1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/blockjob.h" 29 #include "block/block_int.h" 30 #include "qemu/cutils.h" 31 #include "qapi/error.h" 32 #include "qemu/error-report.h" 33 34 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 35 36 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 37 int64_t sector_num, 38 QEMUIOVector *qiov, 39 int nb_sectors, 40 BdrvRequestFlags flags, 41 BlockCompletionFunc *cb, 42 void *opaque, 43 bool is_write); 44 static void coroutine_fn bdrv_co_do_rw(void *opaque); 45 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 46 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags); 47 48 static void bdrv_parent_drained_begin(BlockDriverState *bs) 49 { 50 BdrvChild *c; 51 52 QLIST_FOREACH(c, &bs->parents, next_parent) { 53 if (c->role->drained_begin) { 54 c->role->drained_begin(c); 55 } 56 } 57 } 58 59 static void bdrv_parent_drained_end(BlockDriverState *bs) 60 { 61 BdrvChild *c; 62 63 QLIST_FOREACH(c, &bs->parents, next_parent) { 64 if (c->role->drained_end) { 65 c->role->drained_end(c); 66 } 67 } 68 } 69 70 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 71 { 72 BlockDriver *drv = bs->drv; 73 Error *local_err = NULL; 74 75 memset(&bs->bl, 0, sizeof(bs->bl)); 76 77 if (!drv) { 78 return; 79 } 80 81 /* Take some limits from the children as a default */ 82 if (bs->file) { 83 bdrv_refresh_limits(bs->file->bs, &local_err); 84 if (local_err) { 85 error_propagate(errp, local_err); 86 return; 87 } 88 bs->bl.opt_transfer_length = bs->file->bs->bl.opt_transfer_length; 89 bs->bl.max_transfer_length = bs->file->bs->bl.max_transfer_length; 90 bs->bl.min_mem_alignment = bs->file->bs->bl.min_mem_alignment; 91 bs->bl.opt_mem_alignment = bs->file->bs->bl.opt_mem_alignment; 92 bs->bl.max_iov = bs->file->bs->bl.max_iov; 93 } else { 94 bs->bl.min_mem_alignment = 512; 95 bs->bl.opt_mem_alignment = getpagesize(); 96 97 /* Safe default since most protocols use readv()/writev()/etc */ 98 bs->bl.max_iov = IOV_MAX; 99 } 100 101 if (bs->backing) { 102 bdrv_refresh_limits(bs->backing->bs, &local_err); 103 if (local_err) { 104 error_propagate(errp, local_err); 105 return; 106 } 107 bs->bl.opt_transfer_length = 108 MAX(bs->bl.opt_transfer_length, 109 bs->backing->bs->bl.opt_transfer_length); 110 bs->bl.max_transfer_length = 111 MIN_NON_ZERO(bs->bl.max_transfer_length, 112 bs->backing->bs->bl.max_transfer_length); 113 bs->bl.opt_mem_alignment = 114 MAX(bs->bl.opt_mem_alignment, 115 bs->backing->bs->bl.opt_mem_alignment); 116 bs->bl.min_mem_alignment = 117 MAX(bs->bl.min_mem_alignment, 118 bs->backing->bs->bl.min_mem_alignment); 119 bs->bl.max_iov = 120 MIN(bs->bl.max_iov, 121 bs->backing->bs->bl.max_iov); 122 } 123 124 /* Then let the driver override it */ 125 if (drv->bdrv_refresh_limits) { 126 drv->bdrv_refresh_limits(bs, errp); 127 } 128 } 129 130 /** 131 * The copy-on-read flag is actually a reference count so multiple users may 132 * use the feature without worrying about clobbering its previous state. 133 * Copy-on-read stays enabled until all users have called to disable it. 134 */ 135 void bdrv_enable_copy_on_read(BlockDriverState *bs) 136 { 137 bs->copy_on_read++; 138 } 139 140 void bdrv_disable_copy_on_read(BlockDriverState *bs) 141 { 142 assert(bs->copy_on_read > 0); 143 bs->copy_on_read--; 144 } 145 146 /* Check if any requests are in-flight (including throttled requests) */ 147 bool bdrv_requests_pending(BlockDriverState *bs) 148 { 149 BdrvChild *child; 150 151 if (!QLIST_EMPTY(&bs->tracked_requests)) { 152 return true; 153 } 154 155 QLIST_FOREACH(child, &bs->children, next) { 156 if (bdrv_requests_pending(child->bs)) { 157 return true; 158 } 159 } 160 161 return false; 162 } 163 164 static void bdrv_drain_recurse(BlockDriverState *bs) 165 { 166 BdrvChild *child; 167 168 if (bs->drv && bs->drv->bdrv_drain) { 169 bs->drv->bdrv_drain(bs); 170 } 171 QLIST_FOREACH(child, &bs->children, next) { 172 bdrv_drain_recurse(child->bs); 173 } 174 } 175 176 typedef struct { 177 Coroutine *co; 178 BlockDriverState *bs; 179 QEMUBH *bh; 180 bool done; 181 } BdrvCoDrainData; 182 183 static void bdrv_drain_poll(BlockDriverState *bs) 184 { 185 bool busy = true; 186 187 while (busy) { 188 /* Keep iterating */ 189 busy = bdrv_requests_pending(bs); 190 busy |= aio_poll(bdrv_get_aio_context(bs), busy); 191 } 192 } 193 194 static void bdrv_co_drain_bh_cb(void *opaque) 195 { 196 BdrvCoDrainData *data = opaque; 197 Coroutine *co = data->co; 198 199 qemu_bh_delete(data->bh); 200 bdrv_drain_poll(data->bs); 201 data->done = true; 202 qemu_coroutine_enter(co, NULL); 203 } 204 205 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs) 206 { 207 BdrvCoDrainData data; 208 209 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 210 * other coroutines run if they were queued from 211 * qemu_co_queue_run_restart(). */ 212 213 assert(qemu_in_coroutine()); 214 data = (BdrvCoDrainData) { 215 .co = qemu_coroutine_self(), 216 .bs = bs, 217 .done = false, 218 .bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_drain_bh_cb, &data), 219 }; 220 qemu_bh_schedule(data.bh); 221 222 qemu_coroutine_yield(); 223 /* If we are resumed from some other event (such as an aio completion or a 224 * timer callback), it is a bug in the caller that should be fixed. */ 225 assert(data.done); 226 } 227 228 void bdrv_drained_begin(BlockDriverState *bs) 229 { 230 if (!bs->quiesce_counter++) { 231 aio_disable_external(bdrv_get_aio_context(bs)); 232 bdrv_parent_drained_begin(bs); 233 } 234 235 bdrv_io_unplugged_begin(bs); 236 bdrv_drain_recurse(bs); 237 if (qemu_in_coroutine()) { 238 bdrv_co_yield_to_drain(bs); 239 } else { 240 bdrv_drain_poll(bs); 241 } 242 bdrv_io_unplugged_end(bs); 243 } 244 245 void bdrv_drained_end(BlockDriverState *bs) 246 { 247 assert(bs->quiesce_counter > 0); 248 if (--bs->quiesce_counter > 0) { 249 return; 250 } 251 252 bdrv_parent_drained_end(bs); 253 aio_enable_external(bdrv_get_aio_context(bs)); 254 } 255 256 /* 257 * Wait for pending requests to complete on a single BlockDriverState subtree, 258 * and suspend block driver's internal I/O until next request arrives. 259 * 260 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 261 * AioContext. 262 * 263 * Only this BlockDriverState's AioContext is run, so in-flight requests must 264 * not depend on events in other AioContexts. In that case, use 265 * bdrv_drain_all() instead. 266 */ 267 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 268 { 269 assert(qemu_in_coroutine()); 270 bdrv_drained_begin(bs); 271 bdrv_drained_end(bs); 272 } 273 274 void bdrv_drain(BlockDriverState *bs) 275 { 276 bdrv_drained_begin(bs); 277 bdrv_drained_end(bs); 278 } 279 280 /* 281 * Wait for pending requests to complete across all BlockDriverStates 282 * 283 * This function does not flush data to disk, use bdrv_flush_all() for that 284 * after calling this function. 285 */ 286 void bdrv_drain_all(void) 287 { 288 /* Always run first iteration so any pending completion BHs run */ 289 bool busy = true; 290 BlockDriverState *bs; 291 BdrvNextIterator it; 292 GSList *aio_ctxs = NULL, *ctx; 293 294 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 295 AioContext *aio_context = bdrv_get_aio_context(bs); 296 297 aio_context_acquire(aio_context); 298 if (bs->job) { 299 block_job_pause(bs->job); 300 } 301 bdrv_parent_drained_begin(bs); 302 bdrv_io_unplugged_begin(bs); 303 bdrv_drain_recurse(bs); 304 aio_context_release(aio_context); 305 306 if (!g_slist_find(aio_ctxs, aio_context)) { 307 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context); 308 } 309 } 310 311 /* Note that completion of an asynchronous I/O operation can trigger any 312 * number of other I/O operations on other devices---for example a 313 * coroutine can submit an I/O request to another device in response to 314 * request completion. Therefore we must keep looping until there was no 315 * more activity rather than simply draining each device independently. 316 */ 317 while (busy) { 318 busy = false; 319 320 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) { 321 AioContext *aio_context = ctx->data; 322 323 aio_context_acquire(aio_context); 324 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 325 if (aio_context == bdrv_get_aio_context(bs)) { 326 if (bdrv_requests_pending(bs)) { 327 busy = true; 328 aio_poll(aio_context, busy); 329 } 330 } 331 } 332 busy |= aio_poll(aio_context, false); 333 aio_context_release(aio_context); 334 } 335 } 336 337 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 338 AioContext *aio_context = bdrv_get_aio_context(bs); 339 340 aio_context_acquire(aio_context); 341 bdrv_io_unplugged_end(bs); 342 bdrv_parent_drained_end(bs); 343 if (bs->job) { 344 block_job_resume(bs->job); 345 } 346 aio_context_release(aio_context); 347 } 348 g_slist_free(aio_ctxs); 349 } 350 351 /** 352 * Remove an active request from the tracked requests list 353 * 354 * This function should be called when a tracked request is completing. 