xref: /openbmc/qemu/block/io.c (revision 91bfcdb0)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "trace.h"
26 #include "block/blockjob.h"
27 #include "block/block_int.h"
28 #include "block/throttle-groups.h"
29 #include "qemu/error-report.h"
30 
31 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
32 
33 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
34         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
35         BlockCompletionFunc *cb, void *opaque);
36 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
37         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
38         BlockCompletionFunc *cb, void *opaque);
39 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
40                                          int64_t sector_num, int nb_sectors,
41                                          QEMUIOVector *iov);
42 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
43                                          int64_t sector_num, int nb_sectors,
44                                          QEMUIOVector *iov);
45 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
46     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
47     BdrvRequestFlags flags);
48 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
49     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
50     BdrvRequestFlags flags);
51 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
52                                          int64_t sector_num,
53                                          QEMUIOVector *qiov,
54                                          int nb_sectors,
55                                          BdrvRequestFlags flags,
56                                          BlockCompletionFunc *cb,
57                                          void *opaque,
58                                          bool is_write);
59 static void coroutine_fn bdrv_co_do_rw(void *opaque);
60 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
61     int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
62 
63 /* throttling disk I/O limits */
64 void bdrv_set_io_limits(BlockDriverState *bs,
65                         ThrottleConfig *cfg)
66 {
67     int i;
68 
69     throttle_group_config(bs, cfg);
70 
71     for (i = 0; i < 2; i++) {
72         qemu_co_enter_next(&bs->throttled_reqs[i]);
73     }
74 }
75 
76 /* this function drain all the throttled IOs */
77 static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
78 {
79     bool drained = false;
80     bool enabled = bs->io_limits_enabled;
81     int i;
82 
83     bs->io_limits_enabled = false;
84 
85     for (i = 0; i < 2; i++) {
86         while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
87             drained = true;
88         }
89     }
90 
91     bs->io_limits_enabled = enabled;
92 
93     return drained;
94 }
95 
96 void bdrv_io_limits_disable(BlockDriverState *bs)
97 {
98     bs->io_limits_enabled = false;
99     bdrv_start_throttled_reqs(bs);
100     throttle_group_unregister_bs(bs);
101 }
102 
103 /* should be called before bdrv_set_io_limits if a limit is set */
104 void bdrv_io_limits_enable(BlockDriverState *bs, const char *group)
105 {
106     assert(!bs->io_limits_enabled);
107     throttle_group_register_bs(bs, group);
108     bs->io_limits_enabled = true;
109 }
110 
111 void bdrv_io_limits_update_group(BlockDriverState *bs, const char *group)
112 {
113     /* this bs is not part of any group */
114     if (!bs->throttle_state) {
115         return;
116     }
117 
118     /* this bs is a part of the same group than the one we want */
119     if (!g_strcmp0(throttle_group_get_name(bs), group)) {
120         return;
121     }
122 
123     /* need to change the group this bs belong to */
124     bdrv_io_limits_disable(bs);
125     bdrv_io_limits_enable(bs, group);
126 }
127 
128 void bdrv_setup_io_funcs(BlockDriver *bdrv)
129 {
130     /* Block drivers without coroutine functions need emulation */
131     if (!bdrv->bdrv_co_readv) {
132         bdrv->bdrv_co_readv = bdrv_co_readv_em;
133         bdrv->bdrv_co_writev = bdrv_co_writev_em;
134 
135         /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
136          * the block driver lacks aio we need to emulate that too.
137          */
138         if (!bdrv->bdrv_aio_readv) {
139             /* add AIO emulation layer */
140             bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
141             bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
142         }
143     }
144 }
145 
146 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
147 {
148     BlockDriver *drv = bs->drv;
149     Error *local_err = NULL;
150 
151     memset(&bs->bl, 0, sizeof(bs->bl));
152 
153     if (!drv) {
154         return;
155     }
156 
157     /* Take some limits from the children as a default */
158     if (bs->file) {
159         bdrv_refresh_limits(bs->file->bs, &local_err);
160         if (local_err) {
161             error_propagate(errp, local_err);
162             return;
163         }
164         bs->bl.opt_transfer_length = bs->file->bs->bl.opt_transfer_length;
165         bs->bl.max_transfer_length = bs->file->bs->bl.max_transfer_length;
166         bs->bl.min_mem_alignment = bs->file->bs->bl.min_mem_alignment;
167         bs->bl.opt_mem_alignment = bs->file->bs->bl.opt_mem_alignment;
168     } else {
169         bs->bl.min_mem_alignment = 512;
170         bs->bl.opt_mem_alignment = getpagesize();
171     }
172 
173     if (bs->backing) {
174         bdrv_refresh_limits(bs->backing->bs, &local_err);
175         if (local_err) {
176             error_propagate(errp, local_err);
177             return;
178         }
179         bs->bl.opt_transfer_length =
180             MAX(bs->bl.opt_transfer_length,
181                 bs->backing->bs->bl.opt_transfer_length);
182         bs->bl.max_transfer_length =
183             MIN_NON_ZERO(bs->bl.max_transfer_length,
184                          bs->backing->bs->bl.max_transfer_length);
185         bs->bl.opt_mem_alignment =
186             MAX(bs->bl.opt_mem_alignment,
187                 bs->backing->bs->bl.opt_mem_alignment);
188         bs->bl.min_mem_alignment =
189             MAX(bs->bl.min_mem_alignment,
190                 bs->backing->bs->bl.min_mem_alignment);
191     }
192 
193     /* Then let the driver override it */
194     if (drv->bdrv_refresh_limits) {
195         drv->bdrv_refresh_limits(bs, errp);
196     }
197 }
198 
199 /**
200  * The copy-on-read flag is actually a reference count so multiple users may
201  * use the feature without worrying about clobbering its previous state.
202  * Copy-on-read stays enabled until all users have called to disable it.
203  */
204 void bdrv_enable_copy_on_read(BlockDriverState *bs)
205 {
206     bs->copy_on_read++;
207 }
208 
209 void bdrv_disable_copy_on_read(BlockDriverState *bs)
210 {
211     assert(bs->copy_on_read > 0);
212     bs->copy_on_read--;
213 }
214 
215 /* Check if any requests are in-flight (including throttled requests) */
216 bool bdrv_requests_pending(BlockDriverState *bs)
217 {
218     if (!QLIST_EMPTY(&bs->tracked_requests)) {
219         return true;
220     }
221     if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
222         return true;
223     }
224     if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
225         return true;
226     }
227     if (bs->file && bdrv_requests_pending(bs->file->bs)) {
228         return true;
229     }
230     if (bs->backing && bdrv_requests_pending(bs->backing->bs)) {
231         return true;
232     }
233     return false;
234 }
235 
236 /*
237  * Wait for pending requests to complete on a single BlockDriverState subtree
238  *
239  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
240  * AioContext.
241  *
242  * Only this BlockDriverState's AioContext is run, so in-flight requests must
243  * not depend on events in other AioContexts.  In that case, use
244  * bdrv_drain_all() instead.
245  */
246 void bdrv_drain(BlockDriverState *bs)
247 {
248     bool busy = true;
249 
250     while (busy) {
251         /* Keep iterating */
252          bdrv_flush_io_queue(bs);
253          busy = bdrv_requests_pending(bs);
254          busy |= aio_poll(bdrv_get_aio_context(bs), busy);
255     }
256 }
257 
258 /*
259  * Wait for pending requests to complete across all BlockDriverStates
260  *
261  * This function does not flush data to disk, use bdrv_flush_all() for that
262  * after calling this function.
263  */
264 void bdrv_drain_all(void)
265 {
266     /* Always run first iteration so any pending completion BHs run */
267     bool busy = true;
268     BlockDriverState *bs = NULL;
269     GSList *aio_ctxs = NULL, *ctx;
270 
271     while ((bs = bdrv_next(bs))) {
272         AioContext *aio_context = bdrv_get_aio_context(bs);
273 
274         aio_context_acquire(aio_context);
275         if (bs->job) {
276             block_job_pause(bs->job);
277         }
278         aio_context_release(aio_context);
279 
280         if (!g_slist_find(aio_ctxs, aio_context)) {
281             aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
282         }
283     }
284 
285     /* Note that completion of an asynchronous I/O operation can trigger any
286      * number of other I/O operations on other devices---for example a
287      * coroutine can submit an I/O request to another device in response to
288      * request completion.  Therefore we must keep looping until there was no
289      * more activity rather than simply draining each device independently.
290      */
291     while (busy) {
292         busy = false;
293 
294         for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
295             AioContext *aio_context = ctx->data;
296             bs = NULL;
297 
298             aio_context_acquire(aio_context);
299             while ((bs = bdrv_next(bs))) {
300                 if (aio_context == bdrv_get_aio_context(bs)) {
301                     bdrv_flush_io_queue(bs);
302                     if (bdrv_requests_pending(bs)) {
303                         busy = true;
304                         aio_poll(aio_context, busy);
305                     }
306                 }
307             }
308             busy |= aio_poll(aio_context, false);
309             aio_context_release(aio_context);
310         }
311     }
312 
313     bs = NULL;
314     while ((bs = bdrv_next(bs))) {
315         AioContext *aio_context = bdrv_get_aio_context(bs);
316 
317         aio_context_acquire(aio_context);
318         if (bs->job) {
319             block_job_resume(bs->job);
320         }
321         aio_context_release(aio_context);
322     }
323     g_slist_free(aio_ctxs);
324 }
325 
326 /**
327  * Remove an active request from the tracked requests list
328  *
329  * This function should be called when a tracked request is completing.
