1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "trace.h" 26 #include "sysemu/block-backend.h" 27 #include "block/blockjob.h" 28 #include "block/block_int.h" 29 #include "block/throttle-groups.h" 30 #include "qemu/error-report.h" 31 32 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 33 34 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 35 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 36 BlockCompletionFunc *cb, void *opaque); 37 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 38 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 39 BlockCompletionFunc *cb, void *opaque); 40 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 41 int64_t sector_num, int nb_sectors, 42 QEMUIOVector *iov); 43 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 44 int64_t sector_num, int nb_sectors, 45 QEMUIOVector *iov); 46 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs, 47 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 48 BdrvRequestFlags flags); 49 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs, 50 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 51 BdrvRequestFlags flags); 52 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 53 int64_t sector_num, 54 QEMUIOVector *qiov, 55 int nb_sectors, 56 BdrvRequestFlags flags, 57 BlockCompletionFunc *cb, 58 void *opaque, 59 bool is_write); 60 static void coroutine_fn bdrv_co_do_rw(void *opaque); 61 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 62 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags); 63 64 /* throttling disk I/O limits */ 65 void bdrv_set_io_limits(BlockDriverState *bs, 66 ThrottleConfig *cfg) 67 { 68 int i; 69 70 throttle_group_config(bs, cfg); 71 72 for (i = 0; i < 2; i++) { 73 qemu_co_enter_next(&bs->throttled_reqs[i]); 74 } 75 } 76 77 /* this function drain all the throttled IOs */ 78 static bool bdrv_start_throttled_reqs(BlockDriverState *bs) 79 { 80 bool drained = false; 81 bool enabled = bs->io_limits_enabled; 82 int i; 83 84 bs->io_limits_enabled = false; 85 86 for (i = 0; i < 2; i++) { 87 while (qemu_co_enter_next(&bs->throttled_reqs[i])) { 88 drained = true; 89 } 90 } 91 92 bs->io_limits_enabled = enabled; 93 94 return drained; 95 } 96 97 void bdrv_io_limits_disable(BlockDriverState *bs) 98 { 99 bs->io_limits_enabled = false; 100 bdrv_start_throttled_reqs(bs); 101 throttle_group_unregister_bs(bs); 102 } 103 104 /* should be called before bdrv_set_io_limits if a limit is set */ 105 void bdrv_io_limits_enable(BlockDriverState *bs, const char *group) 106 { 107 assert(!bs->io_limits_enabled); 108 throttle_group_register_bs(bs, group); 109 bs->io_limits_enabled = true; 110 } 111 112 void bdrv_io_limits_update_group(BlockDriverState *bs, const char *group) 113 { 114 /* this bs is not part of any group */ 115 if (!bs->throttle_state) { 116 return; 117 } 118 119 /* this bs is a part of the same group than the one we want */ 120 if (!g_strcmp0(throttle_group_get_name(bs), group)) { 121 return; 122 } 123 124 /* need to change the group this bs belong to */ 125 bdrv_io_limits_disable(bs); 126 bdrv_io_limits_enable(bs, group); 127 } 128 129 void bdrv_setup_io_funcs(BlockDriver *bdrv) 130 { 131 /* Block drivers without coroutine functions need emulation */ 132 if (!bdrv->bdrv_co_readv) { 133 bdrv->bdrv_co_readv = bdrv_co_readv_em; 134 bdrv->bdrv_co_writev = bdrv_co_writev_em; 135 136 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 137 * the block driver lacks aio we need to emulate that too. 138 */ 139 if (!bdrv->bdrv_aio_readv) { 140 /* add AIO emulation layer */ 141 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 142 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 143 } 144 } 145 } 146 147 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 148 { 149 BlockDriver *drv = bs->drv; 150 Error *local_err = NULL; 151 152 memset(&bs->bl, 0, sizeof(bs->bl)); 153 154 if (!drv) { 155 return; 156 } 157 158 /* Take some limits from the children as a default */ 159 if (bs->file) { 160 bdrv_refresh_limits(bs->file->bs, &local_err); 161 if (local_err) { 162 error_propagate(errp, local_err); 163 return; 164 } 165 bs->bl.opt_transfer_length = bs->file->bs->bl.opt_transfer_length; 166 bs->bl.max_transfer_length = bs->file->bs->bl.max_transfer_length; 167 bs->bl.min_mem_alignment = bs->file->bs->bl.min_mem_alignment; 168 bs->bl.opt_mem_alignment = bs->file->bs->bl.opt_mem_alignment; 169 bs->bl.max_iov = bs->file->bs->bl.max_iov; 170 } else { 171 bs->bl.min_mem_alignment = 512; 172 bs->bl.opt_mem_alignment = getpagesize(); 173 174 /* Safe default since most protocols use readv()/writev()/etc */ 175 bs->bl.max_iov = IOV_MAX; 176 } 177 178 if (bs->backing) { 179 bdrv_refresh_limits(bs->backing->bs, &local_err); 180 if (local_err) { 181 error_propagate(errp, local_err); 182 return; 183 } 184 bs->bl.opt_transfer_length = 185 MAX(bs->bl.opt_transfer_length, 186 bs->backing->bs->bl.opt_transfer_length); 187 bs->bl.max_transfer_length = 188 MIN_NON_ZERO(bs->bl.max_transfer_length, 189 bs->backing->bs->bl.max_transfer_length); 190 bs->bl.opt_mem_alignment = 191 MAX(bs->bl.opt_mem_alignment, 192 bs->backing->bs->bl.opt_mem_alignment); 193 bs->bl.min_mem_alignment = 194 MAX(bs->bl.min_mem_alignment, 195 bs->backing->bs->bl.min_mem_alignment); 196 bs->bl.max_iov = 197 MIN(bs->bl.max_iov, 198 bs->backing->bs->bl.max_iov); 199 } 200 201 /* Then let the driver override it */ 202 if (drv->bdrv_refresh_limits) { 203 drv->bdrv_refresh_limits(bs, errp); 204 } 205 } 206 207 /** 208 * The copy-on-read flag is actually a reference count so multiple users may 209 * use the feature without worrying about clobbering its previous state. 210 * Copy-on-read stays enabled until all users have called to disable it. 211 */ 212 void bdrv_enable_copy_on_read(BlockDriverState *bs) 213 { 214 bs->copy_on_read++; 215 } 216 217 void bdrv_disable_copy_on_read(BlockDriverState *bs) 218 { 219 assert(bs->copy_on_read > 0); 220 bs->copy_on_read--; 221 } 222 223 /* Check if any requests are in-flight (including throttled requests) */ 224 bool bdrv_requests_pending(BlockDriverState *bs) 225 { 226 BdrvChild *child; 227 228 if (!QLIST_EMPTY(&bs->tracked_requests)) { 229 return true; 230 } 231 if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) { 232 return true; 233 } 234 if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) { 235 return true; 236 } 237 238 QLIST_FOREACH(child, &bs->children, next) { 239 if (bdrv_requests_pending(child->bs)) { 240 return true; 241 } 242 } 243 244 return false; 245 } 246 247 static void bdrv_drain_recurse(BlockDriverState *bs) 248 { 249 BdrvChild *child; 250 251 if (bs->drv && bs->drv->bdrv_drain) { 252 bs->drv->bdrv_drain(bs); 253 } 254 QLIST_FOREACH(child, &bs->children, next) { 255 bdrv_drain_recurse(child->bs); 256 } 257 } 258 259 /* 260 * Wait for pending requests to complete on a single BlockDriverState subtree, 261 * and suspend block driver's internal I/O until next request arrives. 262 * 263 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 264 * AioContext. 265 * 266 * Only this BlockDriverState's AioContext is run, so in-flight requests must 267 * not depend on events in other AioContexts. In that case, use 268 * bdrv_drain_all() instead. 269 */ 270 void bdrv_drain(BlockDriverState *bs) 271 { 272 bool busy = true; 273 274 bdrv_drain_recurse(bs); 275 while (busy) { 276 /* Keep iterating */ 277 bdrv_flush_io_queue(bs); 278 busy = bdrv_requests_pending(bs); 279 busy |= aio_poll(bdrv_get_aio_context(bs), busy); 280 } 281 } 282 283 /* 284 * Wait for pending requests to complete across all BlockDriverStates 285 * 286 * This function does not flush data to disk, use bdrv_flush_all() for that 287 * after calling this function. 288 */ 289 void bdrv_drain_all(void) 290 { 291 /* Always run first iteration so any pending completion BHs run */ 292 bool busy = true; 293 BlockDriverState *bs = NULL; 294 GSList *aio_ctxs = NULL, *ctx; 295 296 while ((bs = bdrv_next(bs))) { 297 AioContext *aio_context = bdrv_get_aio_context(bs); 298 299 aio_context_acquire(aio_context); 300 if (bs->job) { 301 block_job_pause(bs->job); 302 } 303 aio_context_release(aio_context); 304 305 if (!g_slist_find(aio_ctxs, aio_context)) { 306 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context); 307 } 308 } 309 310 /* Note that completion of an asynchronous I/O operation can trigger any 311 * number of other I/O operations on other devices---for example a 312 * coroutine can submit an I/O request to another device in response to 313 * request completion. Therefore we must keep looping until there was no 314 * more activity rather than simply draining each device independently. 315 */ 316 while (busy) { 317 busy = false; 318 319 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) { 320 AioContext *aio_context = ctx->data; 321 bs = NULL; 322 323 aio_context_acquire(aio_context); 324 while ((bs = bdrv_next(bs))) { 325 if (aio_context == bdrv_get_aio_context(bs)) { 326 bdrv_flush_io_queue(bs); 327 if (bdrv_requests_pending(bs)) { 328 busy = true; 329 aio_poll(aio_context, busy); 330 } 331 } 332 } 333 busy |= aio_poll(aio_context, false); 334 aio_context_release(aio_context); 335 } 336 } 337 338 bs = NULL; 339 while ((bs = bdrv_next(bs))) { 340 AioContext *aio_context = bdrv_get_aio_context(bs); 341 342 aio_context_acquire(aio_context); 343 if (bs->job) { 344 block_job_resume(bs->job); 345 } 346 aio_context_release(aio_context); 347 } 348 g_slist_free(aio_ctxs); 349 } 350 351 /** 352 * Remove an active request from the tracked requests list 353 * 354 * This function should be called when a tracked request is completing. 