1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/dirty-bitmap.h" 34 #include "block/write-threshold.h" 35 #include "qemu/cutils.h" 36 #include "qemu/memalign.h" 37 #include "qapi/error.h" 38 #include "qemu/error-report.h" 39 #include "qemu/main-loop.h" 40 #include "sysemu/replay.h" 41 42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 44 45 static void coroutine_fn GRAPH_RDLOCK 46 bdrv_parent_cb_resize(BlockDriverState *bs); 47 48 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 49 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 50 51 static void GRAPH_RDLOCK 52 bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore) 53 { 54 BdrvChild *c, *next; 55 IO_OR_GS_CODE(); 56 assert_bdrv_graph_readable(); 57 58 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 59 if (c == ignore) { 60 continue; 61 } 62 bdrv_parent_drained_begin_single(c); 63 } 64 } 65 66 void bdrv_parent_drained_end_single(BdrvChild *c) 67 { 68 GLOBAL_STATE_CODE(); 69 70 assert(c->quiesced_parent); 71 c->quiesced_parent = false; 72 73 if (c->klass->drained_end) { 74 c->klass->drained_end(c); 75 } 76 } 77 78 static void GRAPH_RDLOCK 79 bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore) 80 { 81 BdrvChild *c; 82 IO_OR_GS_CODE(); 83 assert_bdrv_graph_readable(); 84 85 QLIST_FOREACH(c, &bs->parents, next_parent) { 86 if (c == ignore) { 87 continue; 88 } 89 bdrv_parent_drained_end_single(c); 90 } 91 } 92 93 bool bdrv_parent_drained_poll_single(BdrvChild *c) 94 { 95 IO_OR_GS_CODE(); 96 97 if (c->klass->drained_poll) { 98 return c->klass->drained_poll(c); 99 } 100 return false; 101 } 102 103 static bool GRAPH_RDLOCK 104 bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 105 bool ignore_bds_parents) 106 { 107 BdrvChild *c, *next; 108 bool busy = false; 109 IO_OR_GS_CODE(); 110 assert_bdrv_graph_readable(); 111 112 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 113 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 114 continue; 115 } 116 busy |= bdrv_parent_drained_poll_single(c); 117 } 118 119 return busy; 120 } 121 122 void bdrv_parent_drained_begin_single(BdrvChild *c) 123 { 124 GLOBAL_STATE_CODE(); 125 126 assert(!c->quiesced_parent); 127 c->quiesced_parent = true; 128 129 if (c->klass->drained_begin) { 130 /* called with rdlock taken, but it doesn't really need it. */ 131 c->klass->drained_begin(c); 132 } 133 } 134 135 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 136 { 137 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 138 src->pdiscard_alignment); 139 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 140 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 141 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 142 src->max_hw_transfer); 143 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 144 src->opt_mem_alignment); 145 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 146 src->min_mem_alignment); 147 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 148 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 149 } 150 151 typedef struct BdrvRefreshLimitsState { 152 BlockDriverState *bs; 153 BlockLimits old_bl; 154 } BdrvRefreshLimitsState; 155 156 static void bdrv_refresh_limits_abort(void *opaque) 157 { 158 BdrvRefreshLimitsState *s = opaque; 159 160 s->bs->bl = s->old_bl; 161 } 162 163 static TransactionActionDrv bdrv_refresh_limits_drv = { 164 .abort = bdrv_refresh_limits_abort, 165 .clean = g_free, 166 }; 167 168 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 169 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 170 { 171 ERRP_GUARD(); 172 BlockDriver *drv = bs->drv; 173 BdrvChild *c; 174 bool have_limits; 175 176 GLOBAL_STATE_CODE(); 177 178 if (tran) { 179 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 180 *s = (BdrvRefreshLimitsState) { 181 .bs = bs, 182 .old_bl = bs->bl, 183 }; 184 tran_add(tran, &bdrv_refresh_limits_drv, s); 185 } 186 187 memset(&bs->bl, 0, sizeof(bs->bl)); 188 189 if (!drv) { 190 return; 191 } 192 193 /* Default alignment based on whether driver has byte interface */ 194 bs->bl.request_alignment = (drv->bdrv_co_preadv || 195 drv->bdrv_aio_preadv || 196 drv->bdrv_co_preadv_part) ? 1 : 512; 197 198 /* Take some limits from the children as a default */ 199 have_limits = false; 200 QLIST_FOREACH(c, &bs->children, next) { 201 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 202 { 203 bdrv_merge_limits(&bs->bl, &c->bs->bl); 204 have_limits = true; 205 } 206 207 if (c->role & BDRV_CHILD_FILTERED) { 208 bs->bl.has_variable_length |= c->bs->bl.has_variable_length; 209 } 210 } 211 212 if (!have_limits) { 213 bs->bl.min_mem_alignment = 512; 214 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 215 216 /* Safe default since most protocols use readv()/writev()/etc */ 217 bs->bl.max_iov = IOV_MAX; 218 } 219 220 /* Then let the driver override it */ 221 if (drv->bdrv_refresh_limits) { 222 drv->bdrv_refresh_limits(bs, errp); 223 if (*errp) { 224 return; 225 } 226 } 227 228 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 229 error_setg(errp, "Driver requires too large request alignment"); 230 } 231 } 232 233 /** 234 * The copy-on-read flag is actually a reference count so multiple users may 235 * use the feature without worrying about clobbering its previous state. 236 * Copy-on-read stays enabled until all users have called to disable it. 237 */ 238 void bdrv_enable_copy_on_read(BlockDriverState *bs) 239 { 240 IO_CODE(); 241 qatomic_inc(&bs->copy_on_read); 242 } 243 244 void bdrv_disable_copy_on_read(BlockDriverState *bs) 245 { 246 int old = qatomic_fetch_dec(&bs->copy_on_read); 247 IO_CODE(); 248 assert(old >= 1); 249 } 250 251 typedef struct { 252 Coroutine *co; 253 BlockDriverState *bs; 254 bool done; 255 bool begin; 256 bool poll; 257 BdrvChild *parent; 258 } BdrvCoDrainData; 259 260 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 261 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent, 262 bool ignore_bds_parents) 263 { 264 GLOBAL_STATE_CODE(); 265 266 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 267 return true; 268 } 269 270 if (qatomic_read(&bs->in_flight)) { 271 return true; 272 } 273 274 return false; 275 } 276 277 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, 278 BdrvChild *ignore_parent) 279 { 280 GLOBAL_STATE_CODE(); 281 GRAPH_RDLOCK_GUARD_MAINLOOP(); 282 283 return bdrv_drain_poll(bs, ignore_parent, false); 284 } 285 286 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 287 bool poll); 288 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent); 289 290 static void bdrv_co_drain_bh_cb(void *opaque) 291 { 292 BdrvCoDrainData *data = opaque; 293 Coroutine *co = data->co; 294 BlockDriverState *bs = data->bs; 295 296 if (bs) { 297 bdrv_dec_in_flight(bs); 298 if (data->begin) { 299 bdrv_do_drained_begin(bs, data->parent, data->poll); 300 } else { 301 assert(!data->poll); 302 bdrv_do_drained_end(bs, data->parent); 303 } 304 } else { 305 assert(data->begin); 306 bdrv_drain_all_begin(); 307 } 308 309 data->done = true; 310 aio_co_wake(co); 311 } 312 313 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 314 bool begin, 315 BdrvChild *parent, 316 bool poll) 317 { 318 BdrvCoDrainData data; 319 Coroutine *self = qemu_coroutine_self(); 320 321 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 322 * other coroutines run if they were queued by aio_co_enter(). */ 323 324 assert(qemu_in_coroutine()); 325 data = (BdrvCoDrainData) { 326 .co = self, 327 .bs = bs, 328 .done = false, 329 .begin = begin, 330 .parent = parent, 331 .poll = poll, 332 }; 333 334 if (bs) { 335 bdrv_inc_in_flight(bs); 336 } 337 338 replay_bh_schedule_oneshot_event(qemu_get_aio_context(), 339 bdrv_co_drain_bh_cb, &data); 340 341 qemu_coroutine_yield(); 342 /* If we are resumed from some other event (such as an aio completion or a 343 * timer callback), it is a bug in the caller that should be fixed. */ 344 assert(data.done); 345 } 346 347 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 348 bool poll) 349 { 350 IO_OR_GS_CODE(); 351 352 if (qemu_in_coroutine()) { 353 bdrv_co_yield_to_drain(bs, true, parent, poll); 354 return; 355 } 356 357 GLOBAL_STATE_CODE(); 358 359 /* Stop things in parent-to-child order */ 360 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 361 GRAPH_RDLOCK_GUARD_MAINLOOP(); 362 bdrv_parent_drained_begin(bs, parent); 363 if (bs->drv && bs->drv->bdrv_drain_begin) { 364 bs->drv->bdrv_drain_begin(bs); 365 } 366 } 367 368 /* 369 * Wait for drained requests to finish. 370 * 371 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 372 * call is needed so things in this AioContext can make progress even 373 * though we don't return to the main AioContext loop - this automatically 374 * includes other nodes in the same AioContext and therefore all child 375 * nodes. 376 */ 377 if (poll) { 378 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent)); 379 } 380 } 381 382 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent) 383 { 384 bdrv_do_drained_begin(bs, parent, false); 385 } 386 387 void coroutine_mixed_fn 388 bdrv_drained_begin(BlockDriverState *bs) 389 { 390 IO_OR_GS_CODE(); 391 bdrv_do_drained_begin(bs, NULL, true); 392 } 393 394 /** 395 * This function does not poll, nor must any of its recursively called 396 * functions. 397 */ 398 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent) 399 { 400 int old_quiesce_counter; 401 402 IO_OR_GS_CODE(); 403 404 if (qemu_in_coroutine()) { 405 bdrv_co_yield_to_drain(bs, false, parent, false); 406 return; 407 } 408 409 /* At this point, we should be always running in the main loop. */ 410 GLOBAL_STATE_CODE(); 411 assert(bs->quiesce_counter > 0); 412 GLOBAL_STATE_CODE(); 413 414 /* Re-enable things in child-to-parent order */ 415 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 416 if (old_quiesce_counter == 1) { 417 GRAPH_RDLOCK_GUARD_MAINLOOP(); 418 if (bs->drv && bs->drv->bdrv_drain_end) { 419 bs->drv->bdrv_drain_end(bs); 420 } 421 bdrv_parent_drained_end(bs, parent); 422 } 423 } 424 425 void bdrv_drained_end(BlockDriverState *bs) 426 { 427 IO_OR_GS_CODE(); 428 bdrv_do_drained_end(bs, NULL); 429 } 430 431 void bdrv_drain(BlockDriverState *bs) 432 { 433 IO_OR_GS_CODE(); 434 bdrv_drained_begin(bs); 435 bdrv_drained_end(bs); 436 } 437 438 static void bdrv_drain_assert_idle(BlockDriverState *bs) 439 { 440 BdrvChild *child, *next; 441 GLOBAL_STATE_CODE(); 442 GRAPH_RDLOCK_GUARD_MAINLOOP(); 443 444 assert(qatomic_read(&bs->in_flight) == 0); 445 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 446 bdrv_drain_assert_idle(child->bs); 447 } 448 } 449 450 unsigned int bdrv_drain_all_count = 0; 451 452 static bool bdrv_drain_all_poll(void) 453 { 454 BlockDriverState *bs = NULL; 455 bool result = false; 456 457 GLOBAL_STATE_CODE(); 458 GRAPH_RDLOCK_GUARD_MAINLOOP(); 459 460 /* 461 * bdrv_drain_poll() can't make changes to the graph and we hold the BQL, 462 * so iterating bdrv_next_all_states() is safe. 463 */ 464 while ((bs = bdrv_next_all_states(bs))) { 465 result |= bdrv_drain_poll(bs, NULL, true); 466 } 467 468 return result; 469 } 470 471 /* 472 * Wait for pending requests to complete across all BlockDriverStates 473 * 474 * This function does not flush data to disk, use bdrv_flush_all() for that 475 * after calling this function. 476 * 477 * This pauses all block jobs and disables external clients. It must 478 * be paired with bdrv_drain_all_end(). 479 * 480 * NOTE: no new block jobs or BlockDriverStates can be created between 481 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 482 */ 483 void bdrv_drain_all_begin_nopoll(void) 484 { 485 BlockDriverState *bs = NULL; 486 GLOBAL_STATE_CODE(); 487 488 /* 489 * bdrv queue is managed by record/replay, 490 * waiting for finishing the I/O requests may 491 * be infinite 492 */ 493 if (replay_events_enabled()) { 494 return; 495 } 496 497 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 498 * loop AioContext, so make sure we're in the main context. */ 499 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 500 assert(bdrv_drain_all_count < INT_MAX); 501 bdrv_drain_all_count++; 502 503 /* Quiesce all nodes, without polling in-flight requests yet. The graph 504 * cannot change during this loop. */ 505 while ((bs = bdrv_next_all_states(bs))) { 506 bdrv_do_drained_begin(bs, NULL, false); 507 } 508 } 509 510 void coroutine_mixed_fn bdrv_drain_all_begin(void) 511 { 512 BlockDriverState *bs = NULL; 513 514 if (qemu_in_coroutine()) { 515 bdrv_co_yield_to_drain(NULL, true, NULL, true); 516 return; 517 } 518 519 /* 520 * bdrv queue is managed by record/replay, 521 * waiting for finishing the I/O requests may 522 * be infinite 523 */ 524 if (replay_events_enabled()) { 525 return; 526 } 527 528 bdrv_drain_all_begin_nopoll(); 529 530 /* Now poll the in-flight requests */ 531 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll()); 532 533 while ((bs = bdrv_next_all_states(bs))) { 534 bdrv_drain_assert_idle(bs); 535 } 536 } 537 538 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 539 { 540 GLOBAL_STATE_CODE(); 541 542 g_assert(bs->quiesce_counter > 0); 543 g_assert(!bs->refcnt); 544 545 while (bs->quiesce_counter) { 546 bdrv_do_drained_end(bs, NULL); 547 } 548 } 549 550 void bdrv_drain_all_end(void) 551 { 552 BlockDriverState *bs = NULL; 553 GLOBAL_STATE_CODE(); 554 555 /* 556 * bdrv queue is managed by record/replay, 557 * waiting for finishing the I/O requests may 558 * be endless 559 */ 560 if (replay_events_enabled()) { 561 return; 562 } 563 564 while ((bs = bdrv_next_all_states(bs))) { 565 bdrv_do_drained_end(bs, NULL); 566 } 567 568 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 569 assert(bdrv_drain_all_count > 0); 570 bdrv_drain_all_count--; 571 } 572 573 void bdrv_drain_all(void) 574 { 575 GLOBAL_STATE_CODE(); 576 bdrv_drain_all_begin(); 577 bdrv_drain_all_end(); 578 } 579 580 /** 581 * Remove an active request from the tracked requests list 582 * 583 * This function should be called when a tracked request is completing. 