xref: /openbmc/qemu/block/io.c (revision a003dbc6)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/write-threshold.h"
34 #include "qemu/cutils.h"
35 #include "qapi/error.h"
36 #include "qemu/error-report.h"
37 #include "qemu/main-loop.h"
38 #include "sysemu/replay.h"
39 
40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
42 
43 static void bdrv_parent_cb_resize(BlockDriverState *bs);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45     int64_t offset, int64_t bytes, BdrvRequestFlags flags);
46 
47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
48                                       bool ignore_bds_parents)
49 {
50     BdrvChild *c, *next;
51 
52     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
54             continue;
55         }
56         bdrv_parent_drained_begin_single(c, false);
57     }
58 }
59 
60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
61                                                    int *drained_end_counter)
62 {
63     assert(c->parent_quiesce_counter > 0);
64     c->parent_quiesce_counter--;
65     if (c->klass->drained_end) {
66         c->klass->drained_end(c, drained_end_counter);
67     }
68 }
69 
70 void bdrv_parent_drained_end_single(BdrvChild *c)
71 {
72     int drained_end_counter = 0;
73     bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
74     BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
75 }
76 
77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
78                                     bool ignore_bds_parents,
79                                     int *drained_end_counter)
80 {
81     BdrvChild *c;
82 
83     QLIST_FOREACH(c, &bs->parents, next_parent) {
84         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
85             continue;
86         }
87         bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
88     }
89 }
90 
91 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
92 {
93     if (c->klass->drained_poll) {
94         return c->klass->drained_poll(c);
95     }
96     return false;
97 }
98 
99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
100                                      bool ignore_bds_parents)
101 {
102     BdrvChild *c, *next;
103     bool busy = false;
104 
105     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
106         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
107             continue;
108         }
109         busy |= bdrv_parent_drained_poll_single(c);
110     }
111 
112     return busy;
113 }
114 
115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
116 {
117     c->parent_quiesce_counter++;
118     if (c->klass->drained_begin) {
119         c->klass->drained_begin(c);
120     }
121     if (poll) {
122         BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
123     }
124 }
125 
126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
127 {
128     dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
129                                   src->pdiscard_alignment);
130     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
131     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
132     dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
133                                         src->max_hw_transfer);
134     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
135                                  src->opt_mem_alignment);
136     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
137                                  src->min_mem_alignment);
138     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
139 }
140 
141 typedef struct BdrvRefreshLimitsState {
142     BlockDriverState *bs;
143     BlockLimits old_bl;
144 } BdrvRefreshLimitsState;
145 
146 static void bdrv_refresh_limits_abort(void *opaque)
147 {
148     BdrvRefreshLimitsState *s = opaque;
149 
150     s->bs->bl = s->old_bl;
151 }
152 
153 static TransactionActionDrv bdrv_refresh_limits_drv = {
154     .abort = bdrv_refresh_limits_abort,
155     .clean = g_free,
156 };
157 
158 /* @tran is allowed to be NULL, in this case no rollback is possible. */
159 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
160 {
161     ERRP_GUARD();
162     BlockDriver *drv = bs->drv;
163     BdrvChild *c;
164     bool have_limits;
165 
166     if (tran) {
167         BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
168         *s = (BdrvRefreshLimitsState) {
169             .bs = bs,
170             .old_bl = bs->bl,
171         };
172         tran_add(tran, &bdrv_refresh_limits_drv, s);
173     }
174 
175     memset(&bs->bl, 0, sizeof(bs->bl));
176 
177     if (!drv) {
178         return;
179     }
180 
181     /* Default alignment based on whether driver has byte interface */
182     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
183                                 drv->bdrv_aio_preadv ||
184                                 drv->bdrv_co_preadv_part) ? 1 : 512;
185 
186     /* Take some limits from the children as a default */
187     have_limits = false;
188     QLIST_FOREACH(c, &bs->children, next) {
189         if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
190         {
191             bdrv_refresh_limits(c->bs, tran, errp);
192             if (*errp) {
193                 return;
194             }
195             bdrv_merge_limits(&bs->bl, &c->bs->bl);
196             have_limits = true;
197         }
198     }
199 
200     if (!have_limits) {
201         bs->bl.min_mem_alignment = 512;
202         bs->bl.opt_mem_alignment = qemu_real_host_page_size;
203 
204         /* Safe default since most protocols use readv()/writev()/etc */
205         bs->bl.max_iov = IOV_MAX;
206     }
207 
208     /* Then let the driver override it */
209     if (drv->bdrv_refresh_limits) {
210         drv->bdrv_refresh_limits(bs, errp);
211         if (*errp) {
212             return;
213         }
214     }
215 
216     if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
217         error_setg(errp, "Driver requires too large request alignment");
218     }
219 }
220 
221 /**
222  * The copy-on-read flag is actually a reference count so multiple users may
223  * use the feature without worrying about clobbering its previous state.
224  * Copy-on-read stays enabled until all users have called to disable it.
225  */
226 void bdrv_enable_copy_on_read(BlockDriverState *bs)
227 {
228     qatomic_inc(&bs->copy_on_read);
229 }
230 
231 void bdrv_disable_copy_on_read(BlockDriverState *bs)
232 {
233     int old = qatomic_fetch_dec(&bs->copy_on_read);
234     assert(old >= 1);
235 }
236 
237 typedef struct {
238     Coroutine *co;
239     BlockDriverState *bs;
240     bool done;
241     bool begin;
242     bool recursive;
243     bool poll;
244     BdrvChild *parent;
245     bool ignore_bds_parents;
246     int *drained_end_counter;
247 } BdrvCoDrainData;
248 
249 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
250 {
251     BdrvCoDrainData *data = opaque;
252     BlockDriverState *bs = data->bs;
253 
254     if (data->begin) {
255         bs->drv->bdrv_co_drain_begin(bs);
256     } else {
257         bs->drv->bdrv_co_drain_end(bs);
258     }
259 
260     /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
261     qatomic_mb_set(&data->done, true);
262     if (!data->begin) {
263         qatomic_dec(data->drained_end_counter);
264     }
265     bdrv_dec_in_flight(bs);
266 
267     g_free(data);
268 }
269 
270 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
271 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
272                               int *drained_end_counter)
273 {
274     BdrvCoDrainData *data;
275 
276     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
277             (!begin && !bs->drv->bdrv_co_drain_end)) {
278         return;
279     }
280 
281     data = g_new(BdrvCoDrainData, 1);
282     *data = (BdrvCoDrainData) {
283         .bs = bs,
284         .done = false,
285         .begin = begin,
286         .drained_end_counter = drained_end_counter,
287     };
288 
289     if (!begin) {
290         qatomic_inc(drained_end_counter);
291     }
292 
293     /* Make sure the driver callback completes during the polling phase for
294      * drain_begin. */
295     bdrv_inc_in_flight(bs);
296     data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
297     aio_co_schedule(bdrv_get_aio_context(bs), data->co);
298 }
299 
300 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
301 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
302                      BdrvChild *ignore_parent, bool ignore_bds_parents)
303 {
304     BdrvChild *child, *next;
305 
306     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
307         return true;
308     }
309 
310     if (qatomic_read(&bs->in_flight)) {
311         return true;
312     }
313 
314     if (recursive) {
315         assert(!ignore_bds_parents);
316         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
317             if (bdrv_drain_poll(child->bs, recursive, child, false)) {
318                 return true;
319             }
320         }
321     }
322 
323     return false;
324 }
325 
326 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
327                                       BdrvChild *ignore_parent)
328 {
329     return bdrv_drain_poll(bs, recursive, ignore_parent, false);
330 }
331 
332 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
333                                   BdrvChild *parent, bool ignore_bds_parents,
334                                   bool poll);
335 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
336                                 BdrvChild *parent, bool ignore_bds_parents,
337                                 int *drained_end_counter);
338 
339 static void bdrv_co_drain_bh_cb(void *opaque)
340 {
341     BdrvCoDrainData *data = opaque;
342     Coroutine *co = data->co;
343     BlockDriverState *bs = data->bs;
344 
345     if (bs) {
346         AioContext *ctx = bdrv_get_aio_context(bs);
347         aio_context_acquire(ctx);
348         bdrv_dec_in_flight(bs);
349         if (data->begin) {
350             assert(!data->drained_end_counter);
351             bdrv_do_drained_begin(bs, data->recursive, data->parent,
352                                   data->ignore_bds_parents, data->poll);
353         } else {
354             assert(!data->poll);
355             bdrv_do_drained_end(bs, data->recursive, data->parent,
356                                 data->ignore_bds_parents,
357                                 data->drained_end_counter);
358         }
359         aio_context_release(ctx);
360     } else {
361         assert(data->begin);
362         bdrv_drain_all_begin();
363     }
364 
365     data->done = true;
366     aio_co_wake(co);
367 }
368 
369 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
370                                                 bool begin, bool recursive,
371                                                 BdrvChild *parent,
372                                                 bool ignore_bds_parents,
373                                                 bool poll,
374                                                 int *drained_end_counter)
375 {
376     BdrvCoDrainData data;
377     Coroutine *self = qemu_coroutine_self();
378     AioContext *ctx = bdrv_get_aio_context(bs);
379     AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
380 
381     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
382      * other coroutines run if they were queued by aio_co_enter(). */
383 
384     assert(qemu_in_coroutine());
385     data = (BdrvCoDrainData) {
386         .co = self,
387         .bs = bs,
388         .done = false,
389         .begin = begin,
390         .recursive = recursive,
391         .parent = parent,
392         .ignore_bds_parents = ignore_bds_parents,
393         .poll = poll,
394         .drained_end_counter = drained_end_counter,
395     };
396 
397     if (bs) {
398         bdrv_inc_in_flight(bs);
399     }
400 
401     /*
402      * Temporarily drop the lock across yield or we would get deadlocks.
403      * bdrv_co_drain_bh_cb() reaquires the lock as needed.
404      *
405      * When we yield below, the lock for the current context will be
406      * released, so if this is actually the lock that protects bs, don't drop
407      * it a second time.
408      */
409     if (ctx != co_ctx) {
410         aio_context_release(ctx);
411     }
412     replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
413 
414     qemu_coroutine_yield();
415     /* If we are resumed from some other event (such as an aio completion or a
416      * timer callback), it is a bug in the caller that should be fixed. */
417     assert(data.done);
418 
419     /* Reaquire the AioContext of bs if we dropped it */
420     if (ctx != co_ctx) {
421         aio_context_acquire(ctx);
422     }
423 }
424 
425 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
426                                    BdrvChild *parent, bool ignore_bds_parents)
427 {
428     assert(!qemu_in_coroutine());
429 
430     /* Stop things in parent-to-child order */
431     if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
432         aio_disable_external(bdrv_get_aio_context(bs));
433     }
434 
435     bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
436     bdrv_drain_invoke(bs, true, NULL);
437 }
438 
439 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
440                                   BdrvChild *parent, bool ignore_bds_parents,
441                                   bool poll)
442 {
443     BdrvChild *child, *next;
444 
445     if (qemu_in_coroutine()) {
446         bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
447                                poll, NULL);
448         return;
449     }
450 
451     bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
452 
453     if (recursive) {
454         assert(!ignore_bds_parents);
455         bs->recursive_quiesce_counter++;
456         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
457             bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
458                                   false);
459         }
460     }
461 
462     /*
463      * Wait for drained requests to finish.
464      *
465      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
466      * call is needed so things in this AioContext can make progress even
467      * though we don't return to the main AioContext loop - this automatically
468      * includes other nodes in the same AioContext and therefore all child
469      * nodes.
470      */
471     if (poll) {
472         assert(!ignore_bds_parents);
473         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
474     }
475 }
476 
477 void bdrv_drained_begin(BlockDriverState *bs)
478 {
479     bdrv_do_drained_begin(bs, false, NULL, false, true);
480 }
481 
482 void bdrv_subtree_drained_begin(BlockDriverState *bs)
483 {
484     bdrv_do_drained_begin(bs, true, NULL, false, true);
485 }
486 
487 /**
488  * This function does not poll, nor must any of its recursively called
489  * functions.  The *drained_end_counter pointee will be incremented
490  * once for every background operation scheduled, and decremented once
491  * the operation settles.  Therefore, the pointer must remain valid
492  * until the pointee reaches 0.  That implies that whoever sets up the
493  * pointee has to poll until it is 0.
