1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/write-threshold.h" 34 #include "qemu/cutils.h" 35 #include "qemu/memalign.h" 36 #include "qapi/error.h" 37 #include "qemu/error-report.h" 38 #include "qemu/main-loop.h" 39 #include "sysemu/replay.h" 40 41 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 42 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 43 44 static void bdrv_parent_cb_resize(BlockDriverState *bs); 45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 46 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 47 48 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 49 bool ignore_bds_parents) 50 { 51 BdrvChild *c, *next; 52 53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 54 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 55 continue; 56 } 57 bdrv_parent_drained_begin_single(c, false); 58 } 59 } 60 61 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 62 int *drained_end_counter) 63 { 64 assert(c->parent_quiesce_counter > 0); 65 c->parent_quiesce_counter--; 66 if (c->klass->drained_end) { 67 c->klass->drained_end(c, drained_end_counter); 68 } 69 } 70 71 void bdrv_parent_drained_end_single(BdrvChild *c) 72 { 73 int drained_end_counter = 0; 74 AioContext *ctx = bdrv_child_get_parent_aio_context(c); 75 IO_OR_GS_CODE(); 76 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 77 AIO_WAIT_WHILE(ctx, qatomic_read(&drained_end_counter) > 0); 78 } 79 80 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 81 bool ignore_bds_parents, 82 int *drained_end_counter) 83 { 84 BdrvChild *c; 85 86 QLIST_FOREACH(c, &bs->parents, next_parent) { 87 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 88 continue; 89 } 90 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 91 } 92 } 93 94 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 95 { 96 if (c->klass->drained_poll) { 97 return c->klass->drained_poll(c); 98 } 99 return false; 100 } 101 102 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 103 bool ignore_bds_parents) 104 { 105 BdrvChild *c, *next; 106 bool busy = false; 107 108 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 109 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 110 continue; 111 } 112 busy |= bdrv_parent_drained_poll_single(c); 113 } 114 115 return busy; 116 } 117 118 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 119 { 120 AioContext *ctx = bdrv_child_get_parent_aio_context(c); 121 IO_OR_GS_CODE(); 122 c->parent_quiesce_counter++; 123 if (c->klass->drained_begin) { 124 c->klass->drained_begin(c); 125 } 126 if (poll) { 127 AIO_WAIT_WHILE(ctx, bdrv_parent_drained_poll_single(c)); 128 } 129 } 130 131 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 132 { 133 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 134 src->pdiscard_alignment); 135 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 136 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 137 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 138 src->max_hw_transfer); 139 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 140 src->opt_mem_alignment); 141 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 142 src->min_mem_alignment); 143 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 144 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 145 } 146 147 typedef struct BdrvRefreshLimitsState { 148 BlockDriverState *bs; 149 BlockLimits old_bl; 150 } BdrvRefreshLimitsState; 151 152 static void bdrv_refresh_limits_abort(void *opaque) 153 { 154 BdrvRefreshLimitsState *s = opaque; 155 156 s->bs->bl = s->old_bl; 157 } 158 159 static TransactionActionDrv bdrv_refresh_limits_drv = { 160 .abort = bdrv_refresh_limits_abort, 161 .clean = g_free, 162 }; 163 164 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 165 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 166 { 167 ERRP_GUARD(); 168 BlockDriver *drv = bs->drv; 169 BdrvChild *c; 170 bool have_limits; 171 172 GLOBAL_STATE_CODE(); 173 174 if (tran) { 175 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 176 *s = (BdrvRefreshLimitsState) { 177 .bs = bs, 178 .old_bl = bs->bl, 179 }; 180 tran_add(tran, &bdrv_refresh_limits_drv, s); 181 } 182 183 memset(&bs->bl, 0, sizeof(bs->bl)); 184 185 if (!drv) { 186 return; 187 } 188 189 /* Default alignment based on whether driver has byte interface */ 190 bs->bl.request_alignment = (drv->bdrv_co_preadv || 191 drv->bdrv_aio_preadv || 192 drv->bdrv_co_preadv_part) ? 1 : 512; 193 194 /* Take some limits from the children as a default */ 195 have_limits = false; 196 QLIST_FOREACH(c, &bs->children, next) { 197 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 198 { 199 bdrv_merge_limits(&bs->bl, &c->bs->bl); 200 have_limits = true; 201 } 202 } 203 204 if (!have_limits) { 205 bs->bl.min_mem_alignment = 512; 206 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 207 208 /* Safe default since most protocols use readv()/writev()/etc */ 209 bs->bl.max_iov = IOV_MAX; 210 } 211 212 /* Then let the driver override it */ 213 if (drv->bdrv_refresh_limits) { 214 drv->bdrv_refresh_limits(bs, errp); 215 if (*errp) { 216 return; 217 } 218 } 219 220 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 221 error_setg(errp, "Driver requires too large request alignment"); 222 } 223 } 224 225 /** 226 * The copy-on-read flag is actually a reference count so multiple users may 227 * use the feature without worrying about clobbering its previous state. 228 * Copy-on-read stays enabled until all users have called to disable it. 229 */ 230 void bdrv_enable_copy_on_read(BlockDriverState *bs) 231 { 232 IO_CODE(); 233 qatomic_inc(&bs->copy_on_read); 234 } 235 236 void bdrv_disable_copy_on_read(BlockDriverState *bs) 237 { 238 int old = qatomic_fetch_dec(&bs->copy_on_read); 239 IO_CODE(); 240 assert(old >= 1); 241 } 242 243 typedef struct { 244 Coroutine *co; 245 BlockDriverState *bs; 246 bool done; 247 bool begin; 248 bool recursive; 249 bool poll; 250 BdrvChild *parent; 251 bool ignore_bds_parents; 252 int *drained_end_counter; 253 } BdrvCoDrainData; 254 255 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 256 { 257 BdrvCoDrainData *data = opaque; 258 BlockDriverState *bs = data->bs; 259 260 if (data->begin) { 261 bs->drv->bdrv_co_drain_begin(bs); 262 } else { 263 bs->drv->bdrv_co_drain_end(bs); 264 } 265 266 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 267 qatomic_mb_set(&data->done, true); 268 if (!data->begin) { 269 qatomic_dec(data->drained_end_counter); 270 } 271 bdrv_dec_in_flight(bs); 272 273 g_free(data); 274 } 275 276 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 277 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 278 int *drained_end_counter) 279 { 280 BdrvCoDrainData *data; 281 282 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 283 (!begin && !bs->drv->bdrv_co_drain_end)) { 284 return; 285 } 286 287 data = g_new(BdrvCoDrainData, 1); 288 *data = (BdrvCoDrainData) { 289 .bs = bs, 290 .done = false, 291 .begin = begin, 292 .drained_end_counter = drained_end_counter, 293 }; 294 295 if (!begin) { 296 qatomic_inc(drained_end_counter); 297 } 298 299 /* Make sure the driver callback completes during the polling phase for 300 * drain_begin. */ 301 bdrv_inc_in_flight(bs); 302 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 303 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 304 } 305 306 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 307 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 308 BdrvChild *ignore_parent, bool ignore_bds_parents) 309 { 310 BdrvChild *child, *next; 311 IO_OR_GS_CODE(); 312 313 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 314 return true; 315 } 316 317 if (qatomic_read(&bs->in_flight)) { 318 return true; 319 } 320 321 if (recursive) { 322 assert(!ignore_bds_parents); 323 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 324 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 325 return true; 326 } 327 } 328 } 329 330 return false; 331 } 332 333 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 334 BdrvChild *ignore_parent) 335 { 336 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 337 } 338 339 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 340 BdrvChild *parent, bool ignore_bds_parents, 341 bool poll); 342 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 343 BdrvChild *parent, bool ignore_bds_parents, 344 int *drained_end_counter); 345 346 static void bdrv_co_drain_bh_cb(void *opaque) 347 { 348 BdrvCoDrainData *data = opaque; 349 Coroutine *co = data->co; 350 BlockDriverState *bs = data->bs; 351 352 if (bs) { 353 AioContext *ctx = bdrv_get_aio_context(bs); 354 aio_context_acquire(ctx); 355 bdrv_dec_in_flight(bs); 356 if (data->begin) { 357 assert(!data->drained_end_counter); 358 bdrv_do_drained_begin(bs, data->recursive, data->parent, 359 data->ignore_bds_parents, data->poll); 360 } else { 361 assert(!data->poll); 362 bdrv_do_drained_end(bs, data->recursive, data->parent, 363 data->ignore_bds_parents, 364 data->drained_end_counter); 365 } 366 aio_context_release(ctx); 367 } else { 368 assert(data->begin); 369 bdrv_drain_all_begin(); 370 } 371 372 data->done = true; 373 aio_co_wake(co); 374 } 375 376 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 377 bool begin, bool recursive, 378 BdrvChild *parent, 379 bool ignore_bds_parents, 380 bool poll, 381 int *drained_end_counter) 382 { 383 BdrvCoDrainData data; 384 Coroutine *self = qemu_coroutine_self(); 385 AioContext *ctx = bdrv_get_aio_context(bs); 386 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 387 388 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 389 * other coroutines run if they were queued by aio_co_enter(). */ 390 391 assert(qemu_in_coroutine()); 392 data = (BdrvCoDrainData) { 393 .co = self, 394 .bs = bs, 395 .done = false, 396 .begin = begin, 397 .recursive = recursive, 398 .parent = parent, 399 .ignore_bds_parents = ignore_bds_parents, 400 .poll = poll, 401 .drained_end_counter = drained_end_counter, 402 }; 403 404 if (bs) { 405 bdrv_inc_in_flight(bs); 406 } 407 408 /* 409 * Temporarily drop the lock across yield or we would get deadlocks. 410 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 411 * 412 * When we yield below, the lock for the current context will be 413 * released, so if this is actually the lock that protects bs, don't drop 414 * it a second time. 415 */ 416 if (ctx != co_ctx) { 417 aio_context_release(ctx); 418 } 419 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data); 420 421 qemu_coroutine_yield(); 422 /* If we are resumed from some other event (such as an aio completion or a 423 * timer callback), it is a bug in the caller that should be fixed. */ 424 assert(data.done); 425 426 /* Reaquire the AioContext of bs if we dropped it */ 427 if (ctx != co_ctx) { 428 aio_context_acquire(ctx); 429 } 430 } 431 432 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 433 BdrvChild *parent, bool ignore_bds_parents) 434 { 435 IO_OR_GS_CODE(); 436 assert(!qemu_in_coroutine()); 437 438 /* Stop things in parent-to-child order */ 439 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 440 aio_disable_external(bdrv_get_aio_context(bs)); 441 } 442 443 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 444 bdrv_drain_invoke(bs, true, NULL); 445 } 446 447 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 448 BdrvChild *parent, bool ignore_bds_parents, 449 bool poll) 450 { 451 BdrvChild *child, *next; 452 453 if (qemu_in_coroutine()) { 454 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 455 poll, NULL); 456 return; 457 } 458 459 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 460 461 if (recursive) { 462 assert(!ignore_bds_parents); 463 bs->recursive_quiesce_counter++; 464 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 465 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 466 false); 467 } 468 } 469 470 /* 471 * Wait for drained requests to finish. 472 * 473 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 474 * call is needed so things in this AioContext can make progress even 475 * though we don't return to the main AioContext loop - this automatically 476 * includes other nodes in the same AioContext and therefore all child 477 * nodes. 478 */ 479 if (poll) { 480 assert(!ignore_bds_parents); 481 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 482 } 483 } 484 485 void bdrv_drained_begin(BlockDriverState *bs) 486 { 487 IO_OR_GS_CODE(); 488 bdrv_do_drained_begin(bs, false, NULL, false, true); 489 } 490 491 void bdrv_subtree_drained_begin(BlockDriverState *bs) 492 { 493 IO_OR_GS_CODE(); 494 bdrv_do_drained_begin(bs, true, NULL, false, true); 495 } 496 497 /** 498 * This function does not poll, nor must any of its recursively called 499 * functions. The *drained_end_counter pointee will be incremented 500 * once for every background operation scheduled, and decremented once 501 * the operation settles. Therefore, the pointer must remain valid 502 * until the pointee reaches 0. That implies that whoever sets up the 503 * pointee has to poll until it is 0. 