&bs->reqs_lock); 2014 2015 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 2016 2017 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 2018 return -EBUSY; 2019 } 2020 2021 bdrv_wait_serialising_requests_locked(req); 2022 } else { 2023 bdrv_wait_serialising_requests(req); 2024 } 2025 2026 assert(req->overlap_offset <= offset); 2027 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 2028 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 2029 child->perm & BLK_PERM_RESIZE); 2030 2031 switch (req->type) { 2032 case BDRV_TRACKED_WRITE: 2033 case BDRV_TRACKED_DISCARD: 2034 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 2035 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 2036 } else { 2037 assert(child->perm & BLK_PERM_WRITE); 2038 } 2039 bdrv_write_threshold_check_write(bs, offset, bytes); 2040 return 0; 2041 case BDRV_TRACKED_TRUNCATE: 2042 assert(child->perm & BLK_PERM_RESIZE); 2043 return 0; 2044 default: 2045 abort(); 2046 } 2047 } 2048 2049 static inline void coroutine_fn 2050 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2051 BdrvTrackedRequest *req, int ret) 2052 { 2053 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2054 BlockDriverState *bs = child->bs; 2055 2056 bdrv_check_request(offset, bytes, &error_abort); 2057 2058 qatomic_inc(&bs->write_gen); 2059 2060 /* 2061 * Discard cannot extend the image, but in error handling cases, such as 2062 * when reverting a qcow2 cluster allocation, the discarded range can pass 2063 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2064 * here. Instead, just skip it, since semantically a discard request 2065 * beyond EOF cannot expand the image anyway. 2066 */ 2067 if (ret == 0 && 2068 (req->type == BDRV_TRACKED_TRUNCATE || 2069 end_sector > bs->total_sectors) && 2070 req->type != BDRV_TRACKED_DISCARD) { 2071 bs->total_sectors = end_sector; 2072 bdrv_parent_cb_resize(bs); 2073 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2074 } 2075 if (req->bytes) { 2076 switch (req->type) { 2077 case BDRV_TRACKED_WRITE: 2078 stat64_max(&bs->wr_highest_offset, offset + bytes); 2079 /* fall through, to set dirty bits */ 2080 case BDRV_TRACKED_DISCARD: 2081 bdrv_set_dirty(bs, offset, bytes); 2082 break; 2083 default: 2084 break; 2085 } 2086 } 2087 } 2088 2089 /* 2090 * Forwards an already correctly aligned write request to the BlockDriver, 2091 * after possibly fragmenting it. 2092 */ 2093 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 2094 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 2095 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, 2096 BdrvRequestFlags flags) 2097 { 2098 BlockDriverState *bs = child->bs; 2099 BlockDriver *drv = bs->drv; 2100 int ret; 2101 2102 int64_t bytes_remaining = bytes; 2103 int max_transfer; 2104 2105 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2106 2107 if (!drv) { 2108 return -ENOMEDIUM; 2109 } 2110 2111 if (bdrv_has_readonly_bitmaps(bs)) { 2112 return -EPERM; 2113 } 2114 2115 assert(is_power_of_2(align)); 2116 assert((offset & (align - 1)) == 0); 2117 assert((bytes & (align - 1)) == 0); 2118 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2119 align); 2120 2121 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2122 2123 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2124 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2125 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2126 flags |= BDRV_REQ_ZERO_WRITE; 2127 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2128 flags |= BDRV_REQ_MAY_UNMAP; 2129 } 2130 } 2131 2132 if (ret < 0) { 2133 /* Do nothing, write notifier decided to fail this request */ 2134 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2135 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2136 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2137 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2138 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2139 qiov, qiov_offset); 2140 } else if (bytes <= max_transfer) { 2141 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2142 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2143 } else { 2144 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2145 while (bytes_remaining) { 2146 int num = MIN(bytes_remaining, max_transfer); 2147 int local_flags = flags; 2148 2149 assert(num); 2150 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2151 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2152 /* If FUA is going to be emulated by flush, we only 2153 * need to flush on the last iteration */ 2154 local_flags &= ~BDRV_REQ_FUA; 2155 } 2156 2157 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2158 num, qiov, 2159 qiov_offset + bytes - bytes_remaining, 2160 local_flags); 2161 if (ret < 0) { 2162 break; 2163 } 2164 bytes_remaining -= num; 2165 } 2166 } 2167 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 2168 2169 if (ret >= 0) { 2170 ret = 0; 2171 } 2172 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2173 2174 return ret; 2175 } 2176 2177 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 2178 int64_t offset, 2179 int64_t bytes, 2180 BdrvRequestFlags flags, 2181 BdrvTrackedRequest *req) 2182 { 2183 BlockDriverState *bs = child->bs; 2184 QEMUIOVector local_qiov; 2185 uint64_t align = bs->bl.request_alignment; 2186 int ret = 0; 2187 bool padding; 2188 BdrvRequestPadding pad; 2189 2190 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2191 if (padding) { 2192 assert(!