494  *
495  * We use atomic operations to access *drained_end_counter, because
496  * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
497  *     @bs may contain nodes in different AioContexts,
498  * (2) bdrv_drain_all_end() uses the same counter for all nodes,
499  *     regardless of which AioContext they are in.
500  */
501 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
502                                 BdrvChild *parent, bool ignore_bds_parents,
503                                 int *drained_end_counter)
504 {
505     BdrvChild *child;
506     int old_quiesce_counter;
507 
508     assert(drained_end_counter != NULL);
509 
510     if (qemu_in_coroutine()) {
511         bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
512                                false, drained_end_counter);
513         return;
514     }
515     assert(bs->quiesce_counter > 0);
516 
517     /* Re-enable things in child-to-parent order */
518     bdrv_drain_invoke(bs, false, drained_end_counter);
519     bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
520                             drained_end_counter);
521 
522     old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
523     if (old_quiesce_counter == 1) {
524         aio_enable_external(bdrv_get_aio_context(bs));
525     }
526 
527     if (recursive) {
528         assert(!ignore_bds_parents);
529         bs->recursive_quiesce_counter--;
530         QLIST_FOREACH(child, &bs->children, next) {
531             bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
532                                 drained_end_counter);
533         }
534     }
535 }
536 
537 void bdrv_drained_end(BlockDriverState *bs)
538 {
539     int drained_end_counter = 0;
540     bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
541     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
542 }
543 
544 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
545 {
546     bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
547 }
548 
549 void bdrv_subtree_drained_end(BlockDriverState *bs)
550 {
551     int drained_end_counter = 0;
552     bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
553     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
554 }
555 
556 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
557 {
558     int i;
559 
560     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
561         bdrv_do_drained_begin(child->bs, true, child, false, true);
562     }
563 }
564 
565 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
566 {
567     int drained_end_counter = 0;
568     int i;
569 
570     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
571         bdrv_do_drained_end(child->bs, true, child, false,
572                             &drained_end_counter);
573     }
574 
575     BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
576 }
577 
578 /*
579  * Wait for pending requests to complete on a single BlockDriverState subtree,
580  * and suspend block driver's internal I/O until next request arrives.
581  *
582  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
583  * AioContext.
584  */
585 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
586 {
587     assert(qemu_in_coroutine());
588     bdrv_drained_begin(bs);
589     bdrv_drained_end(bs);
590 }
591 
592 void bdrv_drain(BlockDriverState *bs)
593 {
594     bdrv_drained_begin(bs);
595     bdrv_drained_end(bs);
596 }
597 
598 static void bdrv_drain_assert_idle(BlockDriverState *bs)
599 {
600     BdrvChild *child, *next;
601 
602     assert(qatomic_read(&bs->in_flight) == 0);
603     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
604         bdrv_drain_assert_idle(child->bs);
605     }
606 }
607 
608 unsigned int bdrv_drain_all_count = 0;
609 
610 static bool bdrv_drain_all_poll(void)
611 {
612     BlockDriverState *bs = NULL;
613     bool result = false;
614 
615     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
616      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
617     while ((bs = bdrv_next_all_states(bs))) {
618         AioContext *aio_context = bdrv_get_aio_context(bs);
619         aio_context_acquire(aio_context);
620         result |= bdrv_drain_poll(bs, false, NULL, true);
621         aio_context_release(aio_context);
622     }
623 
624     return result;
625 }
626 
627 /*
628  * Wait for pending requests to complete across all BlockDriverStates
629  *
630  * This function does not flush data to disk, use bdrv_flush_all() for that
631  * after calling this function.
632  *
633  * This pauses all block jobs and disables external clients. It must
634  * be paired with bdrv_drain_all_end().
635  *
636  * NOTE: no new block jobs or BlockDriverStates can be created between
637  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
638  */
639 void bdrv_drain_all_begin(void)
640 {
641     BlockDriverState *bs = NULL;
642 
643     if (qemu_in_coroutine()) {
644         bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
645         return;
646     }
647 
648     /*
649      * bdrv queue is managed by record/replay,
650      * waiting for finishing the I/O requests may
651      * be infinite
652      */
653     if (replay_events_enabled()) {
654         return;
655     }
656 
657     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
658      * loop AioContext, so make sure we're in the main context. */
659     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
660     assert(bdrv_drain_all_count < INT_MAX);
661     bdrv_drain_all_count++;
662 
663     /* Quiesce all nodes, without polling in-flight requests yet. The graph
664      * cannot change during this loop. */
665     while ((bs = bdrv_next_all_states(bs))) {
666         AioContext *aio_context = bdrv_get_aio_context(bs);
667 
668         aio_context_acquire(aio_context);
669         bdrv_do_drained_begin(bs, false, NULL, true, false);
670         aio_context_release(aio_context);
671     }
672 
673     /* Now poll the in-flight requests */
674     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
675 
676     while ((bs = bdrv_next_all_states(bs))) {
677         bdrv_drain_assert_idle(bs);
678     }
679 }
680 
681 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
682 {
683     int drained_end_counter = 0;
684 
685     g_assert(bs->quiesce_counter > 0);
686     g_assert(!bs->refcnt);
687 
688     while (bs->quiesce_counter) {
689         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
690     }
691     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
692 }
693 
694 void bdrv_drain_all_end(void)
695 {
696     BlockDriverState *bs = NULL;
697     int drained_end_counter = 0;
698 
699     /*
700      * bdrv queue is managed by record/replay,
701      * waiting for finishing the I/O requests may
702      * be endless
703      */
704     if (replay_events_enabled()) {
705         return;
706     }
707 
708     while ((bs = bdrv_next_all_states(bs))) {
709         AioContext *aio_context = bdrv_get_aio_context(bs);
710 
711         aio_context_acquire(aio_context);
712         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
713         aio_context_release(aio_context);
714     }
715 
716     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
717     AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
718 
719     assert(bdrv_drain_all_count > 0);
720     bdrv_drain_all_count--;
721 }
722 
723 void bdrv_drain_all(void)
724 {
725     bdrv_drain_all_begin();
726     bdrv_drain_all_end();
727 }
728 
729 /**
730  * Remove an active request from the tracked requests list
731  *
732  * This function should be called when a tracked request is completing.
733  */
734 static void tracked_request_end(BdrvTrackedRequest *req)
735 {
736     if (req->serialising) {
737         qatomic_dec(&req->bs->serialising_in_flight);
738     }
739 
740     qemu_co_mutex_lock(&req->bs->reqs_lock);
741     QLIST_REMOVE(req, list);
742     qemu_co_queue_restart_all(&req->wait_queue);
743     qemu_co_mutex_unlock(&req->bs->reqs_lock);
744 }
745 
746 /**
747  * Add an active request to the tracked requests list
748  */
749 static void tracked_request_begin(BdrvTrackedRequest *req,
750                                   BlockDriverState *bs,
751                                   int64_t offset,
752                                   int64_t bytes,
753                                   enum BdrvTrackedRequestType type)
754 {
755     bdrv_check_request(offset, bytes, &error_abort);
756 
757     *req = (BdrvTrackedRequest){
758         .bs = bs,
759         .offset         = offset,
760         .bytes          = bytes,
761         .type           = type,
762         .co             = qemu_coroutine_self(),
763         .serialising    = false,
764         .overlap_offset = offset,
765         .overlap_bytes  = bytes,
766     };
767 
768     qemu_co_queue_init(&req->wait_queue);
769 
770     qemu_co_mutex_lock(&bs->reqs_lock);
771     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
772     qemu_co_mutex_unlock(&bs->reqs_lock);
773 }
774 
775 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
776                                      int64_t offset, int64_t bytes)
777 {
778     bdrv_check_request(offset, bytes, &error_abort);
779 
780     /*        aaaa   bbbb */
781     if (offset >= req->overlap_offset + req->overlap_bytes) {
782         return false;
783     }
784     /* bbbb   aaaa        */
785     if (req->overlap_offset >= offset + bytes) {
786         return false;
787     }
788     return true;
789 }
790 
791 /* Called with self->bs->reqs_lock held */
792 static BdrvTrackedRequest *
793 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
794 {
795     BdrvTrackedRequest *req;
796 
797     QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
798         if (req == self || (!req->serialising && !self->serialising)) {
799             continue;
800         }
801         if (tracked_request_overlaps(req, self->overlap_offset,
802                                      self->overlap_bytes))
803         {
804             /*
805              * Hitting this means there was a reentrant request, for
806              * example, a block driver issuing nested requests.  This must
807              * never happen since it means deadlock.
808              */
809             assert(qemu_coroutine_self() != req->co);
810 
811             /*
812              * If the request is already (indirectly) waiting for us, or
813              * will wait for us as soon as it wakes up, then just go on
814              * (instead of producing a deadlock in the former case).
815              */
816             if (!req->waiting_for) {
817                 return req;
818             }
819         }
820     }
821 
822     return NULL;
823 }
824 
825 /* Called with self->bs->reqs_lock held */
826 static bool coroutine_fn
827 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
828 {
829     BdrvTrackedRequest *req;
830     bool waited = false;
831 
832     while ((req = bdrv_find_conflicting_request(self))) {
833         self->waiting_for = req;
834         qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
835         self->waiting_for = NULL;
836         waited = true;
837     }
838 
839     return waited;
840 }
841 
842 /* Called with req->bs->reqs_lock held */
843 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
844                                             uint64_t align)
845 {
846     int64_t overlap_offset = req->offset & ~(align - 1);
847     int64_t overlap_bytes =
848         ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
849 
850     bdrv_check_request(req->offset, req->bytes, &error_abort);
851 
852     if (!req->serialising) {
853         qatomic_inc(&req->bs->serialising_in_flight);
854         req->serialising = true;
855     }
856 
857     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
858     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
859 }
860 
861 /**
862  * Return the tracked request on @bs for the current coroutine, or
863  * NULL if there is none.
