1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/blockjob.h" 29 #include "block/blockjob_int.h" 30 #include "block/block_int.h" 31 #include "qemu/cutils.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 36 37 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 38 int64_t offset, int bytes, BdrvRequestFlags flags); 39 40 void bdrv_parent_drained_begin(BlockDriverState *bs) 41 { 42 BdrvChild *c; 43 44 QLIST_FOREACH(c, &bs->parents, next_parent) { 45 if (c->role->drained_begin) { 46 c->role->drained_begin(c); 47 } 48 } 49 } 50 51 void bdrv_parent_drained_end(BlockDriverState *bs) 52 { 53 BdrvChild *c; 54 55 QLIST_FOREACH(c, &bs->parents, next_parent) { 56 if (c->role->drained_end) { 57 c->role->drained_end(c); 58 } 59 } 60 } 61 62 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 63 { 64 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 65 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 66 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 67 src->opt_mem_alignment); 68 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 69 src->min_mem_alignment); 70 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 71 } 72 73 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 74 { 75 BlockDriver *drv = bs->drv; 76 Error *local_err = NULL; 77 78 memset(&bs->bl, 0, sizeof(bs->bl)); 79 80 if (!drv) { 81 return; 82 } 83 84 /* Default alignment based on whether driver has byte interface */ 85 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512; 86 87 /* Take some limits from the children as a default */ 88 if (bs->file) { 89 bdrv_refresh_limits(bs->file->bs, &local_err); 90 if (local_err) { 91 error_propagate(errp, local_err); 92 return; 93 } 94 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 95 } else { 96 bs->bl.min_mem_alignment = 512; 97 bs->bl.opt_mem_alignment = getpagesize(); 98 99 /* Safe default since most protocols use readv()/writev()/etc */ 100 bs->bl.max_iov = IOV_MAX; 101 } 102 103 if (bs->backing) { 104 bdrv_refresh_limits(bs->backing->bs, &local_err); 105 if (local_err) { 106 error_propagate(errp, local_err); 107 return; 108 } 109 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 110 } 111 112 /* Then let the driver override it */ 113 if (drv->bdrv_refresh_limits) { 114 drv->bdrv_refresh_limits(bs, errp); 115 } 116 } 117 118 /** 119 * The copy-on-read flag is actually a reference count so multiple users may 120 * use the feature without worrying about clobbering its previous state. 121 * Copy-on-read stays enabled until all users have called to disable it. 122 */ 123 void bdrv_enable_copy_on_read(BlockDriverState *bs) 124 { 125 atomic_inc(&bs->copy_on_read); 126 } 127 128 void bdrv_disable_copy_on_read(BlockDriverState *bs) 129 { 130 int old = atomic_fetch_dec(&bs->copy_on_read); 131 assert(old >= 1); 132 } 133 134 /* Check if any requests are in-flight (including throttled requests) */ 135 bool bdrv_requests_pending(BlockDriverState *bs) 136 { 137 BdrvChild *child; 138 139 if (atomic_read(&bs->in_flight)) { 140 return true; 141 } 142 143 QLIST_FOREACH(child, &bs->children, next) { 144 if (bdrv_requests_pending(child->bs)) { 145 return true; 146 } 147 } 148 149 return false; 150 } 151 152 typedef struct { 153 Coroutine *co; 154 BlockDriverState *bs; 155 bool done; 156 } BdrvCoDrainData; 157 158 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 159 { 160 BdrvCoDrainData *data = opaque; 161 BlockDriverState *bs = data->bs; 162 163 bs->drv->bdrv_co_drain(bs); 164 165 /* Set data->done before reading bs->wakeup. */ 166 atomic_mb_set(&data->done, true); 167 bdrv_wakeup(bs); 168 } 169 170 static void bdrv_drain_invoke(BlockDriverState *bs) 171 { 172 BdrvCoDrainData data = { .bs = bs, .done = false }; 173 174 if (!bs->drv || !bs->drv->bdrv_co_drain) { 175 return; 176 } 177 178 data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data); 179 bdrv_coroutine_enter(bs, data.co); 180 BDRV_POLL_WHILE(bs, !data.done); 181 } 182 183 static bool bdrv_drain_recurse(BlockDriverState *bs) 184 { 185 BdrvChild *child, *tmp; 186 bool waited; 187 188 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0); 189 190 /* Ensure any pending metadata writes are submitted to bs->file. */ 191 bdrv_drain_invoke(bs); 192 193 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) { 194 BlockDriverState *bs = child->bs; 195 bool in_main_loop = 196 qemu_get_current_aio_context() == qemu_get_aio_context(); 197 assert(bs->refcnt > 0); 198 if (in_main_loop) { 199 /* In case the recursive bdrv_drain_recurse processes a 200 * block_job_defer_to_main_loop BH and modifies the graph, 201 * let's hold a reference to bs until we are done. 202 * 203 * IOThread doesn't have such a BH, and it is not safe to call 204 * bdrv_unref without BQL, so skip doing it there. 205 */ 206 bdrv_ref(bs); 207 } 208 waited |= bdrv_drain_recurse(bs); 209 if (in_main_loop) { 210 bdrv_unref(bs); 211 } 212 } 213 214 return waited; 215 } 216 217 static void bdrv_co_drain_bh_cb(void *opaque) 218 { 219 BdrvCoDrainData *data = opaque; 220 Coroutine *co = data->co; 221 BlockDriverState *bs = data->bs; 222 223 bdrv_dec_in_flight(bs); 224 bdrv_drained_begin(bs); 225 data->done = true; 226 aio_co_wake(co); 227 } 228 229 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs) 230 { 231 BdrvCoDrainData data; 232 233 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 234 * other coroutines run if they were queued from 235 * qemu_co_queue_run_restart(). */ 236 237 assert(qemu_in_coroutine()); 238 data = (BdrvCoDrainData) { 239 .co = qemu_coroutine_self(), 240 .bs = bs, 241 .done = false, 242 }; 243 bdrv_inc_in_flight(bs); 244 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 245 bdrv_co_drain_bh_cb, &data); 246 247 qemu_coroutine_yield(); 248 /* If we are resumed from some other event (such as an aio completion or a 249 * timer callback), it is a bug in the caller that should be fixed. */ 250 assert(data.done); 251 } 252 253 void bdrv_drained_begin(BlockDriverState *bs) 254 { 255 if (qemu_in_coroutine()) { 256 bdrv_co_yield_to_drain(bs); 257 return; 258 } 259 260 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 261 aio_disable_external(bdrv_get_aio_context(bs)); 262 bdrv_parent_drained_begin(bs); 263 } 264 265 bdrv_drain_recurse(bs); 266 } 267 268 void bdrv_drained_end(BlockDriverState *bs) 269 { 270 assert(bs->quiesce_counter > 0); 271 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) { 272 return; 273 } 274 275 bdrv_parent_drained_end(bs); 276 aio_enable_external(bdrv_get_aio_context(bs)); 277 } 278 279 /* 280 * Wait for pending requests to complete on a single BlockDriverState subtree, 281 * and suspend block driver's internal I/O until next request arrives. 282 * 283 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 284 * AioContext. 285 * 286 * Only this BlockDriverState's AioContext is run, so in-flight requests must 287 * not depend on events in other AioContexts. In that case, use 288 * bdrv_drain_all() instead. 289 */ 290 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 291 { 292 assert(qemu_in_coroutine()); 293 bdrv_drained_begin(bs); 294 bdrv_drained_end(bs); 295 } 296 297 void bdrv_drain(BlockDriverState *bs) 298 { 299 bdrv_drained_begin(bs); 300 bdrv_drained_end(bs); 301 } 302 303 /* 304 * Wait for pending requests to complete across all BlockDriverStates 305 * 306 * This function does not flush data to disk, use bdrv_flush_all() for that 307 * after calling this function. 308 * 309 * This pauses all block jobs and disables external clients. It must 310 * be paired with bdrv_drain_all_end(). 311 * 312 * NOTE: no new block jobs or BlockDriverStates can be created between 313 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 314 */ 315 void bdrv_drain_all_begin(void) 316 { 317 /* Always run first iteration so any pending completion BHs run */ 318 bool waited = true; 319 BlockDriverState *bs; 320 BdrvNextIterator it; 321 GSList *aio_ctxs = NULL, *ctx; 322 323 block_job_pause_all(); 324 325 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 326 AioContext *aio_context = bdrv_get_aio_context(bs); 327 328 aio_context_acquire(aio_context); 329 bdrv_parent_drained_begin(bs); 330 aio_disable_external(aio_context); 331 aio_context_release(aio_context); 332 333 if (!g_slist_find(aio_ctxs, aio_context)) { 334 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context); 335 } 336 } 337 338 /* Note that completion of an asynchronous I/O operation can trigger any 339 * number of other I/O operations on other devices---for example a 340 * coroutine can submit an I/O request to another device in response to 341 * request completion. Therefore we must keep looping until there was no 342 * more activity rather than simply draining each device independently. 