(flags & BDRV_REQ_NO_WAIT)); 2193 bdrv_make_request_serialising(req, align); 2194 2195 bdrv_padding_rmw_read(child, req, &pad, true); 2196 2197 if (pad.head || pad.merge_reads) { 2198 int64_t aligned_offset = offset & ~(align - 1); 2199 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2200 2201 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2202 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2203 align, &local_qiov, 0, 2204 flags & ~BDRV_REQ_ZERO_WRITE); 2205 if (ret < 0 || pad.merge_reads) { 2206 /* Error or all work is done */ 2207 goto out; 2208 } 2209 offset += write_bytes - pad.head; 2210 bytes -= write_bytes - pad.head; 2211 } 2212 } 2213 2214 assert(!bytes || (offset & (align - 1)) == 0); 2215 if (bytes >= align) { 2216 /* Write the aligned part in the middle. */ 2217 int64_t aligned_bytes = bytes & ~(align - 1); 2218 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2219 NULL, 0, flags); 2220 if (ret < 0) { 2221 goto out; 2222 } 2223 bytes -= aligned_bytes; 2224 offset += aligned_bytes; 2225 } 2226 2227 assert(!bytes || (offset & (align - 1)) == 0); 2228 if (bytes) { 2229 assert(align == pad.tail + bytes); 2230 2231 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2232 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2233 &local_qiov, 0, 2234 flags & ~BDRV_REQ_ZERO_WRITE); 2235 } 2236 2237 out: 2238 bdrv_padding_destroy(&pad); 2239 2240 return ret; 2241 } 2242 2243 /* 2244 * Handle a write request in coroutine context 2245 */ 2246 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2247 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2248 BdrvRequestFlags flags) 2249 { 2250 IO_CODE(); 2251 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2252 } 2253 2254 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2255 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2256 BdrvRequestFlags flags) 2257 { 2258 BlockDriverState *bs = child->bs; 2259 BdrvTrackedRequest req; 2260 uint64_t align = bs->bl.request_alignment; 2261 BdrvRequestPadding pad; 2262 int ret; 2263 bool padded = false; 2264 IO_CODE(); 2265 2266 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2267 2268 if (!bdrv_is_inserted(bs)) { 2269 return -ENOMEDIUM; 2270 } 2271 2272 if (flags & BDRV_REQ_ZERO_WRITE) { 2273 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2274 } else { 2275 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2276 } 2277 if (ret < 0) { 2278 return ret; 2279 } 2280 2281 /* If the request is misaligned then we can't make it efficient */ 2282 if ((flags & BDRV_REQ_NO_FALLBACK) && 2283 !QEMU_IS_ALIGNED(offset | bytes, align)) 2284 { 2285 return -ENOTSUP; 2286 } 2287 2288 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2289 /* 2290 * Aligning zero request is nonsense. Even if driver has special meaning 2291 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2292 * it to driver due to request_alignment. 2293 * 2294 * Still, no reason to return an error if someone do unaligned 2295 * zero-length write occasionally. 2296 */ 2297 return 0; 2298 } 2299 2300 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2301 /* 2302 * Pad request for following read-modify-write cycle. 2303 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2304 * alignment only if there is no ZERO flag. 2305 */ 2306 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 2307 &padded); 2308 if (ret < 0) { 2309 return ret; 2310 } 2311 } 2312 2313 bdrv_inc_in_flight(bs); 2314 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2315 2316 if (flags & BDRV_REQ_ZERO_WRITE) { 2317 assert(!padded); 2318 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2319 goto out; 2320 } 2321 2322 if (padded) { 2323 /* 2324 * Request was unaligned to request_alignment and therefore 2325 * padded. We are going to do read-modify-write, and must 2326 * serialize the request to prevent interactions of the 2327 * widened region with other transactions. 2328 */ 2329 assert(!(flags & BDRV_REQ_NO_WAIT)); 2330 bdrv_make_request_serialising(&req, align); 2331 bdrv_padding_rmw_read(child, &req, &pad, false); 2332 } 2333 2334 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2335 qiov, qiov_offset, flags); 2336 2337 bdrv_padding_destroy(&pad); 2338 2339 out: 2340 tracked_request_end(&req); 2341 bdrv_dec_in_flight(bs); 2342 2343 return ret; 2344 } 2345 2346 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2347 int64_t bytes, BdrvRequestFlags flags) 2348 { 2349 IO_CODE(); 2350 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2351 2352 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2353 flags &= ~BDRV_REQ_MAY_UNMAP; 2354 } 2355 2356 return bdrv_co_pwritev(child, offset, bytes, NULL, 2357 BDRV_REQ_ZERO_WRITE | flags); 2358 } 2359 2360 /* 2361 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2362 */ 2363 int bdrv_flush_all(void) 2364 { 2365 BdrvNextIterator it; 2366 BlockDriverState *bs = NULL; 2367 int result = 0; 2368 2369 GLOBAL_STATE_CODE(); 2370 2371 /* 2372 * bdrv queue is managed by record/replay, 2373 * creating new flush request for stopping 2374 * the VM may break the determinism 2375 */ 2376 if (replay_events_enabled()) { 2377 return result; 2378 } 2379 2380 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2381 AioContext *aio_context = bdrv_get_aio_context(bs); 2382 int ret; 2383 2384 aio_context_acquire(aio_context); 2385 ret = bdrv_flush(bs); 2386 if (ret < 0 && !result) { 2387 result = ret; 2388 } 2389 aio_context_release(aio_context); 2390 } 2391 2392 return result; 2393 } 2394 2395 /* 2396 * Returns the allocation status of the specified sectors. 2397 * Drivers not implementing the functionality are assumed to not support 2398 * backing files, hence all their sectors are reported as allocated. 2399 * 2400 * If 'want_zero' is true, the caller is querying for mapping 2401 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2402 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2403 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2404 * 2405 * If 'offset' is beyond the end of the disk image the return value is 2406 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2407 * 2408 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2409 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2410 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2411 * 2412 * 'pnum' is set to the number of bytes (including and immediately 2413 * following the specified offset) that are easily known to be in the 2414 * same allocated/unallocated state. Note that a second call starting 2415 * at the original offset plus returned pnum may have the same status. 