xref: /openbmc/qemu/block/io.c (revision 99d46107)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 
36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 
38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
40 
41 static void bdrv_parent_cb_resize(BlockDriverState *bs);
42 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
43     int64_t offset, int bytes, BdrvRequestFlags flags);
44 
45 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
46                                bool ignore_bds_parents)
47 {
48     BdrvChild *c, *next;
49 
50     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
51         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
52             continue;
53         }
54         bdrv_parent_drained_begin_single(c, false);
55     }
56 }
57 
58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
59                              bool ignore_bds_parents)
60 {
61     BdrvChild *c, *next;
62 
63     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
64         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
65             continue;
66         }
67         if (c->role->drained_end) {
68             c->role->drained_end(c);
69         }
70     }
71 }
72 
73 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
74 {
75     if (c->role->drained_poll) {
76         return c->role->drained_poll(c);
77     }
78     return false;
79 }
80 
81 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
82                                      bool ignore_bds_parents)
83 {
84     BdrvChild *c, *next;
85     bool busy = false;
86 
87     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
88         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
89             continue;
90         }
91         busy |= bdrv_parent_drained_poll_single(c);
92     }
93 
94     return busy;
95 }
96 
97 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
98 {
99     if (c->role->drained_begin) {
100         c->role->drained_begin(c);
101     }
102     if (poll) {
103         BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
104     }
105 }
106 
107 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
108 {
109     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
110     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
111     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
112                                  src->opt_mem_alignment);
113     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
114                                  src->min_mem_alignment);
115     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
116 }
117 
118 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
119 {
120     BlockDriver *drv = bs->drv;
121     Error *local_err = NULL;
122 
123     memset(&bs->bl, 0, sizeof(bs->bl));
124 
125     if (!drv) {
126         return;
127     }
128 
129     /* Default alignment based on whether driver has byte interface */
130     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
131                                 drv->bdrv_aio_preadv) ? 1 : 512;
132 
133     /* Take some limits from the children as a default */
134     if (bs->file) {
135         bdrv_refresh_limits(bs->file->bs, &local_err);
136         if (local_err) {
137             error_propagate(errp, local_err);
138             return;
139         }
140         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
141     } else {
142         bs->bl.min_mem_alignment = 512;
143         bs->bl.opt_mem_alignment = getpagesize();
144 
145         /* Safe default since most protocols use readv()/writev()/etc */
146         bs->bl.max_iov = IOV_MAX;
147     }
148 
149     if (bs->backing) {
150         bdrv_refresh_limits(bs->backing->bs, &local_err);
151         if (local_err) {
152             error_propagate(errp, local_err);
153             return;
154         }
155         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
156     }
157 
158     /* Then let the driver override it */
159     if (drv->bdrv_refresh_limits) {
160         drv->bdrv_refresh_limits(bs, errp);
161     }
162 }
163 
164 /**
165  * The copy-on-read flag is actually a reference count so multiple users may
166  * use the feature without worrying about clobbering its previous state.
167  * Copy-on-read stays enabled until all users have called to disable it.
168  */
169 void bdrv_enable_copy_on_read(BlockDriverState *bs)
170 {
171     atomic_inc(&bs->copy_on_read);
172 }
173 
174 void bdrv_disable_copy_on_read(BlockDriverState *bs)
175 {
176     int old = atomic_fetch_dec(&bs->copy_on_read);
177     assert(old >= 1);
178 }
179 
180 typedef struct {
181     Coroutine *co;
182     BlockDriverState *bs;
183     bool done;
184     bool begin;
185     bool recursive;
186     bool poll;
187     BdrvChild *parent;
188     bool ignore_bds_parents;
189 } BdrvCoDrainData;
190 
191 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
192 {
193     BdrvCoDrainData *data = opaque;
194     BlockDriverState *bs = data->bs;
195 
196     if (data->begin) {
197         bs->drv->bdrv_co_drain_begin(bs);
198     } else {
199         bs->drv->bdrv_co_drain_end(bs);
200     }
201 
202     /* Set data->done before reading bs->wakeup.  */
203     atomic_mb_set(&data->done, true);
204     bdrv_dec_in_flight(bs);
205 
206     if (data->begin) {
207         g_free(data);
208     }
209 }
210 
211 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
212 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin)
213 {
214     BdrvCoDrainData *data;
215 
216     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
217             (!begin && !bs->drv->bdrv_co_drain_end)) {
218         return;
219     }
220 
221     data = g_new(BdrvCoDrainData, 1);
222     *data = (BdrvCoDrainData) {
223         .bs = bs,
224         .done = false,
225         .begin = begin
226     };
227 
228     /* Make sure the driver callback completes during the polling phase for
229      * drain_begin. */
230     bdrv_inc_in_flight(bs);
231     data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
232     aio_co_schedule(bdrv_get_aio_context(bs), data->co);
233 
234     if (!begin) {
235         BDRV_POLL_WHILE(bs, !data->done);
236         g_free(data);
237     }
238 }
239 
240 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
241 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
242                      BdrvChild *ignore_parent, bool ignore_bds_parents)
243 {
244     BdrvChild *child, *next;
245 
246     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
247         return true;
248     }
249 
250     if (atomic_read(&bs->in_flight)) {
251         return true;
252     }
253 
254     if (recursive) {
255         assert(!ignore_bds_parents);
256         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
257             if (bdrv_drain_poll(child->bs, recursive, child, false)) {
258                 return true;
259             }
260         }
261     }
262 
263     return false;
264 }
265 
266 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
267                                       BdrvChild *ignore_parent)
268 {
269     return bdrv_drain_poll(bs, recursive, ignore_parent, false);
270 }
271 
272 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
273                                   BdrvChild *parent, bool ignore_bds_parents,
274                                   bool poll);
275 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
276                                 BdrvChild *parent, bool ignore_bds_parents);
277 
278 static void bdrv_co_drain_bh_cb(void *opaque)
279 {
280     BdrvCoDrainData *data = opaque;
281     Coroutine *co = data->co;
282     BlockDriverState *bs = data->bs;
283 
284     if (bs) {
285         AioContext *ctx = bdrv_get_aio_context(bs);
286         AioContext *co_ctx = qemu_coroutine_get_aio_context(co);
287 
288         /*
289          * When the coroutine yielded, the lock for its home context was
290          * released, so we need to re-acquire it here. If it explicitly
291          * acquired a different context, the lock is still held and we don't
292          * want to lock it a second time (or AIO_WAIT_WHILE() would hang).
293          */
294         if (ctx == co_ctx) {
295             aio_context_acquire(ctx);
296         }
297         bdrv_dec_in_flight(bs);
298         if (data->begin) {
299             bdrv_do_drained_begin(bs, data->recursive, data->parent,
300                                   data->ignore_bds_parents, data->poll);
301         } else {
302             bdrv_do_drained_end(bs, data->recursive, data->parent,
303                                 data->ignore_bds_parents);
304         }
305         if (ctx == co_ctx) {
306             aio_context_release(ctx);
307         }
308     } else {
309         assert(data->begin);
310         bdrv_drain_all_begin();
311     }
312 
313     data->done = true;
314     aio_co_wake(co);
315 }
316 
317 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
318                                                 bool begin, bool recursive,
319                                                 BdrvChild *parent,
320                                                 bool ignore_bds_parents,
321                                                 bool poll)
322 {
323     BdrvCoDrainData data;
324 
325     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
326      * other coroutines run if they were queued by aio_co_enter(). */
327 
328     assert(qemu_in_coroutine());
329     data = (BdrvCoDrainData) {
330         .co = qemu_coroutine_self(),
331         .bs = bs,
332         .done = false,
333         .begin = begin,
334         .recursive = recursive,
335         .parent = parent,
336         .ignore_bds_parents = ignore_bds_parents,
337         .poll = poll,
338     };
339     if (bs) {
340         bdrv_inc_in_flight(bs);
341     }
342     aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
343                             bdrv_co_drain_bh_cb, &data);
344 
345     qemu_coroutine_yield();
346     /* If we are resumed from some other event (such as an aio completion or a
347      * timer callback), it is a bug in the caller that should be fixed. */
348     assert(data.done);
349 }
350 
351 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
352                                    BdrvChild *parent, bool ignore_bds_parents)
353 {
354     assert(!qemu_in_coroutine());
355 
356     /* Stop things in parent-to-child order */
357     if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
358         aio_disable_external(bdrv_get_aio_context(bs));
359     }
360 
361     bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
362     bdrv_drain_invoke(bs, true);
363 }
364 
365 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
366                                   BdrvChild *parent, bool ignore_bds_parents,
367                                   bool poll)
368 {
369     BdrvChild *child, *next;
370 
371     if (qemu_in_coroutine()) {
372         bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
373                                poll);
374         return;
375     }
376 
377     bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
378 
379     if (recursive) {
380         assert(!ignore_bds_parents);
381         bs->recursive_quiesce_counter++;
382         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
383             bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
384                                   false);
385         }
386     }
387 
388     /*
389      * Wait for drained requests to finish.
390      *
391      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
392      * call is needed so things in this AioContext can make progress even
393      * though we don't return to the main AioContext loop - this automatically
394      * includes other nodes in the same AioContext and therefore all child
395      * nodes.
396      */
397     if (poll) {
398         assert(!ignore_bds_parents);
399         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
400     }
401 }
402 
403 void bdrv_drained_begin(BlockDriverState *bs)
404 {
405     bdrv_do_drained_begin(bs, false, NULL, false, true);
406 }
407 
408 void bdrv_subtree_drained_begin(BlockDriverState *bs)
409 {
410     bdrv_do_drained_begin(bs, true, NULL, false, true);
411 }
412 
413 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
414                                 BdrvChild *parent, bool ignore_bds_parents)
415 {
416     BdrvChild *child, *next;
417     int old_quiesce_counter;
418 
419     if (qemu_in_coroutine()) {
420         bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
421                                false);
422         return;
423     }
424     assert(bs->quiesce_counter > 0);
425     old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
426 
427     /* Re-enable things in child-to-parent order */
428     bdrv_drain_invoke(bs, false);
429     bdrv_parent_drained_end(bs, parent, ignore_bds_parents);
430     if (old_quiesce_counter == 1) {
431         aio_enable_external(bdrv_get_aio_context(bs));
432     }
433 
434     if (recursive) {
435         assert(!ignore_bds_parents);
436         bs->recursive_quiesce_counter--;
437         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
438             bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents);
439         }
440     }
441 }
442 
443 void bdrv_drained_end(BlockDriverState *bs)
444 {
445     bdrv_do_drained_end(bs, false, NULL, false);
446 }
447 
448 void bdrv_subtree_drained_end(BlockDriverState *bs)
449 {
450     bdrv_do_drained_end(bs, true, NULL, false);
451 }
452 
453 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
454 {
455     int i;
456 
457     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
458         bdrv_do_drained_begin(child->bs, true, child, false, true);
459     }
460 }
461 
462 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
463 {
464     int i;
465 
466     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
467         bdrv_do_drained_end(child->bs, true, child, false);
468     }
469 }
470 
471 /*
472  * Wait for pending requests to complete on a single BlockDriverState subtree,
473  * and suspend block driver's internal I/O until next request arrives.