504 * 505 * We use atomic operations to access *drained_end_counter, because 506 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 507 * @bs may contain nodes in different AioContexts, 508 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 509 * regardless of which AioContext they are in. 510 */ 511 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 512 BdrvChild *parent, bool ignore_bds_parents, 513 int *drained_end_counter) 514 { 515 BdrvChild *child; 516 int old_quiesce_counter; 517 518 assert(drained_end_counter != NULL); 519 520 if (qemu_in_coroutine()) { 521 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 522 false, drained_end_counter); 523 return; 524 } 525 assert(bs->quiesce_counter > 0); 526 527 /* Re-enable things in child-to-parent order */ 528 bdrv_drain_invoke(bs, false, drained_end_counter); 529 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 530 drained_end_counter); 531 532 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 533 if (old_quiesce_counter == 1) { 534 aio_enable_external(bdrv_get_aio_context(bs)); 535 } 536 537 if (recursive) { 538 assert(!ignore_bds_parents); 539 bs->recursive_quiesce_counter--; 540 QLIST_FOREACH(child, &bs->children, next) { 541 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 542 drained_end_counter); 543 } 544 } 545 } 546 547 void bdrv_drained_end(BlockDriverState *bs) 548 { 549 int drained_end_counter = 0; 550 IO_OR_GS_CODE(); 551 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 552 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 553 } 554 555 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 556 { 557 IO_CODE(); 558 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 559 } 560 561 void bdrv_subtree_drained_end(BlockDriverState *bs) 562 { 563 int drained_end_counter = 0; 564 IO_OR_GS_CODE(); 565 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 566 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 567 } 568 569 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 570 { 571 int i; 572 IO_OR_GS_CODE(); 573 574 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 575 bdrv_do_drained_begin(child->bs, true, child, false, true); 576 } 577 } 578 579 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 580 { 581 int drained_end_counter = 0; 582 int i; 583 IO_OR_GS_CODE(); 584 585 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 586 bdrv_do_drained_end(child->bs, true, child, false, 587 &drained_end_counter); 588 } 589 590 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0); 591 } 592 593 void bdrv_drain(BlockDriverState *bs) 594 { 595 IO_OR_GS_CODE(); 596 bdrv_drained_begin(bs); 597 bdrv_drained_end(bs); 598 } 599 600 static void bdrv_drain_assert_idle(BlockDriverState *bs) 601 { 602 BdrvChild *child, *next; 603 604 assert(qatomic_read(&bs->in_flight) == 0); 605 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 606 bdrv_drain_assert_idle(child->bs); 607 } 608 } 609 610 unsigned int bdrv_drain_all_count = 0; 611 612 static bool bdrv_drain_all_poll(void) 613 { 614 BlockDriverState *bs = NULL; 615 bool result = false; 616 GLOBAL_STATE_CODE(); 617 618 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 619 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 620 while ((bs = bdrv_next_all_states(bs))) { 621 AioContext *aio_context = bdrv_get_aio_context(bs); 622 aio_context_acquire(aio_context); 623 result |= bdrv_drain_poll(bs, false, NULL, true); 624 aio_context_release(aio_context); 625 } 626 627 return result; 628 } 629 630 /* 631 * Wait for pending requests to complete across all BlockDriverStates 632 * 633 * This function does not flush data to disk, use bdrv_flush_all() for that 634 * after calling this function. 635 * 636 * This pauses all block jobs and disables external clients. It must 637 * be paired with bdrv_drain_all_end(). 638 * 639 * NOTE: no new block jobs or BlockDriverStates can be created between 640 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 641 */ 642 void bdrv_drain_all_begin(void) 643 { 644 BlockDriverState *bs = NULL; 645 GLOBAL_STATE_CODE(); 646 647 if (qemu_in_coroutine()) { 648 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 649 return; 650 } 651 652 /* 653 * bdrv queue is managed by record/replay, 654 * waiting for finishing the I/O requests may 655 * be infinite 656 */ 657 if (replay_events_enabled()) { 658 return; 659 } 660 661 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 662 * loop AioContext, so make sure we're in the main context. */ 663 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 664 assert(bdrv_drain_all_count < INT_MAX); 665 bdrv_drain_all_count++; 666 667 /* Quiesce all nodes, without polling in-flight requests yet. The graph 668 * cannot change during this loop. */ 669 while ((bs = bdrv_next_all_states(bs))) { 670 AioContext *aio_context = bdrv_get_aio_context(bs); 671 672 aio_context_acquire(aio_context); 673 bdrv_do_drained_begin(bs, false, NULL, true, false); 674 aio_context_release(aio_context); 675 } 676 677 /* Now poll the in-flight requests */ 678 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 679 680 while ((bs = bdrv_next_all_states(bs))) { 681 bdrv_drain_assert_idle(bs); 682 } 683 } 684 685 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 686 { 687 int drained_end_counter = 0; 688 GLOBAL_STATE_CODE(); 689 690 g_assert(bs->quiesce_counter > 0); 691 g_assert(!bs->refcnt); 692 693 while (bs->quiesce_counter) { 694 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 695 } 696 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 697 } 698 699 void bdrv_drain_all_end(void) 700 { 701 BlockDriverState *bs = NULL; 702 int drained_end_counter = 0; 703 GLOBAL_STATE_CODE(); 704 705 /* 706 * bdrv queue is managed by record/replay, 707 * waiting for finishing the I/O requests may 708 * be endless 709 */ 710 if (replay_events_enabled()) { 711 return; 712 } 713 714 while ((bs = bdrv_next_all_states(bs))) { 715 AioContext *aio_context = bdrv_get_aio_context(bs); 716 717 aio_context_acquire(aio_context); 718 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 719 aio_context_release(aio_context); 720 } 721 722 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 723 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0); 724 725 assert(bdrv_drain_all_count > 0); 726 bdrv_drain_all_count--; 727 } 728 729 void bdrv_drain_all(void) 730 { 731 GLOBAL_STATE_CODE(); 732 bdrv_drain_all_begin(); 733 bdrv_drain_all_end(); 734 } 735 736 /** 737 * Remove an active request from the tracked requests list 738 * 739 * This function should be called when a tracked request is completing. 740 */ 741 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 742 { 743 if (req->serialising) { 744 qatomic_dec(&req->bs->serialising_in_flight); 745 } 746 747 qemu_co_mutex_lock(&req->bs->reqs_lock); 748 QLIST_REMOVE(req, list); 749 qemu_co_queue_restart_all(&req->wait_queue); 750 qemu_co_mutex_unlock(&req->bs->reqs_lock); 751 } 752 753 /** 754 * Add an active request to the tracked requests list 755 */ 756 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req, 757 BlockDriverState *bs, 758 int64_t offset, 759 int64_t bytes, 760 enum BdrvTrackedRequestType type) 761 { 762 bdrv_check_request(offset, bytes, &error_abort); 763 764 *req = (BdrvTrackedRequest){ 765 .bs = bs, 766 .offset = offset, 767 .bytes = bytes, 768 .type = type, 769 .co = qemu_coroutine_self(), 770 .serialising = false, 771 .overlap_offset = offset, 772 .overlap_bytes = bytes, 773 }; 774 775 qemu_co_queue_init(&req->wait_queue); 776 777 qemu_co_mutex_lock(&bs->reqs_lock); 778 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 779 qemu_co_mutex_unlock(&bs->reqs_lock); 780 } 781 782 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 783 int64_t offset, int64_t bytes) 784 { 785 bdrv_check_request(offset, bytes, &error_abort); 786 787 /* aaaa bbbb */ 788 if (offset >= req->overlap_offset + req->overlap_bytes) { 789 return false; 790 } 791 /* bbbb aaaa */ 792 if (req->overlap_offset >= offset + bytes) { 793 return false; 794 } 795 return true; 796 } 797 798 /* Called with self->bs->reqs_lock held */ 799 static coroutine_fn BdrvTrackedRequest * 800 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 801 { 802 BdrvTrackedRequest *req; 803 804 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 805 if (req == self || (!req->serialising && !self->serialising)) { 806 continue; 807 } 808 if (tracked_request_overlaps(req, self->overlap_offset, 809 self->overlap_bytes)) 810 { 811 /* 812 * Hitting this means there was a reentrant request, for 813 * example, a block driver issuing nested requests. This must 814 * never happen since it means deadlock. 815 */ 816 assert(qemu_coroutine_self() != req->co); 817 818 /* 819 * If the request is already (indirectly) waiting for us, or 820 * will wait for us as soon as it wakes up, then just go on 821 * (instead of producing a deadlock in the former case). 822 */ 823 if (!req->waiting_for) { 824 return req; 825 } 826 } 827 } 828 829 return NULL; 830 } 831 832 /* Called with self->bs->reqs_lock held */ 833 static void coroutine_fn 834 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 835 { 836 BdrvTrackedRequest *req; 837 838 while ((req = bdrv_find_conflicting_request(self))) { 839 self->waiting_for = req; 840 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 841 self->waiting_for = NULL; 842 } 843 } 844 845 /* Called with req->bs->reqs_lock held */ 846 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 847 uint64_t align) 848 { 849 int64_t overlap_offset = req->offset & ~(align - 1); 850 int64_t overlap_bytes = 851 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 852 853 bdrv_check_request(req->offset, req->bytes, &error_abort); 854 855 if (!req->serialising) { 856 qatomic_inc(&req->bs->serialising_in_flight); 857 req->serialising = true; 858 } 859 860 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 861 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 862 } 863 864 /** 865 * Return the tracked request on @bs for the current coroutine, or 866 * NULL if there is none. 867 */ 868 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 869 { 870 BdrvTrackedRequest *req; 871 Coroutine *self = qemu_coroutine_self(); 872 IO_CODE(); 873 874 QLIST_FOREACH(req, &bs->tracked_requests, list) { 875 if (req->co == self) { 876 return req; 877 } 878 } 879 880 return NULL; 881 } 882 883 /** 884 * Round a region to cluster boundaries 885 */ 886 void bdrv_round_to_clusters(BlockDriverState *bs, 887 int64_t offset, int64_t bytes, 888 int64_t *cluster_offset, 889 int64_t *cluster_bytes) 890 { 891 BlockDriverInfo bdi; 892 IO_CODE(); 893 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 894 *cluster_offset = offset; 895 *cluster_bytes = bytes; 896 } else { 897 int64_t c = bdi.cluster_size; 898 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 899 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 900 } 901 } 902 903 static int bdrv_get_cluster_size(BlockDriverState *bs) 904 { 905 BlockDriverInfo bdi; 906 int ret; 907 908 ret = bdrv_get_info(bs, &bdi); 909 if (ret < 0 || bdi.cluster_size == 0) { 910 return bs->bl.request_alignment; 911 } else { 912 return bdi.cluster_size; 913 } 914 } 915 916 void bdrv_inc_in_flight(BlockDriverState *bs) 917 { 918 IO_CODE(); 919 qatomic_inc(&bs->in_flight); 920 } 921 922 void bdrv_wakeup(BlockDriverState *bs) 923 { 924 IO_CODE(); 925 aio_wait_kick(); 926 } 927 928 void bdrv_dec_in_flight(BlockDriverState *bs) 929 { 930 IO_CODE(); 931 qatomic_dec(&bs->in_flight); 932 bdrv_wakeup(bs); 933 } 934 935 static void coroutine_fn 936 bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 937 { 938 BlockDriverState *bs = self->bs; 939 940 if (!qatomic_read(&bs->serialising_in_flight)) { 941 return; 942 } 943 944 qemu_co_mutex_lock(&bs->reqs_lock); 945 bdrv_wait_serialising_requests_locked(self); 946 qemu_co_mutex_unlock(&bs->reqs_lock); 947 } 948 949 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 950 uint64_t align) 951 { 952 IO_CODE(); 953 954 qemu_co_mutex_lock(&req->bs->reqs_lock); 955 956 tracked_request_set_serialising(req, align); 957 bdrv_wait_serialising_requests_locked(req); 958 959 qemu_co_mutex_unlock(&req->bs->reqs_lock); 960 } 961 962 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 963 QEMUIOVector *qiov, size_t qiov_offset, 964 Error **errp) 965 { 966 /* 967 * Check generic offset/bytes correctness 968 */ 969 970 if (offset < 0) { 971 error_setg(errp, "offset is negative: %" PRIi64, offset); 972 return -EIO; 973 } 974 975 if (bytes < 0) { 976 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 977 return -EIO; 978 } 979 980 if (bytes > BDRV_MAX_LENGTH) { 981 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 982 bytes, BDRV_MAX_LENGTH); 983 return -EIO; 984 } 985 986 if (offset > BDRV_MAX_LENGTH) { 987 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 988 offset, BDRV_MAX_LENGTH); 989 return -EIO; 990 } 991 992 if (offset > BDRV_MAX_LENGTH - bytes) { 993 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 994 "exceeds maximum(%" PRIi64 ")", offset, bytes, 995 BDRV_MAX_LENGTH); 996 return -EIO; 997 } 998 999 if (!qiov) { 1000 return 0; 1001 } 1002 1003 /* 1004 * Check qiov and qiov_offset 1005 */ 1006 1007 if (qiov_offset > qiov->size) { 1008 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 1009 qiov_offset, qiov->size); 1010 return -EIO; 1011 } 1012 1013 if (bytes > qiov->size - qiov_offset) { 1014 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 1015 "vector size(%zu)", bytes, qiov_offset, qiov->size); 1016 return -EIO; 1017 } 1018 1019 return 0; 1020 } 1021 1022 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 1023 { 1024 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 1025 } 1026 1027 static int bdrv_check_request32(int64_t offset, int64_t bytes, 1028 QEMUIOVector *qiov, size_t qiov_offset) 1029 { 1030 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 1031 if (ret < 0) { 1032 return ret; 1033 } 1034 1035 if (bytes > BDRV_REQUEST_MAX_BYTES) { 1036 return -EIO; 1037 } 1038 1039 return 0; 1040 } 1041 1042 /* 1043 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 1044 * The operation is sped up by checking the block status and only writing 1045 * zeroes to the device if they currently do not return zeroes. Optional 1046 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 1047 * BDRV_REQ_FUA). 