1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "qemu/cutils.h" 33 #include "qapi/error.h" 34 #include "qemu/error-report.h" 35 #include "qemu/main-loop.h" 36 #include "sysemu/replay.h" 37 38 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 39 40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 42 43 static void bdrv_parent_cb_resize(BlockDriverState *bs); 44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 45 int64_t offset, int bytes, BdrvRequestFlags flags); 46 47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 48 bool ignore_bds_parents) 49 { 50 BdrvChild *c, *next; 51 52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 53 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 54 continue; 55 } 56 bdrv_parent_drained_begin_single(c, false); 57 } 58 } 59 60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 61 int *drained_end_counter) 62 { 63 assert(c->parent_quiesce_counter > 0); 64 c->parent_quiesce_counter--; 65 if (c->role->drained_end) { 66 c->role->drained_end(c, drained_end_counter); 67 } 68 } 69 70 void bdrv_parent_drained_end_single(BdrvChild *c) 71 { 72 int drained_end_counter = 0; 73 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 74 BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0); 75 } 76 77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 78 bool ignore_bds_parents, 79 int *drained_end_counter) 80 { 81 BdrvChild *c; 82 83 QLIST_FOREACH(c, &bs->parents, next_parent) { 84 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 85 continue; 86 } 87 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 88 } 89 } 90 91 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 92 { 93 if (c->role->drained_poll) { 94 return c->role->drained_poll(c); 95 } 96 return false; 97 } 98 99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 100 bool ignore_bds_parents) 101 { 102 BdrvChild *c, *next; 103 bool busy = false; 104 105 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 106 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 107 continue; 108 } 109 busy |= bdrv_parent_drained_poll_single(c); 110 } 111 112 return busy; 113 } 114 115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 116 { 117 c->parent_quiesce_counter++; 118 if (c->role->drained_begin) { 119 c->role->drained_begin(c); 120 } 121 if (poll) { 122 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 123 } 124 } 125 126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 127 { 128 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 129 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 130 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 131 src->opt_mem_alignment); 132 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 133 src->min_mem_alignment); 134 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 135 } 136 137 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 138 { 139 BlockDriver *drv = bs->drv; 140 Error *local_err = NULL; 141 142 memset(&bs->bl, 0, sizeof(bs->bl)); 143 144 if (!drv) { 145 return; 146 } 147 148 /* Default alignment based on whether driver has byte interface */ 149 bs->bl.request_alignment = (drv->bdrv_co_preadv || 150 drv->bdrv_aio_preadv || 151 drv->bdrv_co_preadv_part) ? 1 : 512; 152 153 /* Take some limits from the children as a default */ 154 if (bs->file) { 155 bdrv_refresh_limits(bs->file->bs, &local_err); 156 if (local_err) { 157 error_propagate(errp, local_err); 158 return; 159 } 160 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 161 } else { 162 bs->bl.min_mem_alignment = 512; 163 bs->bl.opt_mem_alignment = qemu_real_host_page_size; 164 165 /* Safe default since most protocols use readv()/writev()/etc */ 166 bs->bl.max_iov = IOV_MAX; 167 } 168 169 if (bs->backing) { 170 bdrv_refresh_limits(bs->backing->bs, &local_err); 171 if (local_err) { 172 error_propagate(errp, local_err); 173 return; 174 } 175 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 176 } 177 178 /* Then let the driver override it */ 179 if (drv->bdrv_refresh_limits) { 180 drv->bdrv_refresh_limits(bs, errp); 181 } 182 } 183 184 /** 185 * The copy-on-read flag is actually a reference count so multiple users may 186 * use the feature without worrying about clobbering its previous state. 187 * Copy-on-read stays enabled until all users have called to disable it. 188 */ 189 void bdrv_enable_copy_on_read(BlockDriverState *bs) 190 { 191 atomic_inc(&bs->copy_on_read); 192 } 193 194 void bdrv_disable_copy_on_read(BlockDriverState *bs) 195 { 196 int old = atomic_fetch_dec(&bs->copy_on_read); 197 assert(old >= 1); 198 } 199 200 typedef struct { 201 Coroutine *co; 202 BlockDriverState *bs; 203 bool done; 204 bool begin; 205 bool recursive; 206 bool poll; 207 BdrvChild *parent; 208 bool ignore_bds_parents; 209 int *drained_end_counter; 210 } BdrvCoDrainData; 211 212 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 213 { 214 BdrvCoDrainData *data = opaque; 215 BlockDriverState *bs = data->bs; 216 217 if (data->begin) { 218 bs->drv->bdrv_co_drain_begin(bs); 219 } else { 220 bs->drv->bdrv_co_drain_end(bs); 221 } 222 223 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 224 atomic_mb_set(&data->done, true); 225 if (!data->begin) { 226 atomic_dec(data->drained_end_counter); 227 } 228 bdrv_dec_in_flight(bs); 229 230 g_free(data); 231 } 232 233 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 234 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 235 int *drained_end_counter) 236 { 237 BdrvCoDrainData *data; 238 239 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 240 (!begin && !bs->drv->bdrv_co_drain_end)) { 241 return; 242 } 243 244 data = g_new(BdrvCoDrainData, 1); 245 *data = (BdrvCoDrainData) { 246 .bs = bs, 247 .done = false, 248 .begin = begin, 249 .drained_end_counter = drained_end_counter, 250 }; 251 252 if (!begin) { 253 atomic_inc(drained_end_counter); 254 } 255 256 /* Make sure the driver callback completes during the polling phase for 257 * drain_begin. */ 258 bdrv_inc_in_flight(bs); 259 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 260 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 261 } 262 263 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 264 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 265 BdrvChild *ignore_parent, bool ignore_bds_parents) 266 { 267 BdrvChild *child, *next; 268 269 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 270 return true; 271 } 272 273 if (atomic_read(&bs->in_flight)) { 274 return true; 275 } 276 277 if (recursive) { 278 assert(!ignore_bds_parents); 279 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 280 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 281 return true; 282 } 283 } 284 } 285 286 return false; 287 } 288 289 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 290 BdrvChild *ignore_parent) 291 { 292 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 293 } 294 295 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 296 BdrvChild *parent, bool ignore_bds_parents, 297 bool poll); 298 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 299 BdrvChild *parent, bool ignore_bds_parents, 300 int *drained_end_counter); 301 302 static void bdrv_co_drain_bh_cb(void *opaque) 303 { 304 BdrvCoDrainData *data = opaque; 305 Coroutine *co = data->co; 306 BlockDriverState *bs = data->bs; 307 308 if (bs) { 309 AioContext *ctx = bdrv_get_aio_context(bs); 310 AioContext *co_ctx = qemu_coroutine_get_aio_context(co); 311 312 /* 313 * When the coroutine yielded, the lock for its home context was 314 * released, so we need to re-acquire it here. If it explicitly 315 * acquired a different context, the lock is still held and we don't 316 * want to lock it a second time (or AIO_WAIT_WHILE() would hang). 317 */ 318 if (ctx == co_ctx) { 319 aio_context_acquire(ctx); 320 } 321 bdrv_dec_in_flight(bs); 322 if (data->begin) { 323 assert(!data->drained_end_counter); 324 bdrv_do_drained_begin(bs, data->recursive, data->parent, 325 data->ignore_bds_parents, data->poll); 326 } else { 327 assert(!data->poll); 328 bdrv_do_drained_end(bs, data->recursive, data->parent, 329 data->ignore_bds_parents, 330 data->drained_end_counter); 331 } 332 if (ctx == co_ctx) { 333 aio_context_release(ctx); 334 } 335 } else { 336 assert(data->begin); 337 bdrv_drain_all_begin(); 338 } 339 340 data->done = true; 341 aio_co_wake(co); 342 } 343 344 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 345 bool begin, bool recursive, 346 BdrvChild *parent, 347 bool ignore_bds_parents, 348 bool poll, 349 int *drained_end_counter) 350 { 351 BdrvCoDrainData data; 352 353 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 354 * other coroutines run if they were queued by aio_co_enter(). */ 355 356 assert(qemu_in_coroutine()); 357 data = (BdrvCoDrainData) { 358 .co = qemu_coroutine_self(), 359 .bs = bs, 360 .done = false, 361 .begin = begin, 362 .recursive = recursive, 363 .parent = parent, 364 .ignore_bds_parents = ignore_bds_parents, 365 .poll = poll, 366 .drained_end_counter = drained_end_counter, 367 }; 368 369 if (bs) { 370 bdrv_inc_in_flight(bs); 371 } 372 replay_bh_schedule_oneshot_event(bdrv_get_aio_context(bs), 373 bdrv_co_drain_bh_cb, &data); 374 375 qemu_coroutine_yield(); 376 /* If we are resumed from some other event (such as an aio completion or a 377 * timer callback), it is a bug in the caller that should be fixed. */ 378 assert(data.done); 379 } 380 381 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 382 BdrvChild *parent, bool ignore_bds_parents) 383 { 384 assert(!qemu_in_coroutine()); 385 386 /* Stop things in parent-to-child order */ 387 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 388 aio_disable_external(bdrv_get_aio_context(bs)); 389 } 390 391 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 392 bdrv_drain_invoke(bs, true, NULL); 393 } 394 395 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 396 BdrvChild *parent, bool ignore_bds_parents, 397 bool poll) 398 { 399 BdrvChild *child, *next; 400 401 if (qemu_in_coroutine()) { 402 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 403 poll, NULL); 404 return; 405 } 406 407 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 408 409 if (recursive) { 410 assert(!ignore_bds_parents); 411 bs->recursive_quiesce_counter++; 412 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 413 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 414 false); 415 } 416 } 417 418 /* 419 * Wait for drained requests to finish. 420 * 421 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 422 * call is needed so things in this AioContext can make progress even 423 * though we don't return to the main AioContext loop - this automatically 424 * includes other nodes in the same AioContext and therefore all child 425 * nodes. 426 */ 427 if (poll) { 428 assert(!ignore_bds_parents); 429 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 430 } 431 } 432 433 void bdrv_drained_begin(BlockDriverState *bs) 434 { 435 bdrv_do_drained_begin(bs, false, NULL, false, true); 436 } 437 438 void bdrv_subtree_drained_begin(BlockDriverState *bs) 439 { 440 bdrv_do_drained_begin(bs, true, NULL, false, true); 441 } 442 443 /** 444 * This function does not poll, nor must any of its recursively called 445 * functions. The *drained_end_counter pointee will be incremented 446 * once for every background operation scheduled, and decremented once 447 * the operation settles. Therefore, the pointer must remain valid 448 * until the pointee reaches 0. That implies that whoever sets up the 449 * pointee has to poll until it is 0. 