2416 * The returned value is non-zero on success except at end-of-file. 2417 * 2418 * Returns negative errno on failure. Otherwise, if the 2419 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2420 * set to the host mapping and BDS corresponding to the guest offset. 2421 */ 2422 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2423 bool want_zero, 2424 int64_t offset, int64_t bytes, 2425 int64_t *pnum, int64_t *map, 2426 BlockDriverState **file) 2427 { 2428 int64_t total_size; 2429 int64_t n; /* bytes */ 2430 int ret; 2431 int64_t local_map = 0; 2432 BlockDriverState *local_file = NULL; 2433 int64_t aligned_offset, aligned_bytes; 2434 uint32_t align; 2435 bool has_filtered_child; 2436 2437 assert(pnum); 2438 *pnum = 0; 2439 total_size = bdrv_getlength(bs); 2440 if (total_size < 0) { 2441 ret = total_size; 2442 goto early_out; 2443 } 2444 2445 if (offset >= total_size) { 2446 ret = BDRV_BLOCK_EOF; 2447 goto early_out; 2448 } 2449 if (!bytes) { 2450 ret = 0; 2451 goto early_out; 2452 } 2453 2454 n = total_size - offset; 2455 if (n < bytes) { 2456 bytes = n; 2457 } 2458 2459 /* Must be non-NULL or bdrv_getlength() would have failed */ 2460 assert(bs->drv); 2461 has_filtered_child = bdrv_filter_child(bs); 2462 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2463 *pnum = bytes; 2464 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2465 if (offset + bytes == total_size) { 2466 ret |= BDRV_BLOCK_EOF; 2467 } 2468 if (bs->drv->protocol_name) { 2469 ret |= BDRV_BLOCK_OFFSET_VALID; 2470 local_map = offset; 2471 local_file = bs; 2472 } 2473 goto early_out; 2474 } 2475 2476 bdrv_inc_in_flight(bs); 2477 2478 /* Round out to request_alignment boundaries */ 2479 align = bs->bl.request_alignment; 2480 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2481 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2482 2483 if (bs->drv->bdrv_co_block_status) { 2484 /* 2485 * Use the block-status cache only for protocol nodes: Format 2486 * drivers are generally quick to inquire the status, but protocol 2487 * drivers often need to get information from outside of qemu, so 2488 * we do not have control over the actual implementation. There 2489 * have been cases where inquiring the status took an unreasonably 2490 * long time, and we can do nothing in qemu to fix it. 2491 * This is especially problematic for images with large data areas, 2492 * because finding the few holes in them and giving them special 2493 * treatment does not gain much performance. Therefore, we try to 2494 * cache the last-identified data region. 2495 * 2496 * Second, limiting ourselves to protocol nodes allows us to assume 2497 * the block status for data regions to be DATA | OFFSET_VALID, and 2498 * that the host offset is the same as the guest offset. 2499 * 2500 * Note that it is possible that external writers zero parts of 2501 * the cached regions without the cache being invalidated, and so 2502 * we may report zeroes as data. This is not catastrophic, 2503 * however, because reporting zeroes as data is fine. 2504 */ 2505 if (QLIST_EMPTY(&bs->children) && 2506 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2507 { 2508 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2509 local_file = bs; 2510 local_map = aligned_offset; 2511 } else { 2512 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2513 aligned_bytes, pnum, &local_map, 2514 &local_file); 2515 2516 /* 2517 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2518 * the cache is queried above. Technically, we do not need to check 2519 * it here; the worst that can happen is that we fill the cache for 2520 * non-protocol nodes, and then it is never used. However, filling 2521 * the cache requires an RCU update, so double check here to avoid 2522 * such an update if possible. 2523 * 2524 * Check want_zero, because we only want to update the cache when we 2525 * have accurate information about what is zero and what is data. 2526 */ 2527 if (want_zero && 2528 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2529 QLIST_EMPTY(&bs->children)) 2530 { 2531 /* 2532 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2533 * returned local_map value must be the same as the offset we 2534 * have passed (aligned_offset), and local_bs must be the node 2535 * itself. 2536 * Assert this, because we follow this rule when reading from 2537 * the cache (see the `local_file = bs` and 2538 * `local_map = aligned_offset` assignments above), and the 2539 * result the cache delivers must be the same as the driver 2540 * would deliver. 2541 */ 2542 assert(local_file == bs); 2543 assert(local_map == aligned_offset); 2544 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2545 } 2546 } 2547 } else { 2548 /* Default code for filters */ 2549 2550 local_file = bdrv_filter_bs(bs); 2551 assert(local_file); 2552 2553 *pnum = aligned_bytes; 2554 local_map = aligned_offset; 2555 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2556 } 2557 if (ret < 0) { 2558 *pnum = 0; 2559 goto out; 2560 } 2561 2562 /* 2563 * The driver's result must be a non-zero multiple of request_alignment. 2564 * Clamp pnum and adjust map to original request. 2565 */ 2566 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2567 align > offset - aligned_offset); 2568 if (ret & BDRV_BLOCK_RECURSE) { 2569 assert(ret & BDRV_BLOCK_DATA); 2570 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2571 assert(!