584 */ 585 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 586 { 587 if (req->serialising) { 588 qatomic_dec(&req->bs->serialising_in_flight); 589 } 590 591 qemu_mutex_lock(&req->bs->reqs_lock); 592 QLIST_REMOVE(req, list); 593 qemu_mutex_unlock(&req->bs->reqs_lock); 594 595 /* 596 * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called 597 * anymore because the request has been removed from the list, so it's safe 598 * to restart the queue outside reqs_lock to minimize the critical section. 599 */ 600 qemu_co_queue_restart_all(&req->wait_queue); 601 } 602 603 /** 604 * Add an active request to the tracked requests list 605 */ 606 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req, 607 BlockDriverState *bs, 608 int64_t offset, 609 int64_t bytes, 610 enum BdrvTrackedRequestType type) 611 { 612 bdrv_check_request(offset, bytes, &error_abort); 613 614 *req = (BdrvTrackedRequest){ 615 .bs = bs, 616 .offset = offset, 617 .bytes = bytes, 618 .type = type, 619 .co = qemu_coroutine_self(), 620 .serialising = false, 621 .overlap_offset = offset, 622 .overlap_bytes = bytes, 623 }; 624 625 qemu_co_queue_init(&req->wait_queue); 626 627 qemu_mutex_lock(&bs->reqs_lock); 628 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 629 qemu_mutex_unlock(&bs->reqs_lock); 630 } 631 632 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 633 int64_t offset, int64_t bytes) 634 { 635 bdrv_check_request(offset, bytes, &error_abort); 636 637 /* aaaa bbbb */ 638 if (offset >= req->overlap_offset + req->overlap_bytes) { 639 return false; 640 } 641 /* bbbb aaaa */ 642 if (req->overlap_offset >= offset + bytes) { 643 return false; 644 } 645 return true; 646 } 647 648 /* Called with self->bs->reqs_lock held */ 649 static coroutine_fn BdrvTrackedRequest * 650 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 651 { 652 BdrvTrackedRequest *req; 653 654 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 655 if (req == self || (!req->serialising && !self->serialising)) { 656 continue; 657 } 658 if (tracked_request_overlaps(req, self->overlap_offset, 659 self->overlap_bytes)) 660 { 661 /* 662 * Hitting this means there was a reentrant request, for 663 * example, a block driver issuing nested requests. This must 664 * never happen since it means deadlock. 665 */ 666 assert(qemu_coroutine_self() != req->co); 667 668 /* 669 * If the request is already (indirectly) waiting for us, or 670 * will wait for us as soon as it wakes up, then just go on 671 * (instead of producing a deadlock in the former case). 672 */ 673 if (!req->waiting_for) { 674 return req; 675 } 676 } 677 } 678 679 return NULL; 680 } 681 682 /* Called with self->bs->reqs_lock held */ 683 static void coroutine_fn 684 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 685 { 686 BdrvTrackedRequest *req; 687 688 while ((req = bdrv_find_conflicting_request(self))) { 689 self->waiting_for = req; 690 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 691 self->waiting_for = NULL; 692 } 693 } 694 695 /* Called with req->bs->reqs_lock held */ 696 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 697 uint64_t align) 698 { 699 int64_t overlap_offset = req->offset & ~(align - 1); 700 int64_t overlap_bytes = 701 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 702 703 bdrv_check_request(req->offset, req->bytes, &error_abort); 704 705 if (!req->serialising) { 706 qatomic_inc(&req->bs->serialising_in_flight); 707 req->serialising = true; 708 } 709 710 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 711 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 712 } 713 714 /** 715 * Return the tracked request on @bs for the current coroutine, or 716 * NULL if there is none. 717 */ 718 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 719 { 720 BdrvTrackedRequest *req; 721 Coroutine *self = qemu_coroutine_self(); 722 IO_CODE(); 723 724 QLIST_FOREACH(req, &bs->tracked_requests, list) { 725 if (req->co == self) { 726 return req; 727 } 728 } 729 730 return NULL; 731 } 732 733 /** 734 * Round a region to subcluster (if supported) or cluster boundaries 735 */ 736 void coroutine_fn GRAPH_RDLOCK 737 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes, 738 int64_t *align_offset, int64_t *align_bytes) 739 { 740 BlockDriverInfo bdi; 741 IO_CODE(); 742 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) { 743 *align_offset = offset; 744 *align_bytes = bytes; 745 } else { 746 int64_t c = bdi.subcluster_size; 747 *align_offset = QEMU_ALIGN_DOWN(offset, c); 748 *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c); 749 } 750 } 751 752 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs) 753 { 754 BlockDriverInfo bdi; 755 int ret; 756 757 ret = bdrv_co_get_info(bs, &bdi); 758 if (ret < 0 || bdi.cluster_size == 0) { 759 return bs->bl.request_alignment; 760 } else { 761 return bdi.cluster_size; 762 } 763 } 764 765 void bdrv_inc_in_flight(BlockDriverState *bs) 766 { 767 IO_CODE(); 768 qatomic_inc(&bs->in_flight); 769 } 770 771 void bdrv_wakeup(BlockDriverState *bs) 772 { 773 IO_CODE(); 774 aio_wait_kick(); 775 } 776 777 void bdrv_dec_in_flight(BlockDriverState *bs) 778 { 779 IO_CODE(); 780 qatomic_dec(&bs->in_flight); 781 bdrv_wakeup(bs); 782 } 783 784 static void coroutine_fn 785 bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 786 { 787 BlockDriverState *bs = self->bs; 788 789 if (!qatomic_read(&bs->serialising_in_flight)) { 790 return; 791 } 792 793 qemu_mutex_lock(&bs->reqs_lock); 794 bdrv_wait_serialising_requests_locked(self); 795 qemu_mutex_unlock(&bs->reqs_lock); 796 } 797 798 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 799 uint64_t align) 800 { 801 IO_CODE(); 802 803 qemu_mutex_lock(&req->bs->reqs_lock); 804 805 tracked_request_set_serialising(req, align); 806 bdrv_wait_serialising_requests_locked(req); 807 808 qemu_mutex_unlock(&req->bs->reqs_lock); 809 } 810 811 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 812 QEMUIOVector *qiov, size_t qiov_offset, 813 Error **errp) 814 { 815 /* 816 * Check generic offset/bytes correctness 817 */ 818 819 if (offset < 0) { 820 error_setg(errp, "offset is negative: %" PRIi64, offset); 821 return -EIO; 822 } 823 824 if (bytes < 0) { 825 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 826 return -EIO; 827 } 828 829 if (bytes > BDRV_MAX_LENGTH) { 830 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 831 bytes, BDRV_MAX_LENGTH); 832 return -EIO; 833 } 834 835 if (offset > BDRV_MAX_LENGTH) { 836 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 837 offset, BDRV_MAX_LENGTH); 838 return -EIO; 839 } 840 841 if (offset > BDRV_MAX_LENGTH - bytes) { 842 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 843 "exceeds maximum(%" PRIi64 ")", offset, bytes, 844 BDRV_MAX_LENGTH); 845 return -EIO; 846 } 847 848 if (!qiov) { 849 return 0; 850 } 851 852 /* 853 * Check qiov and qiov_offset 854 */ 855 856 if (qiov_offset > qiov->size) { 857 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 858 qiov_offset, qiov->size); 859 return -EIO; 860 } 861 862 if (bytes > qiov->size - qiov_offset) { 863 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 864 "vector size(%zu)", bytes, qiov_offset, qiov->size); 865 return -EIO; 866 } 867 868 return 0; 869 } 870 871 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 872 { 873 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 874 } 875 876 static int bdrv_check_request32(int64_t offset, int64_t bytes, 877 QEMUIOVector *qiov, size_t qiov_offset) 878 { 879 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 880 if (ret < 0) { 881 return ret; 882 } 883 884 if (bytes > BDRV_REQUEST_MAX_BYTES) { 885 return -EIO; 886 } 887 888 return 0; 889 } 890 891 /* 892 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 893 * The operation is sped up by checking the block status and only writing 894 * zeroes to the device if they currently do not return zeroes. Optional 895 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 896 * BDRV_REQ_FUA). 897 * 898 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 899 */ 900 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 901 { 902 int ret; 903 int64_t target_size, bytes, offset = 0; 904 BlockDriverState *bs = child->bs; 905 IO_CODE(); 906 907 target_size = bdrv_getlength(bs); 908 if (target_size < 0) { 909 return target_size; 910 } 911 912 for (;;) { 913 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 914 if (bytes <= 0) { 915 return 0; 916 } 917 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 918 if (ret < 0) { 919 return ret; 920 } 921 if (ret & BDRV_BLOCK_ZERO) { 922 offset += bytes; 923 continue; 924 } 925 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 926 if (ret < 0) { 927 return ret; 928 } 929 offset += bytes; 930 } 931 } 932 933 /* 934 * Writes to the file and ensures that no writes are reordered across this 935 * request (acts as a barrier) 936 * 937 * Returns 0 on success, -errno in error cases. 938 */ 939 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 940 int64_t bytes, const void *buf, 941 BdrvRequestFlags flags) 942 { 943 int ret; 944 IO_CODE(); 945 assert_bdrv_graph_readable(); 946 947 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 948 if (ret < 0) { 949 return ret; 950 } 951 952 ret = bdrv_co_flush(child->bs); 953 if (ret < 0) { 954 return ret; 955 } 956 957 return 0; 958 } 959 960 typedef struct CoroutineIOCompletion { 961 Coroutine *coroutine; 962 int ret; 963 } CoroutineIOCompletion; 964 965 static void bdrv_co_io_em_complete(void *opaque, int ret) 966 { 967 CoroutineIOCompletion *co = opaque; 968 969 co->ret = ret; 970 aio_co_wake(co->coroutine); 971 } 972 973 static int coroutine_fn GRAPH_RDLOCK 974 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes, 975 QEMUIOVector *qiov, size_t qiov_offset, int flags) 976 { 977 BlockDriver *drv = bs->drv; 978 int64_t sector_num; 979 unsigned int nb_sectors; 980 QEMUIOVector local_qiov; 981 int ret; 982 assert_bdrv_graph_readable(); 983 984 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 985 assert(!(flags & ~bs->supported_read_flags)); 986 987 if (!drv) { 988 return -ENOMEDIUM; 989 } 990 991 if (drv->bdrv_co_preadv_part) { 992 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 993 flags); 994 } 995 996 if (qiov_offset > 0 || bytes != qiov->size) { 997 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 998 qiov = &local_qiov; 999 } 1000 1001 if (drv->bdrv_co_preadv) { 1002 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1003 goto out; 1004 } 1005 1006 if (drv->bdrv_aio_preadv) { 1007 BlockAIOCB *acb; 1008 CoroutineIOCompletion co = { 1009 .coroutine = qemu_coroutine_self(), 1010 }; 1011 1012 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1013 bdrv_co_io_em_complete, &co); 1014 if (acb == NULL) { 1015 ret = -EIO; 1016 goto out; 1017 } else { 1018 qemu_coroutine_yield(); 1019 ret = co.ret; 1020 goto out; 1021 } 1022 } 1023 1024 sector_num = offset >> BDRV_SECTOR_BITS; 1025 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1026 1027 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1028 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1029 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1030 assert(drv->bdrv_co_readv); 1031 1032 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1033 1034 out: 1035 if (qiov == &local_qiov) { 1036 qemu_iovec_destroy(&local_qiov); 1037 } 1038 1039 return ret; 1040 } 1041 1042 static int coroutine_fn GRAPH_RDLOCK 1043 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes, 1044 QEMUIOVector *qiov, size_t qiov_offset, 1045 BdrvRequestFlags flags) 1046 { 1047 BlockDriver *drv = bs->drv; 1048 bool emulate_fua = false; 1049 int64_t sector_num; 1050 unsigned int nb_sectors; 1051 QEMUIOVector local_qiov; 1052 int ret; 1053 assert_bdrv_graph_readable(); 1054 1055 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1056 1057 if (!drv) { 1058 return -ENOMEDIUM; 1059 } 1060 1061 if ((flags & BDRV_REQ_FUA) && 1062 (~bs->supported_write_flags & BDRV_REQ_FUA)) { 1063 flags &= ~BDRV_REQ_FUA; 1064 emulate_fua = true; 1065 } 1066 1067 flags &= bs->supported_write_flags; 1068 1069 if (drv->bdrv_co_pwritev_part) { 1070 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1071 flags); 1072 goto emulate_flags; 1073 } 1074 