1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "qemu/cutils.h" 34 #include "qapi/error.h" 35 #include "qemu/error-report.h" 36 #include "qemu/main-loop.h" 37 #include "sysemu/replay.h" 38 39 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 40 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 41 42 static void bdrv_parent_cb_resize(BlockDriverState *bs); 43 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 44 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 45 46 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 47 bool ignore_bds_parents) 48 { 49 BdrvChild *c, *next; 50 51 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 52 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 53 continue; 54 } 55 bdrv_parent_drained_begin_single(c, false); 56 } 57 } 58 59 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 60 int *drained_end_counter) 61 { 62 assert(c->parent_quiesce_counter > 0); 63 c->parent_quiesce_counter--; 64 if (c->klass->drained_end) { 65 c->klass->drained_end(c, drained_end_counter); 66 } 67 } 68 69 void bdrv_parent_drained_end_single(BdrvChild *c) 70 { 71 int drained_end_counter = 0; 72 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 73 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0); 74 } 75 76 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 77 bool ignore_bds_parents, 78 int *drained_end_counter) 79 { 80 BdrvChild *c; 81 82 QLIST_FOREACH(c, &bs->parents, next_parent) { 83 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 84 continue; 85 } 86 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 87 } 88 } 89 90 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 91 { 92 if (c->klass->drained_poll) { 93 return c->klass->drained_poll(c); 94 } 95 return false; 96 } 97 98 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 99 bool ignore_bds_parents) 100 { 101 BdrvChild *c, *next; 102 bool busy = false; 103 104 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 105 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 106 continue; 107 } 108 busy |= bdrv_parent_drained_poll_single(c); 109 } 110 111 return busy; 112 } 113 114 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 115 { 116 c->parent_quiesce_counter++; 117 if (c->klass->drained_begin) { 118 c->klass->drained_begin(c); 119 } 120 if (poll) { 121 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 122 } 123 } 124 125 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 126 { 127 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 128 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 130 src->opt_mem_alignment); 131 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 132 src->min_mem_alignment); 133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 134 } 135 136 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 137 { 138 ERRP_GUARD(); 139 BlockDriver *drv = bs->drv; 140 BdrvChild *c; 141 bool have_limits; 142 143 memset(&bs->bl, 0, sizeof(bs->bl)); 144 145 if (!drv) { 146 return; 147 } 148 149 /* Default alignment based on whether driver has byte interface */ 150 bs->bl.request_alignment = (drv->bdrv_co_preadv || 151 drv->bdrv_aio_preadv || 152 drv->bdrv_co_preadv_part) ? 1 : 512; 153 154 /* Take some limits from the children as a default */ 155 have_limits = false; 156 QLIST_FOREACH(c, &bs->children, next) { 157 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 158 { 159 bdrv_refresh_limits(c->bs, errp); 160 if (*errp) { 161 return; 162 } 163 bdrv_merge_limits(&bs->bl, &c->bs->bl); 164 have_limits = true; 165 } 166 } 167 168 if (!have_limits) { 169 bs->bl.min_mem_alignment = 512; 170 bs->bl.opt_mem_alignment = qemu_real_host_page_size; 171 172 /* Safe default since most protocols use readv()/writev()/etc */ 173 bs->bl.max_iov = IOV_MAX; 174 } 175 176 /* Then let the driver override it */ 177 if (drv->bdrv_refresh_limits) { 178 drv->bdrv_refresh_limits(bs, errp); 179 if (*errp) { 180 return; 181 } 182 } 183 184 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 185 error_setg(errp, "Driver requires too large request alignment"); 186 } 187 } 188 189 /** 190 * The copy-on-read flag is actually a reference count so multiple users may 191 * use the feature without worrying about clobbering its previous state. 192 * Copy-on-read stays enabled until all users have called to disable it. 193 */ 194 void bdrv_enable_copy_on_read(BlockDriverState *bs) 195 { 196 qatomic_inc(&bs->copy_on_read); 197 } 198 199 void bdrv_disable_copy_on_read(BlockDriverState *bs) 200 { 201 int old = qatomic_fetch_dec(&bs->copy_on_read); 202 assert(old >= 1); 203 } 204 205 typedef struct { 206 Coroutine *co; 207 BlockDriverState *bs; 208 bool done; 209 bool begin; 210 bool recursive; 211 bool poll; 212 BdrvChild *parent; 213 bool ignore_bds_parents; 214 int *drained_end_counter; 215 } BdrvCoDrainData; 216 217 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 218 { 219 BdrvCoDrainData *data = opaque; 220 BlockDriverState *bs = data->bs; 221 222 if (data->begin) { 223 bs->drv->bdrv_co_drain_begin(bs); 224 } else { 225 bs->drv->bdrv_co_drain_end(bs); 226 } 227 228 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 229 qatomic_mb_set(&data->done, true); 230 if (!data->begin) { 231 qatomic_dec(data->drained_end_counter); 232 } 233 bdrv_dec_in_flight(bs); 234 235 g_free(data); 236 } 237 238 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 239 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 240 int *drained_end_counter) 241 { 242 BdrvCoDrainData *data; 243 244 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 245 (!begin && !bs->drv->bdrv_co_drain_end)) { 246 return; 247 } 248 249 data = g_new(BdrvCoDrainData, 1); 250 *data = (BdrvCoDrainData) { 251 .bs = bs, 252 .done = false, 253 .begin = begin, 254 .drained_end_counter = drained_end_counter, 255 }; 256 257 if (!begin) { 258 qatomic_inc(drained_end_counter); 259 } 260 261 /* Make sure the driver callback completes during the polling phase for 262 * drain_begin. */ 263 bdrv_inc_in_flight(bs); 264 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 265 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 266 } 267 268 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 269 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 270 BdrvChild *ignore_parent, bool ignore_bds_parents) 271 { 272 BdrvChild *child, *next; 273 274 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 275 return true; 276 } 277 278 if (qatomic_read(&bs->in_flight)) { 279 return true; 280 } 281 282 if (recursive) { 283 assert(!ignore_bds_parents); 284 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 285 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 286 return true; 287 } 288 } 289 } 290 291 return false; 292 } 293 294 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 295 BdrvChild *ignore_parent) 296 { 297 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 298 } 299 300 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 301 BdrvChild *parent, bool ignore_bds_parents, 302 bool poll); 303 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 304 BdrvChild *parent, bool ignore_bds_parents, 305 int *drained_end_counter); 306 307 static void bdrv_co_drain_bh_cb(void *opaque) 308 { 309 BdrvCoDrainData *data = opaque; 310 Coroutine *co = data->co; 311 BlockDriverState *bs = data->bs; 312 313 if (bs) { 314 AioContext *ctx = bdrv_get_aio_context(bs); 315 aio_context_acquire(ctx); 316 bdrv_dec_in_flight(bs); 317 if (data->begin) { 318 assert(!data->drained_end_counter); 319 bdrv_do_drained_begin(bs, data->recursive, data->parent, 320 data->ignore_bds_parents, data->poll); 321 } else { 322 assert(!data->poll); 323 bdrv_do_drained_end(bs, data->recursive, data->parent, 324 data->ignore_bds_parents, 325 data->drained_end_counter); 326 } 327 aio_context_release(ctx); 328 } else { 329 assert(data->begin); 330 bdrv_drain_all_begin(); 331 } 332 333 data->done = true; 334 aio_co_wake(co); 335 } 336 337 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 338 bool begin, bool recursive, 339 BdrvChild *parent, 340 bool ignore_bds_parents, 341 bool poll, 342 int *drained_end_counter) 343 { 344 BdrvCoDrainData data; 345 Coroutine *self = qemu_coroutine_self(); 346 AioContext *ctx = bdrv_get_aio_context(bs); 347 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 348 349 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 350 * other coroutines run if they were queued by aio_co_enter(). */ 351 352 assert(qemu_in_coroutine()); 353 data = (BdrvCoDrainData) { 354 .co = self, 355 .bs = bs, 356 .done = false, 357 .begin = begin, 358 .recursive = recursive, 359 .parent = parent, 360 .ignore_bds_parents = ignore_bds_parents, 361 .poll = poll, 362 .drained_end_counter = drained_end_counter, 363 }; 364 365 if (bs) { 366 bdrv_inc_in_flight(bs); 367 } 368 369 /* 370 * Temporarily drop the lock across yield or we would get deadlocks. 371 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 372 * 373 * When we yield below, the lock for the current context will be 374 * released, so if this is actually the lock that protects bs, don't drop 375 * it a second time. 376 */ 377 if (ctx != co_ctx) { 378 aio_context_release(ctx); 379 } 380 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data); 381 382 qemu_coroutine_yield(); 383 /* If we are resumed from some other event (such as an aio completion or a 384 * timer callback), it is a bug in the caller that should be fixed. */ 385 assert(data.done); 386 387 /* Reaquire the AioContext of bs if we dropped it */ 388 if (ctx != co_ctx) { 389 aio_context_acquire(ctx); 390 } 391 } 392 393 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 394 BdrvChild *parent, bool ignore_bds_parents) 395 { 396 assert(!qemu_in_coroutine()); 397 398 /* Stop things in parent-to-child order */ 399 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 400 aio_disable_external(bdrv_get_aio_context(bs)); 401 } 402 403 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 404 bdrv_drain_invoke(bs, true, NULL); 405 } 406 407 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 408 BdrvChild *parent, bool ignore_bds_parents, 409 bool poll) 410 { 411 BdrvChild *child, *next; 412 413 if (qemu_in_coroutine()) { 414 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 415 poll, NULL); 416 return; 417 } 418 419 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 420 421 if (recursive) { 422 assert(!ignore_bds_parents); 423 bs->recursive_quiesce_counter++; 424 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 425 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 426 false); 427 } 428 } 429 430 /* 431 * Wait for drained requests to finish. 432 * 433 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 434 * call is needed so things in this AioContext can make progress even 435 * though we don't return to the main AioContext loop - this automatically 436 * includes other nodes in the same AioContext and therefore all child 437 * nodes. 438 */ 439 if (poll) { 440 assert(!ignore_bds_parents); 441 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 442 } 443 } 444 445 void bdrv_drained_begin(BlockDriverState *bs) 446 { 447 bdrv_do_drained_begin(bs, false, NULL, false, true); 448 } 449 450 void bdrv_subtree_drained_begin(BlockDriverState *bs) 451 { 452 bdrv_do_drained_begin(bs, true, NULL, false, true); 453 } 454 455 /** 456 * This function does not poll, nor must any of its recursively called 457 * functions. The *drained_end_counter pointee will be incremented 458 * once for every background operation scheduled, and decremented once 459 * the operation settles. Therefore, the pointer must remain valid 460 * until the pointee reaches 0. That implies that whoever sets up the 461 * pointee has to poll until it is 0. 