1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/dirty-bitmap.h" 34 #include "block/write-threshold.h" 35 #include "qemu/cutils.h" 36 #include "qemu/memalign.h" 37 #include "qapi/error.h" 38 #include "qemu/error-report.h" 39 #include "qemu/main-loop.h" 40 #include "sysemu/replay.h" 41 42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 44 45 static void bdrv_parent_cb_resize(BlockDriverState *bs); 46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 47 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 48 49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore) 50 { 51 BdrvChild *c, *next; 52 53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 54 if (c == ignore) { 55 continue; 56 } 57 bdrv_parent_drained_begin_single(c); 58 } 59 } 60 61 void bdrv_parent_drained_end_single(BdrvChild *c) 62 { 63 GLOBAL_STATE_CODE(); 64 65 assert(c->quiesced_parent); 66 c->quiesced_parent = false; 67 68 if (c->klass->drained_end) { 69 c->klass->drained_end(c); 70 } 71 } 72 73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore) 74 { 75 BdrvChild *c; 76 77 QLIST_FOREACH(c, &bs->parents, next_parent) { 78 if (c == ignore) { 79 continue; 80 } 81 bdrv_parent_drained_end_single(c); 82 } 83 } 84 85 bool bdrv_parent_drained_poll_single(BdrvChild *c) 86 { 87 if (c->klass->drained_poll) { 88 return c->klass->drained_poll(c); 89 } 90 return false; 91 } 92 93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 94 bool ignore_bds_parents) 95 { 96 BdrvChild *c, *next; 97 bool busy = false; 98 99 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 100 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 101 continue; 102 } 103 busy |= bdrv_parent_drained_poll_single(c); 104 } 105 106 return busy; 107 } 108 109 void bdrv_parent_drained_begin_single(BdrvChild *c) 110 { 111 GLOBAL_STATE_CODE(); 112 113 assert(!c->quiesced_parent); 114 c->quiesced_parent = true; 115 116 if (c->klass->drained_begin) { 117 c->klass->drained_begin(c); 118 } 119 } 120 121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 122 { 123 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 124 src->pdiscard_alignment); 125 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 126 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 127 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 128 src->max_hw_transfer); 129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 130 src->opt_mem_alignment); 131 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 132 src->min_mem_alignment); 133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 134 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 135 } 136 137 typedef struct BdrvRefreshLimitsState { 138 BlockDriverState *bs; 139 BlockLimits old_bl; 140 } BdrvRefreshLimitsState; 141 142 static void bdrv_refresh_limits_abort(void *opaque) 143 { 144 BdrvRefreshLimitsState *s = opaque; 145 146 s->bs->bl = s->old_bl; 147 } 148 149 static TransactionActionDrv bdrv_refresh_limits_drv = { 150 .abort = bdrv_refresh_limits_abort, 151 .clean = g_free, 152 }; 153 154 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 156 { 157 ERRP_GUARD(); 158 BlockDriver *drv = bs->drv; 159 BdrvChild *c; 160 bool have_limits; 161 162 GLOBAL_STATE_CODE(); 163 164 if (tran) { 165 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 166 *s = (BdrvRefreshLimitsState) { 167 .bs = bs, 168 .old_bl = bs->bl, 169 }; 170 tran_add(tran, &bdrv_refresh_limits_drv, s); 171 } 172 173 memset(&bs->bl, 0, sizeof(bs->bl)); 174 175 if (!drv) { 176 return; 177 } 178 179 /* Default alignment based on whether driver has byte interface */ 180 bs->bl.request_alignment = (drv->bdrv_co_preadv || 181 drv->bdrv_aio_preadv || 182 drv->bdrv_co_preadv_part) ? 1 : 512; 183 184 /* Take some limits from the children as a default */ 185 have_limits = false; 186 QLIST_FOREACH(c, &bs->children, next) { 187 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 188 { 189 bdrv_merge_limits(&bs->bl, &c->bs->bl); 190 have_limits = true; 191 } 192 193 if (c->role & BDRV_CHILD_FILTERED) { 194 bs->bl.has_variable_length |= c->bs->bl.has_variable_length; 195 } 196 } 197 198 if (!have_limits) { 199 bs->bl.min_mem_alignment = 512; 200 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 201 202 /* Safe default since most protocols use readv()/writev()/etc */ 203 bs->bl.max_iov = IOV_MAX; 204 } 205 206 /* Then let the driver override it */ 207 if (drv->bdrv_refresh_limits) { 208 drv->bdrv_refresh_limits(bs, errp); 209 if (*errp) { 210 return; 211 } 212 } 213 214 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 215 error_setg(errp, "Driver requires too large request alignment"); 216 } 217 } 218 219 /** 220 * The copy-on-read flag is actually a reference count so multiple users may 221 * use the feature without worrying about clobbering its previous state. 222 * Copy-on-read stays enabled until all users have called to disable it. 223 */ 224 void bdrv_enable_copy_on_read(BlockDriverState *bs) 225 { 226 IO_CODE(); 227 qatomic_inc(&bs->copy_on_read); 228 } 229 230 void bdrv_disable_copy_on_read(BlockDriverState *bs) 231 { 232 int old = qatomic_fetch_dec(&bs->copy_on_read); 233 IO_CODE(); 234 assert(old >= 1); 235 } 236 237 typedef struct { 238 Coroutine *co; 239 BlockDriverState *bs; 240 bool done; 241 bool begin; 242 bool poll; 243 BdrvChild *parent; 244 } BdrvCoDrainData; 245 246 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 247 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent, 248 bool ignore_bds_parents) 249 { 250 GLOBAL_STATE_CODE(); 251 252 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 253 return true; 254 } 255 256 if (qatomic_read(&bs->in_flight)) { 257 return true; 258 } 259 260 return false; 261 } 262 263 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, 264 BdrvChild *ignore_parent) 265 { 266 return bdrv_drain_poll(bs, ignore_parent, false); 267 } 268 269 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 270 bool poll); 271 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent); 272 273 static void bdrv_co_drain_bh_cb(void *opaque) 274 { 275 BdrvCoDrainData *data = opaque; 276 Coroutine *co = data->co; 277 BlockDriverState *bs = data->bs; 278 279 if (bs) { 280 AioContext *ctx = bdrv_get_aio_context(bs); 281 aio_context_acquire(ctx); 282 bdrv_dec_in_flight(bs); 283 if (data->begin) { 284 bdrv_do_drained_begin(bs, data->parent, data->poll); 285 } else { 286 assert(!data->poll); 287 bdrv_do_drained_end(bs, data->parent); 288 } 289 aio_context_release(ctx); 290 } else { 291 assert(data->begin); 292 bdrv_drain_all_begin(); 293 } 294 295 data->done = true; 296 aio_co_wake(co); 297 } 298 299 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 300 bool begin, 301 BdrvChild *parent, 302 bool poll) 303 { 304 BdrvCoDrainData data; 305 Coroutine *self = qemu_coroutine_self(); 306 AioContext *ctx = bdrv_get_aio_context(bs); 307 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 308 309 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 310 * other coroutines run if they were queued by aio_co_enter(). */ 311 312 assert(qemu_in_coroutine()); 313 data = (BdrvCoDrainData) { 314 .co = self, 315 .bs = bs, 316 .done = false, 317 .begin = begin, 318 .parent = parent, 319 .poll = poll, 320 }; 321 322 if (bs) { 323 bdrv_inc_in_flight(bs); 324 } 325 326 /* 327 * Temporarily drop the lock across yield or we would get deadlocks. 328 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 329 * 330 * When we yield below, the lock for the current context will be 331 * released, so if this is actually the lock that protects bs, don't drop 332 * it a second time. 333 */ 334 if (ctx != co_ctx) { 335 aio_context_release(ctx); 336 } 337 replay_bh_schedule_oneshot_event(qemu_get_aio_context(), 338 bdrv_co_drain_bh_cb, &data); 339 340 qemu_coroutine_yield(); 341 /* If we are resumed from some other event (such as an aio completion or a 342 * timer callback), it is a bug in the caller that should be fixed. */ 343 assert(data.done); 344 345 /* Reacquire the AioContext of bs if we dropped it */ 346 if (ctx != co_ctx) { 347 aio_context_acquire(ctx); 348 } 349 } 350 351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 352 bool poll) 353 { 354 IO_OR_GS_CODE(); 355 356 if (qemu_in_coroutine()) { 357 bdrv_co_yield_to_drain(bs, true, parent, poll); 358 return; 359 } 360 361 GLOBAL_STATE_CODE(); 362 363 /* Stop things in parent-to-child order */ 364 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 365 bdrv_parent_drained_begin(bs, parent); 366 if (bs->drv && bs->drv->bdrv_drain_begin) { 367 bs->drv->bdrv_drain_begin(bs); 368 } 369 } 370 371 /* 372 * Wait for drained requests to finish. 373 * 374 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 375 * call is needed so things in this AioContext can make progress even 376 * though we don't return to the main AioContext loop - this automatically 377 * includes other nodes in the same AioContext and therefore all child 378 * nodes. 379 */ 380 if (poll) { 381 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent)); 382 } 383 } 384 385 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent) 386 { 387 bdrv_do_drained_begin(bs, parent, false); 388 } 389 390 void coroutine_mixed_fn 391 bdrv_drained_begin(BlockDriverState *bs) 392 { 393 IO_OR_GS_CODE(); 394 bdrv_do_drained_begin(bs, NULL, true); 395 } 396 397 /** 398 * This function does not poll, nor must any of its recursively called 399 * functions. 400 */ 401 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent) 402 { 403 int old_quiesce_counter; 404 405 IO_OR_GS_CODE(); 406 407 if (qemu_in_coroutine()) { 408 bdrv_co_yield_to_drain(bs, false, parent, false); 409 return; 410 } 411 assert(bs->quiesce_counter > 0); 412 GLOBAL_STATE_CODE(); 413 414 /* Re-enable things in child-to-parent order */ 415 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 416 if (old_quiesce_counter == 1) { 417 if (bs->drv && bs->drv->bdrv_drain_end) { 418 bs->drv->bdrv_drain_end(bs); 419 } 420 bdrv_parent_drained_end(bs, parent); 421 } 422 } 423 424 void bdrv_drained_end(BlockDriverState *bs) 425 { 426 IO_OR_GS_CODE(); 427 bdrv_do_drained_end(bs, NULL); 428 } 429 430 void bdrv_drain(BlockDriverState *bs) 431 { 432 IO_OR_GS_CODE(); 433 bdrv_drained_begin(bs); 434 bdrv_drained_end(bs); 435 } 436 437 static void bdrv_drain_assert_idle(BlockDriverState *bs) 438 { 439 BdrvChild *child, *next; 440 441 assert(qatomic_read(&bs->in_flight) == 0); 442 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 443 bdrv_drain_assert_idle(child->bs); 444 } 445 } 446 447 unsigned int bdrv_drain_all_count = 0; 448 449 static bool bdrv_drain_all_poll(void) 450 { 451 BlockDriverState *bs = NULL; 452 bool result = false; 453 GLOBAL_STATE_CODE(); 454 455 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 456 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 457 while ((bs = bdrv_next_all_states(bs))) { 458 AioContext *aio_context = bdrv_get_aio_context(bs); 459 aio_context_acquire(aio_context); 460 result |= bdrv_drain_poll(bs, NULL, true); 461 aio_context_release(aio_context); 462 } 463 464 return result; 465 } 466 467 /* 468 * Wait for pending requests to complete across all BlockDriverStates 469 * 470 * This function does not flush data to disk, use bdrv_flush_all() for that 471 * after calling this function. 472 * 473 * This pauses all block jobs and disables external clients. It must 474 * be paired with bdrv_drain_all_end(). 475 * 476 * NOTE: no new block jobs or BlockDriverStates can be created between 477 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 478 */ 479 void bdrv_drain_all_begin_nopoll(void) 480 { 481 BlockDriverState *bs = NULL; 482 GLOBAL_STATE_CODE(); 483 484 /* 485 * bdrv queue is managed by record/replay, 486 * waiting for finishing the I/O requests may 487 * be infinite 488 */ 489 if (replay_events_enabled()) { 490 return; 491 } 492 493 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 494 * loop AioContext, so make sure we're in the main context. */ 495 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 496 assert(bdrv_drain_all_count < INT_MAX); 497 bdrv_drain_all_count++; 498 499 /* Quiesce all nodes, without polling in-flight requests yet. The graph 500 * cannot change during this loop. */ 501 while ((bs = bdrv_next_all_states(bs))) { 502 AioContext *aio_context = bdrv_get_aio_context(bs); 503 504 aio_context_acquire(aio_context); 505 bdrv_do_drained_begin(bs, NULL, false); 506 aio_context_release(aio_context); 507 } 508 } 509 510 void coroutine_mixed_fn bdrv_drain_all_begin(void) 511 { 512 BlockDriverState *bs = NULL; 513 514 if (qemu_in_coroutine()) { 515 bdrv_co_yield_to_drain(NULL, true, NULL, true); 516 return; 517 } 518 519 /* 520 * bdrv queue is managed by record/replay, 521 * waiting for finishing the I/O requests may 522 * be infinite 523 */ 524 if (replay_events_enabled()) { 525 return; 526 } 527 528 bdrv_drain_all_begin_nopoll(); 529 530 /* Now poll the in-flight requests */ 531 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll()); 532 533 while ((bs = bdrv_next_all_states(bs))) { 534 bdrv_drain_assert_idle(bs); 535 } 536 } 537 538 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 539 { 540 GLOBAL_STATE_CODE(); 541 542 g_assert(bs->quiesce_counter > 0); 543 g_assert(!bs->refcnt); 544 545 while (bs->quiesce_counter) { 546 bdrv_do_drained_end(bs, NULL); 547 } 548 } 549 550 void bdrv_drain_all_end(void) 551 { 552 BlockDriverState *bs = NULL; 553 GLOBAL_STATE_CODE(); 554 555 /* 556 * bdrv queue is managed by record/replay, 557 * waiting for finishing the I/O requests may 558 * be endless 559 */ 560 if (replay_events_enabled()) { 561 return; 562 } 563 564 while ((bs = bdrv_next_all_states(bs))) { 565 AioContext *aio_context = bdrv_get_aio_context(bs); 566 567 aio_context_acquire(aio_context); 568 bdrv_do_drained_end(bs, NULL); 569 aio_context_release(aio_context); 570 } 571 572 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 573 assert(bdrv_drain_all_count > 0); 574 bdrv_drain_all_count--; 575 } 576 577 void bdrv_drain_all(void) 578 { 579 GLOBAL_STATE_CODE(); 580 bdrv_drain_all_begin(); 581 bdrv_drain_all_end(); 582 } 583 584 /** 585 * Remove an active request from the tracked requests list 586 * 587 * This function should be called when a tracked request is completing. 