1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/write-threshold.h" 34 #include "qemu/cutils.h" 35 #include "qapi/error.h" 36 #include "qemu/error-report.h" 37 #include "qemu/main-loop.h" 38 #include "sysemu/replay.h" 39 40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 42 43 static void bdrv_parent_cb_resize(BlockDriverState *bs); 44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 45 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 46 47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 48 bool ignore_bds_parents) 49 { 50 BdrvChild *c, *next; 51 52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 53 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 54 continue; 55 } 56 bdrv_parent_drained_begin_single(c, false); 57 } 58 } 59 60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 61 int *drained_end_counter) 62 { 63 assert(c->parent_quiesce_counter > 0); 64 c->parent_quiesce_counter--; 65 if (c->klass->drained_end) { 66 c->klass->drained_end(c, drained_end_counter); 67 } 68 } 69 70 void bdrv_parent_drained_end_single(BdrvChild *c) 71 { 72 int drained_end_counter = 0; 73 IO_OR_GS_CODE(); 74 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 75 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0); 76 } 77 78 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 79 bool ignore_bds_parents, 80 int *drained_end_counter) 81 { 82 BdrvChild *c; 83 84 QLIST_FOREACH(c, &bs->parents, next_parent) { 85 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 86 continue; 87 } 88 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 89 } 90 } 91 92 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 93 { 94 if (c->klass->drained_poll) { 95 return c->klass->drained_poll(c); 96 } 97 return false; 98 } 99 100 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 101 bool ignore_bds_parents) 102 { 103 BdrvChild *c, *next; 104 bool busy = false; 105 106 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 107 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 108 continue; 109 } 110 busy |= bdrv_parent_drained_poll_single(c); 111 } 112 113 return busy; 114 } 115 116 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 117 { 118 IO_OR_GS_CODE(); 119 c->parent_quiesce_counter++; 120 if (c->klass->drained_begin) { 121 c->klass->drained_begin(c); 122 } 123 if (poll) { 124 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 125 } 126 } 127 128 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 129 { 130 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 131 src->pdiscard_alignment); 132 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 133 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 134 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 135 src->max_hw_transfer); 136 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 137 src->opt_mem_alignment); 138 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 139 src->min_mem_alignment); 140 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 141 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 142 } 143 144 typedef struct BdrvRefreshLimitsState { 145 BlockDriverState *bs; 146 BlockLimits old_bl; 147 } BdrvRefreshLimitsState; 148 149 static void bdrv_refresh_limits_abort(void *opaque) 150 { 151 BdrvRefreshLimitsState *s = opaque; 152 153 s->bs->bl = s->old_bl; 154 } 155 156 static TransactionActionDrv bdrv_refresh_limits_drv = { 157 .abort = bdrv_refresh_limits_abort, 158 .clean = g_free, 159 }; 160 161 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 162 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 163 { 164 ERRP_GUARD(); 165 BlockDriver *drv = bs->drv; 166 BdrvChild *c; 167 bool have_limits; 168 169 GLOBAL_STATE_CODE(); 170 171 if (tran) { 172 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 173 *s = (BdrvRefreshLimitsState) { 174 .bs = bs, 175 .old_bl = bs->bl, 176 }; 177 tran_add(tran, &bdrv_refresh_limits_drv, s); 178 } 179 180 memset(&bs->bl, 0, sizeof(bs->bl)); 181 182 if (!drv) { 183 return; 184 } 185 186 /* Default alignment based on whether driver has byte interface */ 187 bs->bl.request_alignment = (drv->bdrv_co_preadv || 188 drv->bdrv_aio_preadv || 189 drv->bdrv_co_preadv_part) ? 1 : 512; 190 191 /* Take some limits from the children as a default */ 192 have_limits = false; 193 QLIST_FOREACH(c, &bs->children, next) { 194 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 195 { 196 bdrv_merge_limits(&bs->bl, &c->bs->bl); 197 have_limits = true; 198 } 199 } 200 201 if (!have_limits) { 202 bs->bl.min_mem_alignment = 512; 203 bs->bl.opt_mem_alignment = qemu_real_host_page_size; 204 205 /* Safe default since most protocols use readv()/writev()/etc */ 206 bs->bl.max_iov = IOV_MAX; 207 } 208 209 /* Then let the driver override it */ 210 if (drv->bdrv_refresh_limits) { 211 drv->bdrv_refresh_limits(bs, errp); 212 if (*errp) { 213 return; 214 } 215 } 216 217 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 218 error_setg(errp, "Driver requires too large request alignment"); 219 } 220 } 221 222 /** 223 * The copy-on-read flag is actually a reference count so multiple users may 224 * use the feature without worrying about clobbering its previous state. 225 * Copy-on-read stays enabled until all users have called to disable it. 226 */ 227 void bdrv_enable_copy_on_read(BlockDriverState *bs) 228 { 229 IO_CODE(); 230 qatomic_inc(&bs->copy_on_read); 231 } 232 233 void bdrv_disable_copy_on_read(BlockDriverState *bs) 234 { 235 int old = qatomic_fetch_dec(&bs->copy_on_read); 236 IO_CODE(); 237 assert(old >= 1); 238 } 239 240 typedef struct { 241 Coroutine *co; 242 BlockDriverState *bs; 243 bool done; 244 bool begin; 245 bool recursive; 246 bool poll; 247 BdrvChild *parent; 248 bool ignore_bds_parents; 249 int *drained_end_counter; 250 } BdrvCoDrainData; 251 252 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 253 { 254 BdrvCoDrainData *data = opaque; 255 BlockDriverState *bs = data->bs; 256 257 if (data->begin) { 258 bs->drv->bdrv_co_drain_begin(bs); 259 } else { 260 bs->drv->bdrv_co_drain_end(bs); 261 } 262 263 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 264 qatomic_mb_set(&data->done, true); 265 if (!data->begin) { 266 qatomic_dec(data->drained_end_counter); 267 } 268 bdrv_dec_in_flight(bs); 269 270 g_free(data); 271 } 272 273 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 274 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 275 int *drained_end_counter) 276 { 277 BdrvCoDrainData *data; 278 279 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 280 (!begin && !bs->drv->bdrv_co_drain_end)) { 281 return; 282 } 283 284 data = g_new(BdrvCoDrainData, 1); 285 *data = (BdrvCoDrainData) { 286 .bs = bs, 287 .done = false, 288 .begin = begin, 289 .drained_end_counter = drained_end_counter, 290 }; 291 292 if (!begin) { 293 qatomic_inc(drained_end_counter); 294 } 295 296 /* Make sure the driver callback completes during the polling phase for 297 * drain_begin. */ 298 bdrv_inc_in_flight(bs); 299 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 300 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 301 } 302 303 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 304 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 305 BdrvChild *ignore_parent, bool ignore_bds_parents) 306 { 307 BdrvChild *child, *next; 308 IO_OR_GS_CODE(); 309 310 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 311 return true; 312 } 313 314 if (qatomic_read(&bs->in_flight)) { 315 return true; 316 } 317 318 if (recursive) { 319 assert(!ignore_bds_parents); 320 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 321 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 322 return true; 323 } 324 } 325 } 326 327 return false; 328 } 329 330 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 331 BdrvChild *ignore_parent) 332 { 333 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 334 } 335 336 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 337 BdrvChild *parent, bool ignore_bds_parents, 338 bool poll); 339 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 340 BdrvChild *parent, bool ignore_bds_parents, 341 int *drained_end_counter); 342 343 static void bdrv_co_drain_bh_cb(void *opaque) 344 { 345 BdrvCoDrainData *data = opaque; 346 Coroutine *co = data->co; 347 BlockDriverState *bs = data->bs; 348 349 if (bs) { 350 AioContext *ctx = bdrv_get_aio_context(bs); 351 aio_context_acquire(ctx); 352 bdrv_dec_in_flight(bs); 353 if (data->begin) { 354 assert(!data->drained_end_counter); 355 bdrv_do_drained_begin(bs, data->recursive, data->parent, 356 data->ignore_bds_parents, data->poll); 357 } else { 358 assert(!data->poll); 359 bdrv_do_drained_end(bs, data->recursive, data->parent, 360 data->ignore_bds_parents, 361 data->drained_end_counter); 362 } 363 aio_context_release(ctx); 364 } else { 365 assert(data->begin); 366 bdrv_drain_all_begin(); 367 } 368 369 data->done = true; 370 aio_co_wake(co); 371 } 372 373 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 374 bool begin, bool recursive, 375 BdrvChild *parent, 376 bool ignore_bds_parents, 377 bool poll, 378 int *drained_end_counter) 379 { 380 BdrvCoDrainData data; 381 Coroutine *self = qemu_coroutine_self(); 382 AioContext *ctx = bdrv_get_aio_context(bs); 383 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 384 385 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 386 * other coroutines run if they were queued by aio_co_enter(). */ 387 388 assert(qemu_in_coroutine()); 389 data = (BdrvCoDrainData) { 390 .co = self, 391 .bs = bs, 392 .done = false, 393 .begin = begin, 394 .recursive = recursive, 395 .parent = parent, 396 .ignore_bds_parents = ignore_bds_parents, 397 .poll = poll, 398 .drained_end_counter = drained_end_counter, 399 }; 400 401 if (bs) { 402 bdrv_inc_in_flight(bs); 403 } 404 405 /* 406 * Temporarily drop the lock across yield or we would get deadlocks. 407 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 408 * 409 * When we yield below, the lock for the current context will be 410 * released, so if this is actually the lock that protects bs, don't drop 411 * it a second time. 412 */ 413 if (ctx != co_ctx) { 414 aio_context_release(ctx); 415 } 416 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data); 417 418 qemu_coroutine_yield(); 419 /* If we are resumed from some other event (such as an aio completion or a 420 * timer callback), it is a bug in the caller that should be fixed. */ 421 assert(data.done); 422 423 /* Reaquire the AioContext of bs if we dropped it */ 424 if (ctx != co_ctx) { 425 aio_context_acquire(ctx); 426 } 427 } 428 429 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 430 BdrvChild *parent, bool ignore_bds_parents) 431 { 432 IO_OR_GS_CODE(); 433 assert(!qemu_in_coroutine()); 434 435 /* Stop things in parent-to-child order */ 436 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 437 aio_disable_external(bdrv_get_aio_context(bs)); 438 } 439 440 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 441 bdrv_drain_invoke(bs, true, NULL); 442 } 443 444 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 445 BdrvChild *parent, bool ignore_bds_parents, 446 bool poll) 447 { 448 BdrvChild *child, *next; 449 450 if (qemu_in_coroutine()) { 451 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 452 poll, NULL); 453 return; 454 } 455 456 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 457 458 if (recursive) { 459 assert(!ignore_bds_parents); 460 bs->recursive_quiesce_counter++; 461 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 462 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 463 false); 464 } 465 } 466 467 /* 468 * Wait for drained requests to finish. 469 * 470 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 471 * call is needed so things in this AioContext can make progress even 472 * though we don't return to the main AioContext loop - this automatically 473 * includes other nodes in the same AioContext and therefore all child 474 * nodes. 475 */ 476 if (poll) { 477 assert(!ignore_bds_parents); 478 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 479 } 480 } 481 482 void bdrv_drained_begin(BlockDriverState *bs) 483 { 484 IO_OR_GS_CODE(); 485 bdrv_do_drained_begin(bs, false, NULL, false, true); 486 } 487 488 void bdrv_subtree_drained_begin(BlockDriverState *bs) 489 { 490 IO_OR_GS_CODE(); 491 bdrv_do_drained_begin(bs, true, NULL, false, true); 492 } 493 494 /** 495 * This function does not poll, nor must any of its recursively called 496 * functions. The *drained_end_counter pointee will be incremented 497 * once for every background operation scheduled, and decremented once 498 * the operation settles. Therefore, the pointer must remain valid 499 * until the pointee reaches 0. That implies that whoever sets up the 500 * pointee has to poll until it is 0. 