1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/write-threshold.h" 34 #include "qemu/cutils.h" 35 #include "qemu/memalign.h" 36 #include "qapi/error.h" 37 #include "qemu/error-report.h" 38 #include "qemu/main-loop.h" 39 #include "sysemu/replay.h" 40 41 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 42 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 43 44 static void bdrv_parent_cb_resize(BlockDriverState *bs); 45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 46 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 47 48 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 49 bool ignore_bds_parents) 50 { 51 BdrvChild *c, *next; 52 53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 54 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 55 continue; 56 } 57 bdrv_parent_drained_begin_single(c, false); 58 } 59 } 60 61 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 62 int *drained_end_counter) 63 { 64 assert(c->parent_quiesce_counter > 0); 65 c->parent_quiesce_counter--; 66 if (c->klass->drained_end) { 67 c->klass->drained_end(c, drained_end_counter); 68 } 69 } 70 71 void bdrv_parent_drained_end_single(BdrvChild *c) 72 { 73 int drained_end_counter = 0; 74 IO_OR_GS_CODE(); 75 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 76 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0); 77 } 78 79 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 80 bool ignore_bds_parents, 81 int *drained_end_counter) 82 { 83 BdrvChild *c; 84 85 QLIST_FOREACH(c, &bs->parents, next_parent) { 86 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 87 continue; 88 } 89 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 90 } 91 } 92 93 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 94 { 95 if (c->klass->drained_poll) { 96 return c->klass->drained_poll(c); 97 } 98 return false; 99 } 100 101 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 102 bool ignore_bds_parents) 103 { 104 BdrvChild *c, *next; 105 bool busy = false; 106 107 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 108 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 109 continue; 110 } 111 busy |= bdrv_parent_drained_poll_single(c); 112 } 113 114 return busy; 115 } 116 117 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 118 { 119 IO_OR_GS_CODE(); 120 c->parent_quiesce_counter++; 121 if (c->klass->drained_begin) { 122 c->klass->drained_begin(c); 123 } 124 if (poll) { 125 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 126 } 127 } 128 129 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 130 { 131 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 132 src->pdiscard_alignment); 133 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 134 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 135 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 136 src->max_hw_transfer); 137 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 138 src->opt_mem_alignment); 139 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 140 src->min_mem_alignment); 141 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 142 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 143 } 144 145 typedef struct BdrvRefreshLimitsState { 146 BlockDriverState *bs; 147 BlockLimits old_bl; 148 } BdrvRefreshLimitsState; 149 150 static void bdrv_refresh_limits_abort(void *opaque) 151 { 152 BdrvRefreshLimitsState *s = opaque; 153 154 s->bs->bl = s->old_bl; 155 } 156 157 static TransactionActionDrv bdrv_refresh_limits_drv = { 158 .abort = bdrv_refresh_limits_abort, 159 .clean = g_free, 160 }; 161 162 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 163 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 164 { 165 ERRP_GUARD(); 166 BlockDriver *drv = bs->drv; 167 BdrvChild *c; 168 bool have_limits; 169 170 GLOBAL_STATE_CODE(); 171 172 if (tran) { 173 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 174 *s = (BdrvRefreshLimitsState) { 175 .bs = bs, 176 .old_bl = bs->bl, 177 }; 178 tran_add(tran, &bdrv_refresh_limits_drv, s); 179 } 180 181 memset(&bs->bl, 0, sizeof(bs->bl)); 182 183 if (!drv) { 184 return; 185 } 186 187 /* Default alignment based on whether driver has byte interface */ 188 bs->bl.request_alignment = (drv->bdrv_co_preadv || 189 drv->bdrv_aio_preadv || 190 drv->bdrv_co_preadv_part) ? 1 : 512; 191 192 /* Take some limits from the children as a default */ 193 have_limits = false; 194 QLIST_FOREACH(c, &bs->children, next) { 195 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 196 { 197 bdrv_merge_limits(&bs->bl, &c->bs->bl); 198 have_limits = true; 199 } 200 } 201 202 if (!have_limits) { 203 bs->bl.min_mem_alignment = 512; 204 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 205 206 /* Safe default since most protocols use readv()/writev()/etc */ 207 bs->bl.max_iov = IOV_MAX; 208 } 209 210 /* Then let the driver override it */ 211 if (drv->bdrv_refresh_limits) { 212 drv->bdrv_refresh_limits(bs, errp); 213 if (*errp) { 214 return; 215 } 216 } 217 218 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 219 error_setg(errp, "Driver requires too large request alignment"); 220 } 221 } 222 223 /** 224 * The copy-on-read flag is actually a reference count so multiple users may 225 * use the feature without worrying about clobbering its previous state. 