588 */ 589 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 590 { 591 if (req->serialising) { 592 qatomic_dec(&req->bs->serialising_in_flight); 593 } 594 595 qemu_mutex_lock(&req->bs->reqs_lock); 596 QLIST_REMOVE(req, list); 597 qemu_mutex_unlock(&req->bs->reqs_lock); 598 599 /* 600 * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called 601 * anymore because the request has been removed from the list, so it's safe 602 * to restart the queue outside reqs_lock to minimize the critical section. 603 */ 604 qemu_co_queue_restart_all(&req->wait_queue); 605 } 606 607 /** 608 * Add an active request to the tracked requests list 609 */ 610 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req, 611 BlockDriverState *bs, 612 int64_t offset, 613 int64_t bytes, 614 enum BdrvTrackedRequestType type) 615 { 616 bdrv_check_request(offset, bytes, &error_abort); 617 618 *req = (BdrvTrackedRequest){ 619 .bs = bs, 620 .offset = offset, 621 .bytes = bytes, 622 .type = type, 623 .co = qemu_coroutine_self(), 624 .serialising = false, 625 .overlap_offset = offset, 626 .overlap_bytes = bytes, 627 }; 628 629 qemu_co_queue_init(&req->wait_queue); 630 631 qemu_mutex_lock(&bs->reqs_lock); 632 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 633 qemu_mutex_unlock(&bs->reqs_lock); 634 } 635 636 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 637 int64_t offset, int64_t bytes) 638 { 639 bdrv_check_request(offset, bytes, &error_abort); 640 641 /* aaaa bbbb */ 642 if (offset >= req->overlap_offset + req->overlap_bytes) { 643 return false; 644 } 645 /* bbbb aaaa */ 646 if (req->overlap_offset >= offset + bytes) { 647 return false; 648 } 649 return true; 650 } 651 652 /* Called with self->bs->reqs_lock held */ 653 static coroutine_fn BdrvTrackedRequest * 654 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 655 { 656 BdrvTrackedRequest *req; 657 658 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 659 if (req == self || (!req->serialising && !self->serialising)) { 660 continue; 661 } 662 if (tracked_request_overlaps(req, self->overlap_offset, 663 self->overlap_bytes)) 664 { 665 /* 666 * Hitting this means there was a reentrant request, for 667 * example, a block driver issuing nested requests. This must 668 * never happen since it means deadlock. 669 */ 670 assert(qemu_coroutine_self() != req->co); 671 672 /* 673 * If the request is already (indirectly) waiting for us, or 674 * will wait for us as soon as it wakes up, then just go on 675 * (instead of producing a deadlock in the former case). 676 */ 677 if (!req->waiting_for) { 678 return req; 679 } 680 } 681 } 682 683 return NULL; 684 } 685 686 /* Called with self->bs->reqs_lock held */ 687 static void coroutine_fn 688 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 689 { 690 BdrvTrackedRequest *req; 691 692 while ((req = bdrv_find_conflicting_request(self))) { 693 self->waiting_for = req; 694 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 695 self->waiting_for = NULL; 696 } 697 } 698 699 /* Called with req->bs->reqs_lock held */ 700 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 701 uint64_t align) 702 { 703 int64_t overlap_offset = req->offset & ~(align - 1); 704 int64_t overlap_bytes = 705 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 706 707 bdrv_check_request(req->offset, req->bytes, &error_abort); 708 709 if (!req->serialising) { 710 qatomic_inc(&req->bs->serialising_in_flight); 711 req->serialising = true; 712 } 713 714 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 715 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 716 } 717 718 /** 719 * Return the tracked request on @bs for the current coroutine, or 720 * NULL if there is none. 721 */ 722 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 723 { 724 BdrvTrackedRequest *req; 725 Coroutine *self = qemu_coroutine_self(); 726 IO_CODE(); 727 728 QLIST_FOREACH(req, &bs->tracked_requests, list) { 729 if (req->co == self) { 730 return req; 731 } 732 } 733 734 return NULL; 735 } 736 737 /** 738 * Round a region to subcluster (if supported) or cluster boundaries 739 */ 740 void coroutine_fn GRAPH_RDLOCK 741 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes, 742 int64_t *align_offset, int64_t *align_bytes) 743 { 744 BlockDriverInfo bdi; 745 IO_CODE(); 746 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) { 747 *align_offset = offset; 748 *align_bytes = bytes; 749 } else { 750 int64_t c = bdi.subcluster_size; 751 *align_offset = QEMU_ALIGN_DOWN(offset, c); 752 *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c); 753 } 754 } 755 756 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs) 757 { 758 BlockDriverInfo bdi; 759 int ret; 760 761 ret = bdrv_co_get_info(bs, &bdi); 762 if (ret < 0 || bdi.cluster_size == 0) { 763 return bs->bl.request_alignment; 764 } else { 765 return bdi.cluster_size; 766 } 767 } 768 769 void bdrv_inc_in_flight(BlockDriverState *bs) 770 { 771 IO_CODE(); 772 qatomic_inc(&bs->in_flight); 773 } 774 775 void bdrv_wakeup(BlockDriverState *bs) 776 { 777 IO_CODE(); 778 aio_wait_kick(); 779 } 780 781 void bdrv_dec_in_flight(BlockDriverState *bs) 782 { 783 IO_CODE(); 784 qatomic_dec(&bs->in_flight); 785 bdrv_wakeup(bs); 786 } 787 788 static void coroutine_fn 789 bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 790 { 791 BlockDriverState *bs = self->bs; 792 793 if (!qatomic_read(&bs->serialising_in_flight)) { 794 return; 795 } 796 797 qemu_mutex_lock(&bs->reqs_lock); 798 bdrv_wait_serialising_requests_locked(self); 799 qemu_mutex_unlock(&bs->reqs_lock); 800 } 801 802 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 803 uint64_t align) 804 { 805 IO_CODE(); 806 807 qemu_mutex_lock(&req->bs->reqs_lock); 808 809 tracked_request_set_serialising(req, align); 810 bdrv_wait_serialising_requests_locked(req); 811 812 qemu_mutex_unlock(&req->bs->reqs_lock); 813 } 814 815 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 816 QEMUIOVector *qiov, size_t qiov_offset, 817 Error **errp) 818 { 819 /* 820 * Check generic offset/bytes correctness 821 */ 822 823 if (offset < 0) { 824 error_setg(errp, "offset is negative: %" PRIi64, offset); 825 return -EIO; 826 } 827 828 if (bytes < 0) { 829 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 830 return -EIO; 831 } 832 833 if (bytes > BDRV_MAX_LENGTH) { 834 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 835 bytes, BDRV_MAX_LENGTH); 836 return -EIO; 837 } 838 839 if (offset > BDRV_MAX_LENGTH) { 840 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 841 offset, BDRV_MAX_LENGTH); 842 return -EIO; 843 } 844 845 if (offset > BDRV_MAX_LENGTH - bytes) { 846 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 847 "exceeds maximum(%" PRIi64 ")", offset, bytes, 848 BDRV_MAX_LENGTH); 849 return -EIO; 850 } 851 852 if (!qiov) { 853 return 0; 854 } 855 856 /* 857 * Check qiov and qiov_offset 858 */ 859 860 if (qiov_offset > qiov->size) { 861 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 862 qiov_offset, qiov->size); 863 return -EIO; 864 } 865 866 if (bytes > qiov->size - qiov_offset) { 867 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 868 "vector size(%zu)", bytes, qiov_offset, qiov->size); 869 return -EIO; 870 } 871 872 return 0; 873 } 874 875 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 876 { 877 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 878 } 879 880 static int bdrv_check_request32(int64_t offset, int64_t bytes, 881 QEMUIOVector *qiov, size_t qiov_offset) 882 { 883 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 884 if (ret < 0) { 885 return ret; 886 } 887 888 if (bytes > BDRV_REQUEST_MAX_BYTES) { 889 return -EIO; 890 } 891 892 return 0; 893 } 894 895 /* 896 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 897 * The operation is sped up by checking the block status and only writing 898 * zeroes to the device if they currently do not return zeroes. Optional 899 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 900 * BDRV_REQ_FUA). 901 * 902 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 903 */ 904 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 905 { 906 int ret; 907 int64_t target_size, bytes, offset = 0; 908 BlockDriverState *bs = child->bs; 909 IO_CODE(); 910 911 target_size = bdrv_getlength(bs); 912 if (target_size < 0) { 913 return target_size; 914 } 915 916 for (;;) { 917 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 918 if (bytes <= 0) { 919 return 0; 920 } 921 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 922 if (ret < 0) { 923 return ret; 924 } 925 if (ret & BDRV_BLOCK_ZERO) { 926 offset += bytes; 927 continue; 928 } 929 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 930 if (ret < 0) { 931 return ret; 932 } 933 offset += bytes; 934 } 935 } 936 937 /* 938 * Writes to the file and ensures that no writes are reordered across this 939 * request (acts as a barrier) 940 * 941 * Returns 0 on success, -errno in error cases. 942 */ 943 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 944 int64_t bytes, const void *buf, 945 BdrvRequestFlags flags) 946 { 947 int ret; 948 IO_CODE(); 949 assert_bdrv_graph_readable(); 950 951 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 952 if (ret < 0) { 953 return ret; 954 } 955 956 ret = bdrv_co_flush(child->bs); 957 if (ret < 0) { 958 return ret; 959 } 960 961 return 0; 962 } 963 964 typedef struct CoroutineIOCompletion { 965 Coroutine *coroutine; 966 int ret; 967 } CoroutineIOCompletion; 968 969 static void bdrv_co_io_em_complete(void *opaque, int ret) 970 { 971 CoroutineIOCompletion *co = opaque; 972 973 co->ret = ret; 974 aio_co_wake(co->coroutine); 975 } 976 977 static int coroutine_fn GRAPH_RDLOCK 978 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes, 979 QEMUIOVector *qiov, size_t qiov_offset, int flags) 980 { 981 BlockDriver *drv = bs->drv; 982 int64_t sector_num; 983 unsigned int nb_sectors; 984 QEMUIOVector local_qiov; 985 int ret; 986 assert_bdrv_graph_readable(); 987 988 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 989 assert(!(flags & ~bs->supported_read_flags)); 990 991 if (!drv) { 992 return -ENOMEDIUM; 993 } 994 995 if (drv->bdrv_co_preadv_part) { 996 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 997 flags); 998 } 999 1000 if (qiov_offset > 0 || bytes != qiov->size) { 1001 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1002 qiov = &local_qiov; 1003 } 1004 1005 if (drv->bdrv_co_preadv) { 1006 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1007 goto out; 1008 } 1009 1010 if (drv->bdrv_aio_preadv) { 1011 BlockAIOCB *acb; 1012 CoroutineIOCompletion co = { 1013 .coroutine = qemu_coroutine_self(), 1014 }; 1015 1016 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1017 bdrv_co_io_em_complete, &co); 1018 if (acb == NULL) { 1019 ret = -EIO; 1020 goto out; 1021 } else { 1022 qemu_coroutine_yield(); 1023 ret = co.ret; 1024 goto out; 1025 } 1026 } 1027 1028 sector_num = offset >> BDRV_SECTOR_BITS; 1029 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1030 1031 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1032 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1033 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1034 assert(drv->bdrv_co_readv); 1035 1036 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1037 1038 out: 1039 if (qiov == &local_qiov) { 1040 qemu_iovec_destroy(&local_qiov); 1041 } 1042 1043 return ret; 1044 } 1045 1046 static int coroutine_fn GRAPH_RDLOCK 1047 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes, 1048 QEMUIOVector *qiov, size_t qiov_offset, 1049 BdrvRequestFlags flags) 1050 { 1051 BlockDriver *drv = bs->drv; 1052 bool emulate_fua = false; 1053 int64_t sector_num; 1054 unsigned int nb_sectors; 1055 QEMUIOVector local_qiov; 1056 int ret; 1057 assert_bdrv_graph_readable(); 1058 1059 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1060 1061 if (!drv) { 1062 return -ENOMEDIUM; 1063 } 1064 1065 if ((flags & BDRV_REQ_FUA) && 1066 (~bs->supported_write_flags & BDRV_REQ_FUA)) { 1067 flags &= ~BDRV_REQ_FUA; 1068 emulate_fua = true; 1069 } 1070 1071 flags &= bs->supported_write_flags; 