462 * 463 * We use atomic operations to access *drained_end_counter, because 464 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 465 * @bs may contain nodes in different AioContexts, 466 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 467 * regardless of which AioContext they are in. 468 */ 469 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 470 BdrvChild *parent, bool ignore_bds_parents, 471 int *drained_end_counter) 472 { 473 BdrvChild *child; 474 int old_quiesce_counter; 475 476 assert(drained_end_counter != NULL); 477 478 if (qemu_in_coroutine()) { 479 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 480 false, drained_end_counter); 481 return; 482 } 483 assert(bs->quiesce_counter > 0); 484 485 /* Re-enable things in child-to-parent order */ 486 bdrv_drain_invoke(bs, false, drained_end_counter); 487 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 488 drained_end_counter); 489 490 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 491 if (old_quiesce_counter == 1) { 492 aio_enable_external(bdrv_get_aio_context(bs)); 493 } 494 495 if (recursive) { 496 assert(!ignore_bds_parents); 497 bs->recursive_quiesce_counter--; 498 QLIST_FOREACH(child, &bs->children, next) { 499 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 500 drained_end_counter); 501 } 502 } 503 } 504 505 void bdrv_drained_end(BlockDriverState *bs) 506 { 507 int drained_end_counter = 0; 508 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 509 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 510 } 511 512 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 513 { 514 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 515 } 516 517 void bdrv_subtree_drained_end(BlockDriverState *bs) 518 { 519 int drained_end_counter = 0; 520 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 521 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 522 } 523 524 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 525 { 526 int i; 527 528 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 529 bdrv_do_drained_begin(child->bs, true, child, false, true); 530 } 531 } 532 533 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 534 { 535 int drained_end_counter = 0; 536 int i; 537 538 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 539 bdrv_do_drained_end(child->bs, true, child, false, 540 &drained_end_counter); 541 } 542 543 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0); 544 } 545 546 /* 547 * Wait for pending requests to complete on a single BlockDriverState subtree, 548 * and suspend block driver's internal I/O until next request arrives. 549 * 550 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 551 * AioContext. 552 */ 553 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 554 { 555 assert(qemu_in_coroutine()); 556 bdrv_drained_begin(bs); 557 bdrv_drained_end(bs); 558 } 559 560 void bdrv_drain(BlockDriverState *bs) 561 { 562 bdrv_drained_begin(bs); 563 bdrv_drained_end(bs); 564 } 565 566 static void bdrv_drain_assert_idle(BlockDriverState *bs) 567 { 568 BdrvChild *child, *next; 569 570 assert(qatomic_read(&bs->in_flight) == 0); 571 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 572 bdrv_drain_assert_idle(child->bs); 573 } 574 } 575 576 unsigned int bdrv_drain_all_count = 0; 577 578 static bool bdrv_drain_all_poll(void) 579 { 580 BlockDriverState *bs = NULL; 581 bool result = false; 582 583 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 584 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 585 while ((bs = bdrv_next_all_states(bs))) { 586 AioContext *aio_context = bdrv_get_aio_context(bs); 587 aio_context_acquire(aio_context); 588 result |= bdrv_drain_poll(bs, false, NULL, true); 589 aio_context_release(aio_context); 590 } 591 592 return result; 593 } 594 595 /* 596 * Wait for pending requests to complete across all BlockDriverStates 597 * 598 * This function does not flush data to disk, use bdrv_flush_all() for that 599 * after calling this function. 600 * 601 * This pauses all block jobs and disables external clients. It must 602 * be paired with bdrv_drain_all_end(). 603 * 604 * NOTE: no new block jobs or BlockDriverStates can be created between 605 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 606 */ 607 void bdrv_drain_all_begin(void) 608 { 609 BlockDriverState *bs = NULL; 610 611 if (qemu_in_coroutine()) { 612 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 613 return; 614 } 615 616 /* 617 * bdrv queue is managed by record/replay, 618 * waiting for finishing the I/O requests may 619 * be infinite 620 */ 621 if (replay_events_enabled()) { 622 return; 623 } 624 625 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 626 * loop AioContext, so make sure we're in the main context. */ 627 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 628 assert(bdrv_drain_all_count < INT_MAX); 629 bdrv_drain_all_count++; 630 631 /* Quiesce all nodes, without polling in-flight requests yet. The graph 632 * cannot change during this loop. */ 633 while ((bs = bdrv_next_all_states(bs))) { 634 AioContext *aio_context = bdrv_get_aio_context(bs); 635 636 aio_context_acquire(aio_context); 637 bdrv_do_drained_begin(bs, false, NULL, true, false); 638 aio_context_release(aio_context); 639 } 640 641 /* Now poll the in-flight requests */ 642 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 643 644 while ((bs = bdrv_next_all_states(bs))) { 645 bdrv_drain_assert_idle(bs); 646 } 647 } 648 649 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 650 { 651 int drained_end_counter = 0; 652 653 g_assert(bs->quiesce_counter > 0); 654 g_assert(!bs->refcnt); 655 656 while (bs->quiesce_counter) { 657 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 658 } 659 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 660 } 661 662 void bdrv_drain_all_end(void) 663 { 664 BlockDriverState *bs = NULL; 665 int drained_end_counter = 0; 666 667 /* 668 * bdrv queue is managed by record/replay, 669 * waiting for finishing the I/O requests may 670 * be endless 671 */ 672 if (replay_events_enabled()) { 673 return; 674 } 675 676 while ((bs = bdrv_next_all_states(bs))) { 677 AioContext *aio_context = bdrv_get_aio_context(bs); 678 679 aio_context_acquire(aio_context); 680 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 681 aio_context_release(aio_context); 682 } 683 684 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 685 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0); 686 687 assert(bdrv_drain_all_count > 0); 688 bdrv_drain_all_count--; 689 } 690 691 void bdrv_drain_all(void) 692 { 693 bdrv_drain_all_begin(); 694 bdrv_drain_all_end(); 695 } 696 697 /** 698 * Remove an active request from the tracked requests list 699 * 700 * This function should be called when a tracked request is completing. 701 */ 702 static void tracked_request_end(BdrvTrackedRequest *req) 703 { 704 if (req->serialising) { 705 qatomic_dec(&req->bs->serialising_in_flight); 706 } 707 708 qemu_co_mutex_lock(&req->bs->reqs_lock); 709 QLIST_REMOVE(req, list); 710 qemu_co_queue_restart_all(&req->wait_queue); 711 qemu_co_mutex_unlock(&req->bs->reqs_lock); 712 } 713 714 /** 715 * Add an active request to the tracked requests list 716 */ 717 static void tracked_request_begin(BdrvTrackedRequest *req, 718 BlockDriverState *bs, 719 int64_t offset, 720 int64_t bytes, 721 enum BdrvTrackedRequestType type) 722 { 723 bdrv_check_request(offset, bytes, &error_abort); 724 725 *req = (BdrvTrackedRequest){ 726 .bs = bs, 727 .offset = offset, 728 .bytes = bytes, 729 .type = type, 730 .co = qemu_coroutine_self(), 731 .serialising = false, 732 .overlap_offset = offset, 733 .overlap_bytes = bytes, 734 }; 735 736 qemu_co_queue_init(&req->wait_queue); 737 738 qemu_co_mutex_lock(&bs->reqs_lock); 739 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 740 qemu_co_mutex_unlock(&bs->reqs_lock); 741 } 742 743 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 744 int64_t offset, int64_t bytes) 745 { 746 bdrv_check_request(offset, bytes, &error_abort); 747 748 /* aaaa bbbb */ 749 if (offset >= req->overlap_offset + req->overlap_bytes) { 750 return false; 751 } 752 /* bbbb aaaa */ 753 if (req->overlap_offset >= offset + bytes) { 754 return false; 755 } 756 return true; 757 } 758 759 /* Called with self->bs->reqs_lock held */ 760 static BdrvTrackedRequest * 761 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 762 { 763 BdrvTrackedRequest *req; 764 765 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 766 if (req == self || (!req->serialising && !self->serialising)) { 767 continue; 768 } 769 if (tracked_request_overlaps(req, self->overlap_offset, 770 self->overlap_bytes)) 771 { 772 /* 773 * Hitting this means there was a reentrant request, for 774 * example, a block driver issuing nested requests. This must 775 * never happen since it means deadlock. 776 */ 777 assert(qemu_coroutine_self() != req->co); 778 779 /* 780 * If the request is already (indirectly) waiting for us, or 781 * will wait for us as soon as it wakes up, then just go on 782 * (instead of producing a deadlock in the former case). 783 */ 784 if (!req->waiting_for) { 785 return req; 786 } 787 } 788 } 789 790 return NULL; 791 } 792 793 /* Called with self->bs->reqs_lock held */ 794 static bool coroutine_fn 795 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 796 { 797 BdrvTrackedRequest *req; 798 bool waited = false; 799 800 while ((req = bdrv_find_conflicting_request(self))) { 801 self->waiting_for = req; 802 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 803 self->waiting_for = NULL; 804 waited = true; 805 } 806 807 return waited; 808 } 809 810 /* Called with req->bs->reqs_lock held */ 811 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 812 uint64_t align) 813 { 814 int64_t overlap_offset = req->offset & ~(align - 1); 815 int64_t overlap_bytes = 816 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 817 818 bdrv_check_request(req->offset, req->bytes, &error_abort); 819 820 if (!req->serialising) { 821 qatomic_inc(&req->bs->serialising_in_flight); 822 req->serialising = true; 823 } 824 825 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 826 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 827 } 828 829 /** 830 * Return the tracked request on @bs for the current coroutine, or 831 * NULL if there is none. 832 */ 833 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 834 { 835 BdrvTrackedRequest *req; 836 Coroutine *self = qemu_coroutine_self(); 837 838 QLIST_FOREACH(req, &bs->tracked_requests, list) { 839 if (req->co == self) { 840 return req; 841 } 842 } 843 844 return NULL; 845 } 846 847 /** 848 * Round a region to cluster boundaries 849 */ 850 void bdrv_round_to_clusters(BlockDriverState *bs, 851 int64_t offset, int64_t bytes, 852 int64_t *cluster_offset, 853 int64_t *cluster_bytes) 854 { 855 BlockDriverInfo bdi; 856 857 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 858 *cluster_offset = offset; 859 *cluster_bytes = bytes; 860 } else { 861 int64_t c = bdi.cluster_size; 862 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 863 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 864 } 865 } 866 867 static int bdrv_get_cluster_size(BlockDriverState *bs) 868 { 869 BlockDriverInfo bdi; 870 int ret; 871 872 ret = bdrv_get_info(bs, &bdi); 873 if (ret < 0 || bdi.cluster_size == 0) { 874 return bs->bl.request_alignment; 875 } else { 876 return bdi.cluster_size; 877 } 878 } 879 880 void bdrv_inc_in_flight(BlockDriverState *bs) 881 { 882 qatomic_inc(&bs->in_flight); 883 } 884 885 void bdrv_wakeup(BlockDriverState *bs) 886 { 887 aio_wait_kick(); 888 } 889 890 void bdrv_dec_in_flight(BlockDriverState *bs) 891 { 892 qatomic_dec(&bs->in_flight); 893 bdrv_wakeup(bs); 894 } 895 896 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 897 { 898 BlockDriverState *bs = self->bs; 899 bool waited = false; 900 901 if (!qatomic_read(&bs->serialising_in_flight)) { 902 return false; 903 } 904 905 qemu_co_mutex_lock(&bs->reqs_lock); 906 waited = bdrv_wait_serialising_requests_locked(self); 907 qemu_co_mutex_unlock(&bs->reqs_lock); 908 909 return waited; 910 } 911 912 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 913 uint64_t align) 914 { 915 bool waited; 916 917 qemu_co_mutex_lock(&req->bs->reqs_lock); 918 