343 */ 344 while (waited) { 345 waited = false; 346 347 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) { 348 AioContext *aio_context = ctx->data; 349 350 aio_context_acquire(aio_context); 351 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 352 if (aio_context == bdrv_get_aio_context(bs)) { 353 waited |= bdrv_drain_recurse(bs); 354 } 355 } 356 aio_context_release(aio_context); 357 } 358 } 359 360 g_slist_free(aio_ctxs); 361 } 362 363 void bdrv_drain_all_end(void) 364 { 365 BlockDriverState *bs; 366 BdrvNextIterator it; 367 368 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 369 AioContext *aio_context = bdrv_get_aio_context(bs); 370 371 aio_context_acquire(aio_context); 372 aio_enable_external(aio_context); 373 bdrv_parent_drained_end(bs); 374 aio_context_release(aio_context); 375 } 376 377 block_job_resume_all(); 378 } 379 380 void bdrv_drain_all(void) 381 { 382 bdrv_drain_all_begin(); 383 bdrv_drain_all_end(); 384 } 385 386 /** 387 * Remove an active request from the tracked requests list 388 * 389 * This function should be called when a tracked request is completing. 390 */ 391 static void tracked_request_end(BdrvTrackedRequest *req) 392 { 393 if (req->serialising) { 394 atomic_dec(&req->bs->serialising_in_flight); 395 } 396 397 qemu_co_mutex_lock(&req->bs->reqs_lock); 398 QLIST_REMOVE(req, list); 399 qemu_co_queue_restart_all(&req->wait_queue); 400 qemu_co_mutex_unlock(&req->bs->reqs_lock); 401 } 402 403 /** 404 * Add an active request to the tracked requests list 405 */ 406 static void tracked_request_begin(BdrvTrackedRequest *req, 407 BlockDriverState *bs, 408 int64_t offset, 409 unsigned int bytes, 410 enum BdrvTrackedRequestType type) 411 { 412 *req = (BdrvTrackedRequest){ 413 .bs = bs, 414 .offset = offset, 415 .bytes = bytes, 416 .type = type, 417 .co = qemu_coroutine_self(), 418 .serialising = false, 419 .overlap_offset = offset, 420 .overlap_bytes = bytes, 421 }; 422 423 qemu_co_queue_init(&req->wait_queue); 424 425 qemu_co_mutex_lock(&bs->reqs_lock); 426 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 427 qemu_co_mutex_unlock(&bs->reqs_lock); 428 } 429 430 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 431 { 432 int64_t overlap_offset = req->offset & ~(align - 1); 433 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 434 - overlap_offset; 435 436 if (!req->serialising) { 437 atomic_inc(&req->bs->serialising_in_flight); 438 req->serialising = true; 439 } 440 441 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 442 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 443 } 444 445 /** 446 * Round a region to cluster boundaries 447 */ 448 void bdrv_round_to_clusters(BlockDriverState *bs, 449 int64_t offset, unsigned int bytes, 450 int64_t *cluster_offset, 451 unsigned int *cluster_bytes) 452 { 453 BlockDriverInfo bdi; 454 455 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 456 *cluster_offset = offset; 457 *cluster_bytes = bytes; 458 } else { 459 int64_t c = bdi.cluster_size; 460 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 461 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 462 } 463 } 464 465 static int bdrv_get_cluster_size(BlockDriverState *bs) 466 { 467 BlockDriverInfo bdi; 468 int ret; 469 470 ret = bdrv_get_info(bs, &bdi); 471 if (ret < 0 || bdi.cluster_size == 0) { 472 return bs->bl.request_alignment; 473 } else { 474 return bdi.cluster_size; 475 } 476 } 477 478 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 479 int64_t offset, unsigned int bytes) 480 { 481 /* aaaa bbbb */ 482 if (offset >= req->overlap_offset + req->overlap_bytes) { 483 return false; 484 } 485 /* bbbb aaaa */ 486 if (req->overlap_offset >= offset + bytes) { 487 return false; 488 } 489 return true; 490 } 491 492 void bdrv_inc_in_flight(BlockDriverState *bs) 493 { 494 atomic_inc(&bs->in_flight); 495 } 496 497 static void dummy_bh_cb(void *opaque) 498 { 499 } 500 501 void bdrv_wakeup(BlockDriverState *bs) 502 { 503 /* The barrier (or an atomic op) is in the caller. */ 504 if (atomic_read(&bs->wakeup)) { 505 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL); 506 } 507 } 508 509 void bdrv_dec_in_flight(BlockDriverState *bs) 510 { 511 atomic_dec(&bs->in_flight); 512 bdrv_wakeup(bs); 513 } 514 515 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 516 { 517 BlockDriverState *bs = self->bs; 518 BdrvTrackedRequest *req; 519 bool retry; 520 bool waited = false; 521 522 if (!atomic_read(&bs->serialising_in_flight)) { 523 return false; 524 } 525 526 do { 527 retry = false; 528 qemu_co_mutex_lock(&bs->reqs_lock); 529 QLIST_FOREACH(req, &bs->tracked_requests, list) { 530 if (req == self || (!req->serialising && !self->serialising)) { 531 continue; 532 } 533 if (tracked_request_overlaps(req, self->overlap_offset, 534 self->overlap_bytes)) 535 { 536 /* Hitting this means there was a reentrant request, for 537 * example, a block driver issuing nested requests. This must 538 * never happen since it means deadlock. 539 */ 540 assert(qemu_coroutine_self() != req->co); 541 542 /* If the request is already (indirectly) waiting for us, or 543 * will wait for us as soon as it wakes up, then just go on 544 * (instead of producing a deadlock in the former case). */ 545 if (!req->waiting_for) { 546 self->waiting_for = req; 547 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 548 self->waiting_for = NULL; 549 retry = true; 550 waited = true; 551 break; 552 } 553 } 554 } 555 qemu_co_mutex_unlock(&bs->reqs_lock); 556 } while (retry); 557 558 return waited; 559 } 560 561 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 562 size_t size) 563 { 564 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 565 return -EIO; 566 } 567 568 if (!bdrv_is_inserted(bs)) { 569 return -ENOMEDIUM; 570 } 571 572 if (offset < 0) { 573 return -EIO; 574 } 575 576 return 0; 577 } 578 579 typedef struct RwCo { 580 BdrvChild *child; 581 int64_t offset; 582 QEMUIOVector *qiov; 583 bool is_write; 584 int ret; 585 BdrvRequestFlags flags; 586 } RwCo; 587 588 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 589 { 590 RwCo *rwco = opaque; 591 592 if (!rwco->is_write) { 593 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 594 rwco->qiov->size, rwco->qiov, 595 rwco->flags); 596 } else { 597 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 598 rwco->qiov->size, rwco->qiov, 599 rwco->flags); 600 } 601 } 602 603 /* 604 * Process a vectored synchronous request using coroutines 605 */ 606 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 607 QEMUIOVector *qiov, bool is_write, 608 BdrvRequestFlags flags) 609 { 610 Coroutine *co; 611 RwCo rwco = { 612 .child = child, 613 .offset = offset, 614 .qiov = qiov, 615 .is_write = is_write, 616 .ret = NOT_DONE, 617 .flags = flags, 618 }; 619 620 if (qemu_in_coroutine()) { 621 /* Fast-path if already in coroutine context */ 622 bdrv_rw_co_entry(&rwco); 623 } else { 624 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 625 bdrv_coroutine_enter(child->bs, co); 626 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 627 } 628 return rwco.ret; 629 } 630 631 /* 632 * Process a synchronous request using coroutines 633 */ 634 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, 635 int nb_sectors, bool is_write, BdrvRequestFlags flags) 636 { 637 QEMUIOVector qiov; 638 struct iovec iov = { 639 .iov_base = (void *)buf, 640 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 641 }; 642 643 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 644 return -EINVAL; 645 } 646 647 qemu_iovec_init_external(&qiov, &iov, 1); 648 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, 649 &qiov, is_write, flags); 650 } 651 652 /* return < 0 if error. See bdrv_write() for the return codes */ 653 int bdrv_read(BdrvChild *child, int64_t sector_num, 654 uint8_t *buf, int nb_sectors) 655 { 656 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); 657 } 658 659 /* Return < 0 if error. Important errors are: 660 -EIO generic I/O error (may happen for all errors) 661 -ENOMEDIUM No media inserted. 662 -EINVAL Invalid sector number or nb_sectors 663 -EACCES Trying to write a read-only device 664 */ 665 int bdrv_write(BdrvChild *child, int64_t sector_num, 666 const uint8_t *buf, int nb_sectors) 667 { 668 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 669 } 670 671 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 672 int bytes, BdrvRequestFlags flags) 673 { 674 QEMUIOVector qiov; 675 struct iovec iov = { 676 .iov_base = NULL, 677 .iov_len = bytes, 678 }; 679 680 qemu_iovec_init_external(&qiov, &iov, 1); 681 return bdrv_prwv_co(child, offset, &qiov, true, 682 BDRV_REQ_ZERO_WRITE | flags); 683 } 684 685 /* 686 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 687 * The operation is sped up by checking the block status and only writing 688 * zeroes to the device if they currently do not return zeroes. Optional 689 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 690 * BDRV_REQ_FUA). 