1072 1073 if (drv->bdrv_co_pwritev_part) { 1074 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1075 flags); 1076 goto emulate_flags; 1077 } 1078 1079 if (qiov_offset > 0 || bytes != qiov->size) { 1080 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1081 qiov = &local_qiov; 1082 } 1083 1084 if (drv->bdrv_co_pwritev) { 1085 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags); 1086 goto emulate_flags; 1087 } 1088 1089 if (drv->bdrv_aio_pwritev) { 1090 BlockAIOCB *acb; 1091 CoroutineIOCompletion co = { 1092 .coroutine = qemu_coroutine_self(), 1093 }; 1094 1095 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags, 1096 bdrv_co_io_em_complete, &co); 1097 if (acb == NULL) { 1098 ret = -EIO; 1099 } else { 1100 qemu_coroutine_yield(); 1101 ret = co.ret; 1102 } 1103 goto emulate_flags; 1104 } 1105 1106 sector_num = offset >> BDRV_SECTOR_BITS; 1107 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1108 1109 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1110 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1111 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1112 1113 assert(drv->bdrv_co_writev); 1114 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags); 1115 1116 emulate_flags: 1117 if (ret == 0 && emulate_fua) { 1118 ret = bdrv_co_flush(bs); 1119 } 1120 1121 if (qiov == &local_qiov) { 1122 qemu_iovec_destroy(&local_qiov); 1123 } 1124 1125 return ret; 1126 } 1127 1128 static int coroutine_fn GRAPH_RDLOCK 1129 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1130 int64_t bytes, QEMUIOVector *qiov, 1131 size_t qiov_offset) 1132 { 1133 BlockDriver *drv = bs->drv; 1134 QEMUIOVector local_qiov; 1135 int ret; 1136 assert_bdrv_graph_readable(); 1137 1138 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1139 1140 if (!drv) { 1141 return -ENOMEDIUM; 1142 } 1143 1144 if (!block_driver_can_compress(drv)) { 1145 return -ENOTSUP; 1146 } 1147 1148 if (drv->bdrv_co_pwritev_compressed_part) { 1149 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1150 qiov, qiov_offset); 1151 } 1152 1153 if (qiov_offset == 0) { 1154 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1155 } 1156 1157 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1158 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1159 qemu_iovec_destroy(&local_qiov); 1160 1161 return ret; 1162 } 1163 1164 static int coroutine_fn GRAPH_RDLOCK 1165 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes, 1166 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1167 { 1168 BlockDriverState *bs = child->bs; 1169 1170 /* Perform I/O through a temporary buffer so that users who scribble over 1171 * their read buffer while the operation is in progress do not end up 1172 * modifying the image file. This is critical for zero-copy guest I/O 1173 * where anything might happen inside guest memory. 1174 */ 1175 void *bounce_buffer = NULL; 1176 1177 BlockDriver *drv = bs->drv; 1178 int64_t align_offset; 1179 int64_t align_bytes; 1180 int64_t skip_bytes; 1181 int ret; 1182 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1183 BDRV_REQUEST_MAX_BYTES); 1184 int64_t progress = 0; 1185 bool skip_write; 1186 1187 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1188 1189 if (!drv) { 1190 return -ENOMEDIUM; 1191 } 1192 1193 /* 1194 * Do not write anything when the BDS is inactive. That is not 1195 * allowed, and it would not help. 1196 */ 1197 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1198 1199 /* FIXME We cannot require callers to have write permissions when all they 1200 * are doing is a read request. If we did things right, write permissions 1201 * would be obtained anyway, but internally by the copy-on-read code. As 1202 * long as it is implemented here rather than in a separate filter driver, 1203 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1204 * it could request permissions. Therefore we have to bypass the permission 1205 * system for the moment. */ 1206 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1207 1208 /* Cover entire cluster so no additional backing file I/O is required when 1209 * allocating cluster in the image file. Note that this value may exceed 1210 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1211 * is one reason we loop rather than doing it all at once. 1212 */ 1213 bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes); 1214 skip_bytes = offset - align_offset; 1215 1216 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1217 align_offset, align_bytes); 1218 1219 while (align_bytes) { 1220 int64_t pnum; 1221 1222 if (skip_write) { 1223 ret = 1; /* "already allocated", so nothing will be copied */ 1224 pnum = MIN(align_bytes, max_transfer); 1225 } else { 1226 ret = bdrv_is_allocated(bs, align_offset, 1227 MIN(align_bytes, max_transfer), &pnum); 1228 if (ret < 0) { 1229 /* 1230 * Safe to treat errors in querying allocation as if 1231 * unallocated; we'll probably fail again soon on the 1232 * read, but at least that will set a decent errno. 1233 */ 1234 pnum = MIN(align_bytes, max_transfer); 1235 } 1236 1237 /* Stop at EOF if the image ends in the middle of the cluster */ 1238 if (ret == 0 && pnum == 0) { 1239 assert(progress >= bytes); 1240 break; 1241 } 1242 1243 assert(skip_bytes < pnum); 1244 } 1245 1246 if (ret <= 0) { 1247 QEMUIOVector local_qiov; 1248 1249 /* Must copy-on-read; use the bounce buffer */ 1250 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1251 if (!bounce_buffer) { 1252 int64_t max_we_need = MAX(pnum, align_bytes - pnum); 1253 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1254 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1255 1256 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1257 if (!bounce_buffer) { 1258 ret = -ENOMEM; 1259 goto err; 1260 } 1261 } 1262 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1263 1264 ret = bdrv_driver_preadv(bs, align_offset, pnum, 1265 &local_qiov, 0, 0); 1266 if (ret < 0) { 1267 goto err; 1268 } 1269 1270 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE); 1271 if (drv->bdrv_co_pwrite_zeroes && 1272 buffer_is_zero(bounce_buffer, pnum)) { 1273 /* FIXME: Should we (perhaps conditionally) be setting 1274 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1275 * that still correctly reads as zero? */ 1276 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum, 1277 BDRV_REQ_WRITE_UNCHANGED); 1278 } else { 1279 /* This does not change the data on the disk, it is not 1280 * necessary to flush even in cache=writethrough mode. 1281 */ 1282 ret = bdrv_driver_pwritev(bs, align_offset, pnum, 1283 &local_qiov, 0, 1284 BDRV_REQ_WRITE_UNCHANGED); 1285 } 1286 1287 if (ret < 0) { 1288 /* It might be okay to ignore write errors for guest 1289 * requests. If this is a deliberate copy-on-read 1290 * then we don't want to ignore the error. Simply 1291 * report it in all cases. 1292 */ 1293 goto err; 1294 } 1295 1296 if (!(flags & BDRV_REQ_PREFETCH)) { 1297 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1298 bounce_buffer + skip_bytes, 1299 MIN(pnum - skip_bytes, bytes - progress)); 1300 } 1301 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1302 /* Read directly into the destination */ 1303 ret = bdrv_driver_preadv(bs, offset + progress, 1304 MIN(pnum - skip_bytes, bytes - progress), 1305 qiov, qiov_offset + progress, 0); 1306 if (ret < 0) { 1307 goto err; 1308 } 1309 } 1310 1311 align_offset += pnum; 1312 align_bytes -= pnum; 1313 progress += pnum - skip_bytes; 1314 skip_bytes = 0; 1315 } 1316 ret = 0; 1317 1318 err: 1319 qemu_vfree(bounce_buffer); 1320 return ret; 1321 } 1322 1323 /* 1324 * Forwards an already correctly aligned request to the BlockDriver. This 1325 * handles copy on read, zeroing after EOF, and fragmentation of large 1326 * reads; any other features must be implemented by the caller. 1327 */ 1328 static int coroutine_fn GRAPH_RDLOCK 1329 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req, 1330 int64_t offset, int64_t bytes, int64_t align, 1331 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1332 { 1333 BlockDriverState *bs = child->bs; 1334 int64_t total_bytes, max_bytes; 1335 int ret = 0; 1336 int64_t bytes_remaining = bytes; 1337 int max_transfer; 1338 1339 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1340 assert(is_power_of_2(align)); 1341 assert((offset & (align - 1)) == 0); 1342 assert((bytes & (align - 1)) == 0); 1343 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1344 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1345 align); 1346 1347 /* 1348 * TODO: We would need a per-BDS .supported_read_flags and 1349 * potential fallback support, if we ever implement any read flags 1350 * to pass through to drivers. For now, there aren't any 1351 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint. 1352 */ 1353 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH | 1354 BDRV_REQ_REGISTERED_BUF))); 1355 1356 /* Handle Copy on Read and associated serialisation */ 1357 if (flags & BDRV_REQ_COPY_ON_READ) { 1358 /* If we touch the same cluster it counts as an overlap. This 1359 * guarantees that allocating writes will be serialized and not race 1360 * with each other for the same cluster. For example, in copy-on-read 1361 * it ensures that the CoR read and write operations are atomic and 1362 * guest writes cannot interleave between them. */ 1363 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1364 } else { 1365 bdrv_wait_serialising_requests(req); 1366 } 1367 1368 if (flags & BDRV_REQ_COPY_ON_READ) { 1369 int64_t pnum; 1370 1371 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1372 flags &= ~BDRV_REQ_COPY_ON_READ; 1373 1374 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1375 if (ret < 0) { 1376 goto out; 1377 } 1378 1379 if (!ret || pnum != bytes) { 1380 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1381 qiov, qiov_offset, flags); 1382 goto out; 1383 } else if (flags & BDRV_REQ_PREFETCH) { 1384 goto out; 1385 } 1386 } 1387 1388 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1389 total_bytes = bdrv_co_getlength(bs); 1390 if (total_bytes < 0) { 1391 ret = total_bytes; 1392 goto out; 1393 } 1394 1395 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF))); 1396 1397 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1398 if (bytes <= max_bytes && bytes <= max_transfer) { 1399 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1400 goto out; 1401 } 1402 1403 while (bytes_remaining) { 1404 int64_t num; 1405 1406 if (max_bytes) { 1407 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1408 assert(num); 1409 1410 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1411 num, qiov, 1412 qiov_offset + bytes - bytes_remaining, 1413 flags); 1414 max_bytes -= num; 1415 } else { 1416 num = bytes_remaining; 1417 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1418 0, bytes_remaining); 1419 } 1420 if (ret < 0) { 1421 goto out; 1422 } 1423 bytes_remaining -= num; 1424 } 1425 1426 out: 1427 return ret < 0 ? ret : 0; 1428 } 1429 1430 /* 1431 * Request padding 1432 * 1433 * |<---- align ----->| |<----- align ---->| 1434 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1435 * | | | | | | 1436 * -*----------$-------*-------- ... --------*-----$------------*--- 1437 * | | | | | | 1438 * | offset | | end | 1439 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1440 * [buf ... ) [tail_buf ) 1441 * 1442 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1443 * is placed at the beginning of @buf and @tail at the @end. 1444 * 1445 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1446 * around tail, if tail exists. 1447 * 1448 * @merge_reads is true for small requests, 1449 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1450 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1451 * 1452 * @write is true for write requests, false for read requests. 