1075 if (qiov_offset > 0 || bytes != qiov->size) { 1076 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1077 qiov = &local_qiov; 1078 } 1079 1080 if (drv->bdrv_co_pwritev) { 1081 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags); 1082 goto emulate_flags; 1083 } 1084 1085 if (drv->bdrv_aio_pwritev) { 1086 BlockAIOCB *acb; 1087 CoroutineIOCompletion co = { 1088 .coroutine = qemu_coroutine_self(), 1089 }; 1090 1091 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags, 1092 bdrv_co_io_em_complete, &co); 1093 if (acb == NULL) { 1094 ret = -EIO; 1095 } else { 1096 qemu_coroutine_yield(); 1097 ret = co.ret; 1098 } 1099 goto emulate_flags; 1100 } 1101 1102 sector_num = offset >> BDRV_SECTOR_BITS; 1103 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1104 1105 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1106 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1107 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1108 1109 assert(drv->bdrv_co_writev); 1110 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags); 1111 1112 emulate_flags: 1113 if (ret == 0 && emulate_fua) { 1114 ret = bdrv_co_flush(bs); 1115 } 1116 1117 if (qiov == &local_qiov) { 1118 qemu_iovec_destroy(&local_qiov); 1119 } 1120 1121 return ret; 1122 } 1123 1124 static int coroutine_fn GRAPH_RDLOCK 1125 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1126 int64_t bytes, QEMUIOVector *qiov, 1127 size_t qiov_offset) 1128 { 1129 BlockDriver *drv = bs->drv; 1130 QEMUIOVector local_qiov; 1131 int ret; 1132 assert_bdrv_graph_readable(); 1133 1134 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1135 1136 if (!drv) { 1137 return -ENOMEDIUM; 1138 } 1139 1140 if (!block_driver_can_compress(drv)) { 1141 return -ENOTSUP; 1142 } 1143 1144 if (drv->bdrv_co_pwritev_compressed_part) { 1145 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1146 qiov, qiov_offset); 1147 } 1148 1149 if (qiov_offset == 0) { 1150 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1151 } 1152 1153 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1154 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1155 qemu_iovec_destroy(&local_qiov); 1156 1157 return ret; 1158 } 1159 1160 static int coroutine_fn GRAPH_RDLOCK 1161 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes, 1162 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1163 { 1164 BlockDriverState *bs = child->bs; 1165 1166 /* Perform I/O through a temporary buffer so that users who scribble over 1167 * their read buffer while the operation is in progress do not end up 1168 * modifying the image file. This is critical for zero-copy guest I/O 1169 * where anything might happen inside guest memory. 1170 */ 1171 void *bounce_buffer = NULL; 1172 1173 BlockDriver *drv = bs->drv; 1174 int64_t align_offset; 1175 int64_t align_bytes; 1176 int64_t skip_bytes; 1177 int ret; 1178 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1179 BDRV_REQUEST_MAX_BYTES); 1180 int64_t progress = 0; 1181 bool skip_write; 1182 1183 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1184 1185 if (!drv) { 1186 return -ENOMEDIUM; 1187 } 1188 1189 /* 1190 * Do not write anything when the BDS is inactive. That is not 1191 * allowed, and it would not help. 1192 */ 1193 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1194 1195 /* FIXME We cannot require callers to have write permissions when all they 1196 * are doing is a read request. If we did things right, write permissions 1197 * would be obtained anyway, but internally by the copy-on-read code. As 1198 * long as it is implemented here rather than in a separate filter driver, 1199 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1200 * it could request permissions. Therefore we have to bypass the permission 1201 * system for the moment. */ 1202 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1203 1204 /* Cover entire cluster so no additional backing file I/O is required when 1205 * allocating cluster in the image file. Note that this value may exceed 1206 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1207 * is one reason we loop rather than doing it all at once. 1208 */ 1209 bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes); 1210 skip_bytes = offset - align_offset; 1211 1212 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1213 align_offset, align_bytes); 1214 1215 while (align_bytes) { 1216 int64_t pnum; 1217 1218 if (skip_write) { 1219 ret = 1; /* "already allocated", so nothing will be copied */ 1220 pnum = MIN(align_bytes, max_transfer); 1221 } else { 1222 ret = bdrv_co_is_allocated(bs, align_offset, 1223 MIN(align_bytes, max_transfer), &pnum); 1224 if (ret < 0) { 1225 /* 1226 * Safe to treat errors in querying allocation as if 1227 * unallocated; we'll probably fail again soon on the 1228 * read, but at least that will set a decent errno. 1229 */ 1230 pnum = MIN(align_bytes, max_transfer); 1231 } 1232 1233 /* Stop at EOF if the image ends in the middle of the cluster */ 1234 if (ret == 0 && pnum == 0) { 1235 assert(progress >= bytes); 1236 break; 1237 } 1238 1239 assert(skip_bytes < pnum); 1240 } 1241 1242 if (ret <= 0) { 1243 QEMUIOVector local_qiov; 1244 1245 /* Must copy-on-read; use the bounce buffer */ 1246 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1247 if (!bounce_buffer) { 1248 int64_t max_we_need = MAX(pnum, align_bytes - pnum); 1249 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1250 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1251 1252 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1253 if (!bounce_buffer) { 1254 ret = -ENOMEM; 1255 goto err; 1256 } 1257 } 1258 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1259 1260 ret = bdrv_driver_preadv(bs, align_offset, pnum, 1261 &local_qiov, 0, 0); 1262 if (ret < 0) { 1263 goto err; 1264 } 1265 1266 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE); 1267 if (drv->bdrv_co_pwrite_zeroes && 1268 buffer_is_zero(bounce_buffer, pnum)) { 1269 /* FIXME: Should we (perhaps conditionally) be setting 1270 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1271 * that still correctly reads as zero? */ 1272 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum, 1273 BDRV_REQ_WRITE_UNCHANGED); 1274 } else { 1275 /* This does not change the data on the disk, it is not 1276 * necessary to flush even in cache=writethrough mode. 1277 */ 1278 ret = bdrv_driver_pwritev(bs, align_offset, pnum, 1279 &local_qiov, 0, 1280 BDRV_REQ_WRITE_UNCHANGED); 1281 } 1282 1283 if (ret < 0) { 1284 /* It might be okay to ignore write errors for guest 1285 * requests. If this is a deliberate copy-on-read 1286 * then we don't want to ignore the error. Simply 1287 * report it in all cases. 1288 */ 1289 goto err; 1290 } 1291 1292 if (!(flags & BDRV_REQ_PREFETCH)) { 1293 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1294 bounce_buffer + skip_bytes, 1295 MIN(pnum - skip_bytes, bytes - progress)); 1296 } 1297 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1298 /* Read directly into the destination */ 1299 ret = bdrv_driver_preadv(bs, offset + progress, 1300 MIN(pnum - skip_bytes, bytes - progress), 1301 qiov, qiov_offset + progress, 0); 1302 if (ret < 0) { 1303 goto err; 1304 } 1305 } 1306 1307 align_offset += pnum; 1308 align_bytes -= pnum; 1309 progress += pnum - skip_bytes; 1310 skip_bytes = 0; 1311 } 1312 ret = 0; 1313 1314 err: 1315 qemu_vfree(bounce_buffer); 1316 return ret; 1317 } 1318 1319 /* 1320 * Forwards an already correctly aligned request to the BlockDriver. This 1321 * handles copy on read, zeroing after EOF, and fragmentation of large 1322 * reads; any other features must be implemented by the caller. 1323 */ 1324 static int coroutine_fn GRAPH_RDLOCK 1325 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req, 1326 int64_t offset, int64_t bytes, int64_t align, 1327 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1328 { 1329 BlockDriverState *bs = child->bs; 1330 int64_t total_bytes, max_bytes; 1331 int ret = 0; 1332 int64_t bytes_remaining = bytes; 1333 int max_transfer; 1334 1335 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1336 assert(is_power_of_2(align)); 1337 assert((offset & (align - 1)) == 0); 1338 assert((bytes & (align - 1)) == 0); 1339 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1340 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1341 align); 1342 1343 /* 1344 * TODO: We would need a per-BDS .supported_read_flags and 1345 * potential fallback support, if we ever implement any read flags 1346 * to pass through to drivers. For now, there aren't any 1347 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint. 1348 */ 1349 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH | 1350 BDRV_REQ_REGISTERED_BUF))); 1351 1352 /* Handle Copy on Read and associated serialisation */ 1353 if (flags & BDRV_REQ_COPY_ON_READ) { 1354 /* If we touch the same cluster it counts as an overlap. This 1355 * guarantees that allocating writes will be serialized and not race 1356 * with each other for the same cluster. For example, in copy-on-read 1357 * it ensures that the CoR read and write operations are atomic and 1358 * guest writes cannot interleave between them. */ 1359 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1360 } else { 1361 bdrv_wait_serialising_requests(req); 1362 } 1363 1364 if (flags & BDRV_REQ_COPY_ON_READ) { 1365 int64_t pnum; 1366 1367 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1368 flags &= ~BDRV_REQ_COPY_ON_READ; 1369 1370 ret = bdrv_co_is_allocated(bs, offset, bytes, &pnum); 1371 if (ret < 0) { 1372 goto out; 1373 } 1374 1375 if (!ret || pnum != bytes) { 1376 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1377 qiov, qiov_offset, flags); 1378 goto out; 1379 } else if (flags & BDRV_REQ_PREFETCH) { 1380 goto out; 1381 } 1382 } 1383 1384 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1385 total_bytes = bdrv_co_getlength(bs); 1386 if (total_bytes < 0) { 1387 ret = total_bytes; 1388 goto out; 1389 } 1390 1391 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF))); 1392 1393 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1394 if (bytes <= max_bytes && bytes <= max_transfer) { 1395 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1396 goto out; 1397 } 1398 1399 while (bytes_remaining) { 1400 int64_t num; 1401 1402 if (max_bytes) { 1403 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1404 assert(num); 1405 1406 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1407 num, qiov, 1408 qiov_offset + bytes - bytes_remaining, 1409 flags); 1410 max_bytes -= num; 1411 } else { 1412 num = bytes_remaining; 1413 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1414 0, bytes_remaining); 1415 } 1416 if (ret < 0) { 1417 goto out; 1418 } 1419 bytes_remaining -= num; 1420 } 1421 1422 out: 1423 return ret < 0 ? ret : 0; 1424 } 1425 1426 /* 1427 * Request padding 1428 * 1429 * |<---- align ----->| |<----- align ---->| 1430 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1431 * | | | | | | 1432 * -*----------$-------*-------- ... --------*-----$------------*--- 1433 * | | | | | | 1434 * | offset | | end | 1435 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1436 * [buf ... ) [tail_buf ) 1437 * 1438 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1439 * is placed at the beginning of @buf and @tail at the @end. 1440 * 1441 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1442 * around tail, if tail exists. 1443 * 1444 * @merge_reads is true for small requests, 1445 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1446 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1447 * 1448 * @write is true for write requests, false for read requests. 