864  */
865 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
866 {
867     BdrvTrackedRequest *req;
868     Coroutine *self = qemu_coroutine_self();
869 
870     QLIST_FOREACH(req, &bs->tracked_requests, list) {
871         if (req->co == self) {
872             return req;
873         }
874     }
875 
876     return NULL;
877 }
878 
879 /**
880  * Round a region to cluster boundaries
881  */
882 void bdrv_round_to_clusters(BlockDriverState *bs,
883                             int64_t offset, int64_t bytes,
884                             int64_t *cluster_offset,
885                             int64_t *cluster_bytes)
886 {
887     BlockDriverInfo bdi;
888 
889     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
890         *cluster_offset = offset;
891         *cluster_bytes = bytes;
892     } else {
893         int64_t c = bdi.cluster_size;
894         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
895         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
896     }
897 }
898 
899 static int bdrv_get_cluster_size(BlockDriverState *bs)
900 {
901     BlockDriverInfo bdi;
902     int ret;
903 
904     ret = bdrv_get_info(bs, &bdi);
905     if (ret < 0 || bdi.cluster_size == 0) {
906         return bs->bl.request_alignment;
907     } else {
908         return bdi.cluster_size;
909     }
910 }
911 
912 void bdrv_inc_in_flight(BlockDriverState *bs)
913 {
914     qatomic_inc(&bs->in_flight);
915 }
916 
917 void bdrv_wakeup(BlockDriverState *bs)
918 {
919     aio_wait_kick();
920 }
921 
922 void bdrv_dec_in_flight(BlockDriverState *bs)
923 {
924     qatomic_dec(&bs->in_flight);
925     bdrv_wakeup(bs);
926 }
927 
928 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
929 {
930     BlockDriverState *bs = self->bs;
931     bool waited = false;
932 
933     if (!qatomic_read(&bs->serialising_in_flight)) {
934         return false;
935     }
936 
937     qemu_co_mutex_lock(&bs->reqs_lock);
938     waited = bdrv_wait_serialising_requests_locked(self);
939     qemu_co_mutex_unlock(&bs->reqs_lock);
940 
941     return waited;
942 }
943 
944 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
945                                                 uint64_t align)
946 {
947     bool waited;
948 
949     qemu_co_mutex_lock(&req->bs->reqs_lock);
950 
951     tracked_request_set_serialising(req, align);
952     waited = bdrv_wait_serialising_requests_locked(req);
953 
954     qemu_co_mutex_unlock(&req->bs->reqs_lock);
955 
956     return waited;
957 }
958 
959 static int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
960                                    QEMUIOVector *qiov, size_t qiov_offset,
961                                    Error **errp)
962 {
963     /*
964      * Check generic offset/bytes correctness
965      */
966 
967     if (offset < 0) {
968         error_setg(errp, "offset is negative: %" PRIi64, offset);
969         return -EIO;
970     }
971 
972     if (bytes < 0) {
973         error_setg(errp, "bytes is negative: %" PRIi64, bytes);
974         return -EIO;
975     }
976 
977     if (bytes > BDRV_MAX_LENGTH) {
978         error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
979                    bytes, BDRV_MAX_LENGTH);
980         return -EIO;
981     }
982 
983     if (offset > BDRV_MAX_LENGTH) {
984         error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
985                    offset, BDRV_MAX_LENGTH);
986         return -EIO;
987     }
988 
989     if (offset > BDRV_MAX_LENGTH - bytes) {
990         error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
991                    "exceeds maximum(%" PRIi64 ")", offset, bytes,
992                    BDRV_MAX_LENGTH);
993         return -EIO;
994     }
995 
996     if (!qiov) {
997         return 0;
998     }
999 
1000     /*
1001      * Check qiov and qiov_offset
1002      */
1003 
1004     if (qiov_offset > qiov->size) {
1005         error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
1006                    qiov_offset, qiov->size);
1007         return -EIO;
1008     }
1009 
1010     if (bytes > qiov->size - qiov_offset) {
1011         error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
1012                    "vector size(%zu)", bytes, qiov_offset, qiov->size);
1013         return -EIO;
1014     }
1015 
1016     return 0;
1017 }
1018 
1019 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
1020 {
1021     return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
1022 }
1023 
1024 static int bdrv_check_request32(int64_t offset, int64_t bytes,
1025                                 QEMUIOVector *qiov, size_t qiov_offset)
1026 {
1027     int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
1028     if (ret < 0) {
1029         return ret;
1030     }
1031 
1032     if (bytes > BDRV_REQUEST_MAX_BYTES) {
1033         return -EIO;
1034     }
1035 
1036     return 0;
1037 }
1038 
1039 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
1040                        int64_t bytes, BdrvRequestFlags flags)
1041 {
1042     return bdrv_pwritev(child, offset, bytes, NULL,
1043                         BDRV_REQ_ZERO_WRITE | flags);
1044 }
1045 
1046 /*
1047  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
1048  * The operation is sped up by checking the block status and only writing
1049  * zeroes to the device if they currently do not return zeroes. Optional
1050  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
1051  * BDRV_REQ_FUA).
1052  *
1053  * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
1054  */
1055 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
1056 {
1057     int ret;
1058     int64_t target_size, bytes, offset = 0;
1059     BlockDriverState *bs = child->bs;
1060 
1061     target_size = bdrv_getlength(bs);
1062     if (target_size < 0) {
1063         return target_size;
1064     }
1065 
1066     for (;;) {
1067         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1068         if (bytes <= 0) {
1069             return 0;
1070         }
1071         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1072         if (ret < 0) {
1073             return ret;
1074         }
1075         if (ret & BDRV_BLOCK_ZERO) {
1076             offset += bytes;
1077             continue;
1078         }
1079         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1080         if (ret < 0) {
1081             return ret;
1082         }
1083         offset += bytes;
1084     }
1085 }
1086 
1087 /* See bdrv_pwrite() for the return codes */
1088 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes)
1089 {
1090     int ret;
1091     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1092 
1093     if (bytes < 0) {
1094         return -EINVAL;
1095     }
1096 
1097     ret = bdrv_preadv(child, offset, bytes, &qiov,  0);
1098 
1099     return ret < 0 ? ret : bytes;
1100 }
1101 
1102 /* Return no. of bytes on success or < 0 on error. Important errors are:
1103   -EIO         generic I/O error (may happen for all errors)
1104   -ENOMEDIUM   No media inserted.
1105   -EINVAL      Invalid offset or number of bytes
1106   -EACCES      Trying to write a read-only device
1107 */
1108 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf,
1109                 int64_t bytes)
1110 {
1111     int ret;
1112     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1113 
1114     if (bytes < 0) {
1115         return -EINVAL;
1116     }
1117 
1118     ret = bdrv_pwritev(child, offset, bytes, &qiov, 0);
1119 
1120     return ret < 0 ? ret : bytes;
1121 }
1122 
1123 /*
1124  * Writes to the file and ensures that no writes are reordered across this
1125  * request (acts as a barrier)
1126  *
1127  * Returns 0 on success, -errno in error cases.
1128  */
1129 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1130                      const void *buf, int64_t count)
1131 {
1132     int ret;
1133 
1134     ret = bdrv_pwrite(child, offset, buf, count);
1135     if (ret < 0) {
1136         return ret;
1137     }
1138 
1139     ret = bdrv_flush(child->bs);
1140     if (ret < 0) {
1141         return ret;
1142     }
1143 
1144     return 0;
1145 }
1146 
1147 typedef struct CoroutineIOCompletion {
1148     Coroutine *coroutine;
1149     int ret;
1150 } CoroutineIOCompletion;
1151 
1152 static void bdrv_co_io_em_complete(void *opaque, int ret)
1153 {
1154     CoroutineIOCompletion *co = opaque;
1155 
1156     co->ret = ret;
1157     aio_co_wake(co->coroutine);
1158 }
1159 
1160 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1161                                            int64_t offset, int64_t bytes,
1162                                            QEMUIOVector *qiov,
1163                                            size_t qiov_offset, int flags)
1164 {
1165     BlockDriver *drv = bs->drv;
1166     int64_t sector_num;
1167     unsigned int nb_sectors;
1168     QEMUIOVector local_qiov;
1169     int ret;
1170 
1171     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1172     assert(!(flags & ~BDRV_REQ_MASK));
1173     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1174 
1175     if (!drv) {
1176         return -ENOMEDIUM;
1177     }
1178 
1179     if (drv->bdrv_co_preadv_part) {
1180         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1181                                         flags);
1182     }
1183 
1184     if (qiov_offset > 0 || bytes != qiov->size) {
1185         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1186         qiov = &local_qiov;
1187     }
1188 
1189     if (drv->bdrv_co_preadv) {
1190         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1191         goto out;
1192     }
1193 
1194     if (drv->bdrv_aio_preadv) {
1195         BlockAIOCB *acb;
1196         CoroutineIOCompletion co = {
1197             .coroutine = qemu_coroutine_self(),
1198         };
1199 
1200         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1201                                    bdrv_co_io_em_complete, &co);
1202         if (acb == NULL) {
1203             ret = -EIO;
1204             goto out;
1205         } else {
1206             qemu_coroutine_yield();
1207             ret = co.ret;
1208             goto out;
1209         }
1210     }
1211 
1212     sector_num = offset >> BDRV_SECTOR_BITS;
1213     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1214 
1215     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1216     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1217     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1218     assert(drv->bdrv_co_readv);
1219 
1220     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1221 
1222 out:
1223     if (qiov == &local_qiov) {
1224         qemu_iovec_destroy(&local_qiov);
1225     }
1226 
1227     return ret;
1228 }
1229 
1230 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1231                                             int64_t offset, int64_t bytes,
1232                                             QEMUIOVector *qiov,
1233                                             size_t qiov_offset, int flags)
1234 {
1235     BlockDriver *drv = bs->drv;
1236     int64_t sector_num;
1237     unsigned int nb_sectors;
1238     QEMUIOVector local_qiov;
1239     int ret;
1240 
1241     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1242     assert(!(flags & ~BDRV_REQ_MASK));
1243     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1244 
1245     if (!drv) {
1246         return -ENOMEDIUM;
1247     }
1248 
1249     if (drv->bdrv_co_pwritev_part) {
1250         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1251                                         flags & bs->supported_write_flags);
1252         flags &= ~bs->supported_write_flags;
1253         goto emulate_flags;
1254     }
1255 
1256     if (qiov_offset > 0 || bytes != qiov->size) {
1257         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1258         qiov = &local_qiov;
1259     }
1260 
1261     if (drv->bdrv_co_pwritev) {
1262         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1263                                    flags & bs->supported_write_flags);
1264         flags &= ~bs->supported_write_flags;
1265         goto emulate_flags;
1266     }
1267 
1268     if (drv->bdrv_aio_pwritev) {
1269         BlockAIOCB *acb;
1270         CoroutineIOCompletion co = {
1271             .coroutine = qemu_coroutine_self(),
1272         };
1273 
1274         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1275                                     flags & bs->supported_write_flags,
1276                                     bdrv_co_io_em_complete, &co);
1277         flags &= ~bs->supported_write_flags;
1278         if (acb == NULL) {
1279             ret = -EIO;
1280         } else {
1281             qemu_coroutine_yield();
1282             ret = co.ret;
1283         }
1284         goto emulate_flags;
1285     }
1286 
1287     sector_num = offset >> BDRV_SECTOR_BITS;
1288     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1289 
1290     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1291     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1292     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1293 
1294     assert(drv->bdrv_co_writev);
1295     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1296                               flags & bs->supported_write_flags);
1297     flags &= ~bs->supported_write_flags;
1298 
1299 emulate_flags:
1300     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1301         ret = bdrv_co_flush(bs);
1302     }
1303 
1304     if (qiov == &local_qiov) {
1305         qemu_iovec_destroy(&local_qiov);
1306     }
1307 
1308     return ret;
1309 }
1310 
1311 static int coroutine_fn
1312 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1313                                int64_t bytes, QEMUIOVector *qiov,
1314                                size_t qiov_offset)
1315 {
1316     BlockDriver *drv = bs->drv;
1317     QEMUIOVector local_qiov;
1318     int ret;
1319 
1320     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1321 
1322     if (!drv) {
1323         return -ENOMEDIUM;
1324     }
1325 
1326     if (!block_driver_can_compress(drv)) {
1327         return -ENOTSUP;
1328     }
1329 
1330     if (drv->bdrv_co_pwritev_compressed_part) {
1331         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1332                                                     qiov, qiov_offset);
1333     }
1334 
1335     if (qiov_offset == 0) {
1336         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1337     }
1338 
1339     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1340     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1341     qemu_iovec_destroy(&local_qiov);
1342 
1343     return ret;
1344 }
1345 
1346 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1347         int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1348         size_t qiov_offset, int flags)
1349 {
1350     BlockDriverState *bs = child->bs;
1351 
1352     /* Perform I/O through a temporary buffer so that users who scribble over
1353      * their read buffer while the operation is in progress do not end up
1354      * modifying the image file.  This is critical for zero-copy guest I/O
1355      * where anything might happen inside guest memory.
1356      */
1357     void *bounce_buffer = NULL;
1358 
1359     BlockDriver *drv = bs->drv;
1360     int64_t cluster_offset;
1361     int64_t cluster_bytes;
1362     int64_t skip_bytes;
1363     int ret;
1364     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1365                                     BDRV_REQUEST_MAX_BYTES);
1366     int64_t progress = 0;
1367     bool skip_write;
1368 
1369     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1370 
1371     if (!drv) {
1372         return -ENOMEDIUM;
1373     }
1374 
1375     /*
1376      * Do not write anything when the BDS is inactive.  That is not
1377      * allowed, and it would not help.