1453 * 1454 * If padding makes the vector too long (exceeding IOV_MAX), then we need to 1455 * merge existing vector elements into a single one. @collapse_bounce_buf acts 1456 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse 1457 * I/O vector elements so for read requests, the data can be copied back after 1458 * the read is done. 1459 */ 1460 typedef struct BdrvRequestPadding { 1461 uint8_t *buf; 1462 size_t buf_len; 1463 uint8_t *tail_buf; 1464 size_t head; 1465 size_t tail; 1466 bool merge_reads; 1467 bool write; 1468 QEMUIOVector local_qiov; 1469 1470 uint8_t *collapse_bounce_buf; 1471 size_t collapse_len; 1472 QEMUIOVector pre_collapse_qiov; 1473 } BdrvRequestPadding; 1474 1475 static bool bdrv_init_padding(BlockDriverState *bs, 1476 int64_t offset, int64_t bytes, 1477 bool write, 1478 BdrvRequestPadding *pad) 1479 { 1480 int64_t align = bs->bl.request_alignment; 1481 int64_t sum; 1482 1483 bdrv_check_request(offset, bytes, &error_abort); 1484 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1485 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1486 1487 memset(pad, 0, sizeof(*pad)); 1488 1489 pad->head = offset & (align - 1); 1490 pad->tail = ((offset + bytes) & (align - 1)); 1491 if (pad->tail) { 1492 pad->tail = align - pad->tail; 1493 } 1494 1495 if (!pad->head && !pad->tail) { 1496 return false; 1497 } 1498 1499 assert(bytes); /* Nothing good in aligning zero-length requests */ 1500 1501 sum = pad->head + bytes + pad->tail; 1502 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1503 pad->buf = qemu_blockalign(bs, pad->buf_len); 1504 pad->merge_reads = sum == pad->buf_len; 1505 if (pad->tail) { 1506 pad->tail_buf = pad->buf + pad->buf_len - align; 1507 } 1508 1509 pad->write = write; 1510 1511 return true; 1512 } 1513 1514 static int coroutine_fn GRAPH_RDLOCK 1515 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req, 1516 BdrvRequestPadding *pad, bool zero_middle) 1517 { 1518 QEMUIOVector local_qiov; 1519 BlockDriverState *bs = child->bs; 1520 uint64_t align = bs->bl.request_alignment; 1521 int ret; 1522 1523 assert(req->serialising && pad->buf); 1524 1525 if (pad->head || pad->merge_reads) { 1526 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1527 1528 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1529 1530 if (pad->head) { 1531 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1532 } 1533 if (pad->merge_reads && pad->tail) { 1534 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1535 } 1536 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1537 align, &local_qiov, 0, 0); 1538 if (ret < 0) { 1539 return ret; 1540 } 1541 if (pad->head) { 1542 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1543 } 1544 if (pad->merge_reads && pad->tail) { 1545 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1546 } 1547 1548 if (pad->merge_reads) { 1549 goto zero_mem; 1550 } 1551 } 1552 1553 if (pad->tail) { 1554 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1555 1556 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1557 ret = bdrv_aligned_preadv( 1558 child, req, 1559 req->overlap_offset + req->overlap_bytes - align, 1560 align, align, &local_qiov, 0, 0); 1561 if (ret < 0) { 1562 return ret; 1563 } 1564 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1565 } 1566 1567 zero_mem: 1568 if (zero_middle) { 1569 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1570 } 1571 1572 return 0; 1573 } 1574 1575 /** 1576 * Free *pad's associated buffers, and perform any necessary finalization steps. 1577 */ 1578 static void bdrv_padding_finalize(BdrvRequestPadding *pad) 1579 { 1580 if (pad->collapse_bounce_buf) { 1581 if (!pad->write) { 1582 /* 1583 * If padding required elements in the vector to be collapsed into a 1584 * bounce buffer, copy the bounce buffer content back 1585 */ 1586 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0, 1587 pad->collapse_bounce_buf, pad->collapse_len); 1588 } 1589 qemu_vfree(pad->collapse_bounce_buf); 1590 qemu_iovec_destroy(&pad->pre_collapse_qiov); 1591 } 1592 if (pad->buf) { 1593 qemu_vfree(pad->buf); 1594 qemu_iovec_destroy(&pad->local_qiov); 1595 } 1596 memset(pad, 0, sizeof(*pad)); 1597 } 1598 1599 /* 1600 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while 1601 * ensuring that the resulting vector will not exceed IOV_MAX elements. 1602 * 1603 * To ensure this, when necessary, the first two or three elements of @iov are 1604 * merged into pad->collapse_bounce_buf and replaced by a reference to that 1605 * bounce buffer in pad->local_qiov. 1606 * 1607 * After performing a read request, the data from the bounce buffer must be 1608 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()). 1609 */ 1610 static int bdrv_create_padded_qiov(BlockDriverState *bs, 1611 BdrvRequestPadding *pad, 1612 struct iovec *iov, int niov, 1613 size_t iov_offset, size_t bytes) 1614 { 1615 int padded_niov, surplus_count, collapse_count; 1616 1617 /* Assert this invariant */ 1618 assert(niov <= IOV_MAX); 1619 1620 /* 1621 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error 1622 * to the guest is not ideal, but there is little else we can do. At least 1623 * this will practically never happen on 64-bit systems. 1624 */ 1625 if (SIZE_MAX - pad->head < bytes || 1626 SIZE_MAX - pad->head - bytes < pad->tail) 1627 { 1628 return -EINVAL; 1629 } 1630 1631 /* Length of the resulting IOV if we just concatenated everything */ 1632 padded_niov = !!pad->head + niov + !!pad->tail; 1633 1634 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX)); 1635 1636 if (pad->head) { 1637 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head); 1638 } 1639 1640 /* 1641 * If padded_niov > IOV_MAX, we cannot just concatenate everything. 1642 * Instead, merge the first two or three elements of @iov to reduce the 1643 * number of vector elements as necessary. 1644 */ 1645 if (padded_niov > IOV_MAX) { 1646 /* 1647 * Only head and tail can have lead to the number of entries exceeding 1648 * IOV_MAX, so we can exceed it by the head and tail at most. We need 1649 * to reduce the number of elements by `surplus_count`, so we merge that 1650 * many elements plus one into one element. 1651 */ 1652 surplus_count = padded_niov - IOV_MAX; 1653 assert(surplus_count <= !!pad->head + !!pad->tail); 1654 collapse_count = surplus_count + 1; 1655 1656 /* 1657 * Move the elements to collapse into `pad->pre_collapse_qiov`, then 1658 * advance `iov` (and associated variables) by those elements. 1659 */ 1660 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count); 1661 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov, 1662 collapse_count, iov_offset, SIZE_MAX); 1663 iov += collapse_count; 1664 iov_offset = 0; 1665 niov -= collapse_count; 1666 bytes -= pad->pre_collapse_qiov.size; 1667 1668 /* 1669 * Construct the bounce buffer to match the length of the to-collapse 1670 * vector elements, and for write requests, initialize it with the data 1671 * from those elements. Then add it to `pad->local_qiov`. 1672 */ 1673 pad->collapse_len = pad->pre_collapse_qiov.size; 1674 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len); 1675 if (pad->write) { 1676 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0, 1677 pad->collapse_bounce_buf, pad->collapse_len); 1678 } 1679 qemu_iovec_add(&pad->local_qiov, 1680 pad->collapse_bounce_buf, pad->collapse_len); 1681 } 1682 1683 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes); 1684 1685 if (pad->tail) { 1686 qemu_iovec_add(&pad->local_qiov, 1687 pad->buf + pad->buf_len - pad->tail, pad->tail); 1688 } 1689 1690 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX)); 1691 return 0; 1692 } 1693 1694 /* 1695 * bdrv_pad_request 1696 * 1697 * Exchange request parameters with padded request if needed. Don't include RMW 1698 * read of padding, bdrv_padding_rmw_read() should be called separately if 1699 * needed. 1700 * 1701 * @write is true for write requests, false for read requests. 1702 * 1703 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1704 * - on function start they represent original request 1705 * - on failure or when padding is not needed they are unchanged 1706 * - on success when padding is needed they represent padded request 1707 */ 1708 static int bdrv_pad_request(BlockDriverState *bs, 1709 QEMUIOVector **qiov, size_t *qiov_offset, 1710 int64_t *offset, int64_t *bytes, 1711 bool write, 1712 BdrvRequestPadding *pad, bool *padded, 1713 BdrvRequestFlags *flags) 1714 { 1715 int ret; 1716 struct iovec *sliced_iov; 1717 int sliced_niov; 1718 size_t sliced_head, sliced_tail; 1719 1720 /* Should have been checked by the caller already */ 1721 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset); 1722 if (ret < 0) { 1723 return ret; 1724 } 1725 1726 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) { 1727 if (padded) { 1728 *padded = false; 1729 } 1730 return 0; 1731 } 1732 1733 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes, 1734 &sliced_head, &sliced_tail, 1735 &sliced_niov); 1736 1737 /* Guaranteed by bdrv_check_request32() */ 1738 assert(*bytes <= SIZE_MAX); 1739 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov, 1740 sliced_head, *bytes); 1741 if (ret < 0) { 1742 bdrv_padding_finalize(pad); 1743 return ret; 1744 } 1745 *bytes += pad->head + pad->tail; 1746 *offset -= pad->head; 1747 *qiov = &pad->local_qiov; 1748 *qiov_offset = 0; 1749 if (padded) { 1750 *padded = true; 1751 } 1752 if (flags) { 1753 /* Can't use optimization hint with bounce buffer */ 1754 *flags &= ~BDRV_REQ_REGISTERED_BUF; 1755 } 1756 1757 return 0; 1758 } 1759 1760 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1761 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1762 BdrvRequestFlags flags) 1763 { 1764 IO_CODE(); 1765 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1766 } 1767 1768 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1769 int64_t offset, int64_t bytes, 1770 QEMUIOVector *qiov, size_t qiov_offset, 1771 BdrvRequestFlags flags) 1772 { 1773 BlockDriverState *bs = child->bs; 1774 BdrvTrackedRequest req; 1775 BdrvRequestPadding pad; 1776 int ret; 1777 IO_CODE(); 1778 1779 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1780 1781 if (!bdrv_co_is_inserted(bs)) { 1782 return -ENOMEDIUM; 1783 } 1784 1785 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1786 if (ret < 0) { 1787 return ret; 1788 } 1789 1790 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1791 /* 1792 * Aligning zero request is nonsense. Even if driver has special meaning 1793 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1794 * it to driver due to request_alignment. 1795 * 1796 * Still, no reason to return an error if someone do unaligned 1797 * zero-length read occasionally. 1798 */ 1799 return 0; 1800 } 1801 1802 bdrv_inc_in_flight(bs); 1803 1804 /* Don't do copy-on-read if we read data before write operation */ 1805 if (qatomic_read(&bs->copy_on_read)) { 1806 flags |= BDRV_REQ_COPY_ON_READ; 1807 } 1808 1809 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false, 1810 &pad, NULL, &flags); 1811 if (ret < 0) { 1812 goto fail; 1813 } 1814 1815 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1816 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1817 bs->bl.request_alignment, 1818 qiov, qiov_offset, flags); 1819 tracked_request_end(&req); 1820 bdrv_padding_finalize(&pad); 1821 1822 fail: 1823 bdrv_dec_in_flight(bs); 1824 1825 return ret; 1826 } 1827 1828 static int coroutine_fn GRAPH_RDLOCK 1829 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes, 1830 BdrvRequestFlags flags) 1831 { 1832 BlockDriver *drv = bs->drv; 1833 QEMUIOVector qiov; 1834 void *buf = NULL; 1835 int ret = 0; 1836 bool need_flush = false; 1837 int head = 0; 1838 int tail = 0; 1839 1840 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1841 INT64_MAX); 1842 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1843 bs->bl.request_alignment); 1844 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1845 1846 assert_bdrv_graph_readable(); 1847 bdrv_check_request(offset, bytes, &error_abort); 1848 1849 if (!drv) { 1850 return -ENOMEDIUM; 1851 } 1852 1853 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1854 return -ENOTSUP; 1855 } 1856 1857 /* By definition there is no user buffer so this flag doesn't make sense */ 1858 if (flags & BDRV_REQ_REGISTERED_BUF) { 1859 return -EINVAL; 1860 } 1861 1862 /* Invalidate the cached block-status data range if this write overlaps */ 1863 bdrv_bsc_invalidate_range(bs, offset, bytes); 1864 1865 assert(alignment % bs->bl.request_alignment == 0); 1866 head = offset % alignment; 1867 tail = (offset + bytes) % alignment; 1868 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1869 assert(max_write_zeroes >= bs->bl.request_alignment); 1870 1871 while (bytes > 0 && !ret) { 1872 int64_t num = bytes; 1873 1874 /* Align request. Block drivers can expect the "bulk" of the request 1875 * to be aligned, and that unaligned requests do not cross cluster 1876 * boundaries. 1877 */ 1878 if (head) { 1879 /* Make a small request up to the first aligned sector. For 1880 * convenience, limit this request to max_transfer even if 1881 * we don't need to fall back to writes. */ 1882 num = MIN(MIN(bytes, max_transfer), alignment - head); 1883 head = (head + num) % alignment; 1884 assert(num < max_write_zeroes); 1885 } else if (tail && num > alignment) { 1886 /* Shorten the request to the last aligned sector. */ 1887 num -= tail; 1888 } 1889 1890 /* limit request size */ 1891 if (num > max_write_zeroes) { 1892 num = max_write_zeroes; 1893 } 1894 1895 ret = -ENOTSUP; 1896 /* First try the efficient write zeroes operation */ 1897 if (drv->bdrv_co_pwrite_zeroes) { 1898 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1899 flags & bs->supported_zero_flags); 1900 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1901 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1902 need_flush = true; 1903 } 1904 } else { 1905 assert(!bs->supported_zero_flags); 1906 } 1907 1908 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1909 /* Fall back to bounce buffer if write zeroes is unsupported */ 1910 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1911 1912 if ((flags & BDRV_REQ_FUA) && 1913 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1914 /* No need for bdrv_driver_pwrite() to do a fallback 1915 * flush on each chunk; use just one at the end */ 1916 write_flags &= ~BDRV_REQ_FUA; 1917 need_flush = true; 1918 } 1919 num = MIN(num, max_transfer); 1920 if (buf == NULL) { 1921 buf = qemu_try_blockalign0(bs, num); 1922 if (buf == NULL) { 1923 ret = -ENOMEM; 1924 goto fail; 1925 } 1926 } 1927 qemu_iovec_init_buf(&qiov, buf, num); 1928 1929 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1930 1931 /* Keep bounce buffer around if it is big enough for all 1932 * all future requests. 