691 * 692 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 693 */ 694 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 695 { 696 int64_t target_sectors, ret, nb_sectors, sector_num = 0; 697 BlockDriverState *bs = child->bs; 698 BlockDriverState *file; 699 int n; 700 701 target_sectors = bdrv_nb_sectors(bs); 702 if (target_sectors < 0) { 703 return target_sectors; 704 } 705 706 for (;;) { 707 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS); 708 if (nb_sectors <= 0) { 709 return 0; 710 } 711 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file); 712 if (ret < 0) { 713 error_report("error getting block status at sector %" PRId64 ": %s", 714 sector_num, strerror(-ret)); 715 return ret; 716 } 717 if (ret & BDRV_BLOCK_ZERO) { 718 sector_num += n; 719 continue; 720 } 721 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS, 722 n << BDRV_SECTOR_BITS, flags); 723 if (ret < 0) { 724 error_report("error writing zeroes at sector %" PRId64 ": %s", 725 sector_num, strerror(-ret)); 726 return ret; 727 } 728 sector_num += n; 729 } 730 } 731 732 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 733 { 734 int ret; 735 736 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 737 if (ret < 0) { 738 return ret; 739 } 740 741 return qiov->size; 742 } 743 744 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 745 { 746 QEMUIOVector qiov; 747 struct iovec iov = { 748 .iov_base = (void *)buf, 749 .iov_len = bytes, 750 }; 751 752 if (bytes < 0) { 753 return -EINVAL; 754 } 755 756 qemu_iovec_init_external(&qiov, &iov, 1); 757 return bdrv_preadv(child, offset, &qiov); 758 } 759 760 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 761 { 762 int ret; 763 764 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 765 if (ret < 0) { 766 return ret; 767 } 768 769 return qiov->size; 770 } 771 772 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 773 { 774 QEMUIOVector qiov; 775 struct iovec iov = { 776 .iov_base = (void *) buf, 777 .iov_len = bytes, 778 }; 779 780 if (bytes < 0) { 781 return -EINVAL; 782 } 783 784 qemu_iovec_init_external(&qiov, &iov, 1); 785 return bdrv_pwritev(child, offset, &qiov); 786 } 787 788 /* 789 * Writes to the file and ensures that no writes are reordered across this 790 * request (acts as a barrier) 791 * 792 * Returns 0 on success, -errno in error cases. 793 */ 794 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 795 const void *buf, int count) 796 { 797 int ret; 798 799 ret = bdrv_pwrite(child, offset, buf, count); 800 if (ret < 0) { 801 return ret; 802 } 803 804 ret = bdrv_flush(child->bs); 805 if (ret < 0) { 806 return ret; 807 } 808 809 return 0; 810 } 811 812 typedef struct CoroutineIOCompletion { 813 Coroutine *coroutine; 814 int ret; 815 } CoroutineIOCompletion; 816 817 static void bdrv_co_io_em_complete(void *opaque, int ret) 818 { 819 CoroutineIOCompletion *co = opaque; 820 821 co->ret = ret; 822 aio_co_wake(co->coroutine); 823 } 824 825 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 826 uint64_t offset, uint64_t bytes, 827 QEMUIOVector *qiov, int flags) 828 { 829 BlockDriver *drv = bs->drv; 830 int64_t sector_num; 831 unsigned int nb_sectors; 832 833 assert(!(flags & ~BDRV_REQ_MASK)); 834 835 if (drv->bdrv_co_preadv) { 836 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 837 } 838 839 sector_num = offset >> BDRV_SECTOR_BITS; 840 nb_sectors = bytes >> BDRV_SECTOR_BITS; 841 842 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 843 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 844 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 845 846 if (drv->bdrv_co_readv) { 847 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 848 } else { 849 BlockAIOCB *acb; 850 CoroutineIOCompletion co = { 851 .coroutine = qemu_coroutine_self(), 852 }; 853 854 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors, 855 bdrv_co_io_em_complete, &co); 856 if (acb == NULL) { 857 return -EIO; 858 } else { 859 qemu_coroutine_yield(); 860 return co.ret; 861 } 862 } 863 } 864 865 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 866 uint64_t offset, uint64_t bytes, 867 QEMUIOVector *qiov, int flags) 868 { 869 BlockDriver *drv = bs->drv; 870 int64_t sector_num; 871 unsigned int nb_sectors; 872 int ret; 873 874 assert(!(flags & ~BDRV_REQ_MASK)); 875 876 if (drv->bdrv_co_pwritev) { 877 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 878 flags & bs->supported_write_flags); 879 flags &= ~bs->supported_write_flags; 880 goto emulate_flags; 881 } 882 883 sector_num = offset >> BDRV_SECTOR_BITS; 884 nb_sectors = bytes >> BDRV_SECTOR_BITS; 885 886 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 887 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 888 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 889 890 if (drv->bdrv_co_writev_flags) { 891 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov, 892 flags & bs->supported_write_flags); 893 flags &= ~bs->supported_write_flags; 894 } else if (drv->bdrv_co_writev) { 895 assert(!bs->supported_write_flags); 896 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 897 } else { 898 BlockAIOCB *acb; 899 CoroutineIOCompletion co = { 900 .coroutine = qemu_coroutine_self(), 901 }; 902 903 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors, 904 bdrv_co_io_em_complete, &co); 905 if (acb == NULL) { 906 ret = -EIO; 907 } else { 908 qemu_coroutine_yield(); 909 ret = co.ret; 910 } 911 } 912 913 emulate_flags: 914 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 915 ret = bdrv_co_flush(bs); 916 } 917 918 return ret; 919 } 920 921 static int coroutine_fn 922 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 923 uint64_t bytes, QEMUIOVector *qiov) 924 { 925 BlockDriver *drv = bs->drv; 926 927 if (!drv->bdrv_co_pwritev_compressed) { 928 return -ENOTSUP; 929 } 930 931 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 932 } 933 934 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 935 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 936 { 937 BlockDriverState *bs = child->bs; 938 939 /* Perform I/O through a temporary buffer so that users who scribble over 940 * their read buffer while the operation is in progress do not end up 941 * modifying the image file. This is critical for zero-copy guest I/O 942 * where anything might happen inside guest memory. 943 */ 944 void *bounce_buffer; 945 946 BlockDriver *drv = bs->drv; 947 struct iovec iov; 948 QEMUIOVector bounce_qiov; 949 int64_t cluster_offset; 950 unsigned int cluster_bytes; 951 size_t skip_bytes; 952 int ret; 953 954 /* FIXME We cannot require callers to have write permissions when all they 955 * are doing is a read request. If we did things right, write permissions 956 * would be obtained anyway, but internally by the copy-on-read code. As 957 * long as it is implemented here rather than in a separat filter driver, 958 * the copy-on-read code doesn't have its own BdrvChild, however, for which 959 * it could request permissions. Therefore we have to bypass the permission 960 * system for the moment. */ 961 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 962 963 /* Cover entire cluster so no additional backing file I/O is required when 964 * allocating cluster in the image file. 965 */ 966 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 967 968 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 969 cluster_offset, cluster_bytes); 970 971 iov.iov_len = cluster_bytes; 972 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len); 973 if (bounce_buffer == NULL) { 974 ret = -ENOMEM; 975 goto err; 976 } 977 978 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 979 980 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes, 981 &bounce_qiov, 0); 982 if (ret < 0) { 983 goto err; 984 } 985 986 if (drv->bdrv_co_pwrite_zeroes && 987 buffer_is_zero(bounce_buffer, iov.iov_len)) { 988 /* FIXME: Should we (perhaps conditionally) be setting 989 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 990 * that still correctly reads as zero? */ 991 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0); 992 } else { 993 /* This does not change the data on the disk, it is not necessary 994 * to flush even in cache=writethrough mode. 995 */ 996 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes, 997 &bounce_qiov, 0); 998 } 999 1000 if (ret < 0) { 1001 /* It might be okay to ignore write errors for guest requests. If this 1002 * is a deliberate copy-on-read then we don't want to ignore the error. 1003 * Simply report it in all cases. 1004 */ 1005 goto err; 1006 } 1007 1008 skip_bytes = offset - cluster_offset; 1009 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes); 1010 1011 err: 1012 qemu_vfree(bounce_buffer); 1013 return ret; 1014 } 1015 1016 /* 1017 * Forwards an already correctly aligned request to the BlockDriver. This 1018 * handles copy on read, zeroing after EOF, and fragmentation of large 1019 * reads; any other features must be implemented by the caller. 