450 * 451 * We use atomic operations to access *drained_end_counter, because 452 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 453 * @bs may contain nodes in different AioContexts, 454 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 455 * regardless of which AioContext they are in. 456 */ 457 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 458 BdrvChild *parent, bool ignore_bds_parents, 459 int *drained_end_counter) 460 { 461 BdrvChild *child; 462 int old_quiesce_counter; 463 464 assert(drained_end_counter != NULL); 465 466 if (qemu_in_coroutine()) { 467 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 468 false, drained_end_counter); 469 return; 470 } 471 assert(bs->quiesce_counter > 0); 472 473 /* Re-enable things in child-to-parent order */ 474 bdrv_drain_invoke(bs, false, drained_end_counter); 475 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 476 drained_end_counter); 477 478 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter); 479 if (old_quiesce_counter == 1) { 480 aio_enable_external(bdrv_get_aio_context(bs)); 481 } 482 483 if (recursive) { 484 assert(!ignore_bds_parents); 485 bs->recursive_quiesce_counter--; 486 QLIST_FOREACH(child, &bs->children, next) { 487 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 488 drained_end_counter); 489 } 490 } 491 } 492 493 void bdrv_drained_end(BlockDriverState *bs) 494 { 495 int drained_end_counter = 0; 496 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 497 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0); 498 } 499 500 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 501 { 502 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 503 } 504 505 void bdrv_subtree_drained_end(BlockDriverState *bs) 506 { 507 int drained_end_counter = 0; 508 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 509 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0); 510 } 511 512 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 513 { 514 int i; 515 516 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 517 bdrv_do_drained_begin(child->bs, true, child, false, true); 518 } 519 } 520 521 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 522 { 523 int drained_end_counter = 0; 524 int i; 525 526 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 527 bdrv_do_drained_end(child->bs, true, child, false, 528 &drained_end_counter); 529 } 530 531 BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0); 532 } 533 534 /* 535 * Wait for pending requests to complete on a single BlockDriverState subtree, 536 * and suspend block driver's internal I/O until next request arrives. 537 * 538 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 539 * AioContext. 540 */ 541 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 542 { 543 assert(qemu_in_coroutine()); 544 bdrv_drained_begin(bs); 545 bdrv_drained_end(bs); 546 } 547 548 void bdrv_drain(BlockDriverState *bs) 549 { 550 bdrv_drained_begin(bs); 551 bdrv_drained_end(bs); 552 } 553 554 static void bdrv_drain_assert_idle(BlockDriverState *bs) 555 { 556 BdrvChild *child, *next; 557 558 assert(atomic_read(&bs->in_flight) == 0); 559 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 560 bdrv_drain_assert_idle(child->bs); 561 } 562 } 563 564 unsigned int bdrv_drain_all_count = 0; 565 566 static bool bdrv_drain_all_poll(void) 567 { 568 BlockDriverState *bs = NULL; 569 bool result = false; 570 571 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 572 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 573 while ((bs = bdrv_next_all_states(bs))) { 574 AioContext *aio_context = bdrv_get_aio_context(bs); 575 aio_context_acquire(aio_context); 576 result |= bdrv_drain_poll(bs, false, NULL, true); 577 aio_context_release(aio_context); 578 } 579 580 return result; 581 } 582 583 /* 584 * Wait for pending requests to complete across all BlockDriverStates 585 * 586 * This function does not flush data to disk, use bdrv_flush_all() for that 587 * after calling this function. 588 * 589 * This pauses all block jobs and disables external clients. It must 590 * be paired with bdrv_drain_all_end(). 591 * 592 * NOTE: no new block jobs or BlockDriverStates can be created between 593 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 594 */ 595 void bdrv_drain_all_begin(void) 596 { 597 BlockDriverState *bs = NULL; 598 599 if (qemu_in_coroutine()) { 600 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 601 return; 602 } 603 604 /* 605 * bdrv queue is managed by record/replay, 606 * waiting for finishing the I/O requests may 607 * be infinite 608 */ 609 if (replay_events_enabled()) { 610 return; 611 } 612 613 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 614 * loop AioContext, so make sure we're in the main context. */ 615 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 616 assert(bdrv_drain_all_count < INT_MAX); 617 bdrv_drain_all_count++; 618 619 /* Quiesce all nodes, without polling in-flight requests yet. The graph 620 * cannot change during this loop. */ 621 while ((bs = bdrv_next_all_states(bs))) { 622 AioContext *aio_context = bdrv_get_aio_context(bs); 623 624 aio_context_acquire(aio_context); 625 bdrv_do_drained_begin(bs, false, NULL, true, false); 626 aio_context_release(aio_context); 627 } 628 629 /* Now poll the in-flight requests */ 630 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 631 632 while ((bs = bdrv_next_all_states(bs))) { 633 bdrv_drain_assert_idle(bs); 634 } 635 } 636 637 void bdrv_drain_all_end(void) 638 { 639 BlockDriverState *bs = NULL; 640 int drained_end_counter = 0; 641 642 /* 643 * bdrv queue is managed by record/replay, 644 * waiting for finishing the I/O requests may 645 * be endless 646 */ 647 if (replay_events_enabled()) { 648 return; 649 } 650 651 while ((bs = bdrv_next_all_states(bs))) { 652 AioContext *aio_context = bdrv_get_aio_context(bs); 653 654 aio_context_acquire(aio_context); 655 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 656 aio_context_release(aio_context); 657 } 658 659 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 660 AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0); 661 662 assert(bdrv_drain_all_count > 0); 663 bdrv_drain_all_count--; 664 } 665 666 void bdrv_drain_all(void) 667 { 668 bdrv_drain_all_begin(); 669 bdrv_drain_all_end(); 670 } 671 672 /** 673 * Remove an active request from the tracked requests list 674 * 675 * This function should be called when a tracked request is completing. 676 */ 677 static void tracked_request_end(BdrvTrackedRequest *req) 678 { 679 if (req->serialising) { 680 atomic_dec(&req->bs->serialising_in_flight); 681 } 682 683 qemu_co_mutex_lock(&req->bs->reqs_lock); 684 QLIST_REMOVE(req, list); 685 qemu_co_queue_restart_all(&req->wait_queue); 686 qemu_co_mutex_unlock(&req->bs->reqs_lock); 687 } 688 689 /** 690 * Add an active request to the tracked requests list 691 */ 692 static void tracked_request_begin(BdrvTrackedRequest *req, 693 BlockDriverState *bs, 694 int64_t offset, 695 uint64_t bytes, 696 enum BdrvTrackedRequestType type) 697 { 698 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes); 699 700 *req = (BdrvTrackedRequest){ 701 .bs = bs, 702 .offset = offset, 703 .bytes = bytes, 704 .type = type, 705 .co = qemu_coroutine_self(), 706 .serialising = false, 707 .overlap_offset = offset, 708 .overlap_bytes = bytes, 709 }; 710 711 qemu_co_queue_init(&req->wait_queue); 712 713 qemu_co_mutex_lock(&bs->reqs_lock); 714 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 715 qemu_co_mutex_unlock(&bs->reqs_lock); 716 } 717 718 void bdrv_mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 719 { 720 int64_t overlap_offset = req->offset & ~(align - 1); 721 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 722 - overlap_offset; 723 724 if (!req->serialising) { 725 atomic_inc(&req->bs->serialising_in_flight); 726 req->serialising = true; 727 } 728 729 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 730 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 731 } 732 733 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req) 734 { 735 /* 736 * If the request is serialising, overlap_offset and overlap_bytes are set, 737 * so we can check if the request is aligned. Otherwise, don't care and 738 * return false. 739 */ 740 741 return req->serialising && (req->offset == req->overlap_offset) && 742 (req->bytes == req->overlap_bytes); 743 } 744 745 /** 746 * Return the tracked request on @bs for the current coroutine, or 747 * NULL if there is none. 748 */ 749 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 750 { 751 BdrvTrackedRequest *req; 752 Coroutine *self = qemu_coroutine_self(); 753 754 QLIST_FOREACH(req, &bs->tracked_requests, list) { 755 if (req->co == self) { 756 return req; 757 } 758 } 759 760 return NULL; 761 } 762 763 /** 764 * Round a region to cluster boundaries 765 */ 766 void bdrv_round_to_clusters(BlockDriverState *bs, 767 int64_t offset, int64_t bytes, 768 int64_t *cluster_offset, 769 int64_t *cluster_bytes) 770 { 771 BlockDriverInfo bdi; 772 773 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 774 *cluster_offset = offset; 775 *cluster_bytes = bytes; 776 } else { 777 int64_t c = bdi.cluster_size; 778 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 779 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 780 } 781 } 782 783 static int bdrv_get_cluster_size(BlockDriverState *bs) 784 { 785 BlockDriverInfo bdi; 786 int ret; 787 788 ret = bdrv_get_info(bs, &bdi); 789 if (ret < 0 || bdi.cluster_size == 0) { 790 return bs->bl.request_alignment; 791 } else { 792 return bdi.cluster_size; 793 } 794 } 795 796 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 797 int64_t offset, uint64_t bytes) 798 { 799 /* aaaa bbbb */ 800 if (offset >= req->overlap_offset + req->overlap_bytes) { 801 return false; 802 } 803 /* bbbb aaaa */ 804 if (req->overlap_offset >= offset + bytes) { 805 return false; 806 } 807 return true; 808 } 809 810 void bdrv_inc_in_flight(BlockDriverState *bs) 811 { 812 atomic_inc(&bs->in_flight); 813 } 814 815 void bdrv_wakeup(BlockDriverState *bs) 816 { 817 aio_wait_kick(); 818 } 819 820 void bdrv_dec_in_flight(BlockDriverState *bs) 821 { 822 atomic_dec(&bs->in_flight); 823 bdrv_wakeup(bs); 824 } 825 826 bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 827 { 828 BlockDriverState *bs = self->bs; 829 BdrvTrackedRequest *req; 830 bool retry; 831 bool waited = false; 832 833 if (!atomic_read(&bs->serialising_in_flight)) { 834 return false; 835 } 836 837 do { 838 retry = false; 839 qemu_co_mutex_lock(&bs->reqs_lock); 840 QLIST_FOREACH(req, &bs->tracked_requests, list) { 841 if (req == self || (!req->serialising && !self->serialising)) { 842 continue; 843 } 844 if (tracked_request_overlaps(req, self->overlap_offset, 845 self->overlap_bytes)) 846 { 847 /* Hitting this means there was a reentrant request, for 848 * example, a block driver issuing nested requests. This must 849 * never happen since it means deadlock. 