1449 * 1450 * If padding makes the vector too long (exceeding IOV_MAX), then we need to 1451 * merge existing vector elements into a single one. @collapse_bounce_buf acts 1452 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse 1453 * I/O vector elements so for read requests, the data can be copied back after 1454 * the read is done. 1455 */ 1456 typedef struct BdrvRequestPadding { 1457 uint8_t *buf; 1458 size_t buf_len; 1459 uint8_t *tail_buf; 1460 size_t head; 1461 size_t tail; 1462 bool merge_reads; 1463 bool write; 1464 QEMUIOVector local_qiov; 1465 1466 uint8_t *collapse_bounce_buf; 1467 size_t collapse_len; 1468 QEMUIOVector pre_collapse_qiov; 1469 } BdrvRequestPadding; 1470 1471 static bool bdrv_init_padding(BlockDriverState *bs, 1472 int64_t offset, int64_t bytes, 1473 bool write, 1474 BdrvRequestPadding *pad) 1475 { 1476 int64_t align = bs->bl.request_alignment; 1477 int64_t sum; 1478 1479 bdrv_check_request(offset, bytes, &error_abort); 1480 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1481 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1482 1483 memset(pad, 0, sizeof(*pad)); 1484 1485 pad->head = offset & (align - 1); 1486 pad->tail = ((offset + bytes) & (align - 1)); 1487 if (pad->tail) { 1488 pad->tail = align - pad->tail; 1489 } 1490 1491 if (!pad->head && !pad->tail) { 1492 return false; 1493 } 1494 1495 assert(bytes); /* Nothing good in aligning zero-length requests */ 1496 1497 sum = pad->head + bytes + pad->tail; 1498 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1499 pad->buf = qemu_blockalign(bs, pad->buf_len); 1500 pad->merge_reads = sum == pad->buf_len; 1501 if (pad->tail) { 1502 pad->tail_buf = pad->buf + pad->buf_len - align; 1503 } 1504 1505 pad->write = write; 1506 1507 return true; 1508 } 1509 1510 static int coroutine_fn GRAPH_RDLOCK 1511 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req, 1512 BdrvRequestPadding *pad, bool zero_middle) 1513 { 1514 QEMUIOVector local_qiov; 1515 BlockDriverState *bs = child->bs; 1516 uint64_t align = bs->bl.request_alignment; 1517 int ret; 1518 1519 assert(req->serialising && pad->buf); 1520 1521 if (pad->head || pad->merge_reads) { 1522 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1523 1524 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1525 1526 if (pad->head) { 1527 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1528 } 1529 if (pad->merge_reads && pad->tail) { 1530 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1531 } 1532 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1533 align, &local_qiov, 0, 0); 1534 if (ret < 0) { 1535 return ret; 1536 } 1537 if (pad->head) { 1538 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1539 } 1540 if (pad->merge_reads && pad->tail) { 1541 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1542 } 1543 1544 if (pad->merge_reads) { 1545 goto zero_mem; 1546 } 1547 } 1548 1549 if (pad->tail) { 1550 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1551 1552 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1553 ret = bdrv_aligned_preadv( 1554 child, req, 1555 req->overlap_offset + req->overlap_bytes - align, 1556 align, align, &local_qiov, 0, 0); 1557 if (ret < 0) { 1558 return ret; 1559 } 1560 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1561 } 1562 1563 zero_mem: 1564 if (zero_middle) { 1565 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1566 } 1567 1568 return 0; 1569 } 1570 1571 /** 1572 * Free *pad's associated buffers, and perform any necessary finalization steps. 1573 */ 1574 static void bdrv_padding_finalize(BdrvRequestPadding *pad) 1575 { 1576 if (pad->collapse_bounce_buf) { 1577 if (!pad->write) { 1578 /* 1579 * If padding required elements in the vector to be collapsed into a 1580 * bounce buffer, copy the bounce buffer content back 1581 */ 1582 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0, 1583 pad->collapse_bounce_buf, pad->collapse_len); 1584 } 1585 qemu_vfree(pad->collapse_bounce_buf); 1586 qemu_iovec_destroy(&pad->pre_collapse_qiov); 1587 } 1588 if (pad->buf) { 1589 qemu_vfree(pad->buf); 1590 qemu_iovec_destroy(&pad->local_qiov); 1591 } 1592 memset(pad, 0, sizeof(*pad)); 1593 } 1594 1595 /* 1596 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while 1597 * ensuring that the resulting vector will not exceed IOV_MAX elements. 1598 * 1599 * To ensure this, when necessary, the first two or three elements of @iov are 1600 * merged into pad->collapse_bounce_buf and replaced by a reference to that 1601 * bounce buffer in pad->local_qiov. 1602 * 1603 * After performing a read request, the data from the bounce buffer must be 1604 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()). 1605 */ 1606 static int bdrv_create_padded_qiov(BlockDriverState *bs, 1607 BdrvRequestPadding *pad, 1608 struct iovec *iov, int niov, 1609 size_t iov_offset, size_t bytes) 1610 { 1611 int padded_niov, surplus_count, collapse_count; 1612 1613 /* Assert this invariant */ 1614 assert(niov <= IOV_MAX); 1615 1616 /* 1617 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error 1618 * to the guest is not ideal, but there is little else we can do. At least 1619 * this will practically never happen on 64-bit systems. 1620 */ 1621 if (SIZE_MAX - pad->head < bytes || 1622 SIZE_MAX - pad->head - bytes < pad->tail) 1623 { 1624 return -EINVAL; 1625 } 1626 1627 /* Length of the resulting IOV if we just concatenated everything */ 1628 padded_niov = !!pad->head + niov + !!pad->tail; 1629 1630 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX)); 1631 1632 if (pad->head) { 1633 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head); 1634 } 1635 1636 /* 1637 * If padded_niov > IOV_MAX, we cannot just concatenate everything. 1638 * Instead, merge the first two or three elements of @iov to reduce the 1639 * number of vector elements as necessary. 1640 */ 1641 if (padded_niov > IOV_MAX) { 1642 /* 1643 * Only head and tail can have lead to the number of entries exceeding 1644 * IOV_MAX, so we can exceed it by the head and tail at most. We need 1645 * to reduce the number of elements by `surplus_count`, so we merge that 1646 * many elements plus one into one element. 1647 */ 1648 surplus_count = padded_niov - IOV_MAX; 1649 assert(surplus_count <= !!pad->head + !!pad->tail); 1650 collapse_count = surplus_count + 1; 1651 1652 /* 1653 * Move the elements to collapse into `pad->pre_collapse_qiov`, then 1654 * advance `iov` (and associated variables) by those elements. 1655 */ 1656 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count); 1657 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov, 1658 collapse_count, iov_offset, SIZE_MAX); 1659 iov += collapse_count; 1660 iov_offset = 0; 1661 niov -= collapse_count; 1662 bytes -= pad->pre_collapse_qiov.size; 1663 1664 /* 1665 * Construct the bounce buffer to match the length of the to-collapse 1666 * vector elements, and for write requests, initialize it with the data 1667 * from those elements. Then add it to `pad->local_qiov`. 1668 */ 1669 pad->collapse_len = pad->pre_collapse_qiov.size; 1670 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len); 1671 if (pad->write) { 1672 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0, 1673 pad->collapse_bounce_buf, pad->collapse_len); 1674 } 1675 qemu_iovec_add(&pad->local_qiov, 1676 pad->collapse_bounce_buf, pad->collapse_len); 1677 } 1678 1679 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes); 1680 1681 if (pad->tail) { 1682 qemu_iovec_add(&pad->local_qiov, 1683 pad->buf + pad->buf_len - pad->tail, pad->tail); 1684 } 1685 1686 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX)); 1687 return 0; 1688 } 1689 1690 /* 1691 * bdrv_pad_request 1692 * 1693 * Exchange request parameters with padded request if needed. Don't include RMW 1694 * read of padding, bdrv_padding_rmw_read() should be called separately if 1695 * needed. 1696 * 1697 * @write is true for write requests, false for read requests. 1698 * 1699 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1700 * - on function start they represent original request 1701 * - on failure or when padding is not needed they are unchanged 1702 * - on success when padding is needed they represent padded request 1703 */ 1704 static int bdrv_pad_request(BlockDriverState *bs, 1705 QEMUIOVector **qiov, size_t *qiov_offset, 1706 int64_t *offset, int64_t *bytes, 1707 bool write, 1708 BdrvRequestPadding *pad, bool *padded, 1709 BdrvRequestFlags *flags) 1710 { 1711 int ret; 1712 struct iovec *sliced_iov; 1713 int sliced_niov; 1714 size_t sliced_head, sliced_tail; 1715 1716 /* Should have been checked by the caller already */ 1717 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset); 1718 if (ret < 0) { 1719 return ret; 1720 } 1721 1722 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) { 1723 if (padded) { 1724 *padded = false; 1725 } 1726 return 0; 1727 } 1728 1729 /* 1730 * For prefetching in stream_populate(), no qiov is passed along, because 1731 * only copy-on-read matters. 1732 */ 1733 if (*qiov) { 1734 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes, 1735 &sliced_head, &sliced_tail, 1736 &sliced_niov); 1737 1738 /* Guaranteed by bdrv_check_request32() */ 1739 assert(*bytes <= SIZE_MAX); 1740 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov, 1741 sliced_head, *bytes); 1742 if (ret < 0) { 1743 bdrv_padding_finalize(pad); 1744 return ret; 1745 } 1746 *qiov = &pad->local_qiov; 1747 *qiov_offset = 0; 1748 } 1749 1750 *bytes += pad->head + pad->tail; 1751 *offset -= pad->head; 1752 if (padded) { 1753 *padded = true; 1754 } 1755 if (flags) { 1756 /* Can't use optimization hint with bounce buffer */ 1757 *flags &= ~BDRV_REQ_REGISTERED_BUF; 1758 } 1759 1760 return 0; 1761 } 1762 1763 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1764 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1765 BdrvRequestFlags flags) 1766 { 1767 IO_CODE(); 1768 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1769 } 1770 1771 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1772 int64_t offset, int64_t bytes, 1773 QEMUIOVector *qiov, size_t qiov_offset, 1774 BdrvRequestFlags flags) 1775 { 1776 BlockDriverState *bs = child->bs; 1777 BdrvTrackedRequest req; 1778 BdrvRequestPadding pad; 1779 int ret; 1780 IO_CODE(); 1781 1782 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1783 1784 if (!bdrv_co_is_inserted(bs)) { 1785 return -ENOMEDIUM; 1786 } 1787 1788 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1789 if (ret < 0) { 1790 return ret; 1791 } 1792 1793 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1794 /* 1795 * Aligning zero request is nonsense. Even if driver has special meaning 1796 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1797 * it to driver due to request_alignment. 1798 * 1799 * Still, no reason to return an error if someone do unaligned 1800 * zero-length read occasionally. 1801 */ 1802 return 0; 1803 } 1804 1805 bdrv_inc_in_flight(bs); 1806 1807 /* Don't do copy-on-read if we read data before write operation */ 1808 if (qatomic_read(&bs->copy_on_read)) { 1809 flags |= BDRV_REQ_COPY_ON_READ; 1810 } 1811 1812 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false, 1813 &pad, NULL, &flags); 1814 if (ret < 0) { 1815 goto fail; 1816 } 1817 1818 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1819 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1820 bs->bl.request_alignment, 1821 qiov, qiov_offset, flags); 1822 tracked_request_end(&req); 1823 bdrv_padding_finalize(&pad); 1824 1825 fail: 1826 bdrv_dec_in_flight(bs); 1827 1828 return ret; 1829 } 1830 1831 static int coroutine_fn GRAPH_RDLOCK 1832 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes, 1833 BdrvRequestFlags flags) 1834 { 1835 BlockDriver *drv = bs->drv; 1836 QEMUIOVector qiov; 1837 void *buf = NULL; 1838 int ret = 0; 1839 bool need_flush = false; 1840 int head = 0; 1841 int tail = 0; 1842 1843 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1844 INT64_MAX); 1845 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1846 bs->bl.request_alignment); 1847 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1848 1849 assert_bdrv_graph_readable(); 1850 bdrv_check_request(offset, bytes, &error_abort); 1851 1852 if (!drv) { 1853 return -ENOMEDIUM; 1854 } 1855 1856 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1857 return -ENOTSUP; 1858 } 1859 1860 /* By definition there is no user buffer so this flag doesn't make sense */ 1861 if (flags & BDRV_REQ_REGISTERED_BUF) { 1862 return -EINVAL; 1863 } 1864 1865 /* If opened with discard=off we should never unmap. */ 1866 if (!(bs->open_flags & BDRV_O_UNMAP)) { 1867 flags &= ~BDRV_REQ_MAY_UNMAP; 1868 } 1869 1870 /* Invalidate the cached block-status data range if this write overlaps */ 1871 bdrv_bsc_invalidate_range(bs, offset, bytes); 1872 1873 assert(alignment % bs->bl.request_alignment == 0); 1874 head = offset % alignment; 1875 tail = (offset + bytes) % alignment; 1876 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1877 assert(max_write_zeroes >= bs->bl.request_alignment); 1878 1879 while (bytes > 0 && !ret) { 1880 int64_t num = bytes; 1881 1882 /* Align request. Block drivers can expect the "bulk" of the request 1883 * to be aligned, and that unaligned requests do not cross cluster 1884 * boundaries. 1885 */ 1886 if (head) { 1887 /* Make a small request up to the first aligned sector. For 1888 * convenience, limit this request to max_transfer even if 1889 * we don't need to fall back to writes. */ 1890 num = MIN(MIN(bytes, max_transfer), alignment - head); 1891 head = (head + num) % alignment; 1892 assert(num < max_write_zeroes); 1893 } else if (tail && num > alignment) { 1894 /* Shorten the request to the last aligned sector. */ 1895 num -= tail; 1896 } 1897 1898 /* limit request size */ 1899 if (num > max_write_zeroes) { 1900 num = max_write_zeroes; 1901 } 1902 1903 ret = -ENOTSUP; 1904 /* First try the efficient write zeroes operation */ 1905 if (drv->bdrv_co_pwrite_zeroes) { 1906 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1907 flags & bs->supported_zero_flags); 1908 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1909 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1910 need_flush = true; 1911 } 1912 } else { 1913 assert(!bs->supported_zero_flags); 1914 } 1915 1916 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1917 /* Fall back to bounce buffer if write zeroes is unsupported */ 1918 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1919 1920 if ((flags & BDRV_REQ_FUA) && 1921 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1922 /* No need for bdrv_driver_pwrite() to do a fallback 1923 * flush on each chunk; use just one at the end */ 1924 write_flags &= ~BDRV_REQ_FUA; 1925 need_flush = true; 1926 } 1927 num = MIN(num, max_transfer); 1928 if (buf == NULL) { 1929 buf = qemu_try_blockalign0(bs, num); 1930 if (buf == NULL) { 1931 ret = -ENOMEM; 1932 goto fail; 1933 } 1934 } 1935 qemu_iovec_init_buf(&qiov, buf, num); 1936 1937 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1938 1939 /* Keep bounce buffer around if it is big enough for all 1940 * all future requests. 