355 */ 356 static void tracked_request_end(BdrvTrackedRequest *req) 357 { 358 if (req->serialising) { 359 req->bs->serialising_in_flight--; 360 } 361 362 QLIST_REMOVE(req, list); 363 qemu_co_queue_restart_all(&req->wait_queue); 364 } 365 366 /** 367 * Add an active request to the tracked requests list 368 */ 369 static void tracked_request_begin(BdrvTrackedRequest *req, 370 BlockDriverState *bs, 371 int64_t offset, 372 unsigned int bytes, 373 enum BdrvTrackedRequestType type) 374 { 375 *req = (BdrvTrackedRequest){ 376 .bs = bs, 377 .offset = offset, 378 .bytes = bytes, 379 .type = type, 380 .co = qemu_coroutine_self(), 381 .serialising = false, 382 .overlap_offset = offset, 383 .overlap_bytes = bytes, 384 }; 385 386 qemu_co_queue_init(&req->wait_queue); 387 388 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 389 } 390 391 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 392 { 393 int64_t overlap_offset = req->offset & ~(align - 1); 394 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 395 - overlap_offset; 396 397 if (!req->serialising) { 398 req->bs->serialising_in_flight++; 399 req->serialising = true; 400 } 401 402 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 403 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 404 } 405 406 /** 407 * Round a region to cluster boundaries 408 */ 409 void bdrv_round_to_clusters(BlockDriverState *bs, 410 int64_t sector_num, int nb_sectors, 411 int64_t *cluster_sector_num, 412 int *cluster_nb_sectors) 413 { 414 BlockDriverInfo bdi; 415 416 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 417 *cluster_sector_num = sector_num; 418 *cluster_nb_sectors = nb_sectors; 419 } else { 420 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 421 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 422 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 423 nb_sectors, c); 424 } 425 } 426 427 static int bdrv_get_cluster_size(BlockDriverState *bs) 428 { 429 BlockDriverInfo bdi; 430 int ret; 431 432 ret = bdrv_get_info(bs, &bdi); 433 if (ret < 0 || bdi.cluster_size == 0) { 434 return bs->request_alignment; 435 } else { 436 return bdi.cluster_size; 437 } 438 } 439 440 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 441 int64_t offset, unsigned int bytes) 442 { 443 /* aaaa bbbb */ 444 if (offset >= req->overlap_offset + req->overlap_bytes) { 445 return false; 446 } 447 /* bbbb aaaa */ 448 if (req->overlap_offset >= offset + bytes) { 449 return false; 450 } 451 return true; 452 } 453 454 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 455 { 456 BlockDriverState *bs = self->bs; 457 BdrvTrackedRequest *req; 458 bool retry; 459 bool waited = false; 460 461 if (!bs->serialising_in_flight) { 462 return false; 463 } 464 465 do { 466 retry = false; 467 QLIST_FOREACH(req, &bs->tracked_requests, list) { 468 if (req == self || (!req->serialising && !self->serialising)) { 469 continue; 470 } 471 if (tracked_request_overlaps(req, self->overlap_offset, 472 self->overlap_bytes)) 473 { 474 /* Hitting this means there was a reentrant request, for 475 * example, a block driver issuing nested requests. This must 476 * never happen since it means deadlock. 477 */ 478 assert(qemu_coroutine_self() != req->co); 479 480 /* If the request is already (indirectly) waiting for us, or 481 * will wait for us as soon as it wakes up, then just go on 482 * (instead of producing a deadlock in the former case). */ 483 if (!req->waiting_for) { 484 self->waiting_for = req; 485 qemu_co_queue_wait(&req->wait_queue); 486 self->waiting_for = NULL; 487 retry = true; 488 waited = true; 489 break; 490 } 491 } 492 } 493 } while (retry); 494 495 return waited; 496 } 497 498 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 499 size_t size) 500 { 501 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 502 return -EIO; 503 } 504 505 if (!bdrv_is_inserted(bs)) { 506 return -ENOMEDIUM; 507 } 508 509 if (offset < 0) { 510 return -EIO; 511 } 512 513 return 0; 514 } 515 516 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 517 int nb_sectors) 518 { 519 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 520 return -EIO; 521 } 522 523 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 524 nb_sectors * BDRV_SECTOR_SIZE); 525 } 526 527 typedef struct RwCo { 528 BlockDriverState *bs; 529 int64_t offset; 530 QEMUIOVector *qiov; 531 bool is_write; 532 int ret; 533 BdrvRequestFlags flags; 534 } RwCo; 535 536 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 537 { 538 RwCo *rwco = opaque; 539 540 if (!rwco->is_write) { 541 rwco->ret = bdrv_co_preadv(rwco->bs, rwco->offset, 542 rwco->qiov->size, rwco->qiov, 543 rwco->flags); 544 } else { 545 rwco->ret = bdrv_co_pwritev(rwco->bs, rwco->offset, 546 rwco->qiov->size, rwco->qiov, 547 rwco->flags); 548 } 549 } 550 551 /* 552 * Process a vectored synchronous request using coroutines 553 */ 554 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset, 555 QEMUIOVector *qiov, bool is_write, 556 BdrvRequestFlags flags) 557 { 558 Coroutine *co; 559 RwCo rwco = { 560 .bs = bs, 561 .offset = offset, 562 .qiov = qiov, 563 .is_write = is_write, 564 .ret = NOT_DONE, 565 .flags = flags, 566 }; 567 568 if (qemu_in_coroutine()) { 569 /* Fast-path if already in coroutine context */ 570 bdrv_rw_co_entry(&rwco); 571 } else { 572 AioContext *aio_context = bdrv_get_aio_context(bs); 573 574 co = qemu_coroutine_create(bdrv_rw_co_entry); 575 qemu_coroutine_enter(co, &rwco); 576 while (rwco.ret == NOT_DONE) { 577 aio_poll(aio_context, true); 578 } 579 } 580 return rwco.ret; 581 } 582 583 /* 584 * Process a synchronous request using coroutines 585 */ 586 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 587 int nb_sectors, bool is_write, BdrvRequestFlags flags) 588 { 589 QEMUIOVector qiov; 590 struct iovec iov = { 591 .iov_base = (void *)buf, 592 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 593 }; 594 595 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 596 return -EINVAL; 597 } 598 599 qemu_iovec_init_external(&qiov, &iov, 1); 600 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS, 601 &qiov, is_write, flags); 602 } 603 604 /* return < 0 if error. See bdrv_write() for the return codes */ 605 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 606 uint8_t *buf, int nb_sectors) 607 { 608 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0); 609 } 610 611 /* Return < 0 if error. Important errors are: 612 -EIO generic I/O error (may happen for all errors) 613 -ENOMEDIUM No media inserted. 614 -EINVAL Invalid sector number or nb_sectors 615 -EACCES Trying to write a read-only device 616 */ 617 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 618 const uint8_t *buf, int nb_sectors) 619 { 620 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 621 } 622 623 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num, 624 int nb_sectors, BdrvRequestFlags flags) 625 { 626 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true, 627 BDRV_REQ_ZERO_WRITE | flags); 628 } 629 630 /* 631 * Completely zero out a block device with the help of bdrv_write_zeroes. 632 * The operation is sped up by checking the block status and only writing 633 * zeroes to the device if they currently do not return zeroes. Optional 634 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 635 * BDRV_REQ_FUA). 