(ret & BDRV_BLOCK_ZERO)); 2572 } 2573 2574 *pnum -= offset - aligned_offset; 2575 if (*pnum > bytes) { 2576 *pnum = bytes; 2577 } 2578 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2579 local_map += offset - aligned_offset; 2580 } 2581 2582 if (ret & BDRV_BLOCK_RAW) { 2583 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2584 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2585 *pnum, pnum, &local_map, &local_file); 2586 goto out; 2587 } 2588 2589 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2590 ret |= BDRV_BLOCK_ALLOCATED; 2591 } else if (bs->drv->supports_backing) { 2592 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2593 2594 if (!cow_bs) { 2595 ret |= BDRV_BLOCK_ZERO; 2596 } else if (want_zero) { 2597 int64_t size2 = bdrv_getlength(cow_bs); 2598 2599 if (size2 >= 0 && offset >= size2) { 2600 ret |= BDRV_BLOCK_ZERO; 2601 } 2602 } 2603 } 2604 2605 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2606 local_file && local_file != bs && 2607 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2608 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2609 int64_t file_pnum; 2610 int ret2; 2611 2612 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2613 *pnum, &file_pnum, NULL, NULL); 2614 if (ret2 >= 0) { 2615 /* Ignore errors. This is just providing extra information, it 2616 * is useful but not necessary. 2617 */ 2618 if (ret2 & BDRV_BLOCK_EOF && 2619 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2620 /* 2621 * It is valid for the format block driver to read 2622 * beyond the end of the underlying file's current 2623 * size; such areas read as zero. 2624 */ 2625 ret |= BDRV_BLOCK_ZERO; 2626 } else { 2627 /* Limit request to the range reported by the protocol driver */ 2628 *pnum = file_pnum; 2629 ret |= (ret2 & BDRV_BLOCK_ZERO); 2630 } 2631 } 2632 } 2633 2634 out: 2635 bdrv_dec_in_flight(bs); 2636 if (ret >= 0 && offset + *pnum == total_size) { 2637 ret |= BDRV_BLOCK_EOF; 2638 } 2639 early_out: 2640 if (file) { 2641 *file = local_file; 2642 } 2643 if (map) { 2644 *map = local_map; 2645 } 2646 return ret; 2647 } 2648 2649 int coroutine_fn 2650 bdrv_co_common_block_status_above(BlockDriverState *bs, 2651 BlockDriverState *base, 2652 bool include_base, 2653 bool want_zero, 2654 int64_t offset, 2655 int64_t bytes, 2656 int64_t *pnum, 2657 int64_t *map, 2658 BlockDriverState **file, 2659 int *depth) 2660 { 2661 int ret; 2662 BlockDriverState *p; 2663 int64_t eof = 0; 2664 int dummy; 2665 IO_CODE(); 2666 2667 assert(!include_base || base); /* Can't include NULL base */ 2668 2669 if (!depth) { 2670 depth = &dummy; 2671 } 2672 *depth = 0; 2673 2674 if (!include_base && bs == base) { 2675 *pnum = bytes; 2676 return 0; 2677 } 2678 2679 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2680 ++*depth; 2681 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2682 return ret; 2683 } 2684 2685 if (ret & BDRV_BLOCK_EOF) { 2686 eof = offset + *pnum; 2687 } 2688 2689 assert(*pnum <= bytes); 2690 bytes = *pnum; 2691 2692 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2693 p = bdrv_filter_or_cow_bs(p)) 2694 { 2695 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2696 file); 2697 ++*depth; 2698 if (ret < 0) { 2699 return ret; 2700 } 2701 if (*pnum == 0) { 2702 /* 2703 * The top layer deferred to this layer, and because this layer is 2704 * short, any zeroes that we synthesize beyond EOF behave as if they 2705 * were allocated at this layer. 2706 * 2707 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2708 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2709 * below. 2710 */ 2711 assert(ret & BDRV_BLOCK_EOF); 2712 *pnum = bytes; 2713 if (file) { 2714 *file = p; 2715 } 2716 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2717 break; 2718 } 2719 if (ret & BDRV_BLOCK_ALLOCATED) { 2720 /* 2721 * We've found the node and the status, we must break. 2722 * 2723 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2724 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2725 * below. 2726 */ 2727 ret &= ~BDRV_BLOCK_EOF; 2728 break; 2729 } 2730 2731 if (p == base) { 2732 assert(include_base); 2733 break; 2734 } 2735 2736 /* 2737 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2738 * let's continue the diving. 2739 */ 2740 assert(*pnum <= bytes); 2741 bytes = *pnum; 2742 } 2743 2744 if (offset + *pnum == eof) { 2745 ret |= BDRV_BLOCK_EOF; 2746 } 2747 2748 return ret; 2749 } 2750 2751 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2752 int64_t offset, int64_t bytes, int64_t *pnum, 2753 int64_t *map, BlockDriverState **file) 2754 { 2755 IO_CODE(); 2756 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2757 pnum, map, file, NULL); 2758 } 2759 2760 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2761 int64_t *pnum, int64_t *map, BlockDriverState **file) 2762 { 2763 IO_CODE(); 2764 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2765 offset, bytes, pnum, map, file); 2766 } 2767 2768 /* 2769 * Check @bs (and its backing chain) to see if the range defined 2770 * by @offset and @bytes is known to read as zeroes. 2771 * Return 1 if that is the case, 0 otherwise and -errno on error. 2772 * This test is meant to be fast rather than accurate so returning 0 2773 * does not guarantee non-zero data. 2774 */ 2775 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2776 int64_t bytes) 2777 { 2778 int ret; 2779 int64_t pnum = bytes; 2780 IO_CODE(); 2781 2782 if (!bytes) { 2783 return 1; 2784 } 2785 2786 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset, 2787 bytes, &pnum, NULL, NULL, NULL); 2788 2789 if (ret < 0) { 2790 return ret; 2791 } 2792 2793 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2794 } 2795 2796 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2797 int64_t bytes, int64_t *pnum) 2798 { 2799 int ret; 2800 int64_t dummy; 2801 IO_CODE(); 2802 2803 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2804 bytes, pnum ? pnum : &dummy, NULL, 2805 NULL, NULL); 2806 if (ret < 0) { 2807 return ret; 2808 } 2809 return !!(ret & BDRV_BLOCK_ALLOCATED); 2810 } 2811 2812 /* 2813 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2814 * 2815 * Return a positive depth if (a prefix of) the given range is allocated 2816 * in any image between BASE and TOP (BASE is only included if include_base 2817 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2818 * BASE can be NULL to check if the given offset is allocated in any 2819 * image of the chain. Return 0 otherwise, or negative errno on 2820 * failure. 