1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "qemu/cutils.h" 33 #include "qapi/error.h" 34 #include "qemu/error-report.h" 35 36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 37 38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 40 41 static void bdrv_parent_cb_resize(BlockDriverState *bs); 42 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 43 int64_t offset, int bytes, BdrvRequestFlags flags); 44 45 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 46 bool ignore_bds_parents) 47 { 48 BdrvChild *c, *next; 49 50 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 51 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 52 continue; 53 } 54 bdrv_parent_drained_begin_single(c, false); 55 } 56 } 57 58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 59 bool ignore_bds_parents) 60 { 61 BdrvChild *c, *next; 62 63 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 64 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 65 continue; 66 } 67 if (c->role->drained_end) { 68 c->role->drained_end(c); 69 } 70 } 71 } 72 73 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 74 { 75 if (c->role->drained_poll) { 76 return c->role->drained_poll(c); 77 } 78 return false; 79 } 80 81 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 82 bool ignore_bds_parents) 83 { 84 BdrvChild *c, *next; 85 bool busy = false; 86 87 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 88 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 89 continue; 90 } 91 busy |= bdrv_parent_drained_poll_single(c); 92 } 93 94 return busy; 95 } 96 97 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 98 { 99 if (c->role->drained_begin) { 100 c->role->drained_begin(c); 101 } 102 if (poll) { 103 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 104 } 105 } 106 107 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 108 { 109 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 110 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 111 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 112 src->opt_mem_alignment); 113 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 114 src->min_mem_alignment); 115 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 116 } 117 118 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 119 { 120 BlockDriver *drv = bs->drv; 121 Error *local_err = NULL; 122 123 memset(&bs->bl, 0, sizeof(bs->bl)); 124 125 if (!drv) { 126 return; 127 } 128 129 /* Default alignment based on whether driver has byte interface */ 130 bs->bl.request_alignment = (drv->bdrv_co_preadv || 131 drv->bdrv_aio_preadv) ? 1 : 512; 132 133 /* Take some limits from the children as a default */ 134 if (bs->file) { 135 bdrv_refresh_limits(bs->file->bs, &local_err); 136 if (local_err) { 137 error_propagate(errp, local_err); 138 return; 139 } 140 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 141 } else { 142 bs->bl.min_mem_alignment = 512; 143 bs->bl.opt_mem_alignment = getpagesize(); 144 145 /* Safe default since most protocols use readv()/writev()/etc */ 146 bs->bl.max_iov = IOV_MAX; 147 } 148 149 if (bs->backing) { 150 bdrv_refresh_limits(bs->backing->bs, &local_err); 151 if (local_err) { 152 error_propagate(errp, local_err); 153 return; 154 } 155 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 156 } 157 158 /* Then let the driver override it */ 159 if (drv->bdrv_refresh_limits) { 160 drv->bdrv_refresh_limits(bs, errp); 161 } 162 } 163 164 /** 165 * The copy-on-read flag is actually a reference count so multiple users may 166 * use the feature without worrying about clobbering its previous state. 167 * Copy-on-read stays enabled until all users have called to disable it. 168 */ 169 void bdrv_enable_copy_on_read(BlockDriverState *bs) 170 { 171 atomic_inc(&bs->copy_on_read); 172 } 173 174 void bdrv_disable_copy_on_read(BlockDriverState *bs) 175 { 176 int old = atomic_fetch_dec(&bs->copy_on_read); 177 assert(old >= 1); 178 } 179 180 typedef struct { 181 Coroutine *co; 182 BlockDriverState *bs; 183 bool done; 184 bool begin; 185 bool recursive; 186 bool poll; 187 BdrvChild *parent; 188 bool ignore_bds_parents; 189 } BdrvCoDrainData; 190 191 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 192 { 193 BdrvCoDrainData *data = opaque; 194 BlockDriverState *bs = data->bs; 195 196 if (data->begin) { 197 bs->drv->bdrv_co_drain_begin(bs); 198 } else { 199 bs->drv->bdrv_co_drain_end(bs); 200 } 201 202 /* Set data->done before reading bs->wakeup. */ 203 atomic_mb_set(&data->done, true); 204 bdrv_dec_in_flight(bs); 205 206 if (data->begin) { 207 g_free(data); 208 } 209 } 210 211 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 212 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin) 213 { 214 BdrvCoDrainData *data; 215 216 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 217 (!begin && !bs->drv->bdrv_co_drain_end)) { 218 return; 219 } 220 221 data = g_new(BdrvCoDrainData, 1); 222 *data = (BdrvCoDrainData) { 223 .bs = bs, 224 .done = false, 225 .begin = begin 226 }; 227 228 /* Make sure the driver callback completes during the polling phase for 229 * drain_begin. */ 230 bdrv_inc_in_flight(bs); 231 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 232 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 233 234 if (!begin) { 235 BDRV_POLL_WHILE(bs, !data->done); 236 g_free(data); 237 } 238 } 239 240 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 241 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 242 BdrvChild *ignore_parent, bool ignore_bds_parents) 243 { 244 BdrvChild *child, *next; 245 246 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 247 return true; 248 } 249 250 if (atomic_read(&bs->in_flight)) { 251 return true; 252 } 253 254 if (recursive) { 255 assert(!ignore_bds_parents); 256 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 257 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 258 return true; 259 } 260 } 261 } 262 263 return false; 264 } 265 266 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 267 BdrvChild *ignore_parent) 268 { 269 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 270 } 271 272 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 273 BdrvChild *parent, bool ignore_bds_parents, 274 bool poll); 275 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 276 BdrvChild *parent, bool ignore_bds_parents); 277 278 static void bdrv_co_drain_bh_cb(void *opaque) 279 { 280 BdrvCoDrainData *data = opaque; 281 Coroutine *co = data->co; 282 BlockDriverState *bs = data->bs; 283 284 if (bs) { 285 AioContext *ctx = bdrv_get_aio_context(bs); 286 AioContext *co_ctx = qemu_coroutine_get_aio_context(co); 287 288 /* 289 * When the coroutine yielded, the lock for its home context was 290 * released, so we need to re-acquire it here. If it explicitly 291 * acquired a different context, the lock is still held and we don't 292 * want to lock it a second time (or AIO_WAIT_WHILE() would hang). 293 */ 294 if (ctx == co_ctx) { 295 aio_context_acquire(ctx); 296 } 297 bdrv_dec_in_flight(bs); 298 if (data->begin) { 299 bdrv_do_drained_begin(bs, data->recursive, data->parent, 300 data->ignore_bds_parents, data->poll); 301 } else { 302 bdrv_do_drained_end(bs, data->recursive, data->parent, 303 data->ignore_bds_parents); 304 } 305 if (ctx == co_ctx) { 306 aio_context_release(ctx); 307 } 308 } else { 309 assert(data->begin); 310 bdrv_drain_all_begin(); 311 } 312 313 data->done = true; 314 aio_co_wake(co); 315 } 316 317 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 318 bool begin, bool recursive, 319 BdrvChild *parent, 320 bool ignore_bds_parents, 321 bool poll) 322 { 323 BdrvCoDrainData data; 324 325 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 326 * other coroutines run if they were queued by aio_co_enter(). */ 327 328 assert(qemu_in_coroutine()); 329 data = (BdrvCoDrainData) { 330 .co = qemu_coroutine_self(), 331 .bs = bs, 332 .done = false, 333 .begin = begin, 334 .recursive = recursive, 335 .parent = parent, 336 .ignore_bds_parents = ignore_bds_parents, 337 .poll = poll, 338 }; 339 if (bs) { 340 bdrv_inc_in_flight(bs); 341 } 342 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 343 bdrv_co_drain_bh_cb, &data); 344 345 qemu_coroutine_yield(); 346 /* If we are resumed from some other event (such as an aio completion or a 347 * timer callback), it is a bug in the caller that should be fixed. */ 348 assert(data.done); 349 } 350 351 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 352 BdrvChild *parent, bool ignore_bds_parents) 353 { 354 assert(!qemu_in_coroutine()); 355 356 /* Stop things in parent-to-child order */ 357 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 358 aio_disable_external(bdrv_get_aio_context(bs)); 359 } 360 361 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 362 bdrv_drain_invoke(bs, true); 363 } 364 365 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 366 BdrvChild *parent, bool ignore_bds_parents, 367 bool poll) 368 { 369 BdrvChild *child, *next; 370 371 if (qemu_in_coroutine()) { 372 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 373 poll); 374 return; 375 } 376 377 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 378 379 if (recursive) { 380 assert(!ignore_bds_parents); 381 bs->recursive_quiesce_counter++; 382 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 383 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 384 false); 385 } 386 } 387 388 /* 389 * Wait for drained requests to finish. 390 * 391 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 392 * call is needed so things in this AioContext can make progress even 393 * though we don't return to the main AioContext loop - this automatically 394 * includes other nodes in the same AioContext and therefore all child 395 * nodes. 396 */ 397 if (poll) { 398 assert(!ignore_bds_parents); 399 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 400 } 401 } 402 403 void bdrv_drained_begin(BlockDriverState *bs) 404 { 405 bdrv_do_drained_begin(bs, false, NULL, false, true); 406 } 407 408 void bdrv_subtree_drained_begin(BlockDriverState *bs) 409 { 410 bdrv_do_drained_begin(bs, true, NULL, false, true); 411 } 412 413 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 414 BdrvChild *parent, bool ignore_bds_parents) 415 { 416 BdrvChild *child, *next; 417 int old_quiesce_counter; 418 419 if (qemu_in_coroutine()) { 420 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 421 false); 422 return; 423 } 424 assert(bs->quiesce_counter > 0); 425 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter); 426 427 /* Re-enable things in child-to-parent order */ 428 bdrv_drain_invoke(bs, false); 429 bdrv_parent_drained_end(bs, parent, ignore_bds_parents); 430 if (old_quiesce_counter == 1) { 431 aio_enable_external(bdrv_get_aio_context(bs)); 432 } 433 434 if (recursive) { 435 assert(!ignore_bds_parents); 436 bs->recursive_quiesce_counter--; 437 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 438 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents); 439 } 440 } 441 } 442 443 void bdrv_drained_end(BlockDriverState *bs) 444 { 445 bdrv_do_drained_end(bs, false, NULL, false); 446 } 447 448 void bdrv_subtree_drained_end(BlockDriverState *bs) 449 { 450 bdrv_do_drained_end(bs, true, NULL, false); 451 } 452 453 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 454 { 455 int i; 456 457 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 458 bdrv_do_drained_begin(child->bs, true, child, false, true); 459 } 460 } 461 462 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 463 { 464 int i; 465 466 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 467 bdrv_do_drained_end(child->bs, true, child, false); 468 } 469 } 470 471 /* 472 * Wait for pending requests to complete on a single BlockDriverState subtree, 473 * and suspend block driver's internal I/O until next request arrives. 