474  *
475  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
476  * AioContext.
477  */
478 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
479 {
480     assert(qemu_in_coroutine());
481     bdrv_drained_begin(bs);
482     bdrv_drained_end(bs);
483 }
484 
485 void bdrv_drain(BlockDriverState *bs)
486 {
487     bdrv_drained_begin(bs);
488     bdrv_drained_end(bs);
489 }
490 
491 static void bdrv_drain_assert_idle(BlockDriverState *bs)
492 {
493     BdrvChild *child, *next;
494 
495     assert(atomic_read(&bs->in_flight) == 0);
496     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
497         bdrv_drain_assert_idle(child->bs);
498     }
499 }
500 
501 unsigned int bdrv_drain_all_count = 0;
502 
503 static bool bdrv_drain_all_poll(void)
504 {
505     BlockDriverState *bs = NULL;
506     bool result = false;
507 
508     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
509      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
510     while ((bs = bdrv_next_all_states(bs))) {
511         AioContext *aio_context = bdrv_get_aio_context(bs);
512         aio_context_acquire(aio_context);
513         result |= bdrv_drain_poll(bs, false, NULL, true);
514         aio_context_release(aio_context);
515     }
516 
517     return result;
518 }
519 
520 /*
521  * Wait for pending requests to complete across all BlockDriverStates
522  *
523  * This function does not flush data to disk, use bdrv_flush_all() for that
524  * after calling this function.
525  *
526  * This pauses all block jobs and disables external clients. It must
527  * be paired with bdrv_drain_all_end().
528  *
529  * NOTE: no new block jobs or BlockDriverStates can be created between
530  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
531  */
532 void bdrv_drain_all_begin(void)
533 {
534     BlockDriverState *bs = NULL;
535 
536     if (qemu_in_coroutine()) {
537         bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true);
538         return;
539     }
540 
541     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
542      * loop AioContext, so make sure we're in the main context. */
543     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
544     assert(bdrv_drain_all_count < INT_MAX);
545     bdrv_drain_all_count++;
546 
547     /* Quiesce all nodes, without polling in-flight requests yet. The graph
548      * cannot change during this loop. */
549     while ((bs = bdrv_next_all_states(bs))) {
550         AioContext *aio_context = bdrv_get_aio_context(bs);
551 
552         aio_context_acquire(aio_context);
553         bdrv_do_drained_begin(bs, false, NULL, true, false);
554         aio_context_release(aio_context);
555     }
556 
557     /* Now poll the in-flight requests */
558     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
559 
560     while ((bs = bdrv_next_all_states(bs))) {
561         bdrv_drain_assert_idle(bs);
562     }
563 }
564 
565 void bdrv_drain_all_end(void)
566 {
567     BlockDriverState *bs = NULL;
568 
569     while ((bs = bdrv_next_all_states(bs))) {
570         AioContext *aio_context = bdrv_get_aio_context(bs);
571 
572         aio_context_acquire(aio_context);
573         bdrv_do_drained_end(bs, false, NULL, true);
574         aio_context_release(aio_context);
575     }
576 
577     assert(bdrv_drain_all_count > 0);
578     bdrv_drain_all_count--;
579 }
580 
581 void bdrv_drain_all(void)
582 {
583     bdrv_drain_all_begin();
584     bdrv_drain_all_end();
585 }
586 
587 /**
588  * Remove an active request from the tracked requests list
589  *
590  * This function should be called when a tracked request is completing.
591  */
592 static void tracked_request_end(BdrvTrackedRequest *req)
593 {
594     if (req->serialising) {
595         atomic_dec(&req->bs->serialising_in_flight);
596     }
597 
598     qemu_co_mutex_lock(&req->bs->reqs_lock);
599     QLIST_REMOVE(req, list);
600     qemu_co_queue_restart_all(&req->wait_queue);
601     qemu_co_mutex_unlock(&req->bs->reqs_lock);
602 }
603 
604 /**
605  * Add an active request to the tracked requests list
606  */
607 static void tracked_request_begin(BdrvTrackedRequest *req,
608                                   BlockDriverState *bs,
609                                   int64_t offset,
610                                   uint64_t bytes,
611                                   enum BdrvTrackedRequestType type)
612 {
613     assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
614 
615     *req = (BdrvTrackedRequest){
616         .bs = bs,
617         .offset         = offset,
618         .bytes          = bytes,
619         .type           = type,
620         .co             = qemu_coroutine_self(),
621         .serialising    = false,
622         .overlap_offset = offset,
623         .overlap_bytes  = bytes,
624     };
625 
626     qemu_co_queue_init(&req->wait_queue);
627 
628     qemu_co_mutex_lock(&bs->reqs_lock);
629     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
630     qemu_co_mutex_unlock(&bs->reqs_lock);
631 }
632 
633 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
634 {
635     int64_t overlap_offset = req->offset & ~(align - 1);
636     uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
637                                - overlap_offset;
638 
639     if (!req->serialising) {
640         atomic_inc(&req->bs->serialising_in_flight);
641         req->serialising = true;
642     }
643 
644     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
645     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
646 }
647 
648 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req)
649 {
650     /*
651      * If the request is serialising, overlap_offset and overlap_bytes are set,
652      * so we can check if the request is aligned. Otherwise, don't care and
653      * return false.
654      */
655 
656     return req->serialising && (req->offset == req->overlap_offset) &&
657            (req->bytes == req->overlap_bytes);
658 }
659 
660 /**
661  * Round a region to cluster boundaries
662  */
663 void bdrv_round_to_clusters(BlockDriverState *bs,
664                             int64_t offset, int64_t bytes,
665                             int64_t *cluster_offset,
666                             int64_t *cluster_bytes)
667 {
668     BlockDriverInfo bdi;
669 
670     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
671         *cluster_offset = offset;
672         *cluster_bytes = bytes;
673     } else {
674         int64_t c = bdi.cluster_size;
675         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
676         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
677     }
678 }
679 
680 static int bdrv_get_cluster_size(BlockDriverState *bs)
681 {
682     BlockDriverInfo bdi;
683     int ret;
684 
685     ret = bdrv_get_info(bs, &bdi);
686     if (ret < 0 || bdi.cluster_size == 0) {
687         return bs->bl.request_alignment;
688     } else {
689         return bdi.cluster_size;
690     }
691 }
692 
693 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
694                                      int64_t offset, uint64_t bytes)
695 {
696     /*        aaaa   bbbb */
697     if (offset >= req->overlap_offset + req->overlap_bytes) {
698         return false;
699     }
700     /* bbbb   aaaa        */
701     if (req->overlap_offset >= offset + bytes) {
702         return false;
703     }
704     return true;
705 }
706 
707 void bdrv_inc_in_flight(BlockDriverState *bs)
708 {
709     atomic_inc(&bs->in_flight);
710 }
711 
712 void bdrv_wakeup(BlockDriverState *bs)
713 {
714     aio_wait_kick();
715 }
716 
717 void bdrv_dec_in_flight(BlockDriverState *bs)
718 {
719     atomic_dec(&bs->in_flight);
720     bdrv_wakeup(bs);
721 }
722 
723 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
724 {
725     BlockDriverState *bs = self->bs;
726     BdrvTrackedRequest *req;
727     bool retry;
728     bool waited = false;
729 
730     if (!atomic_read(&bs->serialising_in_flight)) {
731         return false;
732     }
733 
734     do {
735         retry = false;
736         qemu_co_mutex_lock(&bs->reqs_lock);
737         QLIST_FOREACH(req, &bs->tracked_requests, list) {
738             if (req == self || (!req->serialising && !self->serialising)) {
739                 continue;
740             }
741             if (tracked_request_overlaps(req, self->overlap_offset,
742                                          self->overlap_bytes))
743             {
744                 /* Hitting this means there was a reentrant request, for
745                  * example, a block driver issuing nested requests.  This must
746                  * never happen since it means deadlock.
747                  */
748                 assert(qemu_coroutine_self() != req->co);
749 
750                 /* If the request is already (indirectly) waiting for us, or
751                  * will wait for us as soon as it wakes up, then just go on
752                  * (instead of producing a deadlock in the former case). */
753                 if (!req->waiting_for) {
754                     self->waiting_for = req;
755                     qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
756                     self->waiting_for = NULL;
757                     retry = true;
758                     waited = true;
759                     break;
760                 }
761             }
762         }
763         qemu_co_mutex_unlock(&bs->reqs_lock);
764     } while (retry);
765 
766     return waited;
767 }
768 
769 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
770                                    size_t size)
771 {
772     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
773         return -EIO;
774     }
775 
776     if (!bdrv_is_inserted(bs)) {
777         return -ENOMEDIUM;
778     }
779 
780     if (offset < 0) {
781         return -EIO;
782     }
783 
784     return 0;
785 }
786 
787 typedef struct RwCo {
788     BdrvChild *child;
789     int64_t offset;
790     QEMUIOVector *qiov;
791     bool is_write;
792     int ret;
793     BdrvRequestFlags flags;
794 } RwCo;
795 
796 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
797 {
798     RwCo *rwco = opaque;
799 
800     if (!rwco->is_write) {
801         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
802                                    rwco->qiov->size, rwco->qiov,
803                                    rwco->flags);
804     } else {
805         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
806                                     rwco->qiov->size, rwco->qiov,
807                                     rwco->flags);
808     }
809     aio_wait_kick();
810 }
811 
812 /*
813  * Process a vectored synchronous request using coroutines
814  */
815 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
816                         QEMUIOVector *qiov, bool is_write,
817                         BdrvRequestFlags flags)
818 {
819     Coroutine *co;
820     RwCo rwco = {
821         .child = child,
822         .offset = offset,
823         .qiov = qiov,
824         .is_write = is_write,
825         .ret = NOT_DONE,
826         .flags = flags,
827     };
828 
829     if (qemu_in_coroutine()) {
830         /* Fast-path if already in coroutine context */
831         bdrv_rw_co_entry(&rwco);
832     } else {
833         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
834         bdrv_coroutine_enter(child->bs, co);
835         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
836     }
837     return rwco.ret;
838 }
839 
840 /*
841  * Process a synchronous request using coroutines
842  */
843 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
844                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
845 {
846     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf,
847                                             nb_sectors * BDRV_SECTOR_SIZE);
848 
849     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
850         return -EINVAL;
851     }
852 
853     return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
854                         &qiov, is_write, flags);
855 }
856 
857 /* return < 0 if error. See bdrv_write() for the return codes */
858 int bdrv_read(BdrvChild *child, int64_t sector_num,
859               uint8_t *buf, int nb_sectors)
860 {
861     return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
862 }
863 
864 /* Return < 0 if error. Important errors are:
865   -EIO         generic I/O error (may happen for all errors)
866   -ENOMEDIUM   No media inserted.