636 * 637 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 638 */ 639 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags) 640 { 641 int64_t target_sectors, ret, nb_sectors, sector_num = 0; 642 BlockDriverState *file; 643 int n; 644 645 target_sectors = bdrv_nb_sectors(bs); 646 if (target_sectors < 0) { 647 return target_sectors; 648 } 649 650 for (;;) { 651 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS); 652 if (nb_sectors <= 0) { 653 return 0; 654 } 655 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file); 656 if (ret < 0) { 657 error_report("error getting block status at sector %" PRId64 ": %s", 658 sector_num, strerror(-ret)); 659 return ret; 660 } 661 if (ret & BDRV_BLOCK_ZERO) { 662 sector_num += n; 663 continue; 664 } 665 ret = bdrv_write_zeroes(bs, sector_num, n, flags); 666 if (ret < 0) { 667 error_report("error writing zeroes at sector %" PRId64 ": %s", 668 sector_num, strerror(-ret)); 669 return ret; 670 } 671 sector_num += n; 672 } 673 } 674 675 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes) 676 { 677 QEMUIOVector qiov; 678 struct iovec iov = { 679 .iov_base = (void *)buf, 680 .iov_len = bytes, 681 }; 682 int ret; 683 684 if (bytes < 0) { 685 return -EINVAL; 686 } 687 688 qemu_iovec_init_external(&qiov, &iov, 1); 689 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0); 690 if (ret < 0) { 691 return ret; 692 } 693 694 return bytes; 695 } 696 697 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov) 698 { 699 int ret; 700 701 ret = bdrv_prwv_co(bs, offset, qiov, true, 0); 702 if (ret < 0) { 703 return ret; 704 } 705 706 return qiov->size; 707 } 708 709 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 710 const void *buf, int bytes) 711 { 712 QEMUIOVector qiov; 713 struct iovec iov = { 714 .iov_base = (void *) buf, 715 .iov_len = bytes, 716 }; 717 718 if (bytes < 0) { 719 return -EINVAL; 720 } 721 722 qemu_iovec_init_external(&qiov, &iov, 1); 723 return bdrv_pwritev(bs, offset, &qiov); 724 } 725 726 /* 727 * Writes to the file and ensures that no writes are reordered across this 728 * request (acts as a barrier) 729 * 730 * Returns 0 on success, -errno in error cases. 731 */ 732 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 733 const void *buf, int count) 734 { 735 int ret; 736 737 ret = bdrv_pwrite(bs, offset, buf, count); 738 if (ret < 0) { 739 return ret; 740 } 741 742 ret = bdrv_flush(bs); 743 if (ret < 0) { 744 return ret; 745 } 746 747 return 0; 748 } 749 750 typedef struct CoroutineIOCompletion { 751 Coroutine *coroutine; 752 int ret; 753 } CoroutineIOCompletion; 754 755 static void bdrv_co_io_em_complete(void *opaque, int ret) 756 { 757 CoroutineIOCompletion *co = opaque; 758 759 co->ret = ret; 760 qemu_coroutine_enter(co->coroutine, NULL); 761 } 762 763 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 764 uint64_t offset, uint64_t bytes, 765 QEMUIOVector *qiov, int flags) 766 { 767 BlockDriver *drv = bs->drv; 768 int64_t sector_num; 769 unsigned int nb_sectors; 770 771 if (drv->bdrv_co_preadv) { 772 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 773 } 774 775 sector_num = offset >> BDRV_SECTOR_BITS; 776 nb_sectors = bytes >> BDRV_SECTOR_BITS; 777 778 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 779 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 780 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 781 782 if (drv->bdrv_co_readv) { 783 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 784 } else { 785 BlockAIOCB *acb; 786 CoroutineIOCompletion co = { 787 .coroutine = qemu_coroutine_self(), 788 }; 789 790 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors, 791 bdrv_co_io_em_complete, &co); 792 if (acb == NULL) { 793 return -EIO; 794 } else { 795 qemu_coroutine_yield(); 796 return co.ret; 797 } 798 } 799 } 800 801 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 802 uint64_t offset, uint64_t bytes, 803 QEMUIOVector *qiov, int flags) 804 { 805 BlockDriver *drv = bs->drv; 806 int64_t sector_num; 807 unsigned int nb_sectors; 808 int ret; 809 810 if (drv->bdrv_co_pwritev) { 811 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags); 812 goto emulate_flags; 813 } 814 815 sector_num = offset >> BDRV_SECTOR_BITS; 816 nb_sectors = bytes >> BDRV_SECTOR_BITS; 817 818 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 819 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 820 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 821 822 if (drv->bdrv_co_writev_flags) { 823 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov, 824 flags & bs->supported_write_flags); 825 flags &= ~bs->supported_write_flags; 826 } else if (drv->bdrv_co_writev) { 827 assert(!bs->supported_write_flags); 828 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 829 } else { 830 BlockAIOCB *acb; 831 CoroutineIOCompletion co = { 832 .coroutine = qemu_coroutine_self(), 833 }; 834 835 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors, 836 bdrv_co_io_em_complete, &co); 837 if (acb == NULL) { 838 ret = -EIO; 839 } else { 840 qemu_coroutine_yield(); 841 ret = co.ret; 842 } 843 } 844 845 emulate_flags: 846 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 847 ret = bdrv_co_flush(bs); 848 } 849 850 return ret; 851 } 852 853 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 854 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 855 { 856 /* Perform I/O through a temporary buffer so that users who scribble over 857 * their read buffer while the operation is in progress do not end up 858 * modifying the image file. This is critical for zero-copy guest I/O 859 * where anything might happen inside guest memory. 860 */ 861 void *bounce_buffer; 862 863 BlockDriver *drv = bs->drv; 864 struct iovec iov; 865 QEMUIOVector bounce_qiov; 866 int64_t cluster_sector_num; 867 int cluster_nb_sectors; 868 size_t skip_bytes; 869 int ret; 870 871 /* Cover entire cluster so no additional backing file I/O is required when 872 * allocating cluster in the image file. 873 */ 874 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 875 &cluster_sector_num, &cluster_nb_sectors); 876 877 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 878 cluster_sector_num, cluster_nb_sectors); 879 880 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 881 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len); 882 if (bounce_buffer == NULL) { 883 ret = -ENOMEM; 884 goto err; 885 } 886 887 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 888 889 ret = bdrv_driver_preadv(bs, cluster_sector_num * BDRV_SECTOR_SIZE, 890 cluster_nb_sectors * BDRV_SECTOR_SIZE, 891 &bounce_qiov, 0); 892 if (ret < 0) { 893 goto err; 894 } 895 896 if (drv->bdrv_co_write_zeroes && 897 buffer_is_zero(bounce_buffer, iov.iov_len)) { 898 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 899 cluster_nb_sectors, 0); 900 } else { 901 /* This does not change the data on the disk, it is not necessary 902 * to flush even in cache=writethrough mode. 903 */ 904 ret = bdrv_driver_pwritev(bs, cluster_sector_num * BDRV_SECTOR_SIZE, 905 cluster_nb_sectors * BDRV_SECTOR_SIZE, 906 &bounce_qiov, 0); 907 } 908 909 if (ret < 0) { 910 /* It might be okay to ignore write errors for guest requests. If this 911 * is a deliberate copy-on-read then we don't want to ignore the error. 912 * Simply report it in all cases. 913 */ 914 goto err; 915 } 916 917 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 918 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 919 nb_sectors * BDRV_SECTOR_SIZE); 920 921 err: 922 qemu_vfree(bounce_buffer); 923 return ret; 924 } 925 926 /* 927 * Forwards an already correctly aligned request to the BlockDriver. This 928 * handles copy on read and zeroing after EOF; any other features must be 929 * implemented by the caller. 930 */ 931 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs, 932 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 933 int64_t align, QEMUIOVector *qiov, int flags) 934 { 935 int ret; 936 937 int64_t sector_num = offset >> BDRV_SECTOR_BITS; 938 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS; 939 940 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 941 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 942 assert(!qiov || bytes == qiov->size); 943 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 944 945 /* Handle Copy on Read and associated serialisation */ 946 if (flags & BDRV_REQ_COPY_ON_READ) { 947 /* If we touch the same cluster it counts as an overlap. This 948 * guarantees that allocating writes will be serialized and not race 949 * with each other for the same cluster. For example, in copy-on-read 950 * it ensures that the CoR read and write operations are atomic and 951 * guest writes cannot interleave between them. */ 952 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 953 } 954 955 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 956 wait_serialising_requests(req); 957 } 958 959 if (flags & BDRV_REQ_COPY_ON_READ) { 960 int pnum; 961 962 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum); 963 if (ret < 0) { 964 goto out; 965 } 966 967 if (!ret || pnum != nb_sectors) { 968 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 969 goto out; 970 } 971 } 972 973 /* Forward the request to the BlockDriver */ 974 if (!bs->zero_beyond_eof) { 975 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 976 } else { 977 /* Read zeros after EOF */ 978 int64_t total_sectors, max_nb_sectors; 979 980 total_sectors = bdrv_nb_sectors(bs); 981 if (total_sectors < 0) { 982 ret = total_sectors; 983 goto out; 984 } 985 986 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num), 987 align >> BDRV_SECTOR_BITS); 988 if (nb_sectors < max_nb_sectors) { 989 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 