1378      */
1379     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1380 
1381     /* FIXME We cannot require callers to have write permissions when all they
1382      * are doing is a read request. If we did things right, write permissions
1383      * would be obtained anyway, but internally by the copy-on-read code. As
1384      * long as it is implemented here rather than in a separate filter driver,
1385      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1386      * it could request permissions. Therefore we have to bypass the permission
1387      * system for the moment. */
1388     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1389 
1390     /* Cover entire cluster so no additional backing file I/O is required when
1391      * allocating cluster in the image file.  Note that this value may exceed
1392      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1393      * is one reason we loop rather than doing it all at once.
1394      */
1395     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1396     skip_bytes = offset - cluster_offset;
1397 
1398     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1399                                    cluster_offset, cluster_bytes);
1400 
1401     while (cluster_bytes) {
1402         int64_t pnum;
1403 
1404         if (skip_write) {
1405             ret = 1; /* "already allocated", so nothing will be copied */
1406             pnum = MIN(cluster_bytes, max_transfer);
1407         } else {
1408             ret = bdrv_is_allocated(bs, cluster_offset,
1409                                     MIN(cluster_bytes, max_transfer), &pnum);
1410             if (ret < 0) {
1411                 /*
1412                  * Safe to treat errors in querying allocation as if
1413                  * unallocated; we'll probably fail again soon on the
1414                  * read, but at least that will set a decent errno.
1415                  */
1416                 pnum = MIN(cluster_bytes, max_transfer);
1417             }
1418 
1419             /* Stop at EOF if the image ends in the middle of the cluster */
1420             if (ret == 0 && pnum == 0) {
1421                 assert(progress >= bytes);
1422                 break;
1423             }
1424 
1425             assert(skip_bytes < pnum);
1426         }
1427 
1428         if (ret <= 0) {
1429             QEMUIOVector local_qiov;
1430 
1431             /* Must copy-on-read; use the bounce buffer */
1432             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1433             if (!bounce_buffer) {
1434                 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1435                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1436                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1437 
1438                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1439                 if (!bounce_buffer) {
1440                     ret = -ENOMEM;
1441                     goto err;
1442                 }
1443             }
1444             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1445 
1446             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1447                                      &local_qiov, 0, 0);
1448             if (ret < 0) {
1449                 goto err;
1450             }
1451 
1452             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1453             if (drv->bdrv_co_pwrite_zeroes &&
1454                 buffer_is_zero(bounce_buffer, pnum)) {
1455                 /* FIXME: Should we (perhaps conditionally) be setting
1456                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1457                  * that still correctly reads as zero? */
1458                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1459                                                BDRV_REQ_WRITE_UNCHANGED);
1460             } else {
1461                 /* This does not change the data on the disk, it is not
1462                  * necessary to flush even in cache=writethrough mode.
1463                  */
1464                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1465                                           &local_qiov, 0,
1466                                           BDRV_REQ_WRITE_UNCHANGED);
1467             }
1468 
1469             if (ret < 0) {
1470                 /* It might be okay to ignore write errors for guest
1471                  * requests.  If this is a deliberate copy-on-read
1472                  * then we don't want to ignore the error.  Simply
1473                  * report it in all cases.
1474                  */
1475                 goto err;
1476             }
1477 
1478             if (!(flags & BDRV_REQ_PREFETCH)) {
1479                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1480                                     bounce_buffer + skip_bytes,
1481                                     MIN(pnum - skip_bytes, bytes - progress));
1482             }
1483         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1484             /* Read directly into the destination */
1485             ret = bdrv_driver_preadv(bs, offset + progress,
1486                                      MIN(pnum - skip_bytes, bytes - progress),
1487                                      qiov, qiov_offset + progress, 0);
1488             if (ret < 0) {
1489                 goto err;
1490             }
1491         }
1492 
1493         cluster_offset += pnum;
1494         cluster_bytes -= pnum;
1495         progress += pnum - skip_bytes;
1496         skip_bytes = 0;
1497     }
1498     ret = 0;
1499 
1500 err:
1501     qemu_vfree(bounce_buffer);
1502     return ret;
1503 }
1504 
1505 /*
1506  * Forwards an already correctly aligned request to the BlockDriver. This
1507  * handles copy on read, zeroing after EOF, and fragmentation of large
1508  * reads; any other features must be implemented by the caller.
1509  */
1510 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1511     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1512     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1513 {
1514     BlockDriverState *bs = child->bs;
1515     int64_t total_bytes, max_bytes;
1516     int ret = 0;
1517     int64_t bytes_remaining = bytes;
1518     int max_transfer;
1519 
1520     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1521     assert(is_power_of_2(align));
1522     assert((offset & (align - 1)) == 0);
1523     assert((bytes & (align - 1)) == 0);
1524     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1525     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1526                                    align);
1527 
1528     /* TODO: We would need a per-BDS .supported_read_flags and
1529      * potential fallback support, if we ever implement any read flags
1530      * to pass through to drivers.  For now, there aren't any
1531      * passthrough flags.  */
1532     assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1533 
1534     /* Handle Copy on Read and associated serialisation */
1535     if (flags & BDRV_REQ_COPY_ON_READ) {
1536         /* If we touch the same cluster it counts as an overlap.  This
1537          * guarantees that allocating writes will be serialized and not race
1538          * with each other for the same cluster.  For example, in copy-on-read
1539          * it ensures that the CoR read and write operations are atomic and
1540          * guest writes cannot interleave between them. */
1541         bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1542     } else {
1543         bdrv_wait_serialising_requests(req);
1544     }
1545 
1546     if (flags & BDRV_REQ_COPY_ON_READ) {
1547         int64_t pnum;
1548 
1549         /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1550         flags &= ~BDRV_REQ_COPY_ON_READ;
1551 
1552         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1553         if (ret < 0) {
1554             goto out;
1555         }
1556 
1557         if (!ret || pnum != bytes) {
1558             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1559                                            qiov, qiov_offset, flags);
1560             goto out;
1561         } else if (flags & BDRV_REQ_PREFETCH) {
1562             goto out;
1563         }
1564     }
1565 
1566     /* Forward the request to the BlockDriver, possibly fragmenting it */
1567     total_bytes = bdrv_getlength(bs);
1568     if (total_bytes < 0) {
1569         ret = total_bytes;
1570         goto out;
1571     }
1572 
1573     assert(!(flags & ~bs->supported_read_flags));
1574 
1575     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1576     if (bytes <= max_bytes && bytes <= max_transfer) {
1577         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1578         goto out;
1579     }
1580 
1581     while (bytes_remaining) {
1582         int64_t num;
1583 
1584         if (max_bytes) {
1585             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1586             assert(num);
1587 
1588             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1589                                      num, qiov,
1590                                      qiov_offset + bytes - bytes_remaining,
1591                                      flags);
1592             max_bytes -= num;
1593         } else {
1594             num = bytes_remaining;
1595             ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1596                                     0, bytes_remaining);
1597         }
1598         if (ret < 0) {
1599             goto out;
1600         }
1601         bytes_remaining -= num;
1602     }
1603 
1604 out:
1605     return ret < 0 ? ret : 0;
1606 }
1607 
1608 /*
1609  * Request padding
1610  *
1611  *  |<---- align ----->|                     |<----- align ---->|
1612  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1613  *  |          |       |                     |     |            |
1614  * -*----------$-------*-------- ... --------*-----$------------*---
1615  *  |          |       |                     |     |            |
1616  *  |          offset  |                     |     end          |
1617  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1618  *  [buf   ... )                             [tail_buf          )
1619  *
1620  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1621  * is placed at the beginning of @buf and @tail at the @end.
1622  *
1623  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1624  * around tail, if tail exists.
1625  *
1626  * @merge_reads is true for small requests,
1627  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1628  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1629  */
1630 typedef struct BdrvRequestPadding {
1631     uint8_t *buf;
1632     size_t buf_len;
1633     uint8_t *tail_buf;
1634     size_t head;
1635     size_t tail;
1636     bool merge_reads;
1637     QEMUIOVector local_qiov;
1638 } BdrvRequestPadding;
1639 
1640 static bool bdrv_init_padding(BlockDriverState *bs,
1641                               int64_t offset, int64_t bytes,
1642                               BdrvRequestPadding *pad)
1643 {
1644     int64_t align = bs->bl.request_alignment;
1645     int64_t sum;
1646 
1647     bdrv_check_request(offset, bytes, &error_abort);
1648     assert(align <= INT_MAX); /* documented in block/block_int.h */
1649     assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1650 
1651     memset(pad, 0, sizeof(*pad));
1652 
1653     pad->head = offset & (align - 1);
1654     pad->tail = ((offset + bytes) & (align - 1));
1655     if (pad->tail) {
1656         pad->tail = align - pad->tail;
1657     }
1658 
1659     if (!pad->head && !pad->tail) {
1660         return false;
1661     }
1662 
1663     assert(bytes); /* Nothing good in aligning zero-length requests */
1664 
1665     sum = pad->head + bytes + pad->tail;
1666     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1667     pad->buf = qemu_blockalign(bs, pad->buf_len);
1668     pad->merge_reads = sum == pad->buf_len;
1669     if (pad->tail) {
1670         pad->tail_buf = pad->buf + pad->buf_len - align;
1671     }
1672 
1673     return true;
1674 }
1675 
1676 static int bdrv_padding_rmw_read(BdrvChild *child,
1677                                  BdrvTrackedRequest *req,
1678                                  BdrvRequestPadding *pad,
1679                                  bool zero_middle)
1680 {
1681     QEMUIOVector local_qiov;
1682     BlockDriverState *bs = child->bs;
1683     uint64_t align = bs->bl.request_alignment;
1684     int ret;
1685 
1686     assert(req->serialising && pad->buf);
1687 
1688     if (pad->head || pad->merge_reads) {
1689         int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1690 
1691         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1692 
1693         if (pad->head) {
1694             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1695         }
1696         if (pad->merge_reads && pad->tail) {
1697             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1698         }
1699         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1700                                   align, &local_qiov, 0, 0);
1701         if (ret < 0) {
1702             return ret;
1703         }
1704         if (pad->head) {
1705             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1706         }
1707         if (pad->merge_reads && pad->tail) {
1708             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1709         }
1710 
1711         if (pad->merge_reads) {
1712             goto zero_mem;
1713         }
1714     }
1715 
1716     if (pad->tail) {
1717         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1718 
1719         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1720         ret = bdrv_aligned_preadv(
1721                 child, req,
1722                 req->overlap_offset + req->overlap_bytes - align,
1723                 align, align, &local_qiov, 0, 0);
1724         if (ret < 0) {
1725             return ret;
1726         }
1727         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1728     }
1729 
1730 zero_mem:
1731     if (zero_middle) {
1732         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1733     }
1734 
1735     return 0;
1736 }
1737 
1738 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1739 {
1740     if (pad->buf) {
1741         qemu_vfree(pad->buf);
1742         qemu_iovec_destroy(&pad->local_qiov);
1743     }
1744     memset(pad, 0, sizeof(*pad));
1745 }
1746 
1747 /*
1748  * bdrv_pad_request
1749  *
1750  * Exchange request parameters with padded request if needed. Don't include RMW
1751  * read of padding, bdrv_padding_rmw_read() should be called separately if
1752  * needed.
1753  *
1754  * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1755  *  - on function start they represent original request
1756  *  - on failure or when padding is not needed they are unchanged
1757  *  - on success when padding is needed they represent padded request
1758  */
1759 static int bdrv_pad_request(BlockDriverState *bs,
1760                             QEMUIOVector **qiov, size_t *qiov_offset,
1761                             int64_t *offset, int64_t *bytes,
1762                             BdrvRequestPadding *pad, bool *padded)
1763 {
1764     int ret;
1765 
1766     bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1767 
1768     if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1769         if (padded) {
1770             *padded = false;
1771         }
1772         return 0;
1773     }
1774 
1775     ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1776                                    *qiov, *qiov_offset, *bytes,
1777                                    pad->buf + pad->buf_len - pad->tail,
1778                                    pad->tail);
1779     if (ret < 0) {
1780         bdrv_padding_destroy(pad);
1781         return ret;
1782     }
1783     *bytes += pad->head + pad->tail;
1784     *offset -= pad->head;
1785     *qiov = &pad->local_qiov;
1786     *qiov_offset = 0;
1787     if (padded) {
1788         *padded = true;
1789     }
1790 
1791     return 0;
1792 }
1793 
1794 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1795     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1796     BdrvRequestFlags flags)
1797 {
1798     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1799 }
1800 
1801 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1802     int64_t offset, int64_t bytes,
1803     QEMUIOVector *qiov, size_t qiov_offset,
1804     BdrvRequestFlags flags)
1805 {
1806     BlockDriverState *bs = child->bs;
1807     BdrvTrackedRequest req;
1808     BdrvRequestPadding pad;
1809     int ret;
1810 
1811     trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1812 
1813     if (!bdrv_is_inserted(bs)) {
1814         return -ENOMEDIUM;
1815     }
1816 
1817     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1818     if (ret < 0) {
1819         return ret;
1820     }
1821 
1822     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1823         /*
1824          * Aligning zero request is nonsense. Even if driver has special meaning
1825          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1826          * it to driver due to request_alignment.