330  */
331 static void tracked_request_end(BdrvTrackedRequest *req)
332 {
333     if (req->serialising) {
334         req->bs->serialising_in_flight--;
335     }
336 
337     QLIST_REMOVE(req, list);
338     qemu_co_queue_restart_all(&req->wait_queue);
339 }
340 
341 /**
342  * Add an active request to the tracked requests list
343  */
344 static void tracked_request_begin(BdrvTrackedRequest *req,
345                                   BlockDriverState *bs,
346                                   int64_t offset,
347                                   unsigned int bytes, bool is_write)
348 {
349     *req = (BdrvTrackedRequest){
350         .bs = bs,
351         .offset         = offset,
352         .bytes          = bytes,
353         .is_write       = is_write,
354         .co             = qemu_coroutine_self(),
355         .serialising    = false,
356         .overlap_offset = offset,
357         .overlap_bytes  = bytes,
358     };
359 
360     qemu_co_queue_init(&req->wait_queue);
361 
362     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
363 }
364 
365 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
366 {
367     int64_t overlap_offset = req->offset & ~(align - 1);
368     unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
369                                - overlap_offset;
370 
371     if (!req->serialising) {
372         req->bs->serialising_in_flight++;
373         req->serialising = true;
374     }
375 
376     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
377     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
378 }
379 
380 /**
381  * Round a region to cluster boundaries
382  */
383 void bdrv_round_to_clusters(BlockDriverState *bs,
384                             int64_t sector_num, int nb_sectors,
385                             int64_t *cluster_sector_num,
386                             int *cluster_nb_sectors)
387 {
388     BlockDriverInfo bdi;
389 
390     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
391         *cluster_sector_num = sector_num;
392         *cluster_nb_sectors = nb_sectors;
393     } else {
394         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
395         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
396         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
397                                             nb_sectors, c);
398     }
399 }
400 
401 static int bdrv_get_cluster_size(BlockDriverState *bs)
402 {
403     BlockDriverInfo bdi;
404     int ret;
405 
406     ret = bdrv_get_info(bs, &bdi);
407     if (ret < 0 || bdi.cluster_size == 0) {
408         return bs->request_alignment;
409     } else {
410         return bdi.cluster_size;
411     }
412 }
413 
414 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
415                                      int64_t offset, unsigned int bytes)
416 {
417     /*        aaaa   bbbb */
418     if (offset >= req->overlap_offset + req->overlap_bytes) {
419         return false;
420     }
421     /* bbbb   aaaa        */
422     if (req->overlap_offset >= offset + bytes) {
423         return false;
424     }
425     return true;
426 }
427 
428 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
429 {
430     BlockDriverState *bs = self->bs;
431     BdrvTrackedRequest *req;
432     bool retry;
433     bool waited = false;
434 
435     if (!bs->serialising_in_flight) {
436         return false;
437     }
438 
439     do {
440         retry = false;
441         QLIST_FOREACH(req, &bs->tracked_requests, list) {
442             if (req == self || (!req->serialising && !self->serialising)) {
443                 continue;
444             }
445             if (tracked_request_overlaps(req, self->overlap_offset,
446                                          self->overlap_bytes))
447             {
448                 /* Hitting this means there was a reentrant request, for
449                  * example, a block driver issuing nested requests.  This must
450                  * never happen since it means deadlock.
451                  */
452                 assert(qemu_coroutine_self() != req->co);
453 
454                 /* If the request is already (indirectly) waiting for us, or
455                  * will wait for us as soon as it wakes up, then just go on
456                  * (instead of producing a deadlock in the former case). */
457                 if (!req->waiting_for) {
458                     self->waiting_for = req;
459                     qemu_co_queue_wait(&req->wait_queue);
460                     self->waiting_for = NULL;
461                     retry = true;
462                     waited = true;
463                     break;
464                 }
465             }
466         }
467     } while (retry);
468 
469     return waited;
470 }
471 
472 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
473                                    size_t size)
474 {
475     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
476         return -EIO;
477     }
478 
479     if (!bdrv_is_inserted(bs)) {
480         return -ENOMEDIUM;
481     }
482 
483     if (offset < 0) {
484         return -EIO;
485     }
486 
487     return 0;
488 }
489 
490 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
491                               int nb_sectors)
492 {
493     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
494         return -EIO;
495     }
496 
497     return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
498                                    nb_sectors * BDRV_SECTOR_SIZE);
499 }
500 
501 typedef struct RwCo {
502     BlockDriverState *bs;
503     int64_t offset;
504     QEMUIOVector *qiov;
505     bool is_write;
506     int ret;
507     BdrvRequestFlags flags;
508 } RwCo;
509 
510 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
511 {
512     RwCo *rwco = opaque;
513 
514     if (!rwco->is_write) {
515         rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
516                                       rwco->qiov->size, rwco->qiov,
517                                       rwco->flags);
518     } else {
519         rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
520                                        rwco->qiov->size, rwco->qiov,
521                                        rwco->flags);
522     }
523 }
524 
525 /*
526  * Process a vectored synchronous request using coroutines
527  */
528 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
529                         QEMUIOVector *qiov, bool is_write,
530                         BdrvRequestFlags flags)
531 {
532     Coroutine *co;
533     RwCo rwco = {
534         .bs = bs,
535         .offset = offset,
536         .qiov = qiov,
537         .is_write = is_write,
538         .ret = NOT_DONE,
539         .flags = flags,
540     };
541 
542     /**
543      * In sync call context, when the vcpu is blocked, this throttling timer
544      * will not fire; so the I/O throttling function has to be disabled here
545      * if it has been enabled.
546      */
547     if (bs->io_limits_enabled) {
548         fprintf(stderr, "Disabling I/O throttling on '%s' due "
549                         "to synchronous I/O.\n", bdrv_get_device_name(bs));
550         bdrv_io_limits_disable(bs);
551     }
552 
553     if (qemu_in_coroutine()) {
554         /* Fast-path if already in coroutine context */
555         bdrv_rw_co_entry(&rwco);
556     } else {
557         AioContext *aio_context = bdrv_get_aio_context(bs);
558 
559         co = qemu_coroutine_create(bdrv_rw_co_entry);
560         qemu_coroutine_enter(co, &rwco);
561         while (rwco.ret == NOT_DONE) {
562             aio_poll(aio_context, true);
563         }
564     }
565     return rwco.ret;
566 }
567 
568 /*
569  * Process a synchronous request using coroutines
570  */
571 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
572                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
573 {
574     QEMUIOVector qiov;
575     struct iovec iov = {
576         .iov_base = (void *)buf,
577         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
578     };
579 
580     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
581         return -EINVAL;
582     }
583 
584     qemu_iovec_init_external(&qiov, &iov, 1);
585     return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
586                         &qiov, is_write, flags);
587 }
588 
589 /* return < 0 if error. See bdrv_write() for the return codes */
590 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
591               uint8_t *buf, int nb_sectors)
592 {
593     return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
594 }
595 
596 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
597 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
598                           uint8_t *buf, int nb_sectors)
599 {
600     bool enabled;
601     int ret;
602 
603     enabled = bs->io_limits_enabled;
604     bs->io_limits_enabled = false;
605     ret = bdrv_read(bs, sector_num, buf, nb_sectors);
606     bs->io_limits_enabled = enabled;
607     return ret;
608 }
609 
610 /* Return < 0 if error. Important errors are:
611   -EIO         generic I/O error (may happen for all errors)
612   -ENOMEDIUM   No media inserted.
613   -EINVAL      Invalid sector number or nb_sectors
614   -EACCES      Trying to write a read-only device
615 */
616 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
617                const uint8_t *buf, int nb_sectors)
618 {
619     return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
620 }
621 
622 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
623                       int nb_sectors, BdrvRequestFlags flags)
624 {
625     return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
626                       BDRV_REQ_ZERO_WRITE | flags);
627 }
628 
629 /*
630  * Completely zero out a block device with the help of bdrv_write_zeroes.