990 } else if (max_nb_sectors > 0) { 991 QEMUIOVector local_qiov; 992 993 qemu_iovec_init(&local_qiov, qiov->niov); 994 qemu_iovec_concat(&local_qiov, qiov, 0, 995 max_nb_sectors * BDRV_SECTOR_SIZE); 996 997 ret = bdrv_driver_preadv(bs, offset, 998 max_nb_sectors * BDRV_SECTOR_SIZE, 999 &local_qiov, 0); 1000 1001 qemu_iovec_destroy(&local_qiov); 1002 } else { 1003 ret = 0; 1004 } 1005 1006 /* Reading beyond end of file is supposed to produce zeroes */ 1007 if (ret == 0 && total_sectors < sector_num + nb_sectors) { 1008 uint64_t offset = MAX(0, total_sectors - sector_num); 1009 uint64_t bytes = (sector_num + nb_sectors - offset) * 1010 BDRV_SECTOR_SIZE; 1011 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes); 1012 } 1013 } 1014 1015 out: 1016 return ret; 1017 } 1018 1019 /* 1020 * Handle a read request in coroutine context 1021 */ 1022 int coroutine_fn bdrv_co_preadv(BlockDriverState *bs, 1023 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1024 BdrvRequestFlags flags) 1025 { 1026 BlockDriver *drv = bs->drv; 1027 BdrvTrackedRequest req; 1028 1029 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */ 1030 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment); 1031 uint8_t *head_buf = NULL; 1032 uint8_t *tail_buf = NULL; 1033 QEMUIOVector local_qiov; 1034 bool use_local_qiov = false; 1035 int ret; 1036 1037 if (!drv) { 1038 return -ENOMEDIUM; 1039 } 1040 1041 ret = bdrv_check_byte_request(bs, offset, bytes); 1042 if (ret < 0) { 1043 return ret; 1044 } 1045 1046 /* Don't do copy-on-read if we read data before write operation */ 1047 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) { 1048 flags |= BDRV_REQ_COPY_ON_READ; 1049 } 1050 1051 /* Align read if necessary by padding qiov */ 1052 if (offset & (align - 1)) { 1053 head_buf = qemu_blockalign(bs, align); 1054 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1055 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1056 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1057 use_local_qiov = true; 1058 1059 bytes += offset & (align - 1); 1060 offset = offset & ~(align - 1); 1061 } 1062 1063 if ((offset + bytes) & (align - 1)) { 1064 if (!use_local_qiov) { 1065 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1066 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1067 use_local_qiov = true; 1068 } 1069 tail_buf = qemu_blockalign(bs, align); 1070 qemu_iovec_add(&local_qiov, tail_buf, 1071 align - ((offset + bytes) & (align - 1))); 1072 1073 bytes = ROUND_UP(bytes, align); 1074 } 1075 1076 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1077 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align, 1078 use_local_qiov ? &local_qiov : qiov, 1079 flags); 1080 tracked_request_end(&req); 1081 1082 if (use_local_qiov) { 1083 qemu_iovec_destroy(&local_qiov); 1084 qemu_vfree(head_buf); 1085 qemu_vfree(tail_buf); 1086 } 1087 1088 return ret; 1089 } 1090 1091 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 1092 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1093 BdrvRequestFlags flags) 1094 { 1095 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1096 return -EINVAL; 1097 } 1098 1099 return bdrv_co_preadv(bs, sector_num << BDRV_SECTOR_BITS, 1100 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1101 } 1102 1103 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 1104 int nb_sectors, QEMUIOVector *qiov) 1105 { 1106 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 1107 1108 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 1109 } 1110 1111 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768 1112 1113 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 1114 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags) 1115 { 1116 BlockDriver *drv = bs->drv; 1117 QEMUIOVector qiov; 1118 struct iovec iov = {0}; 1119 int ret = 0; 1120 bool need_flush = false; 1121 1122 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes, 1123 BDRV_REQUEST_MAX_SECTORS); 1124 1125 while (nb_sectors > 0 && !ret) { 1126 int num = nb_sectors; 1127 1128 /* Align request. Block drivers can expect the "bulk" of the request 1129 * to be aligned. 1130 */ 1131 if (bs->bl.write_zeroes_alignment 1132 && num > bs->bl.write_zeroes_alignment) { 1133 if (sector_num % bs->bl.write_zeroes_alignment != 0) { 1134 /* Make a small request up to the first aligned sector. */ 1135 num = bs->bl.write_zeroes_alignment; 1136 num -= sector_num % bs->bl.write_zeroes_alignment; 1137 } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) { 1138 /* Shorten the request to the last aligned sector. num cannot 1139 * underflow because num > bs->bl.write_zeroes_alignment. 1140 */ 1141 num -= (sector_num + num) % bs->bl.write_zeroes_alignment; 1142 } 1143 } 1144 1145 /* limit request size */ 1146 if (num > max_write_zeroes) { 1147 num = max_write_zeroes; 1148 } 1149 1150 ret = -ENOTSUP; 1151 /* First try the efficient write zeroes operation */ 1152 if (drv->bdrv_co_write_zeroes) { 1153 ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, 1154 flags & bs->supported_zero_flags); 1155 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1156 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1157 need_flush = true; 1158 } 1159 } else { 1160 assert(!bs->supported_zero_flags); 1161 } 1162 1163 if (ret == -ENOTSUP) { 1164 /* Fall back to bounce buffer if write zeroes is unsupported */ 1165 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length, 1166 MAX_WRITE_ZEROES_BOUNCE_BUFFER); 1167 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1168 1169 if ((flags & BDRV_REQ_FUA) && 1170 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1171 /* No need for bdrv_driver_pwrite() to do a fallback 1172 * flush on each chunk; use just one at the end */ 1173 write_flags &= ~BDRV_REQ_FUA; 1174 need_flush = true; 1175 } 1176 num = MIN(num, max_xfer_len); 1177 iov.iov_len = num * BDRV_SECTOR_SIZE; 1178 if (iov.iov_base == NULL) { 1179 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE); 1180 if (iov.iov_base == NULL) { 1181 ret = -ENOMEM; 1182 goto fail; 1183 } 1184 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE); 1185 } 1186 qemu_iovec_init_external(&qiov, &iov, 1); 1187 1188 ret = bdrv_driver_pwritev(bs, sector_num * BDRV_SECTOR_SIZE, 1189 num * BDRV_SECTOR_SIZE, &qiov, 1190 write_flags); 1191 1192 /* Keep bounce buffer around if it is big enough for all 1193 * all future requests. 1194 */ 1195 if (num < max_xfer_len) { 1196 qemu_vfree(iov.iov_base); 1197 iov.iov_base = NULL; 1198 } 1199 } 1200 1201 sector_num += num; 1202 nb_sectors -= num; 1203 } 1204 1205 fail: 1206 if (ret == 0 && need_flush) { 1207 ret = bdrv_co_flush(bs); 1208 } 1209 qemu_vfree(iov.iov_base); 1210 return ret; 1211 } 1212 1213 /* 1214 * Forwards an already correctly aligned write request to the BlockDriver. 1215 */ 1216 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs, 1217 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1218 QEMUIOVector *qiov, int flags) 1219 { 1220 BlockDriver *drv = bs->drv; 1221 bool waited; 1222 int ret; 1223 1224 int64_t sector_num = offset >> BDRV_SECTOR_BITS; 1225 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS; 1226 1227 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1228 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1229 assert(!qiov || bytes == qiov->size); 1230 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1231 1232 waited = wait_serialising_requests(req); 1233 assert(!waited || !req->serialising); 1234 assert(req->overlap_offset <= offset); 1235 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1236 1237 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); 1238 1239 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1240 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes && 1241 qemu_iovec_is_zero(qiov)) { 1242 flags |= BDRV_REQ_ZERO_WRITE; 1243 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1244 flags |= BDRV_REQ_MAY_UNMAP; 1245 } 1246 } 1247 1248 if (ret < 0) { 1249 /* Do nothing, write notifier decided to fail this request */ 1250 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1251 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1252 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags); 1253 } else { 1254 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1255 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1256 } 1257 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1258 1259 bdrv_set_dirty(bs, sector_num, nb_sectors); 1260 1261 if (bs->wr_highest_offset < offset + bytes) { 1262 bs->wr_highest_offset = offset + bytes; 1263 } 1264 1265 if (ret >= 0) { 1266 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors); 