1020 */ 1021 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1022 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1023 int64_t align, QEMUIOVector *qiov, int flags) 1024 { 1025 BlockDriverState *bs = child->bs; 1026 int64_t total_bytes, max_bytes; 1027 int ret = 0; 1028 uint64_t bytes_remaining = bytes; 1029 int max_transfer; 1030 1031 assert(is_power_of_2(align)); 1032 assert((offset & (align - 1)) == 0); 1033 assert((bytes & (align - 1)) == 0); 1034 assert(!qiov || bytes == qiov->size); 1035 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1036 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1037 align); 1038 1039 /* TODO: We would need a per-BDS .supported_read_flags and 1040 * potential fallback support, if we ever implement any read flags 1041 * to pass through to drivers. For now, there aren't any 1042 * passthrough flags. */ 1043 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 1044 1045 /* Handle Copy on Read and associated serialisation */ 1046 if (flags & BDRV_REQ_COPY_ON_READ) { 1047 /* If we touch the same cluster it counts as an overlap. This 1048 * guarantees that allocating writes will be serialized and not race 1049 * with each other for the same cluster. For example, in copy-on-read 1050 * it ensures that the CoR read and write operations are atomic and 1051 * guest writes cannot interleave between them. */ 1052 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1053 } 1054 1055 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1056 wait_serialising_requests(req); 1057 } 1058 1059 if (flags & BDRV_REQ_COPY_ON_READ) { 1060 /* TODO: Simplify further once bdrv_is_allocated no longer 1061 * requires sector alignment */ 1062 int64_t start = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE); 1063 int64_t end = QEMU_ALIGN_UP(offset + bytes, BDRV_SECTOR_SIZE); 1064 int64_t pnum; 1065 1066 ret = bdrv_is_allocated(bs, start, end - start, &pnum); 1067 if (ret < 0) { 1068 goto out; 1069 } 1070 1071 if (!ret || pnum != end - start) { 1072 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); 1073 goto out; 1074 } 1075 } 1076 1077 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1078 total_bytes = bdrv_getlength(bs); 1079 if (total_bytes < 0) { 1080 ret = total_bytes; 1081 goto out; 1082 } 1083 1084 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1085 if (bytes <= max_bytes && bytes <= max_transfer) { 1086 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1087 goto out; 1088 } 1089 1090 while (bytes_remaining) { 1091 int num; 1092 1093 if (max_bytes) { 1094 QEMUIOVector local_qiov; 1095 1096 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1097 assert(num); 1098 qemu_iovec_init(&local_qiov, qiov->niov); 1099 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1100 1101 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1102 num, &local_qiov, 0); 1103 max_bytes -= num; 1104 qemu_iovec_destroy(&local_qiov); 1105 } else { 1106 num = bytes_remaining; 1107 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1108 bytes_remaining); 1109 } 1110 if (ret < 0) { 1111 goto out; 1112 } 1113 bytes_remaining -= num; 1114 } 1115 1116 out: 1117 return ret < 0 ? ret : 0; 1118 } 1119 1120 /* 1121 * Handle a read request in coroutine context 1122 */ 1123 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1124 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1125 BdrvRequestFlags flags) 1126 { 1127 BlockDriverState *bs = child->bs; 1128 BlockDriver *drv = bs->drv; 1129 BdrvTrackedRequest req; 1130 1131 uint64_t align = bs->bl.request_alignment; 1132 uint8_t *head_buf = NULL; 1133 uint8_t *tail_buf = NULL; 1134 QEMUIOVector local_qiov; 1135 bool use_local_qiov = false; 1136 int ret; 1137 1138 trace_bdrv_co_preadv(child->bs, offset, bytes, flags); 1139 1140 if (!drv) { 1141 return -ENOMEDIUM; 1142 } 1143 1144 ret = bdrv_check_byte_request(bs, offset, bytes); 1145 if (ret < 0) { 1146 return ret; 1147 } 1148 1149 bdrv_inc_in_flight(bs); 1150 1151 /* Don't do copy-on-read if we read data before write operation */ 1152 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1153 flags |= BDRV_REQ_COPY_ON_READ; 1154 } 1155 1156 /* Align read if necessary by padding qiov */ 1157 if (offset & (align - 1)) { 1158 head_buf = qemu_blockalign(bs, align); 1159 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1160 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1161 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1162 use_local_qiov = true; 1163 1164 bytes += offset & (align - 1); 1165 offset = offset & ~(align - 1); 1166 } 1167 1168 if ((offset + bytes) & (align - 1)) { 1169 if (!use_local_qiov) { 1170 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1171 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1172 use_local_qiov = true; 1173 } 1174 tail_buf = qemu_blockalign(bs, align); 1175 qemu_iovec_add(&local_qiov, tail_buf, 1176 align - ((offset + bytes) & (align - 1))); 1177 1178 bytes = ROUND_UP(bytes, align); 1179 } 1180 1181 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1182 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1183 use_local_qiov ? &local_qiov : qiov, 1184 flags); 1185 tracked_request_end(&req); 1186 bdrv_dec_in_flight(bs); 1187 1188 if (use_local_qiov) { 1189 qemu_iovec_destroy(&local_qiov); 1190 qemu_vfree(head_buf); 1191 qemu_vfree(tail_buf); 1192 } 1193 1194 return ret; 1195 } 1196 1197 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child, 1198 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1199 BdrvRequestFlags flags) 1200 { 1201 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1202 return -EINVAL; 1203 } 1204 1205 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS, 1206 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1207 } 1208 1209 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num, 1210 int nb_sectors, QEMUIOVector *qiov) 1211 { 1212 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0); 1213 } 1214 1215 /* Maximum buffer for write zeroes fallback, in bytes */ 1216 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 1217 1218 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1219 int64_t offset, int bytes, BdrvRequestFlags flags) 1220 { 1221 BlockDriver *drv = bs->drv; 1222 QEMUIOVector qiov; 1223 struct iovec iov = {0}; 1224 int ret = 0; 1225 bool need_flush = false; 1226 int head = 0; 1227 int tail = 0; 1228 1229 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1230 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1231 bs->bl.request_alignment); 1232 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1233 MAX_WRITE_ZEROES_BOUNCE_BUFFER); 1234 1235 assert(alignment % bs->bl.request_alignment == 0); 1236 head = offset % alignment; 1237 tail = (offset + bytes) % alignment; 1238 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1239 assert(max_write_zeroes >= bs->bl.request_alignment); 1240 1241 while (bytes > 0 && !ret) { 1242 int num = bytes; 1243 1244 /* Align request. Block drivers can expect the "bulk" of the request 1245 * to be aligned, and that unaligned requests do not cross cluster 1246 * boundaries. 1247 */ 1248 if (head) { 1249 /* Make a small request up to the first aligned sector. For 1250 * convenience, limit this request to max_transfer even if 1251 * we don't need to fall back to writes. */ 1252 num = MIN(MIN(bytes, max_transfer), alignment - head); 1253 head = (head + num) % alignment; 1254 assert(num < max_write_zeroes); 1255 } else if (tail && num > alignment) { 1256 /* Shorten the request to the last aligned sector. */ 1257 num -= tail; 1258 } 1259 1260 /* limit request size */ 1261 if (num > max_write_zeroes) { 1262 num = max_write_zeroes; 1263 } 1264 1265 ret = -ENOTSUP; 1266 /* First try the efficient write zeroes operation */ 1267 if (drv->bdrv_co_pwrite_zeroes) { 1268 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1269 flags & bs->supported_zero_flags); 1270 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1271 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1272 need_flush = true; 1273 } 1274 } else { 1275 assert(!bs->supported_zero_flags); 1276 } 1277 1278 if (ret == -ENOTSUP) { 1279 /* Fall back to bounce buffer if write zeroes is unsupported */ 1280 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1281 1282 if ((flags & BDRV_REQ_FUA) && 1283 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1284 /* No need for bdrv_driver_pwrite() to do a fallback 1285 * flush on each chunk; use just one at the end */ 1286 write_flags &= ~BDRV_REQ_FUA; 1287 need_flush = true; 1288 } 1289 num = MIN(num, max_transfer); 1290 iov.iov_len = num; 1291 if (iov.iov_base == NULL) { 1292 iov.iov_base = qemu_try_blockalign(bs, num); 1293 if (iov.iov_base == NULL) { 1294 ret = -ENOMEM; 1295 goto fail; 1296 } 1297 memset(iov.iov_base, 0, num); 1298 } 1299 qemu_iovec_init_external(&qiov, &iov, 1); 1300 1301 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1302 1303 /* Keep bounce buffer around if it is big enough for all 1304 * all future requests. 