631  * The operation is sped up by checking the block status and only writing
632  * zeroes to the device if they currently do not return zeroes. Optional
633  * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
634  *
635  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
636  */
637 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
638 {
639     int64_t target_sectors, ret, nb_sectors, sector_num = 0;
640     int n;
641 
642     target_sectors = bdrv_nb_sectors(bs);
643     if (target_sectors < 0) {
644         return target_sectors;
645     }
646 
647     for (;;) {
648         nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
649         if (nb_sectors <= 0) {
650             return 0;
651         }
652         ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n);
653         if (ret < 0) {
654             error_report("error getting block status at sector %" PRId64 ": %s",
655                          sector_num, strerror(-ret));
656             return ret;
657         }
658         if (ret & BDRV_BLOCK_ZERO) {
659             sector_num += n;
660             continue;
661         }
662         ret = bdrv_write_zeroes(bs, sector_num, n, flags);
663         if (ret < 0) {
664             error_report("error writing zeroes at sector %" PRId64 ": %s",
665                          sector_num, strerror(-ret));
666             return ret;
667         }
668         sector_num += n;
669     }
670 }
671 
672 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
673 {
674     QEMUIOVector qiov;
675     struct iovec iov = {
676         .iov_base = (void *)buf,
677         .iov_len = bytes,
678     };
679     int ret;
680 
681     if (bytes < 0) {
682         return -EINVAL;
683     }
684 
685     qemu_iovec_init_external(&qiov, &iov, 1);
686     ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
687     if (ret < 0) {
688         return ret;
689     }
690 
691     return bytes;
692 }
693 
694 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
695 {
696     int ret;
697 
698     ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
699     if (ret < 0) {
700         return ret;
701     }
702 
703     return qiov->size;
704 }
705 
706 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
707                 const void *buf, int bytes)
708 {
709     QEMUIOVector qiov;
710     struct iovec iov = {
711         .iov_base   = (void *) buf,
712         .iov_len    = bytes,
713     };
714 
715     if (bytes < 0) {
716         return -EINVAL;
717     }
718 
719     qemu_iovec_init_external(&qiov, &iov, 1);
720     return bdrv_pwritev(bs, offset, &qiov);
721 }
722 
723 /*
724  * Writes to the file and ensures that no writes are reordered across this
725  * request (acts as a barrier)
726  *
727  * Returns 0 on success, -errno in error cases.
728  */
729 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
730     const void *buf, int count)
731 {
732     int ret;
733 
734     ret = bdrv_pwrite(bs, offset, buf, count);
735     if (ret < 0) {
736         return ret;
737     }
738 
739     /* No flush needed for cache modes that already do it */
740     if (bs->enable_write_cache) {
741         bdrv_flush(bs);
742     }
743 
744     return 0;
745 }
746 
747 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
748         int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
749 {
750     /* Perform I/O through a temporary buffer so that users who scribble over
751      * their read buffer while the operation is in progress do not end up
752      * modifying the image file.  This is critical for zero-copy guest I/O
753      * where anything might happen inside guest memory.
754      */
755     void *bounce_buffer;
756 
757     BlockDriver *drv = bs->drv;
758     struct iovec iov;
759     QEMUIOVector bounce_qiov;
760     int64_t cluster_sector_num;
761     int cluster_nb_sectors;
762     size_t skip_bytes;
763     int ret;
764 
765     /* Cover entire cluster so no additional backing file I/O is required when
766      * allocating cluster in the image file.
767      */
768     bdrv_round_to_clusters(bs, sector_num, nb_sectors,
769                            &cluster_sector_num, &cluster_nb_sectors);
770 
771     trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
772                                    cluster_sector_num, cluster_nb_sectors);
773 
774     iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
775     iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
776     if (bounce_buffer == NULL) {
777         ret = -ENOMEM;
778         goto err;
779     }
780 
781     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
782 
783     ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
784                              &bounce_qiov);
785     if (ret < 0) {
786         goto err;
787     }
788 
789     if (drv->bdrv_co_write_zeroes &&
790         buffer_is_zero(bounce_buffer, iov.iov_len)) {
791         ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
792                                       cluster_nb_sectors, 0);
793     } else {
794         /* This does not change the data on the disk, it is not necessary
795          * to flush even in cache=writethrough mode.
796          */
797         ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
798                                   &bounce_qiov);
799     }
800 
801     if (ret < 0) {
802         /* It might be okay to ignore write errors for guest requests.  If this
803          * is a deliberate copy-on-read then we don't want to ignore the error.
804          * Simply report it in all cases.
805          */
806         goto err;
807     }
808 
809     skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
810     qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
811                         nb_sectors * BDRV_SECTOR_SIZE);
812 
813 err:
814     qemu_vfree(bounce_buffer);
815     return ret;
816 }
817 
818 /*
819  * Forwards an already correctly aligned request to the BlockDriver. This
820  * handles copy on read and zeroing after EOF; any other features must be
821  * implemented by the caller.
822  */
823 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
824     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
825     int64_t align, QEMUIOVector *qiov, int flags)
826 {
827     BlockDriver *drv = bs->drv;
828     int ret;
829 
830     int64_t sector_num = offset >> BDRV_SECTOR_BITS;
831     unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
832 
833     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
834     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
835     assert(!qiov || bytes == qiov->size);
836 
837     /* Handle Copy on Read and associated serialisation */
838     if (flags & BDRV_REQ_COPY_ON_READ) {
839         /* If we touch the same cluster it counts as an overlap.  This
840          * guarantees that allocating writes will be serialized and not race
841          * with each other for the same cluster.  For example, in copy-on-read
842          * it ensures that the CoR read and write operations are atomic and
843          * guest writes cannot interleave between them. */
844         mark_request_serialising(req, bdrv_get_cluster_size(bs));
845     }
846 
847     wait_serialising_requests(req);
848 
849     if (flags & BDRV_REQ_COPY_ON_READ) {
850         int pnum;
851 
852         ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
853         if (ret < 0) {
854             goto out;
855         }
856 
857         if (!ret || pnum != nb_sectors) {
858             ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
859             goto out;
860         }
861     }
862 
863     /* Forward the request to the BlockDriver */
864     if (!bs->zero_beyond_eof) {
865         ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
866     } else {
867         /* Read zeros after EOF */
868         int64_t total_sectors, max_nb_sectors;
869 
870         total_sectors = bdrv_nb_sectors(bs);
871         if (total_sectors < 0) {
872             ret = total_sectors;
873             goto out;
874         }
875 
876         max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
877                                   align >> BDRV_SECTOR_BITS);
878         if (nb_sectors < max_nb_sectors) {
879             ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
880         } else if (max_nb_sectors > 0) {
881             QEMUIOVector local_qiov;
882 
883             qemu_iovec_init(&local_qiov, qiov->niov);
884             qemu_iovec_concat(&local_qiov, qiov, 0,
885                               max_nb_sectors * BDRV_SECTOR_SIZE);
886 
887             ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
888                                      &local_qiov);
889 
890             qemu_iovec_destroy(&local_qiov);
891         } else {
892             ret = 0;
893         }
894 
895         /* Reading beyond end of file is supposed to produce zeroes */
896         if (ret == 0 && total_sectors < sector_num + nb_sectors) {
897             uint64_t offset = MAX(0, total_sectors - sector_num);
898             uint64_t bytes = (sector_num + nb_sectors - offset) *
899                               BDRV_SECTOR_SIZE;
900             qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
901         }
902     }
903 
904 out:
905     return ret;
906 }
907 
908 /*
909  * Handle a read request in coroutine context
910  */
911 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
912     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
913     BdrvRequestFlags flags)
914 {
915     BlockDriver *drv = bs->drv;
916     BdrvTrackedRequest req;
917 
918     /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
919     uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
920     uint8_t *head_buf = NULL;
921     uint8_t *tail_buf = NULL;
922     QEMUIOVector local_qiov;
923     bool use_local_qiov = false;
924     int ret;
925 
926     if (!drv) {
927         return -ENOMEDIUM;
928     }
929 
930     ret = bdrv_check_byte_request(bs, offset, bytes);
931     if (ret < 0) {
932         return ret;
933     }
934 
935     /* Don't do copy-on-read if we read data before write operation */
936     if (bs->copy_on_read && !(flags & BDRV_REQ_NO_COPY_ON_READ)) {
937         flags |= BDRV_REQ_COPY_ON_READ;
938     }
939 
940     /* throttling disk I/O */
941     if (bs->io_limits_enabled) {
942         throttle_group_co_io_limits_intercept(bs, bytes, false);
943     }
944 
945     /* Align read if necessary by padding qiov */
946     if (offset & (align - 1)) {
947         head_buf = qemu_blockalign(bs, align);
948         qemu_iovec_init(&local_qiov, qiov->niov + 2);
949         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
950         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
951         use_local_qiov = true;
952 
953         bytes += offset & (align - 1);
954         offset = offset & ~(align - 1);
955     }
956 
957     if ((offset + bytes) & (align - 1)) {
958         if (!use_local_qiov) {
959             qemu_iovec_init(&local_qiov, qiov->niov + 1);
960             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
961             use_local_qiov = true;
962         }
963         tail_buf = qemu_blockalign(bs, align);
964         qemu_iovec_add(&local_qiov, tail_buf,
965                        align - ((offset + bytes) & (align - 1)));
966 
967         bytes = ROUND_UP(bytes, align);
968     }
969 
970     tracked_request_begin(&req, bs, offset, bytes, false);
971     ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
972                               use_local_qiov ? &local_qiov : qiov,
973                               flags);
974     tracked_request_end(&req);
975 
976     if (use_local_qiov) {
977         qemu_iovec_destroy(&local_qiov);
978         qemu_vfree(head_buf);
979         qemu_vfree(tail_buf);
980     }
981 
982     return ret;
983 }
984 
985 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
986     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
987     BdrvRequestFlags flags)
988 {
989     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
990         return -EINVAL;
991     }
992 
993     return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
994                              nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
995 }
996 
997 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
998     int nb_sectors, QEMUIOVector *qiov)
999 {
1000     trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1001 
1002     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1003 }
1004 
1005 int coroutine_fn bdrv_co_no_copy_on_readv(BlockDriverState *bs,
1006     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1007 {
1008     trace_bdrv_co_no_copy_on_readv(bs, sector_num, nb_sectors);
1009 
1010     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1011                             BDRV_REQ_NO_COPY_ON_READ);
1012 }
1013 
1014 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1015     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1016 {
1017     trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1018 
1019     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1020                             BDRV_REQ_COPY_ON_READ);
1021 }
1022 
1023 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1024 
1025 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1026     int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1027 {
1028     BlockDriver *drv = bs->drv;
1029     QEMUIOVector qiov;
1030     struct iovec iov = {0};
1031     int ret = 0;
1032 
1033     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1034                                         BDRV_REQUEST_MAX_SECTORS);
1035 
1036     while (nb_sectors > 0 && !ret) {
1037         int num = nb_sectors;
1038 
1039         /* Align request.  Block drivers can expect the "bulk" of the request
1040          * to be aligned.