850 */ 851 assert(qemu_coroutine_self() != req->co); 852 853 /* If the request is already (indirectly) waiting for us, or 854 * will wait for us as soon as it wakes up, then just go on 855 * (instead of producing a deadlock in the former case). */ 856 if (!req->waiting_for) { 857 self->waiting_for = req; 858 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 859 self->waiting_for = NULL; 860 retry = true; 861 waited = true; 862 break; 863 } 864 } 865 } 866 qemu_co_mutex_unlock(&bs->reqs_lock); 867 } while (retry); 868 869 return waited; 870 } 871 872 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 873 size_t size) 874 { 875 if (size > BDRV_REQUEST_MAX_BYTES) { 876 return -EIO; 877 } 878 879 if (!bdrv_is_inserted(bs)) { 880 return -ENOMEDIUM; 881 } 882 883 if (offset < 0) { 884 return -EIO; 885 } 886 887 return 0; 888 } 889 890 typedef struct RwCo { 891 BdrvChild *child; 892 int64_t offset; 893 QEMUIOVector *qiov; 894 bool is_write; 895 int ret; 896 BdrvRequestFlags flags; 897 } RwCo; 898 899 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 900 { 901 RwCo *rwco = opaque; 902 903 if (!rwco->is_write) { 904 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 905 rwco->qiov->size, rwco->qiov, 906 rwco->flags); 907 } else { 908 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 909 rwco->qiov->size, rwco->qiov, 910 rwco->flags); 911 } 912 aio_wait_kick(); 913 } 914 915 /* 916 * Process a vectored synchronous request using coroutines 917 */ 918 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 919 QEMUIOVector *qiov, bool is_write, 920 BdrvRequestFlags flags) 921 { 922 Coroutine *co; 923 RwCo rwco = { 924 .child = child, 925 .offset = offset, 926 .qiov = qiov, 927 .is_write = is_write, 928 .ret = NOT_DONE, 929 .flags = flags, 930 }; 931 932 if (qemu_in_coroutine()) { 933 /* Fast-path if already in coroutine context */ 934 bdrv_rw_co_entry(&rwco); 935 } else { 936 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 937 bdrv_coroutine_enter(child->bs, co); 938 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 939 } 940 return rwco.ret; 941 } 942 943 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 944 int bytes, BdrvRequestFlags flags) 945 { 946 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes); 947 948 return bdrv_prwv_co(child, offset, &qiov, true, 949 BDRV_REQ_ZERO_WRITE | flags); 950 } 951 952 /* 953 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 954 * The operation is sped up by checking the block status and only writing 955 * zeroes to the device if they currently do not return zeroes. Optional 956 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 957 * BDRV_REQ_FUA). 958 * 959 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 960 */ 961 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 962 { 963 int ret; 964 int64_t target_size, bytes, offset = 0; 965 BlockDriverState *bs = child->bs; 966 967 target_size = bdrv_getlength(bs); 968 if (target_size < 0) { 969 return target_size; 970 } 971 972 for (;;) { 973 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 974 if (bytes <= 0) { 975 return 0; 976 } 977 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 978 if (ret < 0) { 979 return ret; 980 } 981 if (ret & BDRV_BLOCK_ZERO) { 982 offset += bytes; 983 continue; 984 } 985 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 986 if (ret < 0) { 987 return ret; 988 } 989 offset += bytes; 990 } 991 } 992 993 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 994 { 995 int ret; 996 997 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 998 if (ret < 0) { 999 return ret; 1000 } 1001 1002 return qiov->size; 1003 } 1004 1005 /* See bdrv_pwrite() for the return codes */ 1006 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 1007 { 1008 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1009 1010 if (bytes < 0) { 1011 return -EINVAL; 1012 } 1013 1014 return bdrv_preadv(child, offset, &qiov); 1015 } 1016 1017 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 1018 { 1019 int ret; 1020 1021 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 1022 if (ret < 0) { 1023 return ret; 1024 } 1025 1026 return qiov->size; 1027 } 1028 1029 /* Return no. of bytes on success or < 0 on error. Important errors are: 1030 -EIO generic I/O error (may happen for all errors) 1031 -ENOMEDIUM No media inserted. 1032 -EINVAL Invalid offset or number of bytes 1033 -EACCES Trying to write a read-only device 1034 */ 1035 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 1036 { 1037 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1038 1039 if (bytes < 0) { 1040 return -EINVAL; 1041 } 1042 1043 return bdrv_pwritev(child, offset, &qiov); 1044 } 1045 1046 /* 1047 * Writes to the file and ensures that no writes are reordered across this 1048 * request (acts as a barrier) 1049 * 1050 * Returns 0 on success, -errno in error cases. 1051 */ 1052 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1053 const void *buf, int count) 1054 { 1055 int ret; 1056 1057 ret = bdrv_pwrite(child, offset, buf, count); 1058 if (ret < 0) { 1059 return ret; 1060 } 1061 1062 ret = bdrv_flush(child->bs); 1063 if (ret < 0) { 1064 return ret; 1065 } 1066 1067 return 0; 1068 } 1069 1070 typedef struct CoroutineIOCompletion { 1071 Coroutine *coroutine; 1072 int ret; 1073 } CoroutineIOCompletion; 1074 1075 static void bdrv_co_io_em_complete(void *opaque, int ret) 1076 { 1077 CoroutineIOCompletion *co = opaque; 1078 1079 co->ret = ret; 1080 aio_co_wake(co->coroutine); 1081 } 1082 1083 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1084 uint64_t offset, uint64_t bytes, 1085 QEMUIOVector *qiov, 1086 size_t qiov_offset, int flags) 1087 { 1088 BlockDriver *drv = bs->drv; 1089 int64_t sector_num; 1090 unsigned int nb_sectors; 1091 QEMUIOVector local_qiov; 1092 int ret; 1093 1094 assert(!(flags & ~BDRV_REQ_MASK)); 1095 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1096 1097 if (!drv) { 1098 return -ENOMEDIUM; 1099 } 1100 1101 if (drv->bdrv_co_preadv_part) { 1102 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1103 flags); 1104 } 1105 1106 if (qiov_offset > 0 || bytes != qiov->size) { 1107 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1108 qiov = &local_qiov; 1109 } 1110 1111 if (drv->bdrv_co_preadv) { 1112 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1113 goto out; 1114 } 1115 1116 if (drv->bdrv_aio_preadv) { 1117 BlockAIOCB *acb; 1118 CoroutineIOCompletion co = { 1119 .coroutine = qemu_coroutine_self(), 1120 }; 1121 1122 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1123 bdrv_co_io_em_complete, &co); 1124 if (acb == NULL) { 1125 ret = -EIO; 1126 goto out; 1127 } else { 1128 qemu_coroutine_yield(); 1129 ret = co.ret; 1130 goto out; 1131 } 1132 } 1133 1134 sector_num = offset >> BDRV_SECTOR_BITS; 1135 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1136 1137 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1138 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1139 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1140 assert(drv->bdrv_co_readv); 1141 1142 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1143 1144 out: 1145 if (qiov == &local_qiov) { 1146 qemu_iovec_destroy(&local_qiov); 1147 } 1148 1149 return ret; 1150 } 1151 1152 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1153 uint64_t offset, uint64_t bytes, 1154 QEMUIOVector *qiov, 1155 size_t qiov_offset, int flags) 1156 { 1157 BlockDriver *drv = bs->drv; 1158 int64_t sector_num; 1159 unsigned int nb_sectors; 1160 QEMUIOVector local_qiov; 1161 int ret; 1162 1163 assert(!(flags & ~BDRV_REQ_MASK)); 1164 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1165 1166 if (!drv) { 1167 return -ENOMEDIUM; 1168 } 1169 1170 if (drv->bdrv_co_pwritev_part) { 1171 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1172 flags & bs->supported_write_flags); 1173 flags &= ~bs->supported_write_flags; 1174 goto emulate_flags; 1175 } 1176 1177 if (qiov_offset > 0 || bytes != qiov->size) { 1178 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1179 qiov = &local_qiov; 1180 } 1181 1182 if (drv->bdrv_co_pwritev) { 1183 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1184 flags & bs->supported_write_flags); 1185 flags &= ~bs->supported_write_flags; 1186 goto emulate_flags; 1187 } 1188 1189 if (drv->bdrv_aio_pwritev) { 1190 BlockAIOCB *acb; 1191 CoroutineIOCompletion co = { 1192 .coroutine = qemu_coroutine_self(), 1193 }; 1194 1195 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1196 flags & bs->supported_write_flags, 1197 bdrv_co_io_em_complete, &co); 1198 flags &= ~bs->supported_write_flags; 1199 if (acb == NULL) { 1200 ret = -EIO; 1201 } else { 1202 qemu_coroutine_yield(); 1203 ret = co.ret; 1204 } 1205 goto emulate_flags; 1206 } 1207 1208 sector_num = offset >> BDRV_SECTOR_BITS; 1209 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1210 1211 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1212 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1213 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1214 1215 assert(drv->bdrv_co_writev); 1216 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1217 flags & bs->supported_write_flags); 1218 flags &= ~bs->supported_write_flags; 1219 1220 emulate_flags: 1221 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1222 ret = bdrv_co_flush(bs); 1223 } 1224 1225 if (qiov == &local_qiov) { 1226 qemu_iovec_destroy(&local_qiov); 1227 } 1228 1229 return ret; 1230 } 1231 1232 static int coroutine_fn 1233 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 1234 uint64_t bytes, QEMUIOVector *qiov, 1235 size_t qiov_offset) 1236 { 1237 BlockDriver *drv = bs->drv; 1238 QEMUIOVector local_qiov; 1239 int ret; 1240 1241 if (!drv) { 1242 return -ENOMEDIUM; 1243 } 1244 1245 if (!block_driver_can_compress(drv)) { 1246 return -ENOTSUP; 1247 } 1248 1249 if (drv->bdrv_co_pwritev_compressed_part) { 1250 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1251 qiov, qiov_offset); 1252 } 1253 1254 if (qiov_offset == 0) { 1255 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1256 } 1257 1258 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1259 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1260 qemu_iovec_destroy(&local_qiov); 1261 1262 return ret; 1263 } 1264 1265 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1266 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1267 size_t qiov_offset, int flags) 1268 { 1269 BlockDriverState *bs = child->bs; 1270 1271 /* Perform I/O through a temporary buffer so that users who scribble over 1272 * their read buffer while the operation is in progress do not end up 1273 * modifying the image file. This is critical for zero-copy guest I/O 1274 * where anything might happen inside guest memory. 1275 */ 1276 void *bounce_buffer = NULL; 1277 1278 BlockDriver *drv = bs->drv; 1279 int64_t cluster_offset; 1280 int64_t cluster_bytes; 1281 size_t skip_bytes; 1282 int ret; 1283 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1284 BDRV_REQUEST_MAX_BYTES); 1285 unsigned int progress = 0; 1286 bool skip_write; 1287 1288 if (!drv) { 1289 return -ENOMEDIUM; 1290 } 1291 1292 /* 1293 * Do not write anything when the BDS is inactive. That is not 1294 * allowed, and it would not help. 1295 */ 1296 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1297 1298 /* FIXME We cannot require callers to have write permissions when all they 1299 * are doing is a read request. If we did things right, write permissions 1300 * would be obtained anyway, but internally by the copy-on-read code. As 1301 * long as it is implemented here rather than in a separate filter driver, 1302 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1303 * it could request permissions. Therefore we have to bypass the permission 1304 * system for the moment. */ 1305 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1306 1307 /* Cover entire cluster so no additional backing file I/O is required when 1308 * allocating cluster in the image file. Note that this value may exceed 1309 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1310 * is one reason we loop rather than doing it all at once. 1311 */ 1312 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1313 skip_bytes = offset - cluster_offset; 1314 1315 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1316 cluster_offset, cluster_bytes); 1317 1318 while (cluster_bytes) { 1319 int64_t pnum; 1320 1321 if (skip_write) { 1322 ret = 1; /* "already allocated", so nothing will be copied */ 1323 pnum = MIN(cluster_bytes, max_transfer); 1324 } else { 1325 ret = bdrv_is_allocated(bs, cluster_offset, 1326 MIN(cluster_bytes, max_transfer), &pnum); 1327 if (ret < 0) { 1328 /* 1329 * Safe to treat errors in querying allocation as if 1330 * unallocated; we'll probably fail again soon on the 1331 * read, but at least that will set a decent errno. 