1933 */ 1934 if (num < max_transfer) { 1935 qemu_vfree(buf); 1936 buf = NULL; 1937 } 1938 } 1939 1940 offset += num; 1941 bytes -= num; 1942 } 1943 1944 fail: 1945 if (ret == 0 && need_flush) { 1946 ret = bdrv_co_flush(bs); 1947 } 1948 qemu_vfree(buf); 1949 return ret; 1950 } 1951 1952 static inline int coroutine_fn GRAPH_RDLOCK 1953 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1954 BdrvTrackedRequest *req, int flags) 1955 { 1956 BlockDriverState *bs = child->bs; 1957 1958 bdrv_check_request(offset, bytes, &error_abort); 1959 1960 if (bdrv_is_read_only(bs)) { 1961 return -EPERM; 1962 } 1963 1964 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1965 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1966 assert(!(flags & ~BDRV_REQ_MASK)); 1967 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1968 1969 if (flags & BDRV_REQ_SERIALISING) { 1970 QEMU_LOCK_GUARD(&bs->reqs_lock); 1971 1972 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1973 1974 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1975 return -EBUSY; 1976 } 1977 1978 bdrv_wait_serialising_requests_locked(req); 1979 } else { 1980 bdrv_wait_serialising_requests(req); 1981 } 1982 1983 assert(req->overlap_offset <= offset); 1984 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1985 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 1986 child->perm & BLK_PERM_RESIZE); 1987 1988 switch (req->type) { 1989 case BDRV_TRACKED_WRITE: 1990 case BDRV_TRACKED_DISCARD: 1991 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1992 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1993 } else { 1994 assert(child->perm & BLK_PERM_WRITE); 1995 } 1996 bdrv_write_threshold_check_write(bs, offset, bytes); 1997 return 0; 1998 case BDRV_TRACKED_TRUNCATE: 1999 assert(child->perm & BLK_PERM_RESIZE); 2000 return 0; 2001 default: 2002 abort(); 2003 } 2004 } 2005 2006 static inline void coroutine_fn 2007 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2008 BdrvTrackedRequest *req, int ret) 2009 { 2010 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2011 BlockDriverState *bs = child->bs; 2012 2013 bdrv_check_request(offset, bytes, &error_abort); 2014 2015 qatomic_inc(&bs->write_gen); 2016 2017 /* 2018 * Discard cannot extend the image, but in error handling cases, such as 2019 * when reverting a qcow2 cluster allocation, the discarded range can pass 2020 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2021 * here. Instead, just skip it, since semantically a discard request 2022 * beyond EOF cannot expand the image anyway. 2023 */ 2024 if (ret == 0 && 2025 (req->type == BDRV_TRACKED_TRUNCATE || 2026 end_sector > bs->total_sectors) && 2027 req->type != BDRV_TRACKED_DISCARD) { 2028 bs->total_sectors = end_sector; 2029 bdrv_parent_cb_resize(bs); 2030 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2031 } 2032 if (req->bytes) { 2033 switch (req->type) { 2034 case BDRV_TRACKED_WRITE: 2035 stat64_max(&bs->wr_highest_offset, offset + bytes); 2036 /* fall through, to set dirty bits */ 2037 case BDRV_TRACKED_DISCARD: 2038 bdrv_set_dirty(bs, offset, bytes); 2039 break; 2040 default: 2041 break; 2042 } 2043 } 2044 } 2045 2046 /* 2047 * Forwards an already correctly aligned write request to the BlockDriver, 2048 * after possibly fragmenting it. 2049 */ 2050 static int coroutine_fn GRAPH_RDLOCK 2051 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req, 2052 int64_t offset, int64_t bytes, int64_t align, 2053 QEMUIOVector *qiov, size_t qiov_offset, 2054 BdrvRequestFlags flags) 2055 { 2056 BlockDriverState *bs = child->bs; 2057 BlockDriver *drv = bs->drv; 2058 int ret; 2059 2060 int64_t bytes_remaining = bytes; 2061 int max_transfer; 2062 2063 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2064 2065 if (!drv) { 2066 return -ENOMEDIUM; 2067 } 2068 2069 if (bdrv_has_readonly_bitmaps(bs)) { 2070 return -EPERM; 2071 } 2072 2073 assert(is_power_of_2(align)); 2074 assert((offset & (align - 1)) == 0); 2075 assert((bytes & (align - 1)) == 0); 2076 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2077 align); 2078 2079 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2080 2081 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2082 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2083 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2084 flags |= BDRV_REQ_ZERO_WRITE; 2085 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2086 flags |= BDRV_REQ_MAY_UNMAP; 2087 } 2088 2089 /* Can't use optimization hint with bufferless zero write */ 2090 flags &= ~BDRV_REQ_REGISTERED_BUF; 2091 } 2092 2093 if (ret < 0) { 2094 /* Do nothing, write notifier decided to fail this request */ 2095 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2096 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2097 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2098 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2099 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2100 qiov, qiov_offset); 2101 } else if (bytes <= max_transfer) { 2102 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2103 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2104 } else { 2105 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2106 while (bytes_remaining) { 2107 int num = MIN(bytes_remaining, max_transfer); 2108 int local_flags = flags; 2109 2110 assert(num); 2111 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2112 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2113 /* If FUA is going to be emulated by flush, we only 2114 * need to flush on the last iteration */ 2115 local_flags &= ~BDRV_REQ_FUA; 2116 } 2117 2118 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2119 num, qiov, 2120 qiov_offset + bytes - bytes_remaining, 2121 local_flags); 2122 if (ret < 0) { 2123 break; 2124 } 2125 bytes_remaining -= num; 2126 } 2127 } 2128 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE); 2129 2130 if (ret >= 0) { 2131 ret = 0; 2132 } 2133 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2134 2135 return ret; 2136 } 2137 2138 static int coroutine_fn GRAPH_RDLOCK 2139 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes, 2140 BdrvRequestFlags flags, BdrvTrackedRequest *req) 2141 { 2142 BlockDriverState *bs = child->bs; 2143 QEMUIOVector local_qiov; 2144 uint64_t align = bs->bl.request_alignment; 2145 int ret = 0; 2146 bool padding; 2147 BdrvRequestPadding pad; 2148 2149 /* This flag doesn't make sense for padding or zero writes */ 2150 flags &= ~BDRV_REQ_REGISTERED_BUF; 2151 2152 padding = bdrv_init_padding(bs, offset, bytes, true, &pad); 2153 if (padding) { 2154 assert(!(flags & BDRV_REQ_NO_WAIT)); 2155 bdrv_make_request_serialising(req, align); 2156 2157 bdrv_padding_rmw_read(child, req, &pad, true); 2158 2159 if (pad.head || pad.merge_reads) { 2160 int64_t aligned_offset = offset & ~(align - 1); 2161 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2162 2163 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2164 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2165 align, &local_qiov, 0, 2166 flags & ~BDRV_REQ_ZERO_WRITE); 2167 if (ret < 0 || pad.merge_reads) { 2168 /* Error or all work is done */ 2169 goto out; 2170 } 2171 offset += write_bytes - pad.head; 2172 bytes -= write_bytes - pad.head; 2173 } 2174 } 2175 2176 assert(!bytes || (offset & (align - 1)) == 0); 2177 if (bytes >= align) { 2178 /* Write the aligned part in the middle. */ 2179 int64_t aligned_bytes = bytes & ~(align - 1); 2180 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2181 NULL, 0, flags); 2182 if (ret < 0) { 2183 goto out; 2184 } 2185 bytes -= aligned_bytes; 2186 offset += aligned_bytes; 2187 } 2188 2189 assert(!bytes || (offset & (align - 1)) == 0); 2190 if (bytes) { 2191 assert(align == pad.tail + bytes); 2192 2193 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2194 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2195 &local_qiov, 0, 2196 flags & ~BDRV_REQ_ZERO_WRITE); 2197 } 2198 2199 out: 2200 bdrv_padding_finalize(&pad); 2201 2202 return ret; 2203 } 2204 2205 /* 2206 * Handle a write request in coroutine context 2207 */ 2208 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2209 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2210 BdrvRequestFlags flags) 2211 { 2212 IO_CODE(); 2213 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2214 } 2215 2216 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2217 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2218 BdrvRequestFlags flags) 2219 { 2220 BlockDriverState *bs = child->bs; 2221 BdrvTrackedRequest req; 2222 uint64_t align = bs->bl.request_alignment; 2223 BdrvRequestPadding pad; 2224 int ret; 2225 bool padded = false; 2226 IO_CODE(); 2227 2228 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2229 2230 if (!bdrv_co_is_inserted(bs)) { 2231 return -ENOMEDIUM; 2232 } 2233 2234 if (flags & BDRV_REQ_ZERO_WRITE) { 2235 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2236 } else { 2237 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2238 } 2239 if (ret < 0) { 2240 return ret; 2241 } 2242 2243 /* If the request is misaligned then we can't make it efficient */ 2244 if ((flags & BDRV_REQ_NO_FALLBACK) && 2245 !QEMU_IS_ALIGNED(offset | bytes, align)) 2246 { 2247 return -ENOTSUP; 2248 } 2249 2250 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2251 /* 2252 * Aligning zero request is nonsense. Even if driver has special meaning 2253 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2254 * it to driver due to request_alignment. 2255 * 2256 * Still, no reason to return an error if someone do unaligned 2257 * zero-length write occasionally. 2258 */ 2259 return 0; 2260 } 2261 2262 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2263 /* 2264 * Pad request for following read-modify-write cycle. 2265 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2266 * alignment only if there is no ZERO flag. 2267 */ 2268 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true, 2269 &pad, &padded, &flags); 2270 if (ret < 0) { 2271 return ret; 2272 } 2273 } 2274 2275 bdrv_inc_in_flight(bs); 2276 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2277 2278 if (flags & BDRV_REQ_ZERO_WRITE) { 2279 assert(!padded); 2280 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2281 goto out; 2282 } 2283 2284 if (padded) { 2285 /* 2286 * Request was unaligned to request_alignment and therefore 2287 * padded. We are going to do read-modify-write, and must 2288 * serialize the request to prevent interactions of the 2289 * widened region with other transactions. 2290 */ 2291 assert(!(flags & BDRV_REQ_NO_WAIT)); 2292 bdrv_make_request_serialising(&req, align); 2293 bdrv_padding_rmw_read(child, &req, &pad, false); 2294 } 2295 2296 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2297 qiov, qiov_offset, flags); 2298 2299 bdrv_padding_finalize(&pad); 2300 2301 out: 2302 tracked_request_end(&req); 2303 bdrv_dec_in_flight(bs); 2304 2305 return ret; 2306 } 2307 2308 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2309 int64_t bytes, BdrvRequestFlags flags) 2310 { 2311 IO_CODE(); 2312 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2313 assert_bdrv_graph_readable(); 2314 2315 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2316 flags &= ~BDRV_REQ_MAY_UNMAP; 2317 } 2318 2319 return bdrv_co_pwritev(child, offset, bytes, NULL, 2320 BDRV_REQ_ZERO_WRITE | flags); 2321 } 2322 2323 /* 2324 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2325 */ 2326 int bdrv_flush_all(void) 2327 { 2328 BdrvNextIterator it; 2329 BlockDriverState *bs = NULL; 2330 int result = 0; 2331 2332 GLOBAL_STATE_CODE(); 2333 2334 /* 2335 * bdrv queue is managed by record/replay, 2336 * creating new flush request for stopping 2337 * the VM may break the determinism 2338 */ 2339 if (replay_events_enabled()) { 2340 return result; 2341 } 2342 2343 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2344 AioContext *aio_context = bdrv_get_aio_context(bs); 2345 int ret; 2346 2347 aio_context_acquire(aio_context); 2348 ret = bdrv_flush(bs); 2349 if (ret < 0 && !result) { 2350 result = ret; 2351 } 2352 aio_context_release(aio_context); 2353 } 2354 2355 return result; 2356 } 2357 2358 /* 2359 * Returns the allocation status of the specified sectors. 2360 * Drivers not implementing the functionality are assumed to not support 2361 * backing files, hence all their sectors are reported as allocated. 2362 * 2363 * If 'want_zero' is true, the caller is querying for mapping 2364 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2365 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2366 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2367 * 2368 * If 'offset' is beyond the end of the disk image the return value is 2369 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2370 * 2371 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2372 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2373 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2374 * 2375 * 'pnum' is set to the number of bytes (including and immediately 2376 * following the specified offset) that are easily known to be in the 2377 * same allocated/unallocated state. Note that a second call starting 2378 * at the original offset plus returned pnum may have the same status. 