226 * Copy-on-read stays enabled until all users have called to disable it. 227 */ 228 void bdrv_enable_copy_on_read(BlockDriverState *bs) 229 { 230 IO_CODE(); 231 qatomic_inc(&bs->copy_on_read); 232 } 233 234 void bdrv_disable_copy_on_read(BlockDriverState *bs) 235 { 236 int old = qatomic_fetch_dec(&bs->copy_on_read); 237 IO_CODE(); 238 assert(old >= 1); 239 } 240 241 typedef struct { 242 Coroutine *co; 243 BlockDriverState *bs; 244 bool done; 245 bool begin; 246 bool recursive; 247 bool poll; 248 BdrvChild *parent; 249 bool ignore_bds_parents; 250 int *drained_end_counter; 251 } BdrvCoDrainData; 252 253 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 254 { 255 BdrvCoDrainData *data = opaque; 256 BlockDriverState *bs = data->bs; 257 258 if (data->begin) { 259 bs->drv->bdrv_co_drain_begin(bs); 260 } else { 261 bs->drv->bdrv_co_drain_end(bs); 262 } 263 264 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 265 qatomic_mb_set(&data->done, true); 266 if (!data->begin) { 267 qatomic_dec(data->drained_end_counter); 268 } 269 bdrv_dec_in_flight(bs); 270 271 g_free(data); 272 } 273 274 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 275 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 276 int *drained_end_counter) 277 { 278 BdrvCoDrainData *data; 279 280 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 281 (!begin && !bs->drv->bdrv_co_drain_end)) { 282 return; 283 } 284 285 data = g_new(BdrvCoDrainData, 1); 286 *data = (BdrvCoDrainData) { 287 .bs = bs, 288 .done = false, 289 .begin = begin, 290 .drained_end_counter = drained_end_counter, 291 }; 292 293 if (!begin) { 294 qatomic_inc(drained_end_counter); 295 } 296 297 /* Make sure the driver callback completes during the polling phase for 298 * drain_begin. */ 299 bdrv_inc_in_flight(bs); 300 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 301 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 302 } 303 304 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 305 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 306 BdrvChild *ignore_parent, bool ignore_bds_parents) 307 { 308 BdrvChild *child, *next; 309 IO_OR_GS_CODE(); 310 311 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 312 return true; 313 } 314 315 if (qatomic_read(&bs->in_flight)) { 316 return true; 317 } 318 319 if (recursive) { 320 assert(!ignore_bds_parents); 321 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 322 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 323 return true; 324 } 325 } 326 } 327 328 return false; 329 } 330 331 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 332 BdrvChild *ignore_parent) 333 { 334 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 335 } 336 337 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 338 BdrvChild *parent, bool ignore_bds_parents, 339 bool poll); 340 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 341 BdrvChild *parent, bool ignore_bds_parents, 342 int *drained_end_counter); 343 344 static void bdrv_co_drain_bh_cb(void *opaque) 345 { 346 BdrvCoDrainData *data = opaque; 347 Coroutine *co = data->co; 348 BlockDriverState *bs = data->bs; 349 350 if (bs) { 351 AioContext *ctx = bdrv_get_aio_context(bs); 352 aio_context_acquire(ctx); 353 bdrv_dec_in_flight(bs); 354 if (data->begin) { 355 assert(!data->drained_end_counter); 356 bdrv_do_drained_begin(bs, data->recursive, data->parent, 357 data->ignore_bds_parents, data->poll); 358 } else { 359 assert(!data->poll); 360 bdrv_do_drained_end(bs, data->recursive, data->parent, 361 data->ignore_bds_parents, 362 data->drained_end_counter); 363 } 364 aio_context_release(ctx); 365 } else { 366 assert(data->begin); 367 bdrv_drain_all_begin(); 368 } 369 370 data->done = true; 371 aio_co_wake(co); 372 } 373 374 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 375 bool begin, bool recursive, 376 BdrvChild *parent, 377 bool ignore_bds_parents, 378 bool poll, 379 int *drained_end_counter) 380 { 381 BdrvCoDrainData data; 382 Coroutine *self = qemu_coroutine_self(); 383 AioContext *ctx = bdrv_get_aio_context(bs); 384 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 385 386 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 387 * other coroutines run if they were queued by aio_co_enter(). */ 388 389 assert(qemu_in_coroutine()); 390 data = (BdrvCoDrainData) { 391 .co = self, 392 .bs = bs, 393 .done = false, 394 .begin = begin, 395 .recursive = recursive, 396 .parent = parent, 397 .ignore_bds_parents = ignore_bds_parents, 398 .poll = poll, 399 .drained_end_counter = drained_end_counter, 400 }; 401 402 if (bs) { 403 bdrv_inc_in_flight(bs); 404 } 405 406 /* 407 * Temporarily drop the lock across yield or we would get deadlocks. 