919 tracked_request_set_serialising(req, align); 920 waited = bdrv_wait_serialising_requests_locked(req); 921 922 qemu_co_mutex_unlock(&req->bs->reqs_lock); 923 924 return waited; 925 } 926 927 static int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 928 QEMUIOVector *qiov, size_t qiov_offset, 929 Error **errp) 930 { 931 /* 932 * Check generic offset/bytes correctness 933 */ 934 935 if (offset < 0) { 936 error_setg(errp, "offset is negative: %" PRIi64, offset); 937 return -EIO; 938 } 939 940 if (bytes < 0) { 941 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 942 return -EIO; 943 } 944 945 if (bytes > BDRV_MAX_LENGTH) { 946 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 947 bytes, BDRV_MAX_LENGTH); 948 return -EIO; 949 } 950 951 if (offset > BDRV_MAX_LENGTH) { 952 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 953 offset, BDRV_MAX_LENGTH); 954 return -EIO; 955 } 956 957 if (offset > BDRV_MAX_LENGTH - bytes) { 958 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 959 "exceeds maximum(%" PRIi64 ")", offset, bytes, 960 BDRV_MAX_LENGTH); 961 return -EIO; 962 } 963 964 if (!qiov) { 965 return 0; 966 } 967 968 /* 969 * Check qiov and qiov_offset 970 */ 971 972 if (qiov_offset > qiov->size) { 973 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 974 qiov_offset, qiov->size); 975 return -EIO; 976 } 977 978 if (bytes > qiov->size - qiov_offset) { 979 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 980 "vector size(%zu)", bytes, qiov_offset, qiov->size); 981 return -EIO; 982 } 983 984 return 0; 985 } 986 987 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 988 { 989 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 990 } 991 992 static int bdrv_check_request32(int64_t offset, int64_t bytes, 993 QEMUIOVector *qiov, size_t qiov_offset) 994 { 995 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 996 if (ret < 0) { 997 return ret; 998 } 999 1000 if (bytes > BDRV_REQUEST_MAX_BYTES) { 1001 return -EIO; 1002 } 1003 1004 return 0; 1005 } 1006 1007 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 1008 int64_t bytes, BdrvRequestFlags flags) 1009 { 1010 return bdrv_pwritev(child, offset, bytes, NULL, 1011 BDRV_REQ_ZERO_WRITE | flags); 1012 } 1013 1014 /* 1015 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 1016 * The operation is sped up by checking the block status and only writing 1017 * zeroes to the device if they currently do not return zeroes. Optional 1018 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 1019 * BDRV_REQ_FUA). 1020 * 1021 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 1022 */ 1023 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 1024 { 1025 int ret; 1026 int64_t target_size, bytes, offset = 0; 1027 BlockDriverState *bs = child->bs; 1028 1029 target_size = bdrv_getlength(bs); 1030 if (target_size < 0) { 1031 return target_size; 1032 } 1033 1034 for (;;) { 1035 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 1036 if (bytes <= 0) { 1037 return 0; 1038 } 1039 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 1040 if (ret < 0) { 1041 return ret; 1042 } 1043 if (ret & BDRV_BLOCK_ZERO) { 1044 offset += bytes; 1045 continue; 1046 } 1047 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 1048 if (ret < 0) { 1049 return ret; 1050 } 1051 offset += bytes; 1052 } 1053 } 1054 1055 /* See bdrv_pwrite() for the return codes */ 1056 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes) 1057 { 1058 int ret; 1059 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1060 1061 if (bytes < 0) { 1062 return -EINVAL; 1063 } 1064 1065 ret = bdrv_preadv(child, offset, bytes, &qiov, 0); 1066 1067 return ret < 0 ? ret : bytes; 1068 } 1069 1070 /* Return no. of bytes on success or < 0 on error. Important errors are: 1071 -EIO generic I/O error (may happen for all errors) 1072 -ENOMEDIUM No media inserted. 1073 -EINVAL Invalid offset or number of bytes 1074 -EACCES Trying to write a read-only device 1075 */ 1076 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, 1077 int64_t bytes) 1078 { 1079 int ret; 1080 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1081 1082 if (bytes < 0) { 1083 return -EINVAL; 1084 } 1085 1086 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0); 1087 1088 return ret < 0 ? ret : bytes; 1089 } 1090 1091 /* 1092 * Writes to the file and ensures that no writes are reordered across this 1093 * request (acts as a barrier) 1094 * 1095 * Returns 0 on success, -errno in error cases. 1096 */ 1097 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1098 const void *buf, int64_t count) 1099 { 1100 int ret; 1101 1102 ret = bdrv_pwrite(child, offset, buf, count); 1103 if (ret < 0) { 1104 return ret; 1105 } 1106 1107 ret = bdrv_flush(child->bs); 1108 if (ret < 0) { 1109 return ret; 1110 } 1111 1112 return 0; 1113 } 1114 1115 typedef struct CoroutineIOCompletion { 1116 Coroutine *coroutine; 1117 int ret; 1118 } CoroutineIOCompletion; 1119 1120 static void bdrv_co_io_em_complete(void *opaque, int ret) 1121 { 1122 CoroutineIOCompletion *co = opaque; 1123 1124 co->ret = ret; 1125 aio_co_wake(co->coroutine); 1126 } 1127 1128 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1129 int64_t offset, int64_t bytes, 1130 QEMUIOVector *qiov, 1131 size_t qiov_offset, int flags) 1132 { 1133 BlockDriver *drv = bs->drv; 1134 int64_t sector_num; 1135 unsigned int nb_sectors; 1136 QEMUIOVector local_qiov; 1137 int ret; 1138 1139 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1140 assert(!(flags & ~BDRV_REQ_MASK)); 1141 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1142 1143 if (!drv) { 1144 return -ENOMEDIUM; 1145 } 1146 1147 if (drv->bdrv_co_preadv_part) { 1148 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1149 flags); 1150 } 1151 1152 if (qiov_offset > 0 || bytes != qiov->size) { 1153 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1154 qiov = &local_qiov; 1155 } 1156 1157 if (drv->bdrv_co_preadv) { 1158 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1159 goto out; 1160 } 1161 1162 if (drv->bdrv_aio_preadv) { 1163 BlockAIOCB *acb; 1164 CoroutineIOCompletion co = { 1165 .coroutine = qemu_coroutine_self(), 1166 }; 1167 1168 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1169 bdrv_co_io_em_complete, &co); 1170 if (acb == NULL) { 1171 ret = -EIO; 1172 goto out; 1173 } else { 1174 qemu_coroutine_yield(); 1175 ret = co.ret; 1176 goto out; 1177 } 1178 } 1179 1180 sector_num = offset >> BDRV_SECTOR_BITS; 1181 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1182 1183 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1184 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1185 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1186 assert(drv->bdrv_co_readv); 1187 1188 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1189 1190 out: 1191 if (qiov == &local_qiov) { 1192 qemu_iovec_destroy(&local_qiov); 1193 } 1194 1195 return ret; 1196 } 1197 1198 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1199 int64_t offset, int64_t bytes, 1200 QEMUIOVector *qiov, 1201 size_t qiov_offset, int flags) 1202 { 1203 BlockDriver *drv = bs->drv; 1204 int64_t sector_num; 1205 unsigned int nb_sectors; 1206 QEMUIOVector local_qiov; 1207 int ret; 1208 1209 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1210 assert(!(flags & ~BDRV_REQ_MASK)); 1211 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1212 1213 if (!drv) { 1214 return -ENOMEDIUM; 1215 } 1216 1217 if (drv->bdrv_co_pwritev_part) { 1218 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1219 flags & bs->supported_write_flags); 1220 flags &= ~bs->supported_write_flags; 1221 goto emulate_flags; 1222 } 1223 1224 if (qiov_offset > 0 || bytes != qiov->size) { 1225 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1226 qiov = &local_qiov; 1227 } 1228 1229 if (drv->bdrv_co_pwritev) { 1230 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1231 flags & bs->supported_write_flags); 1232 flags &= ~bs->supported_write_flags; 1233 goto emulate_flags; 1234 } 1235 1236 if (drv->bdrv_aio_pwritev) { 1237 BlockAIOCB *acb; 1238 CoroutineIOCompletion co = { 1239 .coroutine = qemu_coroutine_self(), 1240 }; 1241 1242 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1243 flags & bs->supported_write_flags, 1244 bdrv_co_io_em_complete, &co); 1245 flags &= ~bs->supported_write_flags; 1246 if (acb == NULL) { 1247 ret = -EIO; 1248 } else { 1249 qemu_coroutine_yield(); 1250 ret = co.ret; 1251 } 1252 goto emulate_flags; 1253 } 1254 1255 sector_num = offset >> BDRV_SECTOR_BITS; 1256 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1257 1258 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1259 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1260 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1261 1262 assert(drv->bdrv_co_writev); 1263 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1264 flags & bs->supported_write_flags); 1265 flags &= ~bs->supported_write_flags; 1266 1267 emulate_flags: 1268 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1269 ret = bdrv_co_flush(bs); 1270 } 1271 1272 if (qiov == &local_qiov) { 1273 qemu_iovec_destroy(&local_qiov); 1274 } 1275 1276 return ret; 1277 } 1278 1279 static int coroutine_fn 1280 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1281 int64_t bytes, QEMUIOVector *qiov, 1282 size_t qiov_offset) 1283 { 1284 BlockDriver *drv = bs->drv; 1285 QEMUIOVector local_qiov; 1286 int ret; 1287 1288 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1289 1290 if (!drv) { 1291 return -ENOMEDIUM; 1292 } 1293 1294 if (!block_driver_can_compress(drv)) { 1295 return -ENOTSUP; 1296 } 1297 1298 if (drv->bdrv_co_pwritev_compressed_part) { 1299 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1300 qiov, qiov_offset); 1301 } 1302 1303 if (qiov_offset == 0) { 1304 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1305 } 1306 1307 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1308 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1309 qemu_iovec_destroy(&local_qiov); 1310 1311 return ret; 1312 } 1313 1314 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1315 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1316 size_t qiov_offset, int flags) 1317 { 1318 BlockDriverState *bs = child->bs; 1319 1320 /* Perform I/O through a temporary buffer so that users who scribble over 1321 * their read buffer while the operation is in progress do not end up 1322 * modifying the image file. This is critical for zero-copy guest I/O 1323 * where anything might happen inside guest memory. 1324 */ 1325 void *bounce_buffer = NULL; 1326 1327 BlockDriver *drv = bs->drv; 1328 int64_t cluster_offset; 1329 int64_t cluster_bytes; 1330 int64_t skip_bytes; 1331 int ret; 1332 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1333 BDRV_REQUEST_MAX_BYTES); 1334 int64_t progress = 0; 1335 bool skip_write; 1336 1337 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1338 1339 if (!drv) { 1340 return -ENOMEDIUM; 1341 } 1342 1343 /* 1344 * Do not write anything when the BDS is inactive. That is not 1345 * allowed, and it would not help. 1346 */ 1347 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1348 1349 /* FIXME We cannot require callers to have write permissions when all they 1350 * are doing is a read request. If we did things right, write permissions 1351 * would be obtained anyway, but internally by the copy-on-read code. As 1352 * long as it is implemented here rather than in a separate filter driver, 1353 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1354 * it could request permissions. Therefore we have to bypass the permission 1355 * system for the moment. */ 1356 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1357 1358 /* Cover entire cluster so no additional backing file I/O is required when 1359 * allocating cluster in the image file. Note that this value may exceed 1360 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1361 * is one reason we loop rather than doing it all at once. 1362 */ 1363 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1364 skip_bytes = offset - cluster_offset; 1365 1366 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1367 cluster_offset, cluster_bytes); 1368 1369 while (cluster_bytes) { 1370 int64_t pnum; 1371 1372 if (skip_write) { 1373 ret = 1; /* "already allocated", so nothing will be copied */ 1374 pnum = MIN(cluster_bytes, max_transfer); 1375 } else { 1376 ret = bdrv_is_allocated(bs, cluster_offset, 1377 MIN(cluster_bytes, max_transfer), &pnum); 1378 if (ret < 0) { 1379 /* 1380 * Safe to treat errors in querying allocation as if 1381 * unallocated; we'll probably fail again soon on the 1382 * read, but at least that will set a decent errno. 