867   -EINVAL      Invalid sector number or nb_sectors
868   -EACCES      Trying to write a read-only device
869 */
870 int bdrv_write(BdrvChild *child, int64_t sector_num,
871                const uint8_t *buf, int nb_sectors)
872 {
873     return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
874 }
875 
876 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
877                        int bytes, BdrvRequestFlags flags)
878 {
879     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
880 
881     return bdrv_prwv_co(child, offset, &qiov, true,
882                         BDRV_REQ_ZERO_WRITE | flags);
883 }
884 
885 /*
886  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
887  * The operation is sped up by checking the block status and only writing
888  * zeroes to the device if they currently do not return zeroes. Optional
889  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
890  * BDRV_REQ_FUA).
891  *
892  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
893  */
894 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
895 {
896     int ret;
897     int64_t target_size, bytes, offset = 0;
898     BlockDriverState *bs = child->bs;
899 
900     target_size = bdrv_getlength(bs);
901     if (target_size < 0) {
902         return target_size;
903     }
904 
905     for (;;) {
906         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
907         if (bytes <= 0) {
908             return 0;
909         }
910         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
911         if (ret < 0) {
912             error_report("error getting block status at offset %" PRId64 ": %s",
913                          offset, strerror(-ret));
914             return ret;
915         }
916         if (ret & BDRV_BLOCK_ZERO) {
917             offset += bytes;
918             continue;
919         }
920         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
921         if (ret < 0) {
922             error_report("error writing zeroes at offset %" PRId64 ": %s",
923                          offset, strerror(-ret));
924             return ret;
925         }
926         offset += bytes;
927     }
928 }
929 
930 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
931 {
932     int ret;
933 
934     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
935     if (ret < 0) {
936         return ret;
937     }
938 
939     return qiov->size;
940 }
941 
942 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
943 {
944     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
945 
946     if (bytes < 0) {
947         return -EINVAL;
948     }
949 
950     return bdrv_preadv(child, offset, &qiov);
951 }
952 
953 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
954 {
955     int ret;
956 
957     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
958     if (ret < 0) {
959         return ret;
960     }
961 
962     return qiov->size;
963 }
964 
965 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
966 {
967     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
968 
969     if (bytes < 0) {
970         return -EINVAL;
971     }
972 
973     return bdrv_pwritev(child, offset, &qiov);
974 }
975 
976 /*
977  * Writes to the file and ensures that no writes are reordered across this
978  * request (acts as a barrier)
979  *
980  * Returns 0 on success, -errno in error cases.
981  */
982 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
983                      const void *buf, int count)
984 {
985     int ret;
986 
987     ret = bdrv_pwrite(child, offset, buf, count);
988     if (ret < 0) {
989         return ret;
990     }
991 
992     ret = bdrv_flush(child->bs);
993     if (ret < 0) {
994         return ret;
995     }
996 
997     return 0;
998 }
999 
1000 typedef struct CoroutineIOCompletion {
1001     Coroutine *coroutine;
1002     int ret;
1003 } CoroutineIOCompletion;
1004 
1005 static void bdrv_co_io_em_complete(void *opaque, int ret)
1006 {
1007     CoroutineIOCompletion *co = opaque;
1008 
1009     co->ret = ret;
1010     aio_co_wake(co->coroutine);
1011 }
1012 
1013 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1014                                            uint64_t offset, uint64_t bytes,
1015                                            QEMUIOVector *qiov, int flags)
1016 {
1017     BlockDriver *drv = bs->drv;
1018     int64_t sector_num;
1019     unsigned int nb_sectors;
1020 
1021     assert(!(flags & ~BDRV_REQ_MASK));
1022 
1023     if (!drv) {
1024         return -ENOMEDIUM;
1025     }
1026 
1027     if (drv->bdrv_co_preadv) {
1028         return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1029     }
1030 
1031     if (drv->bdrv_aio_preadv) {
1032         BlockAIOCB *acb;
1033         CoroutineIOCompletion co = {
1034             .coroutine = qemu_coroutine_self(),
1035         };
1036 
1037         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1038                                    bdrv_co_io_em_complete, &co);
1039         if (acb == NULL) {
1040             return -EIO;
1041         } else {
1042             qemu_coroutine_yield();
1043             return co.ret;
1044         }
1045     }
1046 
1047     sector_num = offset >> BDRV_SECTOR_BITS;
1048     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1049 
1050     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1051     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1052     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
1053     assert(drv->bdrv_co_readv);
1054 
1055     return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1056 }
1057 
1058 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1059                                             uint64_t offset, uint64_t bytes,
1060                                             QEMUIOVector *qiov, int flags)
1061 {
1062     BlockDriver *drv = bs->drv;
1063     int64_t sector_num;
1064     unsigned int nb_sectors;
1065     int ret;
1066 
1067     assert(!(flags & ~BDRV_REQ_MASK));
1068 
1069     if (!drv) {
1070         return -ENOMEDIUM;
1071     }
1072 
1073     if (drv->bdrv_co_pwritev) {
1074         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1075                                    flags & bs->supported_write_flags);
1076         flags &= ~bs->supported_write_flags;
1077         goto emulate_flags;
1078     }
1079 
1080     if (drv->bdrv_aio_pwritev) {
1081         BlockAIOCB *acb;
1082         CoroutineIOCompletion co = {
1083             .coroutine = qemu_coroutine_self(),
1084         };
1085 
1086         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1087                                     flags & bs->supported_write_flags,
1088                                     bdrv_co_io_em_complete, &co);
1089         flags &= ~bs->supported_write_flags;
1090         if (acb == NULL) {
1091             ret = -EIO;
1092         } else {
1093             qemu_coroutine_yield();
1094             ret = co.ret;
1095         }
1096         goto emulate_flags;
1097     }
1098 
1099     sector_num = offset >> BDRV_SECTOR_BITS;
1100     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1101 
1102     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1103     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1104     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
1105 
1106     assert(drv->bdrv_co_writev);
1107     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1108                               flags & bs->supported_write_flags);
1109     flags &= ~bs->supported_write_flags;
1110 
1111 emulate_flags:
1112     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1113         ret = bdrv_co_flush(bs);
1114     }
1115 
1116     return ret;
1117 }
1118 
1119 static int coroutine_fn
1120 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1121                                uint64_t bytes, QEMUIOVector *qiov)
1122 {
1123     BlockDriver *drv = bs->drv;
1124 
1125     if (!drv) {
1126         return -ENOMEDIUM;
1127     }
1128 
1129     if (!drv->bdrv_co_pwritev_compressed) {
1130         return -ENOTSUP;
1131     }
1132 
1133     return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1134 }
1135 
1136 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1137         int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
1138 {
1139     BlockDriverState *bs = child->bs;
1140 
1141     /* Perform I/O through a temporary buffer so that users who scribble over
1142      * their read buffer while the operation is in progress do not end up
1143      * modifying the image file.  This is critical for zero-copy guest I/O
1144      * where anything might happen inside guest memory.
1145      */
1146     void *bounce_buffer;
1147 
1148     BlockDriver *drv = bs->drv;
1149     QEMUIOVector local_qiov;
1150     int64_t cluster_offset;
1151     int64_t cluster_bytes;
1152     size_t skip_bytes;
1153     int ret;
1154     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1155                                     BDRV_REQUEST_MAX_BYTES);
1156     unsigned int progress = 0;
1157 
1158     if (!drv) {
1159         return -ENOMEDIUM;
1160     }
1161 
1162     /* FIXME We cannot require callers to have write permissions when all they
1163      * are doing is a read request. If we did things right, write permissions
1164      * would be obtained anyway, but internally by the copy-on-read code. As
1165      * long as it is implemented here rather than in a separate filter driver,
1166      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1167      * it could request permissions. Therefore we have to bypass the permission
1168      * system for the moment. */
1169     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1170 
1171     /* Cover entire cluster so no additional backing file I/O is required when
1172      * allocating cluster in the image file.  Note that this value may exceed
1173      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1174      * is one reason we loop rather than doing it all at once.
1175      */
1176     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1177     skip_bytes = offset - cluster_offset;
1178 
1179     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1180                                    cluster_offset, cluster_bytes);
1181 
1182     bounce_buffer = qemu_try_blockalign(bs,
1183                                         MIN(MIN(max_transfer, cluster_bytes),
1184                                             MAX_BOUNCE_BUFFER));
1185     if (bounce_buffer == NULL) {
1186         ret = -ENOMEM;
1187         goto err;
1188     }
1189 
1190     while (cluster_bytes) {
1191         int64_t pnum;
1192 
1193         ret = bdrv_is_allocated(bs, cluster_offset,
1194                                 MIN(cluster_bytes, max_transfer), &pnum);
1195         if (ret < 0) {
1196             /* Safe to treat errors in querying allocation as if
1197              * unallocated; we'll probably fail again soon on the
1198              * read, but at least that will set a decent errno.
1199              */
1200             pnum = MIN(cluster_bytes, max_transfer);
1201         }
1202 
1203         /* Stop at EOF if the image ends in the middle of the cluster */
1204         if (ret == 0 && pnum == 0) {
1205             assert(progress >= bytes);
1206             break;
1207         }
1208 
1209         assert(skip_bytes < pnum);
1210 
1211         if (ret <= 0) {
1212             /* Must copy-on-read; use the bounce buffer */
1213             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1214             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1215 
1216             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1217                                      &local_qiov, 0);
1218             if (ret < 0) {
1219                 goto err;
1220             }
1221 
1222             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1223             if (drv->bdrv_co_pwrite_zeroes &&
1224                 buffer_is_zero(bounce_buffer, pnum)) {
1225                 /* FIXME: Should we (perhaps conditionally) be setting
1226                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1227                  * that still correctly reads as zero? */
1228                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1229                                                BDRV_REQ_WRITE_UNCHANGED);
1230             } else {
1231                 /* This does not change the data on the disk, it is not
1232                  * necessary to flush even in cache=writethrough mode.
1233                  */
1234                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1235                                           &local_qiov,
1236                                           BDRV_REQ_WRITE_UNCHANGED);
1237             }
1238 
1239             if (ret < 0) {
1240                 /* It might be okay to ignore write errors for guest
1241                  * requests.  If this is a deliberate copy-on-read
1242                  * then we don't want to ignore the error.  Simply
1243                  * report it in all cases.
1244                  */
1245                 goto err;
1246             }
1247 
1248             qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1249                                 pnum - skip_bytes);
1250         } else {
1251             /* Read directly into the destination */
1252             qemu_iovec_init(&local_qiov, qiov->niov);
1253             qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1254             ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1255                                      &local_qiov, 0);
1256             qemu_iovec_destroy(&local_qiov);
1257             if (ret < 0) {
1258                 goto err;
1259             }
1260         }
1261 
1262         cluster_offset += pnum;
1263         cluster_bytes -= pnum;
1264         progress += pnum - skip_bytes;
1265         skip_bytes = 0;
1266     }
1267     ret = 0;
1268 
1269 err:
1270     qemu_vfree(bounce_buffer);
1271     return ret;
1272 }
1273 
1274 /*
1275  * Forwards an already correctly aligned request to the BlockDriver. This
1276  * handles copy on read, zeroing after EOF, and fragmentation of large
1277  * reads; any other features must be implemented by the caller.