1827          *
1828          * Still, no reason to return an error if someone do unaligned
1829          * zero-length read occasionally.
1830          */
1831         return 0;
1832     }
1833 
1834     bdrv_inc_in_flight(bs);
1835 
1836     /* Don't do copy-on-read if we read data before write operation */
1837     if (qatomic_read(&bs->copy_on_read)) {
1838         flags |= BDRV_REQ_COPY_ON_READ;
1839     }
1840 
1841     ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1842                            NULL);
1843     if (ret < 0) {
1844         goto fail;
1845     }
1846 
1847     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1848     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1849                               bs->bl.request_alignment,
1850                               qiov, qiov_offset, flags);
1851     tracked_request_end(&req);
1852     bdrv_padding_destroy(&pad);
1853 
1854 fail:
1855     bdrv_dec_in_flight(bs);
1856 
1857     return ret;
1858 }
1859 
1860 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1861     int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1862 {
1863     BlockDriver *drv = bs->drv;
1864     QEMUIOVector qiov;
1865     void *buf = NULL;
1866     int ret = 0;
1867     bool need_flush = false;
1868     int head = 0;
1869     int tail = 0;
1870 
1871     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1872     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1873                         bs->bl.request_alignment);
1874     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1875 
1876     bdrv_check_request(offset, bytes, &error_abort);
1877 
1878     if (!drv) {
1879         return -ENOMEDIUM;
1880     }
1881 
1882     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1883         return -ENOTSUP;
1884     }
1885 
1886     assert(alignment % bs->bl.request_alignment == 0);
1887     head = offset % alignment;
1888     tail = (offset + bytes) % alignment;
1889     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1890     assert(max_write_zeroes >= bs->bl.request_alignment);
1891 
1892     while (bytes > 0 && !ret) {
1893         int64_t num = bytes;
1894 
1895         /* Align request.  Block drivers can expect the "bulk" of the request
1896          * to be aligned, and that unaligned requests do not cross cluster
1897          * boundaries.
1898          */
1899         if (head) {
1900             /* Make a small request up to the first aligned sector. For
1901              * convenience, limit this request to max_transfer even if
1902              * we don't need to fall back to writes.  */
1903             num = MIN(MIN(bytes, max_transfer), alignment - head);
1904             head = (head + num) % alignment;
1905             assert(num < max_write_zeroes);
1906         } else if (tail && num > alignment) {
1907             /* Shorten the request to the last aligned sector.  */
1908             num -= tail;
1909         }
1910 
1911         /* limit request size */
1912         if (num > max_write_zeroes) {
1913             num = max_write_zeroes;
1914         }
1915 
1916         ret = -ENOTSUP;
1917         /* First try the efficient write zeroes operation */
1918         if (drv->bdrv_co_pwrite_zeroes) {
1919             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1920                                              flags & bs->supported_zero_flags);
1921             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1922                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1923                 need_flush = true;
1924             }
1925         } else {
1926             assert(!bs->supported_zero_flags);
1927         }
1928 
1929         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1930             /* Fall back to bounce buffer if write zeroes is unsupported */
1931             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1932 
1933             if ((flags & BDRV_REQ_FUA) &&
1934                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1935                 /* No need for bdrv_driver_pwrite() to do a fallback
1936                  * flush on each chunk; use just one at the end */
1937                 write_flags &= ~BDRV_REQ_FUA;
1938                 need_flush = true;
1939             }
1940             num = MIN(num, max_transfer);
1941             if (buf == NULL) {
1942                 buf = qemu_try_blockalign0(bs, num);
1943                 if (buf == NULL) {
1944                     ret = -ENOMEM;
1945                     goto fail;
1946                 }
1947             }
1948             qemu_iovec_init_buf(&qiov, buf, num);
1949 
1950             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1951 
1952             /* Keep bounce buffer around if it is big enough for all
1953              * all future requests.
1954              */
1955             if (num < max_transfer) {
1956                 qemu_vfree(buf);
1957                 buf = NULL;
1958             }
1959         }
1960 
1961         offset += num;
1962         bytes -= num;
1963     }
1964 
1965 fail:
1966     if (ret == 0 && need_flush) {
1967         ret = bdrv_co_flush(bs);
1968     }
1969     qemu_vfree(buf);
1970     return ret;
1971 }
1972 
1973 static inline int coroutine_fn
1974 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1975                           BdrvTrackedRequest *req, int flags)
1976 {
1977     BlockDriverState *bs = child->bs;
1978 
1979     bdrv_check_request(offset, bytes, &error_abort);
1980 
1981     if (bdrv_is_read_only(bs)) {
1982         return -EPERM;
1983     }
1984 
1985     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1986     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1987     assert(!(flags & ~BDRV_REQ_MASK));
1988     assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1989 
1990     if (flags & BDRV_REQ_SERIALISING) {
1991         QEMU_LOCK_GUARD(&bs->reqs_lock);
1992 
1993         tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1994 
1995         if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1996             return -EBUSY;
1997         }
1998 
1999         bdrv_wait_serialising_requests_locked(req);
2000     } else {
2001         bdrv_wait_serialising_requests(req);
2002     }
2003 
2004     assert(req->overlap_offset <= offset);
2005     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
2006     assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
2007            child->perm & BLK_PERM_RESIZE);
2008 
2009     switch (req->type) {
2010     case BDRV_TRACKED_WRITE:
2011     case BDRV_TRACKED_DISCARD:
2012         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
2013             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
2014         } else {
2015             assert(child->perm & BLK_PERM_WRITE);
2016         }
2017         bdrv_write_threshold_check_write(bs, offset, bytes);
2018         return 0;
2019     case BDRV_TRACKED_TRUNCATE:
2020         assert(child->perm & BLK_PERM_RESIZE);
2021         return 0;
2022     default:
2023         abort();
2024     }
2025 }
2026 
2027 static inline void coroutine_fn
2028 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2029                          BdrvTrackedRequest *req, int ret)
2030 {
2031     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2032     BlockDriverState *bs = child->bs;
2033 
2034     bdrv_check_request(offset, bytes, &error_abort);
2035 
2036     qatomic_inc(&bs->write_gen);
2037 
2038     /*
2039      * Discard cannot extend the image, but in error handling cases, such as
2040      * when reverting a qcow2 cluster allocation, the discarded range can pass
2041      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2042      * here. Instead, just skip it, since semantically a discard request
2043      * beyond EOF cannot expand the image anyway.
2044      */
2045     if (ret == 0 &&
2046         (req->type == BDRV_TRACKED_TRUNCATE ||
2047          end_sector > bs->total_sectors) &&
2048         req->type != BDRV_TRACKED_DISCARD) {
2049         bs->total_sectors = end_sector;
2050         bdrv_parent_cb_resize(bs);
2051         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2052     }
2053     if (req->bytes) {
2054         switch (req->type) {
2055         case BDRV_TRACKED_WRITE:
2056             stat64_max(&bs->wr_highest_offset, offset + bytes);
2057             /* fall through, to set dirty bits */
2058         case BDRV_TRACKED_DISCARD:
2059             bdrv_set_dirty(bs, offset, bytes);
2060             break;
2061         default:
2062             break;
2063         }
2064     }
2065 }
2066 
2067 /*
2068  * Forwards an already correctly aligned write request to the BlockDriver,
2069  * after possibly fragmenting it.
2070  */
2071 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
2072     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
2073     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
2074 {
2075     BlockDriverState *bs = child->bs;
2076     BlockDriver *drv = bs->drv;
2077     int ret;
2078 
2079     int64_t bytes_remaining = bytes;
2080     int max_transfer;
2081 
2082     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2083 
2084     if (!drv) {
2085         return -ENOMEDIUM;
2086     }
2087 
2088     if (bdrv_has_readonly_bitmaps(bs)) {
2089         return -EPERM;
2090     }
2091 
2092     assert(is_power_of_2(align));
2093     assert((offset & (align - 1)) == 0);
2094     assert((bytes & (align - 1)) == 0);
2095     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2096                                    align);
2097 
2098     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2099 
2100     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2101         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2102         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2103         flags |= BDRV_REQ_ZERO_WRITE;
2104         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2105             flags |= BDRV_REQ_MAY_UNMAP;
2106         }
2107     }
2108 
2109     if (ret < 0) {
2110         /* Do nothing, write notifier decided to fail this request */
2111     } else if (flags & BDRV_REQ_ZERO_WRITE) {
2112         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2113         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2114     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2115         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2116                                              qiov, qiov_offset);
2117     } else if (bytes <= max_transfer) {
2118         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2119         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2120     } else {
2121         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2122         while (bytes_remaining) {
2123             int num = MIN(bytes_remaining, max_transfer);
2124             int local_flags = flags;
2125 
2126             assert(num);
2127             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2128                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2129                 /* If FUA is going to be emulated by flush, we only
2130                  * need to flush on the last iteration */
2131                 local_flags &= ~BDRV_REQ_FUA;
2132             }
2133 
2134             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2135                                       num, qiov,
2136                                       qiov_offset + bytes - bytes_remaining,
2137                                       local_flags);
2138             if (ret < 0) {
2139                 break;
2140             }
2141             bytes_remaining -= num;
2142         }
2143     }
2144     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2145 
2146     if (ret >= 0) {
2147         ret = 0;
2148     }
2149     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2150 
2151     return ret;
2152 }
2153 
2154 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2155                                                 int64_t offset,
2156                                                 int64_t bytes,
2157                                                 BdrvRequestFlags flags,
2158                                                 BdrvTrackedRequest *req)
2159 {
2160     BlockDriverState *bs = child->bs;
2161     QEMUIOVector local_qiov;
2162     uint64_t align = bs->bl.request_alignment;
2163     int ret = 0;
2164     bool padding;
2165     BdrvRequestPadding pad;
2166 
2167     padding = bdrv_init_padding(bs, offset, bytes, &pad);
2168     if (padding) {
2169         bdrv_make_request_serialising(req, align);
2170 
2171         bdrv_padding_rmw_read(child, req, &pad, true);
2172 
2173         if (pad.head || pad.merge_reads) {
2174             int64_t aligned_offset = offset & ~(align - 1);
2175             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2176 
2177             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2178             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2179                                        align, &local_qiov, 0,
2180                                        flags & ~BDRV_REQ_ZERO_WRITE);
2181             if (ret < 0 || pad.merge_reads) {
2182                 /* Error or all work is done */
2183                 goto out;
2184             }
2185             offset += write_bytes - pad.head;
2186             bytes -= write_bytes - pad.head;
2187         }
2188     }
2189 
2190     assert(!bytes || (offset & (align - 1)) == 0);
2191     if (bytes >= align) {
2192         /* Write the aligned part in the middle. */
2193         int64_t aligned_bytes = bytes & ~(align - 1);
2194         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2195                                    NULL, 0, flags);
2196         if (ret < 0) {
2197             goto out;
2198         }
2199         bytes -= aligned_bytes;
2200         offset += aligned_bytes;
2201     }
2202 
2203     assert(!bytes || (offset & (align - 1)) == 0);
2204     if (bytes) {
2205         assert(align == pad.tail + bytes);
2206 
2207         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2208         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2209                                    &local_qiov, 0,
2210                                    flags & ~BDRV_REQ_ZERO_WRITE);
2211     }
2212 
2213 out:
2214     bdrv_padding_destroy(&pad);
2215 
2216     return ret;
2217 }
2218 
2219 /*
2220  * Handle a write request in coroutine context
2221  */
2222 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2223     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2224     BdrvRequestFlags flags)
2225 {
2226     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2227 }
2228 
2229 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2230     int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2231     BdrvRequestFlags flags)
2232 {
2233     BlockDriverState *bs = child->bs;
2234     BdrvTrackedRequest req;
2235     uint64_t align = bs->bl.request_alignment;
2236     BdrvRequestPadding pad;
2237     int ret;
2238     bool padded = false;
2239 
2240     trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2241 
2242     if (!bdrv_is_inserted(bs)) {
2243         return -ENOMEDIUM;
2244     }
2245 
2246     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2247     if (ret < 0) {
2248         return ret;
2249     }
2250 
2251     /* If the request is misaligned then we can't make it efficient */
2252     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2253         !QEMU_IS_ALIGNED(offset | bytes, align))
2254     {
2255         return -ENOTSUP;
2256     }
2257 
2258     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2259         /*
2260          * Aligning zero request is nonsense. Even if driver has special meaning
2261          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2262          * it to driver due to request_alignment.