1941 */ 1942 if (num < max_transfer) { 1943 qemu_vfree(buf); 1944 buf = NULL; 1945 } 1946 } 1947 1948 offset += num; 1949 bytes -= num; 1950 } 1951 1952 fail: 1953 if (ret == 0 && need_flush) { 1954 ret = bdrv_co_flush(bs); 1955 } 1956 qemu_vfree(buf); 1957 return ret; 1958 } 1959 1960 static inline int coroutine_fn GRAPH_RDLOCK 1961 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1962 BdrvTrackedRequest *req, int flags) 1963 { 1964 BlockDriverState *bs = child->bs; 1965 1966 bdrv_check_request(offset, bytes, &error_abort); 1967 1968 if (bdrv_is_read_only(bs)) { 1969 return -EPERM; 1970 } 1971 1972 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1973 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1974 assert(!(flags & ~BDRV_REQ_MASK)); 1975 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1976 1977 if (flags & BDRV_REQ_SERIALISING) { 1978 QEMU_LOCK_GUARD(&bs->reqs_lock); 1979 1980 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1981 1982 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1983 return -EBUSY; 1984 } 1985 1986 bdrv_wait_serialising_requests_locked(req); 1987 } else { 1988 bdrv_wait_serialising_requests(req); 1989 } 1990 1991 assert(req->overlap_offset <= offset); 1992 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1993 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 1994 child->perm & BLK_PERM_RESIZE); 1995 1996 switch (req->type) { 1997 case BDRV_TRACKED_WRITE: 1998 case BDRV_TRACKED_DISCARD: 1999 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 2000 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 2001 } else { 2002 assert(child->perm & BLK_PERM_WRITE); 2003 } 2004 bdrv_write_threshold_check_write(bs, offset, bytes); 2005 return 0; 2006 case BDRV_TRACKED_TRUNCATE: 2007 assert(child->perm & BLK_PERM_RESIZE); 2008 return 0; 2009 default: 2010 abort(); 2011 } 2012 } 2013 2014 static inline void coroutine_fn GRAPH_RDLOCK 2015 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2016 BdrvTrackedRequest *req, int ret) 2017 { 2018 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2019 BlockDriverState *bs = child->bs; 2020 2021 bdrv_check_request(offset, bytes, &error_abort); 2022 2023 qatomic_inc(&bs->write_gen); 2024 2025 /* 2026 * Discard cannot extend the image, but in error handling cases, such as 2027 * when reverting a qcow2 cluster allocation, the discarded range can pass 2028 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2029 * here. Instead, just skip it, since semantically a discard request 2030 * beyond EOF cannot expand the image anyway. 2031 */ 2032 if (ret == 0 && 2033 (req->type == BDRV_TRACKED_TRUNCATE || 2034 end_sector > bs->total_sectors) && 2035 req->type != BDRV_TRACKED_DISCARD) { 2036 bs->total_sectors = end_sector; 2037 bdrv_parent_cb_resize(bs); 2038 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2039 } 2040 if (req->bytes) { 2041 switch (req->type) { 2042 case BDRV_TRACKED_WRITE: 2043 stat64_max(&bs->wr_highest_offset, offset + bytes); 2044 /* fall through, to set dirty bits */ 2045 case BDRV_TRACKED_DISCARD: 2046 bdrv_set_dirty(bs, offset, bytes); 2047 break; 2048 default: 2049 break; 2050 } 2051 } 2052 } 2053 2054 /* 2055 * Forwards an already correctly aligned write request to the BlockDriver, 2056 * after possibly fragmenting it. 2057 */ 2058 static int coroutine_fn GRAPH_RDLOCK 2059 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req, 2060 int64_t offset, int64_t bytes, int64_t align, 2061 QEMUIOVector *qiov, size_t qiov_offset, 2062 BdrvRequestFlags flags) 2063 { 2064 BlockDriverState *bs = child->bs; 2065 BlockDriver *drv = bs->drv; 2066 int ret; 2067 2068 int64_t bytes_remaining = bytes; 2069 int max_transfer; 2070 2071 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2072 2073 if (!drv) { 2074 return -ENOMEDIUM; 2075 } 2076 2077 if (bdrv_has_readonly_bitmaps(bs)) { 2078 return -EPERM; 2079 } 2080 2081 assert(is_power_of_2(align)); 2082 assert((offset & (align - 1)) == 0); 2083 assert((bytes & (align - 1)) == 0); 2084 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2085 align); 2086 2087 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2088 2089 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2090 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2091 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2092 flags |= BDRV_REQ_ZERO_WRITE; 2093 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2094 flags |= BDRV_REQ_MAY_UNMAP; 2095 } 2096 2097 /* Can't use optimization hint with bufferless zero write */ 2098 flags &= ~BDRV_REQ_REGISTERED_BUF; 2099 } 2100 2101 if (ret < 0) { 2102 /* Do nothing, write notifier decided to fail this request */ 2103 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2104 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2105 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2106 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2107 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2108 qiov, qiov_offset); 2109 } else if (bytes <= max_transfer) { 2110 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2111 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2112 } else { 2113 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2114 while (bytes_remaining) { 2115 int num = MIN(bytes_remaining, max_transfer); 2116 int local_flags = flags; 2117 2118 assert(num); 2119 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2120 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2121 /* If FUA is going to be emulated by flush, we only 2122 * need to flush on the last iteration */ 2123 local_flags &= ~BDRV_REQ_FUA; 2124 } 2125 2126 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2127 num, qiov, 2128 qiov_offset + bytes - bytes_remaining, 2129 local_flags); 2130 if (ret < 0) { 2131 break; 2132 } 2133 bytes_remaining -= num; 2134 } 2135 } 2136 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE); 2137 2138 if (ret >= 0) { 2139 ret = 0; 2140 } 2141 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2142 2143 return ret; 2144 } 2145 2146 static int coroutine_fn GRAPH_RDLOCK 2147 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes, 2148 BdrvRequestFlags flags, BdrvTrackedRequest *req) 2149 { 2150 BlockDriverState *bs = child->bs; 2151 QEMUIOVector local_qiov; 2152 uint64_t align = bs->bl.request_alignment; 2153 int ret = 0; 2154 bool padding; 2155 BdrvRequestPadding pad; 2156 2157 /* This flag doesn't make sense for padding or zero writes */ 2158 flags &= ~BDRV_REQ_REGISTERED_BUF; 2159 2160 padding = bdrv_init_padding(bs, offset, bytes, true, &pad); 2161 if (padding) { 2162 assert(!(flags & BDRV_REQ_NO_WAIT)); 2163 bdrv_make_request_serialising(req, align); 2164 2165 bdrv_padding_rmw_read(child, req, &pad, true); 2166 2167 if (pad.head || pad.merge_reads) { 2168 int64_t aligned_offset = offset & ~(align - 1); 2169 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2170 2171 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2172 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2173 align, &local_qiov, 0, 2174 flags & ~BDRV_REQ_ZERO_WRITE); 2175 if (ret < 0 || pad.merge_reads) { 2176 /* Error or all work is done */ 2177 goto out; 2178 } 2179 offset += write_bytes - pad.head; 2180 bytes -= write_bytes - pad.head; 2181 } 2182 } 2183 2184 assert(!bytes || (offset & (align - 1)) == 0); 2185 if (bytes >= align) { 2186 /* Write the aligned part in the middle. */ 2187 int64_t aligned_bytes = bytes & ~(align - 1); 2188 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2189 NULL, 0, flags); 2190 if (ret < 0) { 2191 goto out; 2192 } 2193 bytes -= aligned_bytes; 2194 offset += aligned_bytes; 2195 } 2196 2197 assert(!bytes || (offset & (align - 1)) == 0); 2198 if (bytes) { 2199 assert(align == pad.tail + bytes); 2200 2201 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2202 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2203 &local_qiov, 0, 2204 flags & ~BDRV_REQ_ZERO_WRITE); 2205 } 2206 2207 out: 2208 bdrv_padding_finalize(&pad); 2209 2210 return ret; 2211 } 2212 2213 /* 2214 * Handle a write request in coroutine context 2215 */ 2216 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2217 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2218 BdrvRequestFlags flags) 2219 { 2220 IO_CODE(); 2221 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2222 } 2223 2224 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2225 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2226 BdrvRequestFlags flags) 2227 { 2228 BlockDriverState *bs = child->bs; 2229 BdrvTrackedRequest req; 2230 uint64_t align = bs->bl.request_alignment; 2231 BdrvRequestPadding pad; 2232 int ret; 2233 bool padded = false; 2234 IO_CODE(); 2235 2236 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2237 2238 if (!bdrv_co_is_inserted(bs)) { 2239 return -ENOMEDIUM; 2240 } 2241 2242 if (flags & BDRV_REQ_ZERO_WRITE) { 2243 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2244 } else { 2245 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2246 } 2247 if (ret < 0) { 2248 return ret; 2249 } 2250 2251 /* If the request is misaligned then we can't make it efficient */ 2252 if ((flags & BDRV_REQ_NO_FALLBACK) && 2253 !QEMU_IS_ALIGNED(offset | bytes, align)) 2254 { 2255 return -ENOTSUP; 2256 } 2257 2258 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2259 /* 2260 * Aligning zero request is nonsense. Even if driver has special meaning 2261 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2262 * it to driver due to request_alignment. 2263 * 2264 * Still, no reason to return an error if someone do unaligned 2265 * zero-length write occasionally. 2266 */ 2267 return 0; 2268 } 2269 2270 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2271 /* 2272 * Pad request for following read-modify-write cycle. 2273 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2274 * alignment only if there is no ZERO flag. 2275 */ 2276 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true, 2277 &pad, &padded, &flags); 2278 if (ret < 0) { 2279 return ret; 2280 } 2281 } 2282 2283 bdrv_inc_in_flight(bs); 2284 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2285 2286 if (flags & BDRV_REQ_ZERO_WRITE) { 2287 assert(!padded); 2288 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2289 goto out; 2290 } 2291 2292 if (padded) { 2293 /* 2294 * Request was unaligned to request_alignment and therefore 2295 * padded. We are going to do read-modify-write, and must 2296 * serialize the request to prevent interactions of the 2297 * widened region with other transactions. 2298 */ 2299 assert(!(flags & BDRV_REQ_NO_WAIT)); 2300 bdrv_make_request_serialising(&req, align); 2301 bdrv_padding_rmw_read(child, &req, &pad, false); 2302 } 2303 2304 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2305 qiov, qiov_offset, flags); 2306 2307 bdrv_padding_finalize(&pad); 2308 2309 out: 2310 tracked_request_end(&req); 2311 bdrv_dec_in_flight(bs); 2312 2313 return ret; 2314 } 2315 2316 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2317 int64_t bytes, BdrvRequestFlags flags) 2318 { 2319 IO_CODE(); 2320 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2321 assert_bdrv_graph_readable(); 2322 2323 return bdrv_co_pwritev(child, offset, bytes, NULL, 2324 BDRV_REQ_ZERO_WRITE | flags); 2325 } 2326 2327 /* 2328 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2329 */ 2330 int bdrv_flush_all(void) 2331 { 2332 BdrvNextIterator it; 2333 BlockDriverState *bs = NULL; 2334 int result = 0; 2335 2336 GLOBAL_STATE_CODE(); 2337 GRAPH_RDLOCK_GUARD_MAINLOOP(); 2338 2339 /* 2340 * bdrv queue is managed by record/replay, 2341 * creating new flush request for stopping 2342 * the VM may break the determinism 2343 */ 2344 if (replay_events_enabled()) { 2345 return result; 2346 } 2347 2348 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2349 int ret = bdrv_flush(bs); 2350 if (ret < 0 && !result) { 2351 result = ret; 2352 } 2353 } 2354 2355 return result; 2356 } 2357 2358 /* 2359 * Returns the allocation status of the specified sectors. 2360 * Drivers not implementing the functionality are assumed to not support 2361 * backing files, hence all their sectors are reported as allocated. 