474 * 475 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 476 * AioContext. 477 */ 478 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 479 { 480 assert(qemu_in_coroutine()); 481 bdrv_drained_begin(bs); 482 bdrv_drained_end(bs); 483 } 484 485 void bdrv_drain(BlockDriverState *bs) 486 { 487 bdrv_drained_begin(bs); 488 bdrv_drained_end(bs); 489 } 490 491 static void bdrv_drain_assert_idle(BlockDriverState *bs) 492 { 493 BdrvChild *child, *next; 494 495 assert(atomic_read(&bs->in_flight) == 0); 496 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 497 bdrv_drain_assert_idle(child->bs); 498 } 499 } 500 501 unsigned int bdrv_drain_all_count = 0; 502 503 static bool bdrv_drain_all_poll(void) 504 { 505 BlockDriverState *bs = NULL; 506 bool result = false; 507 508 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 509 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 510 while ((bs = bdrv_next_all_states(bs))) { 511 AioContext *aio_context = bdrv_get_aio_context(bs); 512 aio_context_acquire(aio_context); 513 result |= bdrv_drain_poll(bs, false, NULL, true); 514 aio_context_release(aio_context); 515 } 516 517 return result; 518 } 519 520 /* 521 * Wait for pending requests to complete across all BlockDriverStates 522 * 523 * This function does not flush data to disk, use bdrv_flush_all() for that 524 * after calling this function. 525 * 526 * This pauses all block jobs and disables external clients. It must 527 * be paired with bdrv_drain_all_end(). 528 * 529 * NOTE: no new block jobs or BlockDriverStates can be created between 530 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 531 */ 532 void bdrv_drain_all_begin(void) 533 { 534 BlockDriverState *bs = NULL; 535 536 if (qemu_in_coroutine()) { 537 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true); 538 return; 539 } 540 541 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 542 * loop AioContext, so make sure we're in the main context. */ 543 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 544 assert(bdrv_drain_all_count < INT_MAX); 545 bdrv_drain_all_count++; 546 547 /* Quiesce all nodes, without polling in-flight requests yet. The graph 548 * cannot change during this loop. */ 549 while ((bs = bdrv_next_all_states(bs))) { 550 AioContext *aio_context = bdrv_get_aio_context(bs); 551 552 aio_context_acquire(aio_context); 553 bdrv_do_drained_begin(bs, false, NULL, true, false); 554 aio_context_release(aio_context); 555 } 556 557 /* Now poll the in-flight requests */ 558 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 559 560 while ((bs = bdrv_next_all_states(bs))) { 561 bdrv_drain_assert_idle(bs); 562 } 563 } 564 565 void bdrv_drain_all_end(void) 566 { 567 BlockDriverState *bs = NULL; 568 569 while ((bs = bdrv_next_all_states(bs))) { 570 AioContext *aio_context = bdrv_get_aio_context(bs); 571 572 aio_context_acquire(aio_context); 573 bdrv_do_drained_end(bs, false, NULL, true); 574 aio_context_release(aio_context); 575 } 576 577 assert(bdrv_drain_all_count > 0); 578 bdrv_drain_all_count--; 579 } 580 581 void bdrv_drain_all(void) 582 { 583 bdrv_drain_all_begin(); 584 bdrv_drain_all_end(); 585 } 586 587 /** 588 * Remove an active request from the tracked requests list 589 * 590 * This function should be called when a tracked request is completing. 591 */ 592 static void tracked_request_end(BdrvTrackedRequest *req) 593 { 594 if (req->serialising) { 595 atomic_dec(&req->bs->serialising_in_flight); 596 } 597 598 qemu_co_mutex_lock(&req->bs->reqs_lock); 599 QLIST_REMOVE(req, list); 600 qemu_co_queue_restart_all(&req->wait_queue); 601 qemu_co_mutex_unlock(&req->bs->reqs_lock); 602 } 603 604 /** 605 * Add an active request to the tracked requests list 606 */ 607 static void tracked_request_begin(BdrvTrackedRequest *req, 608 BlockDriverState *bs, 609 int64_t offset, 610 uint64_t bytes, 611 enum BdrvTrackedRequestType type) 612 { 613 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes); 614 615 *req = (BdrvTrackedRequest){ 616 .bs = bs, 617 .offset = offset, 618 .bytes = bytes, 619 .type = type, 620 .co = qemu_coroutine_self(), 621 .serialising = false, 622 .overlap_offset = offset, 623 .overlap_bytes = bytes, 624 }; 625 626 qemu_co_queue_init(&req->wait_queue); 627 628 qemu_co_mutex_lock(&bs->reqs_lock); 629 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 630 qemu_co_mutex_unlock(&bs->reqs_lock); 631 } 632 633 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 634 { 635 int64_t overlap_offset = req->offset & ~(align - 1); 636 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 637 - overlap_offset; 638 639 if (!req->serialising) { 640 atomic_inc(&req->bs->serialising_in_flight); 641 req->serialising = true; 642 } 643 644 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 645 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 646 } 647 648 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req) 649 { 650 /* 651 * If the request is serialising, overlap_offset and overlap_bytes are set, 652 * so we can check if the request is aligned. Otherwise, don't care and 653 * return false. 654 */ 655 656 return req->serialising && (req->offset == req->overlap_offset) && 657 (req->bytes == req->overlap_bytes); 658 } 659 660 /** 661 * Round a region to cluster boundaries 662 */ 663 void bdrv_round_to_clusters(BlockDriverState *bs, 664 int64_t offset, int64_t bytes, 665 int64_t *cluster_offset, 666 int64_t *cluster_bytes) 667 { 668 BlockDriverInfo bdi; 669 670 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 671 *cluster_offset = offset; 672 *cluster_bytes = bytes; 673 } else { 674 int64_t c = bdi.cluster_size; 675 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 676 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 677 } 678 } 679 680 static int bdrv_get_cluster_size(BlockDriverState *bs) 681 { 682 BlockDriverInfo bdi; 683 int ret; 684 685 ret = bdrv_get_info(bs, &bdi); 686 if (ret < 0 || bdi.cluster_size == 0) { 687 return bs->bl.request_alignment; 688 } else { 689 return bdi.cluster_size; 690 } 691 } 692 693 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 694 int64_t offset, uint64_t bytes) 695 { 696 /* aaaa bbbb */ 697 if (offset >= req->overlap_offset + req->overlap_bytes) { 698 return false; 699 } 700 /* bbbb aaaa */ 701 if (req->overlap_offset >= offset + bytes) { 702 return false; 703 } 704 return true; 705 } 706 707 void bdrv_inc_in_flight(BlockDriverState *bs) 708 { 709 atomic_inc(&bs->in_flight); 710 } 711 712 void bdrv_wakeup(BlockDriverState *bs) 713 { 714 aio_wait_kick(); 715 } 716 717 void bdrv_dec_in_flight(BlockDriverState *bs) 718 { 719 atomic_dec(&bs->in_flight); 720 bdrv_wakeup(bs); 721 } 722 723 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 724 { 725 BlockDriverState *bs = self->bs; 726 BdrvTrackedRequest *req; 727 bool retry; 728 bool waited = false; 729 730 if (!atomic_read(&bs->serialising_in_flight)) { 731 return false; 732 } 733 734 do { 735 retry = false; 736 qemu_co_mutex_lock(&bs->reqs_lock); 737 QLIST_FOREACH(req, &bs->tracked_requests, list) { 738 if (req == self || (!req->serialising && !self->serialising)) { 739 continue; 740 } 741 if (tracked_request_overlaps(req, self->overlap_offset, 742 self->overlap_bytes)) 743 { 744 /* Hitting this means there was a reentrant request, for 745 * example, a block driver issuing nested requests. This must 746 * never happen since it means deadlock. 747 */ 748 assert(qemu_coroutine_self() != req->co); 749 750 /* If the request is already (indirectly) waiting for us, or 751 * will wait for us as soon as it wakes up, then just go on 752 * (instead of producing a deadlock in the former case). */ 753 if (!req->waiting_for) { 754 self->waiting_for = req; 755 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 756 self->waiting_for = NULL; 757 retry = true; 758 waited = true; 759 break; 760 } 761 } 762 } 763 qemu_co_mutex_unlock(&bs->reqs_lock); 764 } while (retry); 765 766 return waited; 767 } 768 769 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 770 size_t size) 771 { 772 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 773 return -EIO; 774 } 775 776 if (!bdrv_is_inserted(bs)) { 777 return -ENOMEDIUM; 778 } 779 780 if (offset < 0) { 781 return -EIO; 782 } 783 784 return 0; 785 } 786 787 typedef struct RwCo { 788 BdrvChild *child; 789 int64_t offset; 790 QEMUIOVector *qiov; 791 bool is_write; 792 int ret; 793 BdrvRequestFlags flags; 794 } RwCo; 795 796 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 797 { 798 RwCo *rwco = opaque; 799 800 if (!rwco->is_write) { 801 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 802 rwco->qiov->size, rwco->qiov, 803 rwco->flags); 804 } else { 805 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 806 rwco->qiov->size, rwco->qiov, 807 rwco->flags); 808 } 809 aio_wait_kick(); 810 } 811 812 /* 813 * Process a vectored synchronous request using coroutines 814 */ 815 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 816 QEMUIOVector *qiov, bool is_write, 817 BdrvRequestFlags flags) 818 { 819 Coroutine *co; 820 RwCo rwco = { 821 .child = child, 822 .offset = offset, 823 .qiov = qiov, 824 .is_write = is_write, 825 .ret = NOT_DONE, 826 .flags = flags, 827 }; 828 829 if (qemu_in_coroutine()) { 830 /* Fast-path if already in coroutine context */ 831 bdrv_rw_co_entry(&rwco); 832 } else { 833 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 834 bdrv_coroutine_enter(child->bs, co); 835 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 836 } 837 return rwco.ret; 838 } 839 840 /* 841 * Process a synchronous request using coroutines 842 */ 843 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, 844 int nb_sectors, bool is_write, BdrvRequestFlags flags) 845 { 846 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, 847 nb_sectors * BDRV_SECTOR_SIZE); 848 849 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 850 return -EINVAL; 851 } 852 853 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, 854 &qiov, is_write, flags); 855 } 856 857 /* return < 0 if error. See bdrv_write() for the return codes */ 858 int bdrv_read(BdrvChild *child, int64_t sector_num, 859 uint8_t *buf, int nb_sectors) 860 { 861 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); 862 } 863 864 /* Return < 0 if error. Important errors are: 865 -EIO generic I/O error (may happen for all errors) 866 -ENOMEDIUM No media inserted. 