1041          */
1042         if (bs->bl.write_zeroes_alignment
1043             && num > bs->bl.write_zeroes_alignment) {
1044             if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1045                 /* Make a small request up to the first aligned sector.  */
1046                 num = bs->bl.write_zeroes_alignment;
1047                 num -= sector_num % bs->bl.write_zeroes_alignment;
1048             } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1049                 /* Shorten the request to the last aligned sector.  num cannot
1050                  * underflow because num > bs->bl.write_zeroes_alignment.
1051                  */
1052                 num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1053             }
1054         }
1055 
1056         /* limit request size */
1057         if (num > max_write_zeroes) {
1058             num = max_write_zeroes;
1059         }
1060 
1061         ret = -ENOTSUP;
1062         /* First try the efficient write zeroes operation */
1063         if (drv->bdrv_co_write_zeroes) {
1064             ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1065         }
1066 
1067         if (ret == -ENOTSUP) {
1068             /* Fall back to bounce buffer if write zeroes is unsupported */
1069             int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1070                                             MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1071             num = MIN(num, max_xfer_len);
1072             iov.iov_len = num * BDRV_SECTOR_SIZE;
1073             if (iov.iov_base == NULL) {
1074                 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1075                 if (iov.iov_base == NULL) {
1076                     ret = -ENOMEM;
1077                     goto fail;
1078                 }
1079                 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1080             }
1081             qemu_iovec_init_external(&qiov, &iov, 1);
1082 
1083             ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1084 
1085             /* Keep bounce buffer around if it is big enough for all
1086              * all future requests.
1087              */
1088             if (num < max_xfer_len) {
1089                 qemu_vfree(iov.iov_base);
1090                 iov.iov_base = NULL;
1091             }
1092         }
1093 
1094         sector_num += num;
1095         nb_sectors -= num;
1096     }
1097 
1098 fail:
1099     qemu_vfree(iov.iov_base);
1100     return ret;
1101 }
1102 
1103 /*
1104  * Forwards an already correctly aligned write request to the BlockDriver.
1105  */
1106 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1107     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1108     QEMUIOVector *qiov, int flags)
1109 {
1110     BlockDriver *drv = bs->drv;
1111     bool waited;
1112     int ret;
1113 
1114     int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1115     unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1116 
1117     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1118     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1119     assert(!qiov || bytes == qiov->size);
1120 
1121     waited = wait_serialising_requests(req);
1122     assert(!waited || !req->serialising);
1123     assert(req->overlap_offset <= offset);
1124     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1125 
1126     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1127 
1128     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1129         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1130         qemu_iovec_is_zero(qiov)) {
1131         flags |= BDRV_REQ_ZERO_WRITE;
1132         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1133             flags |= BDRV_REQ_MAY_UNMAP;
1134         }
1135     }
1136 
1137     if (ret < 0) {
1138         /* Do nothing, write notifier decided to fail this request */
1139     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1140         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1141         ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1142     } else {
1143         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1144         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1145     }
1146     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1147 
1148     if (ret == 0 && !bs->enable_write_cache) {
1149         ret = bdrv_co_flush(bs);
1150     }
1151 
1152     bdrv_set_dirty(bs, sector_num, nb_sectors);
1153 
1154     block_acct_highest_sector(&bs->stats, sector_num, nb_sectors);
1155 
1156     if (ret >= 0) {
1157         bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1158     }
1159 
1160     return ret;
1161 }
1162 
1163 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1164                                                 int64_t offset,
1165                                                 unsigned int bytes,
1166                                                 BdrvRequestFlags flags,
1167                                                 BdrvTrackedRequest *req)
1168 {
1169     uint8_t *buf = NULL;
1170     QEMUIOVector local_qiov;
1171     struct iovec iov;
1172     uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1173     unsigned int head_padding_bytes, tail_padding_bytes;
1174     int ret = 0;
1175 
1176     head_padding_bytes = offset & (align - 1);
1177     tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1178 
1179 
1180     assert(flags & BDRV_REQ_ZERO_WRITE);
1181     if (head_padding_bytes || tail_padding_bytes) {
1182         buf = qemu_blockalign(bs, align);
1183         iov = (struct iovec) {
1184             .iov_base   = buf,
1185             .iov_len    = align,
1186         };
1187         qemu_iovec_init_external(&local_qiov, &iov, 1);
1188     }
1189     if (head_padding_bytes) {
1190         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1191 
1192         /* RMW the unaligned part before head. */
1193         mark_request_serialising(req, align);
1194         wait_serialising_requests(req);
1195         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1196         ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1197                                   align, &local_qiov, 0);
1198         if (ret < 0) {
1199             goto fail;
1200         }
1201         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1202 
1203         memset(buf + head_padding_bytes, 0, zero_bytes);
1204         ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1205                                    &local_qiov,
1206                                    flags & ~BDRV_REQ_ZERO_WRITE);
1207         if (ret < 0) {
1208             goto fail;
1209         }
1210         offset += zero_bytes;
1211         bytes -= zero_bytes;
1212     }
1213 
1214     assert(!bytes || (offset & (align - 1)) == 0);
1215     if (bytes >= align) {
1216         /* Write the aligned part in the middle. */
1217         uint64_t aligned_bytes = bytes & ~(align - 1);
1218         ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes,
1219                                    NULL, flags);
1220         if (ret < 0) {
1221             goto fail;
1222         }
1223         bytes -= aligned_bytes;
1224         offset += aligned_bytes;
1225     }
1226 
1227     assert(!bytes || (offset & (align - 1)) == 0);
1228     if (bytes) {
1229         assert(align == tail_padding_bytes + bytes);
1230         /* RMW the unaligned part after tail. */
1231         mark_request_serialising(req, align);
1232         wait_serialising_requests(req);
1233         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1234         ret = bdrv_aligned_preadv(bs, req, offset, align,
1235                                   align, &local_qiov, 0);
1236         if (ret < 0) {
1237             goto fail;
1238         }
1239         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1240 
1241         memset(buf, 0, bytes);
1242         ret = bdrv_aligned_pwritev(bs, req, offset, align,
1243                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1244     }
1245 fail:
1246     qemu_vfree(buf);
1247     return ret;
1248 
1249 }
1250 
1251 /*
1252  * Handle a write request in coroutine context
1253  */
1254 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1255     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1256     BdrvRequestFlags flags)
1257 {
1258     BdrvTrackedRequest req;
1259     /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1260     uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1261     uint8_t *head_buf = NULL;
1262     uint8_t *tail_buf = NULL;
1263     QEMUIOVector local_qiov;
1264     bool use_local_qiov = false;
1265     int ret;
1266 
1267     if (!bs->drv) {
1268         return -ENOMEDIUM;
1269     }
1270     if (bs->read_only) {
1271         return -EPERM;
1272     }
1273 
1274     ret = bdrv_check_byte_request(bs, offset, bytes);
1275     if (ret < 0) {
1276         return ret;
1277     }
1278 
1279     /* throttling disk I/O */
1280     if (bs->io_limits_enabled) {
1281         throttle_group_co_io_limits_intercept(bs, bytes, true);
1282     }
1283 
1284     /*
1285      * Align write if necessary by performing a read-modify-write cycle.