1278  */
1279 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1280     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1281     int64_t align, QEMUIOVector *qiov, int flags)
1282 {
1283     BlockDriverState *bs = child->bs;
1284     int64_t total_bytes, max_bytes;
1285     int ret = 0;
1286     uint64_t bytes_remaining = bytes;
1287     int max_transfer;
1288 
1289     assert(is_power_of_2(align));
1290     assert((offset & (align - 1)) == 0);
1291     assert((bytes & (align - 1)) == 0);
1292     assert(!qiov || bytes == qiov->size);
1293     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1294     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1295                                    align);
1296 
1297     /* TODO: We would need a per-BDS .supported_read_flags and
1298      * potential fallback support, if we ever implement any read flags
1299      * to pass through to drivers.  For now, there aren't any
1300      * passthrough flags.  */
1301     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1302 
1303     /* Handle Copy on Read and associated serialisation */
1304     if (flags & BDRV_REQ_COPY_ON_READ) {
1305         /* If we touch the same cluster it counts as an overlap.  This
1306          * guarantees that allocating writes will be serialized and not race
1307          * with each other for the same cluster.  For example, in copy-on-read
1308          * it ensures that the CoR read and write operations are atomic and
1309          * guest writes cannot interleave between them. */
1310         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1311     }
1312 
1313     /* BDRV_REQ_SERIALISING is only for write operation */
1314     assert(!(flags & BDRV_REQ_SERIALISING));
1315 
1316     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1317         wait_serialising_requests(req);
1318     }
1319 
1320     if (flags & BDRV_REQ_COPY_ON_READ) {
1321         int64_t pnum;
1322 
1323         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1324         if (ret < 0) {
1325             goto out;
1326         }
1327 
1328         if (!ret || pnum != bytes) {
1329             ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1330             goto out;
1331         }
1332     }
1333 
1334     /* Forward the request to the BlockDriver, possibly fragmenting it */
1335     total_bytes = bdrv_getlength(bs);
1336     if (total_bytes < 0) {
1337         ret = total_bytes;
1338         goto out;
1339     }
1340 
1341     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1342     if (bytes <= max_bytes && bytes <= max_transfer) {
1343         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1344         goto out;
1345     }
1346 
1347     while (bytes_remaining) {
1348         int num;
1349 
1350         if (max_bytes) {
1351             QEMUIOVector local_qiov;
1352 
1353             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1354             assert(num);
1355             qemu_iovec_init(&local_qiov, qiov->niov);
1356             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1357 
1358             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1359                                      num, &local_qiov, 0);
1360             max_bytes -= num;
1361             qemu_iovec_destroy(&local_qiov);
1362         } else {
1363             num = bytes_remaining;
1364             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1365                                     bytes_remaining);
1366         }
1367         if (ret < 0) {
1368             goto out;
1369         }
1370         bytes_remaining -= num;
1371     }
1372 
1373 out:
1374     return ret < 0 ? ret : 0;
1375 }
1376 
1377 /*
1378  * Handle a read request in coroutine context
1379  */
1380 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1381     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1382     BdrvRequestFlags flags)
1383 {
1384     BlockDriverState *bs = child->bs;
1385     BlockDriver *drv = bs->drv;
1386     BdrvTrackedRequest req;
1387 
1388     uint64_t align = bs->bl.request_alignment;
1389     uint8_t *head_buf = NULL;
1390     uint8_t *tail_buf = NULL;
1391     QEMUIOVector local_qiov;
1392     bool use_local_qiov = false;
1393     int ret;
1394 
1395     trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1396 
1397     if (!drv) {
1398         return -ENOMEDIUM;
1399     }
1400 
1401     ret = bdrv_check_byte_request(bs, offset, bytes);
1402     if (ret < 0) {
1403         return ret;
1404     }
1405 
1406     bdrv_inc_in_flight(bs);
1407 
1408     /* Don't do copy-on-read if we read data before write operation */
1409     if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1410         flags |= BDRV_REQ_COPY_ON_READ;
1411     }
1412 
1413     /* Align read if necessary by padding qiov */
1414     if (offset & (align - 1)) {
1415         head_buf = qemu_blockalign(bs, align);
1416         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1417         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1418         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1419         use_local_qiov = true;
1420 
1421         bytes += offset & (align - 1);
1422         offset = offset & ~(align - 1);
1423     }
1424 
1425     if ((offset + bytes) & (align - 1)) {
1426         if (!use_local_qiov) {
1427             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1428             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1429             use_local_qiov = true;
1430         }
1431         tail_buf = qemu_blockalign(bs, align);
1432         qemu_iovec_add(&local_qiov, tail_buf,
1433                        align - ((offset + bytes) & (align - 1)));
1434 
1435         bytes = ROUND_UP(bytes, align);
1436     }
1437 
1438     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1439     ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1440                               use_local_qiov ? &local_qiov : qiov,
1441                               flags);
1442     tracked_request_end(&req);
1443     bdrv_dec_in_flight(bs);
1444 
1445     if (use_local_qiov) {
1446         qemu_iovec_destroy(&local_qiov);
1447         qemu_vfree(head_buf);
1448         qemu_vfree(tail_buf);
1449     }
1450 
1451     return ret;
1452 }
1453 
1454 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1455     int64_t offset, int bytes, BdrvRequestFlags flags)
1456 {
1457     BlockDriver *drv = bs->drv;
1458     QEMUIOVector qiov;
1459     void *buf = NULL;
1460     int ret = 0;
1461     bool need_flush = false;
1462     int head = 0;
1463     int tail = 0;
1464 
1465     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1466     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1467                         bs->bl.request_alignment);
1468     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1469 
1470     if (!drv) {
1471         return -ENOMEDIUM;
1472     }
1473 
1474     assert(alignment % bs->bl.request_alignment == 0);
1475     head = offset % alignment;
1476     tail = (offset + bytes) % alignment;
1477     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1478     assert(max_write_zeroes >= bs->bl.request_alignment);
1479 
1480     while (bytes > 0 && !ret) {
1481         int num = bytes;
1482 
1483         /* Align request.  Block drivers can expect the "bulk" of the request
1484          * to be aligned, and that unaligned requests do not cross cluster
1485          * boundaries.
1486          */
1487         if (head) {
1488             /* Make a small request up to the first aligned sector. For
1489              * convenience, limit this request to max_transfer even if
1490              * we don't need to fall back to writes.  */
1491             num = MIN(MIN(bytes, max_transfer), alignment - head);
1492             head = (head + num) % alignment;
1493             assert(num < max_write_zeroes);
1494         } else if (tail && num > alignment) {
1495             /* Shorten the request to the last aligned sector.  */
1496             num -= tail;
1497         }
1498 
1499         /* limit request size */
1500         if (num > max_write_zeroes) {
1501             num = max_write_zeroes;
1502         }
1503 
1504         ret = -ENOTSUP;
1505         /* First try the efficient write zeroes operation */
1506         if (drv->bdrv_co_pwrite_zeroes) {
1507             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1508                                              flags & bs->supported_zero_flags);
1509             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1510                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1511                 need_flush = true;
1512             }
1513         } else {
1514             assert(!bs->supported_zero_flags);
1515         }
1516 
1517         if (ret == -ENOTSUP) {
1518             /* Fall back to bounce buffer if write zeroes is unsupported */
1519             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1520 
1521             if ((flags & BDRV_REQ_FUA) &&
1522                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1523                 /* No need for bdrv_driver_pwrite() to do a fallback
1524                  * flush on each chunk; use just one at the end */
1525                 write_flags &= ~BDRV_REQ_FUA;
1526                 need_flush = true;
1527             }
1528             num = MIN(num, max_transfer);
1529             if (buf == NULL) {
1530                 buf = qemu_try_blockalign0(bs, num);
1531                 if (buf == NULL) {
1532                     ret = -ENOMEM;
1533                     goto fail;
1534                 }
1535             }
1536             qemu_iovec_init_buf(&qiov, buf, num);
1537 
1538             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1539 
1540             /* Keep bounce buffer around if it is big enough for all
1541              * all future requests.
1542              */
1543             if (num < max_transfer) {
1544                 qemu_vfree(buf);
1545                 buf = NULL;
1546             }
1547         }
1548 
1549         offset += num;
1550         bytes -= num;
1551     }
1552 
1553 fail:
1554     if (ret == 0 && need_flush) {
1555         ret = bdrv_co_flush(bs);
1556     }
1557     qemu_vfree(buf);
1558     return ret;
1559 }
1560 
1561 static inline int coroutine_fn
1562 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1563                           BdrvTrackedRequest *req, int flags)
1564 {
1565     BlockDriverState *bs = child->bs;
1566     bool waited;
1567     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1568 
1569     if (bs->read_only) {
1570         return -EPERM;
1571     }
1572 
1573     /* BDRV_REQ_NO_SERIALISING is only for read operation */
1574     assert(!(flags & BDRV_REQ_NO_SERIALISING));
1575     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1576     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1577     assert(!(flags & ~BDRV_REQ_MASK));
1578 
1579     if (flags & BDRV_REQ_SERIALISING) {
1580         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1581     }
1582 
1583     waited = wait_serialising_requests(req);
1584 
1585     assert(!waited || !req->serialising ||
1586            is_request_serialising_and_aligned(req));
1587     assert(req->overlap_offset <= offset);
1588     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1589     assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1590 
1591     switch (req->type) {
1592     case BDRV_TRACKED_WRITE:
1593     case BDRV_TRACKED_DISCARD:
1594         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1595             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1596         } else {
1597             assert(child->perm & BLK_PERM_WRITE);
1598         }
1599         return notifier_with_return_list_notify(&bs->before_write_notifiers,
1600                                                 req);
1601     case BDRV_TRACKED_TRUNCATE:
1602         assert(child->perm & BLK_PERM_RESIZE);
1603         return 0;
1604     default:
1605         abort();
1606     }
1607 }
1608 
1609 static inline void coroutine_fn
1610 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1611                          BdrvTrackedRequest *req, int ret)
1612 {
1613     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1614     BlockDriverState *bs = child->bs;
1615 
1616     atomic_inc(&bs->write_gen);
1617 
1618     /*
1619      * Discard cannot extend the image, but in error handling cases, such as
1620      * when reverting a qcow2 cluster allocation, the discarded range can pass
1621      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1622      * here. Instead, just skip it, since semantically a discard request
1623      * beyond EOF cannot expand the image anyway.
1624      */
1625     if (ret == 0 &&
1626         (req->type == BDRV_TRACKED_TRUNCATE ||
1627          end_sector > bs->total_sectors) &&
1628         req->type != BDRV_TRACKED_DISCARD) {
1629         bs->total_sectors = end_sector;
1630         bdrv_parent_cb_resize(bs);
1631         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1632     }
1633     if (req->bytes) {
1634         switch (req->type) {
1635         case BDRV_TRACKED_WRITE:
1636             stat64_max(&bs->wr_highest_offset, offset + bytes);
1637             /* fall through, to set dirty bits */
1638         case BDRV_TRACKED_DISCARD:
1639             bdrv_set_dirty(bs, offset, bytes);
1640             break;
1641         default:
1642             break;
1643         }
1644     }
1645 }
1646 
1647 /*
1648  * Forwards an already correctly aligned write request to the BlockDriver,
1649  * after possibly fragmenting it.