408 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 409 * 410 * When we yield below, the lock for the current context will be 411 * released, so if this is actually the lock that protects bs, don't drop 412 * it a second time. 413 */ 414 if (ctx != co_ctx) { 415 aio_context_release(ctx); 416 } 417 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data); 418 419 qemu_coroutine_yield(); 420 /* If we are resumed from some other event (such as an aio completion or a 421 * timer callback), it is a bug in the caller that should be fixed. */ 422 assert(data.done); 423 424 /* Reaquire the AioContext of bs if we dropped it */ 425 if (ctx != co_ctx) { 426 aio_context_acquire(ctx); 427 } 428 } 429 430 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 431 BdrvChild *parent, bool ignore_bds_parents) 432 { 433 IO_OR_GS_CODE(); 434 assert(!qemu_in_coroutine()); 435 436 /* Stop things in parent-to-child order */ 437 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 438 aio_disable_external(bdrv_get_aio_context(bs)); 439 } 440 441 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 442 bdrv_drain_invoke(bs, true, NULL); 443 } 444 445 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 446 BdrvChild *parent, bool ignore_bds_parents, 447 bool poll) 448 { 449 BdrvChild *child, *next; 450 451 if (qemu_in_coroutine()) { 452 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 453 poll, NULL); 454 return; 455 } 456 457 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 458 459 if (recursive) { 460 assert(!ignore_bds_parents); 461 bs->recursive_quiesce_counter++; 462 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 463 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 464 false); 465 } 466 } 467 468 /* 469 * Wait for drained requests to finish. 470 * 471 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 472 * call is needed so things in this AioContext can make progress even 473 * though we don't return to the main AioContext loop - this automatically 474 * includes other nodes in the same AioContext and therefore all child 475 * nodes. 476 */ 477 if (poll) { 478 assert(!ignore_bds_parents); 479 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 480 } 481 } 482 483 void bdrv_drained_begin(BlockDriverState *bs) 484 { 485 IO_OR_GS_CODE(); 486 bdrv_do_drained_begin(bs, false, NULL, false, true); 487 } 488 489 void bdrv_subtree_drained_begin(BlockDriverState *bs) 490 { 491 IO_OR_GS_CODE(); 492 bdrv_do_drained_begin(bs, true, NULL, false, true); 493 } 494 495 /** 496 * This function does not poll, nor must any of its recursively called 497 * functions. The *drained_end_counter pointee will be incremented 498 * once for every background operation scheduled, and decremented once 499 * the operation settles. Therefore, the pointer must remain valid 500 * until the pointee reaches 0. That implies that whoever sets up the 501 * pointee has to poll until it is 0. 502 * 503 * We use atomic operations to access *drained_end_counter, because 504 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 505 * @bs may contain nodes in different AioContexts, 506 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 507 * regardless of which AioContext they are in. 508 */ 509 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 510 BdrvChild *parent, bool ignore_bds_parents, 511 int *drained_end_counter) 512 { 513 BdrvChild *child; 514 int old_quiesce_counter; 515 516 assert(drained_end_counter != NULL); 517 518 if (qemu_in_coroutine()) { 519 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 520 false, drained_end_counter); 521 return; 522 } 523 assert(bs->quiesce_counter > 0); 524 525 /* Re-enable things in child-to-parent order */ 526 bdrv_drain_invoke(bs, false, drained_end_counter); 527 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 528 drained_end_counter); 529 530 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 531 if (old_quiesce_counter == 1) { 532 aio_enable_external(bdrv_get_aio_context(bs)); 533 } 534 535 if (recursive) { 536 assert(!ignore_bds_parents); 537 bs->recursive_quiesce_counter--; 538 QLIST_FOREACH(child, &bs->children, next) { 539 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 540 drained_end_counter); 541 } 542 } 543 } 544 545 void bdrv_drained_end(BlockDriverState *bs) 546 { 547 int drained_end_counter = 0; 548 IO_OR_GS_CODE(); 549 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 