2362 * 2363 * If 'want_zero' is true, the caller is querying for mapping 2364 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2365 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2366 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2367 * 2368 * If 'offset' is beyond the end of the disk image the return value is 2369 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2370 * 2371 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2372 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2373 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2374 * 2375 * 'pnum' is set to the number of bytes (including and immediately 2376 * following the specified offset) that are easily known to be in the 2377 * same allocated/unallocated state. Note that a second call starting 2378 * at the original offset plus returned pnum may have the same status. 2379 * The returned value is non-zero on success except at end-of-file. 2380 * 2381 * Returns negative errno on failure. Otherwise, if the 2382 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2383 * set to the host mapping and BDS corresponding to the guest offset. 2384 */ 2385 static int coroutine_fn GRAPH_RDLOCK 2386 bdrv_co_do_block_status(BlockDriverState *bs, bool want_zero, 2387 int64_t offset, int64_t bytes, 2388 int64_t *pnum, int64_t *map, BlockDriverState **file) 2389 { 2390 int64_t total_size; 2391 int64_t n; /* bytes */ 2392 int ret; 2393 int64_t local_map = 0; 2394 BlockDriverState *local_file = NULL; 2395 int64_t aligned_offset, aligned_bytes; 2396 uint32_t align; 2397 bool has_filtered_child; 2398 2399 assert(pnum); 2400 assert_bdrv_graph_readable(); 2401 *pnum = 0; 2402 total_size = bdrv_co_getlength(bs); 2403 if (total_size < 0) { 2404 ret = total_size; 2405 goto early_out; 2406 } 2407 2408 if (offset >= total_size) { 2409 ret = BDRV_BLOCK_EOF; 2410 goto early_out; 2411 } 2412 if (!bytes) { 2413 ret = 0; 2414 goto early_out; 2415 } 2416 2417 n = total_size - offset; 2418 if (n < bytes) { 2419 bytes = n; 2420 } 2421 2422 /* Must be non-NULL or bdrv_co_getlength() would have failed */ 2423 assert(bs->drv); 2424 has_filtered_child = bdrv_filter_child(bs); 2425 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2426 *pnum = bytes; 2427 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2428 if (offset + bytes == total_size) { 2429 ret |= BDRV_BLOCK_EOF; 2430 } 2431 if (bs->drv->protocol_name) { 2432 ret |= BDRV_BLOCK_OFFSET_VALID; 2433 local_map = offset; 2434 local_file = bs; 2435 } 2436 goto early_out; 2437 } 2438 2439 bdrv_inc_in_flight(bs); 2440 2441 /* Round out to request_alignment boundaries */ 2442 align = bs->bl.request_alignment; 2443 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2444 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2445 2446 if (bs->drv->bdrv_co_block_status) { 2447 /* 2448 * Use the block-status cache only for protocol nodes: Format 2449 * drivers are generally quick to inquire the status, but protocol 2450 * drivers often need to get information from outside of qemu, so 2451 * we do not have control over the actual implementation. There 2452 * have been cases where inquiring the status took an unreasonably 2453 * long time, and we can do nothing in qemu to fix it. 2454 * This is especially problematic for images with large data areas, 2455 * because finding the few holes in them and giving them special 2456 * treatment does not gain much performance. Therefore, we try to 2457 * cache the last-identified data region. 2458 * 2459 * Second, limiting ourselves to protocol nodes allows us to assume 2460 * the block status for data regions to be DATA | OFFSET_VALID, and 2461 * that the host offset is the same as the guest offset. 2462 * 2463 * Note that it is possible that external writers zero parts of 2464 * the cached regions without the cache being invalidated, and so 2465 * we may report zeroes as data. This is not catastrophic, 2466 * however, because reporting zeroes as data is fine. 2467 */ 2468 if (QLIST_EMPTY(&bs->children) && 2469 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2470 { 2471 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2472 local_file = bs; 2473 local_map = aligned_offset; 2474 } else { 2475 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2476 aligned_bytes, pnum, &local_map, 2477 &local_file); 2478 2479 /* 2480 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2481 * the cache is queried above. Technically, we do not need to check 2482 * it here; the worst that can happen is that we fill the cache for 2483 * non-protocol nodes, and then it is never used. However, filling 2484 * the cache requires an RCU update, so double check here to avoid 2485 * such an update if possible. 2486 * 2487 * Check want_zero, because we only want to update the cache when we 2488 * have accurate information about what is zero and what is data. 2489 */ 2490 if (want_zero && 2491 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2492 QLIST_EMPTY(&bs->children)) 2493 { 2494 /* 2495 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2496 * returned local_map value must be the same as the offset we 2497 * have passed (aligned_offset), and local_bs must be the node 2498 * itself. 2499 * Assert this, because we follow this rule when reading from 2500 * the cache (see the `local_file = bs` and 2501 * `local_map = aligned_offset` assignments above), and the 2502 * result the cache delivers must be the same as the driver 2503 * would deliver. 2504 */ 2505 assert(local_file == bs); 2506 assert(local_map == aligned_offset); 2507 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2508 } 2509 } 2510 } else { 2511 /* Default code for filters */ 2512 2513 local_file = bdrv_filter_bs(bs); 2514 assert(local_file); 2515 2516 *pnum = aligned_bytes; 2517 local_map = aligned_offset; 2518 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2519 } 2520 if (ret < 0) { 2521 *pnum = 0; 2522 goto out; 2523 } 2524 2525 /* 2526 * The driver's result must be a non-zero multiple of request_alignment. 2527 * Clamp pnum and adjust map to original request. 2528 */ 2529 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2530 align > offset - aligned_offset); 2531 if (ret & BDRV_BLOCK_RECURSE) { 2532 assert(ret & BDRV_BLOCK_DATA); 2533 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2534 assert(!(ret & BDRV_BLOCK_ZERO)); 2535 } 2536 2537 *pnum -= offset - aligned_offset; 2538 if (*pnum > bytes) { 2539 *pnum = bytes; 2540 } 2541 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2542 local_map += offset - aligned_offset; 2543 } 2544 2545 if (ret & BDRV_BLOCK_RAW) { 2546 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2547 ret = bdrv_co_do_block_status(local_file, want_zero, local_map, 2548 *pnum, pnum, &local_map, &local_file); 2549 goto out; 2550 } 2551 2552 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2553 ret |= BDRV_BLOCK_ALLOCATED; 2554 } else if (bs->drv->supports_backing) { 2555 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2556 2557 if (!cow_bs) { 2558 ret |= BDRV_BLOCK_ZERO; 2559 } else if (want_zero) { 2560 int64_t size2 = bdrv_co_getlength(cow_bs); 2561 2562 if (size2 >= 0 && offset >= size2) { 2563 ret |= BDRV_BLOCK_ZERO; 2564 } 2565 } 2566 } 2567 2568 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2569 local_file && local_file != bs && 2570 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2571 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2572 int64_t file_pnum; 2573 int ret2; 2574 2575 ret2 = bdrv_co_do_block_status(local_file, want_zero, local_map, 2576 *pnum, &file_pnum, NULL, NULL); 2577 if (ret2 >= 0) { 2578 /* Ignore errors. This is just providing extra information, it 2579 * is useful but not necessary. 2580 */ 2581 if (ret2 & BDRV_BLOCK_EOF && 2582 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2583 /* 2584 * It is valid for the format block driver to read 2585 * beyond the end of the underlying file's current 2586 * size; such areas read as zero. 2587 */ 2588 ret |= BDRV_BLOCK_ZERO; 2589 } else { 2590 /* Limit request to the range reported by the protocol driver */ 2591 *pnum = file_pnum; 2592 ret |= (ret2 & BDRV_BLOCK_ZERO); 2593 } 2594 } 2595 2596 /* 2597 * Now that the recursive search was done, clear the flag. Otherwise, 2598 * with more complicated block graphs like snapshot-access -> 2599 * copy-before-write -> qcow2, where the return value will be propagated 2600 * further up to a parent bdrv_co_do_block_status() call, both the 2601 * BDRV_BLOCK_RECURSE and BDRV_BLOCK_ZERO flags would be set, which is 2602 * not allowed. 2603 */ 2604 ret &= ~BDRV_BLOCK_RECURSE; 2605 } 2606 2607 out: 2608 bdrv_dec_in_flight(bs); 2609 if (ret >= 0 && offset + *pnum == total_size) { 2610 ret |= BDRV_BLOCK_EOF; 2611 } 2612 early_out: 2613 if (file) { 2614 *file = local_file; 2615 } 2616 if (map) { 2617 *map = local_map; 2618 } 2619 return ret; 2620 } 2621 2622 int coroutine_fn 2623 bdrv_co_common_block_status_above(BlockDriverState *bs, 2624 BlockDriverState *base, 2625 bool include_base, 2626 bool want_zero, 2627 int64_t offset, 2628 int64_t bytes, 2629 int64_t *pnum, 2630 int64_t *map, 2631 BlockDriverState **file, 2632 int *depth) 2633 { 2634 int ret; 2635 BlockDriverState *p; 2636 int64_t eof = 0; 2637 int dummy; 2638 IO_CODE(); 2639 2640 assert(!include_base || base); /* Can't include NULL base */ 2641 assert_bdrv_graph_readable(); 2642 2643 if (!depth) { 2644 depth = &dummy; 2645 } 2646 *depth = 0; 2647 2648 if (!include_base && bs == base) { 2649 *pnum = bytes; 2650 return 0; 2651 } 2652 2653 ret = bdrv_co_do_block_status(bs, want_zero, offset, bytes, pnum, 2654 map, file); 2655 ++*depth; 2656 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2657 return ret; 2658 } 2659 2660 if (ret & BDRV_BLOCK_EOF) { 2661 eof = offset + *pnum; 2662 } 2663 2664 assert(*pnum <= bytes); 2665 bytes = *pnum; 2666 2667 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2668 p = bdrv_filter_or_cow_bs(p)) 2669 { 2670 ret = bdrv_co_do_block_status(p, want_zero, offset, bytes, pnum, 2671 map, file); 2672 ++*depth; 2673 if (ret < 0) { 2674 return ret; 2675 } 2676 if (*pnum == 0) { 2677 /* 2678 * The top layer deferred to this layer, and because this layer is 2679 * short, any zeroes that we synthesize beyond EOF behave as if they 2680 * were allocated at this layer. 2681 * 2682 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2683 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2684 * below. 2685 */ 2686 assert(ret & BDRV_BLOCK_EOF); 2687 *pnum = bytes; 2688 if (file) { 2689 *file = p; 2690 } 2691 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2692 break; 2693 } 2694 if (ret & BDRV_BLOCK_ALLOCATED) { 2695 /* 2696 * We've found the node and the status, we must break. 2697 * 2698 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2699 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2700 * below. 2701 */ 2702 ret &= ~BDRV_BLOCK_EOF; 2703 break; 2704 } 2705 2706 if (p == base) { 2707 assert(include_base); 2708 break; 2709 } 2710 2711 /* 2712 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2713 * let's continue the diving. 2714 */ 2715 assert(*pnum <= bytes); 2716 bytes = *pnum; 2717 } 2718 2719 if (offset + *pnum == eof) { 2720 ret |= BDRV_BLOCK_EOF; 2721 } 2722 2723 return ret; 2724 } 2725 2726 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2727 BlockDriverState *base, 2728 int64_t offset, int64_t bytes, 2729 int64_t *pnum, int64_t *map, 2730 BlockDriverState **file) 2731 { 2732 IO_CODE(); 2733 return bdrv_co_common_block_status_above(bs, base, false, true, offset, 2734 bytes, pnum, map, file, NULL); 2735 } 2736 2737 int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, int64_t offset, 2738 int64_t bytes, int64_t *pnum, 2739 int64_t *map, BlockDriverState **file) 2740 { 2741 IO_CODE(); 2742 return bdrv_co_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2743 offset, bytes, pnum, map, file); 2744 } 2745 2746 /* 2747 * Check @bs (and its backing chain) to see if the range defined 2748 * by @offset and @bytes is known to read as zeroes. 2749 * Return 1 if that is the case, 0 otherwise and -errno on error. 2750 * This test is meant to be fast rather than accurate so returning 0 2751 * does not guarantee non-zero data. 2752 */ 2753 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2754 int64_t bytes) 2755 { 2756 int ret; 2757 int64_t pnum = bytes; 2758 IO_CODE(); 2759 2760 if (!bytes) { 2761 return 1; 2762 } 2763 2764 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset, 2765 bytes, &pnum, NULL, NULL, NULL); 2766 2767 if (ret < 0) { 2768 return ret; 2769 } 2770 2771 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2772 } 2773 2774 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset, 2775 int64_t bytes, int64_t *pnum) 2776 { 2777 int ret; 2778 int64_t dummy; 2779 IO_CODE(); 2780 2781 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset, 2782 bytes, pnum ? pnum : &dummy, NULL, 2783 NULL, NULL); 2784 if (ret < 0) { 2785 return ret; 2786 } 2787 return !!(ret & BDRV_BLOCK_ALLOCATED); 2788 } 2789 2790 /* 2791 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2792 * 2793 * Return a positive depth if (a prefix of) the given range is allocated 2794 * in any image between BASE and TOP (BASE is only included if include_base 2795 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2796 * BASE can be NULL to check if the given offset is allocated in any 2797 * image of the chain. Return 0 otherwise, or negative errno on 2798 * failure. 