501 * 502 * We use atomic operations to access *drained_end_counter, because 503 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 504 * @bs may contain nodes in different AioContexts, 505 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 506 * regardless of which AioContext they are in. 507 */ 508 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 509 BdrvChild *parent, bool ignore_bds_parents, 510 int *drained_end_counter) 511 { 512 BdrvChild *child; 513 int old_quiesce_counter; 514 515 assert(drained_end_counter != NULL); 516 517 if (qemu_in_coroutine()) { 518 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 519 false, drained_end_counter); 520 return; 521 } 522 assert(bs->quiesce_counter > 0); 523 524 /* Re-enable things in child-to-parent order */ 525 bdrv_drain_invoke(bs, false, drained_end_counter); 526 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 527 drained_end_counter); 528 529 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 530 if (old_quiesce_counter == 1) { 531 aio_enable_external(bdrv_get_aio_context(bs)); 532 } 533 534 if (recursive) { 535 assert(!ignore_bds_parents); 536 bs->recursive_quiesce_counter--; 537 QLIST_FOREACH(child, &bs->children, next) { 538 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 539 drained_end_counter); 540 } 541 } 542 } 543 544 void bdrv_drained_end(BlockDriverState *bs) 545 { 546 int drained_end_counter = 0; 547 IO_OR_GS_CODE(); 548 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 549 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 550 } 551 552 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 553 { 554 IO_CODE(); 555 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 556 } 557 558 void bdrv_subtree_drained_end(BlockDriverState *bs) 559 { 560 int drained_end_counter = 0; 561 IO_OR_GS_CODE(); 562 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 563 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 564 } 565 566 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 567 { 568 int i; 569 IO_OR_GS_CODE(); 570 571 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 572 bdrv_do_drained_begin(child->bs, true, child, false, true); 573 } 574 } 575 576 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 577 { 578 int drained_end_counter = 0; 579 int i; 580 IO_OR_GS_CODE(); 581 582 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 583 bdrv_do_drained_end(child->bs, true, child, false, 584 &drained_end_counter); 585 } 586 587 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0); 588 } 589 590 /* 591 * Wait for pending requests to complete on a single BlockDriverState subtree, 592 * and suspend block driver's internal I/O until next request arrives. 593 * 594 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 595 * AioContext. 596 */ 597 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 598 { 599 IO_OR_GS_CODE(); 600 assert(qemu_in_coroutine()); 601 bdrv_drained_begin(bs); 602 bdrv_drained_end(bs); 603 } 604 605 void bdrv_drain(BlockDriverState *bs) 606 { 607 IO_OR_GS_CODE(); 608 bdrv_drained_begin(bs); 609 bdrv_drained_end(bs); 610 } 611 612 static void bdrv_drain_assert_idle(BlockDriverState *bs) 613 { 614 BdrvChild *child, *next; 615 616 assert(qatomic_read(&bs->in_flight) == 0); 617 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 618 bdrv_drain_assert_idle(child->bs); 619 } 620 } 621 622 unsigned int bdrv_drain_all_count = 0; 623 624 static bool bdrv_drain_all_poll(void) 625 { 626 BlockDriverState *bs = NULL; 627 bool result = false; 628 GLOBAL_STATE_CODE(); 629 630 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 631 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 632 while ((bs = bdrv_next_all_states(bs))) { 633 AioContext *aio_context = bdrv_get_aio_context(bs); 634 aio_context_acquire(aio_context); 635 result |= bdrv_drain_poll(bs, false, NULL, true); 636 aio_context_release(aio_context); 637 } 638 639 return result; 640 } 641 642 /* 643 * Wait for pending requests to complete across all BlockDriverStates 644 * 645 * This function does not flush data to disk, use bdrv_flush_all() for that 646 * after calling this function. 647 * 648 * This pauses all block jobs and disables external clients. It must 649 * be paired with bdrv_drain_all_end(). 650 * 651 * NOTE: no new block jobs or BlockDriverStates can be created between 652 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 653 */ 654 void bdrv_drain_all_begin(void) 655 { 656 BlockDriverState *bs = NULL; 657 GLOBAL_STATE_CODE(); 658 659 if (qemu_in_coroutine()) { 660 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 661 return; 662 } 663 664 /* 665 * bdrv queue is managed by record/replay, 666 * waiting for finishing the I/O requests may 667 * be infinite 668 */ 669 if (replay_events_enabled()) { 670 return; 671 } 672 673 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 674 * loop AioContext, so make sure we're in the main context. */ 675 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 676 assert(bdrv_drain_all_count < INT_MAX); 677 bdrv_drain_all_count++; 678 679 /* Quiesce all nodes, without polling in-flight requests yet. The graph 680 * cannot change during this loop. */ 681 while ((bs = bdrv_next_all_states(bs))) { 682 AioContext *aio_context = bdrv_get_aio_context(bs); 683 684 aio_context_acquire(aio_context); 685 bdrv_do_drained_begin(bs, false, NULL, true, false); 686 aio_context_release(aio_context); 687 } 688 689 /* Now poll the in-flight requests */ 690 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 691 692 while ((bs = bdrv_next_all_states(bs))) { 693 bdrv_drain_assert_idle(bs); 694 } 695 } 696 697 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 698 { 699 int drained_end_counter = 0; 700 GLOBAL_STATE_CODE(); 701 702 g_assert(bs->quiesce_counter > 0); 703 g_assert(!bs->refcnt); 704 705 while (bs->quiesce_counter) { 706 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 707 } 708 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 709 } 710 711 void bdrv_drain_all_end(void) 712 { 713 BlockDriverState *bs = NULL; 714 int drained_end_counter = 0; 715 GLOBAL_STATE_CODE(); 716 717 /* 718 * bdrv queue is managed by record/replay, 719 * waiting for finishing the I/O requests may 720 * be endless 721 */ 722 if (replay_events_enabled()) { 723 return; 724 } 725 726 while ((bs = bdrv_next_all_states(bs))) { 727 AioContext *aio_context = bdrv_get_aio_context(bs); 728 729 aio_context_acquire(aio_context); 730 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 731 aio_context_release(aio_context); 732 } 733 734 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 735 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0); 736 737 assert(bdrv_drain_all_count > 0); 738 bdrv_drain_all_count--; 739 } 740 741 void bdrv_drain_all(void) 742 { 743 GLOBAL_STATE_CODE(); 744 bdrv_drain_all_begin(); 745 bdrv_drain_all_end(); 746 } 747 748 /** 749 * Remove an active request from the tracked requests list 750 * 751 * This function should be called when a tracked request is completing. 752 */ 753 static void tracked_request_end(BdrvTrackedRequest *req) 754 { 755 if (req->serialising) { 756 qatomic_dec(&req->bs->serialising_in_flight); 757 } 758 759 qemu_co_mutex_lock(&req->bs->reqs_lock); 760 QLIST_REMOVE(req, list); 761 qemu_co_queue_restart_all(&req->wait_queue); 762 qemu_co_mutex_unlock(&req->bs->reqs_lock); 763 } 764 765 /** 766 * Add an active request to the tracked requests list 767 */ 768 static void tracked_request_begin(BdrvTrackedRequest *req, 769 BlockDriverState *bs, 770 int64_t offset, 771 int64_t bytes, 772 enum BdrvTrackedRequestType type) 773 { 774 bdrv_check_request(offset, bytes, &error_abort); 775 776 *req = (BdrvTrackedRequest){ 777 .bs = bs, 778 .offset = offset, 779 .bytes = bytes, 780 .type = type, 781 .co = qemu_coroutine_self(), 782 .serialising = false, 783 .overlap_offset = offset, 784 .overlap_bytes = bytes, 785 }; 786 787 qemu_co_queue_init(&req->wait_queue); 788 789 qemu_co_mutex_lock(&bs->reqs_lock); 790 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 791 qemu_co_mutex_unlock(&bs->reqs_lock); 792 } 793 794 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 795 int64_t offset, int64_t bytes) 796 { 797 bdrv_check_request(offset, bytes, &error_abort); 798 799 /* aaaa bbbb */ 800 if (offset >= req->overlap_offset + req->overlap_bytes) { 801 return false; 802 } 803 /* bbbb aaaa */ 804 if (req->overlap_offset >= offset + bytes) { 805 return false; 806 } 807 return true; 808 } 809 810 /* Called with self->bs->reqs_lock held */ 811 static BdrvTrackedRequest * 812 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 813 { 814 BdrvTrackedRequest *req; 815 816 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 817 if (req == self || (!req->serialising && !self->serialising)) { 818 continue; 819 } 820 if (tracked_request_overlaps(req, self->overlap_offset, 821 self->overlap_bytes)) 822 { 823 /* 824 * Hitting this means there was a reentrant request, for 825 * example, a block driver issuing nested requests. This must 826 * never happen since it means deadlock. 827 */ 828 assert(qemu_coroutine_self() != req->co); 829 830 /* 831 * If the request is already (indirectly) waiting for us, or 832 * will wait for us as soon as it wakes up, then just go on 833 * (instead of producing a deadlock in the former case). 834 */ 835 if (!req->waiting_for) { 836 return req; 837 } 838 } 839 } 840 841 return NULL; 842 } 843 844 /* Called with self->bs->reqs_lock held */ 845 static bool coroutine_fn 846 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 847 { 848 BdrvTrackedRequest *req; 849 bool waited = false; 850 851 while ((req = bdrv_find_conflicting_request(self))) { 852 self->waiting_for = req; 853 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 854 self->waiting_for = NULL; 855 waited = true; 856 } 857 858 return waited; 859 } 860 861 /* Called with req->bs->reqs_lock held */ 862 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 863 uint64_t align) 864 { 865 int64_t overlap_offset = req->offset & ~(align - 1); 866 int64_t overlap_bytes = 867 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 868 869 bdrv_check_request(req->offset, req->bytes, &error_abort); 870 871 if (!req->serialising) { 872 qatomic_inc(&req->bs->serialising_in_flight); 873 req->serialising = true; 874 } 875 876 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 877 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 878 } 879 880 /** 881 * Return the tracked request on @bs for the current coroutine, or 882 * NULL if there is none. 883 */ 884 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 885 { 886 BdrvTrackedRequest *req; 887 Coroutine *self = qemu_coroutine_self(); 888 IO_CODE(); 889 890 QLIST_FOREACH(req, &bs->tracked_requests, list) { 891 if (req->co == self) { 892 return req; 893 } 894 } 895 896 return NULL; 897 } 898 899 /** 900 * Round a region to cluster boundaries 901 */ 902 void bdrv_round_to_clusters(BlockDriverState *bs, 903 int64_t offset, int64_t bytes, 904 int64_t *cluster_offset, 905 int64_t *cluster_bytes) 906 { 907 BlockDriverInfo bdi; 908 IO_CODE(); 909 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 910 *cluster_offset = offset; 911 *cluster_bytes = bytes; 912 } else { 913 int64_t c = bdi.cluster_size; 914 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 915 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 916 } 917 } 918 919 static int bdrv_get_cluster_size(BlockDriverState *bs) 920 { 921 BlockDriverInfo bdi; 922 int ret; 923 924 ret = bdrv_get_info(bs, &bdi); 925 if (ret < 0 || bdi.cluster_size == 0) { 926 return bs->bl.request_alignment; 927 } else { 928 return bdi.cluster_size; 929 } 930 } 931 932 void bdrv_inc_in_flight(BlockDriverState *bs) 933 { 934 IO_CODE(); 935 qatomic_inc(&bs->in_flight); 936 } 937 938 void bdrv_wakeup(BlockDriverState *bs) 939 { 940 IO_CODE(); 941 aio_wait_kick(); 942 } 943 944 void bdrv_dec_in_flight(BlockDriverState *bs) 945 { 946 IO_CODE(); 947 qatomic_dec(&bs->in_flight); 948 bdrv_wakeup(bs); 949 } 950 951 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 952 { 953 BlockDriverState *bs = self->bs; 954 bool waited = false; 955 956 if (!qatomic_read(&bs->serialising_in_flight)) { 957 return false; 958 } 959 960 qemu_co_mutex_lock(&bs->reqs_lock); 961 waited = bdrv_wait_serialising_requests_locked(self); 962 qemu_co_mutex_unlock(&bs->reqs_lock); 963 964 return waited; 965 } 966 967 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 968 uint64_t align) 969 { 970 bool waited; 971 IO_CODE(); 972 973 qemu_co_mutex_lock(&req->bs->reqs_lock); 974 975 tracked_request_set_serialising(req, align); 976 waited = bdrv_wait_serialising_requests_locked(req); 977 978 qemu_co_mutex_unlock(&req->bs->reqs_lock); 979 980 return waited; 981 } 982 983 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 984 QEMUIOVector *qiov, size_t qiov_offset, 985 Error **errp) 986 { 987 /* 988 * Check generic offset/bytes correctness 989 */ 990 991 if (offset < 0) { 992 error_setg(errp, "offset is