2263          *
2264          * Still, no reason to return an error if someone do unaligned
2265          * zero-length write occasionally.
2266          */
2267         return 0;
2268     }
2269 
2270     if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2271         /*
2272          * Pad request for following read-modify-write cycle.
2273          * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2274          * alignment only if there is no ZERO flag.
2275          */
2276         ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2277                                &padded);
2278         if (ret < 0) {
2279             return ret;
2280         }
2281     }
2282 
2283     bdrv_inc_in_flight(bs);
2284     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2285 
2286     if (flags & BDRV_REQ_ZERO_WRITE) {
2287         assert(!padded);
2288         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2289         goto out;
2290     }
2291 
2292     if (padded) {
2293         /*
2294          * Request was unaligned to request_alignment and therefore
2295          * padded.  We are going to do read-modify-write, and must
2296          * serialize the request to prevent interactions of the
2297          * widened region with other transactions.
2298          */
2299         bdrv_make_request_serialising(&req, align);
2300         bdrv_padding_rmw_read(child, &req, &pad, false);
2301     }
2302 
2303     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2304                                qiov, qiov_offset, flags);
2305 
2306     bdrv_padding_destroy(&pad);
2307 
2308 out:
2309     tracked_request_end(&req);
2310     bdrv_dec_in_flight(bs);
2311 
2312     return ret;
2313 }
2314 
2315 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2316                                        int64_t bytes, BdrvRequestFlags flags)
2317 {
2318     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2319 
2320     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2321         flags &= ~BDRV_REQ_MAY_UNMAP;
2322     }
2323 
2324     return bdrv_co_pwritev(child, offset, bytes, NULL,
2325                            BDRV_REQ_ZERO_WRITE | flags);
2326 }
2327 
2328 /*
2329  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2330  */
2331 int bdrv_flush_all(void)
2332 {
2333     BdrvNextIterator it;
2334     BlockDriverState *bs = NULL;
2335     int result = 0;
2336 
2337     /*
2338      * bdrv queue is managed by record/replay,
2339      * creating new flush request for stopping
2340      * the VM may break the determinism
2341      */
2342     if (replay_events_enabled()) {
2343         return result;
2344     }
2345 
2346     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2347         AioContext *aio_context = bdrv_get_aio_context(bs);
2348         int ret;
2349 
2350         aio_context_acquire(aio_context);
2351         ret = bdrv_flush(bs);
2352         if (ret < 0 && !result) {
2353             result = ret;
2354         }
2355         aio_context_release(aio_context);
2356     }
2357 
2358     return result;
2359 }
2360 
2361 /*
2362  * Returns the allocation status of the specified sectors.
2363  * Drivers not implementing the functionality are assumed to not support
2364  * backing files, hence all their sectors are reported as allocated.
2365  *
2366  * If 'want_zero' is true, the caller is querying for mapping
2367  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2368  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2369  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2370  *
2371  * If 'offset' is beyond the end of the disk image the return value is
2372  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2373  *
2374  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2375  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2376  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2377  *
2378  * 'pnum' is set to the number of bytes (including and immediately
2379  * following the specified offset) that are easily known to be in the
2380  * same allocated/unallocated state.  Note that a second call starting
2381  * at the original offset plus returned pnum may have the same status.
2382  * The returned value is non-zero on success except at end-of-file.
2383  *
2384  * Returns negative errno on failure.  Otherwise, if the
2385  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2386  * set to the host mapping and BDS corresponding to the guest offset.
2387  */
2388 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2389                                              bool want_zero,
2390                                              int64_t offset, int64_t bytes,
2391                                              int64_t *pnum, int64_t *map,
2392                                              BlockDriverState **file)
2393 {
2394     int64_t total_size;
2395     int64_t n; /* bytes */
2396     int ret;
2397     int64_t local_map = 0;
2398     BlockDriverState *local_file = NULL;
2399     int64_t aligned_offset, aligned_bytes;
2400     uint32_t align;
2401     bool has_filtered_child;
2402 
2403     assert(pnum);
2404     *pnum = 0;
2405     total_size = bdrv_getlength(bs);
2406     if (total_size < 0) {
2407         ret = total_size;
2408         goto early_out;
2409     }
2410 
2411     if (offset >= total_size) {
2412         ret = BDRV_BLOCK_EOF;
2413         goto early_out;
2414     }
2415     if (!bytes) {
2416         ret = 0;
2417         goto early_out;
2418     }
2419 
2420     n = total_size - offset;
2421     if (n < bytes) {
2422         bytes = n;
2423     }
2424 
2425     /* Must be non-NULL or bdrv_getlength() would have failed */
2426     assert(bs->drv);
2427     has_filtered_child = bdrv_filter_child(bs);
2428     if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2429         *pnum = bytes;
2430         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2431         if (offset + bytes == total_size) {
2432             ret |= BDRV_BLOCK_EOF;
2433         }
2434         if (bs->drv->protocol_name) {
2435             ret |= BDRV_BLOCK_OFFSET_VALID;
2436             local_map = offset;
2437             local_file = bs;
2438         }
2439         goto early_out;
2440     }
2441 
2442     bdrv_inc_in_flight(bs);
2443 
2444     /* Round out to request_alignment boundaries */
2445     align = bs->bl.request_alignment;
2446     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2447     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2448 
2449     if (bs->drv->bdrv_co_block_status) {
2450         ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2451                                             aligned_bytes, pnum, &local_map,
2452                                             &local_file);
2453     } else {
2454         /* Default code for filters */
2455 
2456         local_file = bdrv_filter_bs(bs);
2457         assert(local_file);
2458 
2459         *pnum = aligned_bytes;
2460         local_map = aligned_offset;
2461         ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2462     }
2463     if (ret < 0) {
2464         *pnum = 0;
2465         goto out;
2466     }
2467 
2468     /*
2469      * The driver's result must be a non-zero multiple of request_alignment.
2470      * Clamp pnum and adjust map to original request.
2471      */
2472     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2473            align > offset - aligned_offset);
2474     if (ret & BDRV_BLOCK_RECURSE) {
2475         assert(ret & BDRV_BLOCK_DATA);
2476         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2477         assert(!(ret & BDRV_BLOCK_ZERO));
2478     }
2479 
2480     *pnum -= offset - aligned_offset;
2481     if (*pnum > bytes) {
2482         *pnum = bytes;
2483     }
2484     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2485         local_map += offset - aligned_offset;
2486     }
2487 
2488     if (ret & BDRV_BLOCK_RAW) {
2489         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2490         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2491                                    *pnum, pnum, &local_map, &local_file);
2492         goto out;
2493     }
2494 
2495     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2496         ret |= BDRV_BLOCK_ALLOCATED;
2497     } else if (bs->drv->supports_backing) {
2498         BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2499 
2500         if (!cow_bs) {
2501             ret |= BDRV_BLOCK_ZERO;
2502         } else if (want_zero) {
2503             int64_t size2 = bdrv_getlength(cow_bs);
2504 
2505             if (size2 >= 0 && offset >= size2) {
2506                 ret |= BDRV_BLOCK_ZERO;
2507             }
2508         }
2509     }
2510 
2511     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2512         local_file && local_file != bs &&
2513         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2514         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2515         int64_t file_pnum;
2516         int ret2;
2517 
2518         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2519                                     *pnum, &file_pnum, NULL, NULL);
2520         if (ret2 >= 0) {
2521             /* Ignore errors.  This is just providing extra information, it
2522              * is useful but not necessary.
2523              */
2524             if (ret2 & BDRV_BLOCK_EOF &&
2525                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2526                 /*
2527                  * It is valid for the format block driver to read
2528                  * beyond the end of the underlying file's current
2529                  * size; such areas read as zero.
2530                  */
2531                 ret |= BDRV_BLOCK_ZERO;
2532             } else {
2533                 /* Limit request to the range reported by the protocol driver */
2534                 *pnum = file_pnum;
2535                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2536             }
2537         }
2538     }
2539 
2540 out:
2541     bdrv_dec_in_flight(bs);
2542     if (ret >= 0 && offset + *pnum == total_size) {
2543         ret |= BDRV_BLOCK_EOF;
2544     }
2545 early_out:
2546     if (file) {
2547         *file = local_file;
2548     }
2549     if (map) {
2550         *map = local_map;
2551     }
2552     return ret;
2553 }
2554 
2555 int coroutine_fn
2556 bdrv_co_common_block_status_above(BlockDriverState *bs,
2557                                   BlockDriverState *base,
2558                                   bool include_base,
2559                                   bool want_zero,
2560                                   int64_t offset,
2561                                   int64_t bytes,
2562                                   int64_t *pnum,
2563                                   int64_t *map,
2564                                   BlockDriverState **file,
2565                                   int *depth)
2566 {
2567     int ret;
2568     BlockDriverState *p;
2569     int64_t eof = 0;
2570     int dummy;
2571 
2572     assert(!include_base || base); /* Can't include NULL base */
2573 
2574     if (!depth) {
2575         depth = &dummy;
2576     }
2577     *depth = 0;
2578 
2579     if (!include_base && bs == base) {
2580         *pnum = bytes;
2581         return 0;
2582     }
2583 
2584     ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2585     ++*depth;
2586     if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2587         return ret;
2588     }
2589 
2590     if (ret & BDRV_BLOCK_EOF) {
2591         eof = offset + *pnum;
2592     }
2593 
2594     assert(*pnum <= bytes);
2595     bytes = *pnum;
2596 
2597     for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2598          p = bdrv_filter_or_cow_bs(p))
2599     {
2600         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2601                                    file);
2602         ++*depth;
2603         if (ret < 0) {
2604             return ret;
2605         }
2606         if (*pnum == 0) {
2607             /*
2608              * The top layer deferred to this layer, and because this layer is
2609              * short, any zeroes that we synthesize beyond EOF behave as if they
2610              * were allocated at this layer.
2611              *
2612              * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2613              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2614              * below.
2615              */
2616             assert(ret & BDRV_BLOCK_EOF);
2617             *pnum = bytes;
2618             if (file) {
2619                 *file = p;
2620             }
2621             ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2622             break;
2623         }
2624         if (ret & BDRV_BLOCK_ALLOCATED) {
2625             /*
2626              * We've found the node and the status, we must break.
2627              *
2628              * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2629              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2630              * below.
2631              */
2632             ret &= ~BDRV_BLOCK_EOF;
2633             break;
2634         }
2635 
2636         if (p == base) {
2637             assert(include_base);
2638             break;
2639         }
2640 
2641         /*
2642          * OK, [offset, offset + *pnum) region is unallocated on this layer,
2643          * let's continue the diving.