1383 */ 1384 pnum = MIN(cluster_bytes, max_transfer); 1385 } 1386 1387 /* Stop at EOF if the image ends in the middle of the cluster */ 1388 if (ret == 0 && pnum == 0) { 1389 assert(progress >= bytes); 1390 break; 1391 } 1392 1393 assert(skip_bytes < pnum); 1394 } 1395 1396 if (ret <= 0) { 1397 QEMUIOVector local_qiov; 1398 1399 /* Must copy-on-read; use the bounce buffer */ 1400 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1401 if (!bounce_buffer) { 1402 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1403 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1404 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1405 1406 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1407 if (!bounce_buffer) { 1408 ret = -ENOMEM; 1409 goto err; 1410 } 1411 } 1412 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1413 1414 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1415 &local_qiov, 0, 0); 1416 if (ret < 0) { 1417 goto err; 1418 } 1419 1420 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1421 if (drv->bdrv_co_pwrite_zeroes && 1422 buffer_is_zero(bounce_buffer, pnum)) { 1423 /* FIXME: Should we (perhaps conditionally) be setting 1424 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1425 * that still correctly reads as zero? */ 1426 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1427 BDRV_REQ_WRITE_UNCHANGED); 1428 } else { 1429 /* This does not change the data on the disk, it is not 1430 * necessary to flush even in cache=writethrough mode. 1431 */ 1432 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1433 &local_qiov, 0, 1434 BDRV_REQ_WRITE_UNCHANGED); 1435 } 1436 1437 if (ret < 0) { 1438 /* It might be okay to ignore write errors for guest 1439 * requests. If this is a deliberate copy-on-read 1440 * then we don't want to ignore the error. Simply 1441 * report it in all cases. 1442 */ 1443 goto err; 1444 } 1445 1446 if (!(flags & BDRV_REQ_PREFETCH)) { 1447 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1448 bounce_buffer + skip_bytes, 1449 MIN(pnum - skip_bytes, bytes - progress)); 1450 } 1451 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1452 /* Read directly into the destination */ 1453 ret = bdrv_driver_preadv(bs, offset + progress, 1454 MIN(pnum - skip_bytes, bytes - progress), 1455 qiov, qiov_offset + progress, 0); 1456 if (ret < 0) { 1457 goto err; 1458 } 1459 } 1460 1461 cluster_offset += pnum; 1462 cluster_bytes -= pnum; 1463 progress += pnum - skip_bytes; 1464 skip_bytes = 0; 1465 } 1466 ret = 0; 1467 1468 err: 1469 qemu_vfree(bounce_buffer); 1470 return ret; 1471 } 1472 1473 /* 1474 * Forwards an already correctly aligned request to the BlockDriver. This 1475 * handles copy on read, zeroing after EOF, and fragmentation of large 1476 * reads; any other features must be implemented by the caller. 1477 */ 1478 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1479 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1480 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1481 { 1482 BlockDriverState *bs = child->bs; 1483 int64_t total_bytes, max_bytes; 1484 int ret = 0; 1485 int64_t bytes_remaining = bytes; 1486 int max_transfer; 1487 1488 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1489 assert(is_power_of_2(align)); 1490 assert((offset & (align - 1)) == 0); 1491 assert((bytes & (align - 1)) == 0); 1492 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1493 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1494 align); 1495 1496 /* TODO: We would need a per-BDS .supported_read_flags and 1497 * potential fallback support, if we ever implement any read flags 1498 * to pass through to drivers. For now, there aren't any 1499 * passthrough flags. */ 1500 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH))); 1501 1502 /* Handle Copy on Read and associated serialisation */ 1503 if (flags & BDRV_REQ_COPY_ON_READ) { 1504 /* If we touch the same cluster it counts as an overlap. This 1505 * guarantees that allocating writes will be serialized and not race 1506 * with each other for the same cluster. For example, in copy-on-read 1507 * it ensures that the CoR read and write operations are atomic and 1508 * guest writes cannot interleave between them. */ 1509 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1510 } else { 1511 bdrv_wait_serialising_requests(req); 1512 } 1513 1514 if (flags & BDRV_REQ_COPY_ON_READ) { 1515 int64_t pnum; 1516 1517 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1518 flags &= ~BDRV_REQ_COPY_ON_READ; 1519 1520 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1521 if (ret < 0) { 1522 goto out; 1523 } 1524 1525 if (!ret || pnum != bytes) { 1526 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1527 qiov, qiov_offset, flags); 1528 goto out; 1529 } else if (flags & BDRV_REQ_PREFETCH) { 1530 goto out; 1531 } 1532 } 1533 1534 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1535 total_bytes = bdrv_getlength(bs); 1536 if (total_bytes < 0) { 1537 ret = total_bytes; 1538 goto out; 1539 } 1540 1541 assert(!(flags & ~bs->supported_read_flags)); 1542 1543 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1544 if (bytes <= max_bytes && bytes <= max_transfer) { 1545 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1546 goto out; 1547 } 1548 1549 while (bytes_remaining) { 1550 int64_t num; 1551 1552 if (max_bytes) { 1553 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1554 assert(num); 1555 1556 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1557 num, qiov, 1558 qiov_offset + bytes - bytes_remaining, 1559 flags); 1560 max_bytes -= num; 1561 } else { 1562 num = bytes_remaining; 1563 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1564 0, bytes_remaining); 1565 } 1566 if (ret < 0) { 1567 goto out; 1568 } 1569 bytes_remaining -= num; 1570 } 1571 1572 out: 1573 return ret < 0 ? ret : 0; 1574 } 1575 1576 /* 1577 * Request padding 1578 * 1579 * |<---- align ----->| |<----- align ---->| 1580 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1581 * | | | | | | 1582 * -*----------$-------*-------- ... --------*-----$------------*--- 1583 * | | | | | | 1584 * | offset | | end | 1585 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1586 * [buf ... ) [tail_buf ) 1587 * 1588 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1589 * is placed at the beginning of @buf and @tail at the @end. 1590 * 1591 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1592 * around tail, if tail exists. 1593 * 1594 * @merge_reads is true for small requests, 1595 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1596 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1597 */ 1598 typedef struct BdrvRequestPadding { 1599 uint8_t *buf; 1600 size_t buf_len; 1601 uint8_t *tail_buf; 1602 size_t head; 1603 size_t tail; 1604 bool merge_reads; 1605 QEMUIOVector local_qiov; 1606 } BdrvRequestPadding; 1607 1608 static bool bdrv_init_padding(BlockDriverState *bs, 1609 int64_t offset, int64_t bytes, 1610 BdrvRequestPadding *pad) 1611 { 1612 int64_t align = bs->bl.request_alignment; 1613 int64_t sum; 1614 1615 bdrv_check_request(offset, bytes, &error_abort); 1616 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1617 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1618 1619 memset(pad, 0, sizeof(*pad)); 1620 1621 pad->head = offset & (align - 1); 1622 pad->tail = ((offset + bytes) & (align - 1)); 1623 if (pad->tail) { 1624 pad->tail = align - pad->tail; 1625 } 1626 1627 if (!pad->head && !pad->tail) { 1628 return false; 1629 } 1630 1631 assert(bytes); /* Nothing good in aligning zero-length requests */ 1632 1633 sum = pad->head + bytes + pad->tail; 1634 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1635 pad->buf = qemu_blockalign(bs, pad->buf_len); 1636 pad->merge_reads = sum == pad->buf_len; 1637 if (pad->tail) { 1638 pad->tail_buf = pad->buf + pad->buf_len - align; 1639 } 1640 1641 return true; 1642 } 1643 1644 static int bdrv_padding_rmw_read(BdrvChild *child, 1645 BdrvTrackedRequest *req, 1646 BdrvRequestPadding *pad, 1647 bool zero_middle) 1648 { 1649 QEMUIOVector local_qiov; 1650 BlockDriverState *bs = child->bs; 1651 uint64_t align = bs->bl.request_alignment; 1652 int ret; 1653 1654 assert(req->serialising && pad->buf); 1655 1656 if (pad->head || pad->merge_reads) { 1657 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1658 1659 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1660 1661 if (pad->head) { 1662 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1663 } 1664 if (pad->merge_reads && pad->tail) { 1665 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1666 } 1667 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1668 align, &local_qiov, 0, 0); 1669 if (ret < 0) { 1670 return ret; 1671 } 1672 if (pad->head) { 1673 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1674 } 1675 if (pad->merge_reads && pad->tail) { 1676 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1677 } 1678 1679 if (pad->merge_reads) { 1680 goto zero_mem; 1681 } 1682 } 1683 1684 if (pad->tail) { 1685 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1686 1687 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1688 ret = bdrv_aligned_preadv( 1689 child, req, 1690 req->overlap_offset + req->overlap_bytes - align, 1691 align, align, &local_qiov, 0, 0); 1692 if (ret < 0) { 1693 return ret; 1694 } 1695 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1696 } 1697 1698 zero_mem: 1699 if (zero_middle) { 1700 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1701 } 1702 1703 return 0; 1704 } 1705 1706 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1707 { 1708 if (pad->buf) { 1709 qemu_vfree(pad->buf); 1710 qemu_iovec_destroy(&pad->local_qiov); 1711 } 1712 memset(pad, 0, sizeof(*pad)); 1713 } 1714 1715 /* 1716 * bdrv_pad_request 1717 * 1718 * Exchange request parameters with padded request if needed. Don't include RMW 1719 * read of padding, bdrv_padding_rmw_read() should be called separately if 1720 * needed. 1721 * 1722 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1723 * - on function start they represent original request 1724 * - on failure or when padding is not needed they are unchanged 1725 * - on success when padding is needed they represent padded request 1726 */ 1727 static int bdrv_pad_request(BlockDriverState *bs, 1728 QEMUIOVector **qiov, size_t *qiov_offset, 1729 int64_t *offset, int64_t *bytes, 1730 BdrvRequestPadding *pad, bool *padded) 1731 { 1732 int ret; 1733 1734 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1735 1736 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1737 if (padded) { 1738 *padded = false; 1739 } 1740 return 0; 1741 } 1742 1743 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1744 *qiov, *qiov_offset, *bytes, 1745 pad->buf + pad->buf_len - pad->tail, 1746 pad->tail); 1747 if (ret < 0) { 1748 bdrv_padding_destroy(pad); 1749 return ret; 1750 } 1751 *bytes += pad->head + pad->tail; 1752 *offset -= pad->head; 1753 *qiov = &pad->local_qiov; 1754 *qiov_offset = 0; 1755 if (padded) { 1756 *padded = true; 1757 } 1758 1759 return 0; 1760 } 1761 1762 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1763 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1764 BdrvRequestFlags flags) 1765 { 1766 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1767 } 1768 1769 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1770 int64_t offset, int64_t bytes, 1771 QEMUIOVector *qiov, size_t qiov_offset, 1772 BdrvRequestFlags flags) 1773 { 1774 BlockDriverState *bs = child->bs; 1775 BdrvTrackedRequest req; 1776 BdrvRequestPadding pad; 1777 int ret; 1778 1779 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1780 1781 if (!bdrv_is_inserted(bs)) { 1782 return -ENOMEDIUM; 1783 } 1784 1785 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1786 if (ret < 0) { 1787 return ret; 1788 } 1789 1790 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1791 /* 1792 * Aligning zero request is nonsense. Even if driver has special meaning 1793 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1794 * it to driver due to request_alignment. 