negative: %" PRIi64, offset); 993 return -EIO; 994 } 995 996 if (bytes < 0) { 997 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 998 return -EIO; 999 } 1000 1001 if (bytes > BDRV_MAX_LENGTH) { 1002 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 1003 bytes, BDRV_MAX_LENGTH); 1004 return -EIO; 1005 } 1006 1007 if (offset > BDRV_MAX_LENGTH) { 1008 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 1009 offset, BDRV_MAX_LENGTH); 1010 return -EIO; 1011 } 1012 1013 if (offset > BDRV_MAX_LENGTH - bytes) { 1014 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 1015 "exceeds maximum(%" PRIi64 ")", offset, bytes, 1016 BDRV_MAX_LENGTH); 1017 return -EIO; 1018 } 1019 1020 if (!qiov) { 1021 return 0; 1022 } 1023 1024 /* 1025 * Check qiov and qiov_offset 1026 */ 1027 1028 if (qiov_offset > qiov->size) { 1029 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 1030 qiov_offset, qiov->size); 1031 return -EIO; 1032 } 1033 1034 if (bytes > qiov->size - qiov_offset) { 1035 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 1036 "vector size(%zu)", bytes, qiov_offset, qiov->size); 1037 return -EIO; 1038 } 1039 1040 return 0; 1041 } 1042 1043 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 1044 { 1045 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 1046 } 1047 1048 static int bdrv_check_request32(int64_t offset, int64_t bytes, 1049 QEMUIOVector *qiov, size_t qiov_offset) 1050 { 1051 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 1052 if (ret < 0) { 1053 return ret; 1054 } 1055 1056 if (bytes > BDRV_REQUEST_MAX_BYTES) { 1057 return -EIO; 1058 } 1059 1060 return 0; 1061 } 1062 1063 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 1064 int64_t bytes, BdrvRequestFlags flags) 1065 { 1066 IO_CODE(); 1067 return bdrv_pwritev(child, offset, bytes, NULL, 1068 BDRV_REQ_ZERO_WRITE | flags); 1069 } 1070 1071 /* 1072 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 1073 * The operation is sped up by checking the block status and only writing 1074 * zeroes to the device if they currently do not return zeroes. Optional 1075 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 1076 * BDRV_REQ_FUA). 1077 * 1078 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 1079 */ 1080 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 1081 { 1082 int ret; 1083 int64_t target_size, bytes, offset = 0; 1084 BlockDriverState *bs = child->bs; 1085 IO_CODE(); 1086 1087 target_size = bdrv_getlength(bs); 1088 if (target_size < 0) { 1089 return target_size; 1090 } 1091 1092 for (;;) { 1093 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 1094 if (bytes <= 0) { 1095 return 0; 1096 } 1097 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 1098 if (ret < 0) { 1099 return ret; 1100 } 1101 if (ret & BDRV_BLOCK_ZERO) { 1102 offset += bytes; 1103 continue; 1104 } 1105 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 1106 if (ret < 0) { 1107 return ret; 1108 } 1109 offset += bytes; 1110 } 1111 } 1112 1113 /* See bdrv_pwrite() for the return codes */ 1114 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes) 1115 { 1116 int ret; 1117 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1118 IO_CODE(); 1119 1120 if (bytes < 0) { 1121 return -EINVAL; 1122 } 1123 1124 ret = bdrv_preadv(child, offset, bytes, &qiov, 0); 1125 1126 return ret < 0 ? ret : bytes; 1127 } 1128 1129 /* Return no. of bytes on success or < 0 on error. Important errors are: 1130 -EIO generic I/O error (may happen for all errors) 1131 -ENOMEDIUM No media inserted. 1132 -EINVAL Invalid offset or number of bytes 1133 -EACCES Trying to write a read-only device 1134 */ 1135 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, 1136 int64_t bytes) 1137 { 1138 int ret; 1139 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1140 IO_CODE(); 1141 1142 if (bytes < 0) { 1143 return -EINVAL; 1144 } 1145 1146 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0); 1147 1148 return ret < 0 ? ret : bytes; 1149 } 1150 1151 /* 1152 * Writes to the file and ensures that no writes are reordered across this 1153 * request (acts as a barrier) 1154 * 1155 * Returns 0 on success, -errno in error cases. 1156 */ 1157 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1158 const void *buf, int64_t count) 1159 { 1160 int ret; 1161 IO_CODE(); 1162 1163 ret = bdrv_pwrite(child, offset, buf, count); 1164 if (ret < 0) { 1165 return ret; 1166 } 1167 1168 ret = bdrv_flush(child->bs); 1169 if (ret < 0) { 1170 return ret; 1171 } 1172 1173 return 0; 1174 } 1175 1176 typedef struct CoroutineIOCompletion { 1177 Coroutine *coroutine; 1178 int ret; 1179 } CoroutineIOCompletion; 1180 1181 static void bdrv_co_io_em_complete(void *opaque, int ret) 1182 { 1183 CoroutineIOCompletion *co = opaque; 1184 1185 co->ret = ret; 1186 aio_co_wake(co->coroutine); 1187 } 1188 1189 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1190 int64_t offset, int64_t bytes, 1191 QEMUIOVector *qiov, 1192 size_t qiov_offset, int flags) 1193 { 1194 BlockDriver *drv = bs->drv; 1195 int64_t sector_num; 1196 unsigned int nb_sectors; 1197 QEMUIOVector local_qiov; 1198 int ret; 1199 1200 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1201 assert(!(flags & ~BDRV_REQ_MASK)); 1202 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1203 1204 if (!drv) { 1205 return -ENOMEDIUM; 1206 } 1207 1208 if (drv->bdrv_co_preadv_part) { 1209 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1210 flags); 1211 } 1212 1213 if (qiov_offset > 0 || bytes != qiov->size) { 1214 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1215 qiov = &local_qiov; 1216 } 1217 1218 if (drv->bdrv_co_preadv) { 1219 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1220 goto out; 1221 } 1222 1223 if (drv->bdrv_aio_preadv) { 1224 BlockAIOCB *acb; 1225 CoroutineIOCompletion co = { 1226 .coroutine = qemu_coroutine_self(), 1227 }; 1228 1229 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1230 bdrv_co_io_em_complete, &co); 1231 if (acb == NULL) { 1232 ret = -EIO; 1233 goto out; 1234 } else { 1235 qemu_coroutine_yield(); 1236 ret = co.ret; 1237 goto out; 1238 } 1239 } 1240 1241 sector_num = offset >> BDRV_SECTOR_BITS; 1242 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1243 1244 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1245 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1246 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1247 assert(drv->bdrv_co_readv); 1248 1249 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1250 1251 out: 1252 if (qiov == &local_qiov) { 1253 qemu_iovec_destroy(&local_qiov); 1254 } 1255 1256 return ret; 1257 } 1258 1259 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1260 int64_t offset, int64_t bytes, 1261 QEMUIOVector *qiov, 1262 size_t qiov_offset, 1263 BdrvRequestFlags flags) 1264 { 1265 BlockDriver *drv = bs->drv; 1266 int64_t sector_num; 1267 unsigned int nb_sectors; 1268 QEMUIOVector local_qiov; 1269 int ret; 1270 1271 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1272 assert(!(flags & ~BDRV_REQ_MASK)); 1273 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1274 1275 if (!drv) { 1276 return -ENOMEDIUM; 1277 } 1278 1279 if (drv->bdrv_co_pwritev_part) { 1280 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1281 flags & bs->supported_write_flags); 1282 flags &= ~bs->supported_write_flags; 1283 goto emulate_flags; 1284 } 1285 1286 if (qiov_offset > 0 || bytes != qiov->size) { 1287 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1288 qiov = &local_qiov; 1289 } 1290 1291 if (drv->bdrv_co_pwritev) { 1292 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1293 flags & bs->supported_write_flags); 1294 flags &= ~bs->supported_write_flags; 1295 goto emulate_flags; 1296 } 1297 1298 if (drv->bdrv_aio_pwritev) { 1299 BlockAIOCB *acb; 1300 CoroutineIOCompletion co = { 1301 .coroutine = qemu_coroutine_self(), 1302 }; 1303 1304 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1305 flags & bs->supported_write_flags, 1306 bdrv_co_io_em_complete, &co); 1307 flags &= ~bs->supported_write_flags; 1308 if (acb == NULL) { 1309 ret = -EIO; 1310 } else { 1311 qemu_coroutine_yield(); 1312 ret = co.ret; 1313 } 1314 goto emulate_flags; 1315 } 1316 1317 sector_num = offset >> BDRV_SECTOR_BITS; 1318 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1319 1320 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1321 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1322 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1323 1324 assert(drv->bdrv_co_writev); 1325 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1326 flags & bs->supported_write_flags); 1327 flags &= ~bs->supported_write_flags; 1328 1329 emulate_flags: 1330 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1331 ret = bdrv_co_flush(bs); 1332 } 1333 1334 if (qiov == &local_qiov) { 1335 qemu_iovec_destroy(&local_qiov); 1336 } 1337 1338 return ret; 1339 } 1340 1341 static int coroutine_fn 1342 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1343 int64_t bytes, QEMUIOVector *qiov, 1344 size_t qiov_offset) 1345 { 1346 BlockDriver *drv = bs->drv; 1347 QEMUIOVector local_qiov; 1348 int ret; 1349 1350 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1351 1352 if (!drv) { 1353 return -ENOMEDIUM; 1354 } 1355 1356 if (!block_driver_can_compress(drv)) { 1357 return -ENOTSUP; 1358 } 1359 1360 if (drv->bdrv_co_pwritev_compressed_part) { 1361 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1362 qiov, qiov_offset); 1363 } 1364 1365 if (qiov_offset == 0) { 1366 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1367 } 1368 1369 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1370 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1371 qemu_iovec_destroy(&local_qiov); 1372 1373 return ret; 1374 } 1375 1376 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1377 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1378 size_t qiov_offset, int flags) 1379 { 1380 BlockDriverState *bs = child->bs; 1381 1382 /* Perform I/O through a temporary buffer so that users who scribble over 1383 * their read buffer while the operation is in progress do not end up 1384 * modifying the image file. This is critical for zero-copy guest I/O 1385 * where anything might happen inside guest memory. 1386 */ 1387 void *bounce_buffer = NULL; 1388 1389 BlockDriver *drv = bs->drv; 1390 int64_t cluster_offset; 1391 int64_t cluster_bytes; 1392 int64_t skip_bytes; 1393 int ret; 1394 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1395 BDRV_REQUEST_MAX_BYTES); 1396 int64_t progress = 0; 1397 bool skip_write; 1398 1399 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1400 1401 if (!drv) { 1402 return -ENOMEDIUM; 1403 } 1404 1405 /* 1406 * Do not write anything when the BDS is inactive. That is not 1407 * allowed, and it would not help. 1408 */ 1409 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1410 1411 /* FIXME We cannot require callers to have write permissions when all they 1412 * are doing is a read request. If we did things right, write permissions 1413 * would be obtained anyway, but internally by the copy-on-read code. As 1414 * long as it is implemented here rather than in a separate filter driver, 1415 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1416 * it could request permissions. Therefore we have to bypass the permission 1417 * system for the moment. */ 1418 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1419 1420 /* Cover entire cluster so no additional backing file I/O is required when 1421 * allocating cluster in the image file. Note that this value may exceed 1422 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1423 * is one reason we loop rather than doing it all at once. 1424 */ 1425 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1426 skip_bytes = offset - cluster_offset; 1427 1428 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1429 cluster_offset, cluster_bytes); 1430 1431 while (cluster_bytes) { 1432 int64_t pnum; 1433 1434 if (skip_write) { 1435 ret = 1; /* "already allocated", so nothing will be copied */ 1436 pnum = MIN(cluster_bytes, max_transfer); 1437 } else { 1438 ret = bdrv_is_allocated(bs, cluster_offset, 1439 MIN(cluster_bytes, max_transfer), &pnum); 1440 if (ret < 0) { 1441 /* 1442 * Safe to treat errors in querying allocation as if 1443 * unallocated; we'll probably fail again soon on the 1444 * read, but at least that will set a decent errno. 