1267 } 1268 1269 return ret; 1270 } 1271 1272 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs, 1273 int64_t offset, 1274 unsigned int bytes, 1275 BdrvRequestFlags flags, 1276 BdrvTrackedRequest *req) 1277 { 1278 uint8_t *buf = NULL; 1279 QEMUIOVector local_qiov; 1280 struct iovec iov; 1281 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment); 1282 unsigned int head_padding_bytes, tail_padding_bytes; 1283 int ret = 0; 1284 1285 head_padding_bytes = offset & (align - 1); 1286 tail_padding_bytes = align - ((offset + bytes) & (align - 1)); 1287 1288 1289 assert(flags & BDRV_REQ_ZERO_WRITE); 1290 if (head_padding_bytes || tail_padding_bytes) { 1291 buf = qemu_blockalign(bs, align); 1292 iov = (struct iovec) { 1293 .iov_base = buf, 1294 .iov_len = align, 1295 }; 1296 qemu_iovec_init_external(&local_qiov, &iov, 1); 1297 } 1298 if (head_padding_bytes) { 1299 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1300 1301 /* RMW the unaligned part before head. */ 1302 mark_request_serialising(req, align); 1303 wait_serialising_requests(req); 1304 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1305 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align, 1306 align, &local_qiov, 0); 1307 if (ret < 0) { 1308 goto fail; 1309 } 1310 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1311 1312 memset(buf + head_padding_bytes, 0, zero_bytes); 1313 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align, 1314 &local_qiov, 1315 flags & ~BDRV_REQ_ZERO_WRITE); 1316 if (ret < 0) { 1317 goto fail; 1318 } 1319 offset += zero_bytes; 1320 bytes -= zero_bytes; 1321 } 1322 1323 assert(!bytes || (offset & (align - 1)) == 0); 1324 if (bytes >= align) { 1325 /* Write the aligned part in the middle. */ 1326 uint64_t aligned_bytes = bytes & ~(align - 1); 1327 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes, 1328 NULL, flags); 1329 if (ret < 0) { 1330 goto fail; 1331 } 1332 bytes -= aligned_bytes; 1333 offset += aligned_bytes; 1334 } 1335 1336 assert(!bytes || (offset & (align - 1)) == 0); 1337 if (bytes) { 1338 assert(align == tail_padding_bytes + bytes); 1339 /* RMW the unaligned part after tail. */ 1340 mark_request_serialising(req, align); 1341 wait_serialising_requests(req); 1342 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1343 ret = bdrv_aligned_preadv(bs, req, offset, align, 1344 align, &local_qiov, 0); 1345 if (ret < 0) { 1346 goto fail; 1347 } 1348 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1349 1350 memset(buf, 0, bytes); 1351 ret = bdrv_aligned_pwritev(bs, req, offset, align, 1352 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1353 } 1354 fail: 1355 qemu_vfree(buf); 1356 return ret; 1357 1358 } 1359 1360 /* 1361 * Handle a write request in coroutine context 1362 */ 1363 int coroutine_fn bdrv_co_pwritev(BlockDriverState *bs, 1364 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1365 BdrvRequestFlags flags) 1366 { 1367 BdrvTrackedRequest req; 1368 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */ 1369 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment); 1370 uint8_t *head_buf = NULL; 1371 uint8_t *tail_buf = NULL; 1372 QEMUIOVector local_qiov; 1373 bool use_local_qiov = false; 1374 int ret; 1375 1376 if (!bs->drv) { 1377 return -ENOMEDIUM; 1378 } 1379 if (bs->read_only) { 1380 return -EPERM; 1381 } 1382 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1383 1384 ret = bdrv_check_byte_request(bs, offset, bytes); 1385 if (ret < 0) { 1386 return ret; 1387 } 1388 1389 /* 1390 * Align write if necessary by performing a read-modify-write cycle. 1391 * Pad qiov with the read parts and be sure to have a tracked request not 1392 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1393 */ 1394 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1395 1396 if (!qiov) { 1397 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req); 1398 goto out; 1399 } 1400 1401 if (offset & (align - 1)) { 1402 QEMUIOVector head_qiov; 1403 struct iovec head_iov; 1404 1405 mark_request_serialising(&req, align); 1406 wait_serialising_requests(&req); 1407 1408 head_buf = qemu_blockalign(bs, align); 1409 head_iov = (struct iovec) { 1410 .iov_base = head_buf, 1411 .iov_len = align, 1412 }; 1413 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1414 1415 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1416 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align, 1417 align, &head_qiov, 0); 1418 if (ret < 0) { 1419 goto fail; 1420 } 1421 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1422 1423 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1424 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1425 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1426 use_local_qiov = true; 1427 1428 bytes += offset & (align - 1); 1429 offset = offset & ~(align - 1); 1430 } 1431 1432 if ((offset + bytes) & (align - 1)) { 1433 QEMUIOVector tail_qiov; 1434 struct iovec tail_iov; 1435 size_t tail_bytes; 1436 bool waited; 1437 1438 mark_request_serialising(&req, align); 1439 waited = wait_serialising_requests(&req); 1440 assert(!waited || !use_local_qiov); 1441 1442 tail_buf = qemu_blockalign(bs, align); 1443 tail_iov = (struct iovec) { 1444 .iov_base = tail_buf, 1445 .iov_len = align, 1446 }; 1447 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1448 1449 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1450 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align, 1451 align, &tail_qiov, 0); 1452 if (ret < 0) { 1453 goto fail; 1454 } 1455 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1456 1457 if (!use_local_qiov) { 1458 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1459 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1460 use_local_qiov = true; 1461 } 1462 1463 tail_bytes = (offset + bytes) & (align - 1); 1464 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1465 1466 bytes = ROUND_UP(bytes, align); 1467 } 1468 1469 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes, 1470 use_local_qiov ? &local_qiov : qiov, 1471 flags); 1472 1473 fail: 1474 1475 if (use_local_qiov) { 1476 qemu_iovec_destroy(&local_qiov); 1477 } 1478 qemu_vfree(head_buf); 1479 qemu_vfree(tail_buf); 1480 out: 1481 tracked_request_end(&req); 1482 return ret; 1483 } 1484 1485 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 1486 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1487 BdrvRequestFlags flags) 1488 { 1489 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1490 return -EINVAL; 1491 } 1492 1493 return bdrv_co_pwritev(bs, sector_num << BDRV_SECTOR_BITS, 1494 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1495 } 1496 1497 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 1498 int nb_sectors, QEMUIOVector *qiov) 1499 { 1500 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 1501 1502 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 1503 } 1504 1505 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 1506 int64_t sector_num, int nb_sectors, 1507 BdrvRequestFlags flags) 1508 { 1509 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags); 1510 1511 if (!(bs->open_flags & BDRV_O_UNMAP)) { 1512 flags &= ~BDRV_REQ_MAY_UNMAP; 1513 } 1514 1515 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 1516 BDRV_REQ_ZERO_WRITE | flags); 1517 } 1518 1519 typedef struct BdrvCoGetBlockStatusData { 1520 BlockDriverState *bs; 1521 BlockDriverState *base; 1522 BlockDriverState **file; 1523 int64_t sector_num; 1524 int nb_sectors; 1525 int *pnum; 1526 int64_t ret; 1527 bool done; 1528 } BdrvCoGetBlockStatusData; 1529 1530 /* 1531 * Returns the allocation status of the specified sectors. 1532 * Drivers not implementing the functionality are assumed to not support 1533 * backing files, hence all their sectors are reported as allocated. 1534 * 1535 * If 'sector_num' is beyond the end of the disk image the return value is 0 1536 * and 'pnum' is set to 0. 1537 * 1538 * 'pnum' is set to the number of sectors (including and immediately following 1539 * the specified sector) that are known to be in the same 1540 * allocated/unallocated state. 1541 * 1542 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 1543 * beyond the end of the disk image it will be clamped. 