355 */ 356 static void tracked_request_end(BdrvTrackedRequest *req) 357 { 358 if (req->serialising) { 359 req->bs->serialising_in_flight--; 360 } 361 362 QLIST_REMOVE(req, list); 363 qemu_co_queue_restart_all(&req->wait_queue); 364 } 365 366 /** 367 * Add an active request to the tracked requests list 368 */ 369 static void tracked_request_begin(BdrvTrackedRequest *req, 370 BlockDriverState *bs, 371 int64_t offset, 372 unsigned int bytes, 373 enum BdrvTrackedRequestType type) 374 { 375 *req = (BdrvTrackedRequest){ 376 .bs = bs, 377 .offset = offset, 378 .bytes = bytes, 379 .type = type, 380 .co = qemu_coroutine_self(), 381 .serialising = false, 382 .overlap_offset = offset, 383 .overlap_bytes = bytes, 384 }; 385 386 qemu_co_queue_init(&req->wait_queue); 387 388 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 389 } 390 391 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 392 { 393 int64_t overlap_offset = req->offset & ~(align - 1); 394 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 395 - overlap_offset; 396 397 if (!req->serialising) { 398 req->bs->serialising_in_flight++; 399 req->serialising = true; 400 } 401 402 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 403 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 404 } 405 406 /** 407 * Round a region to cluster boundaries 408 */ 409 void bdrv_round_to_clusters(BlockDriverState *bs, 410 int64_t sector_num, int nb_sectors, 411 int64_t *cluster_sector_num, 412 int *cluster_nb_sectors) 413 { 414 BlockDriverInfo bdi; 415 416 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 417 *cluster_sector_num = sector_num; 418 *cluster_nb_sectors = nb_sectors; 419 } else { 420 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 421 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 422 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 423 nb_sectors, c); 424 } 425 } 426 427 static int bdrv_get_cluster_size(BlockDriverState *bs) 428 { 429 BlockDriverInfo bdi; 430 int ret; 431 432 ret = bdrv_get_info(bs, &bdi); 433 if (ret < 0 || bdi.cluster_size == 0) { 434 return bs->request_alignment; 435 } else { 436 return bdi.cluster_size; 437 } 438 } 439 440 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 441 int64_t offset, unsigned int bytes) 442 { 443 /* aaaa bbbb */ 444 if (offset >= req->overlap_offset + req->overlap_bytes) { 445 return false; 446 } 447 /* bbbb aaaa */ 448 if (req->overlap_offset >= offset + bytes) { 449 return false; 450 } 451 return true; 452 } 453 454 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 455 { 456 BlockDriverState *bs = self->bs; 457 BdrvTrackedRequest *req; 458 bool retry; 459 bool waited = false; 460 461 if (!bs->serialising_in_flight) { 462 return false; 463 } 464 465 do { 466 retry = false; 467 QLIST_FOREACH(req, &bs->tracked_requests, list) { 468 if (req == self || (!req->serialising && !self->serialising)) { 469 continue; 470 } 471 if (tracked_request_overlaps(req, self->overlap_offset, 472 self->overlap_bytes)) 473 { 474 /* Hitting this means there was a reentrant request, for 475 * example, a block driver issuing nested requests. This must 476 * never happen since it means deadlock. 477 */ 478 assert(qemu_coroutine_self() != req->co); 479 480 /* If the request is already (indirectly) waiting for us, or 481 * will wait for us as soon as it wakes up, then just go on 482 * (instead of producing a deadlock in the former case). */ 483 if (!req->waiting_for) { 484 self->waiting_for = req; 485 qemu_co_queue_wait(&req->wait_queue); 486 self->waiting_for = NULL; 487 retry = true; 488 waited = true; 489 break; 490 } 491 } 492 } 493 } while (retry); 494 495 return waited; 496 } 497 498 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 499 size_t size) 500 { 501 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 502 return -EIO; 503 } 504 505 if (!bdrv_is_inserted(bs)) { 506 return -ENOMEDIUM; 507 } 508 509 if (offset < 0) { 510 return -EIO; 511 } 512 513 return 0; 514 } 515 516 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 517 int nb_sectors) 518 { 519 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 520 return -EIO; 521 } 522 523 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 524 nb_sectors * BDRV_SECTOR_SIZE); 525 } 526 527 typedef struct RwCo { 528 BlockDriverState *bs; 529 int64_t offset; 530 QEMUIOVector *qiov; 531 bool is_write; 532 int ret; 533 BdrvRequestFlags flags; 534 } RwCo; 535 536 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 537 { 538 RwCo *rwco = opaque; 539 540 if (!rwco->is_write) { 541 rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset, 542 rwco->qiov->size, rwco->qiov, 543 rwco->flags); 544 } else { 545 rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset, 546 rwco->qiov->size, rwco->qiov, 547 rwco->flags); 548 } 549 } 550 551 /* 552 * Process a vectored synchronous request using coroutines 553 */ 554 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset, 555 QEMUIOVector *qiov, bool is_write, 556 BdrvRequestFlags flags) 557 { 558 Coroutine *co; 559 RwCo rwco = { 560 .bs = bs, 561 .offset = offset, 562 .qiov = qiov, 563 .is_write = is_write, 564 .ret = NOT_DONE, 565 .flags = flags, 566 }; 567 568 /** 569 * In sync call context, when the vcpu is blocked, this throttling timer 570 * will not fire; so the I/O throttling function has to be disabled here 571 * if it has been enabled. 572 */ 573 if (bs->io_limits_enabled) { 574 fprintf(stderr, "Disabling I/O throttling on '%s' due " 575 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 576 bdrv_io_limits_disable(bs); 577 } 578 579 if (qemu_in_coroutine()) { 580 /* Fast-path if already in coroutine context */ 581 bdrv_rw_co_entry(&rwco); 582 } else { 583 AioContext *aio_context = bdrv_get_aio_context(bs); 584 585 co = qemu_coroutine_create(bdrv_rw_co_entry); 586 qemu_coroutine_enter(co, &rwco); 587 while (rwco.ret == NOT_DONE) { 588 aio_poll(aio_context, true); 589 } 590 } 591 return rwco.ret; 592 } 593 594 /* 595 * Process a synchronous request using coroutines 596 */ 597 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 598 int nb_sectors, bool is_write, BdrvRequestFlags flags) 599 { 600 QEMUIOVector qiov; 601 struct iovec iov = { 602 .iov_base = (void *)buf, 603 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 604 }; 605 606 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 607 return -EINVAL; 608 } 609 610 qemu_iovec_init_external(&qiov, &iov, 1); 611 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS, 612 &qiov, is_write, flags); 613 } 614 615 /* return < 0 if error. See bdrv_write() for the return codes */ 616 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 617 uint8_t *buf, int nb_sectors) 618 { 619 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0); 620 } 621 622 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 623 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 624 uint8_t *buf, int nb_sectors) 625 { 626 bool enabled; 627 int ret; 628 629 enabled = bs->io_limits_enabled; 630 bs->io_limits_enabled = false; 631 ret = bdrv_read(bs, sector_num, buf, nb_sectors); 632 bs->io_limits_enabled = enabled; 633 return ret; 634 } 635 636 /* Return < 0 if error. Important errors are: 637 -EIO generic I/O error (may happen for all errors) 638 -ENOMEDIUM No media inserted. 639 -EINVAL Invalid sector number or nb_sectors 640 -EACCES Trying to write a read-only device 641 */ 642 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 643 const uint8_t *buf, int nb_sectors) 644 { 645 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 646 } 647 648 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num, 649 int nb_sectors, BdrvRequestFlags flags) 650 { 651 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true, 652 BDRV_REQ_ZERO_WRITE | flags); 653 } 654 655 /* 656 * Completely zero out a block device with the help of bdrv_write_zeroes. 657 * The operation is sped up by checking the block status and only writing 658 * zeroes to the device if they currently do not return zeroes. Optional 659 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP). 660 * 661 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 662 */ 663 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags) 664 { 665 int64_t target_sectors, ret, nb_sectors, sector_num = 0; 666 int n; 667 668 target_sectors = bdrv_nb_sectors(bs); 669 if (target_sectors < 0) { 670 return target_sectors; 671 } 672 673 for (;;) { 674 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS); 675 if (nb_sectors <= 0) { 676 return 0; 677 } 678 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n); 679 if (ret < 0) { 680 error_report("error getting block status at sector %" PRId64 ": %s", 681 sector_num, strerror(-ret)); 682 return ret; 683 } 684 if (ret & BDRV_BLOCK_ZERO) { 685 sector_num += n; 686 continue; 687 } 688 ret = bdrv_write_zeroes(bs, sector_num, n, flags); 689 if (ret < 0) { 690 error_report("error writing zeroes at sector %" PRId64 ": %s", 691 sector_num, strerror(-ret)); 692 return ret; 693 } 694 sector_num += n; 695 } 696 } 697 698 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes) 699 { 700 QEMUIOVector qiov; 701 struct iovec iov = { 702 .iov_base = (void *)buf, 703 .iov_len = bytes, 704 }; 705 int ret; 706 707 if (bytes < 0) { 708 return -EINVAL; 709 } 710 711 qemu_iovec_init_external(&qiov, &iov, 1); 712 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0); 713 if (ret < 0) { 714 return ret; 715 } 716 717 return bytes; 718 } 719 720 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov) 721 { 722 int ret; 723 724 ret = bdrv_prwv_co(bs, offset, qiov, true, 0); 725 if (ret < 0) { 726 return ret; 727 } 728 729 return qiov->size; 730 } 731 732 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 733 const void *buf, int bytes) 734 { 735 QEMUIOVector qiov; 736 struct iovec iov = { 737 .iov_base = (void *) buf, 738 .iov_len = bytes, 739 }; 740 741 if (bytes < 0) { 742 return -EINVAL; 743 } 744 745 qemu_iovec_init_external(&qiov, &iov, 1); 746 return bdrv_pwritev(bs, offset, &qiov); 747 } 748 749 /* 750 * Writes to the file and ensures that no writes are reordered across this 751 * request (acts as a barrier) 752 * 753 * Returns 0 on success, -errno in error cases. 