2821 * 2822 * 'pnum' is set to the number of bytes (including and immediately 2823 * following the specified offset) that are known to be in the same 2824 * allocated/unallocated state. Note that a subsequent call starting 2825 * at 'offset + *pnum' may return the same allocation status (in other 2826 * words, the result is not necessarily the maximum possible range); 2827 * but 'pnum' will only be 0 when end of file is reached. 2828 */ 2829 int bdrv_is_allocated_above(BlockDriverState *top, 2830 BlockDriverState *base, 2831 bool include_base, int64_t offset, 2832 int64_t bytes, int64_t *pnum) 2833 { 2834 int depth; 2835 int ret = bdrv_common_block_status_above(top, base, include_base, false, 2836 offset, bytes, pnum, NULL, NULL, 2837 &depth); 2838 IO_CODE(); 2839 if (ret < 0) { 2840 return ret; 2841 } 2842 2843 if (ret & BDRV_BLOCK_ALLOCATED) { 2844 return depth; 2845 } 2846 return 0; 2847 } 2848 2849 int coroutine_fn 2850 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2851 { 2852 BlockDriver *drv = bs->drv; 2853 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2854 int ret; 2855 IO_CODE(); 2856 2857 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2858 if (ret < 0) { 2859 return ret; 2860 } 2861 2862 if (!drv) { 2863 return -ENOMEDIUM; 2864 } 2865 2866 bdrv_inc_in_flight(bs); 2867 2868 if (drv->bdrv_load_vmstate) { 2869 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2870 } else if (child_bs) { 2871 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2872 } else { 2873 ret = -ENOTSUP; 2874 } 2875 2876 bdrv_dec_in_flight(bs); 2877 2878 return ret; 2879 } 2880 2881 int coroutine_fn 2882 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2883 { 2884 BlockDriver *drv = bs->drv; 2885 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2886 int ret; 2887 IO_CODE(); 2888 2889 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2890 if (ret < 0) { 2891 return ret; 2892 } 2893 2894 if (!drv) { 2895 return -ENOMEDIUM; 2896 } 2897 2898 bdrv_inc_in_flight(bs); 2899 2900 if (drv->bdrv_save_vmstate) { 2901 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2902 } else if (child_bs) { 2903 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2904 } else { 2905 ret = -ENOTSUP; 2906 } 2907 2908 bdrv_dec_in_flight(bs); 2909 2910 return ret; 2911 } 2912 2913 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2914 int64_t pos, int size) 2915 { 2916 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2917 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2918 IO_CODE(); 2919 2920 return ret < 0 ? ret : size; 2921 } 2922 2923 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2924 int64_t pos, int size) 2925 { 2926 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2927 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2928 IO_CODE(); 2929 2930 return ret < 0 ? ret : size; 2931 } 2932 2933 /**************************************************************/ 2934 /* async I/Os */ 2935 2936 void bdrv_aio_cancel(BlockAIOCB *acb) 2937 { 2938 IO_CODE(); 2939 qemu_aio_ref(acb); 2940 bdrv_aio_cancel_async(acb); 2941 while (acb->refcnt > 1) { 2942 if (acb->aiocb_info->get_aio_context) { 2943 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2944 } else if (acb->bs) { 2945 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2946 * assert that we're not using an I/O thread. Thread-safe 2947 * code should use bdrv_aio_cancel_async exclusively. 2948 */ 2949 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2950 aio_poll(bdrv_get_aio_context(acb->bs), true); 2951 } else { 2952 abort(); 2953 } 2954 } 2955 qemu_aio_unref(acb); 2956 } 2957 2958 /* Async version of aio cancel. The caller is not blocked if the acb implements 2959 * cancel_async, otherwise we do nothing and let the request normally complete. 2960 * In either case the completion callback must be called. */ 2961 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2962 { 2963 IO_CODE(); 2964 if (acb->aiocb_info->cancel_async) { 2965 acb->aiocb_info->cancel_async(acb); 2966 } 2967 } 2968 2969 /**************************************************************/ 2970 /* Coroutine block device emulation */ 2971 2972 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2973 { 2974 BdrvChild *primary_child = bdrv_primary_child(bs); 2975 BdrvChild *child; 2976 int current_gen; 2977 int ret = 0; 2978 IO_CODE(); 2979 2980 bdrv_inc_in_flight(bs); 2981 2982 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2983 bdrv_is_sg(bs)) { 2984 goto early_exit; 2985 } 2986 2987 qemu_co_mutex_lock(&bs->reqs_lock); 2988 current_gen = qatomic_read(&bs->write_gen); 2989 2990 /* Wait until any previous flushes are completed */ 2991 while (bs->active_flush_req) { 2992 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2993 } 2994 2995 /* Flushes reach this point in nondecreasing current_gen order. */ 2996 bs->active_flush_req = true; 2997 qemu_co_mutex_unlock(&bs->reqs_lock); 2998 2999 /* Write back all layers by calling one driver function */ 3000 if (bs->drv->bdrv_co_flush) { 3001 ret = bs->drv->bdrv_co_flush(bs); 3002 goto out; 3003 } 3004 3005 /* Write back cached data to the OS even with cache=unsafe */ 3006 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 3007 if (bs->drv->bdrv_co_flush_to_os) { 3008 ret = bs->drv->bdrv_co_flush_to_os(bs); 3009 if (ret < 0) { 3010 goto out; 3011 } 3012 } 3013 3014 /* But don't actually force it to the disk with cache=unsafe */ 3015 if (bs->open_flags & BDRV_O_NO_FLUSH) { 3016 goto flush_children; 3017 } 3018 3019 /* Check if we really need to flush anything */ 3020 if (bs->flushed_gen == current_gen) { 3021 goto flush_children; 3022 } 3023 3024 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 3025 if (!bs->drv) { 3026 /* bs->drv->bdrv_co_flush() might have ejected the BDS 3027 * (even in case of apparent success) */ 3028 ret = -ENOMEDIUM; 3029 goto out; 3030 } 3031 if (bs->drv->bdrv_co_flush_to_disk) { 3032 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3033 } else if (bs->drv->bdrv_aio_flush) { 3034 BlockAIOCB *acb; 3035 CoroutineIOCompletion co = { 3036 .coroutine = qemu_coroutine_self(), 3037 }; 3038 3039 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3040 if (acb == NULL) { 3041 ret = -EIO; 3042 } else { 3043 qemu_coroutine_yield(); 3044 ret = co.ret; 3045 } 3046 } else { 3047 /* 3048 * Some block drivers always operate in either writethrough or unsafe 3049 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3050 * know how the server works (because the behaviour is hardcoded or 3051 * depends on server-side configuration), so we can't ensure that 3052 * everything is safe on disk. Returning an error doesn't work because 3053 * that would break guests even if the server operates in writethrough 3054 * mode. 3055 * 3056 * Let's hope the user knows what he's doing. 