1048 * 1049 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 1050 */ 1051 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 1052 { 1053 int ret; 1054 int64_t target_size, bytes, offset = 0; 1055 BlockDriverState *bs = child->bs; 1056 IO_CODE(); 1057 1058 target_size = bdrv_getlength(bs); 1059 if (target_size < 0) { 1060 return target_size; 1061 } 1062 1063 for (;;) { 1064 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 1065 if (bytes <= 0) { 1066 return 0; 1067 } 1068 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 1069 if (ret < 0) { 1070 return ret; 1071 } 1072 if (ret & BDRV_BLOCK_ZERO) { 1073 offset += bytes; 1074 continue; 1075 } 1076 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 1077 if (ret < 0) { 1078 return ret; 1079 } 1080 offset += bytes; 1081 } 1082 } 1083 1084 /* 1085 * Writes to the file and ensures that no writes are reordered across this 1086 * request (acts as a barrier) 1087 * 1088 * Returns 0 on success, -errno in error cases. 1089 */ 1090 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 1091 int64_t bytes, const void *buf, 1092 BdrvRequestFlags flags) 1093 { 1094 int ret; 1095 IO_CODE(); 1096 1097 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 1098 if (ret < 0) { 1099 return ret; 1100 } 1101 1102 ret = bdrv_co_flush(child->bs); 1103 if (ret < 0) { 1104 return ret; 1105 } 1106 1107 return 0; 1108 } 1109 1110 typedef struct CoroutineIOCompletion { 1111 Coroutine *coroutine; 1112 int ret; 1113 } CoroutineIOCompletion; 1114 1115 static void bdrv_co_io_em_complete(void *opaque, int ret) 1116 { 1117 CoroutineIOCompletion *co = opaque; 1118 1119 co->ret = ret; 1120 aio_co_wake(co->coroutine); 1121 } 1122 1123 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1124 int64_t offset, int64_t bytes, 1125 QEMUIOVector *qiov, 1126 size_t qiov_offset, int flags) 1127 { 1128 BlockDriver *drv = bs->drv; 1129 int64_t sector_num; 1130 unsigned int nb_sectors; 1131 QEMUIOVector local_qiov; 1132 int ret; 1133 1134 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1135 assert(!(flags & ~bs->supported_read_flags)); 1136 1137 if (!drv) { 1138 return -ENOMEDIUM; 1139 } 1140 1141 if (drv->bdrv_co_preadv_part) { 1142 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1143 flags); 1144 } 1145 1146 if (qiov_offset > 0 || bytes != qiov->size) { 1147 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1148 qiov = &local_qiov; 1149 } 1150 1151 if (drv->bdrv_co_preadv) { 1152 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1153 goto out; 1154 } 1155 1156 if (drv->bdrv_aio_preadv) { 1157 BlockAIOCB *acb; 1158 CoroutineIOCompletion co = { 1159 .coroutine = qemu_coroutine_self(), 1160 }; 1161 1162 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1163 bdrv_co_io_em_complete, &co); 1164 if (acb == NULL) { 1165 ret = -EIO; 1166 goto out; 1167 } else { 1168 qemu_coroutine_yield(); 1169 ret = co.ret; 1170 goto out; 1171 } 1172 } 1173 1174 sector_num = offset >> BDRV_SECTOR_BITS; 1175 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1176 1177 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1178 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1179 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1180 assert(drv->bdrv_co_readv); 1181 1182 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1183 1184 out: 1185 if (qiov == &local_qiov) { 1186 qemu_iovec_destroy(&local_qiov); 1187 } 1188 1189 return ret; 1190 } 1191 1192 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1193 int64_t offset, int64_t bytes, 1194 QEMUIOVector *qiov, 1195 size_t qiov_offset, 1196 BdrvRequestFlags flags) 1197 { 1198 BlockDriver *drv = bs->drv; 1199 bool emulate_fua = false; 1200 int64_t sector_num; 1201 unsigned int nb_sectors; 1202 QEMUIOVector local_qiov; 1203 int ret; 1204 1205 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1206 1207 if (!drv) { 1208 return -ENOMEDIUM; 1209 } 1210 1211 if ((flags & BDRV_REQ_FUA) && 1212 (~bs->supported_write_flags & BDRV_REQ_FUA)) { 1213 flags &= ~BDRV_REQ_FUA; 1214 emulate_fua = true; 1215 } 1216 1217 flags &= bs->supported_write_flags; 1218 1219 if (drv->bdrv_co_pwritev_part) { 1220 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1221 flags); 1222 goto emulate_flags; 1223 } 1224 1225 if (qiov_offset > 0 || bytes != qiov->size) { 1226 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1227 qiov = &local_qiov; 1228 } 1229 1230 if (drv->bdrv_co_pwritev) { 1231 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags); 1232 goto emulate_flags; 1233 } 1234 1235 if (drv->bdrv_aio_pwritev) { 1236 BlockAIOCB *acb; 1237 CoroutineIOCompletion co = { 1238 .coroutine = qemu_coroutine_self(), 1239 }; 1240 1241 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags, 1242 bdrv_co_io_em_complete, &co); 1243 if (acb == NULL) { 1244 ret = -EIO; 1245 } else { 1246 qemu_coroutine_yield(); 1247 ret = co.ret; 1248 } 1249 goto emulate_flags; 1250 } 1251 1252 sector_num = offset >> BDRV_SECTOR_BITS; 1253 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1254 1255 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1256 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1257 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1258 1259 assert(drv->bdrv_co_writev); 1260 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags); 1261 1262 emulate_flags: 1263 if (ret == 0 && emulate_fua) { 1264 ret = bdrv_co_flush(bs); 1265 } 1266 1267 if (qiov == &local_qiov) { 1268 qemu_iovec_destroy(&local_qiov); 1269 } 1270 1271 return ret; 1272 } 1273 1274 static int coroutine_fn 1275 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1276 int64_t bytes, QEMUIOVector *qiov, 1277 size_t qiov_offset) 1278 { 1279 BlockDriver *drv = bs->drv; 1280 QEMUIOVector local_qiov; 1281 int ret; 1282 1283 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1284 1285 if (!drv) { 1286 return -ENOMEDIUM; 1287 } 1288 1289 if (!block_driver_can_compress(drv)) { 1290 return -ENOTSUP; 1291 } 1292 1293 if (drv->bdrv_co_pwritev_compressed_part) { 1294 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1295 qiov, qiov_offset); 1296 } 1297 1298 if (qiov_offset == 0) { 1299 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1300 } 1301 1302 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1303 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1304 qemu_iovec_destroy(&local_qiov); 1305 1306 return ret; 1307 } 1308 1309 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1310 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1311 size_t qiov_offset, int flags) 1312 { 1313 BlockDriverState *bs = child->bs; 1314 1315 /* Perform I/O through a temporary buffer so that users who scribble over 1316 * their read buffer while the operation is in progress do not end up 1317 * modifying the image file. This is critical for zero-copy guest I/O 1318 * where anything might happen inside guest memory. 1319 */ 1320 void *bounce_buffer = NULL; 1321 1322 BlockDriver *drv = bs->drv; 1323 int64_t cluster_offset; 1324 int64_t cluster_bytes; 1325 int64_t skip_bytes; 1326 int ret; 1327 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1328 BDRV_REQUEST_MAX_BYTES); 1329 int64_t progress = 0; 1330 bool skip_write; 1331 1332 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1333 1334 if (!drv) { 1335 return -ENOMEDIUM; 1336 } 1337 1338 /* 1339 * Do not write anything when the BDS is inactive. That is not 1340 * allowed, and it would not help. 1341 */ 1342 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1343 1344 /* FIXME We cannot require callers to have write permissions when all they 1345 * are doing is a read request. If we did things right, write permissions 1346 * would be obtained anyway, but internally by the copy-on-read code. As 1347 * long as it is implemented here rather than in a separate filter driver, 1348 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1349 * it could request permissions. Therefore we have to bypass the permission 1350 * system for the moment. */ 1351 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1352 1353 /* Cover entire cluster so no additional backing file I/O is required when 1354 * allocating cluster in the image file. Note that this value may exceed 1355 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1356 * is one reason we loop rather than doing it all at once. 1357 */ 1358 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1359 skip_bytes = offset - cluster_offset; 1360 1361 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1362 cluster_offset, cluster_bytes); 1363 1364 while (cluster_bytes) { 1365 int64_t pnum; 1366 1367 if (skip_write) { 1368 ret = 1; /* "already allocated", so nothing will be copied */ 1369 pnum = MIN(cluster_bytes, max_transfer); 1370 } else { 1371 ret = bdrv_is_allocated(bs, cluster_offset, 1372 MIN(cluster_bytes, max_transfer), &pnum); 1373 if (ret < 0) { 1374 /* 1375 * Safe to treat errors in querying allocation as if 1376 * unallocated; we'll probably fail again soon on the 1377 * read, but at least that will set a decent errno. 1378 */ 1379 pnum = MIN(cluster_bytes, max_transfer); 1380 } 1381 1382 /* Stop at EOF if the image ends in the middle of the cluster */ 1383 if (ret == 0 && pnum == 0) { 1384 assert(progress >= bytes); 1385 break; 1386 } 1387 1388 assert(skip_bytes < pnum); 1389 } 1390 1391 if (ret <= 0) { 1392 QEMUIOVector local_qiov; 1393 1394 /* Must copy-on-read; use the bounce buffer */ 1395 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1396 if (!bounce_buffer) { 1397 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1398 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1399 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1400 1401 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1402 if (!bounce_buffer) { 1403 ret = -ENOMEM; 1404 goto err; 1405 } 1406 } 1407 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1408 1409 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1410 &local_qiov, 0, 0); 1411 if (ret < 0) { 1412 goto err; 1413 } 1414 1415 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1416 if (drv->bdrv_co_pwrite_zeroes && 1417 buffer_is_zero(bounce_buffer, pnum)) { 1418 /* FIXME: Should we (perhaps conditionally) be setting 1419 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1420 * that still correctly reads as zero? */ 1421 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1422 BDRV_REQ_WRITE_UNCHANGED); 1423 } else { 1424 /* This does not change the data on the disk, it is not 1425 * necessary to flush even in cache=writethrough mode. 1426 */ 1427 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1428 &local_qiov, 0, 1429 BDRV_REQ_WRITE_UNCHANGED); 1430 } 1431 1432 if (ret < 0) { 1433 /* It might be okay to ignore write errors for guest 1434 * requests. If this is a deliberate copy-on-read 1435 * then we don't want to ignore the error. Simply 1436 * report it in all cases. 1437 */ 1438 goto err; 1439 } 1440 1441 if (!