1445 */ 1446 pnum = MIN(cluster_bytes, max_transfer); 1447 } 1448 1449 /* Stop at EOF if the image ends in the middle of the cluster */ 1450 if (ret == 0 && pnum == 0) { 1451 assert(progress >= bytes); 1452 break; 1453 } 1454 1455 assert(skip_bytes < pnum); 1456 } 1457 1458 if (ret <= 0) { 1459 QEMUIOVector local_qiov; 1460 1461 /* Must copy-on-read; use the bounce buffer */ 1462 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1463 if (!bounce_buffer) { 1464 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1465 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1466 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1467 1468 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1469 if (!bounce_buffer) { 1470 ret = -ENOMEM; 1471 goto err; 1472 } 1473 } 1474 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1475 1476 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1477 &local_qiov, 0, 0); 1478 if (ret < 0) { 1479 goto err; 1480 } 1481 1482 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1483 if (drv->bdrv_co_pwrite_zeroes && 1484 buffer_is_zero(bounce_buffer, pnum)) { 1485 /* FIXME: Should we (perhaps conditionally) be setting 1486 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1487 * that still correctly reads as zero? */ 1488 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1489 BDRV_REQ_WRITE_UNCHANGED); 1490 } else { 1491 /* This does not change the data on the disk, it is not 1492 * necessary to flush even in cache=writethrough mode. 1493 */ 1494 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1495 &local_qiov, 0, 1496 BDRV_REQ_WRITE_UNCHANGED); 1497 } 1498 1499 if (ret < 0) { 1500 /* It might be okay to ignore write errors for guest 1501 * requests. If this is a deliberate copy-on-read 1502 * then we don't want to ignore the error. Simply 1503 * report it in all cases. 1504 */ 1505 goto err; 1506 } 1507 1508 if (!(flags & BDRV_REQ_PREFETCH)) { 1509 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1510 bounce_buffer + skip_bytes, 1511 MIN(pnum - skip_bytes, bytes - progress)); 1512 } 1513 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1514 /* Read directly into the destination */ 1515 ret = bdrv_driver_preadv(bs, offset + progress, 1516 MIN(pnum - skip_bytes, bytes - progress), 1517 qiov, qiov_offset + progress, 0); 1518 if (ret < 0) { 1519 goto err; 1520 } 1521 } 1522 1523 cluster_offset += pnum; 1524 cluster_bytes -= pnum; 1525 progress += pnum - skip_bytes; 1526 skip_bytes = 0; 1527 } 1528 ret = 0; 1529 1530 err: 1531 qemu_vfree(bounce_buffer); 1532 return ret; 1533 } 1534 1535 /* 1536 * Forwards an already correctly aligned request to the BlockDriver. This 1537 * handles copy on read, zeroing after EOF, and fragmentation of large 1538 * reads; any other features must be implemented by the caller. 1539 */ 1540 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1541 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1542 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1543 { 1544 BlockDriverState *bs = child->bs; 1545 int64_t total_bytes, max_bytes; 1546 int ret = 0; 1547 int64_t bytes_remaining = bytes; 1548 int max_transfer; 1549 1550 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1551 assert(is_power_of_2(align)); 1552 assert((offset & (align - 1)) == 0); 1553 assert((bytes & (align - 1)) == 0); 1554 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1555 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1556 align); 1557 1558 /* TODO: We would need a per-BDS .supported_read_flags and 1559 * potential fallback support, if we ever implement any read flags 1560 * to pass through to drivers. For now, there aren't any 1561 * passthrough flags. */ 1562 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH))); 1563 1564 /* Handle Copy on Read and associated serialisation */ 1565 if (flags & BDRV_REQ_COPY_ON_READ) { 1566 /* If we touch the same cluster it counts as an overlap. This 1567 * guarantees that allocating writes will be serialized and not race 1568 * with each other for the same cluster. For example, in copy-on-read 1569 * it ensures that the CoR read and write operations are atomic and 1570 * guest writes cannot interleave between them. */ 1571 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1572 } else { 1573 bdrv_wait_serialising_requests(req); 1574 } 1575 1576 if (flags & BDRV_REQ_COPY_ON_READ) { 1577 int64_t pnum; 1578 1579 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1580 flags &= ~BDRV_REQ_COPY_ON_READ; 1581 1582 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1583 if (ret < 0) { 1584 goto out; 1585 } 1586 1587 if (!ret || pnum != bytes) { 1588 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1589 qiov, qiov_offset, flags); 1590 goto out; 1591 } else if (flags & BDRV_REQ_PREFETCH) { 1592 goto out; 1593 } 1594 } 1595 1596 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1597 total_bytes = bdrv_getlength(bs); 1598 if (total_bytes < 0) { 1599 ret = total_bytes; 1600 goto out; 1601 } 1602 1603 assert(!(flags & ~bs->supported_read_flags)); 1604 1605 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1606 if (bytes <= max_bytes && bytes <= max_transfer) { 1607 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1608 goto out; 1609 } 1610 1611 while (bytes_remaining) { 1612 int64_t num; 1613 1614 if (max_bytes) { 1615 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1616 assert(num); 1617 1618 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1619 num, qiov, 1620 qiov_offset + bytes - bytes_remaining, 1621 flags); 1622 max_bytes -= num; 1623 } else { 1624 num = bytes_remaining; 1625 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1626 0, bytes_remaining); 1627 } 1628 if (ret < 0) { 1629 goto out; 1630 } 1631 bytes_remaining -= num; 1632 } 1633 1634 out: 1635 return ret < 0 ? ret : 0; 1636 } 1637 1638 /* 1639 * Request padding 1640 * 1641 * |<---- align ----->| |<----- align ---->| 1642 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1643 * | | | | | | 1644 * -*----------$-------*-------- ... --------*-----$------------*--- 1645 * | | | | | | 1646 * | offset | | end | 1647 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1648 * [buf ... ) [tail_buf ) 1649 * 1650 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1651 * is placed at the beginning of @buf and @tail at the @end. 1652 * 1653 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1654 * around tail, if tail exists. 1655 * 1656 * @merge_reads is true for small requests, 1657 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1658 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1659 */ 1660 typedef struct BdrvRequestPadding { 1661 uint8_t *buf; 1662 size_t buf_len; 1663 uint8_t *tail_buf; 1664 size_t head; 1665 size_t tail; 1666 bool merge_reads; 1667 QEMUIOVector local_qiov; 1668 } BdrvRequestPadding; 1669 1670 static bool bdrv_init_padding(BlockDriverState *bs, 1671 int64_t offset, int64_t bytes, 1672 BdrvRequestPadding *pad) 1673 { 1674 int64_t align = bs->bl.request_alignment; 1675 int64_t sum; 1676 1677 bdrv_check_request(offset, bytes, &error_abort); 1678 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1679 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1680 1681 memset(pad, 0, sizeof(*pad)); 1682 1683 pad->head = offset & (align - 1); 1684 pad->tail = ((offset + bytes) & (align - 1)); 1685 if (pad->tail) { 1686 pad->tail = align - pad->tail; 1687 } 1688 1689 if (!pad->head && !pad->tail) { 1690 return false; 1691 } 1692 1693 assert(bytes); /* Nothing good in aligning zero-length requests */ 1694 1695 sum = pad->head + bytes + pad->tail; 1696 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1697 pad->buf = qemu_blockalign(bs, pad->buf_len); 1698 pad->merge_reads = sum == pad->buf_len; 1699 if (pad->tail) { 1700 pad->tail_buf = pad->buf + pad->buf_len - align; 1701 } 1702 1703 return true; 1704 } 1705 1706 static int bdrv_padding_rmw_read(BdrvChild *child, 1707 BdrvTrackedRequest *req, 1708 BdrvRequestPadding *pad, 1709 bool zero_middle) 1710 { 1711 QEMUIOVector local_qiov; 1712 BlockDriverState *bs = child->bs; 1713 uint64_t align = bs->bl.request_alignment; 1714 int ret; 1715 1716 assert(req->serialising && pad->buf); 1717 1718 if (pad->head || pad->merge_reads) { 1719 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1720 1721 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1722 1723 if (pad->head) { 1724 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1725 } 1726 if (pad->merge_reads && pad->tail) { 1727 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1728 } 1729 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1730 align, &local_qiov, 0, 0); 1731 if (ret < 0) { 1732 return ret; 1733 } 1734 if (pad->head) { 1735 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1736 } 1737 if (pad->merge_reads && pad->tail) { 1738 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1739 } 1740 1741 if (pad->merge_reads) { 1742 goto zero_mem; 1743 } 1744 } 1745 1746 if (pad->tail) { 1747 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1748 1749 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1750 ret = bdrv_aligned_preadv( 1751 child, req, 1752 req->overlap_offset + req->overlap_bytes - align, 1753 align, align, &local_qiov, 0, 0); 1754 if (ret < 0) { 1755 return ret; 1756 } 1757 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1758 } 1759 1760 zero_mem: 1761 if (zero_middle) { 1762 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1763 } 1764 1765 return 0; 1766 } 1767 1768 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1769 { 1770 if (pad->buf) { 1771 qemu_vfree(pad->buf); 1772 qemu_iovec_destroy(&pad->local_qiov); 1773 } 1774 memset(pad, 0, sizeof(*pad)); 1775 } 1776 1777 /* 1778 * bdrv_pad_request 1779 * 1780 * Exchange request parameters with padded request if needed. Don't include RMW 1781 * read of padding, bdrv_padding_rmw_read() should be called separately if 1782 * needed. 1783 * 1784 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1785 * - on function start they represent original request 1786 * - on failure or when padding is not needed they are unchanged 1787 * - on success when padding is needed they represent padded request 1788 */ 1789 static int bdrv_pad_request(BlockDriverState *bs, 1790 QEMUIOVector **qiov, size_t *qiov_offset, 1791 int64_t *offset, int64_t *bytes, 1792 BdrvRequestPadding *pad, bool *padded) 1793 { 1794 int ret; 1795 1796 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1797 1798 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1799 if (padded) { 1800 *padded = false; 1801 } 1802 return 0; 1803 } 1804 1805 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1806 *qiov, *qiov_offset, *bytes, 1807 pad->buf + pad->buf_len - pad->tail, 1808 pad->tail); 1809 if (ret < 0) { 1810 bdrv_padding_destroy(pad); 1811 return ret; 1812 } 1813 *bytes += pad->head + pad->tail; 1814 *offset -= pad->head; 1815 *qiov = &pad->local_qiov; 1816 *qiov_offset = 0; 1817 if (padded) { 1818 *padded = true; 1819 } 1820 1821 return 0; 1822 } 1823 1824 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1825 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1826 BdrvRequestFlags flags) 1827 { 1828 IO_CODE(); 1829 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1830 } 1831 1832 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1833 int64_t offset, int64_t bytes, 1834 QEMUIOVector *qiov, size_t qiov_offset, 1835 BdrvRequestFlags flags) 1836 { 1837 BlockDriverState *bs = child->bs; 1838 BdrvTrackedRequest req; 1839 BdrvRequestPadding pad; 1840 int ret; 1841 IO_CODE(); 1842 1843 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1844 1845 if (!bdrv_is_inserted(bs)) { 1846 return -ENOMEDIUM; 1847 } 1848 1849 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1850 if (ret < 0) { 1851 return ret; 1852 } 1853 1854 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1855 /* 1856 * Aligning zero request is nonsense. Even if driver has special meaning 1857 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1858 * it to driver due to request_alignment. 1859 * 1860 * Still, no reason to return an error if someone do unaligned 1861 * zero-length read occasionally. 1862 */ 1863 return 0; 1864 } 1865 1866 bdrv_inc_in_flight(bs); 1867 1868 /* Don't do copy-on-read if we read data before write operation */ 1869 if (qatomic_read(&bs->copy_on_read)) { 1870 flags |= BDRV_REQ_COPY_ON_READ; 1871 } 1872 1873 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 1874 NULL); 1875 if (ret < 0) { 1876 goto fail; 1877 } 1878 1879 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1880 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1881 bs->bl.request_alignment, 1882 qiov, qiov_offset, flags); 1883 tracked_request_end(&req); 1884 bdrv_padding_destroy(&pad); 1885 1886 fail: 1887 bdrv_dec_in_flight(bs); 1888 1889 return ret; 1890 } 1891 1892 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1893 int64_t offset, int64_t bytes, BdrvRequestFlags flags) 1894 { 1895 BlockDriver *drv = bs->drv; 1896 QEMUIOVector qiov; 1897 void *buf = NULL; 1898 int ret = 0; 1899 bool need_flush = false; 1900 int head = 0; 1901 int tail = 0; 1902 1903 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1904 INT64_MAX); 1905 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1906 bs->bl.request_alignment); 1907 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1908 1909 bdrv_check_request(offset, bytes, &error_abort); 1910 1911 if (!drv) { 1912 return -ENOMEDIUM; 1913 } 1914 1915 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1916 return -ENOTSUP; 1917 } 1918 1919 /* Invalidate the cached block-status data range if this write overlaps */ 1920 bdrv_bsc_invalidate_range(bs, offset, bytes); 1921 1922 assert(alignment % bs->bl.request_alignment == 0); 1923 head = offset % alignment; 1924 tail = (offset + bytes) % alignment; 1925 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1926 assert(max_write_zeroes >= bs->bl.request_alignment); 1927 1928 while (bytes > 0 && !ret) { 1929 int64_t num = bytes; 1930 1931 /* Align request. Block drivers can expect the "bulk" of the request 1932 * to be aligned, and that unaligned requests do not cross cluster 1933 * boundaries. 