1286      * Pad qiov with the read parts and be sure to have a tracked request not
1287      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1288      */
1289     tracked_request_begin(&req, bs, offset, bytes, true);
1290 
1291     if (!qiov) {
1292         ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1293         goto out;
1294     }
1295 
1296     if (offset & (align - 1)) {
1297         QEMUIOVector head_qiov;
1298         struct iovec head_iov;
1299 
1300         mark_request_serialising(&req, align);
1301         wait_serialising_requests(&req);
1302 
1303         head_buf = qemu_blockalign(bs, align);
1304         head_iov = (struct iovec) {
1305             .iov_base   = head_buf,
1306             .iov_len    = align,
1307         };
1308         qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1309 
1310         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1311         ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1312                                   align, &head_qiov, 0);
1313         if (ret < 0) {
1314             goto fail;
1315         }
1316         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1317 
1318         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1319         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1320         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1321         use_local_qiov = true;
1322 
1323         bytes += offset & (align - 1);
1324         offset = offset & ~(align - 1);
1325     }
1326 
1327     if ((offset + bytes) & (align - 1)) {
1328         QEMUIOVector tail_qiov;
1329         struct iovec tail_iov;
1330         size_t tail_bytes;
1331         bool waited;
1332 
1333         mark_request_serialising(&req, align);
1334         waited = wait_serialising_requests(&req);
1335         assert(!waited || !use_local_qiov);
1336 
1337         tail_buf = qemu_blockalign(bs, align);
1338         tail_iov = (struct iovec) {
1339             .iov_base   = tail_buf,
1340             .iov_len    = align,
1341         };
1342         qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1343 
1344         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1345         ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1346                                   align, &tail_qiov, 0);
1347         if (ret < 0) {
1348             goto fail;
1349         }
1350         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1351 
1352         if (!use_local_qiov) {
1353             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1354             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1355             use_local_qiov = true;
1356         }
1357 
1358         tail_bytes = (offset + bytes) & (align - 1);
1359         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1360 
1361         bytes = ROUND_UP(bytes, align);
1362     }
1363 
1364     ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1365                                use_local_qiov ? &local_qiov : qiov,
1366                                flags);
1367 
1368 fail:
1369 
1370     if (use_local_qiov) {
1371         qemu_iovec_destroy(&local_qiov);
1372     }
1373     qemu_vfree(head_buf);
1374     qemu_vfree(tail_buf);
1375 out:
1376     tracked_request_end(&req);
1377     return ret;
1378 }
1379 
1380 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1381     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1382     BdrvRequestFlags flags)
1383 {
1384     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1385         return -EINVAL;
1386     }
1387 
1388     return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1389                               nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1390 }
1391 
1392 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1393     int nb_sectors, QEMUIOVector *qiov)
1394 {
1395     trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1396 
1397     return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1398 }
1399 
1400 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1401                                       int64_t sector_num, int nb_sectors,
1402                                       BdrvRequestFlags flags)
1403 {
1404     trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1405 
1406     if (!(bs->open_flags & BDRV_O_UNMAP)) {
1407         flags &= ~BDRV_REQ_MAY_UNMAP;
1408     }
1409 
1410     return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1411                              BDRV_REQ_ZERO_WRITE | flags);
1412 }
1413 
1414 int bdrv_flush_all(void)
1415 {
1416     BlockDriverState *bs = NULL;
1417     int result = 0;
1418 
1419     while ((bs = bdrv_next(bs))) {
1420         AioContext *aio_context = bdrv_get_aio_context(bs);
1421         int ret;
1422 
1423         aio_context_acquire(aio_context);
1424         ret = bdrv_flush(bs);
1425         if (ret < 0 && !result) {
1426             result = ret;
1427         }
1428         aio_context_release(aio_context);
1429     }
1430 
1431     return result;
1432 }
1433 
1434 typedef struct BdrvCoGetBlockStatusData {
1435     BlockDriverState *bs;
1436     BlockDriverState *base;
1437     int64_t sector_num;
1438     int nb_sectors;
1439     int *pnum;
1440     int64_t ret;
1441     bool done;
1442 } BdrvCoGetBlockStatusData;
1443 
1444 /*
1445  * Returns the allocation status of the specified sectors.
1446  * Drivers not implementing the functionality are assumed to not support
1447  * backing files, hence all their sectors are reported as allocated.
1448  *
1449  * If 'sector_num' is beyond the end of the disk image the return value is 0
1450  * and 'pnum' is set to 0.
1451  *
1452  * 'pnum' is set to the number of sectors (including and immediately following
1453  * the specified sector) that are known to be in the same
1454  * allocated/unallocated state.
1455  *
1456  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
1457  * beyond the end of the disk image it will be clamped.
1458  */
1459 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1460                                                      int64_t sector_num,
1461                                                      int nb_sectors, int *pnum)
1462 {
1463     int64_t total_sectors;
1464     int64_t n;
1465     int64_t ret, ret2;
1466 
1467     total_sectors = bdrv_nb_sectors(bs);
1468     if (total_sectors < 0) {
1469         return total_sectors;
1470     }
1471 
1472     if (sector_num >= total_sectors) {
1473         *pnum = 0;
1474         return 0;
1475     }
1476 
1477     n = total_sectors - sector_num;
1478     if (n < nb_sectors) {
1479         nb_sectors = n;
1480     }
1481 
1482     if (!bs->drv->bdrv_co_get_block_status) {
1483         *pnum = nb_sectors;
1484         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1485         if (bs->drv->protocol_name) {
1486             ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1487         }
1488         return ret;
1489     }
1490 
1491     ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum);
1492     if (ret < 0) {
1493         *pnum = 0;
1494         return ret;
1495     }
1496 
1497     if (ret & BDRV_BLOCK_RAW) {
1498         assert(ret & BDRV_BLOCK_OFFSET_VALID);
1499         return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1500                                      *pnum, pnum);
1501     }
1502 
1503     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1504         ret |= BDRV_BLOCK_ALLOCATED;
1505     } else {
1506         if (bdrv_unallocated_blocks_are_zero(bs)) {
1507             ret |= BDRV_BLOCK_ZERO;
1508         } else if (bs->backing) {
1509             BlockDriverState *bs2 = bs->backing->bs;
1510             int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1511             if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1512                 ret |= BDRV_BLOCK_ZERO;
1513             }
1514         }
1515     }
1516 
1517     if (bs->file &&
1518         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1519         (ret & BDRV_BLOCK_OFFSET_VALID)) {
1520         int file_pnum;
1521 
1522         ret2 = bdrv_co_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1523                                         *pnum, &file_pnum);
1524         if (ret2 >= 0) {
1525             /* Ignore errors.  This is just providing extra information, it
1526              * is useful but not necessary.
1527              */
1528             if (!file_pnum) {
1529                 /* !file_pnum indicates an offset at or beyond the EOF; it is
1530                  * perfectly valid for the format block driver to point to such
1531                  * offsets, so catch it and mark everything as zero */
1532                 ret |= BDRV_BLOCK_ZERO;
1533             } else {
1534                 /* Limit request to the range reported by the protocol driver */
1535                 *pnum = file_pnum;
1536                 ret |= (ret2 & BDRV_BLOCK_ZERO);
1537             }
1538         }
1539     }
1540 
1541     return ret;
1542 }
1543 
1544 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1545         BlockDriverState *base,
1546         int64_t sector_num,
1547         int nb_sectors,
1548         int *pnum)
1549 {
1550     BlockDriverState *p;
1551     int64_t ret = 0;
1552 
1553     assert(bs != base);
1554     for (p = bs; p != base; p = backing_bs(p)) {
1555         ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum);
1556         if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1557             break;
1558         }
1559         /* [sector_num, pnum] unallocated on this layer, which could be only
1560          * the first part of [sector_num, nb_sectors].  */
1561         nb_sectors = MIN(nb_sectors, *pnum);
1562     }
1563     return ret;
1564 }
1565 
1566 /* Coroutine wrapper for bdrv_get_block_status_above() */
1567 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1568 {
1569     BdrvCoGetBlockStatusData *data = opaque;
1570 
1571     data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1572                                                data->sector_num,
1573                                                data->nb_sectors,
1574                                                data->pnum);
1575     data->done = true;
1576 }
1577 
1578 /*
1579  * Synchronous wrapper around bdrv_co_get_block_status_above().
1580  *
1581  * See bdrv_co_get_block_status_above() for details.
1582  */
1583 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1584                                     BlockDriverState *base,
1585                                     int64_t sector_num,
1586                                     int nb_sectors, int *pnum)
1587 {
1588     Coroutine *co;
1589     BdrvCoGetBlockStatusData data = {
1590         .bs = bs,
1591         .base = base,
1592         .sector_num = sector_num,
1593         .nb_sectors = nb_sectors,
1594         .pnum = pnum,
1595         .done = false,
1596     };
1597 
1598     if (qemu_in_coroutine()) {
1599         /* Fast-path if already in coroutine context */
1600         bdrv_get_block_status_above_co_entry(&data);
1601     } else {
1602         AioContext *aio_context = bdrv_get_aio_context(bs);
1603 
1604         co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry);
1605         qemu_coroutine_enter(co, &data);
1606         while (!data.done) {
1607             aio_poll(aio_context, true);
1608         }
1609     }
1610     return data.ret;
1611 }
1612 
1613 int64_t bdrv_get_block_status(BlockDriverState *bs,
1614                               int64_t sector_num,
1615                               int nb_sectors, int *pnum)
1616 {
1617     return bdrv_get_block_status_above(bs, backing_bs(bs),
1618                                        sector_num, nb_sectors, pnum);
1619 }
1620 
1621 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1622                                    int nb_sectors, int *pnum)
1623 {
1624     int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum);
1625     if (ret < 0) {
1626         return ret;
1627     }
1628     return !!(ret & BDRV_BLOCK_ALLOCATED);
1629 }
1630 
1631 /*
1632  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1633  *
1634  * Return true if the given sector is allocated in any image between
1635  * BASE and TOP (inclusive).  BASE can be NULL to check if the given
1636  * sector is allocated in any image of the chain.  Return false otherwise.
1637  *
1638  * 'pnum' is set to the number of sectors (including and immediately following
1639  *  the specified sector) that are known to be in the same
1640  *  allocated/unallocated state.