754 */ 755 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 756 const void *buf, int count) 757 { 758 int ret; 759 760 ret = bdrv_pwrite(bs, offset, buf, count); 761 if (ret < 0) { 762 return ret; 763 } 764 765 /* No flush needed for cache modes that already do it */ 766 if (bs->enable_write_cache) { 767 bdrv_flush(bs); 768 } 769 770 return 0; 771 } 772 773 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 774 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 775 { 776 /* Perform I/O through a temporary buffer so that users who scribble over 777 * their read buffer while the operation is in progress do not end up 778 * modifying the image file. This is critical for zero-copy guest I/O 779 * where anything might happen inside guest memory. 780 */ 781 void *bounce_buffer; 782 783 BlockDriver *drv = bs->drv; 784 struct iovec iov; 785 QEMUIOVector bounce_qiov; 786 int64_t cluster_sector_num; 787 int cluster_nb_sectors; 788 size_t skip_bytes; 789 int ret; 790 791 /* Cover entire cluster so no additional backing file I/O is required when 792 * allocating cluster in the image file. 793 */ 794 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 795 &cluster_sector_num, &cluster_nb_sectors); 796 797 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 798 cluster_sector_num, cluster_nb_sectors); 799 800 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 801 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len); 802 if (bounce_buffer == NULL) { 803 ret = -ENOMEM; 804 goto err; 805 } 806 807 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 808 809 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 810 &bounce_qiov); 811 if (ret < 0) { 812 goto err; 813 } 814 815 if (drv->bdrv_co_write_zeroes && 816 buffer_is_zero(bounce_buffer, iov.iov_len)) { 817 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 818 cluster_nb_sectors, 0); 819 } else { 820 /* This does not change the data on the disk, it is not necessary 821 * to flush even in cache=writethrough mode. 822 */ 823 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 824 &bounce_qiov); 825 } 826 827 if (ret < 0) { 828 /* It might be okay to ignore write errors for guest requests. If this 829 * is a deliberate copy-on-read then we don't want to ignore the error. 830 * Simply report it in all cases. 831 */ 832 goto err; 833 } 834 835 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 836 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 837 nb_sectors * BDRV_SECTOR_SIZE); 838 839 err: 840 qemu_vfree(bounce_buffer); 841 return ret; 842 } 843 844 /* 845 * Forwards an already correctly aligned request to the BlockDriver. This 846 * handles copy on read and zeroing after EOF; any other features must be 847 * implemented by the caller. 848 */ 849 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs, 850 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 851 int64_t align, QEMUIOVector *qiov, int flags) 852 { 853 BlockDriver *drv = bs->drv; 854 int ret; 855 856 int64_t sector_num = offset >> BDRV_SECTOR_BITS; 857 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS; 858 859 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 860 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 861 assert(!qiov || bytes == qiov->size); 862 863 /* Handle Copy on Read and associated serialisation */ 864 if (flags & BDRV_REQ_COPY_ON_READ) { 865 /* If we touch the same cluster it counts as an overlap. This 866 * guarantees that allocating writes will be serialized and not race 867 * with each other for the same cluster. For example, in copy-on-read 868 * it ensures that the CoR read and write operations are atomic and 869 * guest writes cannot interleave between them. */ 870 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 871 } 872 873 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 874 wait_serialising_requests(req); 875 } 876 877 if (flags & BDRV_REQ_COPY_ON_READ) { 878 int pnum; 879 880 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum); 881 if (ret < 0) { 882 goto out; 883 } 884 885 if (!ret || pnum != nb_sectors) { 886 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 887 goto out; 888 } 889 } 890 891 /* Forward the request to the BlockDriver */ 892 if (!bs->zero_beyond_eof) { 893 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 894 } else { 895 /* Read zeros after EOF */ 896 int64_t total_sectors, max_nb_sectors; 897 898 total_sectors = bdrv_nb_sectors(bs); 899 if (total_sectors < 0) { 900 ret = total_sectors; 901 goto out; 902 } 903 904 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num), 905 align >> BDRV_SECTOR_BITS); 906 if (nb_sectors < max_nb_sectors) { 907 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 908 } else if (max_nb_sectors > 0) { 909 QEMUIOVector local_qiov; 910 911 qemu_iovec_init(&local_qiov, qiov->niov); 912 qemu_iovec_concat(&local_qiov, qiov, 0, 913 max_nb_sectors * BDRV_SECTOR_SIZE); 914 915 ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors, 916 &local_qiov); 917 918 qemu_iovec_destroy(&local_qiov); 919 } else { 920 ret = 0; 921 } 922 923 /* Reading beyond end of file is supposed to produce zeroes */ 924 if (ret == 0 && total_sectors < sector_num + nb_sectors) { 925 uint64_t offset = MAX(0, total_sectors - sector_num); 926 uint64_t bytes = (sector_num + nb_sectors - offset) * 927 BDRV_SECTOR_SIZE; 928 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes); 929 } 930 } 931 932 out: 933 return ret; 934 } 935 936 /* 937 * Handle a read request in coroutine context 938 */ 939 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs, 940 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 941 BdrvRequestFlags flags) 942 { 943 BlockDriver *drv = bs->drv; 944 BdrvTrackedRequest req; 945 946 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */ 947 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment); 948 uint8_t *head_buf = NULL; 949 uint8_t *tail_buf = NULL; 950 QEMUIOVector local_qiov; 951 bool use_local_qiov = false; 952 int ret; 953 954 if (!drv) { 955 return -ENOMEDIUM; 956 } 957 958 ret = bdrv_check_byte_request(bs, offset, bytes); 959 if (ret < 0) { 960 return ret; 961 } 962 963 /* Don't do copy-on-read if we read data before write operation */ 964 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) { 965 flags |= BDRV_REQ_COPY_ON_READ; 966 } 967 968 /* throttling disk I/O */ 969 if (bs->io_limits_enabled) { 970 throttle_group_co_io_limits_intercept(bs, bytes, false); 971 } 972 973 /* Align read if necessary by padding qiov */ 974 if (offset & (align - 1)) { 975 head_buf = qemu_blockalign(bs, align); 976 qemu_iovec_init(&local_qiov, qiov->niov + 2); 977 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 978 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 979 use_local_qiov = true; 980 981 bytes += offset & (align - 1); 982 offset = offset & ~(align - 1); 983 } 984 985 if ((offset + bytes) & (align - 1)) { 986 if (!use_local_qiov) { 987 qemu_iovec_init(&local_qiov, qiov->niov + 1); 988 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 989 use_local_qiov = true; 990 } 991 tail_buf = qemu_blockalign(bs, align); 992 qemu_iovec_add(&local_qiov, tail_buf, 993 align - ((offset + bytes) & (align - 1))); 994 995 bytes = ROUND_UP(bytes, align); 996 } 997 998 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 999 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align, 1000 use_local_qiov ? &local_qiov : qiov, 1001 flags); 1002 tracked_request_end(&req); 1003 1004 if (use_local_qiov) { 1005 qemu_iovec_destroy(&local_qiov); 1006 qemu_vfree(head_buf); 1007 qemu_vfree(tail_buf); 1008 } 1009 1010 return ret; 1011 } 1012 1013 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 1014 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1015 BdrvRequestFlags flags) 1016 { 1017 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1018 return -EINVAL; 1019 } 1020 1021 return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS, 1022 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1023 } 1024 1025 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 1026 int nb_sectors, QEMUIOVector *qiov) 1027 { 1028 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 1029 1030 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 1031 } 1032 1033 int coroutine_fn bdrv_co_readv_no_serialising(BlockDriverState *bs, 1034 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 1035 { 1036 trace_bdrv_co_readv_no_serialising(bs, sector_num, nb_sectors); 1037 1038 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 1039 BDRV_REQ_NO_SERIALISING); 1040 } 1041 1042 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 1043 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 1044 { 1045 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 1046 1047 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 1048 BDRV_REQ_COPY_ON_READ); 1049 } 1050 1051 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768 1052 1053 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 1054 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags) 1055 { 1056 BlockDriver *drv = bs->drv; 1057 QEMUIOVector qiov; 1058 struct iovec iov = {0}; 1059 int ret = 0; 1060 1061 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes, 1062 BDRV_REQUEST_MAX_SECTORS); 1063 1064 while (nb_sectors > 0 && !ret) { 1065 int num = nb_sectors; 1066 1067 /* Align request. Block drivers can expect the "bulk" of the request 1068 * to be aligned. 