1305 */ 1306 if (num < max_transfer) { 1307 qemu_vfree(iov.iov_base); 1308 iov.iov_base = NULL; 1309 } 1310 } 1311 1312 offset += num; 1313 bytes -= num; 1314 } 1315 1316 fail: 1317 if (ret == 0 && need_flush) { 1318 ret = bdrv_co_flush(bs); 1319 } 1320 qemu_vfree(iov.iov_base); 1321 return ret; 1322 } 1323 1324 /* 1325 * Forwards an already correctly aligned write request to the BlockDriver, 1326 * after possibly fragmenting it. 1327 */ 1328 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1329 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1330 int64_t align, QEMUIOVector *qiov, int flags) 1331 { 1332 BlockDriverState *bs = child->bs; 1333 BlockDriver *drv = bs->drv; 1334 bool waited; 1335 int ret; 1336 1337 int64_t start_sector = offset >> BDRV_SECTOR_BITS; 1338 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1339 uint64_t bytes_remaining = bytes; 1340 int max_transfer; 1341 1342 if (bdrv_has_readonly_bitmaps(bs)) { 1343 return -EPERM; 1344 } 1345 1346 assert(is_power_of_2(align)); 1347 assert((offset & (align - 1)) == 0); 1348 assert((bytes & (align - 1)) == 0); 1349 assert(!qiov || bytes == qiov->size); 1350 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1351 assert(!(flags & ~BDRV_REQ_MASK)); 1352 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1353 align); 1354 1355 waited = wait_serialising_requests(req); 1356 assert(!waited || !req->serialising); 1357 assert(req->overlap_offset <= offset); 1358 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1359 assert(child->perm & BLK_PERM_WRITE); 1360 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1361 1362 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); 1363 1364 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1365 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1366 qemu_iovec_is_zero(qiov)) { 1367 flags |= BDRV_REQ_ZERO_WRITE; 1368 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1369 flags |= BDRV_REQ_MAY_UNMAP; 1370 } 1371 } 1372 1373 if (ret < 0) { 1374 /* Do nothing, write notifier decided to fail this request */ 1375 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1376 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1377 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1378 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1379 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1380 } else if (bytes <= max_transfer) { 1381 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1382 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1383 } else { 1384 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1385 while (bytes_remaining) { 1386 int num = MIN(bytes_remaining, max_transfer); 1387 QEMUIOVector local_qiov; 1388 int local_flags = flags; 1389 1390 assert(num); 1391 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1392 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1393 /* If FUA is going to be emulated by flush, we only 1394 * need to flush on the last iteration */ 1395 local_flags &= ~BDRV_REQ_FUA; 1396 } 1397 qemu_iovec_init(&local_qiov, qiov->niov); 1398 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1399 1400 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1401 num, &local_qiov, local_flags); 1402 qemu_iovec_destroy(&local_qiov); 1403 if (ret < 0) { 1404 break; 1405 } 1406 bytes_remaining -= num; 1407 } 1408 } 1409 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1410 1411 atomic_inc(&bs->write_gen); 1412 bdrv_set_dirty(bs, start_sector, end_sector - start_sector); 1413 1414 stat64_max(&bs->wr_highest_offset, offset + bytes); 1415 1416 if (ret >= 0) { 1417 bs->total_sectors = MAX(bs->total_sectors, end_sector); 1418 ret = 0; 1419 } 1420 1421 return ret; 1422 } 1423 1424 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1425 int64_t offset, 1426 unsigned int bytes, 1427 BdrvRequestFlags flags, 1428 BdrvTrackedRequest *req) 1429 { 1430 BlockDriverState *bs = child->bs; 1431 uint8_t *buf = NULL; 1432 QEMUIOVector local_qiov; 1433 struct iovec iov; 1434 uint64_t align = bs->bl.request_alignment; 1435 unsigned int head_padding_bytes, tail_padding_bytes; 1436 int ret = 0; 1437 1438 head_padding_bytes = offset & (align - 1); 1439 tail_padding_bytes = (align - (offset + bytes)) & (align - 1); 1440 1441 1442 assert(flags & BDRV_REQ_ZERO_WRITE); 1443 if (head_padding_bytes || tail_padding_bytes) { 1444 buf = qemu_blockalign(bs, align); 1445 iov = (struct iovec) { 1446 .iov_base = buf, 1447 .iov_len = align, 1448 }; 1449 qemu_iovec_init_external(&local_qiov, &iov, 1); 1450 } 1451 if (head_padding_bytes) { 1452 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1453 1454 /* RMW the unaligned part before head. */ 1455 mark_request_serialising(req, align); 1456 wait_serialising_requests(req); 1457 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1458 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1459 align, &local_qiov, 0); 1460 if (ret < 0) { 1461 goto fail; 1462 } 1463 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1464 1465 memset(buf + head_padding_bytes, 0, zero_bytes); 1466 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1467 align, &local_qiov, 1468 flags & ~BDRV_REQ_ZERO_WRITE); 1469 if (ret < 0) { 1470 goto fail; 1471 } 1472 offset += zero_bytes; 1473 bytes -= zero_bytes; 1474 } 1475 1476 assert(!bytes || (offset & (align - 1)) == 0); 1477 if (bytes >= align) { 1478 /* Write the aligned part in the middle. */ 1479 uint64_t aligned_bytes = bytes & ~(align - 1); 1480 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1481 NULL, flags); 1482 if (ret < 0) { 1483 goto fail; 1484 } 1485 bytes -= aligned_bytes; 1486 offset += aligned_bytes; 1487 } 1488 1489 assert(!bytes || (offset & (align - 1)) == 0); 1490 if (bytes) { 1491 assert(align == tail_padding_bytes + bytes); 1492 /* RMW the unaligned part after tail. */ 1493 mark_request_serialising(req, align); 1494 wait_serialising_requests(req); 1495 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1496 ret = bdrv_aligned_preadv(child, req, offset, align, 1497 align, &local_qiov, 0); 1498 if (ret < 0) { 1499 goto fail; 1500 } 1501 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1502 1503 memset(buf, 0, bytes); 1504 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1505 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1506 } 1507 fail: 1508 qemu_vfree(buf); 1509 return ret; 1510 1511 } 1512 1513 /* 1514 * Handle a write request in coroutine context 1515 */ 1516 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1517 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1518 BdrvRequestFlags flags) 1519 { 1520 BlockDriverState *bs = child->bs; 1521 BdrvTrackedRequest req; 1522 uint64_t align = bs->bl.request_alignment; 1523 uint8_t *head_buf = NULL; 1524 uint8_t *tail_buf = NULL; 1525 QEMUIOVector local_qiov; 1526 bool use_local_qiov = false; 1527 int ret; 1528 1529 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 1530 1531 if (!bs->drv) { 1532 return -ENOMEDIUM; 1533 } 1534 if (bs->read_only) { 1535 return -EPERM; 1536 } 1537 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1538 1539 ret = bdrv_check_byte_request(bs, offset, bytes); 1540 if (ret < 0) { 1541 return ret; 1542 } 1543 1544 bdrv_inc_in_flight(bs); 1545 /* 1546 * Align write if necessary by performing a read-modify-write cycle. 1547 * Pad qiov with the read parts and be sure to have a tracked request not 1548 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1549 */ 1550 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1551 1552 if (!qiov) { 1553 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1554 goto out; 1555 } 1556 1557 if (offset & (align - 1)) { 1558 QEMUIOVector head_qiov; 1559 struct iovec head_iov; 1560 1561 mark_request_serialising(&req, align); 1562 wait_serialising_requests(&req); 1563 1564 head_buf = qemu_blockalign(bs, align); 1565 head_iov = (struct iovec) { 1566 .iov_base = head_buf, 1567 .iov_len = align, 1568 }; 1569 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1570 1571 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1572 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1573 align, &head_qiov, 0); 1574 if (ret < 0) { 1575 goto fail; 1576 } 1577 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1578 1579 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1580 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1581 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1582 use_local_qiov = true; 1583 1584 bytes += offset & (align - 1); 1585 offset = offset & ~(align - 1); 1586 1587 /* We have read the tail already if the request is smaller 1588 * than one aligned block. 