1934 */ 1935 if (head) { 1936 /* Make a small request up to the first aligned sector. For 1937 * convenience, limit this request to max_transfer even if 1938 * we don't need to fall back to writes. */ 1939 num = MIN(MIN(bytes, max_transfer), alignment - head); 1940 head = (head + num) % alignment; 1941 assert(num < max_write_zeroes); 1942 } else if (tail && num > alignment) { 1943 /* Shorten the request to the last aligned sector. */ 1944 num -= tail; 1945 } 1946 1947 /* limit request size */ 1948 if (num > max_write_zeroes) { 1949 num = max_write_zeroes; 1950 } 1951 1952 ret = -ENOTSUP; 1953 /* First try the efficient write zeroes operation */ 1954 if (drv->bdrv_co_pwrite_zeroes) { 1955 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1956 flags & bs->supported_zero_flags); 1957 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1958 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1959 need_flush = true; 1960 } 1961 } else { 1962 assert(!bs->supported_zero_flags); 1963 } 1964 1965 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1966 /* Fall back to bounce buffer if write zeroes is unsupported */ 1967 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1968 1969 if ((flags & BDRV_REQ_FUA) && 1970 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1971 /* No need for bdrv_driver_pwrite() to do a fallback 1972 * flush on each chunk; use just one at the end */ 1973 write_flags &= ~BDRV_REQ_FUA; 1974 need_flush = true; 1975 } 1976 num = MIN(num, max_transfer); 1977 if (buf == NULL) { 1978 buf = qemu_try_blockalign0(bs, num); 1979 if (buf == NULL) { 1980 ret = -ENOMEM; 1981 goto fail; 1982 } 1983 } 1984 qemu_iovec_init_buf(&qiov, buf, num); 1985 1986 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1987 1988 /* Keep bounce buffer around if it is big enough for all 1989 * all future requests. 1990 */ 1991 if (num < max_transfer) { 1992 qemu_vfree(buf); 1993 buf = NULL; 1994 } 1995 } 1996 1997 offset += num; 1998 bytes -= num; 1999 } 2000 2001 fail: 2002 if (ret == 0 && need_flush) { 2003 ret = bdrv_co_flush(bs); 2004 } 2005 qemu_vfree(buf); 2006 return ret; 2007 } 2008 2009 static inline int coroutine_fn 2010 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 2011 BdrvTrackedRequest *req, int flags) 2012 { 2013 BlockDriverState *bs = child->bs; 2014 2015 bdrv_check_request(offset, bytes, &error_abort); 2016 2017 if (bdrv_is_read_only(bs)) { 2018 return -EPERM; 2019 } 2020 2021 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2022 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 2023 assert(!(flags & ~BDRV_REQ_MASK)); 2024 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 2025 2026 if (flags & BDRV_REQ_SERIALISING) { 2027 QEMU_LOCK_GUARD(&bs->reqs_lock); 2028 2029 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 2030 2031 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 2032 return -EBUSY; 2033 } 2034 2035 bdrv_wait_serialising_requests_locked(req); 2036 } else { 2037 bdrv_wait_serialising_requests(req); 2038 } 2039 2040 assert(req->overlap_offset <= offset); 2041 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 2042 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 2043 child->perm & BLK_PERM_RESIZE); 2044 2045 switch (req->type) { 2046 case BDRV_TRACKED_WRITE: 2047 case BDRV_TRACKED_DISCARD: 2048 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 2049 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 2050 } else { 2051 assert(child->perm & BLK_PERM_WRITE); 2052 } 2053 bdrv_write_threshold_check_write(bs, offset, bytes); 2054 return 0; 2055 case BDRV_TRACKED_TRUNCATE: 2056 assert(child->perm & BLK_PERM_RESIZE); 2057 return 0; 2058 default: 2059 abort(); 2060 } 2061 } 2062 2063 static inline void coroutine_fn 2064 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2065 BdrvTrackedRequest *req, int ret) 2066 { 2067 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2068 BlockDriverState *bs = child->bs; 2069 2070 bdrv_check_request(offset, bytes, &error_abort); 2071 2072 qatomic_inc(&bs->write_gen); 2073 2074 /* 2075 * Discard cannot extend the image, but in error handling cases, such as 2076 * when reverting a qcow2 cluster allocation, the discarded range can pass 2077 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2078 * here. Instead, just skip it, since semantically a discard request 2079 * beyond EOF cannot expand the image anyway. 2080 */ 2081 if (ret == 0 && 2082 (req->type == BDRV_TRACKED_TRUNCATE || 2083 end_sector > bs->total_sectors) && 2084 req->type != BDRV_TRACKED_DISCARD) { 2085 bs->total_sectors = end_sector; 2086 bdrv_parent_cb_resize(bs); 2087 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2088 } 2089 if (req->bytes) { 2090 switch (req->type) { 2091 case BDRV_TRACKED_WRITE: 2092 stat64_max(&bs->wr_highest_offset, offset + bytes); 2093 /* fall through, to set dirty bits */ 2094 case BDRV_TRACKED_DISCARD: 2095 bdrv_set_dirty(bs, offset, bytes); 2096 break; 2097 default: 2098 break; 2099 } 2100 } 2101 } 2102 2103 /* 2104 * Forwards an already correctly aligned write request to the BlockDriver, 2105 * after possibly fragmenting it. 2106 */ 2107 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 2108 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 2109 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, 2110 BdrvRequestFlags flags) 2111 { 2112 BlockDriverState *bs = child->bs; 2113 BlockDriver *drv = bs->drv; 2114 int ret; 2115 2116 int64_t bytes_remaining = bytes; 2117 int max_transfer; 2118 2119 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2120 2121 if (!drv) { 2122 return -ENOMEDIUM; 2123 } 2124 2125 if (bdrv_has_readonly_bitmaps(bs)) { 2126 return -EPERM; 2127 } 2128 2129 assert(is_power_of_2(align)); 2130 assert((offset & (align - 1)) == 0); 2131 assert((bytes & (align - 1)) == 0); 2132 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2133 align); 2134 2135 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2136 2137 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2138 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2139 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2140 flags |= BDRV_REQ_ZERO_WRITE; 2141 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2142 flags |= BDRV_REQ_MAY_UNMAP; 2143 } 2144 } 2145 2146 if (ret < 0) { 2147 /* Do nothing, write notifier decided to fail this request */ 2148 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2149 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2150 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2151 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2152 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2153 qiov, qiov_offset); 2154 } else if (bytes <= max_transfer) { 2155 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2156 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2157 } else { 2158 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2159 while (bytes_remaining) { 2160 int num = MIN(bytes_remaining, max_transfer); 2161 int local_flags = flags; 2162 2163 assert(num); 2164 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2165 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2166 /* If FUA is going to be emulated by flush, we only 2167 * need to flush on the last iteration */ 2168 local_flags &= ~BDRV_REQ_FUA; 2169 } 2170 2171 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2172 num, qiov, 2173 qiov_offset + bytes - bytes_remaining, 2174 local_flags); 2175 if (ret < 0) { 2176 break; 2177 } 2178 bytes_remaining -= num; 2179 } 2180 } 2181 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 2182 2183 if (ret >= 0) { 2184 ret = 0; 2185 } 2186 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2187 2188 return ret; 2189 } 2190 2191 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 2192 int64_t offset, 2193 int64_t bytes, 2194 BdrvRequestFlags flags, 2195 BdrvTrackedRequest *req) 2196 { 2197 BlockDriverState *bs = child->bs; 2198 QEMUIOVector local_qiov; 2199 uint64_t align = bs->bl.request_alignment; 2200 int ret = 0; 2201 bool padding; 2202 BdrvRequestPadding pad; 2203 2204 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2205 if (padding) { 2206 assert(!(flags & BDRV_REQ_NO_WAIT)); 2207 bdrv_make_request_serialising(req, align); 2208 2209 bdrv_padding_rmw_read(child, req, &pad, true); 2210 2211 if (pad.head || pad.merge_reads) { 2212 int64_t aligned_offset = offset & ~(align - 1); 2213 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2214 2215 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2216 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2217 align, &local_qiov, 0, 2218 flags & ~BDRV_REQ_ZERO_WRITE); 2219 if (ret < 0 || pad.merge_reads) { 2220 /* Error or all work is done */ 2221 goto out; 2222 } 2223 offset += write_bytes - pad.head; 2224 bytes -= write_bytes - pad.head; 2225 } 2226 } 2227 2228 assert(!bytes || (offset & (align - 1)) == 0); 2229 if (bytes >= align) { 2230 /* Write the aligned part in the middle. */ 2231 int64_t aligned_bytes = bytes & ~(align - 1); 2232 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2233 NULL, 0, flags); 2234 if (ret < 0) { 2235 goto out; 2236 } 2237 bytes -= aligned_bytes; 2238 offset += aligned_bytes; 2239 } 2240 2241 assert(!bytes || (offset & (align - 1)) == 0); 2242 if (bytes) { 2243 assert(align == pad.tail + bytes); 2244 2245 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2246 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2247 &local_qiov, 0, 2248 flags & ~BDRV_REQ_ZERO_WRITE); 2249 } 2250 2251 out: 2252 bdrv_padding_destroy(&pad); 2253 2254 return ret; 2255 } 2256 2257 /* 2258 * Handle a write request in coroutine context 2259 */ 2260 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2261 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2262 BdrvRequestFlags flags) 2263 { 2264 IO_CODE(); 2265 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2266 } 2267 2268 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2269 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2270 BdrvRequestFlags flags) 2271 { 2272 BlockDriverState *bs = child->bs; 2273 BdrvTrackedRequest req; 2274 uint64_t align = bs->bl.request_alignment; 2275 BdrvRequestPadding pad; 2276 int ret; 2277 bool padded = false; 2278 IO_CODE(); 2279 2280 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2281 2282 if (!bdrv_is_inserted(bs)) { 2283 return -ENOMEDIUM; 2284 } 2285 2286 if (flags & BDRV_REQ_ZERO_WRITE) { 2287 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2288 } else { 2289 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2290 } 2291 if (ret < 0) { 2292 return ret; 2293 } 2294 2295 /* If the request is misaligned then we can't make it efficient */ 2296 if ((flags & BDRV_REQ_NO_FALLBACK) && 2297 !QEMU_IS_ALIGNED(offset | bytes, align)) 2298 { 2299 return -ENOTSUP; 2300 } 2301 2302 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2303 /* 2304 * Aligning zero request is nonsense. Even if driver has special meaning 2305 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2306 * it to driver due to request_alignment. 2307 * 2308 * Still, no reason to return an error if someone do unaligned 2309 * zero-length write occasionally. 2310 */ 2311 return 0; 2312 } 2313 2314 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2315 /* 2316 * Pad request for following read-modify-write cycle. 2317 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2318 * alignment only if there is no ZERO flag. 2319 */ 2320 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 2321 &padded); 2322 if (ret < 0) { 2323 return ret; 2324 } 2325 } 2326 2327 bdrv_inc_in_flight(bs); 2328 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2329 2330 if (flags & BDRV_REQ_ZERO_WRITE) { 2331 assert(!padded); 2332 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2333 goto out; 2334 } 2335 2336 if (padded) { 2337 /* 2338 * Request was unaligned to request_alignment and therefore 2339 * padded. We are going to do read-modify-write, and must 2340 * serialize the request to prevent interactions of the 2341 * widened region with other transactions. 2342 */ 2343 assert(!