(flags & BDRV_REQ_PREFETCH)) { 1442 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1443 bounce_buffer + skip_bytes, 1444 MIN(pnum - skip_bytes, bytes - progress)); 1445 } 1446 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1447 /* Read directly into the destination */ 1448 ret = bdrv_driver_preadv(bs, offset + progress, 1449 MIN(pnum - skip_bytes, bytes - progress), 1450 qiov, qiov_offset + progress, 0); 1451 if (ret < 0) { 1452 goto err; 1453 } 1454 } 1455 1456 cluster_offset += pnum; 1457 cluster_bytes -= pnum; 1458 progress += pnum - skip_bytes; 1459 skip_bytes = 0; 1460 } 1461 ret = 0; 1462 1463 err: 1464 qemu_vfree(bounce_buffer); 1465 return ret; 1466 } 1467 1468 /* 1469 * Forwards an already correctly aligned request to the BlockDriver. This 1470 * handles copy on read, zeroing after EOF, and fragmentation of large 1471 * reads; any other features must be implemented by the caller. 1472 */ 1473 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1474 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1475 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1476 { 1477 BlockDriverState *bs = child->bs; 1478 int64_t total_bytes, max_bytes; 1479 int ret = 0; 1480 int64_t bytes_remaining = bytes; 1481 int max_transfer; 1482 1483 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1484 assert(is_power_of_2(align)); 1485 assert((offset & (align - 1)) == 0); 1486 assert((bytes & (align - 1)) == 0); 1487 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1488 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1489 align); 1490 1491 /* 1492 * TODO: We would need a per-BDS .supported_read_flags and 1493 * potential fallback support, if we ever implement any read flags 1494 * to pass through to drivers. For now, there aren't any 1495 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint. 1496 */ 1497 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH | 1498 BDRV_REQ_REGISTERED_BUF))); 1499 1500 /* Handle Copy on Read and associated serialisation */ 1501 if (flags & BDRV_REQ_COPY_ON_READ) { 1502 /* If we touch the same cluster it counts as an overlap. This 1503 * guarantees that allocating writes will be serialized and not race 1504 * with each other for the same cluster. For example, in copy-on-read 1505 * it ensures that the CoR read and write operations are atomic and 1506 * guest writes cannot interleave between them. */ 1507 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1508 } else { 1509 bdrv_wait_serialising_requests(req); 1510 } 1511 1512 if (flags & BDRV_REQ_COPY_ON_READ) { 1513 int64_t pnum; 1514 1515 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1516 flags &= ~BDRV_REQ_COPY_ON_READ; 1517 1518 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1519 if (ret < 0) { 1520 goto out; 1521 } 1522 1523 if (!ret || pnum != bytes) { 1524 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1525 qiov, qiov_offset, flags); 1526 goto out; 1527 } else if (flags & BDRV_REQ_PREFETCH) { 1528 goto out; 1529 } 1530 } 1531 1532 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1533 total_bytes = bdrv_getlength(bs); 1534 if (total_bytes < 0) { 1535 ret = total_bytes; 1536 goto out; 1537 } 1538 1539 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF))); 1540 1541 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1542 if (bytes <= max_bytes && bytes <= max_transfer) { 1543 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1544 goto out; 1545 } 1546 1547 while (bytes_remaining) { 1548 int64_t num; 1549 1550 if (max_bytes) { 1551 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1552 assert(num); 1553 1554 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1555 num, qiov, 1556 qiov_offset + bytes - bytes_remaining, 1557 flags); 1558 max_bytes -= num; 1559 } else { 1560 num = bytes_remaining; 1561 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1562 0, bytes_remaining); 1563 } 1564 if (ret < 0) { 1565 goto out; 1566 } 1567 bytes_remaining -= num; 1568 } 1569 1570 out: 1571 return ret < 0 ? ret : 0; 1572 } 1573 1574 /* 1575 * Request padding 1576 * 1577 * |<---- align ----->| |<----- align ---->| 1578 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1579 * | | | | | | 1580 * -*----------$-------*-------- ... --------*-----$------------*--- 1581 * | | | | | | 1582 * | offset | | end | 1583 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1584 * [buf ... ) [tail_buf ) 1585 * 1586 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1587 * is placed at the beginning of @buf and @tail at the @end. 1588 * 1589 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1590 * around tail, if tail exists. 1591 * 1592 * @merge_reads is true for small requests, 1593 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1594 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1595 */ 1596 typedef struct BdrvRequestPadding { 1597 uint8_t *buf; 1598 size_t buf_len; 1599 uint8_t *tail_buf; 1600 size_t head; 1601 size_t tail; 1602 bool merge_reads; 1603 QEMUIOVector local_qiov; 1604 } BdrvRequestPadding; 1605 1606 static bool bdrv_init_padding(BlockDriverState *bs, 1607 int64_t offset, int64_t bytes, 1608 BdrvRequestPadding *pad) 1609 { 1610 int64_t align = bs->bl.request_alignment; 1611 int64_t sum; 1612 1613 bdrv_check_request(offset, bytes, &error_abort); 1614 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1615 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1616 1617 memset(pad, 0, sizeof(*pad)); 1618 1619 pad->head = offset & (align - 1); 1620 pad->tail = ((offset + bytes) & (align - 1)); 1621 if (pad->tail) { 1622 pad->tail = align - pad->tail; 1623 } 1624 1625 if (!pad->head && !pad->tail) { 1626 return false; 1627 } 1628 1629 assert(bytes); /* Nothing good in aligning zero-length requests */ 1630 1631 sum = pad->head + bytes + pad->tail; 1632 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1633 pad->buf = qemu_blockalign(bs, pad->buf_len); 1634 pad->merge_reads = sum == pad->buf_len; 1635 if (pad->tail) { 1636 pad->tail_buf = pad->buf + pad->buf_len - align; 1637 } 1638 1639 return true; 1640 } 1641 1642 static coroutine_fn int bdrv_padding_rmw_read(BdrvChild *child, 1643 BdrvTrackedRequest *req, 1644 BdrvRequestPadding *pad, 1645 bool zero_middle) 1646 { 1647 QEMUIOVector local_qiov; 1648 BlockDriverState *bs = child->bs; 1649 uint64_t align = bs->bl.request_alignment; 1650 int ret; 1651 1652 assert(req->serialising && pad->buf); 1653 1654 if (pad->head || pad->merge_reads) { 1655 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1656 1657 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1658 1659 if (pad->head) { 1660 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1661 } 1662 if (pad->merge_reads && pad->tail) { 1663 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1664 } 1665 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1666 align, &local_qiov, 0, 0); 1667 if (ret < 0) { 1668 return ret; 1669 } 1670 if (pad->head) { 1671 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1672 } 1673 if (pad->merge_reads && pad->tail) { 1674 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1675 } 1676 1677 if (pad->merge_reads) { 1678 goto zero_mem; 1679 } 1680 } 1681 1682 if (pad->tail) { 1683 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1684 1685 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1686 ret = bdrv_aligned_preadv( 1687 child, req, 1688 req->overlap_offset + req->overlap_bytes - align, 1689 align, align, &local_qiov, 0, 0); 1690 if (ret < 0) { 1691 return ret; 1692 } 1693 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1694 } 1695 1696 zero_mem: 1697 if (zero_middle) { 1698 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1699 } 1700 1701 return 0; 1702 } 1703 1704 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1705 { 1706 if (pad->buf) { 1707 qemu_vfree(pad->buf); 1708 qemu_iovec_destroy(&pad->local_qiov); 1709 } 1710 memset(pad, 0, sizeof(*pad)); 1711 } 1712 1713 /* 1714 * bdrv_pad_request 1715 * 1716 * Exchange request parameters with padded request if needed. Don't include RMW 1717 * read of padding, bdrv_padding_rmw_read() should be called separately if 1718 * needed. 1719 * 1720 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1721 * - on function start they represent original request 1722 * - on failure or when padding is not needed they are unchanged 1723 * - on success when padding is needed they represent padded request 1724 */ 1725 static int bdrv_pad_request(BlockDriverState *bs, 1726 QEMUIOVector **qiov, size_t *qiov_offset, 1727 int64_t *offset, int64_t *bytes, 1728 BdrvRequestPadding *pad, bool *padded, 1729 BdrvRequestFlags *flags) 1730 { 1731 int ret; 1732 1733 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1734 1735 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1736 if (padded) { 1737 *padded = false; 1738 } 1739 return 0; 1740 } 1741 1742 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1743 *qiov, *qiov_offset, *bytes, 1744 pad->buf + pad->buf_len - pad->tail, 1745 pad->tail); 1746 if (ret < 0) { 1747 bdrv_padding_destroy(pad); 1748 return ret; 1749 } 1750 *bytes += pad->head + pad->tail; 1751 *offset -= pad->head; 1752 *qiov = &pad->local_qiov; 1753 *qiov_offset = 0; 1754 if (padded) { 1755 *padded = true; 1756 } 1757 if (flags) { 1758 /* Can't use optimization hint with bounce buffer */ 1759 *flags &= ~BDRV_REQ_REGISTERED_BUF; 1760 } 1761 1762 return 0; 1763 } 1764 1765 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1766 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1767 BdrvRequestFlags flags) 1768 { 1769 IO_CODE(); 1770 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1771 } 1772 1773 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1774 int64_t offset, int64_t bytes, 1775 QEMUIOVector *qiov, size_t qiov_offset, 1776 BdrvRequestFlags flags) 1777 { 1778 BlockDriverState *bs = child->bs; 1779 BdrvTrackedRequest req; 1780 BdrvRequestPadding pad; 1781 int ret; 1782 IO_CODE(); 1783 1784 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1785 1786 if (!bdrv_is_inserted(bs)) { 1787 return -ENOMEDIUM; 1788 } 1789 1790 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1791 if (ret < 0) { 1792 return ret; 1793 } 1794 1795 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1796 /* 1797 * Aligning zero request is nonsense. Even if driver has special meaning 1798 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1799 * it to driver due to request_alignment. 1800 * 1801 * Still, no reason to return an error if someone do unaligned 1802 * zero-length read occasionally. 1803 */ 1804 return 0; 1805 } 1806 1807 bdrv_inc_in_flight(bs); 1808 1809 /* Don't do copy-on-read if we read data before write operation */ 1810 if (qatomic_read(&bs->copy_on_read)) { 1811 flags |= BDRV_REQ_COPY_ON_READ; 1812 } 1813 1814 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 1815 NULL, &flags); 1816 if (ret < 0) { 1817 goto fail; 1818 } 1819 1820 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1821 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1822 bs->bl.request_alignment, 1823 qiov, qiov_offset, flags); 1824 tracked_request_end(&req); 1825 bdrv_padding_destroy(&pad); 1826 1827 fail: 1828 bdrv_dec_in_flight(bs); 1829 1830 return ret; 1831 } 1832 1833 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1834 int64_t offset, int64_t bytes, BdrvRequestFlags flags) 1835 { 1836 BlockDriver *drv = bs->drv; 1837 QEMUIOVector qiov; 1838 void *buf = NULL; 1839 int ret = 0; 1840 bool need_flush = false; 1841 int head = 0; 1842 int tail = 0; 1843 1844 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1845 INT64_MAX); 1846 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1847 bs->bl.request_alignment); 1848 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1849 1850 bdrv_check_request(offset, bytes, &error_abort); 1851 1852 if (!drv) { 1853 return -ENOMEDIUM; 1854 } 1855 1856 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1857 return -ENOTSUP; 1858 } 1859 1860 /* By definition there is no user buffer so this flag doesn't make sense */ 1861 if (flags & BDRV_REQ_REGISTERED_BUF) { 1862 return -EINVAL; 1863 } 1864 1865 /* Invalidate the cached block-status data range if this write overlaps */ 1866 bdrv_bsc_invalidate_range(bs, offset, bytes); 1867 1868 assert(alignment % bs->bl.request_alignment == 0); 1869 head = offset % alignment; 1870 tail = (offset + bytes) % alignment; 1871 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1872 assert(max_write_zeroes >= bs->bl.request_alignment); 1873 1874 while (bytes > 0 && !ret) { 1875 int64_t num = bytes; 1876 1877 /* Align request. Block drivers can expect the "bulk" of the request 1878 * to be aligned, and that unaligned requests do not cross cluster 1879 * boundaries. 