867 -EINVAL Invalid sector number or nb_sectors 868 -EACCES Trying to write a read-only device 869 */ 870 int bdrv_write(BdrvChild *child, int64_t sector_num, 871 const uint8_t *buf, int nb_sectors) 872 { 873 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 874 } 875 876 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 877 int bytes, BdrvRequestFlags flags) 878 { 879 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes); 880 881 return bdrv_prwv_co(child, offset, &qiov, true, 882 BDRV_REQ_ZERO_WRITE | flags); 883 } 884 885 /* 886 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 887 * The operation is sped up by checking the block status and only writing 888 * zeroes to the device if they currently do not return zeroes. Optional 889 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 890 * BDRV_REQ_FUA). 891 * 892 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 893 */ 894 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 895 { 896 int ret; 897 int64_t target_size, bytes, offset = 0; 898 BlockDriverState *bs = child->bs; 899 900 target_size = bdrv_getlength(bs); 901 if (target_size < 0) { 902 return target_size; 903 } 904 905 for (;;) { 906 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 907 if (bytes <= 0) { 908 return 0; 909 } 910 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 911 if (ret < 0) { 912 return ret; 913 } 914 if (ret & BDRV_BLOCK_ZERO) { 915 offset += bytes; 916 continue; 917 } 918 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 919 if (ret < 0) { 920 return ret; 921 } 922 offset += bytes; 923 } 924 } 925 926 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 927 { 928 int ret; 929 930 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 931 if (ret < 0) { 932 return ret; 933 } 934 935 return qiov->size; 936 } 937 938 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 939 { 940 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 941 942 if (bytes < 0) { 943 return -EINVAL; 944 } 945 946 return bdrv_preadv(child, offset, &qiov); 947 } 948 949 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 950 { 951 int ret; 952 953 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 954 if (ret < 0) { 955 return ret; 956 } 957 958 return qiov->size; 959 } 960 961 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 962 { 963 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 964 965 if (bytes < 0) { 966 return -EINVAL; 967 } 968 969 return bdrv_pwritev(child, offset, &qiov); 970 } 971 972 /* 973 * Writes to the file and ensures that no writes are reordered across this 974 * request (acts as a barrier) 975 * 976 * Returns 0 on success, -errno in error cases. 977 */ 978 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 979 const void *buf, int count) 980 { 981 int ret; 982 983 ret = bdrv_pwrite(child, offset, buf, count); 984 if (ret < 0) { 985 return ret; 986 } 987 988 ret = bdrv_flush(child->bs); 989 if (ret < 0) { 990 return ret; 991 } 992 993 return 0; 994 } 995 996 typedef struct CoroutineIOCompletion { 997 Coroutine *coroutine; 998 int ret; 999 } CoroutineIOCompletion; 1000 1001 static void bdrv_co_io_em_complete(void *opaque, int ret) 1002 { 1003 CoroutineIOCompletion *co = opaque; 1004 1005 co->ret = ret; 1006 aio_co_wake(co->coroutine); 1007 } 1008 1009 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1010 uint64_t offset, uint64_t bytes, 1011 QEMUIOVector *qiov, int flags) 1012 { 1013 BlockDriver *drv = bs->drv; 1014 int64_t sector_num; 1015 unsigned int nb_sectors; 1016 1017 assert(!(flags & ~BDRV_REQ_MASK)); 1018 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1019 1020 if (!drv) { 1021 return -ENOMEDIUM; 1022 } 1023 1024 if (drv->bdrv_co_preadv) { 1025 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1026 } 1027 1028 if (drv->bdrv_aio_preadv) { 1029 BlockAIOCB *acb; 1030 CoroutineIOCompletion co = { 1031 .coroutine = qemu_coroutine_self(), 1032 }; 1033 1034 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1035 bdrv_co_io_em_complete, &co); 1036 if (acb == NULL) { 1037 return -EIO; 1038 } else { 1039 qemu_coroutine_yield(); 1040 return co.ret; 1041 } 1042 } 1043 1044 sector_num = offset >> BDRV_SECTOR_BITS; 1045 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1046 1047 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1048 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1049 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 1050 assert(drv->bdrv_co_readv); 1051 1052 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1053 } 1054 1055 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1056 uint64_t offset, uint64_t bytes, 1057 QEMUIOVector *qiov, int flags) 1058 { 1059 BlockDriver *drv = bs->drv; 1060 int64_t sector_num; 1061 unsigned int nb_sectors; 1062 int ret; 1063 1064 assert(!(flags & ~BDRV_REQ_MASK)); 1065 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1066 1067 if (!drv) { 1068 return -ENOMEDIUM; 1069 } 1070 1071 if (drv->bdrv_co_pwritev) { 1072 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1073 flags & bs->supported_write_flags); 1074 flags &= ~bs->supported_write_flags; 1075 goto emulate_flags; 1076 } 1077 1078 if (drv->bdrv_aio_pwritev) { 1079 BlockAIOCB *acb; 1080 CoroutineIOCompletion co = { 1081 .coroutine = qemu_coroutine_self(), 1082 }; 1083 1084 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1085 flags & bs->supported_write_flags, 1086 bdrv_co_io_em_complete, &co); 1087 flags &= ~bs->supported_write_flags; 1088 if (acb == NULL) { 1089 ret = -EIO; 1090 } else { 1091 qemu_coroutine_yield(); 1092 ret = co.ret; 1093 } 1094 goto emulate_flags; 1095 } 1096 1097 sector_num = offset >> BDRV_SECTOR_BITS; 1098 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1099 1100 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1101 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1102 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 1103 1104 assert(drv->bdrv_co_writev); 1105 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1106 flags & bs->supported_write_flags); 1107 flags &= ~bs->supported_write_flags; 1108 1109 emulate_flags: 1110 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1111 ret = bdrv_co_flush(bs); 1112 } 1113 1114 return ret; 1115 } 1116 1117 static int coroutine_fn 1118 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 1119 uint64_t bytes, QEMUIOVector *qiov) 1120 { 1121 BlockDriver *drv = bs->drv; 1122 1123 if (!drv) { 1124 return -ENOMEDIUM; 1125 } 1126 1127 if (!drv->bdrv_co_pwritev_compressed) { 1128 return -ENOTSUP; 1129 } 1130 1131 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1132 } 1133 1134 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1135 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 1136 { 1137 BlockDriverState *bs = child->bs; 1138 1139 /* Perform I/O through a temporary buffer so that users who scribble over 1140 * their read buffer while the operation is in progress do not end up 1141 * modifying the image file. This is critical for zero-copy guest I/O 1142 * where anything might happen inside guest memory. 1143 */ 1144 void *bounce_buffer; 1145 1146 BlockDriver *drv = bs->drv; 1147 QEMUIOVector local_qiov; 1148 int64_t cluster_offset; 1149 int64_t cluster_bytes; 1150 size_t skip_bytes; 1151 int ret; 1152 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1153 BDRV_REQUEST_MAX_BYTES); 1154 unsigned int progress = 0; 1155 1156 if (!drv) { 1157 return -ENOMEDIUM; 1158 } 1159 1160 /* FIXME We cannot require callers to have write permissions when all they 1161 * are doing is a read request. If we did things right, write permissions 1162 * would be obtained anyway, but internally by the copy-on-read code. As 1163 * long as it is implemented here rather than in a separate filter driver, 1164 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1165 * it could request permissions. Therefore we have to bypass the permission 1166 * system for the moment. */ 1167 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1168 1169 /* Cover entire cluster so no additional backing file I/O is required when 1170 * allocating cluster in the image file. Note that this value may exceed 1171 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1172 * is one reason we loop rather than doing it all at once. 1173 */ 1174 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1175 skip_bytes = offset - cluster_offset; 1176 1177 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1178 cluster_offset, cluster_bytes); 1179 1180 bounce_buffer = qemu_try_blockalign(bs, 1181 MIN(MIN(max_transfer, cluster_bytes), 1182 MAX_BOUNCE_BUFFER)); 1183 if (bounce_buffer == NULL) { 1184 ret = -ENOMEM; 1185 goto err; 1186 } 1187 1188 while (cluster_bytes) { 1189 int64_t pnum; 1190 1191 ret = bdrv_is_allocated(bs, cluster_offset, 1192 MIN(cluster_bytes, max_transfer), &pnum); 1193 if (ret < 0) { 1194 /* Safe to treat errors in querying allocation as if 1195 * unallocated; we'll probably fail again soon on the 1196 * read, but at least that will set a decent errno. 1197 */ 1198 pnum = MIN(cluster_bytes, max_transfer); 1199 } 1200 1201 /* Stop at EOF if the image ends in the middle of the cluster */ 1202 if (ret == 0 && pnum == 0) { 1203 assert(progress >= bytes); 1204 break; 1205 } 1206 1207 assert(skip_bytes < pnum); 1208 1209 if (ret <= 0) { 1210 /* Must copy-on-read; use the bounce buffer */ 1211 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1212 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1213 1214 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1215 &local_qiov, 0); 1216 if (ret < 0) { 1217 goto err; 1218 } 1219 1220 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1221 if (drv->bdrv_co_pwrite_zeroes && 1222 buffer_is_zero(bounce_buffer, pnum)) { 1223 /* FIXME: Should we (perhaps conditionally) be setting 1224 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1225 * that still correctly reads as zero? */ 1226 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1227 BDRV_REQ_WRITE_UNCHANGED); 1228 } else { 1229 /* This does not change the data on the disk, it is not 1230 * necessary to flush even in cache=writethrough mode. 1231 */ 1232 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1233 &local_qiov, 1234 BDRV_REQ_WRITE_UNCHANGED); 1235 } 1236 1237 if (ret < 0) { 1238 /* It might be okay to ignore write errors for guest 1239 * requests. If this is a deliberate copy-on-read 1240 * then we don't want to ignore the error. Simply 1241 * report it in all cases. 