2644          */
2645         assert(*pnum <= bytes);
2646         bytes = *pnum;
2647     }
2648 
2649     if (offset + *pnum == eof) {
2650         ret |= BDRV_BLOCK_EOF;
2651     }
2652 
2653     return ret;
2654 }
2655 
2656 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2657                             int64_t offset, int64_t bytes, int64_t *pnum,
2658                             int64_t *map, BlockDriverState **file)
2659 {
2660     return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2661                                           pnum, map, file, NULL);
2662 }
2663 
2664 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2665                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2666 {
2667     return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2668                                    offset, bytes, pnum, map, file);
2669 }
2670 
2671 /*
2672  * Check @bs (and its backing chain) to see if the range defined
2673  * by @offset and @bytes is known to read as zeroes.
2674  * Return 1 if that is the case, 0 otherwise and -errno on error.
2675  * This test is meant to be fast rather than accurate so returning 0
2676  * does not guarantee non-zero data.
2677  */
2678 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2679                                       int64_t bytes)
2680 {
2681     int ret;
2682     int64_t pnum = bytes;
2683 
2684     if (!bytes) {
2685         return 1;
2686     }
2687 
2688     ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2689                                          bytes, &pnum, NULL, NULL, NULL);
2690 
2691     if (ret < 0) {
2692         return ret;
2693     }
2694 
2695     return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2696 }
2697 
2698 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2699                                    int64_t bytes, int64_t *pnum)
2700 {
2701     int ret;
2702     int64_t dummy;
2703 
2704     ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2705                                          bytes, pnum ? pnum : &dummy, NULL,
2706                                          NULL, NULL);
2707     if (ret < 0) {
2708         return ret;
2709     }
2710     return !!(ret & BDRV_BLOCK_ALLOCATED);
2711 }
2712 
2713 /*
2714  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2715  *
2716  * Return a positive depth if (a prefix of) the given range is allocated
2717  * in any image between BASE and TOP (BASE is only included if include_base
2718  * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2719  * BASE can be NULL to check if the given offset is allocated in any
2720  * image of the chain.  Return 0 otherwise, or negative errno on
2721  * failure.
2722  *
2723  * 'pnum' is set to the number of bytes (including and immediately
2724  * following the specified offset) that are known to be in the same
2725  * allocated/unallocated state.  Note that a subsequent call starting
2726  * at 'offset + *pnum' may return the same allocation status (in other
2727  * words, the result is not necessarily the maximum possible range);
2728  * but 'pnum' will only be 0 when end of file is reached.
2729  */
2730 int bdrv_is_allocated_above(BlockDriverState *top,
2731                             BlockDriverState *base,
2732                             bool include_base, int64_t offset,
2733                             int64_t bytes, int64_t *pnum)
2734 {
2735     int depth;
2736     int ret = bdrv_common_block_status_above(top, base, include_base, false,
2737                                              offset, bytes, pnum, NULL, NULL,
2738                                              &depth);
2739     if (ret < 0) {
2740         return ret;
2741     }
2742 
2743     if (ret & BDRV_BLOCK_ALLOCATED) {
2744         return depth;
2745     }
2746     return 0;
2747 }
2748 
2749 int coroutine_fn
2750 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2751 {
2752     BlockDriver *drv = bs->drv;
2753     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2754     int ret = -ENOTSUP;
2755 
2756     if (!drv) {
2757         return -ENOMEDIUM;
2758     }
2759 
2760     bdrv_inc_in_flight(bs);
2761 
2762     if (drv->bdrv_load_vmstate) {
2763         ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2764     } else if (child_bs) {
2765         ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2766     }
2767 
2768     bdrv_dec_in_flight(bs);
2769 
2770     return ret;
2771 }
2772 
2773 int coroutine_fn
2774 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2775 {
2776     BlockDriver *drv = bs->drv;
2777     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2778     int ret = -ENOTSUP;
2779 
2780     if (!drv) {
2781         return -ENOMEDIUM;
2782     }
2783 
2784     bdrv_inc_in_flight(bs);
2785 
2786     if (drv->bdrv_save_vmstate) {
2787         ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2788     } else if (child_bs) {
2789         ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2790     }
2791 
2792     bdrv_dec_in_flight(bs);
2793 
2794     return ret;
2795 }
2796 
2797 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2798                       int64_t pos, int size)
2799 {
2800     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2801     int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2802 
2803     return ret < 0 ? ret : size;
2804 }
2805 
2806 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2807                       int64_t pos, int size)
2808 {
2809     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2810     int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2811 
2812     return ret < 0 ? ret : size;
2813 }
2814 
2815 /**************************************************************/
2816 /* async I/Os */
2817 
2818 void bdrv_aio_cancel(BlockAIOCB *acb)
2819 {
2820     qemu_aio_ref(acb);
2821     bdrv_aio_cancel_async(acb);
2822     while (acb->refcnt > 1) {
2823         if (acb->aiocb_info->get_aio_context) {
2824             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2825         } else if (acb->bs) {
2826             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2827              * assert that we're not using an I/O thread.  Thread-safe
2828              * code should use bdrv_aio_cancel_async exclusively.
2829              */
2830             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2831             aio_poll(bdrv_get_aio_context(acb->bs), true);
2832         } else {
2833             abort();
2834         }
2835     }
2836     qemu_aio_unref(acb);
2837 }
2838 
2839 /* Async version of aio cancel. The caller is not blocked if the acb implements
2840  * cancel_async, otherwise we do nothing and let the request normally complete.
2841  * In either case the completion callback must be called. */
2842 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2843 {
2844     if (acb->aiocb_info->cancel_async) {
2845         acb->aiocb_info->cancel_async(acb);
2846     }
2847 }
2848 
2849 /**************************************************************/
2850 /* Coroutine block device emulation */
2851 
2852 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2853 {
2854     BdrvChild *primary_child = bdrv_primary_child(bs);
2855     BdrvChild *child;
2856     int current_gen;
2857     int ret = 0;
2858 
2859     bdrv_inc_in_flight(bs);
2860 
2861     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2862         bdrv_is_sg(bs)) {
2863         goto early_exit;
2864     }
2865 
2866     qemu_co_mutex_lock(&bs->reqs_lock);
2867     current_gen = qatomic_read(&bs->write_gen);
2868 
2869     /* Wait until any previous flushes are completed */
2870     while (bs->active_flush_req) {
2871         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2872     }
2873 
2874     /* Flushes reach this point in nondecreasing current_gen order.  */
2875     bs->active_flush_req = true;
2876     qemu_co_mutex_unlock(&bs->reqs_lock);
2877 
2878     /* Write back all layers by calling one driver function */
2879     if (bs->drv->bdrv_co_flush) {
2880         ret = bs->drv->bdrv_co_flush(bs);
2881         goto out;
2882     }
2883 
2884     /* Write back cached data to the OS even with cache=unsafe */
2885     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2886     if (bs->drv->bdrv_co_flush_to_os) {
2887         ret = bs->drv->bdrv_co_flush_to_os(bs);
2888         if (ret < 0) {
2889             goto out;
2890         }
2891     }
2892 
2893     /* But don't actually force it to the disk with cache=unsafe */
2894     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2895         goto flush_children;
2896     }
2897 
2898     /* Check if we really need to flush anything */
2899     if (bs->flushed_gen == current_gen) {
2900         goto flush_children;
2901     }
2902 
2903     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2904     if (!bs->drv) {
2905         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2906          * (even in case of apparent success) */
2907         ret = -ENOMEDIUM;
2908         goto out;
2909     }
2910     if (bs->drv->bdrv_co_flush_to_disk) {
2911         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2912     } else if (bs->drv->bdrv_aio_flush) {
2913         BlockAIOCB *acb;
2914         CoroutineIOCompletion co = {
2915             .coroutine = qemu_coroutine_self(),
2916         };
2917 
2918         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2919         if (acb == NULL) {
2920             ret = -EIO;
2921         } else {
2922             qemu_coroutine_yield();
2923             ret = co.ret;
2924         }
2925     } else {
2926         /*
2927          * Some block drivers always operate in either writethrough or unsafe
2928          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2929          * know how the server works (because the behaviour is hardcoded or
2930          * depends on server-side configuration), so we can't ensure that
2931          * everything is safe on disk. Returning an error doesn't work because
2932          * that would break guests even if the server operates in writethrough
2933          * mode.
2934          *
2935          * Let's hope the user knows what he's doing.
2936          */
2937         ret = 0;
2938     }
2939 
2940     if (ret < 0) {
2941         goto out;
2942     }
2943 
2944     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2945      * in the case of cache=unsafe, so there are no useless flushes.
2946      */
2947 flush_children:
2948     ret = 0;
2949     QLIST_FOREACH(child, &bs->children, next) {
2950         if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2951             int this_child_ret = bdrv_co_flush(child->bs);
2952             if (!ret) {
2953                 ret = this_child_ret;
2954             }
2955         }
2956     }
2957 
2958 out:
2959     /* Notify any pending flushes that we have completed */
2960     if (ret == 0) {
2961         bs->flushed_gen = current_gen;
2962     }
2963 
2964     qemu_co_mutex_lock(&bs->reqs_lock);
2965     bs->active_flush_req = false;
2966     /* Return value is ignored - it's ok if wait queue is empty */
2967     qemu_co_queue_next(&bs->flush_queue);
2968     qemu_co_mutex_unlock(&bs->reqs_lock);
2969 
2970 early_exit:
2971     bdrv_dec_in_flight(bs);
2972     return ret;
2973 }
2974 
2975 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2976                                   int64_t bytes)
2977 {
2978     BdrvTrackedRequest req;
2979     int max_pdiscard, ret;
2980     int head, tail, align;
2981     BlockDriverState *bs = child->bs;
2982 
2983     if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2984         return -ENOMEDIUM;
2985     }
2986 
2987     if (bdrv_has_readonly_bitmaps(bs)) {
2988         return -EPERM;
2989     }
2990 
2991     ret = bdrv_check_request(offset, bytes, NULL);
2992     if (ret < 0) {
2993         return ret;
2994     }
2995 
2996     /* Do nothing if disabled.  */
2997     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2998         return 0;
2999     }
3000 
3001     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3002         return 0;
3003     }
3004 
3005     /* Discard is advisory, but some devices track and coalesce
3006      * unaligned requests, so we must pass everything down rather than
3007      * round here.  Still, most devices will just silently ignore
3008      * unaligned requests (by returning -ENOTSUP), so we must fragment
3009      * the request accordingly.  */
3010     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3011     assert(align % bs->bl.request_alignment == 0);
3012     head = offset % align;
3013     tail = (offset + bytes) % align;
3014 
3015     bdrv_inc_in_flight(bs);
3016     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3017 
3018     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3019     if (ret < 0) {
3020         goto out;
3021     }
3022 
3023     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
3024                                    align);
3025     assert(max_pdiscard >= bs->bl.request_alignment);
3026 
3027     while (bytes > 0) {
3028         int64_t num = bytes;
3029 
3030         if (head) {
3031             /* Make small requests to get to alignment boundaries. */
3032             num = MIN(bytes, align - head);
3033             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3034                 num %= bs->bl.request_alignment;
3035             }
3036             head = (head + num) % align;
3037             assert(num < max_pdiscard);
3038         } else if (tail) {
3039             if (num > align) {
3040                 /* Shorten the request to the last aligned cluster.  */
3041                 num -= tail;
3042             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3043                        tail > bs->bl.request_alignment) {
3044                 tail %= bs->bl.request_alignment;
3045                 num -= tail;
3046             }
3047         }
3048         /* limit request size */
3049         if (num > max_pdiscard) {
3050             num = max_pdiscard;
3051         }
3052 
3053         if (!bs->drv) {
3054             ret = -ENOMEDIUM;
3055             goto out;
3056         }
3057         if (bs->drv->bdrv_co_pdiscard) {
3058             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3059         } else {
3060             BlockAIOCB *acb;
3061             CoroutineIOCompletion co = {
3062                 .coroutine = qemu_coroutine_self(),
3063             };
3064 
3065             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3066                                              bdrv_co_io_em_complete, &co);
3067             if (acb == NULL) {
3068                 ret = -EIO;
3069                 goto out;
3070             } else {
3071                 qemu_coroutine_yield();
3072                 ret = co.ret;
3073             }
3074         }
3075         if (ret && ret != -ENOTSUP) {
3076             goto out;
3077         }
3078 
3079         offset += num;
3080         bytes -= num;
3081     }
3082     ret = 0;
3083 out:
3084     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3085     tracked_request_end(&req);
3086     bdrv_dec_in_flight(bs);
3087     return ret;
3088 }
3089 
3090 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3091 {
3092     BlockDriver *drv = bs->drv;
3093     CoroutineIOCompletion co = {
3094         .coroutine = qemu_coroutine_self(),
3095     };
3096     BlockAIOCB *acb;
3097 
3098     bdrv_inc_in_flight(bs);
3099     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3100         co.ret = -ENOTSUP;
3101         goto out;
3102     }
3103 
3104     if (drv->bdrv_co_ioctl) {
3105         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3106     } else {
3107         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3108         if (!acb) {
3109             co.ret = -ENOTSUP;
3110             goto out;
3111         }
3112         qemu_coroutine_yield();
3113     }
3114 out:
3115     bdrv_dec_in_flight(bs);
3116     return co.ret;
3117 }
3118 
3119 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3120 {
3121     return qemu_memalign(bdrv_opt_mem_align(bs), size);
3122 }
3123 
3124 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3125 {
3126     return memset(qemu_blockalign(bs, size), 0, size);
3127 }
3128 
3129 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3130 {
3131     size_t align = bdrv_opt_mem_align(bs);
3132 
3133     /* Ensure that NULL is never returned on success */
3134     assert(align > 0);
3135     if (size == 0) {
3136         size = align;
3137     }
3138 
3139     return qemu_try_memalign(align, size);
3140 }
3141 
3142 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3143 {
3144     void *mem = qemu_try_blockalign(bs, size);
3145 
3146     if (mem) {
3147         memset(mem, 0, size);
3148     }
3149 
3150     return mem;
3151 }
3152 
3153 /*
3154  * Check if all memory in this vector is sector aligned.