1544 * 1545 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file' 1546 * points to the BDS which the sector range is allocated in. 1547 */ 1548 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs, 1549 int64_t sector_num, 1550 int nb_sectors, int *pnum, 1551 BlockDriverState **file) 1552 { 1553 int64_t total_sectors; 1554 int64_t n; 1555 int64_t ret, ret2; 1556 1557 total_sectors = bdrv_nb_sectors(bs); 1558 if (total_sectors < 0) { 1559 return total_sectors; 1560 } 1561 1562 if (sector_num >= total_sectors) { 1563 *pnum = 0; 1564 return 0; 1565 } 1566 1567 n = total_sectors - sector_num; 1568 if (n < nb_sectors) { 1569 nb_sectors = n; 1570 } 1571 1572 if (!bs->drv->bdrv_co_get_block_status) { 1573 *pnum = nb_sectors; 1574 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 1575 if (bs->drv->protocol_name) { 1576 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE); 1577 } 1578 return ret; 1579 } 1580 1581 *file = NULL; 1582 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum, 1583 file); 1584 if (ret < 0) { 1585 *pnum = 0; 1586 return ret; 1587 } 1588 1589 if (ret & BDRV_BLOCK_RAW) { 1590 assert(ret & BDRV_BLOCK_OFFSET_VALID); 1591 return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS, 1592 *pnum, pnum, file); 1593 } 1594 1595 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 1596 ret |= BDRV_BLOCK_ALLOCATED; 1597 } else { 1598 if (bdrv_unallocated_blocks_are_zero(bs)) { 1599 ret |= BDRV_BLOCK_ZERO; 1600 } else if (bs->backing) { 1601 BlockDriverState *bs2 = bs->backing->bs; 1602 int64_t nb_sectors2 = bdrv_nb_sectors(bs2); 1603 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) { 1604 ret |= BDRV_BLOCK_ZERO; 1605 } 1606 } 1607 } 1608 1609 if (*file && *file != bs && 1610 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 1611 (ret & BDRV_BLOCK_OFFSET_VALID)) { 1612 BlockDriverState *file2; 1613 int file_pnum; 1614 1615 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1616 *pnum, &file_pnum, &file2); 1617 if (ret2 >= 0) { 1618 /* Ignore errors. This is just providing extra information, it 1619 * is useful but not necessary. 1620 */ 1621 if (!file_pnum) { 1622 /* !file_pnum indicates an offset at or beyond the EOF; it is 1623 * perfectly valid for the format block driver to point to such 1624 * offsets, so catch it and mark everything as zero */ 1625 ret |= BDRV_BLOCK_ZERO; 1626 } else { 1627 /* Limit request to the range reported by the protocol driver */ 1628 *pnum = file_pnum; 1629 ret |= (ret2 & BDRV_BLOCK_ZERO); 1630 } 1631 } 1632 } 1633 1634 return ret; 1635 } 1636 1637 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs, 1638 BlockDriverState *base, 1639 int64_t sector_num, 1640 int nb_sectors, 1641 int *pnum, 1642 BlockDriverState **file) 1643 { 1644 BlockDriverState *p; 1645 int64_t ret = 0; 1646 1647 assert(bs != base); 1648 for (p = bs; p != base; p = backing_bs(p)) { 1649 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file); 1650 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) { 1651 break; 1652 } 1653 /* [sector_num, pnum] unallocated on this layer, which could be only 1654 * the first part of [sector_num, nb_sectors]. */ 1655 nb_sectors = MIN(nb_sectors, *pnum); 1656 } 1657 return ret; 1658 } 1659 1660 /* Coroutine wrapper for bdrv_get_block_status_above() */ 1661 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque) 1662 { 1663 BdrvCoGetBlockStatusData *data = opaque; 1664 1665 data->ret = bdrv_co_get_block_status_above(data->bs, data->base, 1666 data->sector_num, 1667 data->nb_sectors, 1668 data->pnum, 1669 data->file); 1670 data->done = true; 1671 } 1672 1673 /* 1674 * Synchronous wrapper around bdrv_co_get_block_status_above(). 1675 * 1676 * See bdrv_co_get_block_status_above() for details. 1677 */ 1678 int64_t bdrv_get_block_status_above(BlockDriverState *bs, 1679 BlockDriverState *base, 1680 int64_t sector_num, 1681 int nb_sectors, int *pnum, 1682 BlockDriverState **file) 1683 { 1684 Coroutine *co; 1685 BdrvCoGetBlockStatusData data = { 1686 .bs = bs, 1687 .base = base, 1688 .file = file, 1689 .sector_num = sector_num, 1690 .nb_sectors = nb_sectors, 1691 .pnum = pnum, 1692 .done = false, 1693 }; 1694 1695 if (qemu_in_coroutine()) { 1696 /* Fast-path if already in coroutine context */ 1697 bdrv_get_block_status_above_co_entry(&data); 1698 } else { 1699 AioContext *aio_context = bdrv_get_aio_context(bs); 1700 1701 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry); 1702 qemu_coroutine_enter(co, &data); 1703 while (!data.done) { 1704 aio_poll(aio_context, true); 1705 } 1706 } 1707 return data.ret; 1708 } 1709 1710 int64_t bdrv_get_block_status(BlockDriverState *bs, 1711 int64_t sector_num, 1712 int nb_sectors, int *pnum, 1713 BlockDriverState **file) 1714 { 1715 return bdrv_get_block_status_above(bs, backing_bs(bs), 1716 sector_num, nb_sectors, pnum, file); 1717 } 1718 1719 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, 1720 int nb_sectors, int *pnum) 1721 { 1722 BlockDriverState *file; 1723 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum, 1724 &file); 1725 if (ret < 0) { 1726 return ret; 1727 } 1728 return !!(ret & BDRV_BLOCK_ALLOCATED); 1729 } 1730 1731 /* 1732 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 1733 * 1734 * Return true if the given sector is allocated in any image between 1735 * BASE and TOP (inclusive). BASE can be NULL to check if the given 1736 * sector is allocated in any image of the chain. Return false otherwise. 1737 * 1738 * 'pnum' is set to the number of sectors (including and immediately following 1739 * the specified sector) that are known to be in the same 1740 * allocated/unallocated state. 1741 * 1742 */ 1743 int bdrv_is_allocated_above(BlockDriverState *top, 1744 BlockDriverState *base, 1745 int64_t sector_num, 1746 int nb_sectors, int *pnum) 1747 { 1748 BlockDriverState *intermediate; 1749 int ret, n = nb_sectors; 1750 1751 intermediate = top; 1752 while (intermediate && intermediate != base) { 1753 int pnum_inter; 1754 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors, 1755 &pnum_inter); 1756 if (ret < 0) { 1757 return ret; 1758 } else if (ret) { 1759 *pnum = pnum_inter; 1760 return 1; 1761 } 1762 1763 /* 1764 * [sector_num, nb_sectors] is unallocated on top but intermediate 1765 * might have 1766 * 1767 * [sector_num+x, nr_sectors] allocated. 1768 */ 1769 if (n > pnum_inter && 1770 (intermediate == top || 1771 sector_num + pnum_inter < intermediate->total_sectors)) { 1772 n = pnum_inter; 1773 } 1774 1775 intermediate = backing_bs(intermediate); 1776 } 1777 1778 *pnum = n; 1779 return 0; 1780 } 1781 1782 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 1783 const uint8_t *buf, int nb_sectors) 1784 { 1785 BlockDriver *drv = bs->drv; 1786 int ret; 1787 1788 if (!drv) { 1789 return -ENOMEDIUM; 1790 } 1791 if (!drv->bdrv_write_compressed) { 1792 return -ENOTSUP; 1793 } 1794 ret = bdrv_check_request(bs, sector_num, nb_sectors); 1795 if (ret < 0) { 1796 return ret; 1797 } 1798 1799 assert(QLIST_EMPTY(&bs->dirty_bitmaps)); 1800 1801 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 1802 } 1803 1804 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 1805 int64_t pos, int size) 1806 { 1807 QEMUIOVector qiov; 1808 struct iovec iov = { 1809 .iov_base = (void *) buf, 1810 .iov_len = size, 1811 }; 1812 1813 qemu_iovec_init_external(&qiov, &iov, 1); 1814 return bdrv_writev_vmstate(bs, &qiov, pos); 1815 } 1816 1817 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 1818 { 1819 BlockDriver *drv = bs->drv; 1820 1821 if (!drv) { 1822 return -ENOMEDIUM; 1823 } else if (drv->bdrv_save_vmstate) { 1824 return drv->bdrv_save_vmstate(bs, qiov, pos); 1825 } else if (bs->file) { 1826 return bdrv_writev_vmstate(bs->file->bs, qiov, pos); 1827 } 1828 1829 return -ENOTSUP; 1830 } 1831 1832 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 1833 int64_t pos, int size) 1834 { 1835 BlockDriver *drv = bs->drv; 1836 if (!drv) 1837 return -ENOMEDIUM; 1838 if (drv->bdrv_load_vmstate) 1839 return drv->bdrv_load_vmstate(bs, buf, pos, size); 1840 if (bs->file) 1841 return bdrv_load_vmstate(bs->file->bs, buf, pos, size); 1842 return -ENOTSUP; 1843 } 1844 1845 /**************************************************************/ 1846 /* async I/Os */ 1847 1848 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 1849 QEMUIOVector *qiov, int nb_sectors, 1850 BlockCompletionFunc *cb, void *opaque) 1851 { 1852 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 1853 1854 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0, 1855 cb, opaque, false); 1856 } 1857 1858 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 1859 QEMUIOVector *qiov, int nb_sectors, 1860 BlockCompletionFunc *cb, void *opaque) 1861 { 1862 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 1863 1864 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0, 1865 cb, opaque, true); 1866 } 1867 1868 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs, 1869 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags, 1870 BlockCompletionFunc *cb, void *opaque) 1871 { 1872 trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque); 1873 1874 return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors, 1875 BDRV_REQ_ZERO_WRITE | flags, 1876 cb, opaque, true); 1877 } 1878 1879 void bdrv_aio_cancel(BlockAIOCB *acb) 1880 { 1881 qemu_aio_ref(acb); 1882 bdrv_aio_cancel_async(acb); 1883 while (acb->refcnt > 1) { 1884 if (acb->aiocb_info->get_aio_context) { 1885 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 1886 } else if (acb->bs) { 1887 aio_poll(bdrv_get_aio_context(acb->bs), true); 1888 } else { 1889 abort(); 1890 } 1891 } 1892 qemu_aio_unref(acb); 1893 } 1894 1895 /* Async version of aio cancel. The caller is not blocked if the acb implements 1896 * cancel_async, otherwise we do nothing and let the request normally complete. 