1332 */ 1333 pnum = MIN(cluster_bytes, max_transfer); 1334 } 1335 1336 /* Stop at EOF if the image ends in the middle of the cluster */ 1337 if (ret == 0 && pnum == 0) { 1338 assert(progress >= bytes); 1339 break; 1340 } 1341 1342 assert(skip_bytes < pnum); 1343 } 1344 1345 if (ret <= 0) { 1346 QEMUIOVector local_qiov; 1347 1348 /* Must copy-on-read; use the bounce buffer */ 1349 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1350 if (!bounce_buffer) { 1351 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1352 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1353 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1354 1355 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1356 if (!bounce_buffer) { 1357 ret = -ENOMEM; 1358 goto err; 1359 } 1360 } 1361 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1362 1363 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1364 &local_qiov, 0, 0); 1365 if (ret < 0) { 1366 goto err; 1367 } 1368 1369 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1370 if (drv->bdrv_co_pwrite_zeroes && 1371 buffer_is_zero(bounce_buffer, pnum)) { 1372 /* FIXME: Should we (perhaps conditionally) be setting 1373 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1374 * that still correctly reads as zero? */ 1375 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1376 BDRV_REQ_WRITE_UNCHANGED); 1377 } else { 1378 /* This does not change the data on the disk, it is not 1379 * necessary to flush even in cache=writethrough mode. 1380 */ 1381 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1382 &local_qiov, 0, 1383 BDRV_REQ_WRITE_UNCHANGED); 1384 } 1385 1386 if (ret < 0) { 1387 /* It might be okay to ignore write errors for guest 1388 * requests. If this is a deliberate copy-on-read 1389 * then we don't want to ignore the error. Simply 1390 * report it in all cases. 1391 */ 1392 goto err; 1393 } 1394 1395 if (!(flags & BDRV_REQ_PREFETCH)) { 1396 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1397 bounce_buffer + skip_bytes, 1398 pnum - skip_bytes); 1399 } 1400 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1401 /* Read directly into the destination */ 1402 ret = bdrv_driver_preadv(bs, offset + progress, 1403 MIN(pnum - skip_bytes, bytes - progress), 1404 qiov, qiov_offset + progress, 0); 1405 if (ret < 0) { 1406 goto err; 1407 } 1408 } 1409 1410 cluster_offset += pnum; 1411 cluster_bytes -= pnum; 1412 progress += pnum - skip_bytes; 1413 skip_bytes = 0; 1414 } 1415 ret = 0; 1416 1417 err: 1418 qemu_vfree(bounce_buffer); 1419 return ret; 1420 } 1421 1422 /* 1423 * Forwards an already correctly aligned request to the BlockDriver. This 1424 * handles copy on read, zeroing after EOF, and fragmentation of large 1425 * reads; any other features must be implemented by the caller. 1426 */ 1427 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1428 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1429 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1430 { 1431 BlockDriverState *bs = child->bs; 1432 int64_t total_bytes, max_bytes; 1433 int ret = 0; 1434 uint64_t bytes_remaining = bytes; 1435 int max_transfer; 1436 1437 assert(is_power_of_2(align)); 1438 assert((offset & (align - 1)) == 0); 1439 assert((bytes & (align - 1)) == 0); 1440 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1441 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1442 align); 1443 1444 /* TODO: We would need a per-BDS .supported_read_flags and 1445 * potential fallback support, if we ever implement any read flags 1446 * to pass through to drivers. For now, there aren't any 1447 * passthrough flags. */ 1448 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ | 1449 BDRV_REQ_PREFETCH))); 1450 1451 /* Handle Copy on Read and associated serialisation */ 1452 if (flags & BDRV_REQ_COPY_ON_READ) { 1453 /* If we touch the same cluster it counts as an overlap. This 1454 * guarantees that allocating writes will be serialized and not race 1455 * with each other for the same cluster. For example, in copy-on-read 1456 * it ensures that the CoR read and write operations are atomic and 1457 * guest writes cannot interleave between them. */ 1458 bdrv_mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1459 } 1460 1461 /* BDRV_REQ_SERIALISING is only for write operation */ 1462 assert(!(flags & BDRV_REQ_SERIALISING)); 1463 1464 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1465 bdrv_wait_serialising_requests(req); 1466 } 1467 1468 if (flags & BDRV_REQ_COPY_ON_READ) { 1469 int64_t pnum; 1470 1471 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1472 if (ret < 0) { 1473 goto out; 1474 } 1475 1476 if (!ret || pnum != bytes) { 1477 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1478 qiov, qiov_offset, flags); 1479 goto out; 1480 } else if (flags & BDRV_REQ_PREFETCH) { 1481 goto out; 1482 } 1483 } 1484 1485 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1486 total_bytes = bdrv_getlength(bs); 1487 if (total_bytes < 0) { 1488 ret = total_bytes; 1489 goto out; 1490 } 1491 1492 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1493 if (bytes <= max_bytes && bytes <= max_transfer) { 1494 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, 0); 1495 goto out; 1496 } 1497 1498 while (bytes_remaining) { 1499 int num; 1500 1501 if (max_bytes) { 1502 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1503 assert(num); 1504 1505 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1506 num, qiov, bytes - bytes_remaining, 0); 1507 max_bytes -= num; 1508 } else { 1509 num = bytes_remaining; 1510 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1511 bytes_remaining); 1512 } 1513 if (ret < 0) { 1514 goto out; 1515 } 1516 bytes_remaining -= num; 1517 } 1518 1519 out: 1520 return ret < 0 ? ret : 0; 1521 } 1522 1523 /* 1524 * Request padding 1525 * 1526 * |<---- align ----->| |<----- align ---->| 1527 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1528 * | | | | | | 1529 * -*----------$-------*-------- ... --------*-----$------------*--- 1530 * | | | | | | 1531 * | offset | | end | 1532 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1533 * [buf ... ) [tail_buf ) 1534 * 1535 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1536 * is placed at the beginning of @buf and @tail at the @end. 1537 * 1538 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1539 * around tail, if tail exists. 1540 * 1541 * @merge_reads is true for small requests, 1542 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1543 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1544 */ 1545 typedef struct BdrvRequestPadding { 1546 uint8_t *buf; 1547 size_t buf_len; 1548 uint8_t *tail_buf; 1549 size_t head; 1550 size_t tail; 1551 bool merge_reads; 1552 QEMUIOVector local_qiov; 1553 } BdrvRequestPadding; 1554 1555 static bool bdrv_init_padding(BlockDriverState *bs, 1556 int64_t offset, int64_t bytes, 1557 BdrvRequestPadding *pad) 1558 { 1559 uint64_t align = bs->bl.request_alignment; 1560 size_t sum; 1561 1562 memset(pad, 0, sizeof(*pad)); 1563 1564 pad->head = offset & (align - 1); 1565 pad->tail = ((offset + bytes) & (align - 1)); 1566 if (pad->tail) { 1567 pad->tail = align - pad->tail; 1568 } 1569 1570 if ((!pad->head && !pad->tail) || !bytes) { 1571 return false; 1572 } 1573 1574 sum = pad->head + bytes + pad->tail; 1575 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1576 pad->buf = qemu_blockalign(bs, pad->buf_len); 1577 pad->merge_reads = sum == pad->buf_len; 1578 if (pad->tail) { 1579 pad->tail_buf = pad->buf + pad->buf_len - align; 1580 } 1581 1582 return true; 1583 } 1584 1585 static int bdrv_padding_rmw_read(BdrvChild *child, 1586 BdrvTrackedRequest *req, 1587 BdrvRequestPadding *pad, 1588 bool zero_middle) 1589 { 1590 QEMUIOVector local_qiov; 1591 BlockDriverState *bs = child->bs; 1592 uint64_t align = bs->bl.request_alignment; 1593 int ret; 1594 1595 assert(req->serialising && pad->buf); 1596 1597 if (pad->head || pad->merge_reads) { 1598 uint64_t bytes = pad->merge_reads ? pad->buf_len : align; 1599 1600 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1601 1602 if (pad->head) { 1603 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1604 } 1605 if (pad->merge_reads && pad->tail) { 1606 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1607 } 1608 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1609 align, &local_qiov, 0, 0); 1610 if (ret < 0) { 1611 return ret; 1612 } 1613 if (pad->head) { 1614 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1615 } 1616 if (pad->merge_reads && pad->tail) { 1617 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1618 } 1619 1620 if (pad->merge_reads) { 1621 goto zero_mem; 1622 } 1623 } 1624 1625 if (pad->tail) { 1626 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1627 1628 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1629 ret = bdrv_aligned_preadv( 1630 child, req, 1631 req->overlap_offset + req->overlap_bytes - align, 1632 align, align, &local_qiov, 0, 0); 1633 if (ret < 0) { 1634 return ret; 1635 } 1636 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1637 } 1638 1639 zero_mem: 1640 if (zero_middle) { 1641 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1642 } 1643 1644 return 0; 1645 } 1646 1647 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1648 { 1649 if (pad->buf) { 1650 qemu_vfree(pad->buf); 1651 qemu_iovec_destroy(&pad->local_qiov); 1652 } 1653 } 1654 1655 /* 1656 * bdrv_pad_request 1657 * 1658 * Exchange request parameters with padded request if needed. Don't include RMW 1659 * read of padding, bdrv_padding_rmw_read() should be called separately if 1660 * needed. 1661 * 1662 * All parameters except @bs are in-out: they represent original request at 1663 * function call and padded (if padding needed) at function finish. 1664 * 1665 * Function always succeeds. 1666 */ 1667 static bool bdrv_pad_request(BlockDriverState *bs, 1668 QEMUIOVector **qiov, size_t *qiov_offset, 1669 int64_t *offset, unsigned int *bytes, 1670 BdrvRequestPadding *pad) 1671 { 1672 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1673 return false; 1674 } 1675 1676 qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1677 *qiov, *qiov_offset, *bytes, 1678 pad->buf + pad->buf_len - pad->tail, pad->tail); 1679 *bytes += pad->head + pad->tail; 1680 *offset -= pad->head; 1681 *qiov = &pad->local_qiov; 1682 *qiov_offset = 0; 1683 1684 return true; 1685 } 1686 1687 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1688 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1689 BdrvRequestFlags flags) 1690 { 1691 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1692 } 1693 1694 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1695 int64_t offset, unsigned int bytes, 1696 QEMUIOVector *qiov, size_t qiov_offset, 1697 BdrvRequestFlags flags) 1698 { 1699 BlockDriverState *bs = child->bs; 1700 BdrvTrackedRequest req; 1701 BdrvRequestPadding pad; 1702 int ret; 1703 1704 trace_bdrv_co_preadv(bs, offset, bytes, flags); 1705 1706 ret = bdrv_check_byte_request(bs, offset, bytes); 1707 if (ret < 0) { 1708 return ret; 1709 } 1710 1711 bdrv_inc_in_flight(bs); 1712 1713 /* Don't do copy-on-read if we read data before write operation */ 1714 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1715 flags |= BDRV_REQ_COPY_ON_READ; 1716 } 1717 1718 bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad); 1719 1720 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1721 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1722 bs->bl.request_alignment, 1723 qiov, qiov_offset, flags); 1724 tracked_request_end(&req); 1725 bdrv_dec_in_flight(bs); 1726 1727 bdrv_padding_destroy(&pad); 1728 1729 return ret; 1730 } 1731 1732 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1733 int64_t offset, int bytes, BdrvRequestFlags flags) 1734 { 1735 BlockDriver *drv = bs->drv; 1736 QEMUIOVector qiov; 1737 void *buf = NULL; 1738 int ret = 0; 1739 bool need_flush = false; 1740 int head = 0; 1741 int tail = 0; 1742 1743 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1744 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1745 bs->bl.request_alignment); 1746 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1747 1748 if (!drv) { 1749 return -ENOMEDIUM; 1750 } 1751 1752 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1753 return -ENOTSUP; 1754 } 1755 1756 assert(alignment % bs->bl.request_alignment == 0); 1757 head = offset % alignment; 1758 tail = (offset + bytes) % alignment; 1759 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1760 assert(max_write_zeroes >= bs->bl.request_alignment); 1761 1762 while (bytes > 0 && !ret) { 1763 int num = bytes; 1764 1765 /* Align request. Block drivers can expect the "bulk" of the request 1766 * to be aligned, and that unaligned requests do not cross cluster 1767 * boundaries. 