550 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 551 } 552 553 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 554 { 555 IO_CODE(); 556 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 557 } 558 559 void bdrv_subtree_drained_end(BlockDriverState *bs) 560 { 561 int drained_end_counter = 0; 562 IO_OR_GS_CODE(); 563 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 564 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 565 } 566 567 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 568 { 569 int i; 570 IO_OR_GS_CODE(); 571 572 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 573 bdrv_do_drained_begin(child->bs, true, child, false, true); 574 } 575 } 576 577 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 578 { 579 int drained_end_counter = 0; 580 int i; 581 IO_OR_GS_CODE(); 582 583 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 584 bdrv_do_drained_end(child->bs, true, child, false, 585 &drained_end_counter); 586 } 587 588 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0); 589 } 590 591 void bdrv_drain(BlockDriverState *bs) 592 { 593 IO_OR_GS_CODE(); 594 bdrv_drained_begin(bs); 595 bdrv_drained_end(bs); 596 } 597 598 static void bdrv_drain_assert_idle(BlockDriverState *bs) 599 { 600 BdrvChild *child, *next; 601 602 assert(qatomic_read(&bs->in_flight) == 0); 603 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 604 bdrv_drain_assert_idle(child->bs); 605 } 606 } 607 608 unsigned int bdrv_drain_all_count = 0; 609 610 static bool bdrv_drain_all_poll(void) 611 { 612 BlockDriverState *bs = NULL; 613 bool result = false; 614 GLOBAL_STATE_CODE(); 615 616 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 617 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 618 while ((bs = bdrv_next_all_states(bs))) { 619 AioContext *aio_context = bdrv_get_aio_context(bs); 620 aio_context_acquire(aio_context); 621 result |= bdrv_drain_poll(bs, false, NULL, true); 622 aio_context_release(aio_context); 623 } 624 625 return result; 626 } 627 628 /* 629 * Wait for pending requests to complete across all BlockDriverStates 630 * 631 * This function does not flush data to disk, use bdrv_flush_all() for that 632 * after calling this function. 633 * 634 * This pauses all block jobs and disables external clients. It must 635 * be paired with bdrv_drain_all_end(). 636 * 637 * NOTE: no new block jobs or BlockDriverStates can be created between 638 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 639 */ 640 void bdrv_drain_all_begin(void) 641 { 642 BlockDriverState *bs = NULL; 643 GLOBAL_STATE_CODE(); 644 645 if (qemu_in_coroutine()) { 646 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 647 return; 648 } 649 650 /* 651 * bdrv queue is managed by record/replay, 652 * waiting for finishing the I/O requests may 653 * be infinite 654 */ 655 if (replay_events_enabled()) { 656 return; 657 } 658 659 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 660 * loop AioContext, so make sure we're in the main context. */ 661 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 662 assert(bdrv_drain_all_count < INT_MAX); 663 bdrv_drain_all_count++; 664 665 /* Quiesce all nodes, without polling in-flight requests yet. The graph 666 * cannot change during this loop. */ 667 while ((bs = bdrv_next_all_states(bs))) { 668 AioContext *aio_context = bdrv_get_aio_context(bs); 669 670 aio_context_acquire(aio_context); 671 bdrv_do_drained_begin(bs, false, NULL, true, false); 672 aio_context_release(aio_context); 673 } 674 675 /* Now poll the in-flight requests */ 676 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 677 678 while ((bs = bdrv_next_all_states(bs))) { 679 bdrv_drain_assert_idle(bs); 680 } 681 } 682 683 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 684 { 685 int drained_end_counter = 0; 686 GLOBAL_STATE_CODE(); 687 688 g_assert(bs->quiesce_counter > 0); 689 g_assert(!bs->refcnt); 690 691 while (bs->quiesce_counter) { 692 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 693 } 694 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 695 } 696 697 void bdrv_drain_all_end(void) 698 { 699 BlockDriverState *bs = NULL; 700 int drained_end_counter = 0; 701 GLOBAL_STATE_CODE(); 702 703 /* 704 * bdrv queue is managed by record/replay, 705 * waiting for finishing the I/O requests may 706 * be endless 707 */ 708 if (replay_events_enabled()) { 709 return; 710 } 711 712 while ((bs = bdrv_next_all_states(bs))) { 713 AioContext *aio_context = bdrv_get_aio_context(bs); 714 715 aio_context_acquire(aio_context); 716 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 717 aio_context_release(aio_context); 718 } 719 720 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 721 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0); 722 723 assert(bdrv_drain_all_count > 0); 724 bdrv_drain_all_count--; 725 } 726 727 void bdrv_drain_all(void) 728 { 729 GLOBAL_STATE_CODE(); 730 bdrv_drain_all_begin(); 731 bdrv_drain_all_end(); 732 } 733 734 /** 735 * Remove an active request from the tracked requests list 736 * 737 * This function should be called when a tracked request is completing. 