1795 * 1796 * Still, no reason to return an error if someone do unaligned 1797 * zero-length read occasionally. 1798 */ 1799 return 0; 1800 } 1801 1802 bdrv_inc_in_flight(bs); 1803 1804 /* Don't do copy-on-read if we read data before write operation */ 1805 if (qatomic_read(&bs->copy_on_read)) { 1806 flags |= BDRV_REQ_COPY_ON_READ; 1807 } 1808 1809 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 1810 NULL); 1811 if (ret < 0) { 1812 return ret; 1813 } 1814 1815 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1816 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1817 bs->bl.request_alignment, 1818 qiov, qiov_offset, flags); 1819 tracked_request_end(&req); 1820 bdrv_dec_in_flight(bs); 1821 1822 bdrv_padding_destroy(&pad); 1823 1824 return ret; 1825 } 1826 1827 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1828 int64_t offset, int64_t bytes, BdrvRequestFlags flags) 1829 { 1830 BlockDriver *drv = bs->drv; 1831 QEMUIOVector qiov; 1832 void *buf = NULL; 1833 int ret = 0; 1834 bool need_flush = false; 1835 int head = 0; 1836 int tail = 0; 1837 1838 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1839 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1840 bs->bl.request_alignment); 1841 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1842 1843 bdrv_check_request(offset, bytes, &error_abort); 1844 1845 if (!drv) { 1846 return -ENOMEDIUM; 1847 } 1848 1849 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1850 return -ENOTSUP; 1851 } 1852 1853 assert(alignment % bs->bl.request_alignment == 0); 1854 head = offset % alignment; 1855 tail = (offset + bytes) % alignment; 1856 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1857 assert(max_write_zeroes >= bs->bl.request_alignment); 1858 1859 while (bytes > 0 && !ret) { 1860 int64_t num = bytes; 1861 1862 /* Align request. Block drivers can expect the "bulk" of the request 1863 * to be aligned, and that unaligned requests do not cross cluster 1864 * boundaries. 1865 */ 1866 if (head) { 1867 /* Make a small request up to the first aligned sector. For 1868 * convenience, limit this request to max_transfer even if 1869 * we don't need to fall back to writes. */ 1870 num = MIN(MIN(bytes, max_transfer), alignment - head); 1871 head = (head + num) % alignment; 1872 assert(num < max_write_zeroes); 1873 } else if (tail && num > alignment) { 1874 /* Shorten the request to the last aligned sector. */ 1875 num -= tail; 1876 } 1877 1878 /* limit request size */ 1879 if (num > max_write_zeroes) { 1880 num = max_write_zeroes; 1881 } 1882 1883 ret = -ENOTSUP; 1884 /* First try the efficient write zeroes operation */ 1885 if (drv->bdrv_co_pwrite_zeroes) { 1886 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1887 flags & bs->supported_zero_flags); 1888 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1889 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1890 need_flush = true; 1891 } 1892 } else { 1893 assert(!bs->supported_zero_flags); 1894 } 1895 1896 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1897 /* Fall back to bounce buffer if write zeroes is unsupported */ 1898 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1899 1900 if ((flags & BDRV_REQ_FUA) && 1901 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1902 /* No need for bdrv_driver_pwrite() to do a fallback 1903 * flush on each chunk; use just one at the end */ 1904 write_flags &= ~BDRV_REQ_FUA; 1905 need_flush = true; 1906 } 1907 num = MIN(num, max_transfer); 1908 if (buf == NULL) { 1909 buf = qemu_try_blockalign0(bs, num); 1910 if (buf == NULL) { 1911 ret = -ENOMEM; 1912 goto fail; 1913 } 1914 } 1915 qemu_iovec_init_buf(&qiov, buf, num); 1916 1917 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1918 1919 /* Keep bounce buffer around if it is big enough for all 1920 * all future requests. 1921 */ 1922 if (num < max_transfer) { 1923 qemu_vfree(buf); 1924 buf = NULL; 1925 } 1926 } 1927 1928 offset += num; 1929 bytes -= num; 1930 } 1931 1932 fail: 1933 if (ret == 0 && need_flush) { 1934 ret = bdrv_co_flush(bs); 1935 } 1936 qemu_vfree(buf); 1937 return ret; 1938 } 1939 1940 static inline int coroutine_fn 1941 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1942 BdrvTrackedRequest *req, int flags) 1943 { 1944 BlockDriverState *bs = child->bs; 1945 1946 bdrv_check_request(offset, bytes, &error_abort); 1947 1948 if (bs->read_only) { 1949 return -EPERM; 1950 } 1951 1952 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1953 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1954 assert(!(flags & ~BDRV_REQ_MASK)); 1955 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1956 1957 if (flags & BDRV_REQ_SERIALISING) { 1958 QEMU_LOCK_GUARD(&bs->reqs_lock); 1959 1960 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1961 1962 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1963 return -EBUSY; 1964 } 1965 1966 bdrv_wait_serialising_requests_locked(req); 1967 } else { 1968 bdrv_wait_serialising_requests(req); 1969 } 1970 1971 assert(req->overlap_offset <= offset); 1972 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1973 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 1974 child->perm & BLK_PERM_RESIZE); 1975 1976 switch (req->type) { 1977 case BDRV_TRACKED_WRITE: 1978 case BDRV_TRACKED_DISCARD: 1979 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1980 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1981 } else { 1982 assert(child->perm & BLK_PERM_WRITE); 1983 } 1984 return notifier_with_return_list_notify(&bs->before_write_notifiers, 1985 req); 1986 case BDRV_TRACKED_TRUNCATE: 1987 assert(child->perm & BLK_PERM_RESIZE); 1988 return 0; 1989 default: 1990 abort(); 1991 } 1992 } 1993 1994 static inline void coroutine_fn 1995 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 1996 BdrvTrackedRequest *req, int ret) 1997 { 1998 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1999 BlockDriverState *bs = child->bs; 2000 2001 bdrv_check_request(offset, bytes, &error_abort); 2002 2003 qatomic_inc(&bs->write_gen); 2004 2005 /* 2006 * Discard cannot extend the image, but in error handling cases, such as 2007 * when reverting a qcow2 cluster allocation, the discarded range can pass 2008 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2009 * here. Instead, just skip it, since semantically a discard request 2010 * beyond EOF cannot expand the image anyway. 2011 */ 2012 if (ret == 0 && 2013 (req->type == BDRV_TRACKED_TRUNCATE || 2014 end_sector > bs->total_sectors) && 2015 req->type != BDRV_TRACKED_DISCARD) { 2016 bs->total_sectors = end_sector; 2017 bdrv_parent_cb_resize(bs); 2018 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2019 } 2020 if (req->bytes) { 2021 switch (req->type) { 2022 case BDRV_TRACKED_WRITE: 2023 stat64_max(&bs->wr_highest_offset, offset + bytes); 2024 /* fall through, to set dirty bits */ 2025 case BDRV_TRACKED_DISCARD: 2026 bdrv_set_dirty(bs, offset, bytes); 2027 break; 2028 default: 2029 break; 2030 } 2031 } 2032 } 2033 2034 /* 2035 * Forwards an already correctly aligned write request to the BlockDriver, 2036 * after possibly fragmenting it. 2037 */ 2038 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 2039 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 2040 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 2041 { 2042 BlockDriverState *bs = child->bs; 2043 BlockDriver *drv = bs->drv; 2044 int ret; 2045 2046 int64_t bytes_remaining = bytes; 2047 int max_transfer; 2048 2049 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2050 2051 if (!drv) { 2052 return -ENOMEDIUM; 2053 } 2054 2055 if (bdrv_has_readonly_bitmaps(bs)) { 2056 return -EPERM; 2057 } 2058 2059 assert(is_power_of_2(align)); 2060 assert((offset & (align - 1)) == 0); 2061 assert((bytes & (align - 1)) == 0); 2062 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2063 align); 2064 2065 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2066 2067 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2068 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2069 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2070 flags |= BDRV_REQ_ZERO_WRITE; 2071 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2072 flags |= BDRV_REQ_MAY_UNMAP; 2073 } 2074 } 2075 2076 if (ret < 0) { 2077 /* Do nothing, write notifier decided to fail this request */ 2078 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2079 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2080 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2081 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2082 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2083 qiov, qiov_offset); 2084 } else if (bytes <= max_transfer) { 2085 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2086 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2087 } else { 2088 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2089 while (bytes_remaining) { 2090 int num = MIN(bytes_remaining, max_transfer); 2091 int local_flags = flags; 2092 2093 assert(num); 2094 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2095 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2096 /* If FUA is going to be emulated by flush, we only 2097 * need to flush on the last iteration */ 2098 local_flags &= ~BDRV_REQ_FUA; 2099 } 2100 2101 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2102 num, qiov, 2103 qiov_offset + bytes - bytes_remaining, 2104 local_flags); 2105 if (ret < 0) { 2106 break; 2107 } 2108 bytes_remaining -= num; 2109 } 2110 } 2111 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 2112 2113 if (ret >= 0) { 2114 ret = 0; 2115 } 2116 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2117 2118 return ret; 2119 } 2120 2121 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 2122 int64_t offset, 2123 int64_t bytes, 2124 BdrvRequestFlags flags, 2125 BdrvTrackedRequest *req) 2126 { 2127 BlockDriverState *bs = child->bs; 2128 QEMUIOVector local_qiov; 2129 uint64_t align = bs->bl.request_alignment; 2130 int ret = 0; 2131 bool padding; 2132 BdrvRequestPadding pad; 2133 2134 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2135 if (padding) { 2136 bdrv_make_request_serialising(req, align); 2137 2138 bdrv_padding_rmw_read(child, req, &pad, true); 2139 2140 if (pad.head || pad.merge_reads) { 2141 int64_t aligned_offset = offset & ~(align - 1); 2142 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2143 2144 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2145 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2146 align, &local_qiov, 0, 2147 flags & ~BDRV_REQ_ZERO_WRITE); 2148 if (ret < 0 || pad.merge_reads) { 2149 /* Error or all work is done */ 2150 goto out; 2151 } 2152 offset += write_bytes - pad.head; 2153 bytes -= write_bytes - pad.head; 2154 } 2155 } 2156 2157 assert(!bytes || (offset & (align - 1)) == 0); 2158 if (bytes >= align) { 2159 /* Write the aligned part in the middle. */ 2160 int64_t aligned_bytes = bytes & ~(align - 1); 2161 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2162 NULL, 0, flags); 2163 if (ret < 0) { 2164 goto out; 2165 } 2166 bytes -= aligned_bytes; 2167 offset += aligned_bytes; 2168 } 2169 2170 assert(!bytes || (offset & (align - 1)) == 0); 2171 if (bytes) { 2172 assert(align == pad.tail + bytes); 2173 2174 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2175 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2176 &local_qiov, 0, 2177 flags & ~BDRV_REQ_ZERO_WRITE); 2178 } 2179 2180 out: 2181 bdrv_padding_destroy(&pad); 2182 2183 return ret; 2184 } 2185 2186 /* 2187 * Handle a write request in coroutine context 2188 */ 2189 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2190 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2191 BdrvRequestFlags flags) 2192 { 2193 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2194 } 2195 2196 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2197 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2198 BdrvRequestFlags flags) 2199 { 2200 BlockDriverState *bs = child->bs; 2201 BdrvTrackedRequest req; 2202 uint64_t align = bs->bl.request_alignment; 2203 BdrvRequestPadding pad; 2204 int ret; 2205 bool padded = false; 2206 2207 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2208 2209 if (!bdrv_is_inserted(bs)) { 2210 return -ENOMEDIUM; 2211 } 2212 2213 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2214 if (ret < 0) { 2215 return ret; 2216 } 2217 2218 /* If the request is misaligned then we can't make it efficient */ 2219 if ((flags & BDRV_REQ_NO_FALLBACK) && 2220 !QEMU_IS_ALIGNED(offset | bytes, align)) 2221 { 2222 return -ENOTSUP; 2223 } 2224 2225 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2226 /* 2227 * Aligning zero request is nonsense. Even if driver has special meaning 2228 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2229 * it to driver due to request_alignment. 