1768 */ 1769 if (head) { 1770 /* Make a small request up to the first aligned sector. For 1771 * convenience, limit this request to max_transfer even if 1772 * we don't need to fall back to writes. */ 1773 num = MIN(MIN(bytes, max_transfer), alignment - head); 1774 head = (head + num) % alignment; 1775 assert(num < max_write_zeroes); 1776 } else if (tail && num > alignment) { 1777 /* Shorten the request to the last aligned sector. */ 1778 num -= tail; 1779 } 1780 1781 /* limit request size */ 1782 if (num > max_write_zeroes) { 1783 num = max_write_zeroes; 1784 } 1785 1786 ret = -ENOTSUP; 1787 /* First try the efficient write zeroes operation */ 1788 if (drv->bdrv_co_pwrite_zeroes) { 1789 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1790 flags & bs->supported_zero_flags); 1791 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1792 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1793 need_flush = true; 1794 } 1795 } else { 1796 assert(!bs->supported_zero_flags); 1797 } 1798 1799 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1800 /* Fall back to bounce buffer if write zeroes is unsupported */ 1801 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1802 1803 if ((flags & BDRV_REQ_FUA) && 1804 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1805 /* No need for bdrv_driver_pwrite() to do a fallback 1806 * flush on each chunk; use just one at the end */ 1807 write_flags &= ~BDRV_REQ_FUA; 1808 need_flush = true; 1809 } 1810 num = MIN(num, max_transfer); 1811 if (buf == NULL) { 1812 buf = qemu_try_blockalign0(bs, num); 1813 if (buf == NULL) { 1814 ret = -ENOMEM; 1815 goto fail; 1816 } 1817 } 1818 qemu_iovec_init_buf(&qiov, buf, num); 1819 1820 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1821 1822 /* Keep bounce buffer around if it is big enough for all 1823 * all future requests. 1824 */ 1825 if (num < max_transfer) { 1826 qemu_vfree(buf); 1827 buf = NULL; 1828 } 1829 } 1830 1831 offset += num; 1832 bytes -= num; 1833 } 1834 1835 fail: 1836 if (ret == 0 && need_flush) { 1837 ret = bdrv_co_flush(bs); 1838 } 1839 qemu_vfree(buf); 1840 return ret; 1841 } 1842 1843 static inline int coroutine_fn 1844 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes, 1845 BdrvTrackedRequest *req, int flags) 1846 { 1847 BlockDriverState *bs = child->bs; 1848 bool waited; 1849 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1850 1851 if (bs->read_only) { 1852 return -EPERM; 1853 } 1854 1855 /* BDRV_REQ_NO_SERIALISING is only for read operation */ 1856 assert(!(flags & BDRV_REQ_NO_SERIALISING)); 1857 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1858 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1859 assert(!(flags & ~BDRV_REQ_MASK)); 1860 1861 if (flags & BDRV_REQ_SERIALISING) { 1862 bdrv_mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1863 } 1864 1865 waited = bdrv_wait_serialising_requests(req); 1866 1867 assert(!waited || !req->serialising || 1868 is_request_serialising_and_aligned(req)); 1869 assert(req->overlap_offset <= offset); 1870 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1871 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1872 1873 switch (req->type) { 1874 case BDRV_TRACKED_WRITE: 1875 case BDRV_TRACKED_DISCARD: 1876 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1877 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1878 } else { 1879 assert(child->perm & BLK_PERM_WRITE); 1880 } 1881 return notifier_with_return_list_notify(&bs->before_write_notifiers, 1882 req); 1883 case BDRV_TRACKED_TRUNCATE: 1884 assert(child->perm & BLK_PERM_RESIZE); 1885 return 0; 1886 default: 1887 abort(); 1888 } 1889 } 1890 1891 static inline void coroutine_fn 1892 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes, 1893 BdrvTrackedRequest *req, int ret) 1894 { 1895 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1896 BlockDriverState *bs = child->bs; 1897 1898 atomic_inc(&bs->write_gen); 1899 1900 /* 1901 * Discard cannot extend the image, but in error handling cases, such as 1902 * when reverting a qcow2 cluster allocation, the discarded range can pass 1903 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1904 * here. Instead, just skip it, since semantically a discard request 1905 * beyond EOF cannot expand the image anyway. 1906 */ 1907 if (ret == 0 && 1908 (req->type == BDRV_TRACKED_TRUNCATE || 1909 end_sector > bs->total_sectors) && 1910 req->type != BDRV_TRACKED_DISCARD) { 1911 bs->total_sectors = end_sector; 1912 bdrv_parent_cb_resize(bs); 1913 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1914 } 1915 if (req->bytes) { 1916 switch (req->type) { 1917 case BDRV_TRACKED_WRITE: 1918 stat64_max(&bs->wr_highest_offset, offset + bytes); 1919 /* fall through, to set dirty bits */ 1920 case BDRV_TRACKED_DISCARD: 1921 bdrv_set_dirty(bs, offset, bytes); 1922 break; 1923 default: 1924 break; 1925 } 1926 } 1927 } 1928 1929 /* 1930 * Forwards an already correctly aligned write request to the BlockDriver, 1931 * after possibly fragmenting it. 1932 */ 1933 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1934 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1935 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1936 { 1937 BlockDriverState *bs = child->bs; 1938 BlockDriver *drv = bs->drv; 1939 int ret; 1940 1941 uint64_t bytes_remaining = bytes; 1942 int max_transfer; 1943 1944 if (!drv) { 1945 return -ENOMEDIUM; 1946 } 1947 1948 if (bdrv_has_readonly_bitmaps(bs)) { 1949 return -EPERM; 1950 } 1951 1952 assert(is_power_of_2(align)); 1953 assert((offset & (align - 1)) == 0); 1954 assert((bytes & (align - 1)) == 0); 1955 assert(!qiov || qiov_offset + bytes <= qiov->size); 1956 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1957 align); 1958 1959 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1960 1961 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1962 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1963 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 1964 flags |= BDRV_REQ_ZERO_WRITE; 1965 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1966 flags |= BDRV_REQ_MAY_UNMAP; 1967 } 1968 } 1969 1970 if (ret < 0) { 1971 /* Do nothing, write notifier decided to fail this request */ 1972 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1973 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1974 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1975 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1976 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 1977 qiov, qiov_offset); 1978 } else if (bytes <= max_transfer) { 1979 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1980 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 1981 } else { 1982 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1983 while (bytes_remaining) { 1984 int num = MIN(bytes_remaining, max_transfer); 1985 int local_flags = flags; 1986 1987 assert(num); 1988 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1989 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1990 /* If FUA is going to be emulated by flush, we only 1991 * need to flush on the last iteration */ 1992 local_flags &= ~BDRV_REQ_FUA; 1993 } 1994 1995 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1996 num, qiov, bytes - bytes_remaining, 1997 local_flags); 1998 if (ret < 0) { 1999 break; 2000 } 2001 bytes_remaining -= num; 2002 } 2003 } 2004 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 2005 2006 if (ret >= 0) { 2007 ret = 0; 2008 } 2009 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2010 2011 return ret; 2012 } 2013 2014 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 2015 int64_t offset, 2016 unsigned int bytes, 2017 BdrvRequestFlags flags, 2018 BdrvTrackedRequest *req) 2019 { 2020 BlockDriverState *bs = child->bs; 2021 QEMUIOVector local_qiov; 2022 uint64_t align = bs->bl.request_alignment; 2023 int ret = 0; 2024 bool padding; 2025 BdrvRequestPadding pad; 2026 2027 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2028 if (padding) { 2029 bdrv_mark_request_serialising(req, align); 2030 bdrv_wait_serialising_requests(req); 2031 2032 bdrv_padding_rmw_read(child, req, &pad, true); 2033 2034 if (pad.head || pad.merge_reads) { 2035 int64_t aligned_offset = offset & ~(align - 1); 2036 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2037 2038 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2039 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2040 align, &local_qiov, 0, 2041 flags & ~BDRV_REQ_ZERO_WRITE); 2042 if (ret < 0 || pad.merge_reads) { 2043 /* Error or all work is done */ 2044 goto out; 2045 } 2046 offset += write_bytes - pad.head; 2047 bytes -= write_bytes - pad.head; 2048 } 2049 } 2050 2051 assert(!bytes || (offset & (align - 1)) == 0); 2052 if (bytes >= align) { 2053 /* Write the aligned part in the middle. */ 2054 uint64_t aligned_bytes = bytes & ~(align - 1); 2055 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2056 NULL, 0, flags); 2057 if (ret < 0) { 2058 goto out; 2059 } 2060 bytes -= aligned_bytes; 2061 offset += aligned_bytes; 2062 } 2063 2064 assert(!bytes || (offset & (align - 1)) == 0); 2065 if (bytes) { 2066 assert(align == pad.tail + bytes); 2067 2068 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2069 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2070 &local_qiov, 0, 2071 flags & ~BDRV_REQ_ZERO_WRITE); 2072 } 2073 2074 out: 2075 bdrv_padding_destroy(&pad); 2076 2077 return ret; 2078 } 2079 2080 /* 2081 * Handle a write request in coroutine context 2082 */ 2083 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2084 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 2085 BdrvRequestFlags flags) 2086 { 2087 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2088 } 2089 2090 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2091 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset, 2092 BdrvRequestFlags flags) 2093 { 2094 BlockDriverState *bs = child->bs; 2095 BdrvTrackedRequest req; 2096 uint64_t align = bs->bl.request_alignment; 2097 BdrvRequestPadding pad; 2098 int ret; 2099 2100 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 2101 2102 if (!bs->drv) { 2103 return -ENOMEDIUM; 2104 } 2105 2106 ret = bdrv_check_byte_request(bs, offset, bytes); 2107 if (ret < 0) { 2108 return ret; 2109 } 2110 2111 /* If the request is misaligned then we can't make it efficient */ 2112 if ((flags & BDRV_REQ_NO_FALLBACK) && 2113 !QEMU_IS_ALIGNED(offset | bytes, align)) 2114 { 2115 return -ENOTSUP; 2116 } 2117 2118 bdrv_inc_in_flight(bs); 2119 /* 2120 * Align write if necessary by performing a read-modify-write cycle. 