3057 */ 3058 ret = 0; 3059 } 3060 3061 if (ret < 0) { 3062 goto out; 3063 } 3064 3065 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3066 * in the case of cache=unsafe, so there are no useless flushes. 3067 */ 3068 flush_children: 3069 ret = 0; 3070 QLIST_FOREACH(child, &bs->children, next) { 3071 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3072 int this_child_ret = bdrv_co_flush(child->bs); 3073 if (!ret) { 3074 ret = this_child_ret; 3075 } 3076 } 3077 } 3078 3079 out: 3080 /* Notify any pending flushes that we have completed */ 3081 if (ret == 0) { 3082 bs->flushed_gen = current_gen; 3083 } 3084 3085 qemu_co_mutex_lock(&bs->reqs_lock); 3086 bs->active_flush_req = false; 3087 /* Return value is ignored - it's ok if wait queue is empty */ 3088 qemu_co_queue_next(&bs->flush_queue); 3089 qemu_co_mutex_unlock(&bs->reqs_lock); 3090 3091 early_exit: 3092 bdrv_dec_in_flight(bs); 3093 return ret; 3094 } 3095 3096 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3097 int64_t bytes) 3098 { 3099 BdrvTrackedRequest req; 3100 int ret; 3101 int64_t max_pdiscard; 3102 int head, tail, align; 3103 BlockDriverState *bs = child->bs; 3104 IO_CODE(); 3105 3106 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 3107 return -ENOMEDIUM; 3108 } 3109 3110 if (bdrv_has_readonly_bitmaps(bs)) { 3111 return -EPERM; 3112 } 3113 3114 ret = bdrv_check_request(offset, bytes, NULL); 3115 if (ret < 0) { 3116 return ret; 3117 } 3118 3119 /* Do nothing if disabled. */ 3120 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3121 return 0; 3122 } 3123 3124 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 3125 return 0; 3126 } 3127 3128 /* Invalidate the cached block-status data range if this discard overlaps */ 3129 bdrv_bsc_invalidate_range(bs, offset, bytes); 3130 3131 /* Discard is advisory, but some devices track and coalesce 3132 * unaligned requests, so we must pass everything down rather than 3133 * round here. Still, most devices will just silently ignore 3134 * unaligned requests (by returning -ENOTSUP), so we must fragment 3135 * the request accordingly. */ 3136 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3137 assert(align % bs->bl.request_alignment == 0); 3138 head = offset % align; 3139 tail = (offset + bytes) % align; 3140 3141 bdrv_inc_in_flight(bs); 3142 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3143 3144 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3145 if (ret < 0) { 3146 goto out; 3147 } 3148 3149 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3150 align); 3151 assert(max_pdiscard >= bs->bl.request_alignment); 3152 3153 while (bytes > 0) { 3154 int64_t num = bytes; 3155 3156 if (head) { 3157 /* Make small requests to get to alignment boundaries. */ 3158 num = MIN(bytes, align - head); 3159 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3160 num %= bs->bl.request_alignment; 3161 } 3162 head = (head + num) % align; 3163 assert(num < max_pdiscard); 3164 } else if (tail) { 3165 if (num > align) { 3166 /* Shorten the request to the last aligned cluster. */ 3167 num -= tail; 3168 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3169 tail > bs->bl.request_alignment) { 3170 tail %= bs->bl.request_alignment; 3171 num -= tail; 3172 } 3173 } 3174 /* limit request size */ 3175 if (num > max_pdiscard) { 3176 num = max_pdiscard; 3177 } 3178 3179 if (!bs->drv) { 3180 ret = -ENOMEDIUM; 3181 goto out; 3182 } 3183 if (bs->drv->bdrv_co_pdiscard) { 3184 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3185 } else { 3186 BlockAIOCB *acb; 3187 CoroutineIOCompletion co = { 3188 .coroutine = qemu_coroutine_self(), 3189 }; 3190 3191 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3192 bdrv_co_io_em_complete, &co); 3193 if (acb == NULL) { 3194 ret = -EIO; 3195 goto out; 3196 } else { 3197 qemu_coroutine_yield(); 3198 ret = co.ret; 3199 } 3200 } 3201 if (ret && ret != -ENOTSUP) { 3202 goto out; 3203 } 3204 3205 offset += num; 3206 bytes -= num; 3207 } 3208 ret = 0; 3209 out: 3210 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3211 tracked_request_end(&req); 3212 bdrv_dec_in_flight(bs); 3213 return ret; 3214 } 3215 3216 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3217 { 3218 BlockDriver *drv = bs->drv; 3219 CoroutineIOCompletion co = { 3220 .coroutine = qemu_coroutine_self(), 3221 }; 3222 BlockAIOCB *acb; 3223 IO_CODE(); 3224 3225 bdrv_inc_in_flight(bs); 3226 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3227 co.ret = -ENOTSUP; 3228 goto out; 3229 } 3230 3231 if (drv->bdrv_co_ioctl) { 3232 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3233 } else { 3234 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3235 if (!acb) { 3236 co.ret = -ENOTSUP; 3237 goto out; 3238 } 3239 qemu_coroutine_yield(); 3240 } 3241 out: 3242 bdrv_dec_in_flight(bs); 3243 return co.ret; 3244 } 3245 3246 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3247 { 3248 IO_CODE(); 3249 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3250 } 3251 3252 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3253 { 3254 IO_CODE(); 3255 return memset(qemu_blockalign(bs, size), 0, size); 3256 } 3257 3258 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3259 { 3260 size_t align = bdrv_opt_mem_align(bs); 3261 IO_CODE(); 3262 3263 /* Ensure that NULL is never returned on success */ 3264 assert(align > 0); 3265 if (size == 0) { 3266 size = align; 3267 } 3268 3269 return qemu_try_memalign(align, size); 3270 } 3271 3272 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3273 { 3274 void *mem = qemu_try_blockalign(bs, size); 3275 IO_CODE(); 3276 3277 if (mem) { 3278 memset(mem, 0, size); 3279 } 3280 3281 return mem; 3282 } 3283 3284 /* 3285 * Check if all memory in this vector is sector aligned. 