(flags & BDRV_REQ_NO_WAIT)); 2344 bdrv_make_request_serialising(&req, align); 2345 bdrv_padding_rmw_read(child, &req, &pad, false); 2346 } 2347 2348 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2349 qiov, qiov_offset, flags); 2350 2351 bdrv_padding_destroy(&pad); 2352 2353 out: 2354 tracked_request_end(&req); 2355 bdrv_dec_in_flight(bs); 2356 2357 return ret; 2358 } 2359 2360 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2361 int64_t bytes, BdrvRequestFlags flags) 2362 { 2363 IO_CODE(); 2364 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2365 2366 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2367 flags &= ~BDRV_REQ_MAY_UNMAP; 2368 } 2369 2370 return bdrv_co_pwritev(child, offset, bytes, NULL, 2371 BDRV_REQ_ZERO_WRITE | flags); 2372 } 2373 2374 /* 2375 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2376 */ 2377 int bdrv_flush_all(void) 2378 { 2379 BdrvNextIterator it; 2380 BlockDriverState *bs = NULL; 2381 int result = 0; 2382 2383 GLOBAL_STATE_CODE(); 2384 2385 /* 2386 * bdrv queue is managed by record/replay, 2387 * creating new flush request for stopping 2388 * the VM may break the determinism 2389 */ 2390 if (replay_events_enabled()) { 2391 return result; 2392 } 2393 2394 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2395 AioContext *aio_context = bdrv_get_aio_context(bs); 2396 int ret; 2397 2398 aio_context_acquire(aio_context); 2399 ret = bdrv_flush(bs); 2400 if (ret < 0 && !result) { 2401 result = ret; 2402 } 2403 aio_context_release(aio_context); 2404 } 2405 2406 return result; 2407 } 2408 2409 /* 2410 * Returns the allocation status of the specified sectors. 2411 * Drivers not implementing the functionality are assumed to not support 2412 * backing files, hence all their sectors are reported as allocated. 2413 * 2414 * If 'want_zero' is true, the caller is querying for mapping 2415 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2416 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2417 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2418 * 2419 * If 'offset' is beyond the end of the disk image the return value is 2420 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2421 * 2422 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2423 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2424 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2425 * 2426 * 'pnum' is set to the number of bytes (including and immediately 2427 * following the specified offset) that are easily known to be in the 2428 * same allocated/unallocated state. Note that a second call starting 2429 * at the original offset plus returned pnum may have the same status. 2430 * The returned value is non-zero on success except at end-of-file. 2431 * 2432 * Returns negative errno on failure. Otherwise, if the 2433 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2434 * set to the host mapping and BDS corresponding to the guest offset. 2435 */ 2436 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2437 bool want_zero, 2438 int64_t offset, int64_t bytes, 2439 int64_t *pnum, int64_t *map, 2440 BlockDriverState **file) 2441 { 2442 int64_t total_size; 2443 int64_t n; /* bytes */ 2444 int ret; 2445 int64_t local_map = 0; 2446 BlockDriverState *local_file = NULL; 2447 int64_t aligned_offset, aligned_bytes; 2448 uint32_t align; 2449 bool has_filtered_child; 2450 2451 assert(pnum); 2452 *pnum = 0; 2453 total_size = bdrv_getlength(bs); 2454 if (total_size < 0) { 2455 ret = total_size; 2456 goto early_out; 2457 } 2458 2459 if (offset >= total_size) { 2460 ret = BDRV_BLOCK_EOF; 2461 goto early_out; 2462 } 2463 if (!bytes) { 2464 ret = 0; 2465 goto early_out; 2466 } 2467 2468 n = total_size - offset; 2469 if (n < bytes) { 2470 bytes = n; 2471 } 2472 2473 /* Must be non-NULL or bdrv_getlength() would have failed */ 2474 assert(bs->drv); 2475 has_filtered_child = bdrv_filter_child(bs); 2476 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2477 *pnum = bytes; 2478 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2479 if (offset + bytes == total_size) { 2480 ret |= BDRV_BLOCK_EOF; 2481 } 2482 if (bs->drv->protocol_name) { 2483 ret |= BDRV_BLOCK_OFFSET_VALID; 2484 local_map = offset; 2485 local_file = bs; 2486 } 2487 goto early_out; 2488 } 2489 2490 bdrv_inc_in_flight(bs); 2491 2492 /* Round out to request_alignment boundaries */ 2493 align = bs->bl.request_alignment; 2494 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2495 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2496 2497 if (bs->drv->bdrv_co_block_status) { 2498 /* 2499 * Use the block-status cache only for protocol nodes: Format 2500 * drivers are generally quick to inquire the status, but protocol 2501 * drivers often need to get information from outside of qemu, so 2502 * we do not have control over the actual implementation. There 2503 * have been cases where inquiring the status took an unreasonably 2504 * long time, and we can do nothing in qemu to fix it. 2505 * This is especially problematic for images with large data areas, 2506 * because finding the few holes in them and giving them special 2507 * treatment does not gain much performance. Therefore, we try to 2508 * cache the last-identified data region. 2509 * 2510 * Second, limiting ourselves to protocol nodes allows us to assume 2511 * the block status for data regions to be DATA | OFFSET_VALID, and 2512 * that the host offset is the same as the guest offset. 2513 * 2514 * Note that it is possible that external writers zero parts of 2515 * the cached regions without the cache being invalidated, and so 2516 * we may report zeroes as data. This is not catastrophic, 2517 * however, because reporting zeroes as data is fine. 2518 */ 2519 if (QLIST_EMPTY(&bs->children) && 2520 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2521 { 2522 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2523 local_file = bs; 2524 local_map = aligned_offset; 2525 } else { 2526 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2527 aligned_bytes, pnum, &local_map, 2528 &local_file); 2529 2530 /* 2531 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2532 * the cache is queried above. Technically, we do not need to check 2533 * it here; the worst that can happen is that we fill the cache for 2534 * non-protocol nodes, and then it is never used. However, filling 2535 * the cache requires an RCU update, so double check here to avoid 2536 * such an update if possible. 2537 * 2538 * Check want_zero, because we only want to update the cache when we 2539 * have accurate information about what is zero and what is data. 2540 */ 2541 if (want_zero && 2542 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2543 QLIST_EMPTY(&bs->children)) 2544 { 2545 /* 2546 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2547 * returned local_map value must be the same as the offset we 2548 * have passed (aligned_offset), and local_bs must be the node 2549 * itself. 2550 * Assert this, because we follow this rule when reading from 2551 * the cache (see the `local_file = bs` and 2552 * `local_map = aligned_offset` assignments above), and the 2553 * result the cache delivers must be the same as the driver 2554 * would deliver. 2555 */ 2556 assert(local_file == bs); 2557 assert(local_map == aligned_offset); 2558 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2559 } 2560 } 2561 } else { 2562 /* Default code for filters */ 2563 2564 local_file = bdrv_filter_bs(bs); 2565 assert(local_file); 2566 2567 *pnum = aligned_bytes; 2568 local_map = aligned_offset; 2569 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2570 } 2571 if (ret < 0) { 2572 *pnum = 0; 2573 goto out; 2574 } 2575 2576 /* 2577 * The driver's result must be a non-zero multiple of request_alignment. 2578 * Clamp pnum and adjust map to original request. 2579 */ 2580 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2581 align > offset - aligned_offset); 2582 if (ret & BDRV_BLOCK_RECURSE) { 2583 assert(ret & BDRV_BLOCK_DATA); 2584 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2585 assert(!(ret & BDRV_BLOCK_ZERO)); 2586 } 2587 2588 *pnum -= offset - aligned_offset; 2589 if (*pnum > bytes) { 2590 *pnum = bytes; 2591 } 2592 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2593 local_map += offset - aligned_offset; 2594 } 2595 2596 if (ret & BDRV_BLOCK_RAW) { 2597 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2598 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2599 *pnum, pnum, &local_map, &local_file); 2600 goto out; 2601 } 2602 2603 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2604 ret |= BDRV_BLOCK_ALLOCATED; 2605 } else if (bs->drv->supports_backing) { 2606 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2607 2608 if (!cow_bs) { 2609 ret |= BDRV_BLOCK_ZERO; 2610 } else if (want_zero) { 2611 int64_t size2 = bdrv_getlength(cow_bs); 2612 2613 if (size2 >= 0 && offset >= size2) { 2614 ret |= BDRV_BLOCK_ZERO; 2615 } 2616 } 2617 } 2618 2619 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2620 local_file && local_file != bs && 2621 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2622 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2623 int64_t file_pnum; 2624 int ret2; 2625 2626 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2627 *pnum, &file_pnum, NULL, NULL); 2628 if (ret2 >= 0) { 2629 /* Ignore errors. This is just providing extra information, it 2630 * is useful but not necessary. 2631 */ 2632 if (ret2 & BDRV_BLOCK_EOF && 2633 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2634 /* 2635 * It is valid for the format block driver to read 2636 * beyond the end of the underlying file's current 2637 * size; such areas read as zero. 2638 */ 2639 ret |= BDRV_BLOCK_ZERO; 2640 } else { 2641 /* Limit request to the range reported by the protocol driver */ 2642 *pnum = file_pnum; 2643 ret |= (ret2 & BDRV_BLOCK_ZERO); 2644 } 2645 } 2646 } 2647 2648 out: 2649 bdrv_dec_in_flight(bs); 2650 if (ret >= 0 && offset + *pnum == total_size) { 2651 ret |= BDRV_BLOCK_EOF; 2652 } 2653 early_out: 2654 if (file) { 2655 *file = local_file; 2656 } 2657 if (map) { 2658 *map = local_map; 2659 } 2660 return ret; 2661 } 2662 2663 int coroutine_fn 2664 bdrv_co_common_block_status_above(BlockDriverState *bs, 2665 BlockDriverState *base, 2666 bool include_base, 2667 bool want_zero, 2668 int64_t offset, 2669 int64_t bytes, 2670 int64_t *pnum, 2671 int64_t *map, 2672 BlockDriverState **file, 2673 int *depth) 2674 { 2675 int ret; 2676 BlockDriverState *p; 2677 int64_t eof = 0; 2678 int dummy; 2679 IO_CODE(); 2680 2681 assert(!include_base || base); /* Can't include NULL base */ 2682 2683 if (!depth) { 2684 depth = &dummy; 2685 } 2686 *depth = 0; 2687 2688 if (!include_base && bs == base) { 2689 *pnum = bytes; 2690 return 0; 2691 } 2692 2693 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2694 ++*depth; 2695 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2696 return ret; 2697 } 2698 2699 if (ret & BDRV_BLOCK_EOF) { 2700 eof = offset + *pnum; 2701 } 2702 2703 assert(*pnum <= bytes); 2704 bytes = *pnum; 2705 2706 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2707 p = bdrv_filter_or_cow_bs(p)) 2708 { 2709 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2710 file); 2711 ++*depth; 2712 if (ret < 0) { 2713 return ret; 2714 } 2715 if (*pnum == 0) { 2716 /* 2717 * The top layer deferred to this layer, and because this layer is 2718 * short, any zeroes that we synthesize beyond EOF behave as if they 2719 * were allocated at this layer. 2720 * 2721 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2722 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2723 * below. 2724 */ 2725 assert(ret & BDRV_BLOCK_EOF); 2726 *pnum = bytes; 2727 if (file) { 2728 *file = p; 2729 } 2730 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2731 break; 2732 } 2733 if (ret & BDRV_BLOCK_ALLOCATED) { 2734 /* 2735 * We've found the node and the status, we must break. 2736 * 2737 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2738 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2739 * below. 2740 */ 2741 ret &= ~BDRV_BLOCK_EOF; 2742 break; 2743 } 2744 2745 if (p == base) { 2746 assert(include_base); 2747 break; 2748 } 2749 2750 /* 2751 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2752 * let's continue the diving. 2753 */ 2754 assert(*pnum <= bytes); 2755 bytes = *pnum; 2756 } 2757 2758 if (offset + *pnum == eof) { 2759 ret |= BDRV_BLOCK_EOF; 2760 } 2761 2762 return ret; 2763 } 2764 2765 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2766 int64_t offset, int64_t bytes, int64_t *pnum, 2767 int64_t *map, BlockDriverState **file) 2768 { 2769 IO_CODE(); 2770 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2771 pnum, map, file, NULL); 2772 } 2773 2774 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2775 int64_t *pnum, int64_t *map, BlockDriverState **file) 2776 { 2777 IO_CODE(); 2778 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2779 offset, bytes, pnum, map, file); 2780 } 2781 2782 /* 2783 * Check @bs (and its backing chain) to see if the range defined 2784 * by @offset and @bytes is known to read as zeroes. 