1641  *
1642  */
1643 int bdrv_is_allocated_above(BlockDriverState *top,
1644                             BlockDriverState *base,
1645                             int64_t sector_num,
1646                             int nb_sectors, int *pnum)
1647 {
1648     BlockDriverState *intermediate;
1649     int ret, n = nb_sectors;
1650 
1651     intermediate = top;
1652     while (intermediate && intermediate != base) {
1653         int pnum_inter;
1654         ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1655                                 &pnum_inter);
1656         if (ret < 0) {
1657             return ret;
1658         } else if (ret) {
1659             *pnum = pnum_inter;
1660             return 1;
1661         }
1662 
1663         /*
1664          * [sector_num, nb_sectors] is unallocated on top but intermediate
1665          * might have
1666          *
1667          * [sector_num+x, nr_sectors] allocated.
1668          */
1669         if (n > pnum_inter &&
1670             (intermediate == top ||
1671              sector_num + pnum_inter < intermediate->total_sectors)) {
1672             n = pnum_inter;
1673         }
1674 
1675         intermediate = backing_bs(intermediate);
1676     }
1677 
1678     *pnum = n;
1679     return 0;
1680 }
1681 
1682 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1683                           const uint8_t *buf, int nb_sectors)
1684 {
1685     BlockDriver *drv = bs->drv;
1686     int ret;
1687 
1688     if (!drv) {
1689         return -ENOMEDIUM;
1690     }
1691     if (!drv->bdrv_write_compressed) {
1692         return -ENOTSUP;
1693     }
1694     ret = bdrv_check_request(bs, sector_num, nb_sectors);
1695     if (ret < 0) {
1696         return ret;
1697     }
1698 
1699     assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1700 
1701     return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1702 }
1703 
1704 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1705                       int64_t pos, int size)
1706 {
1707     QEMUIOVector qiov;
1708     struct iovec iov = {
1709         .iov_base   = (void *) buf,
1710         .iov_len    = size,
1711     };
1712 
1713     qemu_iovec_init_external(&qiov, &iov, 1);
1714     return bdrv_writev_vmstate(bs, &qiov, pos);
1715 }
1716 
1717 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1718 {
1719     BlockDriver *drv = bs->drv;
1720 
1721     if (!drv) {
1722         return -ENOMEDIUM;
1723     } else if (drv->bdrv_save_vmstate) {
1724         return drv->bdrv_save_vmstate(bs, qiov, pos);
1725     } else if (bs->file) {
1726         return bdrv_writev_vmstate(bs->file->bs, qiov, pos);
1727     }
1728 
1729     return -ENOTSUP;
1730 }
1731 
1732 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1733                       int64_t pos, int size)
1734 {
1735     BlockDriver *drv = bs->drv;
1736     if (!drv)
1737         return -ENOMEDIUM;
1738     if (drv->bdrv_load_vmstate)
1739         return drv->bdrv_load_vmstate(bs, buf, pos, size);
1740     if (bs->file)
1741         return bdrv_load_vmstate(bs->file->bs, buf, pos, size);
1742     return -ENOTSUP;
1743 }
1744 
1745 /**************************************************************/
1746 /* async I/Os */
1747 
1748 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1749                            QEMUIOVector *qiov, int nb_sectors,
1750                            BlockCompletionFunc *cb, void *opaque)
1751 {
1752     trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1753 
1754     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1755                                  cb, opaque, false);
1756 }
1757 
1758 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1759                             QEMUIOVector *qiov, int nb_sectors,
1760                             BlockCompletionFunc *cb, void *opaque)
1761 {
1762     trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1763 
1764     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1765                                  cb, opaque, true);
1766 }
1767 
1768 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1769         int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1770         BlockCompletionFunc *cb, void *opaque)
1771 {
1772     trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1773 
1774     return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1775                                  BDRV_REQ_ZERO_WRITE | flags,
1776                                  cb, opaque, true);
1777 }
1778 
1779 
1780 typedef struct MultiwriteCB {
1781     int error;
1782     int num_requests;
1783     int num_callbacks;
1784     struct {
1785         BlockCompletionFunc *cb;
1786         void *opaque;
1787         QEMUIOVector *free_qiov;
1788     } callbacks[];
1789 } MultiwriteCB;
1790 
1791 static void multiwrite_user_cb(MultiwriteCB *mcb)
1792 {
1793     int i;
1794 
1795     for (i = 0; i < mcb->num_callbacks; i++) {
1796         mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1797         if (mcb->callbacks[i].free_qiov) {
1798             qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1799         }
1800         g_free(mcb->callbacks[i].free_qiov);
1801     }
1802 }
1803 
1804 static void multiwrite_cb(void *opaque, int ret)
1805 {
1806     MultiwriteCB *mcb = opaque;
1807 
1808     trace_multiwrite_cb(mcb, ret);
1809 
1810     if (ret < 0 && !mcb->error) {
1811         mcb->error = ret;
1812     }
1813 
1814     mcb->num_requests--;
1815     if (mcb->num_requests == 0) {
1816         multiwrite_user_cb(mcb);
1817         g_free(mcb);
1818     }
1819 }
1820 
1821 static int multiwrite_req_compare(const void *a, const void *b)
1822 {
1823     const BlockRequest *req1 = a, *req2 = b;
1824 
1825     /*
1826      * Note that we can't simply subtract req2->sector from req1->sector
1827      * here as that could overflow the return value.
1828      */
1829     if (req1->sector > req2->sector) {
1830         return 1;
1831     } else if (req1->sector < req2->sector) {
1832         return -1;
1833     } else {
1834         return 0;
1835     }
1836 }
1837 
1838 /*
1839  * Takes a bunch of requests and tries to merge them. Returns the number of
1840  * requests that remain after merging.
1841  */
1842 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1843     int num_reqs, MultiwriteCB *mcb)
1844 {
1845     int i, outidx;
1846 
1847     // Sort requests by start sector
1848     qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1849 
1850     // Check if adjacent requests touch the same clusters. If so, combine them,
1851     // filling up gaps with zero sectors.
1852     outidx = 0;
1853     for (i = 1; i < num_reqs; i++) {
1854         int merge = 0;
1855         int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1856 
1857         // Handle exactly sequential writes and overlapping writes.
1858         if (reqs[i].sector <= oldreq_last) {
1859             merge = 1;
1860         }
1861 
1862         if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
1863             merge = 0;
1864         }
1865 
1866         if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1867             reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1868             merge = 0;
1869         }
1870 
1871         if (merge) {
1872             size_t size;
1873             QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1874             qemu_iovec_init(qiov,
1875                 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1876 
1877             // Add the first request to the merged one. If the requests are
1878             // overlapping, drop the last sectors of the first request.
1879             size = (reqs[i].sector - reqs[outidx].sector) << 9;
1880             qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1881 
1882             // We should need to add any zeros between the two requests
1883             assert (reqs[i].sector <= oldreq_last);
1884 
1885             // Add the second request
1886             qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1887 
1888             // Add tail of first request, if necessary
1889             if (qiov->size < reqs[outidx].qiov->size) {
1890                 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1891                                   reqs[outidx].qiov->size - qiov->size);
1892             }
1893 
1894             reqs[outidx].nb_sectors = qiov->size >> 9;
1895             reqs[outidx].qiov = qiov;
1896 
1897             mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1898         } else {
1899             outidx++;
1900             reqs[outidx].sector     = reqs[i].sector;
1901             reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1902             reqs[outidx].qiov       = reqs[i].qiov;
1903         }
1904     }
1905 
1906     block_acct_merge_done(&bs->stats, BLOCK_ACCT_WRITE, num_reqs - outidx - 1);
1907 
1908     return outidx + 1;
1909 }
1910 
1911 /*
1912  * Submit multiple AIO write requests at once.
1913  *
1914  * On success, the function returns 0 and all requests in the reqs array have
1915  * been submitted. In error case this function returns -1, and any of the
1916  * requests may or may not be submitted yet. In particular, this means that the
1917  * callback will be called for some of the requests, for others it won't. The
1918  * caller must check the error field of the BlockRequest to wait for the right
1919  * callbacks (if error != 0, no callback will be called).
1920  *
1921  * The implementation may modify the contents of the reqs array, e.g. to merge
1922  * requests. However, the fields opaque and error are left unmodified as they
1923  * are used to signal failure for a single request to the caller.
1924  */
1925 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1926 {
1927     MultiwriteCB *mcb;
1928     int i;
1929 
1930     /* don't submit writes if we don't have a medium */
1931     if (bs->drv == NULL) {
1932         for (i = 0; i < num_reqs; i++) {
1933             reqs[i].error = -ENOMEDIUM;
1934         }
1935         return -1;
1936     }
1937 
1938     if (num_reqs == 0) {
1939         return 0;
1940     }
1941 
1942     // Create MultiwriteCB structure
1943     mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
1944     mcb->num_requests = 0;
1945     mcb->num_callbacks = num_reqs;
1946 
1947     for (i = 0; i < num_reqs; i++) {
1948         mcb->callbacks[i].cb = reqs[i].cb;
1949         mcb->callbacks[i].opaque = reqs[i].opaque;
1950     }
1951 
1952     // Check for mergable requests
1953     num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
1954 
1955     trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
1956 
1957     /* Run the aio requests. */
1958     mcb->num_requests = num_reqs;
1959     for (i = 0; i < num_reqs; i++) {
1960         bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
1961                               reqs[i].nb_sectors, reqs[i].flags,
1962                               multiwrite_cb, mcb,
1963                               true);
1964     }
1965 
1966     return 0;
1967 }
1968 
1969 void bdrv_aio_cancel(BlockAIOCB *acb)
1970 {
1971     qemu_aio_ref(acb);
1972     bdrv_aio_cancel_async(acb);
1973     while (acb->refcnt > 1) {
1974         if (acb->aiocb_info->get_aio_context) {
1975             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
1976         } else if (acb->bs) {
1977             aio_poll(bdrv_get_aio_context(acb->bs), true);
1978         } else {
1979             abort();
1980         }
1981     }
1982     qemu_aio_unref(acb);
1983 }
1984 
1985 /* Async version of aio cancel. The caller is not blocked if the acb implements
1986  * cancel_async, otherwise we do nothing and let the request normally complete.