3286 */ 3287 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 3288 { 3289 int i; 3290 size_t alignment = bdrv_min_mem_align(bs); 3291 IO_CODE(); 3292 3293 for (i = 0; i < qiov->niov; i++) { 3294 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 3295 return false; 3296 } 3297 if (qiov->iov[i].iov_len % alignment) { 3298 return false; 3299 } 3300 } 3301 3302 return true; 3303 } 3304 3305 void bdrv_io_plug(BlockDriverState *bs) 3306 { 3307 BdrvChild *child; 3308 IO_CODE(); 3309 3310 QLIST_FOREACH(child, &bs->children, next) { 3311 bdrv_io_plug(child->bs); 3312 } 3313 3314 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3315 BlockDriver *drv = bs->drv; 3316 if (drv && drv->bdrv_io_plug) { 3317 drv->bdrv_io_plug(bs); 3318 } 3319 } 3320 } 3321 3322 void bdrv_io_unplug(BlockDriverState *bs) 3323 { 3324 BdrvChild *child; 3325 IO_CODE(); 3326 3327 assert(bs->io_plugged); 3328 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3329 BlockDriver *drv = bs->drv; 3330 if (drv && drv->bdrv_io_unplug) { 3331 drv->bdrv_io_unplug(bs); 3332 } 3333 } 3334 3335 QLIST_FOREACH(child, &bs->children, next) { 3336 bdrv_io_unplug(child->bs); 3337 } 3338 } 3339 3340 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 3341 { 3342 BdrvChild *child; 3343 3344 GLOBAL_STATE_CODE(); 3345 if (bs->drv && bs->drv->bdrv_register_buf) { 3346 bs->drv->bdrv_register_buf(bs, host, size); 3347 } 3348 QLIST_FOREACH(child, &bs->children, next) { 3349 bdrv_register_buf(child->bs, host, size); 3350 } 3351 } 3352 3353 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 3354 { 3355 BdrvChild *child; 3356 3357 GLOBAL_STATE_CODE(); 3358 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3359 bs->drv->bdrv_unregister_buf(bs, host); 3360 } 3361 QLIST_FOREACH(child, &bs->children, next) { 3362 bdrv_unregister_buf(child->bs, host); 3363 } 3364 } 3365 3366 static int coroutine_fn bdrv_co_copy_range_internal( 3367 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3368 int64_t dst_offset, int64_t bytes, 3369 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3370 bool recurse_src) 3371 { 3372 BdrvTrackedRequest req; 3373 int ret; 3374 3375 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3376 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3377 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3378 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3379 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3380 3381 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) { 3382 return -ENOMEDIUM; 3383 } 3384 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3385 if (ret) { 3386 return ret; 3387 } 3388 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3389 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3390 } 3391 3392 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) { 3393 return -ENOMEDIUM; 3394 } 3395 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3396 if (ret) { 3397 return ret; 3398 } 3399 3400 if (!src->bs->drv->bdrv_co_copy_range_from 3401 || !dst->bs->drv->bdrv_co_copy_range_to 3402 || src->bs->encrypted || dst->bs->encrypted) { 3403 return -ENOTSUP; 3404 } 3405 3406 if (recurse_src) { 3407 bdrv_inc_in_flight(src->bs); 3408 tracked_request_begin(&req, src->bs, src_offset, bytes, 3409 BDRV_TRACKED_READ); 3410 3411 /* BDRV_REQ_SERIALISING is only for write operation */ 3412 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3413 bdrv_wait_serialising_requests(&req); 3414 3415 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3416 src, src_offset, 3417 dst, dst_offset, 3418 bytes, 3419 read_flags, write_flags); 3420 3421 tracked_request_end(&req); 3422 bdrv_dec_in_flight(src->bs); 3423 } else { 3424 bdrv_inc_in_flight(dst->bs); 3425 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3426 BDRV_TRACKED_WRITE); 3427 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3428 write_flags); 3429 if (!ret) { 3430 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3431 src, src_offset, 3432 dst, dst_offset, 3433 bytes, 3434 read_flags, write_flags); 3435 } 3436 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3437 tracked_request_end(&req); 3438 bdrv_dec_in_flight(dst->bs); 3439 } 3440 3441 return ret; 3442 } 3443 3444 /* Copy range from @src to @dst. 3445 * 3446 * See the comment of bdrv_co_copy_range for the parameter and return value 3447 * semantics. */ 3448 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3449 BdrvChild *dst, int64_t dst_offset, 3450 int64_t bytes, 3451 BdrvRequestFlags read_flags, 3452 BdrvRequestFlags write_flags) 3453 { 3454 IO_CODE(); 3455 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3456 read_flags, write_flags); 3457 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3458 bytes, read_flags, write_flags, true); 3459 } 3460 3461 /* Copy range from @src to @dst. 3462 * 3463 * See the comment of bdrv_co_copy_range for the parameter and return value 3464 * semantics. */ 3465 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3466 BdrvChild *dst, int64_t dst_offset, 3467 int64_t bytes, 3468 BdrvRequestFlags read_flags, 3469 BdrvRequestFlags write_flags) 3470 { 3471 IO_CODE(); 3472 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3473 read_flags, write_flags); 3474 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3475 bytes, read_flags, write_flags, false); 3476 } 3477 3478 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3479 BdrvChild *dst, int64_t dst_offset, 3480 int64_t bytes, BdrvRequestFlags read_flags, 3481 BdrvRequestFlags write_flags) 3482 { 3483 IO_CODE(); 3484 return bdrv_co_copy_range_from(src, src_offset, 3485 dst, dst_offset, 3486 bytes, read_flags, write_flags); 3487 } 3488 3489 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3490 { 3491 BdrvChild *c; 3492 QLIST_FOREACH(c, &bs->parents, next_parent) { 3493 if (c->klass->resize) { 3494 c->klass->resize(c); 3495 } 3496 } 3497 } 3498 3499 /** 3500 * Truncate file to 'offset' bytes (needed only for file protocols) 3501 * 3502 * If 'exact' is true, the file must be resized to exactly the given 3503 * 'offset'. Otherwise, it is sufficient for the node to be at least 3504 * 'offset' bytes in length. 