2121 * Pad qiov with the read parts and be sure to have a tracked request not 2122 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 2123 */ 2124 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2125 2126 if (flags & BDRV_REQ_ZERO_WRITE) { 2127 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2128 goto out; 2129 } 2130 2131 if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) { 2132 bdrv_mark_request_serialising(&req, align); 2133 bdrv_wait_serialising_requests(&req); 2134 bdrv_padding_rmw_read(child, &req, &pad, false); 2135 } 2136 2137 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2138 qiov, qiov_offset, flags); 2139 2140 bdrv_padding_destroy(&pad); 2141 2142 out: 2143 tracked_request_end(&req); 2144 bdrv_dec_in_flight(bs); 2145 2146 return ret; 2147 } 2148 2149 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2150 int bytes, BdrvRequestFlags flags) 2151 { 2152 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2153 2154 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2155 flags &= ~BDRV_REQ_MAY_UNMAP; 2156 } 2157 2158 return bdrv_co_pwritev(child, offset, bytes, NULL, 2159 BDRV_REQ_ZERO_WRITE | flags); 2160 } 2161 2162 /* 2163 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2164 */ 2165 int bdrv_flush_all(void) 2166 { 2167 BdrvNextIterator it; 2168 BlockDriverState *bs = NULL; 2169 int result = 0; 2170 2171 /* 2172 * bdrv queue is managed by record/replay, 2173 * creating new flush request for stopping 2174 * the VM may break the determinism 2175 */ 2176 if (replay_events_enabled()) { 2177 return result; 2178 } 2179 2180 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2181 AioContext *aio_context = bdrv_get_aio_context(bs); 2182 int ret; 2183 2184 aio_context_acquire(aio_context); 2185 ret = bdrv_flush(bs); 2186 if (ret < 0 && !result) { 2187 result = ret; 2188 } 2189 aio_context_release(aio_context); 2190 } 2191 2192 return result; 2193 } 2194 2195 2196 typedef struct BdrvCoBlockStatusData { 2197 BlockDriverState *bs; 2198 BlockDriverState *base; 2199 bool want_zero; 2200 int64_t offset; 2201 int64_t bytes; 2202 int64_t *pnum; 2203 int64_t *map; 2204 BlockDriverState **file; 2205 int ret; 2206 bool done; 2207 } BdrvCoBlockStatusData; 2208 2209 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs, 2210 bool want_zero, 2211 int64_t offset, 2212 int64_t bytes, 2213 int64_t *pnum, 2214 int64_t *map, 2215 BlockDriverState **file) 2216 { 2217 assert(bs->file && bs->file->bs); 2218 *pnum = bytes; 2219 *map = offset; 2220 *file = bs->file->bs; 2221 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2222 } 2223 2224 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs, 2225 bool want_zero, 2226 int64_t offset, 2227 int64_t bytes, 2228 int64_t *pnum, 2229 int64_t *map, 2230 BlockDriverState **file) 2231 { 2232 assert(bs->backing && bs->backing->bs); 2233 *pnum = bytes; 2234 *map = offset; 2235 *file = bs->backing->bs; 2236 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2237 } 2238 2239 /* 2240 * Returns the allocation status of the specified sectors. 2241 * Drivers not implementing the functionality are assumed to not support 2242 * backing files, hence all their sectors are reported as allocated. 2243 * 2244 * If 'want_zero' is true, the caller is querying for mapping 2245 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2246 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2247 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2248 * 2249 * If 'offset' is beyond the end of the disk image the return value is 2250 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2251 * 2252 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2253 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2254 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2255 * 2256 * 'pnum' is set to the number of bytes (including and immediately 2257 * following the specified offset) that are easily known to be in the 2258 * same allocated/unallocated state. Note that a second call starting 2259 * at the original offset plus returned pnum may have the same status. 2260 * The returned value is non-zero on success except at end-of-file. 2261 * 2262 * Returns negative errno on failure. Otherwise, if the 2263 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2264 * set to the host mapping and BDS corresponding to the guest offset. 2265 */ 2266 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2267 bool want_zero, 2268 int64_t offset, int64_t bytes, 2269 int64_t *pnum, int64_t *map, 2270 BlockDriverState **file) 2271 { 2272 int64_t total_size; 2273 int64_t n; /* bytes */ 2274 int ret; 2275 int64_t local_map = 0; 2276 BlockDriverState *local_file = NULL; 2277 int64_t aligned_offset, aligned_bytes; 2278 uint32_t align; 2279 2280 assert(pnum); 2281 *pnum = 0; 2282 total_size = bdrv_getlength(bs); 2283 if (total_size < 0) { 2284 ret = total_size; 2285 goto early_out; 2286 } 2287 2288 if (offset >= total_size) { 2289 ret = BDRV_BLOCK_EOF; 2290 goto early_out; 2291 } 2292 if (!bytes) { 2293 ret = 0; 2294 goto early_out; 2295 } 2296 2297 n = total_size - offset; 2298 if (n < bytes) { 2299 bytes = n; 2300 } 2301 2302 /* Must be non-NULL or bdrv_getlength() would have failed */ 2303 assert(bs->drv); 2304 if (!bs->drv->bdrv_co_block_status) { 2305 *pnum = bytes; 2306 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2307 if (offset + bytes == total_size) { 2308 ret |= BDRV_BLOCK_EOF; 2309 } 2310 if (bs->drv->protocol_name) { 2311 ret |= BDRV_BLOCK_OFFSET_VALID; 2312 local_map = offset; 2313 local_file = bs; 2314 } 2315 goto early_out; 2316 } 2317 2318 bdrv_inc_in_flight(bs); 2319 2320 /* Round out to request_alignment boundaries */ 2321 align = bs->bl.request_alignment; 2322 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2323 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2324 2325 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2326 aligned_bytes, pnum, &local_map, 2327 &local_file); 2328 if (ret < 0) { 2329 *pnum = 0; 2330 goto out; 2331 } 2332 2333 /* 2334 * The driver's result must be a non-zero multiple of request_alignment. 2335 * Clamp pnum and adjust map to original request. 2336 */ 2337 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2338 align > offset - aligned_offset); 2339 if (ret & BDRV_BLOCK_RECURSE) { 2340 assert(ret & BDRV_BLOCK_DATA); 2341 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2342 assert(!(ret & BDRV_BLOCK_ZERO)); 2343 } 2344 2345 *pnum -= offset - aligned_offset; 2346 if (*pnum > bytes) { 2347 *pnum = bytes; 2348 } 2349 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2350 local_map += offset - aligned_offset; 2351 } 2352 2353 if (ret & BDRV_BLOCK_RAW) { 2354 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2355 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2356 *pnum, pnum, &local_map, &local_file); 2357 goto out; 2358 } 2359 2360 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2361 ret |= BDRV_BLOCK_ALLOCATED; 2362 } else if (want_zero) { 2363 if (bdrv_unallocated_blocks_are_zero(bs)) { 2364 ret |= BDRV_BLOCK_ZERO; 2365 } else if (bs->backing) { 2366 BlockDriverState *bs2 = bs->backing->bs; 2367 int64_t size2 = bdrv_getlength(bs2); 2368 2369 if (size2 >= 0 && offset >= size2) { 2370 ret |= BDRV_BLOCK_ZERO; 2371 } 2372 } 2373 } 2374 2375 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2376 local_file && local_file != bs && 2377 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2378 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2379 int64_t file_pnum; 2380 int ret2; 2381 2382 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2383 *pnum, &file_pnum, NULL, NULL); 2384 if (ret2 >= 0) { 2385 /* Ignore errors. This is just providing extra information, it 2386 * is useful but not necessary. 2387 */ 2388 if (ret2 & BDRV_BLOCK_EOF && 2389 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2390 /* 2391 * It is valid for the format block driver to read 2392 * beyond the end of the underlying file's current 2393 * size; such areas read as zero. 2394 */ 2395 ret |= BDRV_BLOCK_ZERO; 2396 } else { 2397 /* Limit request to the range reported by the protocol driver */ 2398 *pnum = file_pnum; 2399 ret |= (ret2 & BDRV_BLOCK_ZERO); 2400 } 2401 } 2402 } 2403 2404 out: 2405 bdrv_dec_in_flight(bs); 2406 if (ret >= 0 && offset + *pnum == total_size) { 2407 ret |= BDRV_BLOCK_EOF; 2408 } 2409 early_out: 2410 if (file) { 2411 *file = local_file; 2412 } 2413 if (map) { 2414 *map = local_map; 2415 } 2416 return ret; 2417 } 2418 2419 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2420 BlockDriverState *base, 2421 bool want_zero, 2422 int64_t offset, 2423 int64_t bytes, 2424 int64_t *pnum, 2425 int64_t *map, 2426 BlockDriverState **file) 2427 { 2428 BlockDriverState *p; 2429 int ret = 0; 2430 bool first = true; 2431 2432 assert(bs != base); 2433 for (p = bs; p != base; p = backing_bs(p)) { 2434 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2435 file); 2436 if (ret < 0) { 2437 break; 2438 } 2439 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 2440 /* 2441 * Reading beyond the end of the file continues to read 2442 * zeroes, but we can only widen the result to the 2443 * unallocated length we learned from an earlier 2444 * iteration. 2445 */ 2446 *pnum = bytes; 2447 } 2448 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 2449 break; 2450 } 2451 /* [offset, pnum] unallocated on this layer, which could be only 2452 * the first part of [offset, bytes]. */ 2453 bytes = MIN(bytes, *pnum); 2454 first = false; 2455 } 2456 return ret; 2457 } 2458 2459 /* Coroutine wrapper for bdrv_block_status_above() */ 2460 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque) 2461 { 2462 BdrvCoBlockStatusData *data = opaque; 2463 2464 data->ret = bdrv_co_block_status_above(data->bs, data->base, 2465 data->want_zero, 2466 data->offset, data->bytes, 2467 data->pnum, data->map, data->file); 2468 data->done = true; 2469 aio_wait_kick(); 2470 } 2471 2472 /* 2473 * Synchronous wrapper around bdrv_co_block_status_above(). 2474 * 2475 * See bdrv_co_block_status_above() for details. 2476 */ 2477 static int bdrv_common_block_status_above(BlockDriverState *bs, 2478 BlockDriverState *base, 2479 bool want_zero, int64_t offset, 2480 int64_t bytes, int64_t *pnum, 2481 int64_t *map, 2482 BlockDriverState **file) 2483 { 2484 Coroutine *co; 2485 BdrvCoBlockStatusData data = { 2486 .bs = bs, 2487 .base = base, 2488 .want_zero = want_zero, 2489 .offset = offset, 2490 .bytes = bytes, 2491 .pnum = pnum, 2492 .map = map, 2493 .file = file, 2494 .done = false, 2495 }; 2496 2497 if (qemu_in_coroutine()) { 2498 /* Fast-path if already in coroutine context */ 2499 bdrv_block_status_above_co_entry(&data); 2500 } else { 2501 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data); 2502 bdrv_coroutine_enter(bs, co); 2503 BDRV_POLL_WHILE(bs, !data.done); 2504 } 2505 return data.ret; 2506 } 2507 2508 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2509 int64_t offset, int64_t bytes, int64_t *pnum, 2510 int64_t *map, BlockDriverState **file) 2511 { 2512 return bdrv_common_block_status_above(bs, base, true, offset, bytes, 2513 pnum, map, file); 2514 } 2515 2516 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2517 int64_t *pnum, int64_t *map, BlockDriverState **file) 2518 { 2519 return bdrv_block_status_above(bs, backing_bs(bs), 2520 offset, bytes, pnum, map, file); 2521 } 2522 2523 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2524 int64_t bytes, int64_t *pnum) 2525 { 2526 int ret; 2527 int64_t dummy; 2528 2529 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset, 2530 bytes, pnum ? pnum : &dummy, NULL, 2531 NULL); 2532 if (ret < 0) { 2533 return ret; 2534 } 2535 return !!(ret & BDRV_BLOCK_ALLOCATED); 2536 } 2537 2538 /* 2539 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2540 * 2541 * Return 1 if (a prefix of) the given range is allocated in any image 2542 * between BASE and TOP (BASE is only included if include_base is set). 2543 * BASE can be NULL to check if the given offset is allocated in any 2544 * image of the chain. Return 0 otherwise, or negative errno on 2545 * failure. 2546 * 2547 * 'pnum' is set to the number of bytes (including and immediately 2548 * following the specified offset) that are known to be in the same 2549 * allocated/unallocated state. Note that a subsequent call starting 2550 * at 'offset + *pnum' may return the same allocation status (in other 2551 * words, the result is not necessarily the maximum possible range); 2552 * but 'pnum' will only be 0 when end of file is reached. 