738 */ 739 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 740 { 741 if (req->serialising) { 742 qatomic_dec(&req->bs->serialising_in_flight); 743 } 744 745 qemu_co_mutex_lock(&req->bs->reqs_lock); 746 QLIST_REMOVE(req, list); 747 qemu_co_queue_restart_all(&req->wait_queue); 748 qemu_co_mutex_unlock(&req->bs->reqs_lock); 749 } 750 751 /** 752 * Add an active request to the tracked requests list 753 */ 754 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req, 755 BlockDriverState *bs, 756 int64_t offset, 757 int64_t bytes, 758 enum BdrvTrackedRequestType type) 759 { 760 bdrv_check_request(offset, bytes, &error_abort); 761 762 *req = (BdrvTrackedRequest){ 763 .bs = bs, 764 .offset = offset, 765 .bytes = bytes, 766 .type = type, 767 .co = qemu_coroutine_self(), 768 .serialising = false, 769 .overlap_offset = offset, 770 .overlap_bytes = bytes, 771 }; 772 773 qemu_co_queue_init(&req->wait_queue); 774 775 qemu_co_mutex_lock(&bs->reqs_lock); 776 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 777 qemu_co_mutex_unlock(&bs->reqs_lock); 778 } 779 780 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 781 int64_t offset, int64_t bytes) 782 { 783 bdrv_check_request(offset, bytes, &error_abort); 784 785 /* aaaa bbbb */ 786 if (offset >= req->overlap_offset + req->overlap_bytes) { 787 return false; 788 } 789 /* bbbb aaaa */ 790 if (req->overlap_offset >= offset + bytes) { 791 return false; 792 } 793 return true; 794 } 795 796 /* Called with self->bs->reqs_lock held */ 797 static coroutine_fn BdrvTrackedRequest * 798 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 799 { 800 BdrvTrackedRequest *req; 801 802 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 803 if (req == self || (!req->serialising && !self->serialising)) { 804 continue; 805 } 806 if (tracked_request_overlaps(req, self->overlap_offset, 807 self->overlap_bytes)) 808 { 809 /* 810 * Hitting this means there was a reentrant request, for 811 * example, a block driver issuing nested requests. This must 812 * never happen since it means deadlock. 813 */ 814 assert(qemu_coroutine_self() != req->co); 815 816 /* 817 * If the request is already (indirectly) waiting for us, or 818 * will wait for us as soon as it wakes up, then just go on 819 * (instead of producing a deadlock in the former case). 820 */ 821 if (!req->waiting_for) { 822 return req; 823 } 824 } 825 } 826 827 return NULL; 828 } 829 830 /* Called with self->bs->reqs_lock held */ 831 static void coroutine_fn 832 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 833 { 834 BdrvTrackedRequest *req; 835 836 while ((req = bdrv_find_conflicting_request(self))) { 837 self->waiting_for = req; 838 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 839 self->waiting_for = NULL; 840 } 841 } 842 843 /* Called with req->bs->reqs_lock held */ 844 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 845 uint64_t align) 846 { 847 int64_t overlap_offset = req->offset & ~(align - 1); 848 int64_t overlap_bytes = 849 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 850 851 bdrv_check_request(req->offset, req->bytes, &error_abort); 852 853 if (!req->serialising) { 854 qatomic_inc(&req->bs->serialising_in_flight); 855 req->serialising = true; 856 } 857 858 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 859 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 860 } 861 862 /** 863 * Return the tracked request on @bs for the current coroutine, or 864 * NULL if there is none. 865 */ 866 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 867 { 868 BdrvTrackedRequest *req; 869 Coroutine *self = qemu_coroutine_self(); 870 IO_CODE(); 871 872 QLIST_FOREACH(req, &bs->tracked_requests, list) { 873 if (req->co == self) { 874 return req; 875 } 876 } 877 878 return NULL; 879 } 880 881 /** 882 * Round a region to cluster boundaries 883 */ 884 void bdrv_round_to_clusters(BlockDriverState *bs, 885 int64_t offset, int64_t bytes, 886 int64_t *cluster_offset, 887 int64_t *cluster_bytes) 888 { 889 BlockDriverInfo bdi; 890 IO_CODE(); 891 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 892 *cluster_offset = offset; 893 *cluster_bytes = bytes; 894 } else { 895 int64_t c = bdi.cluster_size; 896 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 897 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 898 } 899 } 900 901 static int bdrv_get_cluster_size(BlockDriverState *bs) 902 { 903 BlockDriverInfo bdi; 904 int ret; 905 906 