2799 * 2800 * 'pnum' is set to the number of bytes (including and immediately 2801 * following the specified offset) that are known to be in the same 2802 * allocated/unallocated state. Note that a subsequent call starting 2803 * at 'offset + *pnum' may return the same allocation status (in other 2804 * words, the result is not necessarily the maximum possible range); 2805 * but 'pnum' will only be 0 when end of file is reached. 2806 */ 2807 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *bs, 2808 BlockDriverState *base, 2809 bool include_base, int64_t offset, 2810 int64_t bytes, int64_t *pnum) 2811 { 2812 int depth; 2813 int ret; 2814 IO_CODE(); 2815 2816 ret = bdrv_co_common_block_status_above(bs, base, include_base, false, 2817 offset, bytes, pnum, NULL, NULL, 2818 &depth); 2819 if (ret < 0) { 2820 return ret; 2821 } 2822 2823 if (ret & BDRV_BLOCK_ALLOCATED) { 2824 return depth; 2825 } 2826 return 0; 2827 } 2828 2829 int coroutine_fn 2830 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2831 { 2832 BlockDriver *drv = bs->drv; 2833 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2834 int ret; 2835 IO_CODE(); 2836 assert_bdrv_graph_readable(); 2837 2838 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2839 if (ret < 0) { 2840 return ret; 2841 } 2842 2843 if (!drv) { 2844 return -ENOMEDIUM; 2845 } 2846 2847 bdrv_inc_in_flight(bs); 2848 2849 if (drv->bdrv_co_load_vmstate) { 2850 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos); 2851 } else if (child_bs) { 2852 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2853 } else { 2854 ret = -ENOTSUP; 2855 } 2856 2857 bdrv_dec_in_flight(bs); 2858 2859 return ret; 2860 } 2861 2862 int coroutine_fn 2863 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2864 { 2865 BlockDriver *drv = bs->drv; 2866 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2867 int ret; 2868 IO_CODE(); 2869 assert_bdrv_graph_readable(); 2870 2871 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2872 if (ret < 0) { 2873 return ret; 2874 } 2875 2876 if (!drv) { 2877 return -ENOMEDIUM; 2878 } 2879 2880 bdrv_inc_in_flight(bs); 2881 2882 if (drv->bdrv_co_save_vmstate) { 2883 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos); 2884 } else if (child_bs) { 2885 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2886 } else { 2887 ret = -ENOTSUP; 2888 } 2889 2890 bdrv_dec_in_flight(bs); 2891 2892 return ret; 2893 } 2894 2895 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2896 int64_t pos, int size) 2897 { 2898 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2899 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2900 IO_CODE(); 2901 2902 return ret < 0 ? ret : size; 2903 } 2904 2905 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2906 int64_t pos, int size) 2907 { 2908 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2909 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2910 IO_CODE(); 2911 2912 return ret < 0 ? ret : size; 2913 } 2914 2915 /**************************************************************/ 2916 /* async I/Os */ 2917 2918 /** 2919 * Synchronously cancels an acb. Must be called with the BQL held and the acb 2920 * must be processed with the BQL held too (IOThreads are not allowed). 2921 * 2922 * Use bdrv_aio_cancel_async() instead when possible. 2923 */ 2924 void bdrv_aio_cancel(BlockAIOCB *acb) 2925 { 2926 GLOBAL_STATE_CODE(); 2927 qemu_aio_ref(acb); 2928 bdrv_aio_cancel_async(acb); 2929 AIO_WAIT_WHILE_UNLOCKED(NULL, acb->refcnt > 1); 2930 qemu_aio_unref(acb); 2931 } 2932 2933 /* Async version of aio cancel. The caller is not blocked if the acb implements 2934 * cancel_async, otherwise we do nothing and let the request normally complete. 2935 * In either case the completion callback must be called. */ 2936 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2937 { 2938 IO_CODE(); 2939 if (acb->aiocb_info->cancel_async) { 2940 acb->aiocb_info->cancel_async(acb); 2941 } 2942 } 2943 2944 /**************************************************************/ 2945 /* Coroutine block device emulation */ 2946 2947 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2948 { 2949 BdrvChild *primary_child = bdrv_primary_child(bs); 2950 BdrvChild *child; 2951 int current_gen; 2952 int ret = 0; 2953 IO_CODE(); 2954 2955 assert_bdrv_graph_readable(); 2956 bdrv_inc_in_flight(bs); 2957 2958 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) || 2959 bdrv_is_sg(bs)) { 2960 goto early_exit; 2961 } 2962 2963 qemu_mutex_lock(&bs->reqs_lock); 2964 current_gen = qatomic_read(&bs->write_gen); 2965 2966 /* Wait until any previous flushes are completed */ 2967 while (bs->active_flush_req) { 2968 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2969 } 2970 2971 /* Flushes reach this point in nondecreasing current_gen order. */ 2972 bs->active_flush_req = true; 2973 qemu_mutex_unlock(&bs->reqs_lock); 2974 2975 /* Write back all layers by calling one driver function */ 2976 if (bs->drv->bdrv_co_flush) { 2977 ret = bs->drv->bdrv_co_flush(bs); 2978 goto out; 2979 } 2980 2981 /* Write back cached data to the OS even with cache=unsafe */ 2982 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 2983 if (bs->drv->bdrv_co_flush_to_os) { 2984 ret = bs->drv->bdrv_co_flush_to_os(bs); 2985 if (ret < 0) { 2986 goto out; 2987 } 2988 } 2989 2990 /* But don't actually force it to the disk with cache=unsafe */ 2991 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2992 goto flush_children; 2993 } 2994 2995 /* Check if we really need to flush anything */ 2996 if (bs->flushed_gen == current_gen) { 2997 goto flush_children; 2998 } 2999 3000 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 3001 if (!bs->drv) { 3002 /* bs->drv->bdrv_co_flush() might have ejected the BDS 3003 * (even in case of apparent success) */ 3004 ret = -ENOMEDIUM; 3005 goto out; 3006 } 3007 if (bs->drv->bdrv_co_flush_to_disk) { 3008 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3009 } else if (bs->drv->bdrv_aio_flush) { 3010 BlockAIOCB *acb; 3011 CoroutineIOCompletion co = { 3012 .coroutine = qemu_coroutine_self(), 3013 }; 3014 3015 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3016 if (acb == NULL) { 3017 ret = -EIO; 3018 } else { 3019 qemu_coroutine_yield(); 3020 ret = co.ret; 3021 } 3022 } else { 3023 /* 3024 * Some block drivers always operate in either writethrough or unsafe 3025 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3026 * know how the server works (because the behaviour is hardcoded or 3027 * depends on server-side configuration), so we can't ensure that 3028 * everything is safe on disk. Returning an error doesn't work because 3029 * that would break guests even if the server operates in writethrough 3030 * mode. 3031 * 3032 * Let's hope the user knows what he's doing. 3033 */ 3034 ret = 0; 3035 } 3036 3037 if (ret < 0) { 3038 goto out; 3039 } 3040 3041 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3042 * in the case of cache=unsafe, so there are no useless flushes. 3043 */ 3044 flush_children: 3045 ret = 0; 3046 QLIST_FOREACH(child, &bs->children, next) { 3047 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3048 int this_child_ret = bdrv_co_flush(child->bs); 3049 if (!ret) { 3050 ret = this_child_ret; 3051 } 3052 } 3053 } 3054 3055 out: 3056 /* Notify any pending flushes that we have completed */ 3057 if (ret == 0) { 3058 bs->flushed_gen = current_gen; 3059 } 3060 3061 qemu_mutex_lock(&bs->reqs_lock); 3062 bs->active_flush_req = false; 3063 /* Return value is ignored - it's ok if wait queue is empty */ 3064 qemu_co_queue_next(&bs->flush_queue); 3065 qemu_mutex_unlock(&bs->reqs_lock); 3066 3067 early_exit: 3068 bdrv_dec_in_flight(bs); 3069 return ret; 3070 } 3071 3072 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3073 int64_t bytes) 3074 { 3075 BdrvTrackedRequest req; 3076 int ret; 3077 int64_t max_pdiscard; 3078 int head, tail, align; 3079 BlockDriverState *bs = child->bs; 3080 IO_CODE(); 3081 assert_bdrv_graph_readable(); 3082 3083 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) { 3084 return -ENOMEDIUM; 3085 } 3086 3087 if (bdrv_has_readonly_bitmaps(bs)) { 3088 return -EPERM; 3089 } 3090 3091 ret = bdrv_check_request(offset, bytes, NULL); 3092 if (ret < 0) { 3093 return ret; 3094 } 3095 3096 /* Do nothing if disabled. */ 3097 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3098 return 0; 3099 } 3100 3101 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 3102 return 0; 3103 } 3104 3105 /* Invalidate the cached block-status data range if this discard overlaps */ 3106 bdrv_bsc_invalidate_range(bs, offset, bytes); 3107 3108 /* Discard is advisory, but some devices track and coalesce 3109 * unaligned requests, so we must pass everything down rather than 3110 * round here. Still, most devices will just silently ignore 3111 * unaligned requests (by returning -ENOTSUP), so we must fragment 3112 * the request accordingly. */ 3113 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3114 assert(align % bs->bl.request_alignment == 0); 3115 head = offset % align; 3116 tail = (offset + bytes) % align; 3117 3118 bdrv_inc_in_flight(bs); 3119 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3120 3121 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3122 if (ret < 0) { 3123 goto out; 3124 } 3125 3126 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3127 align); 3128 assert(max_pdiscard >= bs->bl.request_alignment); 3129 3130 while (bytes > 0) { 3131 int64_t num = bytes; 3132 3133 if (head) { 3134 /* Make small requests to get to alignment boundaries. */ 3135 num = MIN(bytes, align - head); 3136 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3137 num %= bs->bl.request_alignment; 3138 } 3139 head = (head + num) % align; 3140 assert(num < max_pdiscard); 3141 } else if (tail) { 3142 if (num > align) { 3143 /* Shorten the request to the last aligned cluster. */ 3144 num -= tail; 3145 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3146 tail > bs->bl.request_alignment) { 3147 tail %= bs->bl.request_alignment; 3148 num -= tail; 3149 } 3150 } 3151 /* limit request size */ 3152 if (num > max_pdiscard) { 3153 num = max_pdiscard; 3154 } 3155 3156 if (!bs->drv) { 3157 ret = -ENOMEDIUM; 3158 goto out; 3159 } 3160 if (bs->drv->bdrv_co_pdiscard) { 3161 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3162 } else { 3163 BlockAIOCB *acb; 3164 CoroutineIOCompletion co = { 3165 .coroutine = qemu_coroutine_self(), 3166 }; 3167 3168 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3169 bdrv_co_io_em_complete, &co); 3170 if (acb == NULL) { 3171 ret = -EIO; 3172 goto out; 3173 } else { 3174 qemu_coroutine_yield(); 3175 ret = co.ret; 3176 } 3177 } 3178 if (ret && ret != -ENOTSUP) { 3179 goto out; 3180 } 3181 3182 offset += num; 3183 bytes -= num; 3184 } 3185 ret = 0; 3186 out: 3187 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3188 tracked_request_end(&req); 3189 bdrv_dec_in_flight(bs); 3190 return ret; 3191 } 3192 3193 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3194 { 3195 BlockDriver *drv = bs->drv; 3196 CoroutineIOCompletion co = { 3197 .coroutine = qemu_coroutine_self(), 3198 }; 3199 BlockAIOCB *acb; 3200 IO_CODE(); 3201 assert_bdrv_graph_readable(); 3202 3203 bdrv_inc_in_flight(bs); 3204 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3205 co.ret = -ENOTSUP; 3206 goto out; 3207 } 3208 3209 if (drv->bdrv_co_ioctl) { 3210 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3211 } else { 3212 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3213 if (!acb) { 3214 co.ret = -ENOTSUP; 3215 goto out; 3216 } 3217 qemu_coroutine_yield(); 3218 } 3219 out: 3220 bdrv_dec_in_flight(bs); 3221 return co.ret; 3222 } 3223 3224 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset, 3225 unsigned int *nr_zones, 3226 BlockZoneDescriptor *zones) 3227 { 3228 BlockDriver *drv = bs->drv; 3229 CoroutineIOCompletion co = { 3230 .coroutine = qemu_coroutine_self(), 3231 }; 3232 IO_CODE(); 3233 3234 bdrv_inc_in_flight(bs); 3235 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) { 3236 co.ret = -ENOTSUP; 3237 goto out; 3238 } 3239 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones); 3240 out: 3241 bdrv_dec_in_flight(bs); 3242 return co.ret; 3243 } 3244 3245 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op, 3246 int64_t offset, int64_t len) 3247 { 3248 BlockDriver *drv = bs->drv; 3249 CoroutineIOCompletion co = { 3250 .coroutine = qemu_coroutine_self(), 3251 }; 3252 IO_CODE(); 3253 3254 bdrv_inc_in_flight(bs); 3255 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) { 3256 co.ret = -ENOTSUP; 3257 goto out; 3258 } 3259 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len); 3260 out: 3261 bdrv_dec_in_flight(bs); 3262 return co.ret; 3263 } 3264 3265 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset, 3266 QEMUIOVector *qiov, 3267 BdrvRequestFlags flags) 3268 { 3269 int ret; 3270 BlockDriver *drv = bs->drv; 3271 CoroutineIOCompletion co = { 3272 .coroutine = qemu_coroutine_self(), 3273 }; 3274 IO_CODE(); 3275 