1880 */ 1881 if (head) { 1882 /* Make a small request up to the first aligned sector. For 1883 * convenience, limit this request to max_transfer even if 1884 * we don't need to fall back to writes. */ 1885 num = MIN(MIN(bytes, max_transfer), alignment - head); 1886 head = (head + num) % alignment; 1887 assert(num < max_write_zeroes); 1888 } else if (tail && num > alignment) { 1889 /* Shorten the request to the last aligned sector. */ 1890 num -= tail; 1891 } 1892 1893 /* limit request size */ 1894 if (num > max_write_zeroes) { 1895 num = max_write_zeroes; 1896 } 1897 1898 ret = -ENOTSUP; 1899 /* First try the efficient write zeroes operation */ 1900 if (drv->bdrv_co_pwrite_zeroes) { 1901 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1902 flags & bs->supported_zero_flags); 1903 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1904 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1905 need_flush = true; 1906 } 1907 } else { 1908 assert(!bs->supported_zero_flags); 1909 } 1910 1911 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1912 /* Fall back to bounce buffer if write zeroes is unsupported */ 1913 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1914 1915 if ((flags & BDRV_REQ_FUA) && 1916 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1917 /* No need for bdrv_driver_pwrite() to do a fallback 1918 * flush on each chunk; use just one at the end */ 1919 write_flags &= ~BDRV_REQ_FUA; 1920 need_flush = true; 1921 } 1922 num = MIN(num, max_transfer); 1923 if (buf == NULL) { 1924 buf = qemu_try_blockalign0(bs, num); 1925 if (buf == NULL) { 1926 ret = -ENOMEM; 1927 goto fail; 1928 } 1929 } 1930 qemu_iovec_init_buf(&qiov, buf, num); 1931 1932 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1933 1934 /* Keep bounce buffer around if it is big enough for all 1935 * all future requests. 1936 */ 1937 if (num < max_transfer) { 1938 qemu_vfree(buf); 1939 buf = NULL; 1940 } 1941 } 1942 1943 offset += num; 1944 bytes -= num; 1945 } 1946 1947 fail: 1948 if (ret == 0 && need_flush) { 1949 ret = bdrv_co_flush(bs); 1950 } 1951 qemu_vfree(buf); 1952 return ret; 1953 } 1954 1955 static inline int coroutine_fn 1956 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1957 BdrvTrackedRequest *req, int flags) 1958 { 1959 BlockDriverState *bs = child->bs; 1960 1961 bdrv_check_request(offset, bytes, &error_abort); 1962 1963 if (bdrv_is_read_only(bs)) { 1964 return -EPERM; 1965 } 1966 1967 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1968 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1969 assert(!(flags & ~BDRV_REQ_MASK)); 1970 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1971 1972 if (flags & BDRV_REQ_SERIALISING) { 1973 QEMU_LOCK_GUARD(&bs->reqs_lock); 1974 1975 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1976 1977 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1978 return -EBUSY; 1979 } 1980 1981 bdrv_wait_serialising_requests_locked(req); 1982 } else { 1983 bdrv_wait_serialising_requests(req); 1984 } 1985 1986 assert(req->overlap_offset <= offset); 1987 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1988 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 1989 child->perm & BLK_PERM_RESIZE); 1990 1991 switch (req->type) { 1992 case BDRV_TRACKED_WRITE: 1993 case BDRV_TRACKED_DISCARD: 1994 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1995 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1996 } else { 1997 assert(child->perm & BLK_PERM_WRITE); 1998 } 1999 bdrv_write_threshold_check_write(bs, offset, bytes); 2000 return 0; 2001 case BDRV_TRACKED_TRUNCATE: 2002 assert(child->perm & BLK_PERM_RESIZE); 2003 return 0; 2004 default: 2005 abort(); 2006 } 2007 } 2008 2009 static inline void coroutine_fn 2010 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2011 BdrvTrackedRequest *req, int ret) 2012 { 2013 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2014 BlockDriverState *bs = child->bs; 2015 2016 bdrv_check_request(offset, bytes, &error_abort); 2017 2018 qatomic_inc(&bs->write_gen); 2019 2020 /* 2021 * Discard cannot extend the image, but in error handling cases, such as 2022 * when reverting a qcow2 cluster allocation, the discarded range can pass 2023 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2024 * here. Instead, just skip it, since semantically a discard request 2025 * beyond EOF cannot expand the image anyway. 2026 */ 2027 if (ret == 0 && 2028 (req->type == BDRV_TRACKED_TRUNCATE || 2029 end_sector > bs->total_sectors) && 2030 req->type != BDRV_TRACKED_DISCARD) { 2031 bs->total_sectors = end_sector; 2032 bdrv_parent_cb_resize(bs); 2033 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2034 } 2035 if (req->bytes) { 2036 switch (req->type) { 2037 case BDRV_TRACKED_WRITE: 2038 stat64_max(&bs->wr_highest_offset, offset + bytes); 2039 /* fall through, to set dirty bits */ 2040 case BDRV_TRACKED_DISCARD: 2041 bdrv_set_dirty(bs, offset, bytes); 2042 break; 2043 default: 2044 break; 2045 } 2046 } 2047 } 2048 2049 /* 2050 * Forwards an already correctly aligned write request to the BlockDriver, 2051 * after possibly fragmenting it. 2052 */ 2053 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 2054 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 2055 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, 2056 BdrvRequestFlags flags) 2057 { 2058 BlockDriverState *bs = child->bs; 2059 BlockDriver *drv = bs->drv; 2060 int ret; 2061 2062 int64_t bytes_remaining = bytes; 2063 int max_transfer; 2064 2065 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2066 2067 if (!drv) { 2068 return -ENOMEDIUM; 2069 } 2070 2071 if (bdrv_has_readonly_bitmaps(bs)) { 2072 return -EPERM; 2073 } 2074 2075 assert(is_power_of_2(align)); 2076 assert((offset & (align - 1)) == 0); 2077 assert((bytes & (align - 1)) == 0); 2078 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2079 align); 2080 2081 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2082 2083 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2084 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2085 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2086 flags |= BDRV_REQ_ZERO_WRITE; 2087 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2088 flags |= BDRV_REQ_MAY_UNMAP; 2089 } 2090 } 2091 2092 if (ret < 0) { 2093 /* Do nothing, write notifier decided to fail this request */ 2094 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2095 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2096 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2097 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2098 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2099 qiov, qiov_offset); 2100 } else if (bytes <= max_transfer) { 2101 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2102 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2103 } else { 2104 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2105 while (bytes_remaining) { 2106 int num = MIN(bytes_remaining, max_transfer); 2107 int local_flags = flags; 2108 2109 assert(num); 2110 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2111 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2112 /* If FUA is going to be emulated by flush, we only 2113 * need to flush on the last iteration */ 2114 local_flags &= ~BDRV_REQ_FUA; 2115 } 2116 2117 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2118 num, qiov, 2119 qiov_offset + bytes - bytes_remaining, 2120 local_flags); 2121 if (ret < 0) { 2122 break; 2123 } 2124 bytes_remaining -= num; 2125 } 2126 } 2127 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 2128 2129 if (ret >= 0) { 2130 ret = 0; 2131 } 2132 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2133 2134 return ret; 2135 } 2136 2137 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 2138 int64_t offset, 2139 int64_t bytes, 2140 BdrvRequestFlags flags, 2141 BdrvTrackedRequest *req) 2142 { 2143 BlockDriverState *bs = child->bs; 2144 QEMUIOVector local_qiov; 2145 uint64_t align = bs->bl.request_alignment; 2146 int ret = 0; 2147 bool padding; 2148 BdrvRequestPadding pad; 2149 2150 /* This flag doesn't make sense for padding or zero writes */ 2151 flags &= ~BDRV_REQ_REGISTERED_BUF; 2152 2153 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2154 if (padding) { 2155 assert(!(flags & BDRV_REQ_NO_WAIT)); 2156 bdrv_make_request_serialising(req, align); 2157 2158 bdrv_padding_rmw_read(child, req, &pad, true); 2159 2160 if (pad.head || pad.merge_reads) { 2161 int64_t aligned_offset = offset & ~(align - 1); 2162 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2163 2164 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2165 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2166 align, &local_qiov, 0, 2167 flags & ~BDRV_REQ_ZERO_WRITE); 2168 if (ret < 0 || pad.merge_reads) { 2169 /* Error or all work is done */ 2170 goto out; 2171 } 2172 offset += write_bytes - pad.head; 2173 bytes -= write_bytes - pad.head; 2174 } 2175 } 2176 2177 assert(!bytes || (offset & (align - 1)) == 0); 2178 if (bytes >= align) { 2179 /* Write the aligned part in the middle. */ 2180 int64_t aligned_bytes = bytes & ~(align - 1); 2181 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2182 NULL, 0, flags); 2183 if (ret < 0) { 2184 goto out; 2185 } 2186 bytes -= aligned_bytes; 2187 offset += aligned_bytes; 2188 } 2189 2190 assert(!bytes || (offset & (align - 1)) == 0); 2191 if (bytes) { 2192 assert(align == pad.tail + bytes); 2193 2194 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2195 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2196 &local_qiov, 0, 2197 flags & ~BDRV_REQ_ZERO_WRITE); 2198 } 2199 2200 out: 2201 bdrv_padding_destroy(&pad); 2202 2203 return ret; 2204 } 2205 2206 /* 2207 * Handle a write request in coroutine context 2208 */ 2209 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2210 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2211 BdrvRequestFlags flags) 2212 { 2213 IO_CODE(); 2214 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2215 } 2216 2217 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2218 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2219 BdrvRequestFlags flags) 2220 { 2221 BlockDriverState *bs = child->bs; 2222 BdrvTrackedRequest req; 2223 uint64_t align = bs->bl.request_alignment; 2224 BdrvRequestPadding pad; 2225 int ret; 2226 bool padded = false; 2227 IO_CODE(); 2228 2229 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2230 2231 if (!bdrv_is_inserted(bs)) { 2232 return -ENOMEDIUM; 2233 } 2234 2235 if (flags & BDRV_REQ_ZERO_WRITE) { 2236 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2237 } else { 2238 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2239 } 2240 if (ret < 0) { 2241 return ret; 2242 } 2243 2244 /* If the request is misaligned then we can't make it efficient */ 2245 if ((flags & BDRV_REQ_NO_FALLBACK) && 2246 !QEMU_IS_ALIGNED(offset | bytes, align)) 2247 { 2248 return -ENOTSUP; 2249 } 2250 2251 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2252 /* 2253 * Aligning zero request is nonsense. Even if driver has special meaning 2254 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2255 * it to driver due to request_alignment. 2256 * 2257 * Still, no reason to return an error if someone do unaligned 2258 * zero-length write occasionally. 2259 */ 2260 return 0; 2261 } 2262 2263 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2264 /* 2265 * Pad request for following read-modify-write cycle. 2266 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2267 * alignment only if there is no ZERO flag. 2268 */ 2269 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 2270 &padded, &flags); 2271 if (ret < 0) { 2272 return ret; 2273 } 2274 } 2275 2276 bdrv_inc_in_flight(bs); 2277 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2278 2279 if (flags & BDRV_REQ_ZERO_WRITE) { 2280 assert(!padded); 2281 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2282 goto out; 2283 } 2284 2285 if (padded) { 2286 /* 2287 * Request was unaligned to request_alignment and therefore 2288 * padded. We are going to do read-modify-write, and must 2289 * serialize the request to prevent interactions of the 2290 * widened region with other transactions. 2291 */ 2292 assert(!