ret = bdrv_get_info(bs, &bdi); 907 if (ret < 0 || bdi.cluster_size == 0) { 908 return bs->bl.request_alignment; 909 } else { 910 return bdi.cluster_size; 911 } 912 } 913 914 void bdrv_inc_in_flight(BlockDriverState *bs) 915 { 916 IO_CODE(); 917 qatomic_inc(&bs->in_flight); 918 } 919 920 void bdrv_wakeup(BlockDriverState *bs) 921 { 922 IO_CODE(); 923 aio_wait_kick(); 924 } 925 926 void bdrv_dec_in_flight(BlockDriverState *bs) 927 { 928 IO_CODE(); 929 qatomic_dec(&bs->in_flight); 930 bdrv_wakeup(bs); 931 } 932 933 static void coroutine_fn 934 bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 935 { 936 BlockDriverState *bs = self->bs; 937 938 if (!qatomic_read(&bs->serialising_in_flight)) { 939 return; 940 } 941 942 qemu_co_mutex_lock(&bs->reqs_lock); 943 bdrv_wait_serialising_requests_locked(self); 944 qemu_co_mutex_unlock(&bs->reqs_lock); 945 } 946 947 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 948 uint64_t align) 949 { 950 IO_CODE(); 951 952 qemu_co_mutex_lock(&req->bs->reqs_lock); 953 954 tracked_request_set_serialising(req, align); 955 bdrv_wait_serialising_requests_locked(req); 956 957 qemu_co_mutex_unlock(&req->bs->reqs_lock); 958 } 959 960 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 961 QEMUIOVector *qiov, size_t qiov_offset, 962 Error **errp) 963 { 964 /* 965 * Check generic offset/bytes correctness 966 */ 967 968 if (offset < 0) { 969 error_setg(errp, "offset is negative: %" PRIi64, offset); 970 return -EIO; 971 } 972 973 if (bytes < 0) { 974 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 975 return -EIO; 976 } 977 978 if (bytes > BDRV_MAX_LENGTH) { 979 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 980 bytes, BDRV_MAX_LENGTH); 981 return -EIO; 982 } 983 984 if (offset > BDRV_MAX_LENGTH) { 985 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 986 offset, BDRV_MAX_LENGTH); 987 return -EIO; 988 } 989 990 if (offset > BDRV_MAX_LENGTH - bytes) { 991 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 992 "exceeds maximum(%" PRIi64 ")", offset, bytes, 993 BDRV_MAX_LENGTH); 994 return -EIO; 995 } 996 997 if (!qiov) { 998 return 0; 999 } 1000 1001 /* 1002 * Check qiov and qiov_offset 1003 */ 1004 1005 if (qiov_offset > qiov->size) { 1006 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 1007 qiov_offset, qiov->size); 1008 return -EIO; 1009 } 1010 1011 if (bytes > qiov->size - qiov_offset) { 1012 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 1013 "vector size(%zu)", bytes, qiov_offset, qiov->size); 1014 return -EIO; 1015 } 1016 1017 return 0; 1018 } 1019 1020 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 1021 { 1022 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 1023 } 1024 1025 static int bdrv_check_request32(int64_t offset, int64_t bytes, 1026 QEMUIOVector *qiov, size_t qiov_offset) 1027 { 1028 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 1029 if (ret < 0) { 1030 return ret; 1031 } 1032 1033 if (bytes > BDRV_REQUEST_MAX_BYTES) { 1034 return -EIO; 1035 } 1036 1037 return 0; 1038 } 1039 1040 /* 1041 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 1042 * The operation is sped up by checking the block status and only writing 1043 * zeroes to the device if they currently do not return zeroes. Optional 1044 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 1045 * BDRV_REQ_FUA). 1046 * 1047 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 1048 */ 1049 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 1050 { 1051 int ret; 1052 int64_t target_size, bytes, offset = 0; 1053 BlockDriverState *bs = child->bs; 1054 IO_CODE(); 1055 1056 target_size = bdrv_getlength(bs); 1057 if (target_size < 0) { 1058 return target_size; 1059 } 1060 1061 for (;;) { 1062 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 1063 if (bytes <= 0) { 1064 return 0; 1065 } 1066 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 1067 if (ret < 0) { 1068 return ret; 1069 } 1070 if (ret & BDRV_BLOCK_ZERO) { 1071 offset += bytes; 1072 continue; 1073 } 1074 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 1075 if (ret < 0) { 1076 return ret; 1077 } 1078 offset += bytes; 1079 } 1080 } 1081 1082 /* 1083 * Writes to the file and ensures that no writes are reordered across this 1084 * request (acts as a barrier) 1085 * 1086 * Returns 0 on success, -errno in error cases. 