1069 */ 1070 if (bs->bl.write_zeroes_alignment 1071 && num > bs->bl.write_zeroes_alignment) { 1072 if (sector_num % bs->bl.write_zeroes_alignment != 0) { 1073 /* Make a small request up to the first aligned sector. */ 1074 num = bs->bl.write_zeroes_alignment; 1075 num -= sector_num % bs->bl.write_zeroes_alignment; 1076 } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) { 1077 /* Shorten the request to the last aligned sector. num cannot 1078 * underflow because num > bs->bl.write_zeroes_alignment. 1079 */ 1080 num -= (sector_num + num) % bs->bl.write_zeroes_alignment; 1081 } 1082 } 1083 1084 /* limit request size */ 1085 if (num > max_write_zeroes) { 1086 num = max_write_zeroes; 1087 } 1088 1089 ret = -ENOTSUP; 1090 /* First try the efficient write zeroes operation */ 1091 if (drv->bdrv_co_write_zeroes) { 1092 ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags); 1093 } 1094 1095 if (ret == -ENOTSUP) { 1096 /* Fall back to bounce buffer if write zeroes is unsupported */ 1097 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length, 1098 MAX_WRITE_ZEROES_BOUNCE_BUFFER); 1099 num = MIN(num, max_xfer_len); 1100 iov.iov_len = num * BDRV_SECTOR_SIZE; 1101 if (iov.iov_base == NULL) { 1102 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE); 1103 if (iov.iov_base == NULL) { 1104 ret = -ENOMEM; 1105 goto fail; 1106 } 1107 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE); 1108 } 1109 qemu_iovec_init_external(&qiov, &iov, 1); 1110 1111 ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov); 1112 1113 /* Keep bounce buffer around if it is big enough for all 1114 * all future requests. 1115 */ 1116 if (num < max_xfer_len) { 1117 qemu_vfree(iov.iov_base); 1118 iov.iov_base = NULL; 1119 } 1120 } 1121 1122 sector_num += num; 1123 nb_sectors -= num; 1124 } 1125 1126 fail: 1127 qemu_vfree(iov.iov_base); 1128 return ret; 1129 } 1130 1131 /* 1132 * Forwards an already correctly aligned write request to the BlockDriver. 1133 */ 1134 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs, 1135 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1136 QEMUIOVector *qiov, int flags) 1137 { 1138 BlockDriver *drv = bs->drv; 1139 bool waited; 1140 int ret; 1141 1142 int64_t sector_num = offset >> BDRV_SECTOR_BITS; 1143 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS; 1144 1145 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1146 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1147 assert(!qiov || bytes == qiov->size); 1148 1149 waited = wait_serialising_requests(req); 1150 assert(!waited || !req->serialising); 1151 assert(req->overlap_offset <= offset); 1152 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1153 1154 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); 1155 1156 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1157 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes && 1158 qemu_iovec_is_zero(qiov)) { 1159 flags |= BDRV_REQ_ZERO_WRITE; 1160 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1161 flags |= BDRV_REQ_MAY_UNMAP; 1162 } 1163 } 1164 1165 if (ret < 0) { 1166 /* Do nothing, write notifier decided to fail this request */ 1167 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1168 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1169 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags); 1170 } else { 1171 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1172 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 1173 } 1174 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1175 1176 if (ret == 0 && !bs->enable_write_cache) { 1177 ret = bdrv_co_flush(bs); 1178 } 1179 1180 bdrv_set_dirty(bs, sector_num, nb_sectors); 1181 1182 if (bs->wr_highest_offset < offset + bytes) { 1183 bs->wr_highest_offset = offset + bytes; 1184 } 1185 1186 if (ret >= 0) { 1187 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors); 1188 } 1189 1190 return ret; 1191 } 1192 1193 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs, 1194 int64_t offset, 1195 unsigned int bytes, 1196 BdrvRequestFlags flags, 1197 BdrvTrackedRequest *req) 1198 { 1199 uint8_t *buf = NULL; 1200 QEMUIOVector local_qiov; 1201 struct iovec iov; 1202 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment); 1203 unsigned int head_padding_bytes, tail_padding_bytes; 1204 int ret = 0; 1205 1206 head_padding_bytes = offset & (align - 1); 1207 tail_padding_bytes = align - ((offset + bytes) & (align - 1)); 1208 1209 1210 assert(flags & BDRV_REQ_ZERO_WRITE); 1211 if (head_padding_bytes || tail_padding_bytes) { 1212 buf = qemu_blockalign(bs, align); 1213 iov = (struct iovec) { 1214 .iov_base = buf, 1215 .iov_len = align, 1216 }; 1217 qemu_iovec_init_external(&local_qiov, &iov, 1); 1218 } 1219 if (head_padding_bytes) { 1220 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1221 1222 /* RMW the unaligned part before head. */ 1223 mark_request_serialising(req, align); 1224 wait_serialising_requests(req); 1225 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1226 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align, 1227 align, &local_qiov, 0); 1228 if (ret < 0) { 1229 goto fail; 1230 } 1231 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1232 1233 memset(buf + head_padding_bytes, 0, zero_bytes); 1234 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align, 1235 &local_qiov, 1236 flags & ~BDRV_REQ_ZERO_WRITE); 1237 if (ret < 0) { 1238 goto fail; 1239 } 1240 offset += zero_bytes; 1241 bytes -= zero_bytes; 1242 } 1243 1244 assert(!bytes || (offset & (align - 1)) == 0); 1245 if (bytes >= align) { 1246 /* Write the aligned part in the middle. */ 1247 uint64_t aligned_bytes = bytes & ~(align - 1); 1248 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes, 1249 NULL, flags); 1250 if (ret < 0) { 1251 goto fail; 1252 } 1253 bytes -= aligned_bytes; 1254 offset += aligned_bytes; 1255 } 1256 1257 assert(!bytes || (offset & (align - 1)) == 0); 1258 if (bytes) { 1259 assert(align == tail_padding_bytes + bytes); 1260 /* RMW the unaligned part after tail. */ 1261 mark_request_serialising(req, align); 1262 wait_serialising_requests(req); 1263 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1264 ret = bdrv_aligned_preadv(bs, req, offset, align, 1265 align, &local_qiov, 0); 1266 if (ret < 0) { 1267 goto fail; 1268 } 1269 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1270 1271 memset(buf, 0, bytes); 1272 ret = bdrv_aligned_pwritev(bs, req, offset, align, 1273 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1274 } 1275 fail: 1276 qemu_vfree(buf); 1277 return ret; 1278 1279 } 1280 1281 /* 1282 * Handle a write request in coroutine context 1283 */ 1284 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs, 1285 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1286 BdrvRequestFlags flags) 1287 { 1288 BdrvTrackedRequest req; 1289 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */ 1290 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment); 1291 uint8_t *head_buf = NULL; 1292 uint8_t *tail_buf = NULL; 1293 QEMUIOVector local_qiov; 1294 bool use_local_qiov = false; 1295 int ret; 1296 1297 if (!bs->drv) { 1298 return -ENOMEDIUM; 1299 } 1300 if (bs->read_only) { 1301 return -EPERM; 1302 } 1303 1304 ret = bdrv_check_byte_request(bs, offset, bytes); 1305 if (ret < 0) { 1306 return ret; 1307 } 1308 1309 /* throttling disk I/O */ 1310 if (bs->io_limits_enabled) { 1311 throttle_group_co_io_limits_intercept(bs, bytes, true); 1312 } 1313 1314 /* 1315 * Align write if necessary by performing a read-modify-write cycle. 