1242 */ 1243 goto err; 1244 } 1245 1246 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes, 1247 pnum - skip_bytes); 1248 } else { 1249 /* Read directly into the destination */ 1250 qemu_iovec_init(&local_qiov, qiov->niov); 1251 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes); 1252 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size, 1253 &local_qiov, 0); 1254 qemu_iovec_destroy(&local_qiov); 1255 if (ret < 0) { 1256 goto err; 1257 } 1258 } 1259 1260 cluster_offset += pnum; 1261 cluster_bytes -= pnum; 1262 progress += pnum - skip_bytes; 1263 skip_bytes = 0; 1264 } 1265 ret = 0; 1266 1267 err: 1268 qemu_vfree(bounce_buffer); 1269 return ret; 1270 } 1271 1272 /* 1273 * Forwards an already correctly aligned request to the BlockDriver. This 1274 * handles copy on read, zeroing after EOF, and fragmentation of large 1275 * reads; any other features must be implemented by the caller. 1276 */ 1277 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1278 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1279 int64_t align, QEMUIOVector *qiov, int flags) 1280 { 1281 BlockDriverState *bs = child->bs; 1282 int64_t total_bytes, max_bytes; 1283 int ret = 0; 1284 uint64_t bytes_remaining = bytes; 1285 int max_transfer; 1286 1287 assert(is_power_of_2(align)); 1288 assert((offset & (align - 1)) == 0); 1289 assert((bytes & (align - 1)) == 0); 1290 assert(!qiov || bytes == qiov->size); 1291 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1292 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1293 align); 1294 1295 /* TODO: We would need a per-BDS .supported_read_flags and 1296 * potential fallback support, if we ever implement any read flags 1297 * to pass through to drivers. For now, there aren't any 1298 * passthrough flags. */ 1299 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 1300 1301 /* Handle Copy on Read and associated serialisation */ 1302 if (flags & BDRV_REQ_COPY_ON_READ) { 1303 /* If we touch the same cluster it counts as an overlap. This 1304 * guarantees that allocating writes will be serialized and not race 1305 * with each other for the same cluster. For example, in copy-on-read 1306 * it ensures that the CoR read and write operations are atomic and 1307 * guest writes cannot interleave between them. */ 1308 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1309 } 1310 1311 /* BDRV_REQ_SERIALISING is only for write operation */ 1312 assert(!(flags & BDRV_REQ_SERIALISING)); 1313 1314 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1315 wait_serialising_requests(req); 1316 } 1317 1318 if (flags & BDRV_REQ_COPY_ON_READ) { 1319 int64_t pnum; 1320 1321 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1322 if (ret < 0) { 1323 goto out; 1324 } 1325 1326 if (!ret || pnum != bytes) { 1327 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); 1328 goto out; 1329 } 1330 } 1331 1332 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1333 total_bytes = bdrv_getlength(bs); 1334 if (total_bytes < 0) { 1335 ret = total_bytes; 1336 goto out; 1337 } 1338 1339 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1340 if (bytes <= max_bytes && bytes <= max_transfer) { 1341 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1342 goto out; 1343 } 1344 1345 while (bytes_remaining) { 1346 int num; 1347 1348 if (max_bytes) { 1349 QEMUIOVector local_qiov; 1350 1351 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1352 assert(num); 1353 qemu_iovec_init(&local_qiov, qiov->niov); 1354 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1355 1356 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1357 num, &local_qiov, 0); 1358 max_bytes -= num; 1359 qemu_iovec_destroy(&local_qiov); 1360 } else { 1361 num = bytes_remaining; 1362 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1363 bytes_remaining); 1364 } 1365 if (ret < 0) { 1366 goto out; 1367 } 1368 bytes_remaining -= num; 1369 } 1370 1371 out: 1372 return ret < 0 ? ret : 0; 1373 } 1374 1375 /* 1376 * Handle a read request in coroutine context 1377 */ 1378 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1379 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1380 BdrvRequestFlags flags) 1381 { 1382 BlockDriverState *bs = child->bs; 1383 BlockDriver *drv = bs->drv; 1384 BdrvTrackedRequest req; 1385 1386 uint64_t align = bs->bl.request_alignment; 1387 uint8_t *head_buf = NULL; 1388 uint8_t *tail_buf = NULL; 1389 QEMUIOVector local_qiov; 1390 bool use_local_qiov = false; 1391 int ret; 1392 1393 trace_bdrv_co_preadv(child->bs, offset, bytes, flags); 1394 1395 if (!drv) { 1396 return -ENOMEDIUM; 1397 } 1398 1399 ret = bdrv_check_byte_request(bs, offset, bytes); 1400 if (ret < 0) { 1401 return ret; 1402 } 1403 1404 bdrv_inc_in_flight(bs); 1405 1406 /* Don't do copy-on-read if we read data before write operation */ 1407 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1408 flags |= BDRV_REQ_COPY_ON_READ; 1409 } 1410 1411 /* Align read if necessary by padding qiov */ 1412 if (offset & (align - 1)) { 1413 head_buf = qemu_blockalign(bs, align); 1414 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1415 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1416 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1417 use_local_qiov = true; 1418 1419 bytes += offset & (align - 1); 1420 offset = offset & ~(align - 1); 1421 } 1422 1423 if ((offset + bytes) & (align - 1)) { 1424 if (!use_local_qiov) { 1425 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1426 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1427 use_local_qiov = true; 1428 } 1429 tail_buf = qemu_blockalign(bs, align); 1430 qemu_iovec_add(&local_qiov, tail_buf, 1431 align - ((offset + bytes) & (align - 1))); 1432 1433 bytes = ROUND_UP(bytes, align); 1434 } 1435 1436 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1437 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1438 use_local_qiov ? &local_qiov : qiov, 1439 flags); 1440 tracked_request_end(&req); 1441 bdrv_dec_in_flight(bs); 1442 1443 if (use_local_qiov) { 1444 qemu_iovec_destroy(&local_qiov); 1445 qemu_vfree(head_buf); 1446 qemu_vfree(tail_buf); 1447 } 1448 1449 return ret; 1450 } 1451 1452 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1453 int64_t offset, int bytes, BdrvRequestFlags flags) 1454 { 1455 BlockDriver *drv = bs->drv; 1456 QEMUIOVector qiov; 1457 void *buf = NULL; 1458 int ret = 0; 1459 bool need_flush = false; 1460 int head = 0; 1461 int tail = 0; 1462 1463 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1464 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1465 bs->bl.request_alignment); 1466 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1467 1468 if (!drv) { 1469 return -ENOMEDIUM; 1470 } 1471 1472 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1473 return -ENOTSUP; 1474 } 1475 1476 assert(alignment % bs->bl.request_alignment == 0); 1477 head = offset % alignment; 1478 tail = (offset + bytes) % alignment; 1479 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1480 assert(max_write_zeroes >= bs->bl.request_alignment); 1481 1482 while (bytes > 0 && !ret) { 1483 int num = bytes; 1484 1485 /* Align request. Block drivers can expect the "bulk" of the request 1486 * to be aligned, and that unaligned requests do not cross cluster 1487 * boundaries. 1488 */ 1489 if (head) { 1490 /* Make a small request up to the first aligned sector. For 1491 * convenience, limit this request to max_transfer even if 1492 * we don't need to fall back to writes. */ 1493 num = MIN(MIN(bytes, max_transfer), alignment - head); 1494 head = (head + num) % alignment; 1495 assert(num < max_write_zeroes); 1496 } else if (tail && num > alignment) { 1497 /* Shorten the request to the last aligned sector. */ 1498 num -= tail; 1499 } 1500 1501 /* limit request size */ 1502 if (num > max_write_zeroes) { 1503 num = max_write_zeroes; 1504 } 1505 1506 ret = -ENOTSUP; 1507 /* First try the efficient write zeroes operation */ 1508 if (drv->bdrv_co_pwrite_zeroes) { 1509 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1510 flags & bs->supported_zero_flags); 1511 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1512 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1513 need_flush = true; 1514 } 1515 } else { 1516 assert(!bs->supported_zero_flags); 1517 } 1518 1519 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1520 /* Fall back to bounce buffer if write zeroes is unsupported */ 1521 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1522 1523 if ((flags & BDRV_REQ_FUA) && 1524 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1525 /* No need for bdrv_driver_pwrite() to do a fallback 1526 * flush on each chunk; use just one at the end */ 1527 write_flags &= ~BDRV_REQ_FUA; 1528 need_flush = true; 1529 } 1530 num = MIN(num, max_transfer); 1531 if (buf == NULL) { 1532 buf = qemu_try_blockalign0(bs, num); 1533 if (buf == NULL) { 1534 ret = -ENOMEM; 1535 goto fail; 1536 } 1537 } 1538 qemu_iovec_init_buf(&qiov, buf, num); 1539 1540 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1541 1542 /* Keep bounce buffer around if it is big enough for all 1543 * all future requests. 1544 */ 1545 if (num < max_transfer) { 1546 qemu_vfree(buf); 1547 buf = NULL; 1548 } 1549 } 1550 1551 offset += num; 1552 bytes -= num; 1553 } 1554 1555 fail: 1556 if (ret == 0 && need_flush) { 1557 ret = bdrv_co_flush(bs); 1558 } 1559 qemu_vfree(buf); 1560 return ret; 1561 } 1562 1563 static inline int coroutine_fn 1564 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes, 1565 BdrvTrackedRequest *req, int flags) 1566 { 1567 BlockDriverState *bs = child->bs; 1568 bool waited; 1569 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1570 1571 if (bs->read_only) { 1572 return -EPERM; 1573 } 1574 1575 /* BDRV_REQ_NO_SERIALISING is only for read operation */ 1576 assert(!(flags & BDRV_REQ_NO_SERIALISING)); 1577 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1578 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1579 assert(!(flags & ~BDRV_REQ_MASK)); 1580 1581 if (flags & BDRV_REQ_SERIALISING) { 1582 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1583 } 1584 1585 waited = wait_serialising_requests(req); 1586 1587 assert(!waited || !req->serialising || 1588 is_request_serialising_and_aligned(req)); 1589 assert(req->overlap_offset <= offset); 1590 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1591 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1592 1593 switch (req->type) { 1594 case BDRV_TRACKED_WRITE: 1595 case BDRV_TRACKED_DISCARD: 1596 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1597 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1598 } else { 1599 assert(child->perm & BLK_PERM_WRITE); 1600 } 1601 return notifier_with_return_list_notify(&bs->before_write_notifiers, 1602 req); 1603 case BDRV_TRACKED_TRUNCATE: 1604 assert(child->perm & BLK_PERM_RESIZE); 1605 return 0; 1606 default: 1607 abort(); 1608 } 1609 } 1610 1611 static inline void coroutine_fn 1612 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes, 1613 BdrvTrackedRequest *req, int ret) 1614 { 1615 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1616 BlockDriverState *bs = child->bs; 1617 1618 atomic_inc(&bs->write_gen); 1619 1620 /* 1621 * Discard cannot extend the image, but in error handling cases, such as 1622 * when reverting a qcow2 cluster allocation, the discarded range can pass 1623 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1624 * here. Instead, just skip it, since semantically a discard request 1625 * beyond EOF cannot expand the image anyway. 