1589 */ 1590 if (bytes < align) { 1591 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1592 bytes = align; 1593 } 1594 } 1595 1596 if ((offset + bytes) & (align - 1)) { 1597 QEMUIOVector tail_qiov; 1598 struct iovec tail_iov; 1599 size_t tail_bytes; 1600 bool waited; 1601 1602 mark_request_serialising(&req, align); 1603 waited = wait_serialising_requests(&req); 1604 assert(!waited || !use_local_qiov); 1605 1606 tail_buf = qemu_blockalign(bs, align); 1607 tail_iov = (struct iovec) { 1608 .iov_base = tail_buf, 1609 .iov_len = align, 1610 }; 1611 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1612 1613 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1614 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1615 align, align, &tail_qiov, 0); 1616 if (ret < 0) { 1617 goto fail; 1618 } 1619 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1620 1621 if (!use_local_qiov) { 1622 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1623 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1624 use_local_qiov = true; 1625 } 1626 1627 tail_bytes = (offset + bytes) & (align - 1); 1628 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1629 1630 bytes = ROUND_UP(bytes, align); 1631 } 1632 1633 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1634 use_local_qiov ? &local_qiov : qiov, 1635 flags); 1636 1637 fail: 1638 1639 if (use_local_qiov) { 1640 qemu_iovec_destroy(&local_qiov); 1641 } 1642 qemu_vfree(head_buf); 1643 qemu_vfree(tail_buf); 1644 out: 1645 tracked_request_end(&req); 1646 bdrv_dec_in_flight(bs); 1647 return ret; 1648 } 1649 1650 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child, 1651 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1652 BdrvRequestFlags flags) 1653 { 1654 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1655 return -EINVAL; 1656 } 1657 1658 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS, 1659 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1660 } 1661 1662 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num, 1663 int nb_sectors, QEMUIOVector *qiov) 1664 { 1665 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0); 1666 } 1667 1668 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1669 int bytes, BdrvRequestFlags flags) 1670 { 1671 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 1672 1673 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1674 flags &= ~BDRV_REQ_MAY_UNMAP; 1675 } 1676 1677 return bdrv_co_pwritev(child, offset, bytes, NULL, 1678 BDRV_REQ_ZERO_WRITE | flags); 1679 } 1680 1681 /* 1682 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1683 */ 1684 int bdrv_flush_all(void) 1685 { 1686 BdrvNextIterator it; 1687 BlockDriverState *bs = NULL; 1688 int result = 0; 1689 1690 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 1691 AioContext *aio_context = bdrv_get_aio_context(bs); 1692 int ret; 1693 1694 aio_context_acquire(aio_context); 1695 ret = bdrv_flush(bs); 1696 if (ret < 0 && !result) { 1697 result = ret; 1698 } 1699 aio_context_release(aio_context); 1700 } 1701 1702 return result; 1703 } 1704 1705 1706 typedef struct BdrvCoGetBlockStatusData { 1707 BlockDriverState *bs; 1708 BlockDriverState *base; 1709 BlockDriverState **file; 1710 int64_t sector_num; 1711 int nb_sectors; 1712 int *pnum; 1713 int64_t ret; 1714 bool done; 1715 } BdrvCoGetBlockStatusData; 1716 1717 /* 1718 * Returns the allocation status of the specified sectors. 1719 * Drivers not implementing the functionality are assumed to not support 1720 * backing files, hence all their sectors are reported as allocated. 1721 * 1722 * If 'sector_num' is beyond the end of the disk image the return value is 1723 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 1724 * 1725 * 'pnum' is set to the number of sectors (including and immediately following 1726 * the specified sector) that are known to be in the same 1727 * allocated/unallocated state. 1728 * 1729 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 1730 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 1731 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 1732 * 1733 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file' 1734 * points to the BDS which the sector range is allocated in. 1735 */ 1736 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs, 1737 int64_t sector_num, 1738 int nb_sectors, int *pnum, 1739 BlockDriverState **file) 1740 { 1741 int64_t total_sectors; 1742 int64_t n; 1743 int64_t ret, ret2; 1744 1745 *file = NULL; 1746 total_sectors = bdrv_nb_sectors(bs); 1747 if (total_sectors < 0) { 1748 return total_sectors; 1749 } 1750 1751 if (sector_num >= total_sectors) { 1752 *pnum = 0; 1753 return BDRV_BLOCK_EOF; 1754 } 1755 1756 n = total_sectors - sector_num; 1757 if (n < nb_sectors) { 1758 nb_sectors = n; 1759 } 1760 1761 if (!bs->drv->bdrv_co_get_block_status) { 1762 *pnum = nb_sectors; 1763 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 1764 if (sector_num + nb_sectors == total_sectors) { 1765 ret |= BDRV_BLOCK_EOF; 1766 } 1767 if (bs->drv->protocol_name) { 1768 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE); 1769 *file = bs; 1770 } 1771 return ret; 1772 } 1773 1774 bdrv_inc_in_flight(bs); 1775 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum, 1776 file); 1777 if (ret < 0) { 1778 *pnum = 0; 1779 goto out; 1780 } 1781 1782 if (ret & BDRV_BLOCK_RAW) { 1783 assert(ret & BDRV_BLOCK_OFFSET_VALID && *file); 1784 ret = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1785 *pnum, pnum, file); 1786 goto out; 1787 } 1788 1789 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 1790 ret |= BDRV_BLOCK_ALLOCATED; 1791 } else { 1792 if (bdrv_unallocated_blocks_are_zero(bs)) { 1793 ret |= BDRV_BLOCK_ZERO; 1794 } else if (bs->backing) { 1795 BlockDriverState *bs2 = bs->backing->bs; 1796 int64_t nb_sectors2 = bdrv_nb_sectors(bs2); 1797 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) { 1798 ret |= BDRV_BLOCK_ZERO; 1799 } 1800 } 1801 } 1802 1803 if (*file && *file != bs && 1804 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 1805 (ret & BDRV_BLOCK_OFFSET_VALID)) { 1806 BlockDriverState *file2; 1807 int file_pnum; 1808 1809 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1810 *pnum, &file_pnum, &file2); 1811 if (ret2 >= 0) { 1812 /* Ignore errors. This is just providing extra information, it 1813 * is useful but not necessary. 1814 */ 1815 if (ret2 & BDRV_BLOCK_EOF && 1816 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 1817 /* 1818 * It is valid for the format block driver to read 1819 * beyond the end of the underlying file's current 1820 * size; such areas read as zero. 1821 */ 1822 ret |= BDRV_BLOCK_ZERO; 1823 } else { 1824 /* Limit request to the range reported by the protocol driver */ 1825 *pnum = file_pnum; 1826 ret |= (ret2 & BDRV_BLOCK_ZERO); 1827 } 1828 } 1829 } 1830 1831 out: 1832 bdrv_dec_in_flight(bs); 1833 if (ret >= 0 && sector_num + *pnum == total_sectors) { 1834 ret |= BDRV_BLOCK_EOF; 1835 } 1836 return ret; 1837 } 1838 1839 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs, 1840 BlockDriverState *base, 1841 int64_t sector_num, 1842 int nb_sectors, 1843 int *pnum, 1844 BlockDriverState **file) 1845 { 1846 BlockDriverState *p; 1847 int64_t ret = 0; 1848 bool first = true; 1849 1850 assert(bs != base); 1851 for (p = bs; p != base; p = backing_bs(p)) { 1852 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file); 1853 if (ret < 0) { 1854 break; 1855 } 1856 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 1857 /* 1858 * Reading beyond the end of the file continues to read 1859 * zeroes, but we can only widen the result to the 1860 * unallocated length we learned from an earlier 1861 * iteration. 1862 */ 1863 *pnum = nb_sectors; 1864 } 1865 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 1866 break; 1867 } 1868 /* [sector_num, pnum] unallocated on this layer, which could be only 1869 * the first part of [sector_num, nb_sectors]. */ 1870 nb_sectors = MIN(nb_sectors, *pnum); 1871 first = false; 1872 } 1873 return ret; 1874 } 1875 1876 /* Coroutine wrapper for bdrv_get_block_status_above() */ 1877 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque) 1878 { 1879 BdrvCoGetBlockStatusData *data = opaque; 1880 1881 data->ret = bdrv_co_get_block_status_above(data->bs, data->base, 1882 data->sector_num, 1883 data->nb_sectors, 1884 data->pnum, 1885 data->file); 1886 data->done = true; 1887 } 1888 1889 /* 1890 * Synchronous wrapper around bdrv_co_get_block_status_above(). 1891 * 1892 * See bdrv_co_get_block_status_above() for details. 