1316 * Pad qiov with the read parts and be sure to have a tracked request not 1317 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1318 */ 1319 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1320 1321 if (!qiov) { 1322 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req); 1323 goto out; 1324 } 1325 1326 if (offset & (align - 1)) { 1327 QEMUIOVector head_qiov; 1328 struct iovec head_iov; 1329 1330 mark_request_serialising(&req, align); 1331 wait_serialising_requests(&req); 1332 1333 head_buf = qemu_blockalign(bs, align); 1334 head_iov = (struct iovec) { 1335 .iov_base = head_buf, 1336 .iov_len = align, 1337 }; 1338 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1339 1340 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1341 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align, 1342 align, &head_qiov, 0); 1343 if (ret < 0) { 1344 goto fail; 1345 } 1346 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1347 1348 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1349 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1350 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1351 use_local_qiov = true; 1352 1353 bytes += offset & (align - 1); 1354 offset = offset & ~(align - 1); 1355 } 1356 1357 if ((offset + bytes) & (align - 1)) { 1358 QEMUIOVector tail_qiov; 1359 struct iovec tail_iov; 1360 size_t tail_bytes; 1361 bool waited; 1362 1363 mark_request_serialising(&req, align); 1364 waited = wait_serialising_requests(&req); 1365 assert(!waited || !use_local_qiov); 1366 1367 tail_buf = qemu_blockalign(bs, align); 1368 tail_iov = (struct iovec) { 1369 .iov_base = tail_buf, 1370 .iov_len = align, 1371 }; 1372 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1373 1374 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1375 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align, 1376 align, &tail_qiov, 0); 1377 if (ret < 0) { 1378 goto fail; 1379 } 1380 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1381 1382 if (!use_local_qiov) { 1383 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1384 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1385 use_local_qiov = true; 1386 } 1387 1388 tail_bytes = (offset + bytes) & (align - 1); 1389 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1390 1391 bytes = ROUND_UP(bytes, align); 1392 } 1393 1394 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes, 1395 use_local_qiov ? &local_qiov : qiov, 1396 flags); 1397 1398 fail: 1399 1400 if (use_local_qiov) { 1401 qemu_iovec_destroy(&local_qiov); 1402 } 1403 qemu_vfree(head_buf); 1404 qemu_vfree(tail_buf); 1405 out: 1406 tracked_request_end(&req); 1407 return ret; 1408 } 1409 1410 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 1411 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1412 BdrvRequestFlags flags) 1413 { 1414 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1415 return -EINVAL; 1416 } 1417 1418 return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS, 1419 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1420 } 1421 1422 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 1423 int nb_sectors, QEMUIOVector *qiov) 1424 { 1425 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 1426 1427 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 1428 } 1429 1430 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 1431 int64_t sector_num, int nb_sectors, 1432 BdrvRequestFlags flags) 1433 { 1434 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags); 1435 1436 if (!(bs->open_flags & BDRV_O_UNMAP)) { 1437 flags &= ~BDRV_REQ_MAY_UNMAP; 1438 } 1439 1440 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 1441 BDRV_REQ_ZERO_WRITE | flags); 1442 } 1443 1444 int bdrv_flush_all(void) 1445 { 1446 BlockDriverState *bs = NULL; 1447 int result = 0; 1448 1449 while ((bs = bdrv_next(bs))) { 1450 AioContext *aio_context = bdrv_get_aio_context(bs); 1451 int ret; 1452 1453 aio_context_acquire(aio_context); 1454 ret = bdrv_flush(bs); 1455 if (ret < 0 && !result) { 1456 result = ret; 1457 } 1458 aio_context_release(aio_context); 1459 } 1460 1461 return result; 1462 } 1463 1464 typedef struct BdrvCoGetBlockStatusData { 1465 BlockDriverState *bs; 1466 BlockDriverState *base; 1467 int64_t sector_num; 1468 int nb_sectors; 1469 int *pnum; 1470 int64_t ret; 1471 bool done; 1472 } BdrvCoGetBlockStatusData; 1473 1474 /* 1475 * Returns the allocation status of the specified sectors. 1476 * Drivers not implementing the functionality are assumed to not support 1477 * backing files, hence all their sectors are reported as allocated. 1478 * 1479 * If 'sector_num' is beyond the end of the disk image the return value is 0 1480 * and 'pnum' is set to 0. 1481 * 1482 * 'pnum' is set to the number of sectors (including and immediately following 1483 * the specified sector) that are known to be in the same 1484 * allocated/unallocated state. 1485 * 1486 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 1487 * beyond the end of the disk image it will be clamped. 1488 */ 1489 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs, 1490 int64_t sector_num, 1491 int nb_sectors, int *pnum) 1492 { 1493 int64_t total_sectors; 1494 int64_t n; 1495 int64_t ret, ret2; 1496 1497 total_sectors = bdrv_nb_sectors(bs); 1498 if (total_sectors < 0) { 1499 return total_sectors; 1500 } 1501 1502 if (sector_num >= total_sectors) { 1503 *pnum = 0; 1504 return 0; 1505 } 1506 1507 n = total_sectors - sector_num; 1508 if (n < nb_sectors) { 1509 nb_sectors = n; 1510 } 1511 1512 if (!bs->drv->bdrv_co_get_block_status) { 1513 *pnum = nb_sectors; 1514 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 1515 if (bs->drv->protocol_name) { 1516 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE); 1517 } 1518 return ret; 1519 } 1520 1521 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum); 1522 if (ret < 0) { 1523 *pnum = 0; 1524 return ret; 1525 } 1526 1527 if (ret & BDRV_BLOCK_RAW) { 1528 assert(ret & BDRV_BLOCK_OFFSET_VALID); 1529 return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS, 1530 *pnum, pnum); 1531 } 1532 1533 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 1534 ret |= BDRV_BLOCK_ALLOCATED; 1535 } else { 1536 if (bdrv_unallocated_blocks_are_zero(bs)) { 1537 ret |= BDRV_BLOCK_ZERO; 1538 } else if (bs->backing) { 1539 BlockDriverState *bs2 = bs->backing->bs; 1540 int64_t nb_sectors2 = bdrv_nb_sectors(bs2); 1541 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) { 1542 ret |= BDRV_BLOCK_ZERO; 1543 } 1544 } 1545 } 1546 1547 if (bs->file && 1548 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 1549 (ret & BDRV_BLOCK_OFFSET_VALID)) { 1550 int file_pnum; 1551 1552 ret2 = bdrv_co_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS, 1553 *pnum, &file_pnum); 1554 if (ret2 >= 0) { 1555 /* Ignore errors. This is just providing extra information, it 1556 * is useful but not necessary. 1557 */ 1558 if (!file_pnum) { 1559 /* !file_pnum indicates an offset at or beyond the EOF; it is 1560 * perfectly valid for the format block driver to point to such 1561 * offsets, so catch it and mark everything as zero */ 1562 ret |= BDRV_BLOCK_ZERO; 1563 } else { 1564 /* Limit request to the range reported by the protocol driver */ 1565 *pnum = file_pnum; 1566 ret |= (ret2 & BDRV_BLOCK_ZERO); 1567 } 1568 } 1569 } 1570 1571 return ret; 1572 } 1573 1574 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs, 1575 BlockDriverState *base, 1576 int64_t sector_num, 1577 int nb_sectors, 1578 int *pnum) 1579 { 1580 BlockDriverState *p; 1581 int64_t ret = 0; 1582 1583 assert(bs != base); 1584 for (p = bs; p != base; p = backing_bs(p)) { 1585 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum); 1586 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) { 1587 break; 1588 } 1589 /* [sector_num, pnum] unallocated on this layer, which could be only 1590 * the first part of [sector_num, nb_sectors]. */ 1591 nb_sectors = MIN(nb_sectors, *pnum); 1592 } 1593 return ret; 1594 } 1595 1596 /* Coroutine wrapper for bdrv_get_block_status_above() */ 1597 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque) 1598 { 1599 BdrvCoGetBlockStatusData *data = opaque; 1600 1601 data->ret = bdrv_co_get_block_status_above(data->bs, data->base, 1602 data->sector_num, 1603 data->nb_sectors, 1604 data->pnum); 1605 data->done = true; 1606 } 1607 1608 /* 1609 * Synchronous wrapper around bdrv_co_get_block_status_above(). 1610 * 1611 * See bdrv_co_get_block_status_above() for details. 1612 */ 1613 int64_t bdrv_get_block_status_above(BlockDriverState *bs, 1614 BlockDriverState *base, 1615 int64_t sector_num, 1616 int nb_sectors, int *pnum) 1617 { 1618 Coroutine *co; 1619 BdrvCoGetBlockStatusData data = { 1620 .bs = bs, 1621 .base = base, 1622 .sector_num = sector_num, 1623 .nb_sectors = nb_sectors, 1624 .pnum = pnum, 1625 .done = false, 1626 }; 1627 1628 if (qemu_in_coroutine()) { 1629 /* Fast-path if already in coroutine context */ 1630 bdrv_get_block_status_above_co_entry(&data); 1631 } else { 1632 AioContext *aio_context = bdrv_get_aio_context(bs); 1633 1634 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry); 1635 qemu_coroutine_enter(co, &data); 1636 while (!data.done) { 1637 aio_poll(aio_context, true); 1638 } 1639 } 1640 return data.ret; 1641 } 1642 1643 int64_t bdrv_get_block_status(BlockDriverState *bs, 1644 int64_t sector_num, 1645 int nb_sectors, int *pnum) 1646 { 1647 return bdrv_get_block_status_above(bs, backing_bs(bs), 1648 sector_num, nb_sectors, pnum); 1649 } 1650 1651 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, 1652 int nb_sectors, int *pnum) 1653 { 1654 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum); 1655 if (ret < 0) { 1656 return ret; 1657 } 1658 return !!(ret & BDRV_BLOCK_ALLOCATED); 1659 } 1660 1661 /* 1662 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 1663 * 1664 * Return true if the given sector is allocated in any image between 1665 * BASE and TOP (inclusive). BASE can be NULL to check if the given 1666 * sector is allocated in any image of the chain. Return false otherwise. 1667 * 1668 * 'pnum' is set to the number of sectors (including and immediately following 1669 * the specified sector) that are known to be in the same 1670 * allocated/unallocated state. 1671 * 1672 */ 1673 int bdrv_is_allocated_above(BlockDriverState *top, 1674 BlockDriverState *base, 1675 int64_t sector_num, 1676 int nb_sectors, int *pnum) 1677 { 1678 BlockDriverState *intermediate; 1679 int ret, n = nb_sectors; 1680 1681 intermediate = top; 1682 while (intermediate && intermediate != base) { 1683 int pnum_inter; 1684 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors, 1685 &pnum_inter); 1686 if (ret < 0) { 1687 return ret; 1688 } else if (ret) { 1689 *pnum = pnum_inter; 1690 return 1; 1691 } 1692 1693 /* 1694 * [sector_num, nb_sectors] is unallocated on top but intermediate 1695 * might have 1696 * 1697 * [sector_num+x, nr_sectors] allocated. 