1626 */ 1627 if (ret == 0 && 1628 (req->type == BDRV_TRACKED_TRUNCATE || 1629 end_sector > bs->total_sectors) && 1630 req->type != BDRV_TRACKED_DISCARD) { 1631 bs->total_sectors = end_sector; 1632 bdrv_parent_cb_resize(bs); 1633 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1634 } 1635 if (req->bytes) { 1636 switch (req->type) { 1637 case BDRV_TRACKED_WRITE: 1638 stat64_max(&bs->wr_highest_offset, offset + bytes); 1639 /* fall through, to set dirty bits */ 1640 case BDRV_TRACKED_DISCARD: 1641 bdrv_set_dirty(bs, offset, bytes); 1642 break; 1643 default: 1644 break; 1645 } 1646 } 1647 } 1648 1649 /* 1650 * Forwards an already correctly aligned write request to the BlockDriver, 1651 * after possibly fragmenting it. 1652 */ 1653 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1654 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1655 int64_t align, QEMUIOVector *qiov, int flags) 1656 { 1657 BlockDriverState *bs = child->bs; 1658 BlockDriver *drv = bs->drv; 1659 int ret; 1660 1661 uint64_t bytes_remaining = bytes; 1662 int max_transfer; 1663 1664 if (!drv) { 1665 return -ENOMEDIUM; 1666 } 1667 1668 if (bdrv_has_readonly_bitmaps(bs)) { 1669 return -EPERM; 1670 } 1671 1672 assert(is_power_of_2(align)); 1673 assert((offset & (align - 1)) == 0); 1674 assert((bytes & (align - 1)) == 0); 1675 assert(!qiov || bytes == qiov->size); 1676 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1677 align); 1678 1679 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1680 1681 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1682 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1683 qemu_iovec_is_zero(qiov)) { 1684 flags |= BDRV_REQ_ZERO_WRITE; 1685 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1686 flags |= BDRV_REQ_MAY_UNMAP; 1687 } 1688 } 1689 1690 if (ret < 0) { 1691 /* Do nothing, write notifier decided to fail this request */ 1692 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1693 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1694 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1695 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1696 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1697 } else if (bytes <= max_transfer) { 1698 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1699 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1700 } else { 1701 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1702 while (bytes_remaining) { 1703 int num = MIN(bytes_remaining, max_transfer); 1704 QEMUIOVector local_qiov; 1705 int local_flags = flags; 1706 1707 assert(num); 1708 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1709 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1710 /* If FUA is going to be emulated by flush, we only 1711 * need to flush on the last iteration */ 1712 local_flags &= ~BDRV_REQ_FUA; 1713 } 1714 qemu_iovec_init(&local_qiov, qiov->niov); 1715 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1716 1717 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1718 num, &local_qiov, local_flags); 1719 qemu_iovec_destroy(&local_qiov); 1720 if (ret < 0) { 1721 break; 1722 } 1723 bytes_remaining -= num; 1724 } 1725 } 1726 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1727 1728 if (ret >= 0) { 1729 ret = 0; 1730 } 1731 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 1732 1733 return ret; 1734 } 1735 1736 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1737 int64_t offset, 1738 unsigned int bytes, 1739 BdrvRequestFlags flags, 1740 BdrvTrackedRequest *req) 1741 { 1742 BlockDriverState *bs = child->bs; 1743 uint8_t *buf = NULL; 1744 QEMUIOVector local_qiov; 1745 uint64_t align = bs->bl.request_alignment; 1746 unsigned int head_padding_bytes, tail_padding_bytes; 1747 int ret = 0; 1748 1749 head_padding_bytes = offset & (align - 1); 1750 tail_padding_bytes = (align - (offset + bytes)) & (align - 1); 1751 1752 1753 assert(flags & BDRV_REQ_ZERO_WRITE); 1754 if (head_padding_bytes || tail_padding_bytes) { 1755 buf = qemu_blockalign(bs, align); 1756 qemu_iovec_init_buf(&local_qiov, buf, align); 1757 } 1758 if (head_padding_bytes) { 1759 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1760 1761 /* RMW the unaligned part before head. */ 1762 mark_request_serialising(req, align); 1763 wait_serialising_requests(req); 1764 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1765 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1766 align, &local_qiov, 0); 1767 if (ret < 0) { 1768 goto fail; 1769 } 1770 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1771 1772 memset(buf + head_padding_bytes, 0, zero_bytes); 1773 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1774 align, &local_qiov, 1775 flags & ~BDRV_REQ_ZERO_WRITE); 1776 if (ret < 0) { 1777 goto fail; 1778 } 1779 offset += zero_bytes; 1780 bytes -= zero_bytes; 1781 } 1782 1783 assert(!bytes || (offset & (align - 1)) == 0); 1784 if (bytes >= align) { 1785 /* Write the aligned part in the middle. */ 1786 uint64_t aligned_bytes = bytes & ~(align - 1); 1787 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1788 NULL, flags); 1789 if (ret < 0) { 1790 goto fail; 1791 } 1792 bytes -= aligned_bytes; 1793 offset += aligned_bytes; 1794 } 1795 1796 assert(!bytes || (offset & (align - 1)) == 0); 1797 if (bytes) { 1798 assert(align == tail_padding_bytes + bytes); 1799 /* RMW the unaligned part after tail. */ 1800 mark_request_serialising(req, align); 1801 wait_serialising_requests(req); 1802 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1803 ret = bdrv_aligned_preadv(child, req, offset, align, 1804 align, &local_qiov, 0); 1805 if (ret < 0) { 1806 goto fail; 1807 } 1808 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1809 1810 memset(buf, 0, bytes); 1811 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1812 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1813 } 1814 fail: 1815 qemu_vfree(buf); 1816 return ret; 1817 1818 } 1819 1820 /* 1821 * Handle a write request in coroutine context 1822 */ 1823 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1824 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1825 BdrvRequestFlags flags) 1826 { 1827 BlockDriverState *bs = child->bs; 1828 BdrvTrackedRequest req; 1829 uint64_t align = bs->bl.request_alignment; 1830 uint8_t *head_buf = NULL; 1831 uint8_t *tail_buf = NULL; 1832 QEMUIOVector local_qiov; 1833 bool use_local_qiov = false; 1834 int ret; 1835 1836 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 1837 1838 if (!bs->drv) { 1839 return -ENOMEDIUM; 1840 } 1841 1842 ret = bdrv_check_byte_request(bs, offset, bytes); 1843 if (ret < 0) { 1844 return ret; 1845 } 1846 1847 bdrv_inc_in_flight(bs); 1848 /* 1849 * Align write if necessary by performing a read-modify-write cycle. 1850 * Pad qiov with the read parts and be sure to have a tracked request not 1851 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1852 */ 1853 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1854 1855 if (flags & BDRV_REQ_ZERO_WRITE) { 1856 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1857 goto out; 1858 } 1859 1860 if (offset & (align - 1)) { 1861 QEMUIOVector head_qiov; 1862 1863 mark_request_serialising(&req, align); 1864 wait_serialising_requests(&req); 1865 1866 head_buf = qemu_blockalign(bs, align); 1867 qemu_iovec_init_buf(&head_qiov, head_buf, align); 1868 1869 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1870 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1871 align, &head_qiov, 0); 1872 if (ret < 0) { 1873 goto fail; 1874 } 1875 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1876 1877 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1878 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1879 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1880 use_local_qiov = true; 1881 1882 bytes += offset & (align - 1); 1883 offset = offset & ~(align - 1); 1884 1885 /* We have read the tail already if the request is smaller 1886 * than one aligned block. 1887 */ 1888 if (bytes < align) { 1889 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1890 bytes = align; 1891 } 1892 } 1893 1894 if ((offset + bytes) & (align - 1)) { 1895 QEMUIOVector tail_qiov; 1896 size_t tail_bytes; 1897 bool waited; 1898 1899 mark_request_serialising(&req, align); 1900 waited = wait_serialising_requests(&req); 1901 assert(!waited || !use_local_qiov); 1902 1903 tail_buf = qemu_blockalign(bs, align); 1904 qemu_iovec_init_buf(&tail_qiov, tail_buf, align); 1905 1906 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1907 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1908 align, align, &tail_qiov, 0); 1909 if (ret < 0) { 1910 goto fail; 1911 } 1912 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1913 1914 if (!use_local_qiov) { 1915 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1916 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1917 use_local_qiov = true; 1918 } 1919 1920 tail_bytes = (offset + bytes) & (align - 1); 1921 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1922 1923 bytes = ROUND_UP(bytes, align); 1924 } 1925 1926 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1927 use_local_qiov ? &local_qiov : qiov, 1928 flags); 1929 1930 fail: 1931 1932 if (use_local_qiov) { 1933 qemu_iovec_destroy(&local_qiov); 1934 } 1935 qemu_vfree(head_buf); 1936 qemu_vfree(tail_buf); 1937 out: 1938 tracked_request_end(&req); 1939 bdrv_dec_in_flight(bs); 1940 return ret; 1941 } 1942 1943 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1944 int bytes, BdrvRequestFlags flags) 1945 { 1946 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 1947 1948 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1949 flags &= ~BDRV_REQ_MAY_UNMAP; 1950 } 1951 1952 return bdrv_co_pwritev(child, offset, bytes, NULL, 1953 BDRV_REQ_ZERO_WRITE | flags); 1954 } 1955 1956 /* 1957 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1958 */ 1959 int bdrv_flush_all(void) 1960 { 1961 BdrvNextIterator it; 1962 BlockDriverState *bs = NULL; 1963 int result = 0; 1964 1965 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 1966 AioContext *aio_context = bdrv_get_aio_context(bs); 1967 int ret; 1968 1969 aio_context_acquire(aio_context); 1970 ret = bdrv_flush(bs); 1971 if (ret < 0 && !result) { 1972 result = ret; 1973 } 1974 aio_context_release(aio_context); 1975 } 1976 1977 return result; 1978 } 1979 1980 1981 typedef struct BdrvCoBlockStatusData { 1982 BlockDriverState *bs; 1983 BlockDriverState *base; 1984 bool want_zero; 1985 int64_t offset; 1986 int64_t bytes; 1987 int64_t *pnum; 1988 int64_t *map; 1989 BlockDriverState **file; 1990 int ret; 1991 bool done; 1992 } BdrvCoBlockStatusData; 1993 1994 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs, 1995 bool want_zero, 1996 int64_t offset, 1997 int64_t bytes, 1998 int64_t *pnum, 1999 int64_t *map, 2000 BlockDriverState **file) 2001 { 2002 assert(bs->file && bs->file->bs); 2003 *pnum = bytes; 2004 *map = offset; 2005 *file = bs->file->bs; 2006 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2007 } 2008 2009 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs, 2010 bool want_zero, 2011 int64_t offset, 2012 int64_t bytes, 2013 int64_t *pnum, 2014 int64_t *map, 2015 BlockDriverState **file) 2016 { 2017 assert(bs->backing && bs->backing->bs); 2018 *pnum = bytes; 2019 *map = offset; 2020 *file = bs->backing->bs; 2021 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2022 } 2023 2024 /* 2025 * Returns the allocation status of the specified sectors. 