2553 * 2554 */ 2555 int bdrv_is_allocated_above(BlockDriverState *top, 2556 BlockDriverState *base, 2557 bool include_base, int64_t offset, 2558 int64_t bytes, int64_t *pnum) 2559 { 2560 BlockDriverState *intermediate; 2561 int ret; 2562 int64_t n = bytes; 2563 2564 assert(base || !include_base); 2565 2566 intermediate = top; 2567 while (include_base || intermediate != base) { 2568 int64_t pnum_inter; 2569 int64_t size_inter; 2570 2571 assert(intermediate); 2572 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2573 if (ret < 0) { 2574 return ret; 2575 } 2576 if (ret) { 2577 *pnum = pnum_inter; 2578 return 1; 2579 } 2580 2581 size_inter = bdrv_getlength(intermediate); 2582 if (size_inter < 0) { 2583 return size_inter; 2584 } 2585 if (n > pnum_inter && 2586 (intermediate == top || offset + pnum_inter < size_inter)) { 2587 n = pnum_inter; 2588 } 2589 2590 if (intermediate == base) { 2591 break; 2592 } 2593 2594 intermediate = backing_bs(intermediate); 2595 } 2596 2597 *pnum = n; 2598 return 0; 2599 } 2600 2601 typedef struct BdrvVmstateCo { 2602 BlockDriverState *bs; 2603 QEMUIOVector *qiov; 2604 int64_t pos; 2605 bool is_read; 2606 int ret; 2607 } BdrvVmstateCo; 2608 2609 static int coroutine_fn 2610 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2611 bool is_read) 2612 { 2613 BlockDriver *drv = bs->drv; 2614 int ret = -ENOTSUP; 2615 2616 bdrv_inc_in_flight(bs); 2617 2618 if (!drv) { 2619 ret = -ENOMEDIUM; 2620 } else if (drv->bdrv_load_vmstate) { 2621 if (is_read) { 2622 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2623 } else { 2624 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2625 } 2626 } else if (bs->file) { 2627 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2628 } 2629 2630 bdrv_dec_in_flight(bs); 2631 return ret; 2632 } 2633 2634 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2635 { 2636 BdrvVmstateCo *co = opaque; 2637 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2638 aio_wait_kick(); 2639 } 2640 2641 static inline int 2642 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2643 bool is_read) 2644 { 2645 if (qemu_in_coroutine()) { 2646 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2647 } else { 2648 BdrvVmstateCo data = { 2649 .bs = bs, 2650 .qiov = qiov, 2651 .pos = pos, 2652 .is_read = is_read, 2653 .ret = -EINPROGRESS, 2654 }; 2655 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2656 2657 bdrv_coroutine_enter(bs, co); 2658 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2659 return data.ret; 2660 } 2661 } 2662 2663 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2664 int64_t pos, int size) 2665 { 2666 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2667 int ret; 2668 2669 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2670 if (ret < 0) { 2671 return ret; 2672 } 2673 2674 return size; 2675 } 2676 2677 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2678 { 2679 return bdrv_rw_vmstate(bs, qiov, pos, false); 2680 } 2681 2682 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2683 int64_t pos, int size) 2684 { 2685 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2686 int ret; 2687 2688 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2689 if (ret < 0) { 2690 return ret; 2691 } 2692 2693 return size; 2694 } 2695 2696 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2697 { 2698 return bdrv_rw_vmstate(bs, qiov, pos, true); 2699 } 2700 2701 /**************************************************************/ 2702 /* async I/Os */ 2703 2704 void bdrv_aio_cancel(BlockAIOCB *acb) 2705 { 2706 qemu_aio_ref(acb); 2707 bdrv_aio_cancel_async(acb); 2708 while (acb->refcnt > 1) { 2709 if (acb->aiocb_info->get_aio_context) { 2710 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2711 } else if (acb->bs) { 2712 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2713 * assert that we're not using an I/O thread. Thread-safe 2714 * code should use bdrv_aio_cancel_async exclusively. 2715 */ 2716 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2717 aio_poll(bdrv_get_aio_context(acb->bs), true); 2718 } else { 2719 abort(); 2720 } 2721 } 2722 qemu_aio_unref(acb); 2723 } 2724 2725 /* Async version of aio cancel. The caller is not blocked if the acb implements 2726 * cancel_async, otherwise we do nothing and let the request normally complete. 2727 * In either case the completion callback must be called. */ 2728 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2729 { 2730 if (acb->aiocb_info->cancel_async) { 2731 acb->aiocb_info->cancel_async(acb); 2732 } 2733 } 2734 2735 /**************************************************************/ 2736 /* Coroutine block device emulation */ 2737 2738 typedef struct FlushCo { 2739 BlockDriverState *bs; 2740 int ret; 2741 } FlushCo; 2742 2743 2744 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2745 { 2746 FlushCo *rwco = opaque; 2747 2748 rwco->ret = bdrv_co_flush(rwco->bs); 2749 aio_wait_kick(); 2750 } 2751 2752 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2753 { 2754 int current_gen; 2755 int ret = 0; 2756 2757 bdrv_inc_in_flight(bs); 2758 2759 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2760 bdrv_is_sg(bs)) { 2761 goto early_exit; 2762 } 2763 2764 qemu_co_mutex_lock(&bs->reqs_lock); 2765 current_gen = atomic_read(&bs->write_gen); 2766 2767 /* Wait until any previous flushes are completed */ 2768 while (bs->active_flush_req) { 2769 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2770 } 2771 2772 /* Flushes reach this point in nondecreasing current_gen order. */ 2773 bs->active_flush_req = true; 2774 qemu_co_mutex_unlock(&bs->reqs_lock); 2775 2776 /* Write back all layers by calling one driver function */ 2777 if (bs->drv->bdrv_co_flush) { 2778 ret = bs->drv->bdrv_co_flush(bs); 2779 goto out; 2780 } 2781 2782 /* Write back cached data to the OS even with cache=unsafe */ 2783 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2784 if (bs->drv->bdrv_co_flush_to_os) { 2785 ret = bs->drv->bdrv_co_flush_to_os(bs); 2786 if (ret < 0) { 2787 goto out; 2788 } 2789 } 2790 2791 /* But don't actually force it to the disk with cache=unsafe */ 2792 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2793 goto flush_parent; 2794 } 2795 2796 /* Check if we really need to flush anything */ 2797 if (bs->flushed_gen == current_gen) { 2798 goto flush_parent; 2799 } 2800 2801 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2802 if (!bs->drv) { 2803 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2804 * (even in case of apparent success) */ 2805 ret = -ENOMEDIUM; 2806 goto out; 2807 } 2808 if (bs->drv->bdrv_co_flush_to_disk) { 2809 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2810 } else if (bs->drv->bdrv_aio_flush) { 2811 BlockAIOCB *acb; 2812 CoroutineIOCompletion co = { 2813 .coroutine = qemu_coroutine_self(), 2814 }; 2815 2816 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2817 if (acb == NULL) { 2818 ret = -EIO; 2819 } else { 2820 qemu_coroutine_yield(); 2821 ret = co.ret; 2822 } 2823 } else { 2824 /* 2825 * Some block drivers always operate in either writethrough or unsafe 2826 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2827 * know how the server works (because the behaviour is hardcoded or 2828 * depends on server-side configuration), so we can't ensure that 2829 * everything is safe on disk. Returning an error doesn't work because 2830 * that would break guests even if the server operates in writethrough 2831 * mode. 2832 * 2833 * Let's hope the user knows what he's doing. 2834 */ 2835 ret = 0; 2836 } 2837 2838 if (ret < 0) { 2839 goto out; 2840 } 2841 2842 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2843 * in the case of cache=unsafe, so there are no useless flushes. 2844 */ 2845 flush_parent: 2846 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2847 out: 2848 /* Notify any pending flushes that we have completed */ 2849 if (ret == 0) { 2850 bs->flushed_gen = current_gen; 2851 } 2852 2853 qemu_co_mutex_lock(&bs->reqs_lock); 2854 bs->active_flush_req = false; 2855 /* Return value is ignored - it's ok if wait queue is empty */ 2856 qemu_co_queue_next(&bs->flush_queue); 2857 qemu_co_mutex_unlock(&bs->reqs_lock); 2858 2859 early_exit: 2860 bdrv_dec_in_flight(bs); 2861 return ret; 2862 } 2863 2864 int bdrv_flush(BlockDriverState *bs) 2865 { 2866 Coroutine *co; 2867 FlushCo flush_co = { 2868 .bs = bs, 2869 .ret = NOT_DONE, 2870 }; 2871 2872 if (qemu_in_coroutine()) { 2873 /* Fast-path if already in coroutine context */ 2874 bdrv_flush_co_entry(&flush_co); 2875 } else { 2876 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2877 bdrv_coroutine_enter(bs, co); 2878 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2879 } 2880 2881 return flush_co.ret; 2882 } 2883 2884 typedef struct DiscardCo { 2885 BdrvChild *child; 2886 int64_t offset; 2887 int64_t bytes; 2888 int ret; 2889 } DiscardCo; 2890 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2891 { 2892 DiscardCo *rwco = opaque; 2893 2894 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes); 2895 aio_wait_kick(); 2896 } 2897 2898 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 2899 int64_t bytes) 2900 { 2901 BdrvTrackedRequest req; 2902 int max_pdiscard, ret; 2903 int head, tail, align; 2904 BlockDriverState *bs = child->bs; 2905 2906 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 2907 return -ENOMEDIUM; 2908 } 2909 2910 if (bdrv_has_readonly_bitmaps(bs)) { 2911 return -EPERM; 2912 } 2913 2914 if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) { 2915 return -EIO; 2916 } 2917 2918 /* Do nothing if disabled. */ 2919 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2920 return 0; 2921 } 2922 2923 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2924 return 0; 2925 } 2926 2927 /* Discard is advisory, but some devices track and coalesce 2928 * unaligned requests, so we must pass everything down rather than 2929 * round here. Still, most devices will just silently ignore 2930 * unaligned requests (by returning -ENOTSUP), so we must fragment 2931 * the request accordingly. */ 2932 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2933 assert(align % bs->bl.request_alignment == 0); 2934 head = offset % align; 2935 tail = (offset + bytes) % align; 2936 2937 bdrv_inc_in_flight(bs); 2938 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2939 2940 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 2941 if (ret < 0) { 2942 goto out; 2943 } 2944 2945 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2946 align); 2947 assert(max_pdiscard >= bs->bl.request_alignment); 2948 2949 while (bytes > 0) { 2950 int64_t num = bytes; 2951 2952 if (head) { 2953 /* Make small requests to get to alignment boundaries. */ 2954 num = MIN(bytes, align - head); 2955 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2956 num %= bs->bl.request_alignment; 2957 } 2958 head = (head + num) % align; 2959 assert(num < max_pdiscard); 2960 } else if (tail) { 2961 if (num > align) { 2962 /* Shorten the request to the last aligned cluster. */ 2963 num -= tail; 2964 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2965 tail > bs->bl.request_alignment) { 2966 tail %= bs->bl.request_alignment; 2967 num -= tail; 2968 } 2969 } 2970 /* limit request size */ 2971 if (num > max_pdiscard) { 2972 num = max_pdiscard; 2973 } 2974 2975 if (!bs->drv) { 2976 ret = -ENOMEDIUM; 2977 goto out; 2978 } 2979 if (bs->drv->bdrv_co_pdiscard) { 2980 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2981 } else { 2982 BlockAIOCB *acb; 2983 CoroutineIOCompletion co = { 2984 .coroutine = qemu_coroutine_self(), 2985 }; 2986 2987 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2988 bdrv_co_io_em_complete, &co); 2989 if (acb == NULL) { 2990 ret = -EIO; 2991 goto out; 2992 } else { 2993 qemu_coroutine_yield(); 2994 ret = co.ret; 2995 } 2996 } 2997 if (ret && ret != -ENOTSUP) { 2998 goto out; 2999 } 3000 3001 offset += num; 3002 bytes -= num; 3003 } 3004 ret = 0; 3005 out: 3006 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3007 