3505 */ 3506 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3507 PreallocMode prealloc, BdrvRequestFlags flags, 3508 Error **errp) 3509 { 3510 BlockDriverState *bs = child->bs; 3511 BdrvChild *filtered, *backing; 3512 BlockDriver *drv = bs->drv; 3513 BdrvTrackedRequest req; 3514 int64_t old_size, new_bytes; 3515 int ret; 3516 IO_CODE(); 3517 3518 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3519 if (!drv) { 3520 error_setg(errp, "No medium inserted"); 3521 return -ENOMEDIUM; 3522 } 3523 if (offset < 0) { 3524 error_setg(errp, "Image size cannot be negative"); 3525 return -EINVAL; 3526 } 3527 3528 ret = bdrv_check_request(offset, 0, errp); 3529 if (ret < 0) { 3530 return ret; 3531 } 3532 3533 old_size = bdrv_getlength(bs); 3534 if (old_size < 0) { 3535 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3536 return old_size; 3537 } 3538 3539 if (bdrv_is_read_only(bs)) { 3540 error_setg(errp, "Image is read-only"); 3541 return -EACCES; 3542 } 3543 3544 if (offset > old_size) { 3545 new_bytes = offset - old_size; 3546 } else { 3547 new_bytes = 0; 3548 } 3549 3550 bdrv_inc_in_flight(bs); 3551 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3552 BDRV_TRACKED_TRUNCATE); 3553 3554 /* If we are growing the image and potentially using preallocation for the 3555 * new area, we need to make sure that no write requests are made to it 3556 * concurrently or they might be overwritten by preallocation. */ 3557 if (new_bytes) { 3558 bdrv_make_request_serialising(&req, 1); 3559 } 3560 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3561 0); 3562 if (ret < 0) { 3563 error_setg_errno(errp, -ret, 3564 "Failed to prepare request for truncation"); 3565 goto out; 3566 } 3567 3568 filtered = bdrv_filter_child(bs); 3569 backing = bdrv_cow_child(bs); 3570 3571 /* 3572 * If the image has a backing file that is large enough that it would 3573 * provide data for the new area, we cannot leave it unallocated because 3574 * then the backing file content would become visible. Instead, zero-fill 3575 * the new area. 3576 * 3577 * Note that if the image has a backing file, but was opened without the 3578 * backing file, taking care of keeping things consistent with that backing 3579 * file is the user's responsibility. 3580 */ 3581 if (new_bytes && backing) { 3582 int64_t backing_len; 3583 3584 backing_len = bdrv_getlength(backing->bs); 3585 if (backing_len < 0) { 3586 ret = backing_len; 3587 error_setg_errno(errp, -ret, "Could not get backing file size"); 3588 goto out; 3589 } 3590 3591 if (backing_len > old_size) { 3592 flags |= BDRV_REQ_ZERO_WRITE; 3593 } 3594 } 3595 3596 if (drv->bdrv_co_truncate) { 3597 if (flags & ~bs->supported_truncate_flags) { 3598 error_setg(errp, "Block driver does not support requested flags"); 3599 ret = -ENOTSUP; 3600 goto out; 3601 } 3602 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3603 } else if (filtered) { 3604 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3605 } else { 3606 error_setg(errp, "Image format driver does not support resize"); 3607 ret = -ENOTSUP; 3608 goto out; 3609 } 3610 if (ret < 0) { 3611 goto out; 3612 } 3613 3614 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3615 if (ret < 0) { 3616 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3617 } else { 3618 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3619 } 3620 /* It's possible that truncation succeeded but refresh_total_sectors 3621 * failed, but the latter doesn't affect how we should finish the request. 3622 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3623 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3624 3625 out: 3626 tracked_request_end(&req); 3627 bdrv_dec_in_flight(bs); 3628 3629 return ret; 3630 } 3631 3632 void bdrv_cancel_in_flight(BlockDriverState *bs) 3633 { 3634 GLOBAL_STATE_CODE(); 3635 if (!bs || !bs->drv) { 3636 return; 3637 } 3638 3639 if (bs->drv->bdrv_cancel_in_flight) { 3640 bs->drv->bdrv_cancel_in_flight(bs); 3641 } 3642 } 3643 3644 int coroutine_fn 3645 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3646 QEMUIOVector *qiov, size_t qiov_offset) 3647 { 3648 BlockDriverState *bs = child->bs; 3649 BlockDriver *drv = bs->drv; 3650 int ret; 3651 IO_CODE(); 3652 3653 if (!drv) { 3654 return -ENOMEDIUM; 3655 } 3656 3657 if (!drv->bdrv_co_preadv_snapshot) { 3658 return -ENOTSUP; 3659 } 3660 3661 bdrv_inc_in_flight(bs); 3662 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3663 bdrv_dec_in_flight(bs); 3664 3665 return ret; 3666 } 3667 3668 int coroutine_fn 3669 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3670 bool want_zero, int64_t offset, int64_t bytes, 3671 int64_t *pnum, int64_t *map, 3672 BlockDriverState **file) 3673 { 3674 BlockDriver *drv = bs->drv; 3675 int ret; 3676 IO_CODE(); 3677 3678 if (!drv) { 3679 return -ENOMEDIUM; 3680 } 3681 3682 if (!drv->bdrv_co_snapshot_block_status) { 3683 return -ENOTSUP; 3684 } 3685 3686 bdrv_inc_in_flight(bs); 3687 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3688 pnum, map, file); 3689 bdrv_dec_in_flight(bs); 3690 3691 return ret; 3692 } 3693 3694 int coroutine_fn 3695 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3696 { 3697 BlockDriver *drv = bs->drv; 3698 int ret; 3699 IO_CODE(); 3700 3701 if (!drv) { 3702 return -ENOMEDIUM; 3703 } 3704 3705 if (!drv->bdrv_co_pdiscard_snapshot) { 3706 return -ENOTSUP; 3707 } 3708 3709 bdrv_inc_in_flight(bs); 3710 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3711 bdrv_dec_in_flight(bs); 3712 3713 return ret; 3714 } 3715