2379 * The returned value is non-zero on success except at end-of-file. 2380 * 2381 * Returns negative errno on failure. Otherwise, if the 2382 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2383 * set to the host mapping and BDS corresponding to the guest offset. 2384 */ 2385 static int coroutine_fn GRAPH_RDLOCK 2386 bdrv_co_block_status(BlockDriverState *bs, bool want_zero, 2387 int64_t offset, int64_t bytes, 2388 int64_t *pnum, int64_t *map, BlockDriverState **file) 2389 { 2390 int64_t total_size; 2391 int64_t n; /* bytes */ 2392 int ret; 2393 int64_t local_map = 0; 2394 BlockDriverState *local_file = NULL; 2395 int64_t aligned_offset, aligned_bytes; 2396 uint32_t align; 2397 bool has_filtered_child; 2398 2399 assert(pnum); 2400 assert_bdrv_graph_readable(); 2401 *pnum = 0; 2402 total_size = bdrv_co_getlength(bs); 2403 if (total_size < 0) { 2404 ret = total_size; 2405 goto early_out; 2406 } 2407 2408 if (offset >= total_size) { 2409 ret = BDRV_BLOCK_EOF; 2410 goto early_out; 2411 } 2412 if (!bytes) { 2413 ret = 0; 2414 goto early_out; 2415 } 2416 2417 n = total_size - offset; 2418 if (n < bytes) { 2419 bytes = n; 2420 } 2421 2422 /* Must be non-NULL or bdrv_co_getlength() would have failed */ 2423 assert(bs->drv); 2424 has_filtered_child = bdrv_filter_child(bs); 2425 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2426 *pnum = bytes; 2427 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2428 if (offset + bytes == total_size) { 2429 ret |= BDRV_BLOCK_EOF; 2430 } 2431 if (bs->drv->protocol_name) { 2432 ret |= BDRV_BLOCK_OFFSET_VALID; 2433 local_map = offset; 2434 local_file = bs; 2435 } 2436 goto early_out; 2437 } 2438 2439 bdrv_inc_in_flight(bs); 2440 2441 /* Round out to request_alignment boundaries */ 2442 align = bs->bl.request_alignment; 2443 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2444 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2445 2446 if (bs->drv->bdrv_co_block_status) { 2447 /* 2448 * Use the block-status cache only for protocol nodes: Format 2449 * drivers are generally quick to inquire the status, but protocol 2450 * drivers often need to get information from outside of qemu, so 2451 * we do not have control over the actual implementation. There 2452 * have been cases where inquiring the status took an unreasonably 2453 * long time, and we can do nothing in qemu to fix it. 2454 * This is especially problematic for images with large data areas, 2455 * because finding the few holes in them and giving them special 2456 * treatment does not gain much performance. Therefore, we try to 2457 * cache the last-identified data region. 2458 * 2459 * Second, limiting ourselves to protocol nodes allows us to assume 2460 * the block status for data regions to be DATA | OFFSET_VALID, and 2461 * that the host offset is the same as the guest offset. 2462 * 2463 * Note that it is possible that external writers zero parts of 2464 * the cached regions without the cache being invalidated, and so 2465 * we may report zeroes as data. This is not catastrophic, 2466 * however, because reporting zeroes as data is fine. 2467 */ 2468 if (QLIST_EMPTY(&bs->children) && 2469 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2470 { 2471 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2472 local_file = bs; 2473 local_map = aligned_offset; 2474 } else { 2475 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2476 aligned_bytes, pnum, &local_map, 2477 &local_file); 2478 2479 /* 2480 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2481 * the cache is queried above. Technically, we do not need to check 2482 * it here; the worst that can happen is that we fill the cache for 2483 * non-protocol nodes, and then it is never used. However, filling 2484 * the cache requires an RCU update, so double check here to avoid 2485 * such an update if possible. 2486 * 2487 * Check want_zero, because we only want to update the cache when we 2488 * have accurate information about what is zero and what is data. 2489 */ 2490 if (want_zero && 2491 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2492 QLIST_EMPTY(&bs->children)) 2493 { 2494 /* 2495 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2496 * returned local_map value must be the same as the offset we 2497 * have passed (aligned_offset), and local_bs must be the node 2498 * itself. 2499 * Assert this, because we follow this rule when reading from 2500 * the cache (see the `local_file = bs` and 2501 * `local_map = aligned_offset` assignments above), and the 2502 * result the cache delivers must be the same as the driver 2503 * would deliver. 2504 */ 2505 assert(local_file == bs); 2506 assert(local_map == aligned_offset); 2507 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2508 } 2509 } 2510 } else { 2511 /* Default code for filters */ 2512 2513 local_file = bdrv_filter_bs(bs); 2514 assert(local_file); 2515 2516 *pnum = aligned_bytes; 2517 local_map = aligned_offset; 2518 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2519 } 2520 if (ret < 0) { 2521 *pnum = 0; 2522 goto out; 2523 } 2524 2525 /* 2526 * The driver's result must be a non-zero multiple of request_alignment. 2527 * Clamp pnum and adjust map to original request. 2528 */ 2529 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2530 align > offset - aligned_offset); 2531 if (ret & BDRV_BLOCK_RECURSE) { 2532 assert(ret & BDRV_BLOCK_DATA); 2533 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2534 assert(!(ret & BDRV_BLOCK_ZERO)); 2535 } 2536 2537 *pnum -= offset - aligned_offset; 2538 if (*pnum > bytes) { 2539 *pnum = bytes; 2540 } 2541 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2542 local_map += offset - aligned_offset; 2543 } 2544 2545 if (ret & BDRV_BLOCK_RAW) { 2546 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2547 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2548 *pnum, pnum, &local_map, &local_file); 2549 goto out; 2550 } 2551 2552 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2553 ret |= BDRV_BLOCK_ALLOCATED; 2554 } else if (bs->drv->supports_backing) { 2555 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2556 2557 if (!cow_bs) { 2558 ret |= BDRV_BLOCK_ZERO; 2559 } else if (want_zero) { 2560 int64_t size2 = bdrv_co_getlength(cow_bs); 2561 2562 if (size2 >= 0 && offset >= size2) { 2563 ret |= BDRV_BLOCK_ZERO; 2564 } 2565 } 2566 } 2567 2568 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2569 local_file && local_file != bs && 2570 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2571 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2572 int64_t file_pnum; 2573 int ret2; 2574 2575 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2576 *pnum, &file_pnum, NULL, NULL); 2577 if (ret2 >= 0) { 2578 /* Ignore errors. This is just providing extra information, it 2579 * is useful but not necessary. 2580 */ 2581 if (ret2 & BDRV_BLOCK_EOF && 2582 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2583 /* 2584 * It is valid for the format block driver to read 2585 * beyond the end of the underlying file's current 2586 * size; such areas read as zero. 2587 */ 2588 ret |= BDRV_BLOCK_ZERO; 2589 } else { 2590 /* Limit request to the range reported by the protocol driver */ 2591 *pnum = file_pnum; 2592 ret |= (ret2 & BDRV_BLOCK_ZERO); 2593 } 2594 } 2595 } 2596 2597 out: 2598 bdrv_dec_in_flight(bs); 2599 if (ret >= 0 && offset + *pnum == total_size) { 2600 ret |= BDRV_BLOCK_EOF; 2601 } 2602 early_out: 2603 if (file) { 2604 *file = local_file; 2605 } 2606 if (map) { 2607 *map = local_map; 2608 } 2609 return ret; 2610 } 2611 2612 int coroutine_fn 2613 bdrv_co_common_block_status_above(BlockDriverState *bs, 2614 BlockDriverState *base, 2615 bool include_base, 2616 bool want_zero, 2617 int64_t offset, 2618 int64_t bytes, 2619 int64_t *pnum, 2620 int64_t *map, 2621 BlockDriverState **file, 2622 int *depth) 2623 { 2624 int ret; 2625 BlockDriverState *p; 2626 int64_t eof = 0; 2627 int dummy; 2628 IO_CODE(); 2629 2630 assert(!include_base || base); /* Can't include NULL base */ 2631 assert_bdrv_graph_readable(); 2632 2633 if (!depth) { 2634 depth = &dummy; 2635 } 2636 *depth = 0; 2637 2638 if (!include_base && bs == base) { 2639 *pnum = bytes; 2640 return 0; 2641 } 2642 2643 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2644 ++*depth; 2645 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2646 return ret; 2647 } 2648 2649 if (ret & BDRV_BLOCK_EOF) { 2650 eof = offset + *pnum; 2651 } 2652 2653 assert(*pnum <= bytes); 2654 bytes = *pnum; 2655 2656 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2657 p = bdrv_filter_or_cow_bs(p)) 2658 { 2659 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2660 file); 2661 ++*depth; 2662 if (ret < 0) { 2663 return ret; 2664 } 2665 if (*pnum == 0) { 2666 /* 2667 * The top layer deferred to this layer, and because this layer is 2668 * short, any zeroes that we synthesize beyond EOF behave as if they 2669 * were allocated at this layer. 2670 * 2671 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2672 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2673 * below. 2674 */ 2675 assert(ret & BDRV_BLOCK_EOF); 2676 *pnum = bytes; 2677 if (file) { 2678 *file = p; 2679 } 2680 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2681 break; 2682 } 2683 if (ret & BDRV_BLOCK_ALLOCATED) { 2684 /* 2685 * We've found the node and the status, we must break. 2686 * 2687 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2688 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2689 * below. 2690 */ 2691 ret &= ~BDRV_BLOCK_EOF; 2692 break; 2693 } 2694 2695 if (p == base) { 2696 assert(include_base); 2697 break; 2698 } 2699 2700 /* 2701 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2702 * let's continue the diving. 2703 */ 2704 assert(*pnum <= bytes); 2705 bytes = *pnum; 2706 } 2707 2708 if (offset + *pnum == eof) { 2709 ret |= BDRV_BLOCK_EOF; 2710 } 2711 2712 return ret; 2713 } 2714 2715 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2716 BlockDriverState *base, 2717 int64_t offset, int64_t bytes, 2718 int64_t *pnum, int64_t *map, 2719 BlockDriverState **file) 2720 { 2721 IO_CODE(); 2722 return bdrv_co_common_block_status_above(bs, base, false, true, offset, 2723 bytes, pnum, map, file, NULL); 2724 } 2725 2726 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2727 int64_t offset, int64_t bytes, int64_t *pnum, 2728 int64_t *map, BlockDriverState **file) 2729 { 2730 IO_CODE(); 2731 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2732 pnum, map, file, NULL); 2733 } 2734 2735 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2736 int64_t *pnum, int64_t *map, BlockDriverState **file) 2737 { 2738 IO_CODE(); 2739 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2740 offset, bytes, pnum, map, file); 2741 } 2742 2743 /* 2744 * Check @bs (and its backing chain) to see if the range defined 2745 * by @offset and @bytes is known to read as zeroes. 2746 * Return 1 if that is the case, 0 otherwise and -errno on error. 2747 * This test is meant to be fast rather than accurate so returning 0 2748 * does not guarantee non-zero data. 2749 */ 2750 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2751 int64_t bytes) 2752 { 2753 int ret; 2754 int64_t pnum = bytes; 2755 IO_CODE(); 2756 2757 if (!bytes) { 2758 return 1; 2759 } 2760 2761 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset, 2762 bytes, &pnum, NULL, NULL, NULL); 2763 2764 if (ret < 0) { 2765 return ret; 2766 } 2767 2768 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2769 } 2770 2771 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset, 2772 int64_t bytes, int64_t *pnum) 2773 { 2774 int ret; 2775 int64_t dummy; 2776 IO_CODE(); 2777 2778 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset, 2779 bytes, pnum ? pnum : &dummy, NULL, 2780 NULL, NULL); 2781 if (ret < 0) { 2782 return ret; 2783 } 2784 return !!(ret & BDRV_BLOCK_ALLOCATED); 2785 } 2786 2787 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes, 2788 int64_t *pnum) 2789 { 2790 int ret; 2791 int64_t dummy; 2792 IO_CODE(); 2793 2794 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2795 bytes, pnum ? pnum : &dummy, NULL, 2796 NULL, NULL); 2797 if (ret < 0) { 2798 return ret; 2799 } 2800 return !!(ret & BDRV_BLOCK_ALLOCATED); 2801 } 2802 2803 /* See bdrv_is_allocated_above for documentation */ 2804 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2805 BlockDriverState *base, 2806 bool include_base, int64_t offset, 2807 int64_t bytes, int64_t *pnum) 2808 { 2809 int depth; 2810 int ret; 2811 IO_CODE(); 2812 2813 ret = bdrv_co_common_block_status_above(top, base, include_base, false, 2814 offset, bytes, pnum, NULL, NULL, 2815 &depth); 2816 if (ret < 0) { 2817 return ret; 2818 } 2819 2820 if (ret & BDRV_BLOCK_ALLOCATED) { 2821 return depth; 2822 } 2823 return 0; 2824 } 2825 2826 /* 2827 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2828 * 2829 * Return a positive depth if (a prefix of) the given range is allocated 2830 * in any image between BASE and TOP (BASE is only included if include_base 2831 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2832 * BASE can be NULL to check if the given offset is allocated in any 2833 * image of the chain. Return 0 otherwise, or negative errno on 2834 * failure. 