1650  */
1651 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1652     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1653     int64_t align, QEMUIOVector *qiov, int flags)
1654 {
1655     BlockDriverState *bs = child->bs;
1656     BlockDriver *drv = bs->drv;
1657     int ret;
1658 
1659     uint64_t bytes_remaining = bytes;
1660     int max_transfer;
1661 
1662     if (!drv) {
1663         return -ENOMEDIUM;
1664     }
1665 
1666     if (bdrv_has_readonly_bitmaps(bs)) {
1667         return -EPERM;
1668     }
1669 
1670     assert(is_power_of_2(align));
1671     assert((offset & (align - 1)) == 0);
1672     assert((bytes & (align - 1)) == 0);
1673     assert(!qiov || bytes == qiov->size);
1674     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1675                                    align);
1676 
1677     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1678 
1679     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1680         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1681         qemu_iovec_is_zero(qiov)) {
1682         flags |= BDRV_REQ_ZERO_WRITE;
1683         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1684             flags |= BDRV_REQ_MAY_UNMAP;
1685         }
1686     }
1687 
1688     if (ret < 0) {
1689         /* Do nothing, write notifier decided to fail this request */
1690     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1691         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1692         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1693     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1694         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1695     } else if (bytes <= max_transfer) {
1696         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1697         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1698     } else {
1699         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1700         while (bytes_remaining) {
1701             int num = MIN(bytes_remaining, max_transfer);
1702             QEMUIOVector local_qiov;
1703             int local_flags = flags;
1704 
1705             assert(num);
1706             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1707                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1708                 /* If FUA is going to be emulated by flush, we only
1709                  * need to flush on the last iteration */
1710                 local_flags &= ~BDRV_REQ_FUA;
1711             }
1712             qemu_iovec_init(&local_qiov, qiov->niov);
1713             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1714 
1715             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1716                                       num, &local_qiov, local_flags);
1717             qemu_iovec_destroy(&local_qiov);
1718             if (ret < 0) {
1719                 break;
1720             }
1721             bytes_remaining -= num;
1722         }
1723     }
1724     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1725 
1726     if (ret >= 0) {
1727         ret = 0;
1728     }
1729     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1730 
1731     return ret;
1732 }
1733 
1734 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1735                                                 int64_t offset,
1736                                                 unsigned int bytes,
1737                                                 BdrvRequestFlags flags,
1738                                                 BdrvTrackedRequest *req)
1739 {
1740     BlockDriverState *bs = child->bs;
1741     uint8_t *buf = NULL;
1742     QEMUIOVector local_qiov;
1743     uint64_t align = bs->bl.request_alignment;
1744     unsigned int head_padding_bytes, tail_padding_bytes;
1745     int ret = 0;
1746 
1747     head_padding_bytes = offset & (align - 1);
1748     tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1749 
1750 
1751     assert(flags & BDRV_REQ_ZERO_WRITE);
1752     if (head_padding_bytes || tail_padding_bytes) {
1753         buf = qemu_blockalign(bs, align);
1754         qemu_iovec_init_buf(&local_qiov, buf, align);
1755     }
1756     if (head_padding_bytes) {
1757         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1758 
1759         /* RMW the unaligned part before head. */
1760         mark_request_serialising(req, align);
1761         wait_serialising_requests(req);
1762         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1763         ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1764                                   align, &local_qiov, 0);
1765         if (ret < 0) {
1766             goto fail;
1767         }
1768         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1769 
1770         memset(buf + head_padding_bytes, 0, zero_bytes);
1771         ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1772                                    align, &local_qiov,
1773                                    flags & ~BDRV_REQ_ZERO_WRITE);
1774         if (ret < 0) {
1775             goto fail;
1776         }
1777         offset += zero_bytes;
1778         bytes -= zero_bytes;
1779     }
1780 
1781     assert(!bytes || (offset & (align - 1)) == 0);
1782     if (bytes >= align) {
1783         /* Write the aligned part in the middle. */
1784         uint64_t aligned_bytes = bytes & ~(align - 1);
1785         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1786                                    NULL, flags);
1787         if (ret < 0) {
1788             goto fail;
1789         }
1790         bytes -= aligned_bytes;
1791         offset += aligned_bytes;
1792     }
1793 
1794     assert(!bytes || (offset & (align - 1)) == 0);
1795     if (bytes) {
1796         assert(align == tail_padding_bytes + bytes);
1797         /* RMW the unaligned part after tail. */
1798         mark_request_serialising(req, align);
1799         wait_serialising_requests(req);
1800         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1801         ret = bdrv_aligned_preadv(child, req, offset, align,
1802                                   align, &local_qiov, 0);
1803         if (ret < 0) {
1804             goto fail;
1805         }
1806         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1807 
1808         memset(buf, 0, bytes);
1809         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1810                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1811     }
1812 fail:
1813     qemu_vfree(buf);
1814     return ret;
1815 
1816 }
1817 
1818 /*
1819  * Handle a write request in coroutine context
1820  */
1821 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1822     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1823     BdrvRequestFlags flags)
1824 {
1825     BlockDriverState *bs = child->bs;
1826     BdrvTrackedRequest req;
1827     uint64_t align = bs->bl.request_alignment;
1828     uint8_t *head_buf = NULL;
1829     uint8_t *tail_buf = NULL;
1830     QEMUIOVector local_qiov;
1831     bool use_local_qiov = false;
1832     int ret;
1833 
1834     trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1835 
1836     if (!bs->drv) {
1837         return -ENOMEDIUM;
1838     }
1839 
1840     ret = bdrv_check_byte_request(bs, offset, bytes);
1841     if (ret < 0) {
1842         return ret;
1843     }
1844 
1845     bdrv_inc_in_flight(bs);
1846     /*
1847      * Align write if necessary by performing a read-modify-write cycle.
1848      * Pad qiov with the read parts and be sure to have a tracked request not
1849      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1850      */
1851     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1852 
1853     if (flags & BDRV_REQ_ZERO_WRITE) {
1854         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1855         goto out;
1856     }
1857 
1858     if (offset & (align - 1)) {
1859         QEMUIOVector head_qiov;
1860 
1861         mark_request_serialising(&req, align);
1862         wait_serialising_requests(&req);
1863 
1864         head_buf = qemu_blockalign(bs, align);
1865         qemu_iovec_init_buf(&head_qiov, head_buf, align);
1866 
1867         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1868         ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1869                                   align, &head_qiov, 0);
1870         if (ret < 0) {
1871             goto fail;
1872         }
1873         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1874 
1875         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1876         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1877         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1878         use_local_qiov = true;
1879 
1880         bytes += offset & (align - 1);
1881         offset = offset & ~(align - 1);
1882 
1883         /* We have read the tail already if the request is smaller
1884          * than one aligned block.
1885          */
1886         if (bytes < align) {
1887             qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1888             bytes = align;
1889         }
1890     }
1891 
1892     if ((offset + bytes) & (align - 1)) {
1893         QEMUIOVector tail_qiov;
1894         size_t tail_bytes;
1895         bool waited;
1896 
1897         mark_request_serialising(&req, align);
1898         waited = wait_serialising_requests(&req);
1899         assert(!waited || !use_local_qiov);
1900 
1901         tail_buf = qemu_blockalign(bs, align);
1902         qemu_iovec_init_buf(&tail_qiov, tail_buf, align);
1903 
1904         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1905         ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1906                                   align, align, &tail_qiov, 0);
1907         if (ret < 0) {
1908             goto fail;
1909         }
1910         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1911 
1912         if (!use_local_qiov) {
1913             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1914             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1915             use_local_qiov = true;
1916         }
1917 
1918         tail_bytes = (offset + bytes) & (align - 1);
1919         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1920 
1921         bytes = ROUND_UP(bytes, align);
1922     }
1923 
1924     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1925                                use_local_qiov ? &local_qiov : qiov,
1926                                flags);
1927 
1928 fail:
1929 
1930     if (use_local_qiov) {
1931         qemu_iovec_destroy(&local_qiov);
1932     }
1933     qemu_vfree(head_buf);
1934     qemu_vfree(tail_buf);
1935 out:
1936     tracked_request_end(&req);
1937     bdrv_dec_in_flight(bs);
1938     return ret;
1939 }
1940 
1941 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1942                                        int bytes, BdrvRequestFlags flags)
1943 {
1944     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1945 
1946     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1947         flags &= ~BDRV_REQ_MAY_UNMAP;
1948     }
1949 
1950     return bdrv_co_pwritev(child, offset, bytes, NULL,
1951                            BDRV_REQ_ZERO_WRITE | flags);
1952 }
1953 
1954 /*
1955  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1956  */
1957 int bdrv_flush_all(void)
1958 {
1959     BdrvNextIterator it;
1960     BlockDriverState *bs = NULL;
1961     int result = 0;
1962 
1963     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1964         AioContext *aio_context = bdrv_get_aio_context(bs);
1965         int ret;
1966 
1967         aio_context_acquire(aio_context);
1968         ret = bdrv_flush(bs);
1969         if (ret < 0 && !result) {
1970             result = ret;
1971         }
1972         aio_context_release(aio_context);
1973     }
1974 
1975     return result;
1976 }
1977 
1978 
1979 typedef struct BdrvCoBlockStatusData {
1980     BlockDriverState *bs;
1981     BlockDriverState *base;
1982     bool want_zero;
1983     int64_t offset;
1984     int64_t bytes;
1985     int64_t *pnum;
1986     int64_t *map;
1987     BlockDriverState **file;
1988     int ret;
1989     bool done;
1990 } BdrvCoBlockStatusData;
1991 
1992 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
1993                                                 bool want_zero,
1994                                                 int64_t offset,
1995                                                 int64_t bytes,
1996                                                 int64_t *pnum,
1997                                                 int64_t *map,
1998                                                 BlockDriverState **file)
1999 {
2000     assert(bs->file && bs->file->bs);
2001     *pnum = bytes;
2002     *map = offset;
2003     *file = bs->file->bs;
2004     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2005 }
2006 
2007 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
2008                                                    bool want_zero,
2009                                                    int64_t offset,
2010                                                    int64_t bytes,
2011                                                    int64_t *pnum,
2012                                                    int64_t *map,
2013                                                    BlockDriverState **file)
2014 {
2015     assert(bs->backing && bs->backing->bs);
2016     *pnum = bytes;
2017     *map = offset;
2018     *file = bs->backing->bs;
2019     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2020 }
2021 
2022 /*
2023  * Returns the allocation status of the specified sectors.
2024  * Drivers not implementing the functionality are assumed to not support
2025  * backing files, hence all their sectors are reported as allocated.
2026  *
2027  * If 'want_zero' is true, the caller is querying for mapping
2028  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2029  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2030  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2031  *
2032  * If 'offset' is beyond the end of the disk image the return value is
2033  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2034  *
2035  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2036  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2037  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2038  *
2039  * 'pnum' is set to the number of bytes (including and immediately
2040  * following the specified offset) that are easily known to be in the
2041  * same allocated/unallocated state.  Note that a second call starting
2042  * at the original offset plus returned pnum may have the same status.