1897 * In either case the completion callback must be called. */ 1898 void bdrv_aio_cancel_async(BlockAIOCB *acb) 1899 { 1900 if (acb->aiocb_info->cancel_async) { 1901 acb->aiocb_info->cancel_async(acb); 1902 } 1903 } 1904 1905 /**************************************************************/ 1906 /* async block device emulation */ 1907 1908 typedef struct BlockAIOCBCoroutine { 1909 BlockAIOCB common; 1910 BlockRequest req; 1911 bool is_write; 1912 bool need_bh; 1913 bool *done; 1914 QEMUBH* bh; 1915 } BlockAIOCBCoroutine; 1916 1917 static const AIOCBInfo bdrv_em_co_aiocb_info = { 1918 .aiocb_size = sizeof(BlockAIOCBCoroutine), 1919 }; 1920 1921 static void bdrv_co_complete(BlockAIOCBCoroutine *acb) 1922 { 1923 if (!acb->need_bh) { 1924 acb->common.cb(acb->common.opaque, acb->req.error); 1925 qemu_aio_unref(acb); 1926 } 1927 } 1928 1929 static void bdrv_co_em_bh(void *opaque) 1930 { 1931 BlockAIOCBCoroutine *acb = opaque; 1932 1933 assert(!acb->need_bh); 1934 qemu_bh_delete(acb->bh); 1935 bdrv_co_complete(acb); 1936 } 1937 1938 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb) 1939 { 1940 acb->need_bh = false; 1941 if (acb->req.error != -EINPROGRESS) { 1942 BlockDriverState *bs = acb->common.bs; 1943 1944 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb); 1945 qemu_bh_schedule(acb->bh); 1946 } 1947 } 1948 1949 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 1950 static void coroutine_fn bdrv_co_do_rw(void *opaque) 1951 { 1952 BlockAIOCBCoroutine *acb = opaque; 1953 BlockDriverState *bs = acb->common.bs; 1954 1955 if (!acb->is_write) { 1956 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 1957 acb->req.nb_sectors, acb->req.qiov, acb->req.flags); 1958 } else { 1959 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 1960 acb->req.nb_sectors, acb->req.qiov, acb->req.flags); 1961 } 1962 1963 bdrv_co_complete(acb); 1964 } 1965 1966 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 1967 int64_t sector_num, 1968 QEMUIOVector *qiov, 1969 int nb_sectors, 1970 BdrvRequestFlags flags, 1971 BlockCompletionFunc *cb, 1972 void *opaque, 1973 bool is_write) 1974 { 1975 Coroutine *co; 1976 BlockAIOCBCoroutine *acb; 1977 1978 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 1979 acb->need_bh = true; 1980 acb->req.error = -EINPROGRESS; 1981 acb->req.sector = sector_num; 1982 acb->req.nb_sectors = nb_sectors; 1983 acb->req.qiov = qiov; 1984 acb->req.flags = flags; 1985 acb->is_write = is_write; 1986 1987 co = qemu_coroutine_create(bdrv_co_do_rw); 1988 qemu_coroutine_enter(co, acb); 1989 1990 bdrv_co_maybe_schedule_bh(acb); 1991 return &acb->common; 1992 } 1993 1994 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 1995 { 1996 BlockAIOCBCoroutine *acb = opaque; 1997 BlockDriverState *bs = acb->common.bs; 1998 1999 acb->req.error = bdrv_co_flush(bs); 2000 bdrv_co_complete(acb); 2001 } 2002 2003 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs, 2004 BlockCompletionFunc *cb, void *opaque) 2005 { 2006 trace_bdrv_aio_flush(bs, opaque); 2007 2008 Coroutine *co; 2009 BlockAIOCBCoroutine *acb; 2010 2011 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2012 acb->need_bh = true; 2013 acb->req.error = -EINPROGRESS; 2014 2015 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 2016 qemu_coroutine_enter(co, acb); 2017 2018 bdrv_co_maybe_schedule_bh(acb); 2019 return &acb->common; 2020 } 2021 2022 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 2023 { 2024 BlockAIOCBCoroutine *acb = opaque; 2025 BlockDriverState *bs = acb->common.bs; 2026 2027 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 2028 bdrv_co_complete(acb); 2029 } 2030 2031 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs, 2032 int64_t sector_num, int nb_sectors, 2033 BlockCompletionFunc *cb, void *opaque) 2034 { 2035 Coroutine *co; 2036 BlockAIOCBCoroutine *acb; 2037 2038 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 2039 2040 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2041 acb->need_bh = true; 2042 acb->req.error = -EINPROGRESS; 2043 acb->req.sector = sector_num; 2044 acb->req.nb_sectors = nb_sectors; 2045 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 2046 qemu_coroutine_enter(co, acb); 2047 2048 bdrv_co_maybe_schedule_bh(acb); 2049 return &acb->common; 2050 } 2051 2052 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 2053 BlockCompletionFunc *cb, void *opaque) 2054 { 2055 BlockAIOCB *acb; 2056 2057 acb = g_malloc(aiocb_info->aiocb_size); 2058 acb->aiocb_info = aiocb_info; 2059 acb->bs = bs; 2060 acb->cb = cb; 2061 acb->opaque = opaque; 2062 acb->refcnt = 1; 2063 return acb; 2064 } 2065 2066 void qemu_aio_ref(void *p) 2067 { 2068 BlockAIOCB *acb = p; 2069 acb->refcnt++; 2070 } 2071 2072 void qemu_aio_unref(void *p) 2073 { 2074 BlockAIOCB *acb = p; 2075 assert(acb->refcnt > 0); 2076 if (--acb->refcnt == 0) { 2077 g_free(acb); 2078 } 2079 } 2080 2081 /**************************************************************/ 2082 /* Coroutine block device emulation */ 2083 2084 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2085 { 2086 RwCo *rwco = opaque; 2087 2088 rwco->ret = bdrv_co_flush(rwco->bs); 2089 } 2090 2091 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2092 { 2093 int ret; 2094 BdrvTrackedRequest req; 2095 2096 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2097 bdrv_is_sg(bs)) { 2098 return 0; 2099 } 2100 2101 tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH); 2102 2103 /* Write back all layers by calling one driver function */ 2104 if (bs->drv->bdrv_co_flush) { 2105 ret = bs->drv->bdrv_co_flush(bs); 2106 goto out; 2107 } 2108 2109 /* Write back cached data to the OS even with cache=unsafe */ 2110 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2111 if (bs->drv->bdrv_co_flush_to_os) { 2112 ret = bs->drv->bdrv_co_flush_to_os(bs); 2113 if (ret < 0) { 2114 goto out; 2115 } 2116 } 2117 2118 /* But don't actually force it to the disk with cache=unsafe */ 2119 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2120 goto flush_parent; 2121 } 2122 2123 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2124 if (bs->drv->bdrv_co_flush_to_disk) { 2125 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2126 } else if (bs->drv->bdrv_aio_flush) { 2127 BlockAIOCB *acb; 2128 CoroutineIOCompletion co = { 2129 .coroutine = qemu_coroutine_self(), 2130 }; 2131 2132 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2133 if (acb == NULL) { 2134 ret = -EIO; 2135 } else { 2136 qemu_coroutine_yield(); 2137 ret = co.ret; 2138 } 2139 } else { 2140 /* 2141 * Some block drivers always operate in either writethrough or unsafe 2142 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2143 * know how the server works (because the behaviour is hardcoded or 2144 * depends on server-side configuration), so we can't ensure that 2145 * everything is safe on disk. Returning an error doesn't work because 2146 * that would break guests even if the server operates in writethrough 2147 * mode. 2148 * 2149 * Let's hope the user knows what he's doing. 2150 */ 2151 ret = 0; 2152 } 2153 if (ret < 0) { 2154 goto out; 2155 } 2156 2157 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2158 * in the case of cache=unsafe, so there are no useless flushes. 