2230 * 2231 * Still, no reason to return an error if someone do unaligned 2232 * zero-length write occasionally. 2233 */ 2234 return 0; 2235 } 2236 2237 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2238 /* 2239 * Pad request for following read-modify-write cycle. 2240 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2241 * alignment only if there is no ZERO flag. 2242 */ 2243 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 2244 &padded); 2245 if (ret < 0) { 2246 return ret; 2247 } 2248 } 2249 2250 bdrv_inc_in_flight(bs); 2251 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2252 2253 if (flags & BDRV_REQ_ZERO_WRITE) { 2254 assert(!padded); 2255 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2256 goto out; 2257 } 2258 2259 if (padded) { 2260 /* 2261 * Request was unaligned to request_alignment and therefore 2262 * padded. We are going to do read-modify-write, and must 2263 * serialize the request to prevent interactions of the 2264 * widened region with other transactions. 2265 */ 2266 bdrv_make_request_serialising(&req, align); 2267 bdrv_padding_rmw_read(child, &req, &pad, false); 2268 } 2269 2270 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2271 qiov, qiov_offset, flags); 2272 2273 bdrv_padding_destroy(&pad); 2274 2275 out: 2276 tracked_request_end(&req); 2277 bdrv_dec_in_flight(bs); 2278 2279 return ret; 2280 } 2281 2282 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2283 int64_t bytes, BdrvRequestFlags flags) 2284 { 2285 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2286 2287 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2288 flags &= ~BDRV_REQ_MAY_UNMAP; 2289 } 2290 2291 return bdrv_co_pwritev(child, offset, bytes, NULL, 2292 BDRV_REQ_ZERO_WRITE | flags); 2293 } 2294 2295 /* 2296 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2297 */ 2298 int bdrv_flush_all(void) 2299 { 2300 BdrvNextIterator it; 2301 BlockDriverState *bs = NULL; 2302 int result = 0; 2303 2304 /* 2305 * bdrv queue is managed by record/replay, 2306 * creating new flush request for stopping 2307 * the VM may break the determinism 2308 */ 2309 if (replay_events_enabled()) { 2310 return result; 2311 } 2312 2313 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2314 AioContext *aio_context = bdrv_get_aio_context(bs); 2315 int ret; 2316 2317 aio_context_acquire(aio_context); 2318 ret = bdrv_flush(bs); 2319 if (ret < 0 && !result) { 2320 result = ret; 2321 } 2322 aio_context_release(aio_context); 2323 } 2324 2325 return result; 2326 } 2327 2328 /* 2329 * Returns the allocation status of the specified sectors. 2330 * Drivers not implementing the functionality are assumed to not support 2331 * backing files, hence all their sectors are reported as allocated. 2332 * 2333 * If 'want_zero' is true, the caller is querying for mapping 2334 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2335 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2336 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2337 * 2338 * If 'offset' is beyond the end of the disk image the return value is 2339 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2340 * 2341 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2342 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2343 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2344 * 2345 * 'pnum' is set to the number of bytes (including and immediately 2346 * following the specified offset) that are easily known to be in the 2347 * same allocated/unallocated state. Note that a second call starting 2348 * at the original offset plus returned pnum may have the same status. 2349 * The returned value is non-zero on success except at end-of-file. 2350 * 2351 * Returns negative errno on failure. Otherwise, if the 2352 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2353 * set to the host mapping and BDS corresponding to the guest offset. 2354 */ 2355 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2356 bool want_zero, 2357 int64_t offset, int64_t bytes, 2358 int64_t *pnum, int64_t *map, 2359 BlockDriverState **file) 2360 { 2361 int64_t total_size; 2362 int64_t n; /* bytes */ 2363 int ret; 2364 int64_t local_map = 0; 2365 BlockDriverState *local_file = NULL; 2366 int64_t aligned_offset, aligned_bytes; 2367 uint32_t align; 2368 bool has_filtered_child; 2369 2370 assert(pnum); 2371 *pnum = 0; 2372 total_size = bdrv_getlength(bs); 2373 if (total_size < 0) { 2374 ret = total_size; 2375 goto early_out; 2376 } 2377 2378 if (offset >= total_size) { 2379 ret = BDRV_BLOCK_EOF; 2380 goto early_out; 2381 } 2382 if (!bytes) { 2383 ret = 0; 2384 goto early_out; 2385 } 2386 2387 n = total_size - offset; 2388 if (n < bytes) { 2389 bytes = n; 2390 } 2391 2392 /* Must be non-NULL or bdrv_getlength() would have failed */ 2393 assert(bs->drv); 2394 has_filtered_child = bdrv_filter_child(bs); 2395 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2396 *pnum = bytes; 2397 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2398 if (offset + bytes == total_size) { 2399 ret |= BDRV_BLOCK_EOF; 2400 } 2401 if (bs->drv->protocol_name) { 2402 ret |= BDRV_BLOCK_OFFSET_VALID; 2403 local_map = offset; 2404 local_file = bs; 2405 } 2406 goto early_out; 2407 } 2408 2409 bdrv_inc_in_flight(bs); 2410 2411 /* Round out to request_alignment boundaries */ 2412 align = bs->bl.request_alignment; 2413 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2414 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2415 2416 if (bs->drv->bdrv_co_block_status) { 2417 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2418 aligned_bytes, pnum, &local_map, 2419 &local_file); 2420 } else { 2421 /* Default code for filters */ 2422 2423 local_file = bdrv_filter_bs(bs); 2424 assert(local_file); 2425 2426 *pnum = aligned_bytes; 2427 local_map = aligned_offset; 2428 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2429 } 2430 if (ret < 0) { 2431 *pnum = 0; 2432 goto out; 2433 } 2434 2435 /* 2436 * The driver's result must be a non-zero multiple of request_alignment. 2437 * Clamp pnum and adjust map to original request. 2438 */ 2439 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2440 align > offset - aligned_offset); 2441 if (ret & BDRV_BLOCK_RECURSE) { 2442 assert(ret & BDRV_BLOCK_DATA); 2443 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2444 assert(!(ret & BDRV_BLOCK_ZERO)); 2445 } 2446 2447 *pnum -= offset - aligned_offset; 2448 if (*pnum > bytes) { 2449 *pnum = bytes; 2450 } 2451 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2452 local_map += offset - aligned_offset; 2453 } 2454 2455 if (ret & BDRV_BLOCK_RAW) { 2456 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2457 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2458 *pnum, pnum, &local_map, &local_file); 2459 goto out; 2460 } 2461 2462 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2463 ret |= BDRV_BLOCK_ALLOCATED; 2464 } else if (bs->drv->supports_backing) { 2465 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2466 2467 if (!cow_bs) { 2468 ret |= BDRV_BLOCK_ZERO; 2469 } else if (want_zero) { 2470 int64_t size2 = bdrv_getlength(cow_bs); 2471 2472 if (size2 >= 0 && offset >= size2) { 2473 ret |= BDRV_BLOCK_ZERO; 2474 } 2475 } 2476 } 2477 2478 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2479 local_file && local_file != bs && 2480 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2481 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2482 int64_t file_pnum; 2483 int ret2; 2484 2485 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2486 *pnum, &file_pnum, NULL, NULL); 2487 if (ret2 >= 0) { 2488 /* Ignore errors. This is just providing extra information, it 2489 * is useful but not necessary. 2490 */ 2491 if (ret2 & BDRV_BLOCK_EOF && 2492 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2493 /* 2494 * It is valid for the format block driver to read 2495 * beyond the end of the underlying file's current 2496 * size; such areas read as zero. 2497 */ 2498 ret |= BDRV_BLOCK_ZERO; 2499 } else { 2500 /* Limit request to the range reported by the protocol driver */ 2501 *pnum = file_pnum; 2502 ret |= (ret2 & BDRV_BLOCK_ZERO); 2503 } 2504 } 2505 } 2506 2507 out: 2508 bdrv_dec_in_flight(bs); 2509 if (ret >= 0 && offset + *pnum == total_size) { 2510 ret |= BDRV_BLOCK_EOF; 2511 } 2512 early_out: 2513 if (file) { 2514 *file = local_file; 2515 } 2516 if (map) { 2517 *map = local_map; 2518 } 2519 return ret; 2520 } 2521 2522 int coroutine_fn 2523 bdrv_co_common_block_status_above(BlockDriverState *bs, 2524 BlockDriverState *base, 2525 bool include_base, 2526 bool want_zero, 2527 int64_t offset, 2528 int64_t bytes, 2529 int64_t *pnum, 2530 int64_t *map, 2531 BlockDriverState **file, 2532 int *depth) 2533 { 2534 int ret; 2535 BlockDriverState *p; 2536 int64_t eof = 0; 2537 int dummy; 2538 2539 assert(!include_base || base); /* Can't include NULL base */ 2540 2541 if (!depth) { 2542 depth = &dummy; 2543 } 2544 *depth = 0; 2545 2546 if (!include_base && bs == base) { 2547 *pnum = bytes; 2548 return 0; 2549 } 2550 2551 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2552 ++*depth; 2553 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2554 return ret; 2555 } 2556 2557 if (ret & BDRV_BLOCK_EOF) { 2558 eof = offset + *pnum; 2559 } 2560 2561 assert(*pnum <= bytes); 2562 bytes = *pnum; 2563 2564 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2565 p = bdrv_filter_or_cow_bs(p)) 2566 { 2567 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2568 file); 2569 ++*depth; 2570 if (ret < 0) { 2571 return ret; 2572 } 2573 if (*pnum == 0) { 2574 /* 2575 * The top layer deferred to this layer, and because this layer is 2576 * short, any zeroes that we synthesize beyond EOF behave as if they 2577 * were allocated at this layer. 2578 * 2579 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2580 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2581 * below. 2582 */ 2583 assert(ret & BDRV_BLOCK_EOF); 2584 *pnum = bytes; 2585 if (file) { 2586 *file = p; 2587 } 2588 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2589 break; 2590 } 2591 if (ret & BDRV_BLOCK_ALLOCATED) { 2592 /* 2593 * We've found the node and the status, we must break. 2594 * 2595 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2596 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2597 * below. 2598 */ 2599 ret &= ~BDRV_BLOCK_EOF; 2600 break; 2601 } 2602 2603 if (p == base) { 2604 assert(include_base); 2605 break; 2606 } 2607 2608 /* 2609 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2610 * let's continue the diving. 