1893 */ 1894 int64_t bdrv_get_block_status_above(BlockDriverState *bs, 1895 BlockDriverState *base, 1896 int64_t sector_num, 1897 int nb_sectors, int *pnum, 1898 BlockDriverState **file) 1899 { 1900 Coroutine *co; 1901 BdrvCoGetBlockStatusData data = { 1902 .bs = bs, 1903 .base = base, 1904 .file = file, 1905 .sector_num = sector_num, 1906 .nb_sectors = nb_sectors, 1907 .pnum = pnum, 1908 .done = false, 1909 }; 1910 1911 if (qemu_in_coroutine()) { 1912 /* Fast-path if already in coroutine context */ 1913 bdrv_get_block_status_above_co_entry(&data); 1914 } else { 1915 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry, 1916 &data); 1917 bdrv_coroutine_enter(bs, co); 1918 BDRV_POLL_WHILE(bs, !data.done); 1919 } 1920 return data.ret; 1921 } 1922 1923 int64_t bdrv_get_block_status(BlockDriverState *bs, 1924 int64_t sector_num, 1925 int nb_sectors, int *pnum, 1926 BlockDriverState **file) 1927 { 1928 return bdrv_get_block_status_above(bs, backing_bs(bs), 1929 sector_num, nb_sectors, pnum, file); 1930 } 1931 1932 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 1933 int64_t bytes, int64_t *pnum) 1934 { 1935 BlockDriverState *file; 1936 int64_t sector_num = offset >> BDRV_SECTOR_BITS; 1937 int nb_sectors = bytes >> BDRV_SECTOR_BITS; 1938 int64_t ret; 1939 int psectors; 1940 1941 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1942 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE) && bytes < INT_MAX); 1943 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &psectors, 1944 &file); 1945 if (ret < 0) { 1946 return ret; 1947 } 1948 if (pnum) { 1949 *pnum = psectors * BDRV_SECTOR_SIZE; 1950 } 1951 return !!(ret & BDRV_BLOCK_ALLOCATED); 1952 } 1953 1954 /* 1955 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 1956 * 1957 * Return true if (a prefix of) the given range is allocated in any image 1958 * between BASE and TOP (inclusive). BASE can be NULL to check if the given 1959 * offset is allocated in any image of the chain. Return false otherwise, 1960 * or negative errno on failure. 1961 * 1962 * 'pnum' is set to the number of bytes (including and immediately 1963 * following the specified offset) that are known to be in the same 1964 * allocated/unallocated state. Note that a subsequent call starting 1965 * at 'offset + *pnum' may return the same allocation status (in other 1966 * words, the result is not necessarily the maximum possible range); 1967 * but 'pnum' will only be 0 when end of file is reached. 1968 * 1969 */ 1970 int bdrv_is_allocated_above(BlockDriverState *top, 1971 BlockDriverState *base, 1972 int64_t offset, int64_t bytes, int64_t *pnum) 1973 { 1974 BlockDriverState *intermediate; 1975 int ret; 1976 int64_t n = bytes; 1977 1978 intermediate = top; 1979 while (intermediate && intermediate != base) { 1980 int64_t pnum_inter; 1981 int64_t size_inter; 1982 1983 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 1984 if (ret < 0) { 1985 return ret; 1986 } 1987 if (ret) { 1988 *pnum = pnum_inter; 1989 return 1; 1990 } 1991 1992 size_inter = bdrv_getlength(intermediate); 1993 if (size_inter < 0) { 1994 return size_inter; 1995 } 1996 if (n > pnum_inter && 1997 (intermediate == top || offset + pnum_inter < size_inter)) { 1998 n = pnum_inter; 1999 } 2000 2001 intermediate = backing_bs(intermediate); 2002 } 2003 2004 *pnum = n; 2005 return 0; 2006 } 2007 2008 typedef struct BdrvVmstateCo { 2009 BlockDriverState *bs; 2010 QEMUIOVector *qiov; 2011 int64_t pos; 2012 bool is_read; 2013 int ret; 2014 } BdrvVmstateCo; 2015 2016 static int coroutine_fn 2017 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2018 bool is_read) 2019 { 2020 BlockDriver *drv = bs->drv; 2021 int ret = -ENOTSUP; 2022 2023 bdrv_inc_in_flight(bs); 2024 2025 if (!drv) { 2026 ret = -ENOMEDIUM; 2027 } else if (drv->bdrv_load_vmstate) { 2028 if (is_read) { 2029 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2030 } else { 2031 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2032 } 2033 } else if (bs->file) { 2034 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2035 } 2036 2037 bdrv_dec_in_flight(bs); 2038 return ret; 2039 } 2040 2041 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2042 { 2043 BdrvVmstateCo *co = opaque; 2044 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2045 } 2046 2047 static inline int 2048 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2049 bool is_read) 2050 { 2051 if (qemu_in_coroutine()) { 2052 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2053 } else { 2054 BdrvVmstateCo data = { 2055 .bs = bs, 2056 .qiov = qiov, 2057 .pos = pos, 2058 .is_read = is_read, 2059 .ret = -EINPROGRESS, 2060 }; 2061 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2062 2063 bdrv_coroutine_enter(bs, co); 2064 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2065 return data.ret; 2066 } 2067 } 2068 2069 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2070 int64_t pos, int size) 2071 { 2072 QEMUIOVector qiov; 2073 struct iovec iov = { 2074 .iov_base = (void *) buf, 2075 .iov_len = size, 2076 }; 2077 int ret; 2078 2079 qemu_iovec_init_external(&qiov, &iov, 1); 2080 2081 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2082 if (ret < 0) { 2083 return ret; 2084 } 2085 2086 return size; 2087 } 2088 2089 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2090 { 2091 return bdrv_rw_vmstate(bs, qiov, pos, false); 2092 } 2093 2094 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2095 int64_t pos, int size) 2096 { 2097 QEMUIOVector qiov; 2098 struct iovec iov = { 2099 .iov_base = buf, 2100 .iov_len = size, 2101 }; 2102 int ret; 2103 2104 qemu_iovec_init_external(&qiov, &iov, 1); 2105 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2106 if (ret < 0) { 2107 return ret; 2108 } 2109 2110 return size; 2111 } 2112 2113 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2114 { 2115 return bdrv_rw_vmstate(bs, qiov, pos, true); 2116 } 2117 2118 /**************************************************************/ 2119 /* async I/Os */ 2120 2121 void bdrv_aio_cancel(BlockAIOCB *acb) 2122 { 2123 qemu_aio_ref(acb); 2124 bdrv_aio_cancel_async(acb); 2125 while (acb->refcnt > 1) { 2126 if (acb->aiocb_info->get_aio_context) { 2127 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2128 } else if (acb->bs) { 2129 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2130 * assert that we're not using an I/O thread. Thread-safe 2131 * code should use bdrv_aio_cancel_async exclusively. 2132 */ 2133 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2134 aio_poll(bdrv_get_aio_context(acb->bs), true); 2135 } else { 2136 abort(); 2137 } 2138 } 2139 qemu_aio_unref(acb); 2140 } 2141 2142 /* Async version of aio cancel. The caller is not blocked if the acb implements 2143 * cancel_async, otherwise we do nothing and let the request normally complete. 2144 * In either case the completion callback must be called. */ 2145 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2146 { 2147 if (acb->aiocb_info->cancel_async) { 2148 acb->aiocb_info->cancel_async(acb); 2149 } 2150 } 2151 2152 /**************************************************************/ 2153 /* Coroutine block device emulation */ 2154 2155 typedef struct FlushCo { 2156 BlockDriverState *bs; 2157 int ret; 2158 } FlushCo; 2159 2160 2161 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2162 { 2163 FlushCo *rwco = opaque; 2164 2165 rwco->ret = bdrv_co_flush(rwco->bs); 2166 } 2167 2168 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2169 { 2170 int current_gen; 2171 int ret = 0; 2172 2173 bdrv_inc_in_flight(bs); 2174 2175 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2176 bdrv_is_sg(bs)) { 2177 goto early_exit; 2178 } 2179 2180 qemu_co_mutex_lock(&bs->reqs_lock); 2181 current_gen = atomic_read(&bs->write_gen); 2182 2183 /* Wait until any previous flushes are completed */ 2184 while (bs->active_flush_req) { 2185 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2186 } 2187 2188 /* Flushes reach this point in nondecreasing current_gen order. */ 2189 bs->active_flush_req = true; 2190 qemu_co_mutex_unlock(&bs->reqs_lock); 2191 2192 /* Write back all layers by calling one driver function */ 2193 if (bs->drv->bdrv_co_flush) { 2194 ret = bs->drv->bdrv_co_flush(bs); 2195 goto out; 2196 } 2197 2198 /* Write back cached data to the OS even with cache=unsafe */ 2199 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2200 if (bs->drv->bdrv_co_flush_to_os) { 2201 ret = bs->drv->bdrv_co_flush_to_os(bs); 2202 if (ret < 0) { 2203 goto out; 2204 } 2205 } 2206 2207 /* But don't actually force it to the disk with cache=unsafe */ 2208 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2209 goto flush_parent; 2210 } 2211 2212 /* Check if we really need to flush anything */ 2213 if (bs->flushed_gen == current_gen) { 2214 goto flush_parent; 2215 } 2216 2217 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2218 if (bs->drv->bdrv_co_flush_to_disk) { 2219 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2220 } else if (bs->drv->bdrv_aio_flush) { 2221 BlockAIOCB *acb; 2222 CoroutineIOCompletion co = { 2223 .coroutine = qemu_coroutine_self(), 2224 }; 2225 2226 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2227 if (acb == NULL) { 2228 ret = -EIO; 2229 } else { 2230 qemu_coroutine_yield(); 2231 ret = co.ret; 2232 } 2233 } else { 2234 /* 2235 * Some block drivers always operate in either writethrough or unsafe 2236 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2237 * know how the server works (because the behaviour is hardcoded or 2238 * depends on server-side configuration), so we can't ensure that 2239 * everything is safe on disk. Returning an error doesn't work because 2240 * that would break guests even if the server operates in writethrough 2241 * mode. 2242 * 2243 * Let's hope the user knows what he's doing. 