3276 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL); 3277 if (ret < 0) { 3278 return ret; 3279 } 3280 3281 bdrv_inc_in_flight(bs); 3282 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) { 3283 co.ret = -ENOTSUP; 3284 goto out; 3285 } 3286 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags); 3287 out: 3288 bdrv_dec_in_flight(bs); 3289 return co.ret; 3290 } 3291 3292 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3293 { 3294 IO_CODE(); 3295 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3296 } 3297 3298 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3299 { 3300 IO_CODE(); 3301 return memset(qemu_blockalign(bs, size), 0, size); 3302 } 3303 3304 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3305 { 3306 size_t align = bdrv_opt_mem_align(bs); 3307 IO_CODE(); 3308 3309 /* Ensure that NULL is never returned on success */ 3310 assert(align > 0); 3311 if (size == 0) { 3312 size = align; 3313 } 3314 3315 return qemu_try_memalign(align, size); 3316 } 3317 3318 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3319 { 3320 void *mem = qemu_try_blockalign(bs, size); 3321 IO_CODE(); 3322 3323 if (mem) { 3324 memset(mem, 0, size); 3325 } 3326 3327 return mem; 3328 } 3329 3330 /* Helper that undoes bdrv_register_buf() when it fails partway through */ 3331 static void GRAPH_RDLOCK 3332 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size, 3333 BdrvChild *final_child) 3334 { 3335 BdrvChild *child; 3336 3337 GLOBAL_STATE_CODE(); 3338 assert_bdrv_graph_readable(); 3339 3340 QLIST_FOREACH(child, &bs->children, next) { 3341 if (child == final_child) { 3342 break; 3343 } 3344 3345 bdrv_unregister_buf(child->bs, host, size); 3346 } 3347 3348 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3349 bs->drv->bdrv_unregister_buf(bs, host, size); 3350 } 3351 } 3352 3353 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size, 3354 Error **errp) 3355 { 3356 BdrvChild *child; 3357 3358 GLOBAL_STATE_CODE(); 3359 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3360 3361 if (bs->drv && bs->drv->bdrv_register_buf) { 3362 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) { 3363 return false; 3364 } 3365 } 3366 QLIST_FOREACH(child, &bs->children, next) { 3367 if (!bdrv_register_buf(child->bs, host, size, errp)) { 3368 bdrv_register_buf_rollback(bs, host, size, child); 3369 return false; 3370 } 3371 } 3372 return true; 3373 } 3374 3375 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size) 3376 { 3377 BdrvChild *child; 3378 3379 GLOBAL_STATE_CODE(); 3380 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3381 3382 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3383 bs->drv->bdrv_unregister_buf(bs, host, size); 3384 } 3385 QLIST_FOREACH(child, &bs->children, next) { 3386 bdrv_unregister_buf(child->bs, host, size); 3387 } 3388 } 3389 3390 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal( 3391 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3392 int64_t dst_offset, int64_t bytes, 3393 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3394 bool recurse_src) 3395 { 3396 BdrvTrackedRequest req; 3397 int ret; 3398 assert_bdrv_graph_readable(); 3399 3400 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3401 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3402 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3403 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3404 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3405 3406 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) { 3407 return -ENOMEDIUM; 3408 } 3409 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3410 if (ret) { 3411 return ret; 3412 } 3413 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3414 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3415 } 3416 3417 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) { 3418 return -ENOMEDIUM; 3419 } 3420 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3421 if (ret) { 3422 return ret; 3423 } 3424 3425 if (!src->bs->drv->bdrv_co_copy_range_from 3426 || !dst->bs->drv->bdrv_co_copy_range_to 3427 || src->bs->encrypted || dst->bs->encrypted) { 3428 return -ENOTSUP; 3429 } 3430 3431 if (recurse_src) { 3432 bdrv_inc_in_flight(src->bs); 3433 tracked_request_begin(&req, src->bs, src_offset, bytes, 3434 BDRV_TRACKED_READ); 3435 3436 /* BDRV_REQ_SERIALISING is only for write operation */ 3437 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3438 bdrv_wait_serialising_requests(&req); 3439 3440 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3441 src, src_offset, 3442 dst, dst_offset, 3443 bytes, 3444 read_flags, write_flags); 3445 3446 tracked_request_end(&req); 3447 bdrv_dec_in_flight(src->bs); 3448 } else { 3449 bdrv_inc_in_flight(dst->bs); 3450 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3451 BDRV_TRACKED_WRITE); 3452 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3453 write_flags); 3454 if (!ret) { 3455 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3456 src, src_offset, 3457 dst, dst_offset, 3458 bytes, 3459 read_flags, write_flags); 3460 } 3461 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3462 tracked_request_end(&req); 3463 bdrv_dec_in_flight(dst->bs); 3464 } 3465 3466 return ret; 3467 } 3468 3469 /* Copy range from @src to @dst. 3470 * 3471 * See the comment of bdrv_co_copy_range for the parameter and return value 3472 * semantics. */ 3473 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3474 BdrvChild *dst, int64_t dst_offset, 3475 int64_t bytes, 3476 BdrvRequestFlags read_flags, 3477 BdrvRequestFlags write_flags) 3478 { 3479 IO_CODE(); 3480 assert_bdrv_graph_readable(); 3481 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3482 read_flags, write_flags); 3483 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3484 bytes, read_flags, write_flags, true); 3485 } 3486 3487 /* Copy range from @src to @dst. 3488 * 3489 * See the comment of bdrv_co_copy_range for the parameter and return value 3490 * semantics. */ 3491 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3492 BdrvChild *dst, int64_t dst_offset, 3493 int64_t bytes, 3494 BdrvRequestFlags read_flags, 3495 BdrvRequestFlags write_flags) 3496 { 3497 IO_CODE(); 3498 assert_bdrv_graph_readable(); 3499 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3500 read_flags, write_flags); 3501 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3502 bytes, read_flags, write_flags, false); 3503 } 3504 3505 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3506 BdrvChild *dst, int64_t dst_offset, 3507 int64_t bytes, BdrvRequestFlags read_flags, 3508 BdrvRequestFlags write_flags) 3509 { 3510 IO_CODE(); 3511 assert_bdrv_graph_readable(); 3512 3513 return bdrv_co_copy_range_from(src, src_offset, 3514 dst, dst_offset, 3515 bytes, read_flags, write_flags); 3516 } 3517 3518 static void coroutine_fn GRAPH_RDLOCK 3519 bdrv_parent_cb_resize(BlockDriverState *bs) 3520 { 3521 BdrvChild *c; 3522 3523 assert_bdrv_graph_readable(); 3524 3525 QLIST_FOREACH(c, &bs->parents, next_parent) { 3526 if (c->klass->resize) { 3527 c->klass->resize(c); 3528 } 3529 } 3530 } 3531 3532 /** 3533 * Truncate file to 'offset' bytes (needed only for file protocols) 3534 * 3535 * If 'exact' is true, the file must be resized to exactly the given 3536 * 'offset'. Otherwise, it is sufficient for the node to be at least 3537 * 'offset' bytes in length. 3538 */ 3539 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3540 PreallocMode prealloc, BdrvRequestFlags flags, 3541 Error **errp) 3542 { 3543 BlockDriverState *bs = child->bs; 3544 BdrvChild *filtered, *backing; 3545 BlockDriver *drv = bs->drv; 3546 BdrvTrackedRequest req; 3547 int64_t old_size, new_bytes; 3548 int ret; 3549 IO_CODE(); 3550 assert_bdrv_graph_readable(); 3551 3552 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3553 if (!drv) { 3554 error_setg(errp, "No medium inserted"); 3555 return -ENOMEDIUM; 3556 } 3557 if (offset < 0) { 3558 error_setg(errp, "Image size cannot be negative"); 3559 return -EINVAL; 3560 } 3561 3562 ret = bdrv_check_request(offset, 0, errp); 3563 if (ret < 0) { 3564 return ret; 3565 } 3566 3567 old_size = bdrv_co_getlength(bs); 3568 if (old_size < 0) { 3569 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3570 return old_size; 3571 } 3572 3573 if (bdrv_is_read_only(bs)) { 3574 error_setg(errp, "Image is read-only"); 3575 return -EACCES; 3576 } 3577 3578 if (offset > old_size) { 3579 new_bytes = offset - old_size; 3580 } else { 3581 new_bytes = 0; 3582 } 3583 3584 bdrv_inc_in_flight(bs); 3585 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3586 BDRV_TRACKED_TRUNCATE); 3587 3588 /* If we are growing the image and potentially using preallocation for the 3589 * new area, we need to make sure that no write requests are made to it 3590 * concurrently or they might be overwritten by preallocation. */ 3591 if (new_bytes) { 3592 bdrv_make_request_serialising(&req, 1); 3593 } 3594 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3595 0); 3596 if (ret < 0) { 3597 error_setg_errno(errp, -ret, 3598 "Failed to prepare request for truncation"); 3599 goto out; 3600 } 3601 3602 filtered = bdrv_filter_child(bs); 3603 backing = bdrv_cow_child(bs); 3604 3605 /* 3606 * If the image has a backing file that is large enough that it would 3607 * provide data for the new area, we cannot leave it unallocated because 3608 * then the backing file content would become visible. Instead, zero-fill 3609 * the new area. 3610 * 3611 * Note that if the image has a backing file, but was opened without the 3612 * backing file, taking care of keeping things consistent with that backing 3613 * file is the user's responsibility. 3614 */ 3615 if (new_bytes && backing) { 3616 int64_t backing_len; 3617 3618 backing_len = bdrv_co_getlength(backing->bs); 3619 if (backing_len < 0) { 3620 ret = backing_len; 3621 error_setg_errno(errp, -ret, "Could not get backing file size"); 3622 goto out; 3623 } 3624 3625 if (backing_len > old_size) { 3626 flags |= BDRV_REQ_ZERO_WRITE; 3627 } 3628 } 3629 3630 if (drv->bdrv_co_truncate) { 3631 if (flags & ~bs->supported_truncate_flags) { 3632 error_setg(errp, "Block driver does not support requested flags"); 3633 ret = -ENOTSUP; 3634 goto out; 3635 } 3636 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3637 } else if (filtered) { 3638 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3639 } else { 3640 error_setg(errp, "Image format driver does not support resize"); 3641 ret = -ENOTSUP; 3642 goto out; 3643 } 3644 if (ret < 0) { 3645 goto out; 3646 } 3647 3648 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3649 if (ret < 0) { 3650 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3651 } else { 3652 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3653 } 3654 /* 3655 * It's possible that truncation succeeded but bdrv_refresh_total_sectors 3656 * failed, but the latter doesn't affect how we should finish the request. 3657 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. 3658 */ 3659 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3660 3661 out: 3662 tracked_request_end(&req); 3663 bdrv_dec_in_flight(bs); 3664 3665 return ret; 3666 } 3667 3668 void bdrv_cancel_in_flight(BlockDriverState *bs) 3669 { 3670 GLOBAL_STATE_CODE(); 3671 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3672 3673 if (!bs || !bs->drv) { 3674 return; 3675 } 3676 3677 if (bs->drv->bdrv_cancel_in_flight) { 3678 bs->drv->bdrv_cancel_in_flight(bs); 3679 } 3680 } 3681 3682 int coroutine_fn 3683 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3684 QEMUIOVector *qiov, size_t qiov_offset) 3685 { 3686 BlockDriverState *bs = child->bs; 3687 BlockDriver *drv = bs->drv; 3688 int ret; 3689 IO_CODE(); 3690 assert_bdrv_graph_readable(); 3691 3692 if (!drv) { 3693 return -ENOMEDIUM; 3694 } 3695 3696 if (!drv->bdrv_co_preadv_snapshot) { 3697 return -ENOTSUP; 3698 } 3699 3700 bdrv_inc_in_flight(bs); 3701 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3702 bdrv_dec_in_flight(bs); 3703 3704 return ret; 3705 } 3706 3707 int coroutine_fn 3708 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3709 bool want_zero, int64_t offset, int64_t bytes, 3710 int64_t *pnum, int64_t *map, 3711 BlockDriverState **file) 3712 { 3713 BlockDriver *drv = bs->drv; 3714 int ret; 3715 IO_CODE(); 3716 assert_bdrv_graph_readable(); 3717 3718 if (!drv) { 3719 return -ENOMEDIUM; 3720 } 3721 3722 if (!drv->bdrv_co_snapshot_block_status) { 3723 return -ENOTSUP; 3724 } 3725 3726 bdrv_inc_in_flight(bs); 3727 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3728 pnum, map, file); 3729 bdrv_dec_in_flight(bs); 3730 3731 return ret; 3732 } 3733 3734 int coroutine_fn 3735 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3736 { 3737 BlockDriver *drv = bs->drv; 3738 int ret; 3739 IO_CODE(); 3740 assert_bdrv_graph_readable(); 3741 3742 if (!drv) { 3743 return -ENOMEDIUM; 3744 } 3745 3746 if (!drv->bdrv_co_pdiscard_snapshot) { 3747 return -ENOTSUP; 3748 } 3749 3750 bdrv_inc_in_flight(bs); 3751 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3752 bdrv_dec_in_flight(bs); 3753 3754 return ret; 3755 } 3756