2611 */ 2612 assert(*pnum <= bytes); 2613 bytes = *pnum; 2614 } 2615 2616 if (offset + *pnum == eof) { 2617 ret |= BDRV_BLOCK_EOF; 2618 } 2619 2620 return ret; 2621 } 2622 2623 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2624 int64_t offset, int64_t bytes, int64_t *pnum, 2625 int64_t *map, BlockDriverState **file) 2626 { 2627 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2628 pnum, map, file, NULL); 2629 } 2630 2631 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2632 int64_t *pnum, int64_t *map, BlockDriverState **file) 2633 { 2634 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2635 offset, bytes, pnum, map, file); 2636 } 2637 2638 /* 2639 * Check @bs (and its backing chain) to see if the range defined 2640 * by @offset and @bytes is known to read as zeroes. 2641 * Return 1 if that is the case, 0 otherwise and -errno on error. 2642 * This test is meant to be fast rather than accurate so returning 0 2643 * does not guarantee non-zero data. 2644 */ 2645 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2646 int64_t bytes) 2647 { 2648 int ret; 2649 int64_t pnum = bytes; 2650 2651 if (!bytes) { 2652 return 1; 2653 } 2654 2655 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset, 2656 bytes, &pnum, NULL, NULL, NULL); 2657 2658 if (ret < 0) { 2659 return ret; 2660 } 2661 2662 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2663 } 2664 2665 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2666 int64_t bytes, int64_t *pnum) 2667 { 2668 int ret; 2669 int64_t dummy; 2670 2671 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2672 bytes, pnum ? pnum : &dummy, NULL, 2673 NULL, NULL); 2674 if (ret < 0) { 2675 return ret; 2676 } 2677 return !!(ret & BDRV_BLOCK_ALLOCATED); 2678 } 2679 2680 /* 2681 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2682 * 2683 * Return a positive depth if (a prefix of) the given range is allocated 2684 * in any image between BASE and TOP (BASE is only included if include_base 2685 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2686 * BASE can be NULL to check if the given offset is allocated in any 2687 * image of the chain. Return 0 otherwise, or negative errno on 2688 * failure. 2689 * 2690 * 'pnum' is set to the number of bytes (including and immediately 2691 * following the specified offset) that are known to be in the same 2692 * allocated/unallocated state. Note that a subsequent call starting 2693 * at 'offset + *pnum' may return the same allocation status (in other 2694 * words, the result is not necessarily the maximum possible range); 2695 * but 'pnum' will only be 0 when end of file is reached. 2696 */ 2697 int bdrv_is_allocated_above(BlockDriverState *top, 2698 BlockDriverState *base, 2699 bool include_base, int64_t offset, 2700 int64_t bytes, int64_t *pnum) 2701 { 2702 int depth; 2703 int ret = bdrv_common_block_status_above(top, base, include_base, false, 2704 offset, bytes, pnum, NULL, NULL, 2705 &depth); 2706 if (ret < 0) { 2707 return ret; 2708 } 2709 2710 if (ret & BDRV_BLOCK_ALLOCATED) { 2711 return depth; 2712 } 2713 return 0; 2714 } 2715 2716 int coroutine_fn 2717 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2718 { 2719 BlockDriver *drv = bs->drv; 2720 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2721 int ret = -ENOTSUP; 2722 2723 if (!drv) { 2724 return -ENOMEDIUM; 2725 } 2726 2727 bdrv_inc_in_flight(bs); 2728 2729 if (drv->bdrv_load_vmstate) { 2730 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2731 } else if (child_bs) { 2732 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2733 } 2734 2735 bdrv_dec_in_flight(bs); 2736 2737 return ret; 2738 } 2739 2740 int coroutine_fn 2741 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2742 { 2743 BlockDriver *drv = bs->drv; 2744 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2745 int ret = -ENOTSUP; 2746 2747 if (!drv) { 2748 return -ENOMEDIUM; 2749 } 2750 2751 bdrv_inc_in_flight(bs); 2752 2753 if (drv->bdrv_save_vmstate) { 2754 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2755 } else if (child_bs) { 2756 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2757 } 2758 2759 bdrv_dec_in_flight(bs); 2760 2761 return ret; 2762 } 2763 2764 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2765 int64_t pos, int size) 2766 { 2767 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2768 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2769 2770 return ret < 0 ? ret : size; 2771 } 2772 2773 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2774 int64_t pos, int size) 2775 { 2776 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2777 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2778 2779 return ret < 0 ? ret : size; 2780 } 2781 2782 /**************************************************************/ 2783 /* async I/Os */ 2784 2785 void bdrv_aio_cancel(BlockAIOCB *acb) 2786 { 2787 qemu_aio_ref(acb); 2788 bdrv_aio_cancel_async(acb); 2789 while (acb->refcnt > 1) { 2790 if (acb->aiocb_info->get_aio_context) { 2791 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2792 } else if (acb->bs) { 2793 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2794 * assert that we're not using an I/O thread. Thread-safe 2795 * code should use bdrv_aio_cancel_async exclusively. 2796 */ 2797 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2798 aio_poll(bdrv_get_aio_context(acb->bs), true); 2799 } else { 2800 abort(); 2801 } 2802 } 2803 qemu_aio_unref(acb); 2804 } 2805 2806 /* Async version of aio cancel. The caller is not blocked if the acb implements 2807 * cancel_async, otherwise we do nothing and let the request normally complete. 2808 * In either case the completion callback must be called. */ 2809 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2810 { 2811 if (acb->aiocb_info->cancel_async) { 2812 acb->aiocb_info->cancel_async(acb); 2813 } 2814 } 2815 2816 /**************************************************************/ 2817 /* Coroutine block device emulation */ 2818 2819 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2820 { 2821 BdrvChild *primary_child = bdrv_primary_child(bs); 2822 BdrvChild *child; 2823 int current_gen; 2824 int ret = 0; 2825 2826 bdrv_inc_in_flight(bs); 2827 2828 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2829 bdrv_is_sg(bs)) { 2830 goto early_exit; 2831 } 2832 2833 qemu_co_mutex_lock(&bs->reqs_lock); 2834 current_gen = qatomic_read(&bs->write_gen); 2835 2836 /* Wait until any previous flushes are completed */ 2837 while (bs->active_flush_req) { 2838 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2839 } 2840 2841 /* Flushes reach this point in nondecreasing current_gen order. */ 2842 bs->active_flush_req = true; 2843 qemu_co_mutex_unlock(&bs->reqs_lock); 2844 2845 /* Write back all layers by calling one driver function */ 2846 if (bs->drv->bdrv_co_flush) { 2847 ret = bs->drv->bdrv_co_flush(bs); 2848 goto out; 2849 } 2850 2851 /* Write back cached data to the OS even with cache=unsafe */ 2852 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 2853 if (bs->drv->bdrv_co_flush_to_os) { 2854 ret = bs->drv->bdrv_co_flush_to_os(bs); 2855 if (ret < 0) { 2856 goto out; 2857 } 2858 } 2859 2860 /* But don't actually force it to the disk with cache=unsafe */ 2861 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2862 goto flush_children; 2863 } 2864 2865 /* Check if we really need to flush anything */ 2866 if (bs->flushed_gen == current_gen) { 2867 goto flush_children; 2868 } 2869 2870 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 2871 if (!bs->drv) { 2872 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2873 * (even in case of apparent success) */ 2874 ret = -ENOMEDIUM; 2875 goto out; 2876 } 2877 if (bs->drv->bdrv_co_flush_to_disk) { 2878 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2879 } else if (bs->drv->bdrv_aio_flush) { 2880 BlockAIOCB *acb; 2881 CoroutineIOCompletion co = { 2882 .coroutine = qemu_coroutine_self(), 2883 }; 2884 2885 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2886 if (acb == NULL) { 2887 ret = -EIO; 2888 } else { 2889 qemu_coroutine_yield(); 2890 ret = co.ret; 2891 } 2892 } else { 2893 /* 2894 * Some block drivers always operate in either writethrough or unsafe 2895 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2896 * know how the server works (because the behaviour is hardcoded or 2897 * depends on server-side configuration), so we can't ensure that 2898 * everything is safe on disk. Returning an error doesn't work because 2899 * that would break guests even if the server operates in writethrough 2900 * mode. 2901 * 2902 * Let's hope the user knows what he's doing. 2903 */ 2904 ret = 0; 2905 } 2906 2907 if (ret < 0) { 2908 goto out; 2909 } 2910 2911 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2912 * in the case of cache=unsafe, so there are no useless flushes. 2913 */ 2914 flush_children: 2915 ret = 0; 2916 QLIST_FOREACH(child, &bs->children, next) { 2917 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 2918 int this_child_ret = bdrv_co_flush(child->bs); 2919 if (!ret) { 2920 ret = this_child_ret; 2921 } 2922 } 2923 } 2924 2925 out: 2926 /* Notify any pending flushes that we have completed */ 2927 if (ret == 0) { 2928 bs->flushed_gen = current_gen; 2929 } 2930 2931 qemu_co_mutex_lock(&bs->reqs_lock); 2932 bs->active_flush_req = false; 2933 /* Return value is ignored - it's ok if wait queue is empty */ 2934 qemu_co_queue_next(&bs->flush_queue); 2935 qemu_co_mutex_unlock(&bs->reqs_lock); 2936 2937 early_exit: 2938 bdrv_dec_in_flight(bs); 2939 return ret; 2940 } 2941 2942 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 2943 int64_t bytes) 2944 { 2945 BdrvTrackedRequest req; 2946 int max_pdiscard, ret; 2947 int head, tail, align; 2948 BlockDriverState *bs = child->bs; 2949 2950 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 2951 return -ENOMEDIUM; 2952 } 2953 2954 if (bdrv_has_readonly_bitmaps(bs)) { 2955 return -EPERM; 2956 } 2957 2958 ret = bdrv_check_request(offset, bytes, NULL); 2959 if (ret < 0) { 2960 return ret; 2961 } 2962 2963 /* Do nothing if disabled. */ 2964 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2965 return 0; 2966 } 2967 2968 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2969 return 0; 2970 } 2971 2972 /* Discard is advisory, but some devices track and coalesce 2973 * unaligned requests, so we must pass everything down rather than 2974 * round here. Still, most devices will just silently ignore 2975 * unaligned requests (by returning -ENOTSUP), so we must fragment 2976 * the request accordingly. */ 2977 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2978 assert(align % bs->bl.request_alignment == 0); 2979 head = offset % align; 2980 tail = (offset + bytes) % align; 2981 2982 bdrv_inc_in_flight(bs); 2983 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2984 2985 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 2986 if (ret < 0) { 2987 goto out; 2988 } 2989 2990 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2991 align); 2992 assert(max_pdiscard >= bs->bl.request_alignment); 2993 2994 while (bytes > 0) { 2995 int64_t num = bytes; 2996 2997 if (head) { 2998 /* Make small requests to get to alignment boundaries. */ 2999 num = MIN(bytes, align - head); 3000 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3001 num %= bs->bl.request_alignment; 3002 } 3003 head = (head + num) % align; 3004 assert(num < max_pdiscard); 3005 } else if (tail) { 3006 if (num > align) { 3007 /* Shorten the request to the last aligned cluster. */ 3008 num -= tail; 3009 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3010 tail > bs->bl.request_alignment) { 3011 tail %= bs->bl.request_alignment; 3012 num -= tail; 3013 } 3014 } 3015 /* limit request size */ 3016 if (num > max_pdiscard) { 3017 num = max_pdiscard; 3018 } 3019 3020 if (!bs->drv) { 3021 ret = -ENOMEDIUM; 3022 goto out; 3023 } 3024 if (bs->drv->bdrv_co_pdiscard) { 