2026 * Drivers not implementing the functionality are assumed to not support 2027 * backing files, hence all their sectors are reported as allocated. 2028 * 2029 * If 'want_zero' is true, the caller is querying for mapping 2030 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2031 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2032 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2033 * 2034 * If 'offset' is beyond the end of the disk image the return value is 2035 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2036 * 2037 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2038 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2039 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2040 * 2041 * 'pnum' is set to the number of bytes (including and immediately 2042 * following the specified offset) that are easily known to be in the 2043 * same allocated/unallocated state. Note that a second call starting 2044 * at the original offset plus returned pnum may have the same status. 2045 * The returned value is non-zero on success except at end-of-file. 2046 * 2047 * Returns negative errno on failure. Otherwise, if the 2048 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2049 * set to the host mapping and BDS corresponding to the guest offset. 2050 */ 2051 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2052 bool want_zero, 2053 int64_t offset, int64_t bytes, 2054 int64_t *pnum, int64_t *map, 2055 BlockDriverState **file) 2056 { 2057 int64_t total_size; 2058 int64_t n; /* bytes */ 2059 int ret; 2060 int64_t local_map = 0; 2061 BlockDriverState *local_file = NULL; 2062 int64_t aligned_offset, aligned_bytes; 2063 uint32_t align; 2064 2065 assert(pnum); 2066 *pnum = 0; 2067 total_size = bdrv_getlength(bs); 2068 if (total_size < 0) { 2069 ret = total_size; 2070 goto early_out; 2071 } 2072 2073 if (offset >= total_size) { 2074 ret = BDRV_BLOCK_EOF; 2075 goto early_out; 2076 } 2077 if (!bytes) { 2078 ret = 0; 2079 goto early_out; 2080 } 2081 2082 n = total_size - offset; 2083 if (n < bytes) { 2084 bytes = n; 2085 } 2086 2087 /* Must be non-NULL or bdrv_getlength() would have failed */ 2088 assert(bs->drv); 2089 if (!bs->drv->bdrv_co_block_status) { 2090 *pnum = bytes; 2091 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2092 if (offset + bytes == total_size) { 2093 ret |= BDRV_BLOCK_EOF; 2094 } 2095 if (bs->drv->protocol_name) { 2096 ret |= BDRV_BLOCK_OFFSET_VALID; 2097 local_map = offset; 2098 local_file = bs; 2099 } 2100 goto early_out; 2101 } 2102 2103 bdrv_inc_in_flight(bs); 2104 2105 /* Round out to request_alignment boundaries */ 2106 align = bs->bl.request_alignment; 2107 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2108 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2109 2110 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2111 aligned_bytes, pnum, &local_map, 2112 &local_file); 2113 if (ret < 0) { 2114 *pnum = 0; 2115 goto out; 2116 } 2117 2118 /* 2119 * The driver's result must be a non-zero multiple of request_alignment. 2120 * Clamp pnum and adjust map to original request. 2121 */ 2122 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2123 align > offset - aligned_offset); 2124 *pnum -= offset - aligned_offset; 2125 if (*pnum > bytes) { 2126 *pnum = bytes; 2127 } 2128 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2129 local_map += offset - aligned_offset; 2130 } 2131 2132 if (ret & BDRV_BLOCK_RAW) { 2133 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2134 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2135 *pnum, pnum, &local_map, &local_file); 2136 goto out; 2137 } 2138 2139 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2140 ret |= BDRV_BLOCK_ALLOCATED; 2141 } else if (want_zero) { 2142 if (bdrv_unallocated_blocks_are_zero(bs)) { 2143 ret |= BDRV_BLOCK_ZERO; 2144 } else if (bs->backing) { 2145 BlockDriverState *bs2 = bs->backing->bs; 2146 int64_t size2 = bdrv_getlength(bs2); 2147 2148 if (size2 >= 0 && offset >= size2) { 2149 ret |= BDRV_BLOCK_ZERO; 2150 } 2151 } 2152 } 2153 2154 if (want_zero && local_file && local_file != bs && 2155 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2156 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2157 int64_t file_pnum; 2158 int ret2; 2159 2160 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2161 *pnum, &file_pnum, NULL, NULL); 2162 if (ret2 >= 0) { 2163 /* Ignore errors. This is just providing extra information, it 2164 * is useful but not necessary. 2165 */ 2166 if (ret2 & BDRV_BLOCK_EOF && 2167 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2168 /* 2169 * It is valid for the format block driver to read 2170 * beyond the end of the underlying file's current 2171 * size; such areas read as zero. 2172 */ 2173 ret |= BDRV_BLOCK_ZERO; 2174 } else { 2175 /* Limit request to the range reported by the protocol driver */ 2176 *pnum = file_pnum; 2177 ret |= (ret2 & BDRV_BLOCK_ZERO); 2178 } 2179 } 2180 } 2181 2182 out: 2183 bdrv_dec_in_flight(bs); 2184 if (ret >= 0 && offset + *pnum == total_size) { 2185 ret |= BDRV_BLOCK_EOF; 2186 } 2187 early_out: 2188 if (file) { 2189 *file = local_file; 2190 } 2191 if (map) { 2192 *map = local_map; 2193 } 2194 return ret; 2195 } 2196 2197 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2198 BlockDriverState *base, 2199 bool want_zero, 2200 int64_t offset, 2201 int64_t bytes, 2202 int64_t *pnum, 2203 int64_t *map, 2204 BlockDriverState **file) 2205 { 2206 BlockDriverState *p; 2207 int ret = 0; 2208 bool first = true; 2209 2210 assert(bs != base); 2211 for (p = bs; p != base; p = backing_bs(p)) { 2212 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2213 file); 2214 if (ret < 0) { 2215 break; 2216 } 2217 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 2218 /* 2219 * Reading beyond the end of the file continues to read 2220 * zeroes, but we can only widen the result to the 2221 * unallocated length we learned from an earlier 2222 * iteration. 2223 */ 2224 *pnum = bytes; 2225 } 2226 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 2227 break; 2228 } 2229 /* [offset, pnum] unallocated on this layer, which could be only 2230 * the first part of [offset, bytes]. */ 2231 bytes = MIN(bytes, *pnum); 2232 first = false; 2233 } 2234 return ret; 2235 } 2236 2237 /* Coroutine wrapper for bdrv_block_status_above() */ 2238 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque) 2239 { 2240 BdrvCoBlockStatusData *data = opaque; 2241 2242 data->ret = bdrv_co_block_status_above(data->bs, data->base, 2243 data->want_zero, 2244 data->offset, data->bytes, 2245 data->pnum, data->map, data->file); 2246 data->done = true; 2247 aio_wait_kick(); 2248 } 2249 2250 /* 2251 * Synchronous wrapper around bdrv_co_block_status_above(). 2252 * 2253 * See bdrv_co_block_status_above() for details. 2254 */ 2255 static int bdrv_common_block_status_above(BlockDriverState *bs, 2256 BlockDriverState *base, 2257 bool want_zero, int64_t offset, 2258 int64_t bytes, int64_t *pnum, 2259 int64_t *map, 2260 BlockDriverState **file) 2261 { 2262 Coroutine *co; 2263 BdrvCoBlockStatusData data = { 2264 .bs = bs, 2265 .base = base, 2266 .want_zero = want_zero, 2267 .offset = offset, 2268 .bytes = bytes, 2269 .pnum = pnum, 2270 .map = map, 2271 .file = file, 2272 .done = false, 2273 }; 2274 2275 if (qemu_in_coroutine()) { 2276 /* Fast-path if already in coroutine context */ 2277 bdrv_block_status_above_co_entry(&data); 2278 } else { 2279 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data); 2280 bdrv_coroutine_enter(bs, co); 2281 BDRV_POLL_WHILE(bs, !data.done); 2282 } 2283 return data.ret; 2284 } 2285 2286 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2287 int64_t offset, int64_t bytes, int64_t *pnum, 2288 int64_t *map, BlockDriverState **file) 2289 { 2290 return bdrv_common_block_status_above(bs, base, true, offset, bytes, 2291 pnum, map, file); 2292 } 2293 2294 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2295 int64_t *pnum, int64_t *map, BlockDriverState **file) 2296 { 2297 return bdrv_block_status_above(bs, backing_bs(bs), 2298 offset, bytes, pnum, map, file); 2299 } 2300 2301 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2302 int64_t bytes, int64_t *pnum) 2303 { 2304 int ret; 2305 int64_t dummy; 2306 2307 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset, 2308 bytes, pnum ? pnum : &dummy, NULL, 2309 NULL); 2310 if (ret < 0) { 2311 return ret; 2312 } 2313 return !!(ret & BDRV_BLOCK_ALLOCATED); 2314 } 2315 2316 /* 2317 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2318 * 2319 * Return true if (a prefix of) the given range is allocated in any image 2320 * between BASE and TOP (inclusive). BASE can be NULL to check if the given 2321 * offset is allocated in any image of the chain. Return false otherwise, 2322 * or negative errno on failure. 2323 * 2324 * 'pnum' is set to the number of bytes (including and immediately 2325 * following the specified offset) that are known to be in the same 2326 * allocated/unallocated state. Note that a subsequent call starting 2327 * at 'offset + *pnum' may return the same allocation status (in other 2328 * words, the result is not necessarily the maximum possible range); 2329 * but 'pnum' will only be 0 when end of file is reached. 