3155  */
3156 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3157 {
3158     int i;
3159     size_t alignment = bdrv_min_mem_align(bs);
3160 
3161     for (i = 0; i < qiov->niov; i++) {
3162         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3163             return false;
3164         }
3165         if (qiov->iov[i].iov_len % alignment) {
3166             return false;
3167         }
3168     }
3169 
3170     return true;
3171 }
3172 
3173 void bdrv_io_plug(BlockDriverState *bs)
3174 {
3175     BdrvChild *child;
3176 
3177     QLIST_FOREACH(child, &bs->children, next) {
3178         bdrv_io_plug(child->bs);
3179     }
3180 
3181     if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3182         BlockDriver *drv = bs->drv;
3183         if (drv && drv->bdrv_io_plug) {
3184             drv->bdrv_io_plug(bs);
3185         }
3186     }
3187 }
3188 
3189 void bdrv_io_unplug(BlockDriverState *bs)
3190 {
3191     BdrvChild *child;
3192 
3193     assert(bs->io_plugged);
3194     if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3195         BlockDriver *drv = bs->drv;
3196         if (drv && drv->bdrv_io_unplug) {
3197             drv->bdrv_io_unplug(bs);
3198         }
3199     }
3200 
3201     QLIST_FOREACH(child, &bs->children, next) {
3202         bdrv_io_unplug(child->bs);
3203     }
3204 }
3205 
3206 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3207 {
3208     BdrvChild *child;
3209 
3210     if (bs->drv && bs->drv->bdrv_register_buf) {
3211         bs->drv->bdrv_register_buf(bs, host, size);
3212     }
3213     QLIST_FOREACH(child, &bs->children, next) {
3214         bdrv_register_buf(child->bs, host, size);
3215     }
3216 }
3217 
3218 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3219 {
3220     BdrvChild *child;
3221 
3222     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3223         bs->drv->bdrv_unregister_buf(bs, host);
3224     }
3225     QLIST_FOREACH(child, &bs->children, next) {
3226         bdrv_unregister_buf(child->bs, host);
3227     }
3228 }
3229 
3230 static int coroutine_fn bdrv_co_copy_range_internal(
3231         BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3232         int64_t dst_offset, int64_t bytes,
3233         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3234         bool recurse_src)
3235 {
3236     BdrvTrackedRequest req;
3237     int ret;
3238 
3239     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3240     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3241     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3242 
3243     if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3244         return -ENOMEDIUM;
3245     }
3246     ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3247     if (ret) {
3248         return ret;
3249     }
3250     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3251         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3252     }
3253 
3254     if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3255         return -ENOMEDIUM;
3256     }
3257     ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3258     if (ret) {
3259         return ret;
3260     }
3261 
3262     if (!src->bs->drv->bdrv_co_copy_range_from
3263         || !dst->bs->drv->bdrv_co_copy_range_to
3264         || src->bs->encrypted || dst->bs->encrypted) {
3265         return -ENOTSUP;
3266     }
3267 
3268     if (recurse_src) {
3269         bdrv_inc_in_flight(src->bs);
3270         tracked_request_begin(&req, src->bs, src_offset, bytes,
3271                               BDRV_TRACKED_READ);
3272 
3273         /* BDRV_REQ_SERIALISING is only for write operation */
3274         assert(!(read_flags & BDRV_REQ_SERIALISING));
3275         bdrv_wait_serialising_requests(&req);
3276 
3277         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3278                                                     src, src_offset,
3279                                                     dst, dst_offset,
3280                                                     bytes,
3281                                                     read_flags, write_flags);
3282 
3283         tracked_request_end(&req);
3284         bdrv_dec_in_flight(src->bs);
3285     } else {
3286         bdrv_inc_in_flight(dst->bs);
3287         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3288                               BDRV_TRACKED_WRITE);
3289         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3290                                         write_flags);
3291         if (!ret) {
3292             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3293                                                       src, src_offset,
3294                                                       dst, dst_offset,
3295                                                       bytes,
3296                                                       read_flags, write_flags);
3297         }
3298         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3299         tracked_request_end(&req);
3300         bdrv_dec_in_flight(dst->bs);
3301     }
3302 
3303     return ret;
3304 }
3305 
3306 /* Copy range from @src to @dst.
3307  *
3308  * See the comment of bdrv_co_copy_range for the parameter and return value
3309  * semantics. */
3310 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3311                                          BdrvChild *dst, int64_t dst_offset,
3312                                          int64_t bytes,
3313                                          BdrvRequestFlags read_flags,
3314                                          BdrvRequestFlags write_flags)
3315 {
3316     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3317                                   read_flags, write_flags);
3318     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3319                                        bytes, read_flags, write_flags, true);
3320 }
3321 
3322 /* Copy range from @src to @dst.
3323  *
3324  * See the comment of bdrv_co_copy_range for the parameter and return value
3325  * semantics. */
3326 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3327                                        BdrvChild *dst, int64_t dst_offset,
3328                                        int64_t bytes,
3329                                        BdrvRequestFlags read_flags,
3330                                        BdrvRequestFlags write_flags)
3331 {
3332     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3333                                 read_flags, write_flags);
3334     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3335                                        bytes, read_flags, write_flags, false);
3336 }
3337 
3338 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3339                                     BdrvChild *dst, int64_t dst_offset,
3340                                     int64_t bytes, BdrvRequestFlags read_flags,
3341                                     BdrvRequestFlags write_flags)
3342 {
3343     return bdrv_co_copy_range_from(src, src_offset,
3344                                    dst, dst_offset,
3345                                    bytes, read_flags, write_flags);
3346 }
3347 
3348 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3349 {
3350     BdrvChild *c;
3351     QLIST_FOREACH(c, &bs->parents, next_parent) {
3352         if (c->klass->resize) {
3353             c->klass->resize(c);
3354         }
3355     }
3356 }
3357 
3358 /**
3359  * Truncate file to 'offset' bytes (needed only for file protocols)
3360  *
3361  * If 'exact' is true, the file must be resized to exactly the given
3362  * 'offset'.  Otherwise, it is sufficient for the node to be at least
3363  * 'offset' bytes in length.
3364  */
3365 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3366                                   PreallocMode prealloc, BdrvRequestFlags flags,
3367                                   Error **errp)
3368 {
3369     BlockDriverState *bs = child->bs;
3370     BdrvChild *filtered, *backing;
3371     BlockDriver *drv = bs->drv;
3372     BdrvTrackedRequest req;
3373     int64_t old_size, new_bytes;
3374     int ret;
3375 
3376 
3377     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3378     if (!drv) {
3379         error_setg(errp, "No medium inserted");
3380         return -ENOMEDIUM;
3381     }
3382     if (offset < 0) {
3383         error_setg(errp, "Image size cannot be negative");
3384         return -EINVAL;
3385     }
3386 
3387     ret = bdrv_check_request(offset, 0, errp);
3388     if (ret < 0) {
3389         return ret;
3390     }
3391 
3392     old_size = bdrv_getlength(bs);
3393     if (old_size < 0) {
3394         error_setg_errno(errp, -old_size, "Failed to get old image size");
3395         return old_size;
3396     }
3397 
3398     if (bdrv_is_read_only(bs)) {
3399         error_setg(errp, "Image is read-only");
3400         return -EACCES;
3401     }
3402 
3403     if (offset > old_size) {
3404         new_bytes = offset - old_size;
3405     } else {
3406         new_bytes = 0;
3407     }
3408 
3409     bdrv_inc_in_flight(bs);
3410     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3411                           BDRV_TRACKED_TRUNCATE);
3412 
3413     /* If we are growing the image and potentially using preallocation for the
3414      * new area, we need to make sure that no write requests are made to it
3415      * concurrently or they might be overwritten by preallocation. */
3416     if (new_bytes) {
3417         bdrv_make_request_serialising(&req, 1);
3418     }
3419     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3420                                     0);
3421     if (ret < 0) {
3422         error_setg_errno(errp, -ret,
3423                          "Failed to prepare request for truncation");
3424         goto out;
3425     }
3426 
3427     filtered = bdrv_filter_child(bs);
3428     backing = bdrv_cow_child(bs);
3429 
3430     /*
3431      * If the image has a backing file that is large enough that it would
3432      * provide data for the new area, we cannot leave it unallocated because
3433      * then the backing file content would become visible. Instead, zero-fill
3434      * the new area.
3435      *
3436      * Note that if the image has a backing file, but was opened without the
3437      * backing file, taking care of keeping things consistent with that backing
3438      * file is the user's responsibility.
3439      */
3440     if (new_bytes && backing) {
3441         int64_t backing_len;
3442 
3443         backing_len = bdrv_getlength(backing->bs);
3444         if (backing_len < 0) {
3445             ret = backing_len;
3446             error_setg_errno(errp, -ret, "Could not get backing file size");
3447             goto out;
3448         }
3449 
3450         if (backing_len > old_size) {
3451             flags |= BDRV_REQ_ZERO_WRITE;
3452         }
3453     }
3454 
3455     if (drv->bdrv_co_truncate) {
3456         if (flags & ~bs->supported_truncate_flags) {
3457             error_setg(errp, "Block driver does not support requested flags");
3458             ret = -ENOTSUP;
3459             goto out;
3460         }
3461         ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3462     } else if (filtered) {
3463         ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3464     } else {
3465         error_setg(errp, "Image format driver does not support resize");
3466         ret = -ENOTSUP;
3467         goto out;
3468     }
3469     if (ret < 0) {
3470         goto out;
3471     }
3472 
3473     ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3474     if (ret < 0) {
3475         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3476     } else {
3477         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3478     }
3479     /* It's possible that truncation succeeded but refresh_total_sectors
3480      * failed, but the latter doesn't affect how we should finish the request.
3481      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3482     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3483 
3484 out:
3485     tracked_request_end(&req);
3486     bdrv_dec_in_flight(bs);
3487 
3488     return ret;
3489 }
3490 
3491 void bdrv_cancel_in_flight(BlockDriverState *bs)
3492 {
3493     if (!bs || !bs->drv) {
3494         return;
3495     }
3496 
3497     if (bs->drv->bdrv_cancel_in_flight) {
3498         bs->drv->bdrv_cancel_in_flight(bs);
3499     }
3500 }
3501