1087 */ 1088 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 1089 int64_t bytes, const void *buf, 1090 BdrvRequestFlags flags) 1091 { 1092 int ret; 1093 IO_CODE(); 1094 1095 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 1096 if (ret < 0) { 1097 return ret; 1098 } 1099 1100 ret = bdrv_co_flush(child->bs); 1101 if (ret < 0) { 1102 return ret; 1103 } 1104 1105 return 0; 1106 } 1107 1108 typedef struct CoroutineIOCompletion { 1109 Coroutine *coroutine; 1110 int ret; 1111 } CoroutineIOCompletion; 1112 1113 static void bdrv_co_io_em_complete(void *opaque, int ret) 1114 { 1115 CoroutineIOCompletion *co = opaque; 1116 1117 co->ret = ret; 1118 aio_co_wake(co->coroutine); 1119 } 1120 1121 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1122 int64_t offset, int64_t bytes, 1123 QEMUIOVector *qiov, 1124 size_t qiov_offset, int flags) 1125 { 1126 BlockDriver *drv = bs->drv; 1127 int64_t sector_num; 1128 unsigned int nb_sectors; 1129 QEMUIOVector local_qiov; 1130 int ret; 1131 1132 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1133 assert(!(flags & ~BDRV_REQ_MASK)); 1134 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1135 1136 if (!drv) { 1137 return -ENOMEDIUM; 1138 } 1139 1140 if (drv->bdrv_co_preadv_part) { 1141 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1142 flags); 1143 } 1144 1145 if (qiov_offset > 0 || bytes != qiov->size) { 1146 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1147 qiov = &local_qiov; 1148 } 1149 1150 if (drv->bdrv_co_preadv) { 1151 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1152 goto out; 1153 } 1154 1155 if (drv->bdrv_aio_preadv) { 1156 BlockAIOCB *acb; 1157 CoroutineIOCompletion co = { 1158 .coroutine = qemu_coroutine_self(), 1159 }; 1160 1161 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1162 bdrv_co_io_em_complete, &co); 1163 if (acb == NULL) { 1164 ret = -EIO; 1165 goto out; 1166 } else { 1167 qemu_coroutine_yield(); 1168 ret = co.ret; 1169 goto out; 1170 } 1171 } 1172 1173 sector_num = offset >> BDRV_SECTOR_BITS; 1174 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1175 1176 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1177 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1178 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1179 assert(drv->bdrv_co_readv); 1180 1181 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1182 1183 out: 1184 if (qiov == &local_qiov) { 1185 qemu_iovec_destroy(&local_qiov); 1186 } 1187 1188 return ret; 1189 } 1190 1191 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1192 int64_t offset, int64_t bytes, 1193 QEMUIOVector *qiov, 1194 size_t qiov_offset, 1195 BdrvRequestFlags flags) 1196 { 1197 BlockDriver *drv = bs->drv; 1198 int64_t sector_num; 1199 unsigned int nb_sectors; 1200 QEMUIOVector local_qiov; 1201 int ret; 1202 1203 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1204 assert(!(flags & ~BDRV_REQ_MASK)); 1205 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1206 1207 if (!drv) { 1208 return -ENOMEDIUM; 1209 } 1210 1211 if (drv->bdrv_co_pwritev_part) { 1212 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1213 flags & bs->supported_write_flags); 1214 flags &= ~bs->supported_write_flags; 1215 goto emulate_flags; 1216 } 1217 1218 if (qiov_offset > 0 || bytes != qiov->size) { 1219 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1220 qiov = &local_qiov; 1221 } 1222 1223 if (drv->bdrv_co_pwritev) { 1224 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1225 flags & bs->supported_write_flags); 1226 flags &= ~bs->supported_write_flags; 1227 goto emulate_flags; 1228 } 1229 1230 if (drv->bdrv_aio_pwritev) { 1231 BlockAIOCB *acb; 1232 CoroutineIOCompletion co = { 1233 .coroutine = qemu_coroutine_self(), 1234 }; 1235 1236 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1237 flags & bs->supported_write_flags, 1238 bdrv_co_io_em_complete, &co); 1239 flags &= ~bs->supported_write_flags; 1240 if (acb == NULL) { 1241 ret = -EIO; 1242 } else { 1243 qemu_coroutine_yield(); 1244 ret = co.ret; 1245 } 1246 goto emulate_flags; 1247 } 1248 1249 sector_num = offset >> BDRV_SECTOR_BITS; 1250 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1251 1252 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1253 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1254 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1255 1256 assert(drv->bdrv_co_writev); 1257 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1258 flags & bs->supported_write_flags); 1259 flags &= ~bs->supported_write_flags; 1260 1261 emulate_flags: 1262 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1263 ret = bdrv_co_flush(bs); 1264 } 1265 1266 if (qiov == &local_qiov) { 1267 qemu_iovec_destroy(&local_qiov); 1268 } 1269 1270 return ret; 1271 } 1272 1273 static int coroutine_fn 1274 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1275 int64_t bytes, QEMUIOVector *qiov, 1276 size_t qiov_offset) 1277 { 1278 BlockDriver *drv = bs->drv; 1279 QEMUIOVector local_qiov; 1280 int ret; 1281 1282 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1283 1284 if (!drv) { 1285 return -ENOMEDIUM; 1286 } 1287 1288 if (!block_driver_can_compress(drv)) { 1289 return -ENOTSUP; 1290 } 1291 1292 if (drv->bdrv_co_pwritev_compressed_part) { 