2330 * 2331 */ 2332 int bdrv_is_allocated_above(BlockDriverState *top, 2333 BlockDriverState *base, 2334 int64_t offset, int64_t bytes, int64_t *pnum) 2335 { 2336 BlockDriverState *intermediate; 2337 int ret; 2338 int64_t n = bytes; 2339 2340 intermediate = top; 2341 while (intermediate && intermediate != base) { 2342 int64_t pnum_inter; 2343 int64_t size_inter; 2344 2345 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2346 if (ret < 0) { 2347 return ret; 2348 } 2349 if (ret) { 2350 *pnum = pnum_inter; 2351 return 1; 2352 } 2353 2354 size_inter = bdrv_getlength(intermediate); 2355 if (size_inter < 0) { 2356 return size_inter; 2357 } 2358 if (n > pnum_inter && 2359 (intermediate == top || offset + pnum_inter < size_inter)) { 2360 n = pnum_inter; 2361 } 2362 2363 intermediate = backing_bs(intermediate); 2364 } 2365 2366 *pnum = n; 2367 return 0; 2368 } 2369 2370 typedef struct BdrvVmstateCo { 2371 BlockDriverState *bs; 2372 QEMUIOVector *qiov; 2373 int64_t pos; 2374 bool is_read; 2375 int ret; 2376 } BdrvVmstateCo; 2377 2378 static int coroutine_fn 2379 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2380 bool is_read) 2381 { 2382 BlockDriver *drv = bs->drv; 2383 int ret = -ENOTSUP; 2384 2385 bdrv_inc_in_flight(bs); 2386 2387 if (!drv) { 2388 ret = -ENOMEDIUM; 2389 } else if (drv->bdrv_load_vmstate) { 2390 if (is_read) { 2391 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2392 } else { 2393 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2394 } 2395 } else if (bs->file) { 2396 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2397 } 2398 2399 bdrv_dec_in_flight(bs); 2400 return ret; 2401 } 2402 2403 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2404 { 2405 BdrvVmstateCo *co = opaque; 2406 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2407 aio_wait_kick(); 2408 } 2409 2410 static inline int 2411 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2412 bool is_read) 2413 { 2414 if (qemu_in_coroutine()) { 2415 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2416 } else { 2417 BdrvVmstateCo data = { 2418 .bs = bs, 2419 .qiov = qiov, 2420 .pos = pos, 2421 .is_read = is_read, 2422 .ret = -EINPROGRESS, 2423 }; 2424 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2425 2426 bdrv_coroutine_enter(bs, co); 2427 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2428 return data.ret; 2429 } 2430 } 2431 2432 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2433 int64_t pos, int size) 2434 { 2435 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2436 int ret; 2437 2438 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2439 if (ret < 0) { 2440 return ret; 2441 } 2442 2443 return size; 2444 } 2445 2446 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2447 { 2448 return bdrv_rw_vmstate(bs, qiov, pos, false); 2449 } 2450 2451 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2452 int64_t pos, int size) 2453 { 2454 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2455 int ret; 2456 2457 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2458 if (ret < 0) { 2459 return ret; 2460 } 2461 2462 return size; 2463 } 2464 2465 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2466 { 2467 return bdrv_rw_vmstate(bs, qiov, pos, true); 2468 } 2469 2470 /**************************************************************/ 2471 /* async I/Os */ 2472 2473 void bdrv_aio_cancel(BlockAIOCB *acb) 2474 { 2475 qemu_aio_ref(acb); 2476 bdrv_aio_cancel_async(acb); 2477 while (acb->refcnt > 1) { 2478 if (acb->aiocb_info->get_aio_context) { 2479 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2480 } else if (acb->bs) { 2481 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2482 * assert that we're not using an I/O thread. Thread-safe 2483 * code should use bdrv_aio_cancel_async exclusively. 2484 */ 2485 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2486 aio_poll(bdrv_get_aio_context(acb->bs), true); 2487 } else { 2488 abort(); 2489 } 2490 } 2491 qemu_aio_unref(acb); 2492 } 2493 2494 /* Async version of aio cancel. The caller is not blocked if the acb implements 2495 * cancel_async, otherwise we do nothing and let the request normally complete. 2496 * In either case the completion callback must be called. */ 2497 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2498 { 2499 if (acb->aiocb_info->cancel_async) { 2500 acb->aiocb_info->cancel_async(acb); 2501 } 2502 } 2503 2504 /**************************************************************/ 2505 /* Coroutine block device emulation */ 2506 2507 typedef struct FlushCo { 2508 BlockDriverState *bs; 2509 int ret; 2510 } FlushCo; 2511 2512 2513 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2514 { 2515 FlushCo *rwco = opaque; 2516 2517 rwco->ret = bdrv_co_flush(rwco->bs); 2518 aio_wait_kick(); 2519 } 2520 2521 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2522 { 2523 int current_gen; 2524 int ret = 0; 2525 2526 bdrv_inc_in_flight(bs); 2527 2528 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2529 bdrv_is_sg(bs)) { 2530 goto early_exit; 2531 } 2532 2533 qemu_co_mutex_lock(&bs->reqs_lock); 2534 current_gen = atomic_read(&bs->write_gen); 2535 2536 /* Wait until any previous flushes are completed */ 2537 while (bs->active_flush_req) { 2538 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2539 } 2540 2541 /* Flushes reach this point in nondecreasing current_gen order. */ 2542 bs->active_flush_req = true; 2543 qemu_co_mutex_unlock(&bs->reqs_lock); 2544 2545 /* Write back all layers by calling one driver function */ 2546 if (bs->drv->bdrv_co_flush) { 2547 ret = bs->drv->bdrv_co_flush(bs); 2548 goto out; 2549 } 2550 2551 /* Write back cached data to the OS even with cache=unsafe */ 2552 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2553 if (bs->drv->bdrv_co_flush_to_os) { 2554 ret = bs->drv->bdrv_co_flush_to_os(bs); 2555 if (ret < 0) { 2556 goto out; 2557 } 2558 } 2559 2560 /* But don't actually force it to the disk with cache=unsafe */ 2561 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2562 goto flush_parent; 2563 } 2564 2565 /* Check if we really need to flush anything */ 2566 if (bs->flushed_gen == current_gen) { 2567 goto flush_parent; 2568 } 2569 2570 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2571 if (!bs->drv) { 2572 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2573 * (even in case of apparent success) */ 2574 ret = -ENOMEDIUM; 2575 goto out; 2576 } 2577 if (bs->drv->bdrv_co_flush_to_disk) { 2578 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2579 } else if (bs->drv->bdrv_aio_flush) { 2580 BlockAIOCB *acb; 2581 CoroutineIOCompletion co = { 2582 .coroutine = qemu_coroutine_self(), 2583 }; 2584 2585 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2586 if (acb == NULL) { 2587 ret = -EIO; 2588 } else { 2589 qemu_coroutine_yield(); 2590 ret = co.ret; 2591 } 2592 } else { 2593 /* 2594 * Some block drivers always operate in either writethrough or unsafe 2595 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2596 * know how the server works (because the behaviour is hardcoded or 2597 * depends on server-side configuration), so we can't ensure that 2598 * everything is safe on disk. Returning an error doesn't work because 2599 * that would break guests even if the server operates in writethrough 2600 * mode. 2601 * 2602 * Let's hope the user knows what he's doing. 2603 */ 2604 ret = 0; 2605 } 2606 2607 if (ret < 0) { 2608 goto out; 2609 } 2610 2611 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2612 * in the case of cache=unsafe, so there are no useless flushes. 2613 */ 2614 flush_parent: 2615 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2616 out: 2617 /* Notify any pending flushes that we have completed */ 2618 if (ret == 0) { 2619 bs->flushed_gen = current_gen; 2620 } 2621 2622 qemu_co_mutex_lock(&bs->reqs_lock); 2623 bs->active_flush_req = false; 2624 /* Return value is ignored - it's ok if wait queue is empty */ 2625 qemu_co_queue_next(&bs->flush_queue); 2626 qemu_co_mutex_unlock(&bs->reqs_lock); 2627 2628 early_exit: 2629 bdrv_dec_in_flight(bs); 2630 return ret; 2631 } 2632 2633 int bdrv_flush(BlockDriverState *bs) 2634 { 2635 Coroutine *co; 2636 FlushCo flush_co = { 2637 .bs = bs, 2638 .ret = NOT_DONE, 2639 }; 2640 2641 if (qemu_in_coroutine()) { 2642 /* Fast-path if already in coroutine context */ 2643 bdrv_flush_co_entry(&flush_co); 2644 } else { 2645 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2646 bdrv_coroutine_enter(bs, co); 2647 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2648 } 2649 2650 return flush_co.ret; 2651 } 2652 2653 typedef struct DiscardCo { 2654 BdrvChild *child; 2655 int64_t offset; 2656 int bytes; 2657 int ret; 2658 } DiscardCo; 2659 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2660 { 2661 DiscardCo *rwco = opaque; 2662 2663 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes); 2664 aio_wait_kick(); 2665 } 2666 2667 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, int bytes) 2668 { 2669 BdrvTrackedRequest req; 2670 int max_pdiscard, ret; 2671 int head, tail, align; 2672 BlockDriverState *bs = child->bs; 2673 2674 if (!bs || !bs->drv) { 2675 return -ENOMEDIUM; 2676 } 2677 2678 if (bdrv_has_readonly_bitmaps(bs)) { 2679 return -EPERM; 2680 } 2681 2682 ret = bdrv_check_byte_request(bs, offset, bytes); 2683 if (ret < 0) { 2684 return ret; 2685 } 2686 2687 /* Do nothing if disabled. */ 2688 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2689 return 0; 2690 } 2691 2692 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2693 return 0; 2694 } 2695 2696 /* Discard is advisory, but some devices track and coalesce 2697 * unaligned requests, so we must pass everything down rather than 2698 * round here. Still, most devices will just silently ignore 2699 * unaligned requests (by returning -ENOTSUP), so we must fragment 2700 * the request accordingly. */ 2701 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2702 assert(align % bs->bl.request_alignment == 0); 2703 head = offset % align; 2704 tail = (offset + bytes) % align; 2705 2706 bdrv_inc_in_flight(bs); 2707 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2708 2709 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 2710 if (ret < 0) { 2711 goto out; 2712 } 2713 2714 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2715 align); 2716 assert(max_pdiscard >= bs->bl.request_alignment); 2717 2718 while (bytes > 0) { 2719 int num = bytes; 2720 2721 if (head) { 2722 /* Make small requests to get to alignment boundaries. */ 2723 num = MIN(bytes, align - head); 2724 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2725 num %= bs->bl.request_alignment; 2726 } 2727 head = (head + num) % align; 2728 assert(num < max_pdiscard); 2729 } else if (tail) { 2730 if (num > align) { 2731 /* Shorten the request to the last aligned cluster. */ 2732 num -= tail; 2733 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2734 tail > bs->bl.request_alignment) { 2735 tail %= bs->bl.request_alignment; 2736 num -= tail; 2737 } 2738 } 2739 /* limit request size */ 2740 if (num > max_pdiscard) { 2741 num = max_pdiscard; 2742 } 2743 2744 if (!bs->drv) { 2745 ret = -ENOMEDIUM; 2746 goto out; 2747 } 2748 if (bs->drv->bdrv_co_pdiscard) { 2749 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2750 } else { 2751 BlockAIOCB *acb; 2752 CoroutineIOCompletion co = { 2753 .coroutine = qemu_coroutine_self(), 2754 }; 2755 2756 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2757 bdrv_co_io_em_complete, &co); 2758 if (acb == NULL) { 2759 ret = -EIO; 2760 goto out; 2761 } else { 2762 qemu_coroutine_yield(); 2763 ret = co.ret; 2764 } 2765 } 2766 if (ret && ret != -ENOTSUP) { 2767 goto out; 2768 } 2769 2770 offset += num; 2771 bytes -= num; 2772 } 2773 ret = 0; 2774 out: 2775 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 2776 tracked_request_end(&req); 2777 bdrv_dec_in_flight(bs); 2778 return ret; 2779 } 2780 2781 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int bytes) 2782 { 2783 Coroutine *co; 2784 DiscardCo rwco = { 2785 .child = child, 2786 .offset = offset, 2787 .bytes = bytes, 2788 .ret = NOT_DONE, 2789 }; 2790 2791 if (qemu_in_coroutine()) { 2792 /* Fast-path if already in coroutine context */ 2793 bdrv_pdiscard_co_entry(&rwco); 2794 } else { 2795 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2796 