3025 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3026 } else { 3027 BlockAIOCB *acb; 3028 CoroutineIOCompletion co = { 3029 .coroutine = qemu_coroutine_self(), 3030 }; 3031 3032 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3033 bdrv_co_io_em_complete, &co); 3034 if (acb == NULL) { 3035 ret = -EIO; 3036 goto out; 3037 } else { 3038 qemu_coroutine_yield(); 3039 ret = co.ret; 3040 } 3041 } 3042 if (ret && ret != -ENOTSUP) { 3043 goto out; 3044 } 3045 3046 offset += num; 3047 bytes -= num; 3048 } 3049 ret = 0; 3050 out: 3051 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3052 tracked_request_end(&req); 3053 bdrv_dec_in_flight(bs); 3054 return ret; 3055 } 3056 3057 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3058 { 3059 BlockDriver *drv = bs->drv; 3060 CoroutineIOCompletion co = { 3061 .coroutine = qemu_coroutine_self(), 3062 }; 3063 BlockAIOCB *acb; 3064 3065 bdrv_inc_in_flight(bs); 3066 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3067 co.ret = -ENOTSUP; 3068 goto out; 3069 } 3070 3071 if (drv->bdrv_co_ioctl) { 3072 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3073 } else { 3074 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3075 if (!acb) { 3076 co.ret = -ENOTSUP; 3077 goto out; 3078 } 3079 qemu_coroutine_yield(); 3080 } 3081 out: 3082 bdrv_dec_in_flight(bs); 3083 return co.ret; 3084 } 3085 3086 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3087 { 3088 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3089 } 3090 3091 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3092 { 3093 return memset(qemu_blockalign(bs, size), 0, size); 3094 } 3095 3096 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3097 { 3098 size_t align = bdrv_opt_mem_align(bs); 3099 3100 /* Ensure that NULL is never returned on success */ 3101 assert(align > 0); 3102 if (size == 0) { 3103 size = align; 3104 } 3105 3106 return qemu_try_memalign(align, size); 3107 } 3108 3109 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3110 { 3111 void *mem = qemu_try_blockalign(bs, size); 3112 3113 if (mem) { 3114 memset(mem, 0, size); 3115 } 3116 3117 return mem; 3118 } 3119 3120 /* 3121 * Check if all memory in this vector is sector aligned. 3122 */ 3123 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 3124 { 3125 int i; 3126 size_t alignment = bdrv_min_mem_align(bs); 3127 3128 for (i = 0; i < qiov->niov; i++) { 3129 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 3130 return false; 3131 } 3132 if (qiov->iov[i].iov_len % alignment) { 3133 return false; 3134 } 3135 } 3136 3137 return true; 3138 } 3139 3140 void bdrv_add_before_write_notifier(BlockDriverState *bs, 3141 NotifierWithReturn *notifier) 3142 { 3143 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 3144 } 3145 3146 void bdrv_io_plug(BlockDriverState *bs) 3147 { 3148 BdrvChild *child; 3149 3150 QLIST_FOREACH(child, &bs->children, next) { 3151 bdrv_io_plug(child->bs); 3152 } 3153 3154 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3155 BlockDriver *drv = bs->drv; 3156 if (drv && drv->bdrv_io_plug) { 3157 drv->bdrv_io_plug(bs); 3158 } 3159 } 3160 } 3161 3162 void bdrv_io_unplug(BlockDriverState *bs) 3163 { 3164 BdrvChild *child; 3165 3166 assert(bs->io_plugged); 3167 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3168 BlockDriver *drv = bs->drv; 3169 if (drv && drv->bdrv_io_unplug) { 3170 drv->bdrv_io_unplug(bs); 3171 } 3172 } 3173 3174 QLIST_FOREACH(child, &bs->children, next) { 3175 bdrv_io_unplug(child->bs); 3176 } 3177 } 3178 3179 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 3180 { 3181 BdrvChild *child; 3182 3183 if (bs->drv && bs->drv->bdrv_register_buf) { 3184 bs->drv->bdrv_register_buf(bs, host, size); 3185 } 3186 QLIST_FOREACH(child, &bs->children, next) { 3187 bdrv_register_buf(child->bs, host, size); 3188 } 3189 } 3190 3191 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 3192 { 3193 BdrvChild *child; 3194 3195 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3196 bs->drv->bdrv_unregister_buf(bs, host); 3197 } 3198 QLIST_FOREACH(child, &bs->children, next) { 3199 bdrv_unregister_buf(child->bs, host); 3200 } 3201 } 3202 3203 static int coroutine_fn bdrv_co_copy_range_internal( 3204 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3205 int64_t dst_offset, int64_t bytes, 3206 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3207 bool recurse_src) 3208 { 3209 BdrvTrackedRequest req; 3210 int ret; 3211 3212 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3213 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3214 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3215 3216 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) { 3217 return -ENOMEDIUM; 3218 } 3219 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3220 if (ret) { 3221 return ret; 3222 } 3223 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3224 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3225 } 3226 3227 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) { 3228 return -ENOMEDIUM; 3229 } 3230 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3231 if (ret) { 3232 return ret; 3233 } 3234 3235 if (!src->bs->drv->bdrv_co_copy_range_from 3236 || !dst->bs->drv->bdrv_co_copy_range_to 3237 || src->bs->encrypted || dst->bs->encrypted) { 3238 return -ENOTSUP; 3239 } 3240 3241 if (recurse_src) { 3242 bdrv_inc_in_flight(src->bs); 3243 tracked_request_begin(&req, src->bs, src_offset, bytes, 3244 BDRV_TRACKED_READ); 3245 3246 /* BDRV_REQ_SERIALISING is only for write operation */ 3247 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3248 bdrv_wait_serialising_requests(&req); 3249 3250 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3251 src, src_offset, 3252 dst, dst_offset, 3253 bytes, 3254 read_flags, write_flags); 3255 3256 tracked_request_end(&req); 3257 bdrv_dec_in_flight(src->bs); 3258 } else { 3259 bdrv_inc_in_flight(dst->bs); 3260 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3261 BDRV_TRACKED_WRITE); 3262 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3263 write_flags); 3264 if (!ret) { 3265 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3266 src, src_offset, 3267 dst, dst_offset, 3268 bytes, 3269 read_flags, write_flags); 3270 } 3271 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3272 tracked_request_end(&req); 3273 bdrv_dec_in_flight(dst->bs); 3274 } 3275 3276 return ret; 3277 } 3278 3279 /* Copy range from @src to @dst. 3280 * 3281 * See the comment of bdrv_co_copy_range for the parameter and return value 3282 * semantics. */ 3283 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3284 BdrvChild *dst, int64_t dst_offset, 3285 int64_t bytes, 3286 BdrvRequestFlags read_flags, 3287 BdrvRequestFlags write_flags) 3288 { 3289 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3290 read_flags, write_flags); 3291 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3292 bytes, read_flags, write_flags, true); 3293 } 3294 3295 /* Copy range from @src to @dst. 3296 * 3297 * See the comment of bdrv_co_copy_range for the parameter and return value 3298 * semantics. */ 3299 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3300 BdrvChild *dst, int64_t dst_offset, 3301 int64_t bytes, 3302 BdrvRequestFlags read_flags, 3303 BdrvRequestFlags write_flags) 3304 { 3305 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3306 read_flags, write_flags); 3307 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3308 bytes, read_flags, write_flags, false); 3309 } 3310 3311 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3312 BdrvChild *dst, int64_t dst_offset, 3313 int64_t bytes, BdrvRequestFlags read_flags, 3314 BdrvRequestFlags write_flags) 3315 { 3316 return bdrv_co_copy_range_from(src, src_offset, 3317 dst, dst_offset, 3318 bytes, read_flags, write_flags); 3319 } 3320 3321 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3322 { 3323 BdrvChild *c; 3324 QLIST_FOREACH(c, &bs->parents, next_parent) { 3325 if (c->klass->resize) { 3326 c->klass->resize(c); 3327 } 3328 } 3329 } 3330 3331 /** 3332 * Truncate file to 'offset' bytes (needed only for file protocols) 3333 * 3334 * If 'exact' is true, the file must be resized to exactly the given 3335 * 'offset'. Otherwise, it is sufficient for the node to be at least 3336 * 'offset' bytes in length. 3337 */ 3338 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3339 PreallocMode prealloc, BdrvRequestFlags flags, 3340 Error **errp) 3341 { 3342 BlockDriverState *bs = child->bs; 3343 BdrvChild *filtered, *backing; 3344 BlockDriver *drv = bs->drv; 3345 BdrvTrackedRequest req; 3346 int64_t old_size, new_bytes; 3347 int ret; 3348 3349 3350 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3351 if (!drv) { 3352 error_setg(errp, "No medium inserted"); 3353 return -ENOMEDIUM; 3354 } 3355 if (offset < 0) { 3356 error_setg(errp, "Image size cannot be negative"); 3357 return -EINVAL; 3358 } 3359 3360 ret = bdrv_check_request(offset, 0, errp); 3361 if (ret < 0) { 3362 return ret; 3363 } 3364 3365 old_size = bdrv_getlength(bs); 3366 if (old_size < 0) { 3367 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3368 return old_size; 3369 } 3370 3371 if (offset > old_size) { 3372 new_bytes = offset - old_size; 3373 } else { 3374 new_bytes = 0; 3375 } 3376 3377 bdrv_inc_in_flight(bs); 3378 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3379 BDRV_TRACKED_TRUNCATE); 3380 3381 /* If we are growing the image and potentially using preallocation for the 3382 * new area, we need to make sure that no write requests are made to it 3383 * concurrently or they might be overwritten by preallocation. */ 3384 if (new_bytes) { 3385 bdrv_make_request_serialising(&req, 1); 3386 } 3387 if (bs->read_only) { 3388 error_setg(errp, "Image is read-only"); 3389 ret = -EACCES; 3390 goto out; 3391 } 3392 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3393 0); 3394 if (ret < 0) { 3395 error_setg_errno(errp, -ret, 3396 "Failed to prepare request for truncation"); 3397 goto out; 3398 } 3399 3400 filtered = bdrv_filter_child(bs); 3401 backing = bdrv_cow_child(bs); 3402 3403 /* 3404 * If the image has a backing file that is large enough that it would 3405 * provide data for the new area, we cannot leave it unallocated because 3406 * then the backing file content would become visible. Instead, zero-fill 3407 * the new area. 3408 * 3409 * Note that if the image has a backing file, but was opened without the 3410 * backing file, taking care of keeping things consistent with that backing 3411 * file is the user's responsibility. 3412 */ 3413 if (new_bytes && backing) { 3414 int64_t backing_len; 3415 3416 backing_len = bdrv_getlength(backing->bs); 3417 if (backing_len < 0) { 3418 ret = backing_len; 3419 error_setg_errno(errp, -ret, "Could not get backing file size"); 3420 goto out; 3421 } 3422 3423 if (backing_len > old_size) { 3424 flags |= BDRV_REQ_ZERO_WRITE; 3425 } 3426 } 3427 3428 if (drv->bdrv_co_truncate) { 3429 if (flags & ~bs->supported_truncate_flags) { 3430 error_setg(errp, "Block driver does not support requested flags"); 3431 ret = -ENOTSUP; 3432 goto out; 3433 } 3434 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3435 } else if (filtered) { 3436 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3437 } else { 3438 error_setg(errp, "Image format driver does not support resize"); 3439 ret = -ENOTSUP; 3440 goto out; 3441 } 3442 if (ret < 0) { 3443 goto out; 3444 } 3445 3446 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3447 if (ret < 0) { 3448 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3449 } else { 3450 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3451 } 3452 /* It's possible that truncation succeeded but refresh_total_sectors 3453 * failed, but the latter doesn't affect how we should finish the request. 3454 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3455 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3456 3457 out: 3458 tracked_request_end(&req); 3459 bdrv_dec_in_flight(bs); 3460 3461 return ret; 3462 } 3463