(flags & BDRV_REQ_NO_WAIT)); 2293 bdrv_make_request_serialising(&req, align); 2294 bdrv_padding_rmw_read(child, &req, &pad, false); 2295 } 2296 2297 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2298 qiov, qiov_offset, flags); 2299 2300 bdrv_padding_destroy(&pad); 2301 2302 out: 2303 tracked_request_end(&req); 2304 bdrv_dec_in_flight(bs); 2305 2306 return ret; 2307 } 2308 2309 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2310 int64_t bytes, BdrvRequestFlags flags) 2311 { 2312 IO_CODE(); 2313 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2314 2315 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2316 flags &= ~BDRV_REQ_MAY_UNMAP; 2317 } 2318 2319 return bdrv_co_pwritev(child, offset, bytes, NULL, 2320 BDRV_REQ_ZERO_WRITE | flags); 2321 } 2322 2323 /* 2324 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2325 */ 2326 int bdrv_flush_all(void) 2327 { 2328 BdrvNextIterator it; 2329 BlockDriverState *bs = NULL; 2330 int result = 0; 2331 2332 GLOBAL_STATE_CODE(); 2333 2334 /* 2335 * bdrv queue is managed by record/replay, 2336 * creating new flush request for stopping 2337 * the VM may break the determinism 2338 */ 2339 if (replay_events_enabled()) { 2340 return result; 2341 } 2342 2343 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2344 AioContext *aio_context = bdrv_get_aio_context(bs); 2345 int ret; 2346 2347 aio_context_acquire(aio_context); 2348 ret = bdrv_flush(bs); 2349 if (ret < 0 && !result) { 2350 result = ret; 2351 } 2352 aio_context_release(aio_context); 2353 } 2354 2355 return result; 2356 } 2357 2358 /* 2359 * Returns the allocation status of the specified sectors. 2360 * Drivers not implementing the functionality are assumed to not support 2361 * backing files, hence all their sectors are reported as allocated. 2362 * 2363 * If 'want_zero' is true, the caller is querying for mapping 2364 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2365 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2366 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2367 * 2368 * If 'offset' is beyond the end of the disk image the return value is 2369 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2370 * 2371 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2372 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2373 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2374 * 2375 * 'pnum' is set to the number of bytes (including and immediately 2376 * following the specified offset) that are easily known to be in the 2377 * same allocated/unallocated state. Note that a second call starting 2378 * at the original offset plus returned pnum may have the same status. 2379 * The returned value is non-zero on success except at end-of-file. 2380 * 2381 * Returns negative errno on failure. Otherwise, if the 2382 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2383 * set to the host mapping and BDS corresponding to the guest offset. 2384 */ 2385 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2386 bool want_zero, 2387 int64_t offset, int64_t bytes, 2388 int64_t *pnum, int64_t *map, 2389 BlockDriverState **file) 2390 { 2391 int64_t total_size; 2392 int64_t n; /* bytes */ 2393 int ret; 2394 int64_t local_map = 0; 2395 BlockDriverState *local_file = NULL; 2396 int64_t aligned_offset, aligned_bytes; 2397 uint32_t align; 2398 bool has_filtered_child; 2399 2400 assert(pnum); 2401 *pnum = 0; 2402 total_size = bdrv_getlength(bs); 2403 if (total_size < 0) { 2404 ret = total_size; 2405 goto early_out; 2406 } 2407 2408 if (offset >= total_size) { 2409 ret = BDRV_BLOCK_EOF; 2410 goto early_out; 2411 } 2412 if (!bytes) { 2413 ret = 0; 2414 goto early_out; 2415 } 2416 2417 n = total_size - offset; 2418 if (n < bytes) { 2419 bytes = n; 2420 } 2421 2422 /* Must be non-NULL or bdrv_getlength() would have failed */ 2423 assert(bs->drv); 2424 has_filtered_child = bdrv_filter_child(bs); 2425 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2426 *pnum = bytes; 2427 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2428 if (offset + bytes == total_size) { 2429 ret |= BDRV_BLOCK_EOF; 2430 } 2431 if (bs->drv->protocol_name) { 2432 ret |= BDRV_BLOCK_OFFSET_VALID; 2433 local_map = offset; 2434 local_file = bs; 2435 } 2436 goto early_out; 2437 } 2438 2439 bdrv_inc_in_flight(bs); 2440 2441 /* Round out to request_alignment boundaries */ 2442 align = bs->bl.request_alignment; 2443 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2444 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2445 2446 if (bs->drv->bdrv_co_block_status) { 2447 /* 2448 * Use the block-status cache only for protocol nodes: Format 2449 * drivers are generally quick to inquire the status, but protocol 2450 * drivers often need to get information from outside of qemu, so 2451 * we do not have control over the actual implementation. There 2452 * have been cases where inquiring the status took an unreasonably 2453 * long time, and we can do nothing in qemu to fix it. 2454 * This is especially problematic for images with large data areas, 2455 * because finding the few holes in them and giving them special 2456 * treatment does not gain much performance. Therefore, we try to 2457 * cache the last-identified data region. 2458 * 2459 * Second, limiting ourselves to protocol nodes allows us to assume 2460 * the block status for data regions to be DATA | OFFSET_VALID, and 2461 * that the host offset is the same as the guest offset. 2462 * 2463 * Note that it is possible that external writers zero parts of 2464 * the cached regions without the cache being invalidated, and so 2465 * we may report zeroes as data. This is not catastrophic, 2466 * however, because reporting zeroes as data is fine. 2467 */ 2468 if (QLIST_EMPTY(&bs->children) && 2469 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2470 { 2471 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2472 local_file = bs; 2473 local_map = aligned_offset; 2474 } else { 2475 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2476 aligned_bytes, pnum, &local_map, 2477 &local_file); 2478 2479 /* 2480 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2481 * the cache is queried above. Technically, we do not need to check 2482 * it here; the worst that can happen is that we fill the cache for 2483 * non-protocol nodes, and then it is never used. However, filling 2484 * the cache requires an RCU update, so double check here to avoid 2485 * such an update if possible. 2486 * 2487 * Check want_zero, because we only want to update the cache when we 2488 * have accurate information about what is zero and what is data. 2489 */ 2490 if (want_zero && 2491 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2492 QLIST_EMPTY(&bs->children)) 2493 { 2494 /* 2495 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2496 * returned local_map value must be the same as the offset we 2497 * have passed (aligned_offset), and local_bs must be the node 2498 * itself. 2499 * Assert this, because we follow this rule when reading from 2500 * the cache (see the `local_file = bs` and 2501 * `local_map = aligned_offset` assignments above), and the 2502 * result the cache delivers must be the same as the driver 2503 * would deliver. 2504 */ 2505 assert(local_file == bs); 2506 assert(local_map == aligned_offset); 2507 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2508 } 2509 } 2510 } else { 2511 /* Default code for filters */ 2512 2513 local_file = bdrv_filter_bs(bs); 2514 assert(local_file); 2515 2516 *pnum = aligned_bytes; 2517 local_map = aligned_offset; 2518 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2519 } 2520 if (ret < 0) { 2521 *pnum = 0; 2522 goto out; 2523 } 2524 2525 /* 2526 * The driver's result must be a non-zero multiple of request_alignment. 2527 * Clamp pnum and adjust map to original request. 2528 */ 2529 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2530 align > offset - aligned_offset); 2531 if (ret & BDRV_BLOCK_RECURSE) { 2532 assert(ret & BDRV_BLOCK_DATA); 2533 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2534 assert(!(ret & BDRV_BLOCK_ZERO)); 2535 } 2536 2537 *pnum -= offset - aligned_offset; 2538 if (*pnum > bytes) { 2539 *pnum = bytes; 2540 } 2541 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2542 local_map += offset - aligned_offset; 2543 } 2544 2545 if (ret & BDRV_BLOCK_RAW) { 2546 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2547 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2548 *pnum, pnum, &local_map, &local_file); 2549 goto out; 2550 } 2551 2552 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2553 ret |= BDRV_BLOCK_ALLOCATED; 2554 } else if (bs->drv->supports_backing) { 2555 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2556 2557 if (!cow_bs) { 2558 ret |= BDRV_BLOCK_ZERO; 2559 } else if (want_zero) { 2560 int64_t size2 = bdrv_getlength(cow_bs); 2561 2562 if (size2 >= 0 && offset >= size2) { 2563 ret |= BDRV_BLOCK_ZERO; 2564 } 2565 } 2566 } 2567 2568 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2569 local_file && local_file != bs && 2570 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2571 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2572 int64_t file_pnum; 2573 int ret2; 2574 2575 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2576 *pnum, &file_pnum, NULL, NULL); 2577 if (ret2 >= 0) { 2578 /* Ignore errors. This is just providing extra information, it 2579 * is useful but not necessary. 2580 */ 2581 if (ret2 & BDRV_BLOCK_EOF && 2582 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2583 /* 2584 * It is valid for the format block driver to read 2585 * beyond the end of the underlying file's current 2586 * size; such areas read as zero. 2587 */ 2588 ret |= BDRV_BLOCK_ZERO; 2589 } else { 2590 /* Limit request to the range reported by the protocol driver */ 2591 *pnum = file_pnum; 2592 ret |= (ret2 & BDRV_BLOCK_ZERO); 2593 } 2594 } 2595 } 2596 2597 out: 2598 bdrv_dec_in_flight(bs); 2599 if (ret >= 0 && offset + *pnum == total_size) { 2600 ret |= BDRV_BLOCK_EOF; 2601 } 2602 early_out: 2603 if (file) { 2604 *file = local_file; 2605 } 2606 if (map) { 2607 *map = local_map; 2608 } 2609 return ret; 2610 } 2611 2612 int coroutine_fn 2613 bdrv_co_common_block_status_above(BlockDriverState *bs, 2614 BlockDriverState *base, 2615 bool include_base, 2616 bool want_zero, 2617 int64_t offset, 2618 int64_t bytes, 2619 int64_t *pnum, 2620 int64_t *map, 2621 BlockDriverState **file, 2622 int *depth) 2623 { 2624 int ret; 2625 BlockDriverState *p; 2626 int64_t eof = 0; 2627 int dummy; 2628 IO_CODE(); 2629 2630 assert(!include_base || base); /* Can't include NULL base */ 2631 2632 if (!depth) { 2633 depth = &dummy; 2634 } 2635 *depth = 0; 2636 2637 if (!include_base && bs == base) { 2638 *pnum = bytes; 2639 return 0; 2640 } 2641 2642 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2643 ++*depth; 2644 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2645 return ret; 2646 } 2647 2648 if (ret & BDRV_BLOCK_EOF) { 2649 eof = offset + *pnum; 2650 } 2651 2652 assert(*pnum <= bytes); 2653 bytes = *pnum; 2654 2655 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2656 p = bdrv_filter_or_cow_bs(p)) 2657 { 2658 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2659 file); 2660 ++*depth; 2661 if (ret < 0) { 2662 return ret; 2663 } 2664 if (*pnum == 0) { 2665 /* 2666 * The top layer deferred to this layer, and because this layer is 2667 * short, any zeroes that we synthesize beyond EOF behave as if they 2668 * were allocated at this layer. 2669 * 2670 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2671 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2672 * below. 2673 */ 2674 assert(ret & BDRV_BLOCK_EOF); 2675 *pnum = bytes; 2676 if (file) { 2677 *file = p; 2678 } 2679 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2680 break; 2681 } 2682 if (ret & BDRV_BLOCK_ALLOCATED) { 2683 /* 2684 * We've found the node and the status, we must break. 2685 * 2686 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2687 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2688 * below. 2689 */ 2690 ret &= ~BDRV_BLOCK_EOF; 2691 break; 2692 } 2693 2694 if (p == base) { 2695 assert(include_base); 2696 break; 2697 } 2698 2699 /* 2700 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2701 * let's continue the diving. 2702 */ 2703 assert(*pnum <= bytes); 2704 bytes = *pnum; 2705 } 2706 2707 if (offset + *pnum == eof) { 2708 ret |= BDRV_BLOCK_EOF; 2709 } 2710 2711 return ret; 2712 } 2713 2714 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2715 int64_t offset, int64_t bytes, int64_t *pnum, 2716 int64_t *map, BlockDriverState **file) 2717 { 2718 IO_CODE(); 2719 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2720 pnum, map, file, NULL); 2721 } 2722 2723 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2724 int64_t *pnum, int64_t *map, BlockDriverState **file) 2725 { 2726 IO_CODE(); 2727 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2728 offset, bytes, pnum, map, file); 2729 } 2730 2731 /* 2732 * Check @bs (and its backing chain) to see if the range defined 2733 * by @offset and @bytes is known to read as zeroes. 2734 * Return 1 if that is the case, 0 otherwise and -errno on error. 