bdrv_coroutine_enter(child->bs, co); 2797 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 2798 } 2799 2800 return rwco.ret; 2801 } 2802 2803 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2804 { 2805 BlockDriver *drv = bs->drv; 2806 CoroutineIOCompletion co = { 2807 .coroutine = qemu_coroutine_self(), 2808 }; 2809 BlockAIOCB *acb; 2810 2811 bdrv_inc_in_flight(bs); 2812 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2813 co.ret = -ENOTSUP; 2814 goto out; 2815 } 2816 2817 if (drv->bdrv_co_ioctl) { 2818 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2819 } else { 2820 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2821 if (!acb) { 2822 co.ret = -ENOTSUP; 2823 goto out; 2824 } 2825 qemu_coroutine_yield(); 2826 } 2827 out: 2828 bdrv_dec_in_flight(bs); 2829 return co.ret; 2830 } 2831 2832 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2833 { 2834 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2835 } 2836 2837 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2838 { 2839 return memset(qemu_blockalign(bs, size), 0, size); 2840 } 2841 2842 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2843 { 2844 size_t align = bdrv_opt_mem_align(bs); 2845 2846 /* Ensure that NULL is never returned on success */ 2847 assert(align > 0); 2848 if (size == 0) { 2849 size = align; 2850 } 2851 2852 return qemu_try_memalign(align, size); 2853 } 2854 2855 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2856 { 2857 void *mem = qemu_try_blockalign(bs, size); 2858 2859 if (mem) { 2860 memset(mem, 0, size); 2861 } 2862 2863 return mem; 2864 } 2865 2866 /* 2867 * Check if all memory in this vector is sector aligned. 2868 */ 2869 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2870 { 2871 int i; 2872 size_t alignment = bdrv_min_mem_align(bs); 2873 2874 for (i = 0; i < qiov->niov; i++) { 2875 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2876 return false; 2877 } 2878 if (qiov->iov[i].iov_len % alignment) { 2879 return false; 2880 } 2881 } 2882 2883 return true; 2884 } 2885 2886 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2887 NotifierWithReturn *notifier) 2888 { 2889 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2890 } 2891 2892 void bdrv_io_plug(BlockDriverState *bs) 2893 { 2894 BdrvChild *child; 2895 2896 QLIST_FOREACH(child, &bs->children, next) { 2897 bdrv_io_plug(child->bs); 2898 } 2899 2900 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 2901 BlockDriver *drv = bs->drv; 2902 if (drv && drv->bdrv_io_plug) { 2903 drv->bdrv_io_plug(bs); 2904 } 2905 } 2906 } 2907 2908 void bdrv_io_unplug(BlockDriverState *bs) 2909 { 2910 BdrvChild *child; 2911 2912 assert(bs->io_plugged); 2913 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 2914 BlockDriver *drv = bs->drv; 2915 if (drv && drv->bdrv_io_unplug) { 2916 drv->bdrv_io_unplug(bs); 2917 } 2918 } 2919 2920 QLIST_FOREACH(child, &bs->children, next) { 2921 bdrv_io_unplug(child->bs); 2922 } 2923 } 2924 2925 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 2926 { 2927 BdrvChild *child; 2928 2929 if (bs->drv && bs->drv->bdrv_register_buf) { 2930 bs->drv->bdrv_register_buf(bs, host, size); 2931 } 2932 QLIST_FOREACH(child, &bs->children, next) { 2933 bdrv_register_buf(child->bs, host, size); 2934 } 2935 } 2936 2937 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 2938 { 2939 BdrvChild *child; 2940 2941 if (bs->drv && bs->drv->bdrv_unregister_buf) { 2942 bs->drv->bdrv_unregister_buf(bs, host); 2943 } 2944 QLIST_FOREACH(child, &bs->children, next) { 2945 bdrv_unregister_buf(child->bs, host); 2946 } 2947 } 2948 2949 static int coroutine_fn bdrv_co_copy_range_internal( 2950 BdrvChild *src, uint64_t src_offset, BdrvChild *dst, 2951 uint64_t dst_offset, uint64_t bytes, 2952 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 2953 bool recurse_src) 2954 { 2955 BdrvTrackedRequest req; 2956 int ret; 2957 2958 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 2959 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 2960 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 2961 2962 if (!dst || !dst->bs) { 2963 return -ENOMEDIUM; 2964 } 2965 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes); 2966 if (ret) { 2967 return ret; 2968 } 2969 if (write_flags & BDRV_REQ_ZERO_WRITE) { 2970 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 2971 } 2972 2973 if (!src || !src->bs) { 2974 return -ENOMEDIUM; 2975 } 2976 ret = bdrv_check_byte_request(src->bs, src_offset, bytes); 2977 if (ret) { 2978 return ret; 2979 } 2980 2981 if (!src->bs->drv->bdrv_co_copy_range_from 2982 || !dst->bs->drv->bdrv_co_copy_range_to 2983 || src->bs->encrypted || dst->bs->encrypted) { 2984 return -ENOTSUP; 2985 } 2986 2987 if (recurse_src) { 2988 bdrv_inc_in_flight(src->bs); 2989 tracked_request_begin(&req, src->bs, src_offset, bytes, 2990 BDRV_TRACKED_READ); 2991 2992 /* BDRV_REQ_SERIALISING is only for write operation */ 2993 assert(!(read_flags & BDRV_REQ_SERIALISING)); 2994 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) { 2995 wait_serialising_requests(&req); 2996 } 2997 2998 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 2999 src, src_offset, 3000 dst, dst_offset, 3001 bytes, 3002 read_flags, write_flags); 3003 3004 tracked_request_end(&req); 3005 bdrv_dec_in_flight(src->bs); 3006 } else { 3007 bdrv_inc_in_flight(dst->bs); 3008 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3009 BDRV_TRACKED_WRITE); 3010 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3011 write_flags); 3012 if (!ret) { 3013 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3014 src, src_offset, 3015 dst, dst_offset, 3016 bytes, 3017 read_flags, write_flags); 3018 } 3019 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3020 tracked_request_end(&req); 3021 bdrv_dec_in_flight(dst->bs); 3022 } 3023 3024 return ret; 3025 } 3026 3027 /* Copy range from @src to @dst. 3028 * 3029 * See the comment of bdrv_co_copy_range for the parameter and return value 3030 * semantics. */ 3031 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset, 3032 BdrvChild *dst, uint64_t dst_offset, 3033 uint64_t bytes, 3034 BdrvRequestFlags read_flags, 3035 BdrvRequestFlags write_flags) 3036 { 3037 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3038 read_flags, write_flags); 3039 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3040 bytes, read_flags, write_flags, true); 3041 } 3042 3043 /* Copy range from @src to @dst. 3044 * 3045 * See the comment of bdrv_co_copy_range for the parameter and return value 3046 * semantics. */ 3047 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset, 3048 BdrvChild *dst, uint64_t dst_offset, 3049 uint64_t bytes, 3050 BdrvRequestFlags read_flags, 3051 BdrvRequestFlags write_flags) 3052 { 3053 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3054 read_flags, write_flags); 3055 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3056 bytes, read_flags, write_flags, false); 3057 } 3058 3059 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset, 3060 BdrvChild *dst, uint64_t dst_offset, 3061 uint64_t bytes, BdrvRequestFlags read_flags, 3062 BdrvRequestFlags write_flags) 3063 { 3064 return bdrv_co_copy_range_from(src, src_offset, 3065 dst, dst_offset, 3066 bytes, read_flags, write_flags); 3067 } 3068 3069 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3070 { 3071 BdrvChild *c; 3072 QLIST_FOREACH(c, &bs->parents, next_parent) { 3073 if (c->role->resize) { 3074 c->role->resize(c); 3075 } 3076 } 3077 } 3078 3079 /** 3080 * Truncate file to 'offset' bytes (needed only for file protocols) 3081 */ 3082 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, 3083 PreallocMode prealloc, Error **errp) 3084 { 3085 BlockDriverState *bs = child->bs; 3086 BlockDriver *drv = bs->drv; 3087 BdrvTrackedRequest req; 3088 int64_t old_size, new_bytes; 3089 int ret; 3090 3091 3092 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3093 if (!drv) { 3094 error_setg(errp, "No medium inserted"); 3095 return -ENOMEDIUM; 3096 } 3097 if (offset < 0) { 3098 error_setg(errp, "Image size cannot be negative"); 3099 return -EINVAL; 3100 } 3101 3102 old_size = bdrv_getlength(bs); 3103 if (old_size < 0) { 3104 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3105 return old_size; 3106 } 3107 3108 if (offset > old_size) { 3109 new_bytes = offset - old_size; 3110 } else { 3111 new_bytes = 0; 3112 } 3113 3114 bdrv_inc_in_flight(bs); 3115 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3116 BDRV_TRACKED_TRUNCATE); 3117 3118 /* If we are growing the image and potentially using preallocation for the 3119 * new area, we need to make sure that no write requests are made to it 3120 * concurrently or they might be overwritten by preallocation. */ 3121 if (new_bytes) { 3122 mark_request_serialising(&req, 1); 3123 } 3124 if (bs->read_only) { 3125 error_setg(errp, "Image is read-only"); 3126 ret = -EACCES; 3127 goto out; 3128 } 3129 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3130 0); 3131 if (ret < 0) { 3132 error_setg_errno(errp, -ret, 3133 "Failed to prepare request for truncation"); 3134 goto out; 3135 } 3136 3137 if (!drv->bdrv_co_truncate) { 3138 if (bs->file && drv->is_filter) { 3139 ret = bdrv_co_truncate(bs->file, offset, prealloc, errp); 3140 goto out; 3141 } 3142 error_setg(errp, "Image format driver does not support resize"); 3143 ret = -ENOTSUP; 3144 goto out; 3145 } 3146 3147 ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp); 3148 if (ret < 0) { 3149 goto out; 3150 } 3151 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3152 if (ret < 0) { 3153 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3154 } else { 3155 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3156 } 3157 /* It's possible that truncation succeeded but refresh_total_sectors 3158 * failed, but the latter doesn't affect how we should finish the request. 3159 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3160 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3161 3162 out: 3163 tracked_request_end(&req); 3164 bdrv_dec_in_flight(bs); 3165 3166 return ret; 3167 } 3168 3169 typedef struct TruncateCo { 3170 BdrvChild *child; 3171 int64_t offset; 3172 PreallocMode prealloc; 3173 Error **errp; 3174 int ret; 3175 } TruncateCo; 3176 3177 static void coroutine_fn bdrv_truncate_co_entry(void *opaque) 3178 { 3179 TruncateCo *tco = opaque; 3180 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc, 3181 tco->errp); 3182 aio_wait_kick(); 3183 } 3184 3185 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc, 3186 Error **errp) 3187 { 3188 Coroutine *co; 3189 TruncateCo tco = { 3190 .child = child, 3191 .offset = offset, 3192 .prealloc = prealloc, 3193 .errp = errp, 3194 .ret = NOT_DONE, 3195 }; 3196 3197 if (qemu_in_coroutine()) { 3198 /* Fast-path if already in coroutine context */ 3199 bdrv_truncate_co_entry(&tco); 3200 } else { 3201 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco); 3202 bdrv_coroutine_enter(child->bs, co); 3203 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE); 3204 } 3205 3206 return tco.ret; 3207 } 3208