2043  * The returned value is non-zero on success except at end-of-file.
2044  *
2045  * Returns negative errno on failure.  Otherwise, if the
2046  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2047  * set to the host mapping and BDS corresponding to the guest offset.
2048  */
2049 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2050                                              bool want_zero,
2051                                              int64_t offset, int64_t bytes,
2052                                              int64_t *pnum, int64_t *map,
2053                                              BlockDriverState **file)
2054 {
2055     int64_t total_size;
2056     int64_t n; /* bytes */
2057     int ret;
2058     int64_t local_map = 0;
2059     BlockDriverState *local_file = NULL;
2060     int64_t aligned_offset, aligned_bytes;
2061     uint32_t align;
2062 
2063     assert(pnum);
2064     *pnum = 0;
2065     total_size = bdrv_getlength(bs);
2066     if (total_size < 0) {
2067         ret = total_size;
2068         goto early_out;
2069     }
2070 
2071     if (offset >= total_size) {
2072         ret = BDRV_BLOCK_EOF;
2073         goto early_out;
2074     }
2075     if (!bytes) {
2076         ret = 0;
2077         goto early_out;
2078     }
2079 
2080     n = total_size - offset;
2081     if (n < bytes) {
2082         bytes = n;
2083     }
2084 
2085     /* Must be non-NULL or bdrv_getlength() would have failed */
2086     assert(bs->drv);
2087     if (!bs->drv->bdrv_co_block_status) {
2088         *pnum = bytes;
2089         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2090         if (offset + bytes == total_size) {
2091             ret |= BDRV_BLOCK_EOF;
2092         }
2093         if (bs->drv->protocol_name) {
2094             ret |= BDRV_BLOCK_OFFSET_VALID;
2095             local_map = offset;
2096             local_file = bs;
2097         }
2098         goto early_out;
2099     }
2100 
2101     bdrv_inc_in_flight(bs);
2102 
2103     /* Round out to request_alignment boundaries */
2104     align = bs->bl.request_alignment;
2105     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2106     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2107 
2108     ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2109                                         aligned_bytes, pnum, &local_map,
2110                                         &local_file);
2111     if (ret < 0) {
2112         *pnum = 0;
2113         goto out;
2114     }
2115 
2116     /*
2117      * The driver's result must be a non-zero multiple of request_alignment.
2118      * Clamp pnum and adjust map to original request.
2119      */
2120     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2121            align > offset - aligned_offset);
2122     *pnum -= offset - aligned_offset;
2123     if (*pnum > bytes) {
2124         *pnum = bytes;
2125     }
2126     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2127         local_map += offset - aligned_offset;
2128     }
2129 
2130     if (ret & BDRV_BLOCK_RAW) {
2131         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2132         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2133                                    *pnum, pnum, &local_map, &local_file);
2134         goto out;
2135     }
2136 
2137     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2138         ret |= BDRV_BLOCK_ALLOCATED;
2139     } else if (want_zero) {
2140         if (bdrv_unallocated_blocks_are_zero(bs)) {
2141             ret |= BDRV_BLOCK_ZERO;
2142         } else if (bs->backing) {
2143             BlockDriverState *bs2 = bs->backing->bs;
2144             int64_t size2 = bdrv_getlength(bs2);
2145 
2146             if (size2 >= 0 && offset >= size2) {
2147                 ret |= BDRV_BLOCK_ZERO;
2148             }
2149         }
2150     }
2151 
2152     if (want_zero && local_file && local_file != bs &&
2153         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2154         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2155         int64_t file_pnum;
2156         int ret2;
2157 
2158         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2159                                     *pnum, &file_pnum, NULL, NULL);
2160         if (ret2 >= 0) {
2161             /* Ignore errors.  This is just providing extra information, it
2162              * is useful but not necessary.
2163              */
2164             if (ret2 & BDRV_BLOCK_EOF &&
2165                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2166                 /*
2167                  * It is valid for the format block driver to read
2168                  * beyond the end of the underlying file's current
2169                  * size; such areas read as zero.
2170                  */
2171                 ret |= BDRV_BLOCK_ZERO;
2172             } else {
2173                 /* Limit request to the range reported by the protocol driver */
2174                 *pnum = file_pnum;
2175                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2176             }
2177         }
2178     }
2179 
2180 out:
2181     bdrv_dec_in_flight(bs);
2182     if (ret >= 0 && offset + *pnum == total_size) {
2183         ret |= BDRV_BLOCK_EOF;
2184     }
2185 early_out:
2186     if (file) {
2187         *file = local_file;
2188     }
2189     if (map) {
2190         *map = local_map;
2191     }
2192     return ret;
2193 }
2194 
2195 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2196                                                    BlockDriverState *base,
2197                                                    bool want_zero,
2198                                                    int64_t offset,
2199                                                    int64_t bytes,
2200                                                    int64_t *pnum,
2201                                                    int64_t *map,
2202                                                    BlockDriverState **file)
2203 {
2204     BlockDriverState *p;
2205     int ret = 0;
2206     bool first = true;
2207 
2208     assert(bs != base);
2209     for (p = bs; p != base; p = backing_bs(p)) {
2210         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2211                                    file);
2212         if (ret < 0) {
2213             break;
2214         }
2215         if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2216             /*
2217              * Reading beyond the end of the file continues to read
2218              * zeroes, but we can only widen the result to the
2219              * unallocated length we learned from an earlier
2220              * iteration.
2221              */
2222             *pnum = bytes;
2223         }
2224         if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2225             break;
2226         }
2227         /* [offset, pnum] unallocated on this layer, which could be only
2228          * the first part of [offset, bytes].  */
2229         bytes = MIN(bytes, *pnum);
2230         first = false;
2231     }
2232     return ret;
2233 }
2234 
2235 /* Coroutine wrapper for bdrv_block_status_above() */
2236 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2237 {
2238     BdrvCoBlockStatusData *data = opaque;
2239 
2240     data->ret = bdrv_co_block_status_above(data->bs, data->base,
2241                                            data->want_zero,
2242                                            data->offset, data->bytes,
2243                                            data->pnum, data->map, data->file);
2244     data->done = true;
2245     aio_wait_kick();
2246 }
2247 
2248 /*
2249  * Synchronous wrapper around bdrv_co_block_status_above().
2250  *
2251  * See bdrv_co_block_status_above() for details.
2252  */
2253 static int bdrv_common_block_status_above(BlockDriverState *bs,
2254                                           BlockDriverState *base,
2255                                           bool want_zero, int64_t offset,
2256                                           int64_t bytes, int64_t *pnum,
2257                                           int64_t *map,
2258                                           BlockDriverState **file)
2259 {
2260     Coroutine *co;
2261     BdrvCoBlockStatusData data = {
2262         .bs = bs,
2263         .base = base,
2264         .want_zero = want_zero,
2265         .offset = offset,
2266         .bytes = bytes,
2267         .pnum = pnum,
2268         .map = map,
2269         .file = file,
2270         .done = false,
2271     };
2272 
2273     if (qemu_in_coroutine()) {
2274         /* Fast-path if already in coroutine context */
2275         bdrv_block_status_above_co_entry(&data);
2276     } else {
2277         co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2278         bdrv_coroutine_enter(bs, co);
2279         BDRV_POLL_WHILE(bs, !data.done);
2280     }
2281     return data.ret;
2282 }
2283 
2284 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2285                             int64_t offset, int64_t bytes, int64_t *pnum,
2286                             int64_t *map, BlockDriverState **file)
2287 {
2288     return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2289                                           pnum, map, file);
2290 }
2291 
2292 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2293                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2294 {
2295     return bdrv_block_status_above(bs, backing_bs(bs),
2296                                    offset, bytes, pnum, map, file);
2297 }
2298 
2299 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2300                                    int64_t bytes, int64_t *pnum)
2301 {
2302     int ret;
2303     int64_t dummy;
2304 
2305     ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2306                                          bytes, pnum ? pnum : &dummy, NULL,
2307                                          NULL);
2308     if (ret < 0) {
2309         return ret;
2310     }
2311     return !!(ret & BDRV_BLOCK_ALLOCATED);
2312 }
2313 
2314 /*
2315  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2316  *
2317  * Return true if (a prefix of) the given range is allocated in any image
2318  * between BASE and TOP (inclusive).  BASE can be NULL to check if the given
2319  * offset is allocated in any image of the chain.  Return false otherwise,
2320  * or negative errno on failure.
2321  *
2322  * 'pnum' is set to the number of bytes (including and immediately
2323  * following the specified offset) that are known to be in the same
2324  * allocated/unallocated state.  Note that a subsequent call starting
2325  * at 'offset + *pnum' may return the same allocation status (in other
2326  * words, the result is not necessarily the maximum possible range);
2327  * but 'pnum' will only be 0 when end of file is reached.
2328  *
2329  */
2330 int bdrv_is_allocated_above(BlockDriverState *top,
2331                             BlockDriverState *base,
2332                             int64_t offset, int64_t bytes, int64_t *pnum)
2333 {
2334     BlockDriverState *intermediate;
2335     int ret;
2336     int64_t n = bytes;
2337 
2338     intermediate = top;
2339     while (intermediate && intermediate != base) {
2340         int64_t pnum_inter;
2341         int64_t size_inter;
2342 
2343         ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2344         if (ret < 0) {
2345             return ret;
2346         }
2347         if (ret) {
2348             *pnum = pnum_inter;
2349             return 1;
2350         }
2351 
2352         size_inter = bdrv_getlength(intermediate);
2353         if (size_inter < 0) {
2354             return size_inter;
2355         }
2356         if (n > pnum_inter &&
2357             (intermediate == top || offset + pnum_inter < size_inter)) {
2358             n = pnum_inter;
2359         }
2360 
2361         intermediate = backing_bs(intermediate);
2362     }
2363 
2364     *pnum = n;
2365     return 0;
2366 }
2367 
2368 typedef struct BdrvVmstateCo {
2369     BlockDriverState    *bs;
2370     QEMUIOVector        *qiov;
2371     int64_t             pos;
2372     bool                is_read;
2373     int                 ret;
2374 } BdrvVmstateCo;
2375 
2376 static int coroutine_fn
2377 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2378                    bool is_read)
2379 {
2380     BlockDriver *drv = bs->drv;
2381     int ret = -ENOTSUP;
2382 
2383     bdrv_inc_in_flight(bs);
2384 
2385     if (!drv) {
2386         ret = -ENOMEDIUM;
2387     } else if (drv->bdrv_load_vmstate) {
2388         if (is_read) {
2389             ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2390         } else {
2391             ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2392         }
2393     } else if (bs->file) {
2394         ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2395     }
2396 
2397     bdrv_dec_in_flight(bs);
2398     return ret;
2399 }
2400 
2401 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2402 {
2403     BdrvVmstateCo *co = opaque;
2404     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2405     aio_wait_kick();
2406 }
2407 
2408 static inline int
2409 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2410                 bool is_read)
2411 {
2412     if (qemu_in_coroutine()) {
2413         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2414     } else {
2415         BdrvVmstateCo data = {
2416             .bs         = bs,
2417             .qiov       = qiov,
2418             .pos        = pos,
2419             .is_read    = is_read,
2420             .ret        = -EINPROGRESS,
2421         };
2422         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2423 
2424         bdrv_coroutine_enter(bs, co);
2425         BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2426         return data.ret;
2427     }
2428 }
2429 
2430 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2431                       int64_t pos, int size)
2432 {
2433     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2434     int ret;
2435 
2436     ret = bdrv_writev_vmstate(bs, &qiov, pos);
2437     if (ret < 0) {
2438         return ret;
2439     }
2440 
2441     return size;
2442 }
2443 
2444 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2445 {
2446     return bdrv_rw_vmstate(bs, qiov, pos, false);
2447 }
2448 
2449 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2450                       int64_t pos, int size)
2451 {
2452     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2453     int ret;
2454 
2455     ret = bdrv_readv_vmstate(bs, &qiov, pos);
2456     if (ret < 0) {
2457         return ret;
2458     }
2459 
2460     return size;
2461 }
2462 
2463 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2464 {
2465     return bdrv_rw_vmstate(bs, qiov, pos, true);
2466 }
2467 
2468 /**************************************************************/
2469 /* async I/Os */
2470 
2471 void bdrv_aio_cancel(BlockAIOCB *acb)
2472 {
2473     qemu_aio_ref(acb);
2474     bdrv_aio_cancel_async(acb);
2475     while (acb->refcnt > 1) {
2476         if (acb->aiocb_info->get_aio_context) {
2477             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2478         } else if (acb->bs) {
2479             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2480              * assert that we're not using an I/O thread.  Thread-safe
2481              * code should use bdrv_aio_cancel_async exclusively.