2785 * Return 1 if that is the case, 0 otherwise and -errno on error. 2786 * This test is meant to be fast rather than accurate so returning 0 2787 * does not guarantee non-zero data. 2788 */ 2789 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2790 int64_t bytes) 2791 { 2792 int ret; 2793 int64_t pnum = bytes; 2794 IO_CODE(); 2795 2796 if (!bytes) { 2797 return 1; 2798 } 2799 2800 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset, 2801 bytes, &pnum, NULL, NULL, NULL); 2802 2803 if (ret < 0) { 2804 return ret; 2805 } 2806 2807 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2808 } 2809 2810 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2811 int64_t bytes, int64_t *pnum) 2812 { 2813 int ret; 2814 int64_t dummy; 2815 IO_CODE(); 2816 2817 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2818 bytes, pnum ? pnum : &dummy, NULL, 2819 NULL, NULL); 2820 if (ret < 0) { 2821 return ret; 2822 } 2823 return !!(ret & BDRV_BLOCK_ALLOCATED); 2824 } 2825 2826 /* 2827 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2828 * 2829 * Return a positive depth if (a prefix of) the given range is allocated 2830 * in any image between BASE and TOP (BASE is only included if include_base 2831 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2832 * BASE can be NULL to check if the given offset is allocated in any 2833 * image of the chain. Return 0 otherwise, or negative errno on 2834 * failure. 2835 * 2836 * 'pnum' is set to the number of bytes (including and immediately 2837 * following the specified offset) that are known to be in the same 2838 * allocated/unallocated state. Note that a subsequent call starting 2839 * at 'offset + *pnum' may return the same allocation status (in other 2840 * words, the result is not necessarily the maximum possible range); 2841 * but 'pnum' will only be 0 when end of file is reached. 2842 */ 2843 int bdrv_is_allocated_above(BlockDriverState *top, 2844 BlockDriverState *base, 2845 bool include_base, int64_t offset, 2846 int64_t bytes, int64_t *pnum) 2847 { 2848 int depth; 2849 int ret = bdrv_common_block_status_above(top, base, include_base, false, 2850 offset, bytes, pnum, NULL, NULL, 2851 &depth); 2852 IO_CODE(); 2853 if (ret < 0) { 2854 return ret; 2855 } 2856 2857 if (ret & BDRV_BLOCK_ALLOCATED) { 2858 return depth; 2859 } 2860 return 0; 2861 } 2862 2863 int coroutine_fn 2864 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2865 { 2866 BlockDriver *drv = bs->drv; 2867 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2868 int ret; 2869 IO_CODE(); 2870 2871 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2872 if (ret < 0) { 2873 return ret; 2874 } 2875 2876 if (!drv) { 2877 return -ENOMEDIUM; 2878 } 2879 2880 bdrv_inc_in_flight(bs); 2881 2882 if (drv->bdrv_load_vmstate) { 2883 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2884 } else if (child_bs) { 2885 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2886 } else { 2887 ret = -ENOTSUP; 2888 } 2889 2890 bdrv_dec_in_flight(bs); 2891 2892 return ret; 2893 } 2894 2895 int coroutine_fn 2896 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2897 { 2898 BlockDriver *drv = bs->drv; 2899 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2900 int ret; 2901 IO_CODE(); 2902 2903 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2904 if (ret < 0) { 2905 return ret; 2906 } 2907 2908 if (!drv) { 2909 return -ENOMEDIUM; 2910 } 2911 2912 bdrv_inc_in_flight(bs); 2913 2914 if (drv->bdrv_save_vmstate) { 2915 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2916 } else if (child_bs) { 2917 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2918 } else { 2919 ret = -ENOTSUP; 2920 } 2921 2922 bdrv_dec_in_flight(bs); 2923 2924 return ret; 2925 } 2926 2927 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2928 int64_t pos, int size) 2929 { 2930 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2931 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2932 IO_CODE(); 2933 2934 return ret < 0 ? ret : size; 2935 } 2936 2937 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2938 int64_t pos, int size) 2939 { 2940 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2941 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2942 IO_CODE(); 2943 2944 return ret < 0 ? ret : size; 2945 } 2946 2947 /**************************************************************/ 2948 /* async I/Os */ 2949 2950 void bdrv_aio_cancel(BlockAIOCB *acb) 2951 { 2952 IO_CODE(); 2953 qemu_aio_ref(acb); 2954 bdrv_aio_cancel_async(acb); 2955 while (acb->refcnt > 1) { 2956 if (acb->aiocb_info->get_aio_context) { 2957 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2958 } else if (acb->bs) { 2959 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2960 * assert that we're not using an I/O thread. Thread-safe 2961 * code should use bdrv_aio_cancel_async exclusively. 2962 */ 2963 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2964 aio_poll(bdrv_get_aio_context(acb->bs), true); 2965 } else { 2966 abort(); 2967 } 2968 } 2969 qemu_aio_unref(acb); 2970 } 2971 2972 /* Async version of aio cancel. The caller is not blocked if the acb implements 2973 * cancel_async, otherwise we do nothing and let the request normally complete. 2974 * In either case the completion callback must be called. */ 2975 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2976 { 2977 IO_CODE(); 2978 if (acb->aiocb_info->cancel_async) { 2979 acb->aiocb_info->cancel_async(acb); 2980 } 2981 } 2982 2983 /**************************************************************/ 2984 /* Coroutine block device emulation */ 2985 2986 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2987 { 2988 BdrvChild *primary_child = bdrv_primary_child(bs); 2989 BdrvChild *child; 2990 int current_gen; 2991 int ret = 0; 2992 IO_CODE(); 2993 2994 bdrv_inc_in_flight(bs); 2995 2996 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2997 bdrv_is_sg(bs)) { 2998 goto early_exit; 2999 } 3000 3001 qemu_co_mutex_lock(&bs->reqs_lock); 3002 current_gen = qatomic_read(&bs->write_gen); 3003 3004 /* Wait until any previous flushes are completed */ 3005 while (bs->active_flush_req) { 3006 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 3007 } 3008 3009 /* Flushes reach this point in nondecreasing current_gen order. */ 3010 bs->active_flush_req = true; 3011 qemu_co_mutex_unlock(&bs->reqs_lock); 3012 3013 /* Write back all layers by calling one driver function */ 3014 if (bs->drv->bdrv_co_flush) { 3015 ret = bs->drv->bdrv_co_flush(bs); 3016 goto out; 3017 } 3018 3019 /* Write back cached data to the OS even with cache=unsafe */ 3020 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 3021 if (bs->drv->bdrv_co_flush_to_os) { 3022 ret = bs->drv->bdrv_co_flush_to_os(bs); 3023 if (ret < 0) { 3024 goto out; 3025 } 3026 } 3027 3028 /* But don't actually force it to the disk with cache=unsafe */ 3029 if (bs->open_flags & BDRV_O_NO_FLUSH) { 3030 goto flush_children; 3031 } 3032 3033 /* Check if we really need to flush anything */ 3034 if (bs->flushed_gen == current_gen) { 3035 goto flush_children; 3036 } 3037 3038 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 3039 if (!bs->drv) { 3040 /* bs->drv->bdrv_co_flush() might have ejected the BDS 3041 * (even in case of apparent success) */ 3042 ret = -ENOMEDIUM; 3043 goto out; 3044 } 3045 if (bs->drv->bdrv_co_flush_to_disk) { 3046 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3047 } else if (bs->drv->bdrv_aio_flush) { 3048 BlockAIOCB *acb; 3049 CoroutineIOCompletion co = { 3050 .coroutine = qemu_coroutine_self(), 3051 }; 3052 3053 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3054 if (acb == NULL) { 3055 ret = -EIO; 3056 } else { 3057 qemu_coroutine_yield(); 3058 ret = co.ret; 3059 } 3060 } else { 3061 /* 3062 * Some block drivers always operate in either writethrough or unsafe 3063 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3064 * know how the server works (because the behaviour is hardcoded or 3065 * depends on server-side configuration), so we can't ensure that 3066 * everything is safe on disk. Returning an error doesn't work because 3067 * that would break guests even if the server operates in writethrough 3068 * mode. 3069 * 3070 * Let's hope the user knows what he's doing. 3071 */ 3072 ret = 0; 3073 } 3074 3075 if (ret < 0) { 3076 goto out; 3077 } 3078 3079 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3080 * in the case of cache=unsafe, so there are no useless flushes. 3081 */ 3082 flush_children: 3083 ret = 0; 3084 QLIST_FOREACH(child, &bs->children, next) { 3085 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3086 int this_child_ret = bdrv_co_flush(child->bs); 3087 if (!ret) { 3088 ret = this_child_ret; 3089 } 3090 } 3091 } 3092 3093 out: 3094 /* Notify any pending flushes that we have completed */ 3095 if (ret == 0) { 3096 bs->flushed_gen = current_gen; 3097 } 3098 3099 qemu_co_mutex_lock(&bs->reqs_lock); 3100 bs->active_flush_req = false; 3101 /* Return value is ignored - it's ok if wait queue is empty */ 3102 qemu_co_queue_next(&bs->flush_queue); 3103 qemu_co_mutex_unlock(&bs->reqs_lock); 3104 3105 early_exit: 3106 bdrv_dec_in_flight(bs); 3107 return ret; 3108 } 3109 3110 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3111 int64_t bytes) 3112 { 3113 BdrvTrackedRequest req; 3114 int ret; 3115 int64_t max_pdiscard; 3116 int head, tail, align; 3117 BlockDriverState *bs = child->bs; 3118 IO_CODE(); 3119 3120 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 3121 return -ENOMEDIUM; 3122 } 3123 3124 if (bdrv_has_readonly_bitmaps(bs)) { 3125 return -EPERM; 3126 } 3127 3128 ret = bdrv_check_request(offset, bytes, NULL); 3129 if (ret < 0) { 3130 return ret; 3131 } 3132 3133 /* Do nothing if disabled. */ 3134 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3135 return 0; 3136 } 3137 3138 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 3139 return 0; 3140 } 3141 3142 /* Invalidate the cached block-status data range if this discard overlaps */ 3143 bdrv_bsc_invalidate_range(bs, offset, bytes); 3144 3145 /* Discard is advisory, but some devices track and coalesce 3146 * unaligned requests, so we must pass everything down rather than 3147 * round here. Still, most devices will just silently ignore 3148 * unaligned requests (by returning -ENOTSUP), so we must fragment 3149 * the request accordingly. */ 3150 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3151 assert(align % bs->bl.request_alignment == 0); 3152 head = offset % align; 3153 tail = (offset + bytes) % align; 3154 3155 bdrv_inc_in_flight(bs); 3156 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3157 3158 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3159 if (ret < 0) { 3160 goto out; 3161 } 3162 3163 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3164 align); 3165 assert(max_pdiscard >= bs->bl.request_alignment); 3166 3167 while (bytes > 0) { 3168 int64_t num = bytes; 3169 3170 if (head) { 3171 /* Make small requests to get to alignment boundaries. */ 3172 num = MIN(bytes, align - head); 3173 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3174 num %= bs->bl.request_alignment; 3175 } 3176 head = (head + num) % align; 3177 assert(num < max_pdiscard); 3178 } else if (tail) { 3179 if (num > align) { 3180 /* Shorten the request to the last aligned cluster. */ 3181 num -= tail; 3182 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3183 tail > bs->bl.request_alignment) { 3184 tail %= bs->bl.request_alignment; 3185 num -= tail; 3186 } 3187 } 3188 /* limit request size */ 3189 if (num > max_pdiscard) { 3190 num = max_pdiscard; 3191 } 3192 3193 if (!bs->drv) { 3194 ret = -ENOMEDIUM; 3195 goto out; 3196 } 3197 if (bs->drv->bdrv_co_pdiscard) { 3198 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3199 } else { 3200 BlockAIOCB *acb; 3201 CoroutineIOCompletion co = { 3202 .coroutine = qemu_coroutine_self(), 3203 }; 3204 3205 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3206 bdrv_co_io_em_complete, &co); 3207 if (acb == NULL) { 3208 ret = -EIO; 3209 goto out; 3210 } else { 3211 qemu_coroutine_yield(); 3212 ret = co.ret; 3213 } 3214 } 3215 if (ret && ret != -ENOTSUP) { 3216 goto out; 3217 } 3218 3219 offset += num; 3220 bytes -= num; 3221 } 3222 ret = 0; 3223 out: 3224 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3225 tracked_request_end(&req); 3226 bdrv_dec_in_flight(bs); 3227 return ret; 3228 } 3229 3230 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3231 { 3232 BlockDriver *drv = bs->drv; 3233 CoroutineIOCompletion co = { 3234 .coroutine = qemu_coroutine_self(), 3235 }; 3236 BlockAIOCB *acb; 3237 IO_CODE(); 3238 3239 bdrv_inc_in_flight(bs); 3240 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3241 co.ret = -ENOTSUP; 3242 goto out; 3243 } 3244 3245 if (drv->bdrv_co_ioctl) { 3246 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3247 } else { 3248 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3249 if (!acb) { 3250 co.ret = -ENOTSUP; 3251 goto out; 3252 } 3253 qemu_coroutine_yield(); 3254 } 3255 out: 3256 bdrv_dec_in_flight(bs); 3257 return co.ret; 3258 } 3259 3260 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3261 { 3262 IO_CODE(); 3263 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3264 } 3265 3266 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3267 { 3268 IO_CODE(); 3269 return memset(qemu_blockalign(bs, size), 0, size); 3270 } 3271 3272 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3273 { 3274 size_t align = bdrv_opt_mem_align(bs); 3275 IO_CODE(); 3276 3277 /* Ensure that NULL is never returned on success */ 3278 assert(align > 0); 3279 if (size == 0) { 3280 size = align; 3281 } 3282 3283 return qemu_try_memalign(align, size); 3284 } 3285 3286 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3287 { 3288 void *mem = qemu_try_blockalign(bs, size); 3289 IO_CODE(); 3290 3291 if (mem) { 3292 memset(mem, 0, size); 3293 } 3294 3295 return mem; 3296 } 3297 3298 /* 3299 * Check if all memory in this vector is sector aligned. 