1987  * In either case the completion callback must be called. */
1988 void bdrv_aio_cancel_async(BlockAIOCB *acb)
1989 {
1990     if (acb->aiocb_info->cancel_async) {
1991         acb->aiocb_info->cancel_async(acb);
1992     }
1993 }
1994 
1995 /**************************************************************/
1996 /* async block device emulation */
1997 
1998 typedef struct BlockAIOCBSync {
1999     BlockAIOCB common;
2000     QEMUBH *bh;
2001     int ret;
2002     /* vector translation state */
2003     QEMUIOVector *qiov;
2004     uint8_t *bounce;
2005     int is_write;
2006 } BlockAIOCBSync;
2007 
2008 static const AIOCBInfo bdrv_em_aiocb_info = {
2009     .aiocb_size         = sizeof(BlockAIOCBSync),
2010 };
2011 
2012 static void bdrv_aio_bh_cb(void *opaque)
2013 {
2014     BlockAIOCBSync *acb = opaque;
2015 
2016     if (!acb->is_write && acb->ret >= 0) {
2017         qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
2018     }
2019     qemu_vfree(acb->bounce);
2020     acb->common.cb(acb->common.opaque, acb->ret);
2021     qemu_bh_delete(acb->bh);
2022     acb->bh = NULL;
2023     qemu_aio_unref(acb);
2024 }
2025 
2026 static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
2027                                       int64_t sector_num,
2028                                       QEMUIOVector *qiov,
2029                                       int nb_sectors,
2030                                       BlockCompletionFunc *cb,
2031                                       void *opaque,
2032                                       int is_write)
2033 
2034 {
2035     BlockAIOCBSync *acb;
2036 
2037     acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
2038     acb->is_write = is_write;
2039     acb->qiov = qiov;
2040     acb->bounce = qemu_try_blockalign(bs, qiov->size);
2041     acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
2042 
2043     if (acb->bounce == NULL) {
2044         acb->ret = -ENOMEM;
2045     } else if (is_write) {
2046         qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
2047         acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
2048     } else {
2049         acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
2050     }
2051 
2052     qemu_bh_schedule(acb->bh);
2053 
2054     return &acb->common;
2055 }
2056 
2057 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
2058         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2059         BlockCompletionFunc *cb, void *opaque)
2060 {
2061     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
2062 }
2063 
2064 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
2065         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2066         BlockCompletionFunc *cb, void *opaque)
2067 {
2068     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
2069 }
2070 
2071 
2072 typedef struct BlockAIOCBCoroutine {
2073     BlockAIOCB common;
2074     BlockRequest req;
2075     bool is_write;
2076     bool need_bh;
2077     bool *done;
2078     QEMUBH* bh;
2079 } BlockAIOCBCoroutine;
2080 
2081 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2082     .aiocb_size         = sizeof(BlockAIOCBCoroutine),
2083 };
2084 
2085 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2086 {
2087     if (!acb->need_bh) {
2088         acb->common.cb(acb->common.opaque, acb->req.error);
2089         qemu_aio_unref(acb);
2090     }
2091 }
2092 
2093 static void bdrv_co_em_bh(void *opaque)
2094 {
2095     BlockAIOCBCoroutine *acb = opaque;
2096 
2097     assert(!acb->need_bh);
2098     qemu_bh_delete(acb->bh);
2099     bdrv_co_complete(acb);
2100 }
2101 
2102 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2103 {
2104     acb->need_bh = false;
2105     if (acb->req.error != -EINPROGRESS) {
2106         BlockDriverState *bs = acb->common.bs;
2107 
2108         acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2109         qemu_bh_schedule(acb->bh);
2110     }
2111 }
2112 
2113 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2114 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2115 {
2116     BlockAIOCBCoroutine *acb = opaque;
2117     BlockDriverState *bs = acb->common.bs;
2118 
2119     if (!acb->is_write) {
2120         acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2121             acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2122     } else {
2123         acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2124             acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2125     }
2126 
2127     bdrv_co_complete(acb);
2128 }
2129 
2130 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2131                                          int64_t sector_num,
2132                                          QEMUIOVector *qiov,
2133                                          int nb_sectors,
2134                                          BdrvRequestFlags flags,
2135                                          BlockCompletionFunc *cb,
2136                                          void *opaque,
2137                                          bool is_write)
2138 {
2139     Coroutine *co;
2140     BlockAIOCBCoroutine *acb;
2141 
2142     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2143     acb->need_bh = true;
2144     acb->req.error = -EINPROGRESS;
2145     acb->req.sector = sector_num;
2146     acb->req.nb_sectors = nb_sectors;
2147     acb->req.qiov = qiov;
2148     acb->req.flags = flags;
2149     acb->is_write = is_write;
2150 
2151     co = qemu_coroutine_create(bdrv_co_do_rw);
2152     qemu_coroutine_enter(co, acb);
2153 
2154     bdrv_co_maybe_schedule_bh(acb);
2155     return &acb->common;
2156 }
2157 
2158 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2159 {
2160     BlockAIOCBCoroutine *acb = opaque;
2161     BlockDriverState *bs = acb->common.bs;
2162 
2163     acb->req.error = bdrv_co_flush(bs);
2164     bdrv_co_complete(acb);
2165 }
2166 
2167 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2168         BlockCompletionFunc *cb, void *opaque)
2169 {
2170     trace_bdrv_aio_flush(bs, opaque);
2171 
2172     Coroutine *co;
2173     BlockAIOCBCoroutine *acb;
2174 
2175     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2176     acb->need_bh = true;
2177     acb->req.error = -EINPROGRESS;
2178 
2179     co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2180     qemu_coroutine_enter(co, acb);
2181 
2182     bdrv_co_maybe_schedule_bh(acb);
2183     return &acb->common;
2184 }
2185 
2186 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2187 {
2188     BlockAIOCBCoroutine *acb = opaque;
2189     BlockDriverState *bs = acb->common.bs;
2190 
2191     acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2192     bdrv_co_complete(acb);
2193 }
2194 
2195 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2196         int64_t sector_num, int nb_sectors,
2197         BlockCompletionFunc *cb, void *opaque)
2198 {
2199     Coroutine *co;
2200     BlockAIOCBCoroutine *acb;
2201 
2202     trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2203 
2204     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2205     acb->need_bh = true;
2206     acb->req.error = -EINPROGRESS;
2207     acb->req.sector = sector_num;
2208     acb->req.nb_sectors = nb_sectors;
2209     co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2210     qemu_coroutine_enter(co, acb);
2211 
2212     bdrv_co_maybe_schedule_bh(acb);
2213     return &acb->common;
2214 }
2215 
2216 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2217                    BlockCompletionFunc *cb, void *opaque)
2218 {
2219     BlockAIOCB *acb;
2220 
2221     acb = g_malloc(aiocb_info->aiocb_size);
2222     acb->aiocb_info = aiocb_info;
2223     acb->bs = bs;
2224     acb->cb = cb;
2225     acb->opaque = opaque;
2226     acb->refcnt = 1;
2227     return acb;
2228 }
2229 
2230 void qemu_aio_ref(void *p)
2231 {
2232     BlockAIOCB *acb = p;
2233     acb->refcnt++;
2234 }
2235 
2236 void qemu_aio_unref(void *p)
2237 {
2238     BlockAIOCB *acb = p;
2239     assert(acb->refcnt > 0);
2240     if (--acb->refcnt == 0) {
2241         g_free(acb);
2242     }
2243 }
2244 
2245 /**************************************************************/
2246 /* Coroutine block device emulation */
2247 
2248 typedef struct CoroutineIOCompletion {
2249     Coroutine *coroutine;
2250     int ret;
2251 } CoroutineIOCompletion;
2252 
2253 static void bdrv_co_io_em_complete(void *opaque, int ret)
2254 {
2255     CoroutineIOCompletion *co = opaque;
2256 
2257     co->ret = ret;
2258     qemu_coroutine_enter(co->coroutine, NULL);
2259 }
2260 
2261 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2262                                       int nb_sectors, QEMUIOVector *iov,
2263                                       bool is_write)
2264 {
2265     CoroutineIOCompletion co = {
2266         .coroutine = qemu_coroutine_self(),
2267     };
2268     BlockAIOCB *acb;
2269 
2270     if (is_write) {
2271         acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2272                                        bdrv_co_io_em_complete, &co);
2273     } else {
2274         acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2275                                       bdrv_co_io_em_complete, &co);
2276     }
2277 
2278     trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2279     if (!acb) {
2280         return -EIO;
2281     }
2282     qemu_coroutine_yield();
2283 
2284     return co.ret;
2285 }
2286 
2287 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2288                                          int64_t sector_num, int nb_sectors,
2289                                          QEMUIOVector *iov)
2290 {
2291     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2292 }
2293 
2294 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2295                                          int64_t sector_num, int nb_sectors,
2296                                          QEMUIOVector *iov)
2297 {
2298     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2299 }
2300 
2301 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2302 {
2303     RwCo *rwco = opaque;
2304 
2305     rwco->ret = bdrv_co_flush(rwco->bs);
2306 }
2307 
2308 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2309 {
2310     int ret;
2311 
2312     if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2313         bdrv_is_sg(bs)) {
2314         return 0;
2315     }
2316 
2317     /* Write back cached data to the OS even with cache=unsafe */
2318     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2319     if (bs->drv->bdrv_co_flush_to_os) {
2320         ret = bs->drv->bdrv_co_flush_to_os(bs);
2321         if (ret < 0) {
2322             return ret;
2323         }
2324     }
2325 
2326     /* But don't actually force it to the disk with cache=unsafe */
2327     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2328         goto flush_parent;
2329     }
2330 
2331     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2332     if (bs->drv->bdrv_co_flush_to_disk) {
2333         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2334     } else if (bs->drv->bdrv_aio_flush) {
2335         BlockAIOCB *acb;
2336         CoroutineIOCompletion co = {
2337             .coroutine = qemu_coroutine_self(),
2338         };
2339 
2340         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2341         if (acb == NULL) {
2342             ret = -EIO;
2343         } else {
2344             qemu_coroutine_yield();
2345             ret = co.ret;
2346         }
2347     } else {
2348         /*
2349          * Some block drivers always operate in either writethrough or unsafe
2350          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2351          * know how the server works (because the behaviour is hardcoded or
2352          * depends on server-side configuration), so we can't ensure that
2353          * everything is safe on disk. Returning an error doesn't work because
2354          * that would break guests even if the server operates in writethrough
2355          * mode.