1698 */ 1699 if (n > pnum_inter && 1700 (intermediate == top || 1701 sector_num + pnum_inter < intermediate->total_sectors)) { 1702 n = pnum_inter; 1703 } 1704 1705 intermediate = backing_bs(intermediate); 1706 } 1707 1708 *pnum = n; 1709 return 0; 1710 } 1711 1712 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 1713 const uint8_t *buf, int nb_sectors) 1714 { 1715 BlockDriver *drv = bs->drv; 1716 int ret; 1717 1718 if (!drv) { 1719 return -ENOMEDIUM; 1720 } 1721 if (!drv->bdrv_write_compressed) { 1722 return -ENOTSUP; 1723 } 1724 ret = bdrv_check_request(bs, sector_num, nb_sectors); 1725 if (ret < 0) { 1726 return ret; 1727 } 1728 1729 assert(QLIST_EMPTY(&bs->dirty_bitmaps)); 1730 1731 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 1732 } 1733 1734 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 1735 int64_t pos, int size) 1736 { 1737 QEMUIOVector qiov; 1738 struct iovec iov = { 1739 .iov_base = (void *) buf, 1740 .iov_len = size, 1741 }; 1742 1743 qemu_iovec_init_external(&qiov, &iov, 1); 1744 return bdrv_writev_vmstate(bs, &qiov, pos); 1745 } 1746 1747 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 1748 { 1749 BlockDriver *drv = bs->drv; 1750 1751 if (!drv) { 1752 return -ENOMEDIUM; 1753 } else if (drv->bdrv_save_vmstate) { 1754 return drv->bdrv_save_vmstate(bs, qiov, pos); 1755 } else if (bs->file) { 1756 return bdrv_writev_vmstate(bs->file->bs, qiov, pos); 1757 } 1758 1759 return -ENOTSUP; 1760 } 1761 1762 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 1763 int64_t pos, int size) 1764 { 1765 BlockDriver *drv = bs->drv; 1766 if (!drv) 1767 return -ENOMEDIUM; 1768 if (drv->bdrv_load_vmstate) 1769 return drv->bdrv_load_vmstate(bs, buf, pos, size); 1770 if (bs->file) 1771 return bdrv_load_vmstate(bs->file->bs, buf, pos, size); 1772 return -ENOTSUP; 1773 } 1774 1775 /**************************************************************/ 1776 /* async I/Os */ 1777 1778 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 1779 QEMUIOVector *qiov, int nb_sectors, 1780 BlockCompletionFunc *cb, void *opaque) 1781 { 1782 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 1783 1784 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0, 1785 cb, opaque, false); 1786 } 1787 1788 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 1789 QEMUIOVector *qiov, int nb_sectors, 1790 BlockCompletionFunc *cb, void *opaque) 1791 { 1792 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 1793 1794 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0, 1795 cb, opaque, true); 1796 } 1797 1798 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs, 1799 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags, 1800 BlockCompletionFunc *cb, void *opaque) 1801 { 1802 trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque); 1803 1804 return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors, 1805 BDRV_REQ_ZERO_WRITE | flags, 1806 cb, opaque, true); 1807 } 1808 1809 1810 typedef struct MultiwriteCB { 1811 int error; 1812 int num_requests; 1813 int num_callbacks; 1814 struct { 1815 BlockCompletionFunc *cb; 1816 void *opaque; 1817 QEMUIOVector *free_qiov; 1818 } callbacks[]; 1819 } MultiwriteCB; 1820 1821 static void multiwrite_user_cb(MultiwriteCB *mcb) 1822 { 1823 int i; 1824 1825 for (i = 0; i < mcb->num_callbacks; i++) { 1826 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 1827 if (mcb->callbacks[i].free_qiov) { 1828 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 1829 } 1830 g_free(mcb->callbacks[i].free_qiov); 1831 } 1832 } 1833 1834 static void multiwrite_cb(void *opaque, int ret) 1835 { 1836 MultiwriteCB *mcb = opaque; 1837 1838 trace_multiwrite_cb(mcb, ret); 1839 1840 if (ret < 0 && !mcb->error) { 1841 mcb->error = ret; 1842 } 1843 1844 mcb->num_requests--; 1845 if (mcb->num_requests == 0) { 1846 multiwrite_user_cb(mcb); 1847 g_free(mcb); 1848 } 1849 } 1850 1851 static int multiwrite_req_compare(const void *a, const void *b) 1852 { 1853 const BlockRequest *req1 = a, *req2 = b; 1854 1855 /* 1856 * Note that we can't simply subtract req2->sector from req1->sector 1857 * here as that could overflow the return value. 1858 */ 1859 if (req1->sector > req2->sector) { 1860 return 1; 1861 } else if (req1->sector < req2->sector) { 1862 return -1; 1863 } else { 1864 return 0; 1865 } 1866 } 1867 1868 /* 1869 * Takes a bunch of requests and tries to merge them. Returns the number of 1870 * requests that remain after merging. 1871 */ 1872 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 1873 int num_reqs, MultiwriteCB *mcb) 1874 { 1875 int i, outidx; 1876 1877 // Sort requests by start sector 1878 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 1879 1880 // Check if adjacent requests touch the same clusters. If so, combine them, 1881 // filling up gaps with zero sectors. 1882 outidx = 0; 1883 for (i = 1; i < num_reqs; i++) { 1884 int merge = 0; 1885 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 1886 1887 // Handle exactly sequential writes and overlapping writes. 1888 if (reqs[i].sector <= oldreq_last) { 1889 merge = 1; 1890 } 1891 1892 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > 1893 bs->bl.max_iov) { 1894 merge = 0; 1895 } 1896 1897 if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors + 1898 reqs[i].nb_sectors > bs->bl.max_transfer_length) { 1899 merge = 0; 1900 } 1901 1902 if (merge) { 1903 size_t size; 1904 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 1905 qemu_iovec_init(qiov, 1906 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 1907 1908 // Add the first request to the merged one. If the requests are 1909 // overlapping, drop the last sectors of the first request. 1910 size = (reqs[i].sector - reqs[outidx].sector) << 9; 1911 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 1912 1913 // We should need to add any zeros between the two requests 1914 assert (reqs[i].sector <= oldreq_last); 1915 1916 // Add the second request 1917 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 1918 1919 // Add tail of first request, if necessary 1920 if (qiov->size < reqs[outidx].qiov->size) { 1921 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size, 1922 reqs[outidx].qiov->size - qiov->size); 1923 } 1924 1925 reqs[outidx].nb_sectors = qiov->size >> 9; 1926 reqs[outidx].qiov = qiov; 1927 1928 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 1929 } else { 1930 outidx++; 1931 reqs[outidx].sector = reqs[i].sector; 1932 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 1933 reqs[outidx].qiov = reqs[i].qiov; 1934 } 1935 } 1936 1937 if (bs->blk) { 1938 block_acct_merge_done(blk_get_stats(bs->blk), BLOCK_ACCT_WRITE, 1939 num_reqs - outidx - 1); 1940 } 1941 1942 return outidx + 1; 1943 } 1944 1945 /* 1946 * Submit multiple AIO write requests at once. 1947 * 1948 * On success, the function returns 0 and all requests in the reqs array have 1949 * been submitted. In error case this function returns -1, and any of the 1950 * requests may or may not be submitted yet. In particular, this means that the 1951 * callback will be called for some of the requests, for others it won't. The 1952 * caller must check the error field of the BlockRequest to wait for the right 1953 * callbacks (if error != 0, no callback will be called). 1954 * 1955 * The implementation may modify the contents of the reqs array, e.g. to merge 1956 * requests. However, the fields opaque and error are left unmodified as they 1957 * are used to signal failure for a single request to the caller. 1958 */ 1959 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 1960 { 1961 MultiwriteCB *mcb; 1962 int i; 1963 1964 /* don't submit writes if we don't have a medium */ 1965 if (bs->drv == NULL) { 1966 for (i = 0; i < num_reqs; i++) { 1967 reqs[i].error = -ENOMEDIUM; 1968 } 1969 return -1; 1970 } 1971 1972 if (num_reqs == 0) { 1973 return 0; 1974 } 1975 1976 // Create MultiwriteCB structure 1977 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 1978 mcb->num_requests = 0; 1979 mcb->num_callbacks = num_reqs; 1980 1981 for (i = 0; i < num_reqs; i++) { 1982 mcb->callbacks[i].cb = reqs[i].cb; 1983 mcb->callbacks[i].opaque = reqs[i].opaque; 1984 } 1985 1986 // Check for mergable requests 1987 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 1988 1989 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 1990 1991 /* Run the aio requests. */ 1992 mcb->num_requests = num_reqs; 1993 for (i = 0; i < num_reqs; i++) { 1994 bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov, 1995 reqs[i].nb_sectors, reqs[i].flags, 1996 multiwrite_cb, mcb, 1997 true); 1998 } 1999 2000 return 0; 2001 } 2002 2003 void bdrv_aio_cancel(BlockAIOCB *acb) 2004 { 2005 qemu_aio_ref(acb); 2006 bdrv_aio_cancel_async(acb); 2007 while (acb->refcnt > 1) { 2008 if (acb->aiocb_info->get_aio_context) { 2009 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2010 } else if (acb->bs) { 2011 aio_poll(bdrv_get_aio_context(acb->bs), true); 2012 } else { 2013 abort(); 2014 } 2015 } 2016 qemu_aio_unref(acb); 2017 } 2018 2019 /* Async version of aio cancel. The caller is not blocked if the acb implements 2020 * cancel_async, otherwise we do nothing and let the request normally complete. 