3300 */ 3301 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 3302 { 3303 int i; 3304 size_t alignment = bdrv_min_mem_align(bs); 3305 IO_CODE(); 3306 3307 for (i = 0; i < qiov->niov; i++) { 3308 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 3309 return false; 3310 } 3311 if (qiov->iov[i].iov_len % alignment) { 3312 return false; 3313 } 3314 } 3315 3316 return true; 3317 } 3318 3319 void bdrv_io_plug(BlockDriverState *bs) 3320 { 3321 BdrvChild *child; 3322 IO_CODE(); 3323 3324 QLIST_FOREACH(child, &bs->children, next) { 3325 bdrv_io_plug(child->bs); 3326 } 3327 3328 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3329 BlockDriver *drv = bs->drv; 3330 if (drv && drv->bdrv_io_plug) { 3331 drv->bdrv_io_plug(bs); 3332 } 3333 } 3334 } 3335 3336 void bdrv_io_unplug(BlockDriverState *bs) 3337 { 3338 BdrvChild *child; 3339 IO_CODE(); 3340 3341 assert(bs->io_plugged); 3342 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3343 BlockDriver *drv = bs->drv; 3344 if (drv && drv->bdrv_io_unplug) { 3345 drv->bdrv_io_unplug(bs); 3346 } 3347 } 3348 3349 QLIST_FOREACH(child, &bs->children, next) { 3350 bdrv_io_unplug(child->bs); 3351 } 3352 } 3353 3354 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 3355 { 3356 BdrvChild *child; 3357 3358 GLOBAL_STATE_CODE(); 3359 if (bs->drv && bs->drv->bdrv_register_buf) { 3360 bs->drv->bdrv_register_buf(bs, host, size); 3361 } 3362 QLIST_FOREACH(child, &bs->children, next) { 3363 bdrv_register_buf(child->bs, host, size); 3364 } 3365 } 3366 3367 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 3368 { 3369 BdrvChild *child; 3370 3371 GLOBAL_STATE_CODE(); 3372 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3373 bs->drv->bdrv_unregister_buf(bs, host); 3374 } 3375 QLIST_FOREACH(child, &bs->children, next) { 3376 bdrv_unregister_buf(child->bs, host); 3377 } 3378 } 3379 3380 static int coroutine_fn bdrv_co_copy_range_internal( 3381 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3382 int64_t dst_offset, int64_t bytes, 3383 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3384 bool recurse_src) 3385 { 3386 BdrvTrackedRequest req; 3387 int ret; 3388 3389 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3390 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3391 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3392 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3393 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3394 3395 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) { 3396 return -ENOMEDIUM; 3397 } 3398 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3399 if (ret) { 3400 return ret; 3401 } 3402 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3403 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3404 } 3405 3406 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) { 3407 return -ENOMEDIUM; 3408 } 3409 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3410 if (ret) { 3411 return ret; 3412 } 3413 3414 if (!src->bs->drv->bdrv_co_copy_range_from 3415 || !dst->bs->drv->bdrv_co_copy_range_to 3416 || src->bs->encrypted || dst->bs->encrypted) { 3417 return -ENOTSUP; 3418 } 3419 3420 if (recurse_src) { 3421 bdrv_inc_in_flight(src->bs); 3422 tracked_request_begin(&req, src->bs, src_offset, bytes, 3423 BDRV_TRACKED_READ); 3424 3425 /* BDRV_REQ_SERIALISING is only for write operation */ 3426 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3427 bdrv_wait_serialising_requests(&req); 3428 3429 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3430 src, src_offset, 3431 dst, dst_offset, 3432 bytes, 3433 read_flags, write_flags); 3434 3435 tracked_request_end(&req); 3436 bdrv_dec_in_flight(src->bs); 3437 } else { 3438 bdrv_inc_in_flight(dst->bs); 3439 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3440 BDRV_TRACKED_WRITE); 3441 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3442 write_flags); 3443 if (!ret) { 3444 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3445 src, src_offset, 3446 dst, dst_offset, 3447 bytes, 3448 read_flags, write_flags); 3449 } 3450 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3451 tracked_request_end(&req); 3452 bdrv_dec_in_flight(dst->bs); 3453 } 3454 3455 return ret; 3456 } 3457 3458 /* Copy range from @src to @dst. 3459 * 3460 * See the comment of bdrv_co_copy_range for the parameter and return value 3461 * semantics. */ 3462 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3463 BdrvChild *dst, int64_t dst_offset, 3464 int64_t bytes, 3465 BdrvRequestFlags read_flags, 3466 BdrvRequestFlags write_flags) 3467 { 3468 IO_CODE(); 3469 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3470 read_flags, write_flags); 3471 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3472 bytes, read_flags, write_flags, true); 3473 } 3474 3475 /* Copy range from @src to @dst. 3476 * 3477 * See the comment of bdrv_co_copy_range for the parameter and return value 3478 * semantics. */ 3479 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3480 BdrvChild *dst, int64_t dst_offset, 3481 int64_t bytes, 3482 BdrvRequestFlags read_flags, 3483 BdrvRequestFlags write_flags) 3484 { 3485 IO_CODE(); 3486 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3487 read_flags, write_flags); 3488 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3489 bytes, read_flags, write_flags, false); 3490 } 3491 3492 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3493 BdrvChild *dst, int64_t dst_offset, 3494 int64_t bytes, BdrvRequestFlags read_flags, 3495 BdrvRequestFlags write_flags) 3496 { 3497 IO_CODE(); 3498 return bdrv_co_copy_range_from(src, src_offset, 3499 dst, dst_offset, 3500 bytes, read_flags, write_flags); 3501 } 3502 3503 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3504 { 3505 BdrvChild *c; 3506 QLIST_FOREACH(c, &bs->parents, next_parent) { 3507 if (c->klass->resize) { 3508 c->klass->resize(c); 3509 } 3510 } 3511 } 3512 3513 /** 3514 * Truncate file to 'offset' bytes (needed only for file protocols) 3515 * 3516 * If 'exact' is true, the file must be resized to exactly the given 3517 * 'offset'. Otherwise, it is sufficient for the node to be at least 3518 * 'offset' bytes in length. 3519 */ 3520 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3521 PreallocMode prealloc, BdrvRequestFlags flags, 3522 Error **errp) 3523 { 3524 BlockDriverState *bs = child->bs; 3525 BdrvChild *filtered, *backing; 3526 BlockDriver *drv = bs->drv; 3527 BdrvTrackedRequest req; 3528 int64_t old_size, new_bytes; 3529 int ret; 3530 IO_CODE(); 3531 3532 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3533 if (!drv) { 3534 error_setg(errp, "No medium inserted"); 3535 return -ENOMEDIUM; 3536 } 3537 if (offset < 0) { 3538 error_setg(errp, "Image size cannot be negative"); 3539 return -EINVAL; 3540 } 3541 3542 ret = bdrv_check_request(offset, 0, errp); 3543 if (ret < 0) { 3544 return ret; 3545 } 3546 3547 old_size = bdrv_getlength(bs); 3548 if (old_size < 0) { 3549 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3550 return old_size; 3551 } 3552 3553 if (bdrv_is_read_only(bs)) { 3554 error_setg(errp, "Image is read-only"); 3555 return -EACCES; 3556 } 3557 3558 if (offset > old_size) { 3559 new_bytes = offset - old_size; 3560 } else { 3561 new_bytes = 0; 3562 } 3563 3564 bdrv_inc_in_flight(bs); 3565 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3566 BDRV_TRACKED_TRUNCATE); 3567 3568 /* If we are growing the image and potentially using preallocation for the 3569 * new area, we need to make sure that no write requests are made to it 3570 * concurrently or they might be overwritten by preallocation. */ 3571 if (new_bytes) { 3572 bdrv_make_request_serialising(&req, 1); 3573 } 3574 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3575 0); 3576 if (ret < 0) { 3577 error_setg_errno(errp, -ret, 3578 "Failed to prepare request for truncation"); 3579 goto out; 3580 } 3581 3582 filtered = bdrv_filter_child(bs); 3583 backing = bdrv_cow_child(bs); 3584 3585 /* 3586 * If the image has a backing file that is large enough that it would 3587 * provide data for the new area, we cannot leave it unallocated because 3588 * then the backing file content would become visible. Instead, zero-fill 3589 * the new area. 3590 * 3591 * Note that if the image has a backing file, but was opened without the 3592 * backing file, taking care of keeping things consistent with that backing 3593 * file is the user's responsibility. 3594 */ 3595 if (new_bytes && backing) { 3596 int64_t backing_len; 3597 3598 backing_len = bdrv_getlength(backing->bs); 3599 if (backing_len < 0) { 3600 ret = backing_len; 3601 error_setg_errno(errp, -ret, "Could not get backing file size"); 3602 goto out; 3603 } 3604 3605 if (backing_len > old_size) { 3606 flags |= BDRV_REQ_ZERO_WRITE; 3607 } 3608 } 3609 3610 if (drv->bdrv_co_truncate) { 3611 if (flags & ~bs->supported_truncate_flags) { 3612 error_setg(errp, "Block driver does not support requested flags"); 3613 ret = -ENOTSUP; 3614 goto out; 3615 } 3616 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3617 } else if (filtered) { 3618 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3619 } else { 3620 error_setg(errp, "Image format driver does not support resize"); 3621 ret = -ENOTSUP; 3622 goto out; 3623 } 3624 if (ret < 0) { 3625 goto out; 3626 } 3627 3628 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3629 if (ret < 0) { 3630 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3631 } else { 3632 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3633 } 3634 /* It's possible that truncation succeeded but refresh_total_sectors 3635 * failed, but the latter doesn't affect how we should finish the request. 3636 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3637 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3638 3639 out: 3640 tracked_request_end(&req); 3641 bdrv_dec_in_flight(bs); 3642 3643 return ret; 3644 } 3645 3646 void bdrv_cancel_in_flight(BlockDriverState *bs) 3647 { 3648 GLOBAL_STATE_CODE(); 3649 if (!bs || !bs->drv) { 3650 return; 3651 } 3652 3653 if (bs->drv->bdrv_cancel_in_flight) { 3654 bs->drv->bdrv_cancel_in_flight(bs); 3655 } 3656 } 3657 3658 int coroutine_fn 3659 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3660 QEMUIOVector *qiov, size_t qiov_offset) 3661 { 3662 BlockDriverState *bs = child->bs; 3663 BlockDriver *drv = bs->drv; 3664 int ret; 3665 IO_CODE(); 3666 3667 if (!drv) { 3668 return -ENOMEDIUM; 3669 } 3670 3671 if (!drv->bdrv_co_preadv_snapshot) { 3672 return -ENOTSUP; 3673 } 3674 3675 bdrv_inc_in_flight(bs); 3676 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3677 bdrv_dec_in_flight(bs); 3678 3679 return ret; 3680 } 3681 3682 int coroutine_fn 3683 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3684 bool want_zero, int64_t offset, int64_t bytes, 3685 int64_t *pnum, int64_t *map, 3686 BlockDriverState **file) 3687 { 3688 BlockDriver *drv = bs->drv; 3689 int ret; 3690 IO_CODE(); 3691 3692 if (!drv) { 3693 return -ENOMEDIUM; 3694 } 3695 3696 if (!drv->bdrv_co_snapshot_block_status) { 3697 return -ENOTSUP; 3698 } 3699 3700 bdrv_inc_in_flight(bs); 3701 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3702 pnum, map, file); 3703 bdrv_dec_in_flight(bs); 3704 3705 return ret; 3706 } 3707 3708 int coroutine_fn 3709 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3710 { 3711 BlockDriver *drv = bs->drv; 3712 int ret; 3713 IO_CODE(); 3714 3715 if (!drv) { 3716 return -ENOMEDIUM; 3717 } 3718 3719 if (!drv->bdrv_co_pdiscard_snapshot) { 3720 return -ENOTSUP; 3721 } 3722 3723 bdrv_inc_in_flight(bs); 3724 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3725 bdrv_dec_in_flight(bs); 3726 3727 return ret; 3728 } 3729