2482              */
2483             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2484             aio_poll(bdrv_get_aio_context(acb->bs), true);
2485         } else {
2486             abort();
2487         }
2488     }
2489     qemu_aio_unref(acb);
2490 }
2491 
2492 /* Async version of aio cancel. The caller is not blocked if the acb implements
2493  * cancel_async, otherwise we do nothing and let the request normally complete.
2494  * In either case the completion callback must be called. */
2495 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2496 {
2497     if (acb->aiocb_info->cancel_async) {
2498         acb->aiocb_info->cancel_async(acb);
2499     }
2500 }
2501 
2502 /**************************************************************/
2503 /* Coroutine block device emulation */
2504 
2505 typedef struct FlushCo {
2506     BlockDriverState *bs;
2507     int ret;
2508 } FlushCo;
2509 
2510 
2511 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2512 {
2513     FlushCo *rwco = opaque;
2514 
2515     rwco->ret = bdrv_co_flush(rwco->bs);
2516     aio_wait_kick();
2517 }
2518 
2519 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2520 {
2521     int current_gen;
2522     int ret = 0;
2523 
2524     bdrv_inc_in_flight(bs);
2525 
2526     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2527         bdrv_is_sg(bs)) {
2528         goto early_exit;
2529     }
2530 
2531     qemu_co_mutex_lock(&bs->reqs_lock);
2532     current_gen = atomic_read(&bs->write_gen);
2533 
2534     /* Wait until any previous flushes are completed */
2535     while (bs->active_flush_req) {
2536         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2537     }
2538 
2539     /* Flushes reach this point in nondecreasing current_gen order.  */
2540     bs->active_flush_req = true;
2541     qemu_co_mutex_unlock(&bs->reqs_lock);
2542 
2543     /* Write back all layers by calling one driver function */
2544     if (bs->drv->bdrv_co_flush) {
2545         ret = bs->drv->bdrv_co_flush(bs);
2546         goto out;
2547     }
2548 
2549     /* Write back cached data to the OS even with cache=unsafe */
2550     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2551     if (bs->drv->bdrv_co_flush_to_os) {
2552         ret = bs->drv->bdrv_co_flush_to_os(bs);
2553         if (ret < 0) {
2554             goto out;
2555         }
2556     }
2557 
2558     /* But don't actually force it to the disk with cache=unsafe */
2559     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2560         goto flush_parent;
2561     }
2562 
2563     /* Check if we really need to flush anything */
2564     if (bs->flushed_gen == current_gen) {
2565         goto flush_parent;
2566     }
2567 
2568     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2569     if (!bs->drv) {
2570         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2571          * (even in case of apparent success) */
2572         ret = -ENOMEDIUM;
2573         goto out;
2574     }
2575     if (bs->drv->bdrv_co_flush_to_disk) {
2576         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2577     } else if (bs->drv->bdrv_aio_flush) {
2578         BlockAIOCB *acb;
2579         CoroutineIOCompletion co = {
2580             .coroutine = qemu_coroutine_self(),
2581         };
2582 
2583         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2584         if (acb == NULL) {
2585             ret = -EIO;
2586         } else {
2587             qemu_coroutine_yield();
2588             ret = co.ret;
2589         }
2590     } else {
2591         /*
2592          * Some block drivers always operate in either writethrough or unsafe
2593          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2594          * know how the server works (because the behaviour is hardcoded or
2595          * depends on server-side configuration), so we can't ensure that
2596          * everything is safe on disk. Returning an error doesn't work because
2597          * that would break guests even if the server operates in writethrough
2598          * mode.
2599          *
2600          * Let's hope the user knows what he's doing.
2601          */
2602         ret = 0;
2603     }
2604 
2605     if (ret < 0) {
2606         goto out;
2607     }
2608 
2609     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2610      * in the case of cache=unsafe, so there are no useless flushes.
2611      */
2612 flush_parent:
2613     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2614 out:
2615     /* Notify any pending flushes that we have completed */
2616     if (ret == 0) {
2617         bs->flushed_gen = current_gen;
2618     }
2619 
2620     qemu_co_mutex_lock(&bs->reqs_lock);
2621     bs->active_flush_req = false;
2622     /* Return value is ignored - it's ok if wait queue is empty */
2623     qemu_co_queue_next(&bs->flush_queue);
2624     qemu_co_mutex_unlock(&bs->reqs_lock);
2625 
2626 early_exit:
2627     bdrv_dec_in_flight(bs);
2628     return ret;
2629 }
2630 
2631 int bdrv_flush(BlockDriverState *bs)
2632 {
2633     Coroutine *co;
2634     FlushCo flush_co = {
2635         .bs = bs,
2636         .ret = NOT_DONE,
2637     };
2638 
2639     if (qemu_in_coroutine()) {
2640         /* Fast-path if already in coroutine context */
2641         bdrv_flush_co_entry(&flush_co);
2642     } else {
2643         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2644         bdrv_coroutine_enter(bs, co);
2645         BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2646     }
2647 
2648     return flush_co.ret;
2649 }
2650 
2651 typedef struct DiscardCo {
2652     BdrvChild *child;
2653     int64_t offset;
2654     int bytes;
2655     int ret;
2656 } DiscardCo;
2657 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2658 {
2659     DiscardCo *rwco = opaque;
2660 
2661     rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
2662     aio_wait_kick();
2663 }
2664 
2665 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, int bytes)
2666 {
2667     BdrvTrackedRequest req;
2668     int max_pdiscard, ret;
2669     int head, tail, align;
2670     BlockDriverState *bs = child->bs;
2671 
2672     if (!bs || !bs->drv) {
2673         return -ENOMEDIUM;
2674     }
2675 
2676     if (bdrv_has_readonly_bitmaps(bs)) {
2677         return -EPERM;
2678     }
2679 
2680     ret = bdrv_check_byte_request(bs, offset, bytes);
2681     if (ret < 0) {
2682         return ret;
2683     }
2684 
2685     /* Do nothing if disabled.  */
2686     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2687         return 0;
2688     }
2689 
2690     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2691         return 0;
2692     }
2693 
2694     /* Discard is advisory, but some devices track and coalesce
2695      * unaligned requests, so we must pass everything down rather than
2696      * round here.  Still, most devices will just silently ignore
2697      * unaligned requests (by returning -ENOTSUP), so we must fragment
2698      * the request accordingly.  */
2699     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2700     assert(align % bs->bl.request_alignment == 0);
2701     head = offset % align;
2702     tail = (offset + bytes) % align;
2703 
2704     bdrv_inc_in_flight(bs);
2705     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2706 
2707     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2708     if (ret < 0) {
2709         goto out;
2710     }
2711 
2712     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2713                                    align);
2714     assert(max_pdiscard >= bs->bl.request_alignment);
2715 
2716     while (bytes > 0) {
2717         int num = bytes;
2718 
2719         if (head) {
2720             /* Make small requests to get to alignment boundaries. */
2721             num = MIN(bytes, align - head);
2722             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2723                 num %= bs->bl.request_alignment;
2724             }
2725             head = (head + num) % align;
2726             assert(num < max_pdiscard);
2727         } else if (tail) {
2728             if (num > align) {
2729                 /* Shorten the request to the last aligned cluster.  */
2730                 num -= tail;
2731             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2732                        tail > bs->bl.request_alignment) {
2733                 tail %= bs->bl.request_alignment;
2734                 num -= tail;
2735             }
2736         }
2737         /* limit request size */
2738         if (num > max_pdiscard) {
2739             num = max_pdiscard;
2740         }
2741 
2742         if (!bs->drv) {
2743             ret = -ENOMEDIUM;
2744             goto out;
2745         }
2746         if (bs->drv->bdrv_co_pdiscard) {
2747             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2748         } else {
2749             BlockAIOCB *acb;
2750             CoroutineIOCompletion co = {
2751                 .coroutine = qemu_coroutine_self(),
2752             };
2753 
2754             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2755                                              bdrv_co_io_em_complete, &co);
2756             if (acb == NULL) {
2757                 ret = -EIO;
2758                 goto out;
2759             } else {
2760                 qemu_coroutine_yield();
2761                 ret = co.ret;
2762             }
2763         }
2764         if (ret && ret != -ENOTSUP) {
2765             goto out;
2766         }
2767 
2768         offset += num;
2769         bytes -= num;
2770     }
2771     ret = 0;
2772 out:
2773     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
2774     tracked_request_end(&req);
2775     bdrv_dec_in_flight(bs);
2776     return ret;
2777 }
2778 
2779 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int bytes)
2780 {
2781     Coroutine *co;
2782     DiscardCo rwco = {
2783         .child = child,
2784         .offset = offset,
2785         .bytes = bytes,
2786         .ret = NOT_DONE,
2787     };
2788 
2789     if (qemu_in_coroutine()) {
2790         /* Fast-path if already in coroutine context */
2791         bdrv_pdiscard_co_entry(&rwco);
2792     } else {
2793         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2794         bdrv_coroutine_enter(child->bs, co);
2795         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
2796     }
2797 
2798     return rwco.ret;
2799 }
2800 
2801 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2802 {
2803     BlockDriver *drv = bs->drv;
2804     CoroutineIOCompletion co = {
2805         .coroutine = qemu_coroutine_self(),
2806     };
2807     BlockAIOCB *acb;
2808 
2809     bdrv_inc_in_flight(bs);
2810     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2811         co.ret = -ENOTSUP;
2812         goto out;
2813     }
2814 
2815     if (drv->bdrv_co_ioctl) {
2816         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2817     } else {
2818         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2819         if (!acb) {
2820             co.ret = -ENOTSUP;
2821             goto out;
2822         }
2823         qemu_coroutine_yield();
2824     }
2825 out:
2826     bdrv_dec_in_flight(bs);
2827     return co.ret;
2828 }
2829 
2830 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2831 {
2832     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2833 }
2834 
2835 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2836 {
2837     return memset(qemu_blockalign(bs, size), 0, size);
2838 }
2839 
2840 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2841 {
2842     size_t align = bdrv_opt_mem_align(bs);
2843 
2844     /* Ensure that NULL is never returned on success */
2845     assert(align > 0);
2846     if (size == 0) {
2847         size = align;
2848     }
2849 
2850     return qemu_try_memalign(align, size);
2851 }
2852 
2853 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2854 {
2855     void *mem = qemu_try_blockalign(bs, size);
2856 
2857     if (mem) {
2858         memset(mem, 0, size);
2859     }
2860 
2861     return mem;
2862 }
2863 
2864 /*
2865  * Check if all memory in this vector is sector aligned.