2735 * This test is meant to be fast rather than accurate so returning 0 2736 * does not guarantee non-zero data. 2737 */ 2738 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2739 int64_t bytes) 2740 { 2741 int ret; 2742 int64_t pnum = bytes; 2743 IO_CODE(); 2744 2745 if (!bytes) { 2746 return 1; 2747 } 2748 2749 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset, 2750 bytes, &pnum, NULL, NULL, NULL); 2751 2752 if (ret < 0) { 2753 return ret; 2754 } 2755 2756 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2757 } 2758 2759 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes, 2760 int64_t *pnum) 2761 { 2762 int ret; 2763 int64_t dummy; 2764 IO_CODE(); 2765 2766 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2767 bytes, pnum ? pnum : &dummy, NULL, 2768 NULL, NULL); 2769 if (ret < 0) { 2770 return ret; 2771 } 2772 return !!(ret & BDRV_BLOCK_ALLOCATED); 2773 } 2774 2775 /* 2776 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2777 * 2778 * Return a positive depth if (a prefix of) the given range is allocated 2779 * in any image between BASE and TOP (BASE is only included if include_base 2780 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2781 * BASE can be NULL to check if the given offset is allocated in any 2782 * image of the chain. Return 0 otherwise, or negative errno on 2783 * failure. 2784 * 2785 * 'pnum' is set to the number of bytes (including and immediately 2786 * following the specified offset) that are known to be in the same 2787 * allocated/unallocated state. Note that a subsequent call starting 2788 * at 'offset + *pnum' may return the same allocation status (in other 2789 * words, the result is not necessarily the maximum possible range); 2790 * but 'pnum' will only be 0 when end of file is reached. 2791 */ 2792 int bdrv_is_allocated_above(BlockDriverState *top, 2793 BlockDriverState *base, 2794 bool include_base, int64_t offset, 2795 int64_t bytes, int64_t *pnum) 2796 { 2797 int depth; 2798 int ret = bdrv_common_block_status_above(top, base, include_base, false, 2799 offset, bytes, pnum, NULL, NULL, 2800 &depth); 2801 IO_CODE(); 2802 if (ret < 0) { 2803 return ret; 2804 } 2805 2806 if (ret & BDRV_BLOCK_ALLOCATED) { 2807 return depth; 2808 } 2809 return 0; 2810 } 2811 2812 int coroutine_fn 2813 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2814 { 2815 BlockDriver *drv = bs->drv; 2816 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2817 int ret; 2818 IO_CODE(); 2819 2820 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2821 if (ret < 0) { 2822 return ret; 2823 } 2824 2825 if (!drv) { 2826 return -ENOMEDIUM; 2827 } 2828 2829 bdrv_inc_in_flight(bs); 2830 2831 if (drv->bdrv_load_vmstate) { 2832 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2833 } else if (child_bs) { 2834 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2835 } else { 2836 ret = -ENOTSUP; 2837 } 2838 2839 bdrv_dec_in_flight(bs); 2840 2841 return ret; 2842 } 2843 2844 int coroutine_fn 2845 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2846 { 2847 BlockDriver *drv = bs->drv; 2848 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2849 int ret; 2850 IO_CODE(); 2851 2852 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2853 if (ret < 0) { 2854 return ret; 2855 } 2856 2857 if (!drv) { 2858 return -ENOMEDIUM; 2859 } 2860 2861 bdrv_inc_in_flight(bs); 2862 2863 if (drv->bdrv_save_vmstate) { 2864 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2865 } else if (child_bs) { 2866 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2867 } else { 2868 ret = -ENOTSUP; 2869 } 2870 2871 bdrv_dec_in_flight(bs); 2872 2873 return ret; 2874 } 2875 2876 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2877 int64_t pos, int size) 2878 { 2879 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2880 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2881 IO_CODE(); 2882 2883 return ret < 0 ? ret : size; 2884 } 2885 2886 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2887 int64_t pos, int size) 2888 { 2889 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2890 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2891 IO_CODE(); 2892 2893 return ret < 0 ? ret : size; 2894 } 2895 2896 /**************************************************************/ 2897 /* async I/Os */ 2898 2899 void bdrv_aio_cancel(BlockAIOCB *acb) 2900 { 2901 IO_CODE(); 2902 qemu_aio_ref(acb); 2903 bdrv_aio_cancel_async(acb); 2904 while (acb->refcnt > 1) { 2905 if (acb->aiocb_info->get_aio_context) { 2906 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2907 } else if (acb->bs) { 2908 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2909 * assert that we're not using an I/O thread. Thread-safe 2910 * code should use bdrv_aio_cancel_async exclusively. 2911 */ 2912 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2913 aio_poll(bdrv_get_aio_context(acb->bs), true); 2914 } else { 2915 abort(); 2916 } 2917 } 2918 qemu_aio_unref(acb); 2919 } 2920 2921 /* Async version of aio cancel. The caller is not blocked if the acb implements 2922 * cancel_async, otherwise we do nothing and let the request normally complete. 2923 * In either case the completion callback must be called. */ 2924 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2925 { 2926 IO_CODE(); 2927 if (acb->aiocb_info->cancel_async) { 2928 acb->aiocb_info->cancel_async(acb); 2929 } 2930 } 2931 2932 /**************************************************************/ 2933 /* Coroutine block device emulation */ 2934 2935 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2936 { 2937 BdrvChild *primary_child = bdrv_primary_child(bs); 2938 BdrvChild *child; 2939 int current_gen; 2940 int ret = 0; 2941 IO_CODE(); 2942 2943 bdrv_inc_in_flight(bs); 2944 2945 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2946 bdrv_is_sg(bs)) { 2947 goto early_exit; 2948 } 2949 2950 qemu_co_mutex_lock(&bs->reqs_lock); 2951 current_gen = qatomic_read(&bs->write_gen); 2952 2953 /* Wait until any previous flushes are completed */ 2954 while (bs->active_flush_req) { 2955 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2956 } 2957 2958 /* Flushes reach this point in nondecreasing current_gen order. */ 2959 bs->active_flush_req = true; 2960 qemu_co_mutex_unlock(&bs->reqs_lock); 2961 2962 /* Write back all layers by calling one driver function */ 2963 if (bs->drv->bdrv_co_flush) { 2964 ret = bs->drv->bdrv_co_flush(bs); 2965 goto out; 2966 } 2967 2968 /* Write back cached data to the OS even with cache=unsafe */ 2969 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 2970 if (bs->drv->bdrv_co_flush_to_os) { 2971 ret = bs->drv->bdrv_co_flush_to_os(bs); 2972 if (ret < 0) { 2973 goto out; 2974 } 2975 } 2976 2977 /* But don't actually force it to the disk with cache=unsafe */ 2978 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2979 goto flush_children; 2980 } 2981 2982 /* Check if we really need to flush anything */ 2983 if (bs->flushed_gen == current_gen) { 2984 goto flush_children; 2985 } 2986 2987 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 2988 if (!bs->drv) { 2989 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2990 * (even in case of apparent success) */ 2991 ret = -ENOMEDIUM; 2992 goto out; 2993 } 2994 if (bs->drv->bdrv_co_flush_to_disk) { 2995 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2996 } else if (bs->drv->bdrv_aio_flush) { 2997 BlockAIOCB *acb; 2998 CoroutineIOCompletion co = { 2999 .coroutine = qemu_coroutine_self(), 3000 }; 3001 3002 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3003 if (acb == NULL) { 3004 ret = -EIO; 3005 } else { 3006 qemu_coroutine_yield(); 3007 ret = co.ret; 3008 } 3009 } else { 3010 /* 3011 * Some block drivers always operate in either writethrough or unsafe 3012 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3013 * know how the server works (because the behaviour is hardcoded or 3014 * depends on server-side configuration), so we can't ensure that 3015 * everything is safe on disk. Returning an error doesn't work because 3016 * that would break guests even if the server operates in writethrough 3017 * mode. 3018 * 3019 * Let's hope the user knows what he's doing. 3020 */ 3021 ret = 0; 3022 } 3023 3024 if (ret < 0) { 3025 goto out; 3026 } 3027 3028 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3029 * in the case of cache=unsafe, so there are no useless flushes. 3030 */ 3031 flush_children: 3032 ret = 0; 3033 QLIST_FOREACH(child, &bs->children, next) { 3034 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3035 int this_child_ret = bdrv_co_flush(child->bs); 3036 if (!ret) { 3037 ret = this_child_ret; 3038 } 3039 } 3040 } 3041 3042 out: 3043 /* Notify any pending flushes that we have completed */ 3044 if (ret == 0) { 3045 bs->flushed_gen = current_gen; 3046 } 3047 3048 qemu_co_mutex_lock(&bs->reqs_lock); 3049 bs->active_flush_req = false; 3050 /* Return value is ignored - it's ok if wait queue is empty */ 3051 qemu_co_queue_next(&bs->flush_queue); 3052 qemu_co_mutex_unlock(&bs->reqs_lock); 3053 3054 early_exit: 3055 bdrv_dec_in_flight(bs); 3056 return ret; 3057 } 3058 3059 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3060 int64_t bytes) 3061 { 3062 BdrvTrackedRequest req; 3063 int ret; 3064 int64_t max_pdiscard; 3065 int head, tail, align; 3066 BlockDriverState *bs = child->bs; 3067 IO_CODE(); 3068 3069 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 3070 return -ENOMEDIUM; 3071 } 3072 3073 if (bdrv_has_readonly_bitmaps(bs)) { 3074 return -EPERM; 3075 } 3076 3077 ret = bdrv_check_request(offset, bytes, NULL); 3078 if (ret < 0) { 3079 return ret; 3080 } 3081 3082 /* Do nothing if disabled. */ 3083 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3084 return 0; 3085 } 3086 3087 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 3088 return 0; 3089 } 3090 3091 /* Invalidate the cached block-status data range if this discard overlaps */ 3092 bdrv_bsc_invalidate_range(bs, offset, bytes); 3093 3094 /* Discard is advisory, but some devices track and coalesce 3095 * unaligned requests, so we must pass everything down rather than 3096 * round here. Still, most devices will just silently ignore 3097 * unaligned requests (by returning -ENOTSUP), so we must fragment 3098 * the request accordingly. */ 3099 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3100 assert(align % bs->bl.request_alignment == 0); 3101 head = offset % align; 3102 tail = (offset + bytes) % align; 3103 3104 bdrv_inc_in_flight(bs); 3105 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3106 3107 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3108 if (ret < 0) { 3109 goto out; 3110 } 3111 3112 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3113 align); 3114 assert(max_pdiscard >= bs->bl.request_alignment); 3115 3116 while (bytes > 0) { 3117 int64_t num = bytes; 3118 3119 if (head) { 3120 /* Make small requests to get to alignment boundaries. */ 3121 num = MIN(bytes, align - head); 3122 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3123 num %= bs->bl.request_alignment; 3124 } 3125 head = (head + num) % align; 3126 assert(num < max_pdiscard); 3127 } else if (tail) { 3128 if (num > align) { 3129 /* Shorten the request to the last aligned cluster. */ 3130 num -= tail; 3131 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3132 tail > bs->bl.request_alignment) { 3133 tail %= bs->bl.request_alignment; 3134 num -= tail; 3135 } 3136 } 3137 /* limit request size */ 3138 if (num > max_pdiscard) { 3139 num = max_pdiscard; 3140 } 3141 3142 if (!bs->drv) { 3143 ret = -ENOMEDIUM; 3144 goto out; 3145 } 3146 if (bs->drv->bdrv_co_pdiscard) { 3147 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3148 } else { 3149 BlockAIOCB *acb; 3150 CoroutineIOCompletion co = { 3151 .coroutine = qemu_coroutine_self(), 3152 }; 3153 3154 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3155 bdrv_co_io_em_complete, &co); 3156 if (acb == NULL) { 3157 ret = -EIO; 3158 goto out; 3159 } else { 3160 qemu_coroutine_yield(); 3161 ret = co.ret; 3162 } 3163 } 3164 if (ret && ret != -ENOTSUP) { 3165 goto out; 3166 } 3167 3168 offset += num; 3169 bytes -= num; 3170 } 3171 ret = 0; 3172 out: 3173 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3174 tracked_request_end(&req); 3175 bdrv_dec_in_flight(bs); 3176 return ret; 3177 } 3178 3179 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3180 { 3181 BlockDriver *drv = bs->drv; 3182 CoroutineIOCompletion co = { 3183 .coroutine = qemu_coroutine_self(), 3184 }; 3185 BlockAIOCB *acb; 3186 IO_CODE(); 3187 3188 bdrv_inc_in_flight(bs); 3189 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3190 co.ret = -ENOTSUP; 3191 goto out; 3192 } 3193 3194 if (drv->bdrv_co_ioctl) { 3195 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3196 } else { 3197 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3198 if (!acb) { 3199 co.ret = -ENOTSUP; 3200 goto out; 3201 } 3202 qemu_coroutine_yield(); 3203 } 3204 out: 3205 bdrv_dec_in_flight(bs); 3206 return co.ret; 3207 } 3208 3209 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3210 { 3211 IO_CODE(); 3212 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3213 } 3214 3215 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3216 { 3217 IO_CODE(); 3218 return memset(qemu_blockalign(bs, size), 0, size); 3219 } 3220 3221 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3222 { 3223 size_t align = bdrv_opt_mem_align(bs); 3224 IO_CODE(); 3225 3226 /* Ensure that NULL is never returned on success */ 3227 assert(align > 0); 3228 if (size == 0) { 3229 size = align; 3230 } 3231 3232 return qemu_try_memalign(align, size); 3233 } 3234 3235 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3236 { 3237 void *mem = qemu_try_blockalign(bs, size); 3238 IO_CODE(); 3239 3240 if (mem) { 3241 memset(mem, 0, size); 3242 } 3243 3244 return mem; 3245 } 3246 3247 void bdrv_io_plug(BlockDriverState *bs) 3248 { 3249 BdrvChild *child; 3250 IO_CODE(); 3251 3252 QLIST_FOREACH(child, &bs->children, next) { 3253 bdrv_io_plug(child->bs); 3254 } 3255 3256 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3257 BlockDriver *drv = bs->drv; 3258 if (drv && drv->bdrv_io_plug) { 3259 drv->bdrv_io_plug(bs); 3260 } 3261 } 3262 } 3263 3264 void bdrv_io_unplug(BlockDriverState *bs) 3265 { 3266 BdrvChild *child; 3267 IO_CODE(); 3268 3269 assert(bs->io_plugged); 3270 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3271 BlockDriver *drv = bs->drv; 3272 if (drv && drv->bdrv_io_unplug) { 3273 drv->bdrv_io_unplug(bs); 3274 } 3275 } 3276 3277 QLIST_FOREACH(child, &bs->children, next) { 3278 bdrv_io_unplug(child->bs); 3279 } 3280 } 3281 3282 /* Helper that undoes bdrv_register_buf() when it fails partway through */ 3283 static void bdrv_register_buf_rollback(BlockDriverState *bs, 3284 void *host, 3285 size_t size, 3286 BdrvChild *final_child) 3287 { 3288 BdrvChild *child; 3289 3290 QLIST_FOREACH(child, &bs->children, next) { 3291 if (child == final_child) { 3292 break; 3293 } 3294 3295 bdrv_unregister_buf(child->bs, host, size); 3296 } 3297 3298 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3299 bs->drv->bdrv_unregister_buf(bs, host, size); 3300 } 3301 } 3302 3303 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size, 3304 Error **errp) 3305 { 3306 BdrvChild *child; 3307 3308 GLOBAL_STATE_CODE(); 3309 if (bs->drv && bs->drv->bdrv_register_buf) { 3310 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) { 3311 return false; 3312 } 3313 } 3314 QLIST_FOREACH(child, &bs->children, next) { 3315 if (!bdrv_register_buf(child->bs, host, size, errp)) { 3316 bdrv_register_buf_rollback(bs, host, size, child); 3317 return false; 3318 } 3319 } 3320 return true; 3321 } 3322 3323 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size) 3324 { 3325 BdrvChild *child; 3326 3327 GLOBAL_STATE_CODE(); 3328 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3329 bs->drv->bdrv_unregister_buf(bs, host, size); 3330 } 3331 QLIST_FOREACH(child, &bs->children, next) { 3332 bdrv_unregister_buf(child->bs, host, size); 3333 } 3334 } 3335 3336 static int coroutine_fn bdrv_co_copy_range_internal( 3337 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3338 int64_t dst_offset, int64_t bytes, 3339 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3340 bool recurse_src) 3341 { 3342 BdrvTrackedRequest req; 3343 int ret; 3344 3345 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3346 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3347 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3348 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3349 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3350 3351 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) { 3352 return -ENOMEDIUM; 3353 } 3354 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3355 if (ret) { 3356 return ret; 3357 } 3358 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3359 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3360 } 3361 3362 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) { 3363 return -ENOMEDIUM; 3364 } 3365 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3366 if (ret) { 3367 return ret; 3368 } 3369 3370 if (!src->bs->drv->bdrv_co_copy_range_from 3371 || !dst->bs->drv->bdrv_co_copy_range_to 3372 || src->bs->encrypted || dst->bs->encrypted) { 3373 return -ENOTSUP; 3374 } 3375 3376 if (recurse_src) { 3377 bdrv_inc_in_flight(src->bs); 3378 tracked_request_begin(&req, src->bs, src_offset, bytes, 3379 BDRV_TRACKED_READ); 3380 3381 /* BDRV_REQ_SERIALISING is only for write operation */ 3382 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3383 bdrv_wait_serialising_requests(&req); 3384 3385 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3386 src, src_offset, 3387 dst, dst_offset, 3388 bytes, 3389 read_flags, write_flags); 3390 3391 tracked_request_end(&req); 3392 bdrv_dec_in_flight(src->bs); 3393 } else { 3394 bdrv_inc_in_flight(dst->bs); 3395 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3396 BDRV_TRACKED_WRITE); 3397 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3398 write_flags); 3399 if (!ret) { 3400 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3401 src, src_offset, 3402 dst, dst_offset, 3403 bytes, 3404 read_flags, write_flags); 3405 } 3406 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3407 tracked_request_end(&req); 3408 bdrv_dec_in_flight(dst->bs); 3409 } 3410 3411 return ret; 3412 } 3413 3414 /* Copy range from @src to @dst. 3415 * 3416 * See the comment of bdrv_co_copy_range for the parameter and return value 3417 * semantics. */ 3418 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3419 BdrvChild *dst, int64_t dst_offset, 3420 int64_t bytes, 3421 BdrvRequestFlags read_flags, 3422 BdrvRequestFlags write_flags) 3423 { 3424 IO_CODE(); 3425 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3426 read_flags, write_flags); 3427 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3428 bytes, read_flags, write_flags, true); 3429 } 3430 3431 /* Copy range from @src to @dst. 3432 * 3433 * See the comment of bdrv_co_copy_range for the parameter and return value 3434 * semantics. */ 3435 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3436 BdrvChild *dst, int64_t dst_offset, 3437 int64_t bytes, 3438 BdrvRequestFlags read_flags, 3439 BdrvRequestFlags write_flags) 3440 { 3441 IO_CODE(); 3442 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3443 read_flags, write_flags); 3444 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3445 bytes, read_flags, write_flags, false); 3446 } 3447 3448 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3449 BdrvChild *dst, int64_t dst_offset, 3450 int64_t bytes, BdrvRequestFlags read_flags, 3451 BdrvRequestFlags write_flags) 3452 { 3453 IO_CODE(); 3454 return bdrv_co_copy_range_from(src, src_offset, 3455 dst, dst_offset, 3456 bytes, read_flags, write_flags); 3457 } 3458 3459 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3460 { 3461 BdrvChild *c; 3462 QLIST_FOREACH(c, &bs->parents, next_parent) { 3463 if (c->klass->resize) { 3464 c->klass->resize(c); 3465 } 3466 } 3467 } 3468 3469 /** 3470 * Truncate file to 'offset' bytes (needed only for file protocols) 3471 * 3472 * If 'exact' is true, the file must be resized to exactly the given 3473 * 'offset'. Otherwise, it is sufficient for the node to be at least 3474 * 'offset' bytes in length. 3475 */ 3476 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3477 PreallocMode prealloc, BdrvRequestFlags flags, 3478 Error **errp) 3479 { 3480 BlockDriverState *bs = child->bs; 3481 BdrvChild *filtered, *backing; 3482 BlockDriver *drv = bs->drv; 3483 BdrvTrackedRequest req; 3484 int64_t old_size, new_bytes; 3485 int ret; 3486 IO_CODE(); 3487 3488 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3489 if (!drv) { 3490 error_setg(errp, "No medium inserted"); 3491 return -ENOMEDIUM; 3492 } 3493 if (offset < 0) { 3494 error_setg(errp, "Image size cannot be negative"); 3495 return -EINVAL; 3496 } 3497 3498 ret = bdrv_check_request(offset, 0, errp); 3499 if (ret < 0) { 3500 return ret; 3501 } 3502 3503 old_size = bdrv_getlength(bs); 3504 if (old_size < 0) { 3505 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3506 return old_size; 3507 } 3508 3509 if (bdrv_is_read_only(bs)) { 3510 error_setg(errp, "Image is read-only"); 3511 return -EACCES; 3512 } 3513 3514 if (offset > old_size) { 3515 new_bytes = offset - old_size; 3516 } else { 3517 new_bytes = 0; 3518 } 3519 3520 bdrv_inc_in_flight(bs); 3521 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3522 BDRV_TRACKED_TRUNCATE); 3523 3524 /* If we are growing the image and potentially using preallocation for the 3525 * new area, we need to make sure that no write requests are made to it 3526 * concurrently or they might be overwritten by preallocation. */ 3527 if (new_bytes) { 3528 bdrv_make_request_serialising(&req, 1); 3529 } 3530 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3531 0); 3532 if (ret < 0) { 3533 error_setg_errno(errp, -ret, 3534 "Failed to prepare request for truncation"); 3535 goto out; 3536 } 3537 3538 filtered = bdrv_filter_child(bs); 3539 backing = bdrv_cow_child(bs); 3540 3541 /* 3542 * If the image has a backing file that is large enough that it would 3543 * provide data for the new area, we cannot leave it unallocated because 3544 * then the backing file content would become visible. Instead, zero-fill 3545 * the new area. 3546 * 3547 * Note that if the image has a backing file, but was opened without the 3548 * backing file, taking care of keeping things consistent with that backing 3549 * file is the user's responsibility. 3550 */ 3551 if (new_bytes && backing) { 3552 int64_t backing_len; 3553 3554 backing_len = bdrv_getlength(backing->bs); 3555 if (backing_len < 0) { 3556 ret = backing_len; 3557 error_setg_errno(errp, -ret, "Could not get backing file size"); 3558 goto out; 3559 } 3560 3561 if (backing_len > old_size) { 3562 flags |= BDRV_REQ_ZERO_WRITE; 3563 } 3564 } 3565 3566 if (drv->bdrv_co_truncate) { 3567 if (flags & ~bs->supported_truncate_flags) { 3568 error_setg(errp, "Block driver does not support requested flags"); 3569 ret = -ENOTSUP; 3570 goto out; 3571 } 3572 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3573 } else if (filtered) { 3574 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3575 } else { 3576 error_setg(errp, "Image format driver does not support resize"); 3577 ret = -ENOTSUP; 3578 goto out; 3579 } 3580 if (ret < 0) { 3581 goto out; 3582 } 3583 3584 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3585 if (ret < 0) { 3586 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3587 } else { 3588 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3589 } 3590 /* It's possible that truncation succeeded but refresh_total_sectors 3591 * failed, but the latter doesn't affect how we should finish the request. 3592 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3593 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3594 3595 out: 3596 tracked_request_end(&req); 3597 bdrv_dec_in_flight(bs); 3598 3599 return ret; 3600 } 3601 3602 void bdrv_cancel_in_flight(BlockDriverState *bs) 3603 { 3604 GLOBAL_STATE_CODE(); 3605 if (!bs || !bs->drv) { 3606 return; 3607 } 3608 3609 if (bs->drv->bdrv_cancel_in_flight) { 3610 bs->drv->bdrv_cancel_in_flight(bs); 3611 } 3612 } 3613 3614 int coroutine_fn 3615 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3616 QEMUIOVector *qiov, size_t qiov_offset) 3617 { 3618 BlockDriverState *bs = child->bs; 3619 BlockDriver *drv = bs->drv; 3620 int ret; 3621 IO_CODE(); 3622 3623 if (!drv) { 3624 return -ENOMEDIUM; 3625 } 3626 3627 if (!drv->bdrv_co_preadv_snapshot) { 3628 return -ENOTSUP; 3629 } 3630 3631 bdrv_inc_in_flight(bs); 3632 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3633 bdrv_dec_in_flight(bs); 3634 3635 return ret; 3636 } 3637 3638 int coroutine_fn 3639 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3640 bool want_zero, int64_t offset, int64_t bytes, 3641 int64_t *pnum, int64_t *map, 3642 BlockDriverState **file) 3643 { 3644 BlockDriver *drv = bs->drv; 3645 int ret; 3646 IO_CODE(); 3647 3648 if (!drv) { 3649 return -ENOMEDIUM; 3650 } 3651 3652 if (!drv->bdrv_co_snapshot_block_status) { 3653 return -ENOTSUP; 3654 } 3655 3656 bdrv_inc_in_flight(bs); 3657 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3658 pnum, map, file); 3659 bdrv_dec_in_flight(bs); 3660 3661 return ret; 3662 } 3663 3664 int coroutine_fn 3665 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3666 { 3667 BlockDriver *drv = bs->drv; 3668 int ret; 3669 IO_CODE(); 3670 3671 if (!drv) { 3672 return -ENOMEDIUM; 3673 } 3674 3675 if (!drv->bdrv_co_pdiscard_snapshot) { 3676 return -ENOTSUP; 3677 } 3678 3679 bdrv_inc_in_flight(bs); 3680 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3681 bdrv_dec_in_flight(bs); 3682 3683 return ret; 3684 } 3685