2021 * In either case the completion callback must be called. */ 2022 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2023 { 2024 if (acb->aiocb_info->cancel_async) { 2025 acb->aiocb_info->cancel_async(acb); 2026 } 2027 } 2028 2029 /**************************************************************/ 2030 /* async block device emulation */ 2031 2032 typedef struct BlockAIOCBSync { 2033 BlockAIOCB common; 2034 QEMUBH *bh; 2035 int ret; 2036 /* vector translation state */ 2037 QEMUIOVector *qiov; 2038 uint8_t *bounce; 2039 int is_write; 2040 } BlockAIOCBSync; 2041 2042 static const AIOCBInfo bdrv_em_aiocb_info = { 2043 .aiocb_size = sizeof(BlockAIOCBSync), 2044 }; 2045 2046 static void bdrv_aio_bh_cb(void *opaque) 2047 { 2048 BlockAIOCBSync *acb = opaque; 2049 2050 if (!acb->is_write && acb->ret >= 0) { 2051 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 2052 } 2053 qemu_vfree(acb->bounce); 2054 acb->common.cb(acb->common.opaque, acb->ret); 2055 qemu_bh_delete(acb->bh); 2056 acb->bh = NULL; 2057 qemu_aio_unref(acb); 2058 } 2059 2060 static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 2061 int64_t sector_num, 2062 QEMUIOVector *qiov, 2063 int nb_sectors, 2064 BlockCompletionFunc *cb, 2065 void *opaque, 2066 int is_write) 2067 2068 { 2069 BlockAIOCBSync *acb; 2070 2071 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque); 2072 acb->is_write = is_write; 2073 acb->qiov = qiov; 2074 acb->bounce = qemu_try_blockalign(bs, qiov->size); 2075 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb); 2076 2077 if (acb->bounce == NULL) { 2078 acb->ret = -ENOMEM; 2079 } else if (is_write) { 2080 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 2081 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 2082 } else { 2083 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 2084 } 2085 2086 qemu_bh_schedule(acb->bh); 2087 2088 return &acb->common; 2089 } 2090 2091 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 2092 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 2093 BlockCompletionFunc *cb, void *opaque) 2094 { 2095 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 2096 } 2097 2098 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 2099 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 2100 BlockCompletionFunc *cb, void *opaque) 2101 { 2102 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 2103 } 2104 2105 2106 typedef struct BlockAIOCBCoroutine { 2107 BlockAIOCB common; 2108 BlockRequest req; 2109 bool is_write; 2110 bool need_bh; 2111 bool *done; 2112 QEMUBH* bh; 2113 } BlockAIOCBCoroutine; 2114 2115 static const AIOCBInfo bdrv_em_co_aiocb_info = { 2116 .aiocb_size = sizeof(BlockAIOCBCoroutine), 2117 }; 2118 2119 static void bdrv_co_complete(BlockAIOCBCoroutine *acb) 2120 { 2121 if (!acb->need_bh) { 2122 acb->common.cb(acb->common.opaque, acb->req.error); 2123 qemu_aio_unref(acb); 2124 } 2125 } 2126 2127 static void bdrv_co_em_bh(void *opaque) 2128 { 2129 BlockAIOCBCoroutine *acb = opaque; 2130 2131 assert(!acb->need_bh); 2132 qemu_bh_delete(acb->bh); 2133 bdrv_co_complete(acb); 2134 } 2135 2136 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb) 2137 { 2138 acb->need_bh = false; 2139 if (acb->req.error != -EINPROGRESS) { 2140 BlockDriverState *bs = acb->common.bs; 2141 2142 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb); 2143 qemu_bh_schedule(acb->bh); 2144 } 2145 } 2146 2147 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 2148 static void coroutine_fn bdrv_co_do_rw(void *opaque) 2149 { 2150 BlockAIOCBCoroutine *acb = opaque; 2151 BlockDriverState *bs = acb->common.bs; 2152 2153 if (!acb->is_write) { 2154 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 2155 acb->req.nb_sectors, acb->req.qiov, acb->req.flags); 2156 } else { 2157 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 2158 acb->req.nb_sectors, acb->req.qiov, acb->req.flags); 2159 } 2160 2161 bdrv_co_complete(acb); 2162 } 2163 2164 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 2165 int64_t sector_num, 2166 QEMUIOVector *qiov, 2167 int nb_sectors, 2168 BdrvRequestFlags flags, 2169 BlockCompletionFunc *cb, 2170 void *opaque, 2171 bool is_write) 2172 { 2173 Coroutine *co; 2174 BlockAIOCBCoroutine *acb; 2175 2176 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2177 acb->need_bh = true; 2178 acb->req.error = -EINPROGRESS; 2179 acb->req.sector = sector_num; 2180 acb->req.nb_sectors = nb_sectors; 2181 acb->req.qiov = qiov; 2182 acb->req.flags = flags; 2183 acb->is_write = is_write; 2184 2185 co = qemu_coroutine_create(bdrv_co_do_rw); 2186 qemu_coroutine_enter(co, acb); 2187 2188 bdrv_co_maybe_schedule_bh(acb); 2189 return &acb->common; 2190 } 2191 2192 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 2193 { 2194 BlockAIOCBCoroutine *acb = opaque; 2195 BlockDriverState *bs = acb->common.bs; 2196 2197 acb->req.error = bdrv_co_flush(bs); 2198 bdrv_co_complete(acb); 2199 } 2200 2201 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs, 2202 BlockCompletionFunc *cb, void *opaque) 2203 { 2204 trace_bdrv_aio_flush(bs, opaque); 2205 2206 Coroutine *co; 2207 BlockAIOCBCoroutine *acb; 2208 2209 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2210 acb->need_bh = true; 2211 acb->req.error = -EINPROGRESS; 2212 2213 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 2214 qemu_coroutine_enter(co, acb); 2215 2216 bdrv_co_maybe_schedule_bh(acb); 2217 return &acb->common; 2218 } 2219 2220 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 2221 { 2222 BlockAIOCBCoroutine *acb = opaque; 2223 BlockDriverState *bs = acb->common.bs; 2224 2225 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 2226 bdrv_co_complete(acb); 2227 } 2228 2229 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs, 2230 int64_t sector_num, int nb_sectors, 2231 BlockCompletionFunc *cb, void *opaque) 2232 { 2233 Coroutine *co; 2234 BlockAIOCBCoroutine *acb; 2235 2236 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 2237 2238 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2239 acb->need_bh = true; 2240 acb->req.error = -EINPROGRESS; 2241 acb->req.sector = sector_num; 2242 acb->req.nb_sectors = nb_sectors; 2243 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 2244 qemu_coroutine_enter(co, acb); 2245 2246 bdrv_co_maybe_schedule_bh(acb); 2247 return &acb->common; 2248 } 2249 2250 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 2251 BlockCompletionFunc *cb, void *opaque) 2252 { 2253 BlockAIOCB *acb; 2254 2255 acb = g_malloc(aiocb_info->aiocb_size); 2256 acb->aiocb_info = aiocb_info; 2257 acb->bs = bs; 2258 acb->cb = cb; 2259 acb->opaque = opaque; 2260 acb->refcnt = 1; 2261 return acb; 2262 } 2263 2264 void qemu_aio_ref(void *p) 2265 { 2266 BlockAIOCB *acb = p; 2267 acb->refcnt++; 2268 } 2269 2270 void qemu_aio_unref(void *p) 2271 { 2272 BlockAIOCB *acb = p; 2273 assert(acb->refcnt > 0); 2274 if (--acb->refcnt == 0) { 2275 g_free(acb); 2276 } 2277 } 2278 2279 /**************************************************************/ 2280 /* Coroutine block device emulation */ 2281 2282 typedef struct CoroutineIOCompletion { 2283 Coroutine *coroutine; 2284 int ret; 2285 } CoroutineIOCompletion; 2286 2287 static void bdrv_co_io_em_complete(void *opaque, int ret) 2288 { 2289 CoroutineIOCompletion *co = opaque; 2290 2291 co->ret = ret; 2292 qemu_coroutine_enter(co->coroutine, NULL); 2293 } 2294 2295 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 2296 int nb_sectors, QEMUIOVector *iov, 2297 bool is_write) 2298 { 2299 CoroutineIOCompletion co = { 2300 .coroutine = qemu_coroutine_self(), 2301 }; 2302 BlockAIOCB *acb; 2303 2304 if (is_write) { 2305 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 2306 bdrv_co_io_em_complete, &co); 2307 } else { 2308 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 2309 bdrv_co_io_em_complete, &co); 2310 } 2311 2312 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 2313 if (!acb) { 2314 return -EIO; 2315 } 2316 qemu_coroutine_yield(); 2317 2318 return co.ret; 2319 } 2320 2321 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 2322 int64_t sector_num, int nb_sectors, 2323 QEMUIOVector *iov) 2324 { 2325 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 2326 } 2327 2328 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 2329 int64_t sector_num, int nb_sectors, 2330 QEMUIOVector *iov) 2331 { 2332 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 2333 } 2334 2335 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2336 { 2337 RwCo *rwco = opaque; 2338 2339 rwco->ret = bdrv_co_flush(rwco->bs); 2340 } 2341 2342 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2343 { 2344 int ret; 2345 BdrvTrackedRequest req; 2346 2347 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2348 bdrv_is_sg(bs)) { 2349 return 0; 2350 } 2351 2352 tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH); 2353 /* Write back cached data to the OS even with cache=unsafe */ 2354 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2355 if (bs->drv->bdrv_co_flush_to_os) { 2356 ret = bs->drv->bdrv_co_flush_to_os(bs); 2357 if (ret < 0) { 2358 goto out; 2359 } 2360 } 2361 2362 /* But don't actually force it to the disk with cache=unsafe */ 2363 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2364 goto flush_parent; 2365 } 2366 2367 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2368 if (bs->drv->bdrv_co_flush_to_disk) { 2369 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2370 } else if (bs->drv->bdrv_aio_flush) { 2371 BlockAIOCB *acb; 2372 CoroutineIOCompletion co = { 2373 .coroutine = qemu_coroutine_self(), 2374 }; 2375 2376 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2377 if (acb == NULL) { 2378 ret = -EIO; 2379 } else { 2380 qemu_coroutine_yield(); 2381 ret = co.ret; 2382 } 2383 } else { 2384 /* 2385 * Some block drivers always operate in either writethrough or unsafe 2386 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2387 * know how the server works (because the behaviour is hardcoded or 2388 * depends on server-side configuration), so we can't ensure that 2389 * everything is safe on disk. Returning an error doesn't work because 2390 * that would break guests even if the server operates in writethrough 2391 * mode. 2392 * 2393 * Let's hope the user knows what he's doing. 