2159 */ 2160 flush_parent: 2161 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2162 out: 2163 tracked_request_end(&req); 2164 return ret; 2165 } 2166 2167 int bdrv_flush(BlockDriverState *bs) 2168 { 2169 Coroutine *co; 2170 RwCo rwco = { 2171 .bs = bs, 2172 .ret = NOT_DONE, 2173 }; 2174 2175 if (qemu_in_coroutine()) { 2176 /* Fast-path if already in coroutine context */ 2177 bdrv_flush_co_entry(&rwco); 2178 } else { 2179 AioContext *aio_context = bdrv_get_aio_context(bs); 2180 2181 co = qemu_coroutine_create(bdrv_flush_co_entry); 2182 qemu_coroutine_enter(co, &rwco); 2183 while (rwco.ret == NOT_DONE) { 2184 aio_poll(aio_context, true); 2185 } 2186 } 2187 2188 return rwco.ret; 2189 } 2190 2191 typedef struct DiscardCo { 2192 BlockDriverState *bs; 2193 int64_t sector_num; 2194 int nb_sectors; 2195 int ret; 2196 } DiscardCo; 2197 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 2198 { 2199 DiscardCo *rwco = opaque; 2200 2201 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 2202 } 2203 2204 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 2205 int nb_sectors) 2206 { 2207 BdrvTrackedRequest req; 2208 int max_discard, ret; 2209 2210 if (!bs->drv) { 2211 return -ENOMEDIUM; 2212 } 2213 2214 ret = bdrv_check_request(bs, sector_num, nb_sectors); 2215 if (ret < 0) { 2216 return ret; 2217 } else if (bs->read_only) { 2218 return -EPERM; 2219 } 2220 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2221 2222 /* Do nothing if disabled. */ 2223 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2224 return 0; 2225 } 2226 2227 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) { 2228 return 0; 2229 } 2230 2231 tracked_request_begin(&req, bs, sector_num, nb_sectors, 2232 BDRV_TRACKED_DISCARD); 2233 bdrv_set_dirty(bs, sector_num, nb_sectors); 2234 2235 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS); 2236 while (nb_sectors > 0) { 2237 int ret; 2238 int num = nb_sectors; 2239 2240 /* align request */ 2241 if (bs->bl.discard_alignment && 2242 num >= bs->bl.discard_alignment && 2243 sector_num % bs->bl.discard_alignment) { 2244 if (num > bs->bl.discard_alignment) { 2245 num = bs->bl.discard_alignment; 2246 } 2247 num -= sector_num % bs->bl.discard_alignment; 2248 } 2249 2250 /* limit request size */ 2251 if (num > max_discard) { 2252 num = max_discard; 2253 } 2254 2255 if (bs->drv->bdrv_co_discard) { 2256 ret = bs->drv->bdrv_co_discard(bs, sector_num, num); 2257 } else { 2258 BlockAIOCB *acb; 2259 CoroutineIOCompletion co = { 2260 .coroutine = qemu_coroutine_self(), 2261 }; 2262 2263 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 2264 bdrv_co_io_em_complete, &co); 2265 if (acb == NULL) { 2266 ret = -EIO; 2267 goto out; 2268 } else { 2269 qemu_coroutine_yield(); 2270 ret = co.ret; 2271 } 2272 } 2273 if (ret && ret != -ENOTSUP) { 2274 goto out; 2275 } 2276 2277 sector_num += num; 2278 nb_sectors -= num; 2279 } 2280 ret = 0; 2281 out: 2282 tracked_request_end(&req); 2283 return ret; 2284 } 2285 2286 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 2287 { 2288 Coroutine *co; 2289 DiscardCo rwco = { 2290 .bs = bs, 2291 .sector_num = sector_num, 2292 .nb_sectors = nb_sectors, 2293 .ret = NOT_DONE, 2294 }; 2295 2296 if (qemu_in_coroutine()) { 2297 /* Fast-path if already in coroutine context */ 2298 bdrv_discard_co_entry(&rwco); 2299 } else { 2300 AioContext *aio_context = bdrv_get_aio_context(bs); 2301 2302 co = qemu_coroutine_create(bdrv_discard_co_entry); 2303 qemu_coroutine_enter(co, &rwco); 2304 while (rwco.ret == NOT_DONE) { 2305 aio_poll(aio_context, true); 2306 } 2307 } 2308 2309 return rwco.ret; 2310 } 2311 2312 typedef struct { 2313 CoroutineIOCompletion *co; 2314 QEMUBH *bh; 2315 } BdrvIoctlCompletionData; 2316 2317 static void bdrv_ioctl_bh_cb(void *opaque) 2318 { 2319 BdrvIoctlCompletionData *data = opaque; 2320 2321 bdrv_co_io_em_complete(data->co, -ENOTSUP); 2322 qemu_bh_delete(data->bh); 2323 } 2324 2325 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf) 2326 { 2327 BlockDriver *drv = bs->drv; 2328 BdrvTrackedRequest tracked_req; 2329 CoroutineIOCompletion co = { 2330 .coroutine = qemu_coroutine_self(), 2331 }; 2332 BlockAIOCB *acb; 2333 2334 tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL); 2335 if (!drv || !drv->bdrv_aio_ioctl) { 2336 co.ret = -ENOTSUP; 2337 goto out; 2338 } 2339 2340 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2341 if (!acb) { 2342 BdrvIoctlCompletionData *data = g_new(BdrvIoctlCompletionData, 1); 2343 data->bh = aio_bh_new(bdrv_get_aio_context(bs), 2344 bdrv_ioctl_bh_cb, data); 2345 data->co = &co; 2346 qemu_bh_schedule(data->bh); 2347 } 2348 qemu_coroutine_yield(); 2349 out: 2350 tracked_request_end(&tracked_req); 2351 return co.ret; 2352 } 2353 2354 typedef struct { 2355 BlockDriverState *bs; 2356 int req; 2357 void *buf; 2358 int ret; 2359 } BdrvIoctlCoData; 2360 2361 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque) 2362 { 2363 BdrvIoctlCoData *data = opaque; 2364 data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf); 2365 } 2366 2367 /* needed for generic scsi interface */ 2368 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 2369 { 2370 BdrvIoctlCoData data = { 2371 .bs = bs, 2372 .req = req, 2373 .buf = buf, 2374 .ret = -EINPROGRESS, 2375 }; 2376 2377 if (qemu_in_coroutine()) { 2378 /* Fast-path if already in coroutine context */ 2379 bdrv_co_ioctl_entry(&data); 2380 } else { 2381 Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry); 2382 2383 qemu_coroutine_enter(co, &data); 2384 while (data.ret == -EINPROGRESS) { 2385 aio_poll(bdrv_get_aio_context(bs), true); 2386 } 2387 } 2388 return data.ret; 2389 } 2390 2391 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque) 2392 { 2393 BlockAIOCBCoroutine *acb = opaque; 2394 acb->req.error = bdrv_co_do_ioctl(acb->common.bs, 2395 acb->req.req, acb->req.buf); 2396 bdrv_co_complete(acb); 2397 } 2398 2399 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 2400 unsigned long int req, void *buf, 2401 BlockCompletionFunc *cb, void *opaque) 2402 { 2403 BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info, 2404 bs, cb, opaque); 2405 Coroutine *co; 2406 2407 acb->need_bh = true; 2408 acb->req.error = -EINPROGRESS; 2409 acb->req.req = req; 2410 acb->req.buf = buf; 2411 co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry); 2412 qemu_coroutine_enter(co, acb); 2413 2414 bdrv_co_maybe_schedule_bh(acb); 2415 return &acb->common; 2416 } 2417 2418 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2419 { 2420 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2421 } 2422 2423 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2424 { 2425 return memset(qemu_blockalign(bs, size), 0, size); 2426 } 2427 2428 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2429 { 2430 size_t align = bdrv_opt_mem_align(bs); 2431 2432 /* Ensure that NULL is never returned on success */ 2433 assert(align > 0); 2434 if (size == 0) { 2435 size = align; 2436 } 2437 2438 return qemu_try_memalign(align, size); 2439 } 2440 2441 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2442 { 2443 void *mem = qemu_try_blockalign(bs, size); 2444 2445 if (mem) { 2446 memset(mem, 0, size); 2447 } 2448 2449 return mem; 2450 } 2451 2452 /* 2453 * Check if all memory in this vector is sector aligned. 2454 */ 2455 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2456 { 2457 int i; 2458 size_t alignment = bdrv_min_mem_align(bs); 2459 2460 for (i = 0; i < qiov->niov; i++) { 2461 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2462 return false; 2463 } 2464 if (qiov->iov[i].iov_len % alignment) { 2465 return false; 2466 } 2467 } 2468 2469 return true; 2470 } 2471 2472 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2473 NotifierWithReturn *notifier) 2474 { 2475 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2476 } 2477 2478 void bdrv_io_plug(BlockDriverState *bs) 2479 { 2480 BdrvChild *child; 2481 2482 QLIST_FOREACH(child, &bs->children, next) { 2483 bdrv_io_plug(child->bs); 2484 } 2485 2486 if (bs->io_plugged++ == 0 && bs->io_plug_disabled == 0) { 2487 BlockDriver *drv = bs->drv; 2488 if (drv && drv->bdrv_io_plug) { 2489 drv->bdrv_io_plug(bs); 2490 } 2491 } 2492 } 2493 2494 void bdrv_io_unplug(BlockDriverState *bs) 2495 { 2496 BdrvChild *child; 2497 2498 assert(bs->io_plugged); 2499 if (--bs->io_plugged == 0 && bs->io_plug_disabled == 0) { 2500 BlockDriver *drv = bs->drv; 2501 if (drv && drv->bdrv_io_unplug) { 2502 drv->bdrv_io_unplug(bs); 2503 } 2504 } 2505 2506 QLIST_FOREACH(child, &bs->children, next) { 2507 bdrv_io_unplug(child->bs); 2508 } 2509 } 2510 2511 void bdrv_io_unplugged_begin(BlockDriverState *bs) 2512 { 2513 BdrvChild *child; 2514 2515 if (bs->io_plug_disabled++ == 0 && bs->io_plugged > 0) { 2516 BlockDriver *drv = bs->drv; 2517 if (drv && drv->bdrv_io_unplug) { 2518 drv->bdrv_io_unplug(bs); 2519 } 2520 } 2521 2522 QLIST_FOREACH(child, &bs->children, next) { 2523 bdrv_io_unplugged_begin(child->bs); 2524 } 2525 } 2526 2527 void bdrv_io_unplugged_end(BlockDriverState *bs) 2528 { 2529 BdrvChild *child; 2530 2531 assert(bs->io_plug_disabled); 2532 QLIST_FOREACH(child, &bs->children, next) { 2533 bdrv_io_unplugged_end(child->bs); 2534 } 2535 2536 if (--bs->io_plug_disabled == 0 && bs->io_plugged > 0) { 2537 BlockDriver *drv = bs->drv; 2538 if (drv && drv->bdrv_io_plug) { 2539 drv->bdrv_io_plug(bs); 2540 } 2541 } 2542 } 2543