2356          *
2357          * Let's hope the user knows what he's doing.
2358          */
2359         ret = 0;
2360     }
2361     if (ret < 0) {
2362         return ret;
2363     }
2364 
2365     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2366      * in the case of cache=unsafe, so there are no useless flushes.
2367      */
2368 flush_parent:
2369     return bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2370 }
2371 
2372 int bdrv_flush(BlockDriverState *bs)
2373 {
2374     Coroutine *co;
2375     RwCo rwco = {
2376         .bs = bs,
2377         .ret = NOT_DONE,
2378     };
2379 
2380     if (qemu_in_coroutine()) {
2381         /* Fast-path if already in coroutine context */
2382         bdrv_flush_co_entry(&rwco);
2383     } else {
2384         AioContext *aio_context = bdrv_get_aio_context(bs);
2385 
2386         co = qemu_coroutine_create(bdrv_flush_co_entry);
2387         qemu_coroutine_enter(co, &rwco);
2388         while (rwco.ret == NOT_DONE) {
2389             aio_poll(aio_context, true);
2390         }
2391     }
2392 
2393     return rwco.ret;
2394 }
2395 
2396 typedef struct DiscardCo {
2397     BlockDriverState *bs;
2398     int64_t sector_num;
2399     int nb_sectors;
2400     int ret;
2401 } DiscardCo;
2402 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2403 {
2404     DiscardCo *rwco = opaque;
2405 
2406     rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2407 }
2408 
2409 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2410                                  int nb_sectors)
2411 {
2412     int max_discard, ret;
2413 
2414     if (!bs->drv) {
2415         return -ENOMEDIUM;
2416     }
2417 
2418     ret = bdrv_check_request(bs, sector_num, nb_sectors);
2419     if (ret < 0) {
2420         return ret;
2421     } else if (bs->read_only) {
2422         return -EPERM;
2423     }
2424 
2425     /* Do nothing if disabled.  */
2426     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2427         return 0;
2428     }
2429 
2430     if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2431         return 0;
2432     }
2433 
2434     bdrv_set_dirty(bs, sector_num, nb_sectors);
2435 
2436     max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2437     while (nb_sectors > 0) {
2438         int ret;
2439         int num = nb_sectors;
2440 
2441         /* align request */
2442         if (bs->bl.discard_alignment &&
2443             num >= bs->bl.discard_alignment &&
2444             sector_num % bs->bl.discard_alignment) {
2445             if (num > bs->bl.discard_alignment) {
2446                 num = bs->bl.discard_alignment;
2447             }
2448             num -= sector_num % bs->bl.discard_alignment;
2449         }
2450 
2451         /* limit request size */
2452         if (num > max_discard) {
2453             num = max_discard;
2454         }
2455 
2456         if (bs->drv->bdrv_co_discard) {
2457             ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2458         } else {
2459             BlockAIOCB *acb;
2460             CoroutineIOCompletion co = {
2461                 .coroutine = qemu_coroutine_self(),
2462             };
2463 
2464             acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2465                                             bdrv_co_io_em_complete, &co);
2466             if (acb == NULL) {
2467                 return -EIO;
2468             } else {
2469                 qemu_coroutine_yield();
2470                 ret = co.ret;
2471             }
2472         }
2473         if (ret && ret != -ENOTSUP) {
2474             return ret;
2475         }
2476 
2477         sector_num += num;
2478         nb_sectors -= num;
2479     }
2480     return 0;
2481 }
2482 
2483 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2484 {
2485     Coroutine *co;
2486     DiscardCo rwco = {
2487         .bs = bs,
2488         .sector_num = sector_num,
2489         .nb_sectors = nb_sectors,
2490         .ret = NOT_DONE,
2491     };
2492 
2493     if (qemu_in_coroutine()) {
2494         /* Fast-path if already in coroutine context */
2495         bdrv_discard_co_entry(&rwco);
2496     } else {
2497         AioContext *aio_context = bdrv_get_aio_context(bs);
2498 
2499         co = qemu_coroutine_create(bdrv_discard_co_entry);
2500         qemu_coroutine_enter(co, &rwco);
2501         while (rwco.ret == NOT_DONE) {
2502             aio_poll(aio_context, true);
2503         }
2504     }
2505 
2506     return rwco.ret;
2507 }
2508 
2509 /* needed for generic scsi interface */
2510 
2511 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2512 {
2513     BlockDriver *drv = bs->drv;
2514 
2515     if (drv && drv->bdrv_ioctl)
2516         return drv->bdrv_ioctl(bs, req, buf);
2517     return -ENOTSUP;
2518 }
2519 
2520 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2521         unsigned long int req, void *buf,
2522         BlockCompletionFunc *cb, void *opaque)
2523 {
2524     BlockDriver *drv = bs->drv;
2525 
2526     if (drv && drv->bdrv_aio_ioctl)
2527         return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
2528     return NULL;
2529 }
2530 
2531 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2532 {
2533     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2534 }
2535 
2536 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2537 {
2538     return memset(qemu_blockalign(bs, size), 0, size);
2539 }
2540 
2541 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2542 {
2543     size_t align = bdrv_opt_mem_align(bs);
2544 
2545     /* Ensure that NULL is never returned on success */
2546     assert(align > 0);
2547     if (size == 0) {
2548         size = align;
2549     }
2550 
2551     return qemu_try_memalign(align, size);
2552 }
2553 
2554 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2555 {
2556     void *mem = qemu_try_blockalign(bs, size);
2557 
2558     if (mem) {
2559         memset(mem, 0, size);
2560     }
2561 
2562     return mem;
2563 }
2564 
2565 /*
2566  * Check if all memory in this vector is sector aligned.
2567  */
2568 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2569 {
2570     int i;
2571     size_t alignment = bdrv_min_mem_align(bs);
2572 
2573     for (i = 0; i < qiov->niov; i++) {
2574         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2575             return false;
2576         }
2577         if (qiov->iov[i].iov_len % alignment) {
2578             return false;
2579         }
2580     }
2581 
2582     return true;
2583 }
2584 
2585 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2586                                     NotifierWithReturn *notifier)
2587 {
2588     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2589 }
2590 
2591 void bdrv_io_plug(BlockDriverState *bs)
2592 {
2593     BlockDriver *drv = bs->drv;
2594     if (drv && drv->bdrv_io_plug) {
2595         drv->bdrv_io_plug(bs);
2596     } else if (bs->file) {
2597         bdrv_io_plug(bs->file->bs);
2598     }
2599 }
2600 
2601 void bdrv_io_unplug(BlockDriverState *bs)
2602 {
2603     BlockDriver *drv = bs->drv;
2604     if (drv && drv->bdrv_io_unplug) {
2605         drv->bdrv_io_unplug(bs);
2606     } else if (bs->file) {
2607         bdrv_io_unplug(bs->file->bs);
2608     }
2609 }
2610 
2611 void bdrv_flush_io_queue(BlockDriverState *bs)
2612 {
2613     BlockDriver *drv = bs->drv;
2614     if (drv && drv->bdrv_flush_io_queue) {
2615         drv->bdrv_flush_io_queue(bs);
2616     } else if (bs->file) {
2617         bdrv_flush_io_queue(bs->file->bs);
2618     }
2619     bdrv_start_throttled_reqs(bs);
2620 }
2621