2394 */ 2395 ret = 0; 2396 } 2397 if (ret < 0) { 2398 goto out; 2399 } 2400 2401 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2402 * in the case of cache=unsafe, so there are no useless flushes. 2403 */ 2404 flush_parent: 2405 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2406 out: 2407 tracked_request_end(&req); 2408 return ret; 2409 } 2410 2411 int bdrv_flush(BlockDriverState *bs) 2412 { 2413 Coroutine *co; 2414 RwCo rwco = { 2415 .bs = bs, 2416 .ret = NOT_DONE, 2417 }; 2418 2419 if (qemu_in_coroutine()) { 2420 /* Fast-path if already in coroutine context */ 2421 bdrv_flush_co_entry(&rwco); 2422 } else { 2423 AioContext *aio_context = bdrv_get_aio_context(bs); 2424 2425 co = qemu_coroutine_create(bdrv_flush_co_entry); 2426 qemu_coroutine_enter(co, &rwco); 2427 while (rwco.ret == NOT_DONE) { 2428 aio_poll(aio_context, true); 2429 } 2430 } 2431 2432 return rwco.ret; 2433 } 2434 2435 typedef struct DiscardCo { 2436 BlockDriverState *bs; 2437 int64_t sector_num; 2438 int nb_sectors; 2439 int ret; 2440 } DiscardCo; 2441 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 2442 { 2443 DiscardCo *rwco = opaque; 2444 2445 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 2446 } 2447 2448 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 2449 int nb_sectors) 2450 { 2451 BdrvTrackedRequest req; 2452 int max_discard, ret; 2453 2454 if (!bs->drv) { 2455 return -ENOMEDIUM; 2456 } 2457 2458 ret = bdrv_check_request(bs, sector_num, nb_sectors); 2459 if (ret < 0) { 2460 return ret; 2461 } else if (bs->read_only) { 2462 return -EPERM; 2463 } 2464 2465 /* Do nothing if disabled. */ 2466 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2467 return 0; 2468 } 2469 2470 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) { 2471 return 0; 2472 } 2473 2474 tracked_request_begin(&req, bs, sector_num, nb_sectors, 2475 BDRV_TRACKED_DISCARD); 2476 bdrv_set_dirty(bs, sector_num, nb_sectors); 2477 2478 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS); 2479 while (nb_sectors > 0) { 2480 int ret; 2481 int num = nb_sectors; 2482 2483 /* align request */ 2484 if (bs->bl.discard_alignment && 2485 num >= bs->bl.discard_alignment && 2486 sector_num % bs->bl.discard_alignment) { 2487 if (num > bs->bl.discard_alignment) { 2488 num = bs->bl.discard_alignment; 2489 } 2490 num -= sector_num % bs->bl.discard_alignment; 2491 } 2492 2493 /* limit request size */ 2494 if (num > max_discard) { 2495 num = max_discard; 2496 } 2497 2498 if (bs->drv->bdrv_co_discard) { 2499 ret = bs->drv->bdrv_co_discard(bs, sector_num, num); 2500 } else { 2501 BlockAIOCB *acb; 2502 CoroutineIOCompletion co = { 2503 .coroutine = qemu_coroutine_self(), 2504 }; 2505 2506 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 2507 bdrv_co_io_em_complete, &co); 2508 if (acb == NULL) { 2509 ret = -EIO; 2510 goto out; 2511 } else { 2512 qemu_coroutine_yield(); 2513 ret = co.ret; 2514 } 2515 } 2516 if (ret && ret != -ENOTSUP) { 2517 goto out; 2518 } 2519 2520 sector_num += num; 2521 nb_sectors -= num; 2522 } 2523 ret = 0; 2524 out: 2525 tracked_request_end(&req); 2526 return ret; 2527 } 2528 2529 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 2530 { 2531 Coroutine *co; 2532 DiscardCo rwco = { 2533 .bs = bs, 2534 .sector_num = sector_num, 2535 .nb_sectors = nb_sectors, 2536 .ret = NOT_DONE, 2537 }; 2538 2539 if (qemu_in_coroutine()) { 2540 /* Fast-path if already in coroutine context */ 2541 bdrv_discard_co_entry(&rwco); 2542 } else { 2543 AioContext *aio_context = bdrv_get_aio_context(bs); 2544 2545 co = qemu_coroutine_create(bdrv_discard_co_entry); 2546 qemu_coroutine_enter(co, &rwco); 2547 while (rwco.ret == NOT_DONE) { 2548 aio_poll(aio_context, true); 2549 } 2550 } 2551 2552 return rwco.ret; 2553 } 2554 2555 typedef struct { 2556 CoroutineIOCompletion *co; 2557 QEMUBH *bh; 2558 } BdrvIoctlCompletionData; 2559 2560 static void bdrv_ioctl_bh_cb(void *opaque) 2561 { 2562 BdrvIoctlCompletionData *data = opaque; 2563 2564 bdrv_co_io_em_complete(data->co, -ENOTSUP); 2565 qemu_bh_delete(data->bh); 2566 } 2567 2568 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf) 2569 { 2570 BlockDriver *drv = bs->drv; 2571 BdrvTrackedRequest tracked_req; 2572 CoroutineIOCompletion co = { 2573 .coroutine = qemu_coroutine_self(), 2574 }; 2575 BlockAIOCB *acb; 2576 2577 tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL); 2578 if (!drv || !drv->bdrv_aio_ioctl) { 2579 co.ret = -ENOTSUP; 2580 goto out; 2581 } 2582 2583 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2584 if (!acb) { 2585 BdrvIoctlCompletionData *data = g_new(BdrvIoctlCompletionData, 1); 2586 data->bh = aio_bh_new(bdrv_get_aio_context(bs), 2587 bdrv_ioctl_bh_cb, data); 2588 data->co = &co; 2589 qemu_bh_schedule(data->bh); 2590 } 2591 qemu_coroutine_yield(); 2592 out: 2593 tracked_request_end(&tracked_req); 2594 return co.ret; 2595 } 2596 2597 typedef struct { 2598 BlockDriverState *bs; 2599 int req; 2600 void *buf; 2601 int ret; 2602 } BdrvIoctlCoData; 2603 2604 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque) 2605 { 2606 BdrvIoctlCoData *data = opaque; 2607 data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf); 2608 } 2609 2610 /* needed for generic scsi interface */ 2611 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 2612 { 2613 BdrvIoctlCoData data = { 2614 .bs = bs, 2615 .req = req, 2616 .buf = buf, 2617 .ret = -EINPROGRESS, 2618 }; 2619 2620 if (qemu_in_coroutine()) { 2621 /* Fast-path if already in coroutine context */ 2622 bdrv_co_ioctl_entry(&data); 2623 } else { 2624 Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry); 2625 2626 qemu_coroutine_enter(co, &data); 2627 while (data.ret == -EINPROGRESS) { 2628 aio_poll(bdrv_get_aio_context(bs), true); 2629 } 2630 } 2631 return data.ret; 2632 } 2633 2634 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque) 2635 { 2636 BlockAIOCBCoroutine *acb = opaque; 2637 acb->req.error = bdrv_co_do_ioctl(acb->common.bs, 2638 acb->req.req, acb->req.buf); 2639 bdrv_co_complete(acb); 2640 } 2641 2642 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 2643 unsigned long int req, void *buf, 2644 BlockCompletionFunc *cb, void *opaque) 2645 { 2646 BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info, 2647 bs, cb, opaque); 2648 Coroutine *co; 2649 2650 acb->need_bh = true; 2651 acb->req.error = -EINPROGRESS; 2652 acb->req.req = req; 2653 acb->req.buf = buf; 2654 co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry); 2655 qemu_coroutine_enter(co, acb); 2656 2657 bdrv_co_maybe_schedule_bh(acb); 2658 return &acb->common; 2659 } 2660 2661 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2662 { 2663 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2664 } 2665 2666 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2667 { 2668 return memset(qemu_blockalign(bs, size), 0, size); 2669 } 2670 2671 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2672 { 2673 size_t align = bdrv_opt_mem_align(bs); 2674 2675 /* Ensure that NULL is never returned on success */ 2676 assert(align > 0); 2677 if (size == 0) { 2678 size = align; 2679 } 2680 2681 return qemu_try_memalign(align, size); 2682 } 2683 2684 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2685 { 2686 void *mem = qemu_try_blockalign(bs, size); 2687 2688 if (mem) { 2689 memset(mem, 0, size); 2690 } 2691 2692 return mem; 2693 } 2694 2695 /* 2696 * Check if all memory in this vector is sector aligned. 2697 */ 2698 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2699 { 2700 int i; 2701 size_t alignment = bdrv_min_mem_align(bs); 2702 2703 for (i = 0; i < qiov->niov; i++) { 2704 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2705 return false; 2706 } 2707 if (qiov->iov[i].iov_len % alignment) { 2708 return false; 2709 } 2710 } 2711 2712 return true; 2713 } 2714 2715 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2716 NotifierWithReturn *notifier) 2717 { 2718 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2719 } 2720 2721 void bdrv_io_plug(BlockDriverState *bs) 2722 { 2723 BlockDriver *drv = bs->drv; 2724 if (drv && drv->bdrv_io_plug) { 2725 drv->bdrv_io_plug(bs); 2726 } else if (bs->file) { 2727 bdrv_io_plug(bs->file->bs); 2728 } 2729 } 2730 2731 void bdrv_io_unplug(BlockDriverState *bs) 2732 { 2733 BlockDriver *drv = bs->drv; 2734 if (drv && drv->bdrv_io_unplug) { 2735 drv->bdrv_io_unplug(bs); 2736 } else if (bs->file) { 2737 bdrv_io_unplug(bs->file->bs); 2738 } 2739 } 2740 2741 void bdrv_flush_io_queue(BlockDriverState *bs) 2742 { 2743 BlockDriver *drv = bs->drv; 2744 if (drv && drv->bdrv_flush_io_queue) { 2745 drv->bdrv_flush_io_queue(bs); 2746 } else if (bs->file) { 2747 bdrv_flush_io_queue(bs->file->bs); 2748 } 2749 bdrv_start_throttled_reqs(bs); 2750 } 2751 2752 void bdrv_drained_begin(BlockDriverState *bs) 2753 { 2754 if (!bs->quiesce_counter++) { 2755 aio_disable_external(bdrv_get_aio_context(bs)); 2756 } 2757 bdrv_drain(bs); 2758 } 2759 2760 void bdrv_drained_end(BlockDriverState *bs) 2761 { 2762 assert(bs->quiesce_counter > 0); 2763 if (--bs->quiesce_counter > 0) { 2764 return; 2765 } 2766 aio_enable_external(bdrv_get_aio_context(bs)); 2767 } 2768