2866  */
2867 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2868 {
2869     int i;
2870     size_t alignment = bdrv_min_mem_align(bs);
2871 
2872     for (i = 0; i < qiov->niov; i++) {
2873         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2874             return false;
2875         }
2876         if (qiov->iov[i].iov_len % alignment) {
2877             return false;
2878         }
2879     }
2880 
2881     return true;
2882 }
2883 
2884 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2885                                     NotifierWithReturn *notifier)
2886 {
2887     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2888 }
2889 
2890 void bdrv_io_plug(BlockDriverState *bs)
2891 {
2892     BdrvChild *child;
2893 
2894     QLIST_FOREACH(child, &bs->children, next) {
2895         bdrv_io_plug(child->bs);
2896     }
2897 
2898     if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2899         BlockDriver *drv = bs->drv;
2900         if (drv && drv->bdrv_io_plug) {
2901             drv->bdrv_io_plug(bs);
2902         }
2903     }
2904 }
2905 
2906 void bdrv_io_unplug(BlockDriverState *bs)
2907 {
2908     BdrvChild *child;
2909 
2910     assert(bs->io_plugged);
2911     if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2912         BlockDriver *drv = bs->drv;
2913         if (drv && drv->bdrv_io_unplug) {
2914             drv->bdrv_io_unplug(bs);
2915         }
2916     }
2917 
2918     QLIST_FOREACH(child, &bs->children, next) {
2919         bdrv_io_unplug(child->bs);
2920     }
2921 }
2922 
2923 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2924 {
2925     BdrvChild *child;
2926 
2927     if (bs->drv && bs->drv->bdrv_register_buf) {
2928         bs->drv->bdrv_register_buf(bs, host, size);
2929     }
2930     QLIST_FOREACH(child, &bs->children, next) {
2931         bdrv_register_buf(child->bs, host, size);
2932     }
2933 }
2934 
2935 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2936 {
2937     BdrvChild *child;
2938 
2939     if (bs->drv && bs->drv->bdrv_unregister_buf) {
2940         bs->drv->bdrv_unregister_buf(bs, host);
2941     }
2942     QLIST_FOREACH(child, &bs->children, next) {
2943         bdrv_unregister_buf(child->bs, host);
2944     }
2945 }
2946 
2947 static int coroutine_fn bdrv_co_copy_range_internal(
2948         BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
2949         uint64_t dst_offset, uint64_t bytes,
2950         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
2951         bool recurse_src)
2952 {
2953     BdrvTrackedRequest req;
2954     int ret;
2955 
2956     if (!dst || !dst->bs) {
2957         return -ENOMEDIUM;
2958     }
2959     ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
2960     if (ret) {
2961         return ret;
2962     }
2963     if (write_flags & BDRV_REQ_ZERO_WRITE) {
2964         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
2965     }
2966 
2967     if (!src || !src->bs) {
2968         return -ENOMEDIUM;
2969     }
2970     ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
2971     if (ret) {
2972         return ret;
2973     }
2974 
2975     if (!src->bs->drv->bdrv_co_copy_range_from
2976         || !dst->bs->drv->bdrv_co_copy_range_to
2977         || src->bs->encrypted || dst->bs->encrypted) {
2978         return -ENOTSUP;
2979     }
2980 
2981     if (recurse_src) {
2982         bdrv_inc_in_flight(src->bs);
2983         tracked_request_begin(&req, src->bs, src_offset, bytes,
2984                               BDRV_TRACKED_READ);
2985 
2986         /* BDRV_REQ_SERIALISING is only for write operation */
2987         assert(!(read_flags & BDRV_REQ_SERIALISING));
2988         if (!(read_flags & BDRV_REQ_NO_SERIALISING)) {
2989             wait_serialising_requests(&req);
2990         }
2991 
2992         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
2993                                                     src, src_offset,
2994                                                     dst, dst_offset,
2995                                                     bytes,
2996                                                     read_flags, write_flags);
2997 
2998         tracked_request_end(&req);
2999         bdrv_dec_in_flight(src->bs);
3000     } else {
3001         bdrv_inc_in_flight(dst->bs);
3002         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3003                               BDRV_TRACKED_WRITE);
3004         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3005                                         write_flags);
3006         if (!ret) {
3007             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3008                                                       src, src_offset,
3009                                                       dst, dst_offset,
3010                                                       bytes,
3011                                                       read_flags, write_flags);
3012         }
3013         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3014         tracked_request_end(&req);
3015         bdrv_dec_in_flight(dst->bs);
3016     }
3017 
3018     return ret;
3019 }
3020 
3021 /* Copy range from @src to @dst.
3022  *
3023  * See the comment of bdrv_co_copy_range for the parameter and return value
3024  * semantics. */
3025 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3026                                          BdrvChild *dst, uint64_t dst_offset,
3027                                          uint64_t bytes,
3028                                          BdrvRequestFlags read_flags,
3029                                          BdrvRequestFlags write_flags)
3030 {
3031     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3032                                   read_flags, write_flags);
3033     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3034                                        bytes, read_flags, write_flags, true);
3035 }
3036 
3037 /* Copy range from @src to @dst.
3038  *
3039  * See the comment of bdrv_co_copy_range for the parameter and return value
3040  * semantics. */
3041 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3042                                        BdrvChild *dst, uint64_t dst_offset,
3043                                        uint64_t bytes,
3044                                        BdrvRequestFlags read_flags,
3045                                        BdrvRequestFlags write_flags)
3046 {
3047     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3048                                 read_flags, write_flags);
3049     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3050                                        bytes, read_flags, write_flags, false);
3051 }
3052 
3053 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3054                                     BdrvChild *dst, uint64_t dst_offset,
3055                                     uint64_t bytes, BdrvRequestFlags read_flags,
3056                                     BdrvRequestFlags write_flags)
3057 {
3058     return bdrv_co_copy_range_from(src, src_offset,
3059                                    dst, dst_offset,
3060                                    bytes, read_flags, write_flags);
3061 }
3062 
3063 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3064 {
3065     BdrvChild *c;
3066     QLIST_FOREACH(c, &bs->parents, next_parent) {
3067         if (c->role->resize) {
3068             c->role->resize(c);
3069         }
3070     }
3071 }
3072 
3073 /**
3074  * Truncate file to 'offset' bytes (needed only for file protocols)
3075  */
3076 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset,
3077                                   PreallocMode prealloc, Error **errp)
3078 {
3079     BlockDriverState *bs = child->bs;
3080     BlockDriver *drv = bs->drv;
3081     BdrvTrackedRequest req;
3082     int64_t old_size, new_bytes;
3083     int ret;
3084 
3085 
3086     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3087     if (!drv) {
3088         error_setg(errp, "No medium inserted");
3089         return -ENOMEDIUM;
3090     }
3091     if (offset < 0) {
3092         error_setg(errp, "Image size cannot be negative");
3093         return -EINVAL;
3094     }
3095 
3096     old_size = bdrv_getlength(bs);
3097     if (old_size < 0) {
3098         error_setg_errno(errp, -old_size, "Failed to get old image size");
3099         return old_size;
3100     }
3101 
3102     if (offset > old_size) {
3103         new_bytes = offset - old_size;
3104     } else {
3105         new_bytes = 0;
3106     }
3107 
3108     bdrv_inc_in_flight(bs);
3109     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3110                           BDRV_TRACKED_TRUNCATE);
3111 
3112     /* If we are growing the image and potentially using preallocation for the
3113      * new area, we need to make sure that no write requests are made to it
3114      * concurrently or they might be overwritten by preallocation. */
3115     if (new_bytes) {
3116         mark_request_serialising(&req, 1);
3117     }
3118     if (bs->read_only) {
3119         error_setg(errp, "Image is read-only");
3120         ret = -EACCES;
3121         goto out;
3122     }
3123     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3124                                     0);
3125     if (ret < 0) {
3126         error_setg_errno(errp, -ret,
3127                          "Failed to prepare request for truncation");
3128         goto out;
3129     }
3130 
3131     if (!drv->bdrv_co_truncate) {
3132         if (bs->file && drv->is_filter) {
3133             ret = bdrv_co_truncate(bs->file, offset, prealloc, errp);
3134             goto out;
3135         }
3136         error_setg(errp, "Image format driver does not support resize");
3137         ret = -ENOTSUP;
3138         goto out;
3139     }
3140 
3141     ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp);
3142     if (ret < 0) {
3143         goto out;
3144     }
3145     ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3146     if (ret < 0) {
3147         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3148     } else {
3149         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3150     }
3151     /* It's possible that truncation succeeded but refresh_total_sectors
3152      * failed, but the latter doesn't affect how we should finish the request.
3153      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3154     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3155 
3156 out:
3157     tracked_request_end(&req);
3158     bdrv_dec_in_flight(bs);
3159 
3160     return ret;
3161 }
3162 
3163 typedef struct TruncateCo {
3164     BdrvChild *child;
3165     int64_t offset;
3166     PreallocMode prealloc;
3167     Error **errp;
3168     int ret;
3169 } TruncateCo;
3170 
3171 static void coroutine_fn bdrv_truncate_co_entry(void *opaque)
3172 {
3173     TruncateCo *tco = opaque;
3174     tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc,
3175                                 tco->errp);
3176     aio_wait_kick();
3177 }
3178 
3179 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc,
3180                   Error **errp)
3181 {
3182     Coroutine *co;
3183     TruncateCo tco = {
3184         .child      = child,
3185         .offset     = offset,
3186         .prealloc   = prealloc,
3187         .errp       = errp,
3188         .ret        = NOT_DONE,
3189     };
3190 
3191     if (qemu_in_coroutine()) {
3192         /* Fast-path if already in coroutine context */
3193         bdrv_truncate_co_entry(&tco);
3194     } else {
3195         co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco);
3196         bdrv_coroutine_enter(child->bs, co);
3197         BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE);
3198     }
3199 
3200     return tco.ret;
3201 }
3202