2835 * 2836 * 'pnum' is set to the number of bytes (including and immediately 2837 * following the specified offset) that are known to be in the same 2838 * allocated/unallocated state. Note that a subsequent call starting 2839 * at 'offset + *pnum' may return the same allocation status (in other 2840 * words, the result is not necessarily the maximum possible range); 2841 * but 'pnum' will only be 0 when end of file is reached. 2842 */ 2843 int bdrv_is_allocated_above(BlockDriverState *top, 2844 BlockDriverState *base, 2845 bool include_base, int64_t offset, 2846 int64_t bytes, int64_t *pnum) 2847 { 2848 int depth; 2849 int ret; 2850 IO_CODE(); 2851 2852 ret = bdrv_common_block_status_above(top, base, include_base, false, 2853 offset, bytes, pnum, NULL, NULL, 2854 &depth); 2855 if (ret < 0) { 2856 return ret; 2857 } 2858 2859 if (ret & BDRV_BLOCK_ALLOCATED) { 2860 return depth; 2861 } 2862 return 0; 2863 } 2864 2865 int coroutine_fn 2866 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2867 { 2868 BlockDriver *drv = bs->drv; 2869 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2870 int ret; 2871 IO_CODE(); 2872 assert_bdrv_graph_readable(); 2873 2874 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2875 if (ret < 0) { 2876 return ret; 2877 } 2878 2879 if (!drv) { 2880 return -ENOMEDIUM; 2881 } 2882 2883 bdrv_inc_in_flight(bs); 2884 2885 if (drv->bdrv_co_load_vmstate) { 2886 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos); 2887 } else if (child_bs) { 2888 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2889 } else { 2890 ret = -ENOTSUP; 2891 } 2892 2893 bdrv_dec_in_flight(bs); 2894 2895 return ret; 2896 } 2897 2898 int coroutine_fn 2899 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2900 { 2901 BlockDriver *drv = bs->drv; 2902 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2903 int ret; 2904 IO_CODE(); 2905 assert_bdrv_graph_readable(); 2906 2907 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2908 if (ret < 0) { 2909 return ret; 2910 } 2911 2912 if (!drv) { 2913 return -ENOMEDIUM; 2914 } 2915 2916 bdrv_inc_in_flight(bs); 2917 2918 if (drv->bdrv_co_save_vmstate) { 2919 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos); 2920 } else if (child_bs) { 2921 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2922 } else { 2923 ret = -ENOTSUP; 2924 } 2925 2926 bdrv_dec_in_flight(bs); 2927 2928 return ret; 2929 } 2930 2931 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2932 int64_t pos, int size) 2933 { 2934 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2935 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2936 IO_CODE(); 2937 2938 return ret < 0 ? ret : size; 2939 } 2940 2941 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2942 int64_t pos, int size) 2943 { 2944 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2945 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2946 IO_CODE(); 2947 2948 return ret < 0 ? ret : size; 2949 } 2950 2951 /**************************************************************/ 2952 /* async I/Os */ 2953 2954 /** 2955 * Synchronously cancels an acb. Must be called with the BQL held and the acb 2956 * must be processed with the BQL held too (IOThreads are not allowed). 2957 * 2958 * Use bdrv_aio_cancel_async() instead when possible. 2959 */ 2960 void bdrv_aio_cancel(BlockAIOCB *acb) 2961 { 2962 GLOBAL_STATE_CODE(); 2963 qemu_aio_ref(acb); 2964 bdrv_aio_cancel_async(acb); 2965 AIO_WAIT_WHILE_UNLOCKED(NULL, acb->refcnt > 1); 2966 qemu_aio_unref(acb); 2967 } 2968 2969 /* Async version of aio cancel. The caller is not blocked if the acb implements 2970 * cancel_async, otherwise we do nothing and let the request normally complete. 2971 * In either case the completion callback must be called. */ 2972 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2973 { 2974 IO_CODE(); 2975 if (acb->aiocb_info->cancel_async) { 2976 acb->aiocb_info->cancel_async(acb); 2977 } 2978 } 2979 2980 /**************************************************************/ 2981 /* Coroutine block device emulation */ 2982 2983 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2984 { 2985 BdrvChild *primary_child = bdrv_primary_child(bs); 2986 BdrvChild *child; 2987 int current_gen; 2988 int ret = 0; 2989 IO_CODE(); 2990 2991 assert_bdrv_graph_readable(); 2992 bdrv_inc_in_flight(bs); 2993 2994 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) || 2995 bdrv_is_sg(bs)) { 2996 goto early_exit; 2997 } 2998 2999 qemu_mutex_lock(&bs->reqs_lock); 3000 current_gen = qatomic_read(&bs->write_gen); 3001 3002 /* Wait until any previous flushes are completed */ 3003 while (bs->active_flush_req) { 3004 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 3005 } 3006 3007 /* Flushes reach this point in nondecreasing current_gen order. */ 3008 bs->active_flush_req = true; 3009 qemu_mutex_unlock(&bs->reqs_lock); 3010 3011 /* Write back all layers by calling one driver function */ 3012 if (bs->drv->bdrv_co_flush) { 3013 ret = bs->drv->bdrv_co_flush(bs); 3014 goto out; 3015 } 3016 3017 /* Write back cached data to the OS even with cache=unsafe */ 3018 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 3019 if (bs->drv->bdrv_co_flush_to_os) { 3020 ret = bs->drv->bdrv_co_flush_to_os(bs); 3021 if (ret < 0) { 3022 goto out; 3023 } 3024 } 3025 3026 /* But don't actually force it to the disk with cache=unsafe */ 3027 if (bs->open_flags & BDRV_O_NO_FLUSH) { 3028 goto flush_children; 3029 } 3030 3031 /* Check if we really need to flush anything */ 3032 if (bs->flushed_gen == current_gen) { 3033 goto flush_children; 3034 } 3035 3036 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 3037 if (!bs->drv) { 3038 /* bs->drv->bdrv_co_flush() might have ejected the BDS 3039 * (even in case of apparent success) */ 3040 ret = -ENOMEDIUM; 3041 goto out; 3042 } 3043 if (bs->drv->bdrv_co_flush_to_disk) { 3044 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3045 } else if (bs->drv->bdrv_aio_flush) { 3046 BlockAIOCB *acb; 3047 CoroutineIOCompletion co = { 3048 .coroutine = qemu_coroutine_self(), 3049 }; 3050 3051 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3052 if (acb == NULL) { 3053 ret = -EIO; 3054 } else { 3055 qemu_coroutine_yield(); 3056 ret = co.ret; 3057 } 3058 } else { 3059 /* 3060 * Some block drivers always operate in either writethrough or unsafe 3061 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3062 * know how the server works (because the behaviour is hardcoded or 3063 * depends on server-side configuration), so we can't ensure that 3064 * everything is safe on disk. Returning an error doesn't work because 3065 * that would break guests even if the server operates in writethrough 3066 * mode. 3067 * 3068 * Let's hope the user knows what he's doing. 3069 */ 3070 ret = 0; 3071 } 3072 3073 if (ret < 0) { 3074 goto out; 3075 } 3076 3077 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3078 * in the case of cache=unsafe, so there are no useless flushes. 3079 */ 3080 flush_children: 3081 ret = 0; 3082 QLIST_FOREACH(child, &bs->children, next) { 3083 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3084 int this_child_ret = bdrv_co_flush(child->bs); 3085 if (!ret) { 3086 ret = this_child_ret; 3087 } 3088 } 3089 } 3090 3091 out: 3092 /* Notify any pending flushes that we have completed */ 3093 if (ret == 0) { 3094 bs->flushed_gen = current_gen; 3095 } 3096 3097 qemu_mutex_lock(&bs->reqs_lock); 3098 bs->active_flush_req = false; 3099 /* Return value is ignored - it's ok if wait queue is empty */ 3100 qemu_co_queue_next(&bs->flush_queue); 3101 qemu_mutex_unlock(&bs->reqs_lock); 3102 3103 early_exit: 3104 bdrv_dec_in_flight(bs); 3105 return ret; 3106 } 3107 3108 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3109 int64_t bytes) 3110 { 3111 BdrvTrackedRequest req; 3112 int ret; 3113 int64_t max_pdiscard; 3114 int head, tail, align; 3115 BlockDriverState *bs = child->bs; 3116 IO_CODE(); 3117 assert_bdrv_graph_readable(); 3118 3119 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) { 3120 return -ENOMEDIUM; 3121 } 3122 3123 if (bdrv_has_readonly_bitmaps(bs)) { 3124 return -EPERM; 3125 } 3126 3127 ret = bdrv_check_request(offset, bytes, NULL); 3128 if (ret < 0) { 3129 return ret; 3130 } 3131 3132 /* Do nothing if disabled. */ 3133 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3134 return 0; 3135 } 3136 3137 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 3138 return 0; 3139 } 3140 3141 /* Invalidate the cached block-status data range if this discard overlaps */ 3142 bdrv_bsc_invalidate_range(bs, offset, bytes); 3143 3144 /* Discard is advisory, but some devices track and coalesce 3145 * unaligned requests, so we must pass everything down rather than 3146 * round here. Still, most devices will just silently ignore 3147 * unaligned requests (by returning -ENOTSUP), so we must fragment 3148 * the request accordingly. */ 3149 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3150 assert(align % bs->bl.request_alignment == 0); 3151 head = offset % align; 3152 tail = (offset + bytes) % align; 3153 3154 bdrv_inc_in_flight(bs); 3155 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3156 3157 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3158 if (ret < 0) { 3159 goto out; 3160 } 3161 3162 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3163 align); 3164 assert(max_pdiscard >= bs->bl.request_alignment); 3165 3166 while (bytes > 0) { 3167 int64_t num = bytes; 3168 3169 if (head) { 3170 /* Make small requests to get to alignment boundaries. */ 3171 num = MIN(bytes, align - head); 3172 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3173 num %= bs->bl.request_alignment; 3174 } 3175 head = (head + num) % align; 3176 assert(num < max_pdiscard); 3177 } else if (tail) { 3178 if (num > align) { 3179 /* Shorten the request to the last aligned cluster. */ 3180 num -= tail; 3181 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3182 tail > bs->bl.request_alignment) { 3183 tail %= bs->bl.request_alignment; 3184 num -= tail; 3185 } 3186 } 3187 /* limit request size */ 3188 if (num > max_pdiscard) { 3189 num = max_pdiscard; 3190 } 3191 3192 if (!bs->drv) { 3193 ret = -ENOMEDIUM; 3194 goto out; 3195 } 3196 if (bs->drv->bdrv_co_pdiscard) { 3197 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3198 } else { 3199 BlockAIOCB *acb; 3200 CoroutineIOCompletion co = { 3201 .coroutine = qemu_coroutine_self(), 3202 }; 3203 3204 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3205 bdrv_co_io_em_complete, &co); 3206 if (acb == NULL) { 3207 ret = -EIO; 3208 goto out; 3209 } else { 3210 qemu_coroutine_yield(); 3211 ret = co.ret; 3212 } 3213 } 3214 if (ret && ret != -ENOTSUP) { 3215 goto out; 3216 } 3217 3218 offset += num; 3219 bytes -= num; 3220 } 3221 ret = 0; 3222 out: 3223 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3224 tracked_request_end(&req); 3225 bdrv_dec_in_flight(bs); 3226 return ret; 3227 } 3228 3229 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3230 { 3231 BlockDriver *drv = bs->drv; 3232 CoroutineIOCompletion co = { 3233 .coroutine = qemu_coroutine_self(), 3234 }; 3235 BlockAIOCB *acb; 3236 IO_CODE(); 3237 assert_bdrv_graph_readable(); 3238 3239 bdrv_inc_in_flight(bs); 3240 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3241 co.ret = -ENOTSUP; 3242 goto out; 3243 } 3244 3245 if (drv->bdrv_co_ioctl) { 3246 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3247 } else { 3248 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3249 if (!acb) { 3250 co.ret = -ENOTSUP; 3251 goto out; 3252 } 3253 qemu_coroutine_yield(); 3254 } 3255 out: 3256 bdrv_dec_in_flight(bs); 3257 return co.ret; 3258 } 3259 3260 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset, 3261 unsigned int *nr_zones, 3262 BlockZoneDescriptor *zones) 3263 { 3264 BlockDriver *drv = bs->drv; 3265 CoroutineIOCompletion co = { 3266 .coroutine = qemu_coroutine_self(), 3267 }; 3268 IO_CODE(); 3269 3270 bdrv_inc_in_flight(bs); 3271 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) { 3272 co.ret = -ENOTSUP; 3273 goto out; 3274 } 3275 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones); 3276 out: 3277 bdrv_dec_in_flight(bs); 3278 return co.ret; 3279 } 3280 3281 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op, 3282 int64_t offset, int64_t len) 3283 { 3284 BlockDriver *drv = bs->drv; 3285 CoroutineIOCompletion co = { 3286 .coroutine = qemu_coroutine_self(), 3287 }; 3288 IO_CODE(); 3289 3290 bdrv_inc_in_flight(bs); 3291 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) { 3292 co.ret = -ENOTSUP; 3293 goto out; 3294 } 3295 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len); 3296 out: 3297 bdrv_dec_in_flight(bs); 3298 return co.ret; 3299 } 3300 3301 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset, 