2244 */ 2245 ret = 0; 2246 } 2247 2248 if (ret < 0) { 2249 goto out; 2250 } 2251 2252 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2253 * in the case of cache=unsafe, so there are no useless flushes. 2254 */ 2255 flush_parent: 2256 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2257 out: 2258 /* Notify any pending flushes that we have completed */ 2259 if (ret == 0) { 2260 bs->flushed_gen = current_gen; 2261 } 2262 2263 qemu_co_mutex_lock(&bs->reqs_lock); 2264 bs->active_flush_req = false; 2265 /* Return value is ignored - it's ok if wait queue is empty */ 2266 qemu_co_queue_next(&bs->flush_queue); 2267 qemu_co_mutex_unlock(&bs->reqs_lock); 2268 2269 early_exit: 2270 bdrv_dec_in_flight(bs); 2271 return ret; 2272 } 2273 2274 int bdrv_flush(BlockDriverState *bs) 2275 { 2276 Coroutine *co; 2277 FlushCo flush_co = { 2278 .bs = bs, 2279 .ret = NOT_DONE, 2280 }; 2281 2282 if (qemu_in_coroutine()) { 2283 /* Fast-path if already in coroutine context */ 2284 bdrv_flush_co_entry(&flush_co); 2285 } else { 2286 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2287 bdrv_coroutine_enter(bs, co); 2288 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2289 } 2290 2291 return flush_co.ret; 2292 } 2293 2294 typedef struct DiscardCo { 2295 BlockDriverState *bs; 2296 int64_t offset; 2297 int bytes; 2298 int ret; 2299 } DiscardCo; 2300 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2301 { 2302 DiscardCo *rwco = opaque; 2303 2304 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes); 2305 } 2306 2307 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset, 2308 int bytes) 2309 { 2310 BdrvTrackedRequest req; 2311 int max_pdiscard, ret; 2312 int head, tail, align; 2313 2314 if (!bs->drv) { 2315 return -ENOMEDIUM; 2316 } 2317 2318 if (bdrv_has_readonly_bitmaps(bs)) { 2319 return -EPERM; 2320 } 2321 2322 ret = bdrv_check_byte_request(bs, offset, bytes); 2323 if (ret < 0) { 2324 return ret; 2325 } else if (bs->read_only) { 2326 return -EPERM; 2327 } 2328 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2329 2330 /* Do nothing if disabled. */ 2331 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2332 return 0; 2333 } 2334 2335 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2336 return 0; 2337 } 2338 2339 /* Discard is advisory, but some devices track and coalesce 2340 * unaligned requests, so we must pass everything down rather than 2341 * round here. Still, most devices will just silently ignore 2342 * unaligned requests (by returning -ENOTSUP), so we must fragment 2343 * the request accordingly. */ 2344 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2345 assert(align % bs->bl.request_alignment == 0); 2346 head = offset % align; 2347 tail = (offset + bytes) % align; 2348 2349 bdrv_inc_in_flight(bs); 2350 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2351 2352 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req); 2353 if (ret < 0) { 2354 goto out; 2355 } 2356 2357 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2358 align); 2359 assert(max_pdiscard >= bs->bl.request_alignment); 2360 2361 while (bytes > 0) { 2362 int num = bytes; 2363 2364 if (head) { 2365 /* Make small requests to get to alignment boundaries. */ 2366 num = MIN(bytes, align - head); 2367 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2368 num %= bs->bl.request_alignment; 2369 } 2370 head = (head + num) % align; 2371 assert(num < max_pdiscard); 2372 } else if (tail) { 2373 if (num > align) { 2374 /* Shorten the request to the last aligned cluster. */ 2375 num -= tail; 2376 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2377 tail > bs->bl.request_alignment) { 2378 tail %= bs->bl.request_alignment; 2379 num -= tail; 2380 } 2381 } 2382 /* limit request size */ 2383 if (num > max_pdiscard) { 2384 num = max_pdiscard; 2385 } 2386 2387 if (bs->drv->bdrv_co_pdiscard) { 2388 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2389 } else { 2390 BlockAIOCB *acb; 2391 CoroutineIOCompletion co = { 2392 .coroutine = qemu_coroutine_self(), 2393 }; 2394 2395 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2396 bdrv_co_io_em_complete, &co); 2397 if (acb == NULL) { 2398 ret = -EIO; 2399 goto out; 2400 } else { 2401 qemu_coroutine_yield(); 2402 ret = co.ret; 2403 } 2404 } 2405 if (ret && ret != -ENOTSUP) { 2406 goto out; 2407 } 2408 2409 offset += num; 2410 bytes -= num; 2411 } 2412 ret = 0; 2413 out: 2414 atomic_inc(&bs->write_gen); 2415 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS, 2416 req.bytes >> BDRV_SECTOR_BITS); 2417 tracked_request_end(&req); 2418 bdrv_dec_in_flight(bs); 2419 return ret; 2420 } 2421 2422 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes) 2423 { 2424 Coroutine *co; 2425 DiscardCo rwco = { 2426 .bs = bs, 2427 .offset = offset, 2428 .bytes = bytes, 2429 .ret = NOT_DONE, 2430 }; 2431 2432 if (qemu_in_coroutine()) { 2433 /* Fast-path if already in coroutine context */ 2434 bdrv_pdiscard_co_entry(&rwco); 2435 } else { 2436 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2437 bdrv_coroutine_enter(bs, co); 2438 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE); 2439 } 2440 2441 return rwco.ret; 2442 } 2443 2444 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2445 { 2446 BlockDriver *drv = bs->drv; 2447 CoroutineIOCompletion co = { 2448 .coroutine = qemu_coroutine_self(), 2449 }; 2450 BlockAIOCB *acb; 2451 2452 bdrv_inc_in_flight(bs); 2453 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2454 co.ret = -ENOTSUP; 2455 goto out; 2456 } 2457 2458 if (drv->bdrv_co_ioctl) { 2459 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2460 } else { 2461 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2462 if (!acb) { 2463 co.ret = -ENOTSUP; 2464 goto out; 2465 } 2466 qemu_coroutine_yield(); 2467 } 2468 out: 2469 bdrv_dec_in_flight(bs); 2470 return co.ret; 2471 } 2472 2473 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2474 { 2475 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2476 } 2477 2478 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2479 { 2480 return memset(qemu_blockalign(bs, size), 0, size); 2481 } 2482 2483 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2484 { 2485 size_t align = bdrv_opt_mem_align(bs); 2486 2487 /* Ensure that NULL is never returned on success */ 2488 assert(align > 0); 2489 if (size == 0) { 2490 size = align; 2491 } 2492 2493 return qemu_try_memalign(align, size); 2494 } 2495 2496 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2497 { 2498 void *mem = qemu_try_blockalign(bs, size); 2499 2500 if (mem) { 2501 memset(mem, 0, size); 2502 } 2503 2504 return mem; 2505 } 2506 2507 /* 2508 * Check if all memory in this vector is sector aligned. 2509 */ 2510 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2511 { 2512 int i; 2513 size_t alignment = bdrv_min_mem_align(bs); 2514 2515 for (i = 0; i < qiov->niov; i++) { 2516 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2517 return false; 2518 } 2519 if (qiov->iov[i].iov_len % alignment) { 2520 return false; 2521 } 2522 } 2523 2524 return true; 2525 } 2526 2527 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2528 NotifierWithReturn *notifier) 2529 { 2530 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2531 } 2532 2533 void bdrv_io_plug(BlockDriverState *bs) 2534 { 2535 BdrvChild *child; 2536 2537 QLIST_FOREACH(child, &bs->children, next) { 2538 bdrv_io_plug(child->bs); 2539 } 2540 2541 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 2542 BlockDriver *drv = bs->drv; 2543 if (drv && drv->bdrv_io_plug) { 2544 drv->bdrv_io_plug(bs); 2545 } 2546 } 2547 } 2548 2549 void bdrv_io_unplug(BlockDriverState *bs) 2550 { 2551 BdrvChild *child; 2552 2553 assert(bs->io_plugged); 2554 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 2555 BlockDriver *drv = bs->drv; 2556 if (drv && drv->bdrv_io_unplug) { 2557 drv->bdrv_io_unplug(bs); 2558 } 2559 } 2560 2561 QLIST_FOREACH(child, &bs->children, next) { 2562 bdrv_io_unplug(child->bs); 2563 } 2564 } 2565