tracked_request_end(&req); 3008 bdrv_dec_in_flight(bs); 3009 return ret; 3010 } 3011 3012 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes) 3013 { 3014 Coroutine *co; 3015 DiscardCo rwco = { 3016 .child = child, 3017 .offset = offset, 3018 .bytes = bytes, 3019 .ret = NOT_DONE, 3020 }; 3021 3022 if (qemu_in_coroutine()) { 3023 /* Fast-path if already in coroutine context */ 3024 bdrv_pdiscard_co_entry(&rwco); 3025 } else { 3026 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 3027 bdrv_coroutine_enter(child->bs, co); 3028 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 3029 } 3030 3031 return rwco.ret; 3032 } 3033 3034 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3035 { 3036 BlockDriver *drv = bs->drv; 3037 CoroutineIOCompletion co = { 3038 .coroutine = qemu_coroutine_self(), 3039 }; 3040 BlockAIOCB *acb; 3041 3042 bdrv_inc_in_flight(bs); 3043 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3044 co.ret = -ENOTSUP; 3045 goto out; 3046 } 3047 3048 if (drv->bdrv_co_ioctl) { 3049 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3050 } else { 3051 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3052 if (!acb) { 3053 co.ret = -ENOTSUP; 3054 goto out; 3055 } 3056 qemu_coroutine_yield(); 3057 } 3058 out: 3059 bdrv_dec_in_flight(bs); 3060 return co.ret; 3061 } 3062 3063 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3064 { 3065 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3066 } 3067 3068 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3069 { 3070 return memset(qemu_blockalign(bs, size), 0, size); 3071 } 3072 3073 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3074 { 3075 size_t align = bdrv_opt_mem_align(bs); 3076 3077 /* Ensure that NULL is never returned on success */ 3078 assert(align > 0); 3079 if (size == 0) { 3080 size = align; 3081 } 3082 3083 return qemu_try_memalign(align, size); 3084 } 3085 3086 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3087 { 3088 void *mem = qemu_try_blockalign(bs, size); 3089 3090 if (mem) { 3091 memset(mem, 0, size); 3092 } 3093 3094 return mem; 3095 } 3096 3097 /* 3098 * Check if all memory in this vector is sector aligned. 3099 */ 3100 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 3101 { 3102 int i; 3103 size_t alignment = bdrv_min_mem_align(bs); 3104 3105 for (i = 0; i < qiov->niov; i++) { 3106 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 3107 return false; 3108 } 3109 if (qiov->iov[i].iov_len % alignment) { 3110 return false; 3111 } 3112 } 3113 3114 return true; 3115 } 3116 3117 void bdrv_add_before_write_notifier(BlockDriverState *bs, 3118 NotifierWithReturn *notifier) 3119 { 3120 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 3121 } 3122 3123 void bdrv_io_plug(BlockDriverState *bs) 3124 { 3125 BdrvChild *child; 3126 3127 QLIST_FOREACH(child, &bs->children, next) { 3128 bdrv_io_plug(child->bs); 3129 } 3130 3131 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 3132 BlockDriver *drv = bs->drv; 3133 if (drv && drv->bdrv_io_plug) { 3134 drv->bdrv_io_plug(bs); 3135 } 3136 } 3137 } 3138 3139 void bdrv_io_unplug(BlockDriverState *bs) 3140 { 3141 BdrvChild *child; 3142 3143 assert(bs->io_plugged); 3144 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 3145 BlockDriver *drv = bs->drv; 3146 if (drv && drv->bdrv_io_unplug) { 3147 drv->bdrv_io_unplug(bs); 3148 } 3149 } 3150 3151 QLIST_FOREACH(child, &bs->children, next) { 3152 bdrv_io_unplug(child->bs); 3153 } 3154 } 3155 3156 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 3157 { 3158 BdrvChild *child; 3159 3160 if (bs->drv && bs->drv->bdrv_register_buf) { 3161 bs->drv->bdrv_register_buf(bs, host, size); 3162 } 3163 QLIST_FOREACH(child, &bs->children, next) { 3164 bdrv_register_buf(child->bs, host, size); 3165 } 3166 } 3167 3168 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 3169 { 3170 BdrvChild *child; 3171 3172 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3173 bs->drv->bdrv_unregister_buf(bs, host); 3174 } 3175 QLIST_FOREACH(child, &bs->children, next) { 3176 bdrv_unregister_buf(child->bs, host); 3177 } 3178 } 3179 3180 static int coroutine_fn bdrv_co_copy_range_internal( 3181 BdrvChild *src, uint64_t src_offset, BdrvChild *dst, 3182 uint64_t dst_offset, uint64_t bytes, 3183 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3184 bool recurse_src) 3185 { 3186 BdrvTrackedRequest req; 3187 int ret; 3188 3189 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3190 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3191 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3192 3193 if (!dst || !dst->bs) { 3194 return -ENOMEDIUM; 3195 } 3196 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes); 3197 if (ret) { 3198 return ret; 3199 } 3200 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3201 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3202 } 3203 3204 if (!src || !src->bs) { 3205 return -ENOMEDIUM; 3206 } 3207 ret = bdrv_check_byte_request(src->bs, src_offset, bytes); 3208 if (ret) { 3209 return ret; 3210 } 3211 3212 if (!src->bs->drv->bdrv_co_copy_range_from 3213 || !dst->bs->drv->bdrv_co_copy_range_to 3214 || src->bs->encrypted || dst->bs->encrypted) { 3215 return -ENOTSUP; 3216 } 3217 3218 if (recurse_src) { 3219 bdrv_inc_in_flight(src->bs); 3220 tracked_request_begin(&req, src->bs, src_offset, bytes, 3221 BDRV_TRACKED_READ); 3222 3223 /* BDRV_REQ_SERIALISING is only for write operation */ 3224 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3225 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) { 3226 bdrv_wait_serialising_requests(&req); 3227 } 3228 3229 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3230 src, src_offset, 3231 dst, dst_offset, 3232 bytes, 3233 read_flags, write_flags); 3234 3235 tracked_request_end(&req); 3236 bdrv_dec_in_flight(src->bs); 3237 } else { 3238 bdrv_inc_in_flight(dst->bs); 3239 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3240 BDRV_TRACKED_WRITE); 3241 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3242 write_flags); 3243 if (!ret) { 3244 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3245 src, src_offset, 3246 dst, dst_offset, 3247 bytes, 3248 read_flags, write_flags); 3249 } 3250 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3251 tracked_request_end(&req); 3252 bdrv_dec_in_flight(dst->bs); 3253 } 3254 3255 return ret; 3256 } 3257 3258 /* Copy range from @src to @dst. 3259 * 3260 * See the comment of bdrv_co_copy_range for the parameter and return value 3261 * semantics. */ 3262 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset, 3263 BdrvChild *dst, uint64_t dst_offset, 3264 uint64_t bytes, 3265 BdrvRequestFlags read_flags, 3266 BdrvRequestFlags write_flags) 3267 { 3268 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3269 read_flags, write_flags); 3270 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3271 bytes, read_flags, write_flags, true); 3272 } 3273 3274 /* Copy range from @src to @dst. 3275 * 3276 * See the comment of bdrv_co_copy_range for the parameter and return value 3277 * semantics. */ 3278 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset, 3279 BdrvChild *dst, uint64_t dst_offset, 3280 uint64_t bytes, 3281 BdrvRequestFlags read_flags, 3282 BdrvRequestFlags write_flags) 3283 { 3284 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3285 read_flags, write_flags); 3286 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3287 bytes, read_flags, write_flags, false); 3288 } 3289 3290 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset, 3291 BdrvChild *dst, uint64_t dst_offset, 3292 uint64_t bytes, BdrvRequestFlags read_flags, 3293 BdrvRequestFlags write_flags) 3294 { 3295 return bdrv_co_copy_range_from(src, src_offset, 3296 dst, dst_offset, 3297 bytes, read_flags, write_flags); 3298 } 3299 3300 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3301 { 3302 BdrvChild *c; 3303 QLIST_FOREACH(c, &bs->parents, next_parent) { 3304 if (c->role->resize) { 3305 c->role->resize(c); 3306 } 3307 } 3308 } 3309 3310 /** 3311 * Truncate file to 'offset' bytes (needed only for file protocols) 3312 * 3313 * If 'exact' is true, the file must be resized to exactly the given 3314 * 'offset'. Otherwise, it is sufficient for the node to be at least 3315 * 'offset' bytes in length. 3316 */ 3317 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3318 PreallocMode prealloc, Error **errp) 3319 { 3320 BlockDriverState *bs = child->bs; 3321 BlockDriver *drv = bs->drv; 3322 BdrvTrackedRequest req; 3323 int64_t old_size, new_bytes; 3324 int ret; 3325 3326 3327 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3328 if (!drv) { 3329 error_setg(errp, "No medium inserted"); 3330 return -ENOMEDIUM; 3331 } 3332 if (offset < 0) { 3333 error_setg(errp, "Image size cannot be negative"); 3334 return -EINVAL; 3335 } 3336 3337 old_size = bdrv_getlength(bs); 3338 if (old_size < 0) { 3339 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3340 return old_size; 3341 } 3342 3343 if (offset > old_size) { 3344 new_bytes = offset - old_size; 3345 } else { 3346 new_bytes = 0; 3347 } 3348 3349 bdrv_inc_in_flight(bs); 3350 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3351 BDRV_TRACKED_TRUNCATE); 3352 3353 /* If we are growing the image and potentially using preallocation for the 3354 * new area, we need to make sure that no write requests are made to it 3355 * concurrently or they might be overwritten by preallocation. */ 3356 if (new_bytes) { 3357 bdrv_mark_request_serialising(&req, 1); 3358 } 3359 if (bs->read_only) { 3360 error_setg(errp, "Image is read-only"); 3361 ret = -EACCES; 3362 goto out; 3363 } 3364 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3365 0); 3366 if (ret < 0) { 3367 error_setg_errno(errp, -ret, 3368 "Failed to prepare request for truncation"); 3369 goto out; 3370 } 3371 3372 if (drv->bdrv_co_truncate) { 3373 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, errp); 3374 } else if (bs->file && drv->is_filter) { 3375 ret = bdrv_co_truncate(bs->file, offset, exact, prealloc, errp); 3376 } else { 3377 error_setg(errp, "Image format driver does not support resize"); 3378 ret = -ENOTSUP; 3379 goto out; 3380 } 3381 if (ret < 0) { 3382 goto out; 3383 } 3384 3385 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3386 if (ret < 0) { 3387 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3388 } else { 3389 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3390 } 3391 /* It's possible that truncation succeeded but refresh_total_sectors 3392 * failed, but the latter doesn't affect how we should finish the request. 3393 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3394 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3395 3396 out: 3397 tracked_request_end(&req); 3398 bdrv_dec_in_flight(bs); 3399 3400 return ret; 3401 } 3402 3403 typedef struct TruncateCo { 3404 BdrvChild *child; 3405 int64_t offset; 3406 bool exact; 3407 PreallocMode prealloc; 3408 Error **errp; 3409 int ret; 3410 } TruncateCo; 3411 3412 static void coroutine_fn bdrv_truncate_co_entry(void *opaque) 3413 { 3414 TruncateCo *tco = opaque; 3415 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->exact, 3416 tco->prealloc, tco->errp); 3417 aio_wait_kick(); 3418 } 3419 3420 int bdrv_truncate(BdrvChild *child, int64_t offset, bool exact, 3421 PreallocMode prealloc, Error **errp) 3422 { 3423 Coroutine *co; 3424 TruncateCo tco = { 3425 .child = child, 3426 .offset = offset, 3427 .exact = exact, 3428 .prealloc = prealloc, 3429 .errp = errp, 3430 .ret = NOT_DONE, 3431 }; 3432 3433 if (qemu_in_coroutine()) { 3434 /* Fast-path if already in coroutine context */ 3435 bdrv_truncate_co_entry(&tco); 3436 } else { 3437 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco); 3438 bdrv_coroutine_enter(child->bs, co); 3439 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE); 3440 } 3441 3442 return tco.ret; 3443 } 3444