3302 QEMUIOVector *qiov, 3303 BdrvRequestFlags flags) 3304 { 3305 int ret; 3306 BlockDriver *drv = bs->drv; 3307 CoroutineIOCompletion co = { 3308 .coroutine = qemu_coroutine_self(), 3309 }; 3310 IO_CODE(); 3311 3312 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL); 3313 if (ret < 0) { 3314 return ret; 3315 } 3316 3317 bdrv_inc_in_flight(bs); 3318 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) { 3319 co.ret = -ENOTSUP; 3320 goto out; 3321 } 3322 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags); 3323 out: 3324 bdrv_dec_in_flight(bs); 3325 return co.ret; 3326 } 3327 3328 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3329 { 3330 IO_CODE(); 3331 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3332 } 3333 3334 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3335 { 3336 IO_CODE(); 3337 return memset(qemu_blockalign(bs, size), 0, size); 3338 } 3339 3340 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3341 { 3342 size_t align = bdrv_opt_mem_align(bs); 3343 IO_CODE(); 3344 3345 /* Ensure that NULL is never returned on success */ 3346 assert(align > 0); 3347 if (size == 0) { 3348 size = align; 3349 } 3350 3351 return qemu_try_memalign(align, size); 3352 } 3353 3354 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3355 { 3356 void *mem = qemu_try_blockalign(bs, size); 3357 IO_CODE(); 3358 3359 if (mem) { 3360 memset(mem, 0, size); 3361 } 3362 3363 return mem; 3364 } 3365 3366 /* Helper that undoes bdrv_register_buf() when it fails partway through */ 3367 static void GRAPH_RDLOCK 3368 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size, 3369 BdrvChild *final_child) 3370 { 3371 BdrvChild *child; 3372 3373 GLOBAL_STATE_CODE(); 3374 assert_bdrv_graph_readable(); 3375 3376 QLIST_FOREACH(child, &bs->children, next) { 3377 if (child == final_child) { 3378 break; 3379 } 3380 3381 bdrv_unregister_buf(child->bs, host, size); 3382 } 3383 3384 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3385 bs->drv->bdrv_unregister_buf(bs, host, size); 3386 } 3387 } 3388 3389 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size, 3390 Error **errp) 3391 { 3392 BdrvChild *child; 3393 3394 GLOBAL_STATE_CODE(); 3395 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3396 3397 if (bs->drv && bs->drv->bdrv_register_buf) { 3398 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) { 3399 return false; 3400 } 3401 } 3402 QLIST_FOREACH(child, &bs->children, next) { 3403 if (!bdrv_register_buf(child->bs, host, size, errp)) { 3404 bdrv_register_buf_rollback(bs, host, size, child); 3405 return false; 3406 } 3407 } 3408 return true; 3409 } 3410 3411 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size) 3412 { 3413 BdrvChild *child; 3414 3415 GLOBAL_STATE_CODE(); 3416 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3417 3418 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3419 bs->drv->bdrv_unregister_buf(bs, host, size); 3420 } 3421 QLIST_FOREACH(child, &bs->children, next) { 3422 bdrv_unregister_buf(child->bs, host, size); 3423 } 3424 } 3425 3426 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal( 3427 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3428 int64_t dst_offset, int64_t bytes, 3429 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3430 bool recurse_src) 3431 { 3432 BdrvTrackedRequest req; 3433 int ret; 3434 assert_bdrv_graph_readable(); 3435 3436 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3437 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3438 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3439 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3440 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3441 3442 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) { 3443 return -ENOMEDIUM; 3444 } 3445 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3446 if (ret) { 3447 return ret; 3448 } 3449 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3450 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3451 } 3452 3453 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) { 3454 return -ENOMEDIUM; 3455 } 3456 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3457 if (ret) { 3458 return ret; 3459 } 3460 3461 if (!src->bs->drv->bdrv_co_copy_range_from 3462 || !dst->bs->drv->bdrv_co_copy_range_to 3463 || src->bs->encrypted || dst->bs->encrypted) { 3464 return -ENOTSUP; 3465 } 3466 3467 if (recurse_src) { 3468 bdrv_inc_in_flight(src->bs); 3469 tracked_request_begin(&req, src->bs, src_offset, bytes, 3470 BDRV_TRACKED_READ); 3471 3472 /* BDRV_REQ_SERIALISING is only for write operation */ 3473 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3474 bdrv_wait_serialising_requests(&req); 3475 3476 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3477 src, src_offset, 3478 dst, dst_offset, 3479 bytes, 3480 read_flags, write_flags); 3481 3482 tracked_request_end(&req); 3483 bdrv_dec_in_flight(src->bs); 3484 } else { 3485 bdrv_inc_in_flight(dst->bs); 3486 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3487 BDRV_TRACKED_WRITE); 3488 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3489 write_flags); 3490 if (!ret) { 3491 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3492 src, src_offset, 3493 dst, dst_offset, 3494 bytes, 3495 read_flags, write_flags); 3496 } 3497 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3498 tracked_request_end(&req); 3499 bdrv_dec_in_flight(dst->bs); 3500 } 3501 3502 return ret; 3503 } 3504 3505 /* Copy range from @src to @dst. 3506 * 3507 * See the comment of bdrv_co_copy_range for the parameter and return value 3508 * semantics. */ 3509 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3510 BdrvChild *dst, int64_t dst_offset, 3511 int64_t bytes, 3512 BdrvRequestFlags read_flags, 3513 BdrvRequestFlags write_flags) 3514 { 3515 IO_CODE(); 3516 assert_bdrv_graph_readable(); 3517 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3518 read_flags, write_flags); 3519 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3520 bytes, read_flags, write_flags, true); 3521 } 3522 3523 /* Copy range from @src to @dst. 3524 * 3525 * See the comment of bdrv_co_copy_range for the parameter and return value 3526 * semantics. */ 3527 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3528 BdrvChild *dst, int64_t dst_offset, 3529 int64_t bytes, 3530 BdrvRequestFlags read_flags, 3531 BdrvRequestFlags write_flags) 3532 { 3533 IO_CODE(); 3534 assert_bdrv_graph_readable(); 3535 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3536 read_flags, write_flags); 3537 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3538 bytes, read_flags, write_flags, false); 3539 } 3540 3541 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3542 BdrvChild *dst, int64_t dst_offset, 3543 int64_t bytes, BdrvRequestFlags read_flags, 3544 BdrvRequestFlags write_flags) 3545 { 3546 IO_CODE(); 3547 assert_bdrv_graph_readable(); 3548 3549 return bdrv_co_copy_range_from(src, src_offset, 3550 dst, dst_offset, 3551 bytes, read_flags, write_flags); 3552 } 3553 3554 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3555 { 3556 BdrvChild *c; 3557 QLIST_FOREACH(c, &bs->parents, next_parent) { 3558 if (c->klass->resize) { 3559 c->klass->resize(c); 3560 } 3561 } 3562 } 3563 3564 /** 3565 * Truncate file to 'offset' bytes (needed only for file protocols) 3566 * 3567 * If 'exact' is true, the file must be resized to exactly the given 3568 * 'offset'. Otherwise, it is sufficient for the node to be at least 3569 * 'offset' bytes in length. 3570 */ 3571 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3572 PreallocMode prealloc, BdrvRequestFlags flags, 3573 Error **errp) 3574 { 3575 BlockDriverState *bs = child->bs; 3576 BdrvChild *filtered, *backing; 3577 BlockDriver *drv = bs->drv; 3578 BdrvTrackedRequest req; 3579 int64_t old_size, new_bytes; 3580 int ret; 3581 IO_CODE(); 3582 assert_bdrv_graph_readable(); 3583 3584 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3585 if (!drv) { 3586 error_setg(errp, "No medium inserted"); 3587 return -ENOMEDIUM; 3588 } 3589 if (offset < 0) { 3590 error_setg(errp, "Image size cannot be negative"); 3591 return -EINVAL; 3592 } 3593 3594 ret = bdrv_check_request(offset, 0, errp); 3595 if (ret < 0) { 3596 return ret; 3597 } 3598 3599 old_size = bdrv_co_getlength(bs); 3600 if (old_size < 0) { 3601 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3602 return old_size; 3603 } 3604 3605 if (bdrv_is_read_only(bs)) { 3606 error_setg(errp, "Image is read-only"); 3607 return -EACCES; 3608 } 3609 3610 if (offset > old_size) { 3611 new_bytes = offset - old_size; 3612 } else { 3613 new_bytes = 0; 3614 } 3615 3616 bdrv_inc_in_flight(bs); 3617 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3618 BDRV_TRACKED_TRUNCATE); 3619 3620 /* If we are growing the image and potentially using preallocation for the 3621 * new area, we need to make sure that no write requests are made to it 3622 * concurrently or they might be overwritten by preallocation. */ 3623 if (new_bytes) { 3624 bdrv_make_request_serialising(&req, 1); 3625 } 3626 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3627 0); 3628 if (ret < 0) { 3629 error_setg_errno(errp, -ret, 3630 "Failed to prepare request for truncation"); 3631 goto out; 3632 } 3633 3634 filtered = bdrv_filter_child(bs); 3635 backing = bdrv_cow_child(bs); 3636 3637 /* 3638 * If the image has a backing file that is large enough that it would 3639 * provide data for the new area, we cannot leave it unallocated because 3640 * then the backing file content would become visible. Instead, zero-fill 3641 * the new area. 3642 * 3643 * Note that if the image has a backing file, but was opened without the 3644 * backing file, taking care of keeping things consistent with that backing 3645 * file is the user's responsibility. 3646 */ 3647 if (new_bytes && backing) { 3648 int64_t backing_len; 3649 3650 backing_len = bdrv_co_getlength(backing->bs); 3651 if (backing_len < 0) { 3652 ret = backing_len; 3653 error_setg_errno(errp, -ret, "Could not get backing file size"); 3654 goto out; 3655 } 3656 3657 if (backing_len > old_size) { 3658 flags |= BDRV_REQ_ZERO_WRITE; 3659 } 3660 } 3661 3662 if (drv->bdrv_co_truncate) { 3663 if (flags & ~bs->supported_truncate_flags) { 3664 error_setg(errp, "Block driver does not support requested flags"); 3665 ret = -ENOTSUP; 3666 goto out; 3667 } 3668 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3669 } else if (filtered) { 3670 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3671 } else { 3672 error_setg(errp, "Image format driver does not support resize"); 3673 ret = -ENOTSUP; 3674 goto out; 3675 } 3676 if (ret < 0) { 3677 goto out; 3678 } 3679 3680 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3681 if (ret < 0) { 3682 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3683 } else { 3684 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3685 } 3686 /* 3687 * It's possible that truncation succeeded but bdrv_refresh_total_sectors 3688 * failed, but the latter doesn't affect how we should finish the request. 3689 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. 3690 */ 3691 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3692 3693 out: 3694 tracked_request_end(&req); 3695 bdrv_dec_in_flight(bs); 3696 3697 return ret; 3698 } 3699 3700 void bdrv_cancel_in_flight(BlockDriverState *bs) 3701 { 3702 GLOBAL_STATE_CODE(); 3703 if (!bs || !bs->drv) { 3704 return; 3705 } 3706 3707 if (bs->drv->bdrv_cancel_in_flight) { 3708 bs->drv->bdrv_cancel_in_flight(bs); 3709 } 3710 } 3711 3712 int coroutine_fn 3713 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3714 QEMUIOVector *qiov, size_t qiov_offset) 3715 { 3716 BlockDriverState *bs = child->bs; 3717 BlockDriver *drv = bs->drv; 3718 int ret; 3719 IO_CODE(); 3720 assert_bdrv_graph_readable(); 3721 3722 if (!drv) { 3723 return -ENOMEDIUM; 3724 } 3725 3726 if (!drv->bdrv_co_preadv_snapshot) { 3727 return -ENOTSUP; 3728 } 3729 3730 bdrv_inc_in_flight(bs); 3731 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3732 bdrv_dec_in_flight(bs); 3733 3734 return ret; 3735 } 3736 3737 int coroutine_fn 3738 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3739 bool want_zero, int64_t offset, int64_t bytes, 3740 int64_t *pnum, int64_t *map, 3741 BlockDriverState **file) 3742 { 3743 BlockDriver *drv = bs->drv; 3744 int ret; 3745 IO_CODE(); 3746 assert_bdrv_graph_readable(); 3747 3748 if (!drv) { 3749 return -ENOMEDIUM; 3750 } 3751 3752 if (!drv->bdrv_co_snapshot_block_status) { 3753 return -ENOTSUP; 3754 } 3755 3756 bdrv_inc_in_flight(bs); 3757 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3758 pnum, map, file); 3759 bdrv_dec_in_flight(bs); 3760 3761 return ret; 3762 } 3763 3764 int coroutine_fn 3765 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3766 { 3767 BlockDriver *drv = bs->drv; 3768 int ret; 3769 IO_CODE(); 3770 assert_bdrv_graph_readable(); 3771 3772 if (!drv) { 3773 return -ENOMEDIUM; 3774 } 3775 3776 if (!drv->bdrv_co_pdiscard_snapshot) { 3777 return -ENOTSUP; 3778 } 3779 3780 bdrv_inc_in_flight(bs); 3781 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3782 bdrv_dec_in_flight(bs); 3783 3784 return ret; 3785 } 3786