1293 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1294 qiov, qiov_offset); 1295 } 1296 1297 if (qiov_offset == 0) { 1298 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1299 } 1300 1301 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1302 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1303 qemu_iovec_destroy(&local_qiov); 1304 1305 return ret; 1306 } 1307 1308 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1309 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1310 size_t qiov_offset, int flags) 1311 { 1312 BlockDriverState *bs = child->bs; 1313 1314 /* Perform I/O through a temporary buffer so that users who scribble over 1315 * their read buffer while the operation is in progress do not end up 1316 * modifying the image file. This is critical for zero-copy guest I/O 1317 * where anything might happen inside guest memory. 1318 */ 1319 void *bounce_buffer = NULL; 1320 1321 BlockDriver *drv = bs->drv; 1322 int64_t cluster_offset; 1323 int64_t cluster_bytes; 1324 int64_t skip_bytes; 1325 int ret; 1326 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1327 BDRV_REQUEST_MAX_BYTES); 1328 int64_t progress = 0; 1329 bool skip_write; 1330 1331 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1332 1333 if (!drv) { 1334 return -ENOMEDIUM; 1335 } 1336 1337 /* 1338 * Do not write anything when the BDS is inactive. That is not 1339 * allowed, and it would not help. 1340 */ 1341 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1342 1343 /* FIXME We cannot require callers to have write permissions when all they 1344 * are doing is a read request. If we did things right, write permissions 1345 * would be obtained anyway, but internally by the copy-on-read code. As 1346 * long as it is implemented here rather than in a separate filter driver, 1347 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1348 * it could request permissions. Therefore we have to bypass the permission 1349 * system for the moment. */ 1350 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1351 1352 /* Cover entire cluster so no additional backing file I/O is required when 1353 * allocating cluster in the image file. Note that this value may exceed 1354 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1355 * is one reason we loop rather than doing it all at once. 1356 */ 1357 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1358 skip_bytes = offset - cluster_offset; 1359 1360 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1361 cluster_offset, cluster_bytes); 1362 1363 while (cluster_bytes) { 1364 int64_t pnum; 1365 1366 if (skip_write) { 1367 ret = 1; /* "already allocated", so nothing will be copied */ 1368 pnum = MIN(cluster_bytes, max_transfer); 1369 } else { 1370 ret = bdrv_is_allocated(bs, cluster_offset, 1371 MIN(cluster_bytes, max_transfer), &pnum); 1372 if (ret < 0) { 1373 /* 1374 * Safe to treat errors in querying allocation as if 1375 * unallocated; we'll probably fail again soon on the 1376 * read, but at least that will set a decent errno. 1377 */ 1378 pnum = MIN(cluster_bytes, max_transfer); 1379 } 1380 1381 /* Stop at EOF if the image ends in the middle of the cluster */ 1382 if (ret == 0 && pnum == 0) { 1383 assert(progress >= bytes); 1384 break; 1385 } 1386 1387 assert(skip_bytes < pnum); 1388 } 1389 1390 if (ret <= 0) { 1391 QEMUIOVector local_qiov; 1392 1393 /* Must copy-on-read; use the bounce buffer */ 1394 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1395 if (!bounce_buffer) { 1396 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1397 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1398 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1399 1400 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1401 if (!bounce_buffer) { 1402 ret = -ENOMEM; 1403 goto err; 1404 } 1405 } 1406 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1407 1408 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1409 &local_qiov, 0, 0); 1410 if (ret < 0) { 1411 goto err; 1412 } 1413 1414 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1415 if (drv->bdrv_co_pwrite_zeroes && 1416 buffer_is_zero(bounce_buffer, pnum)) { 1417 /* FIXME: Should we (perhaps conditionally) be setting 1418 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1419 * that still correctly reads as zero? */ 1420 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1421 BDRV_REQ_WRITE_UNCHANGED); 1422 } else { 1423 /* This does not change the data on the disk, it is not 1424 * necessary to flush even in cache=writethrough mode. 1425 */ 1426 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1427 &local_qiov, 0, 1428 BDRV_REQ_WRITE_UNCHANGED); 1429 } 1430 1431 if (ret < 0) { 1432 /* It might be okay to ignore write errors for guest 1433 * requests. If this is a deliberate copy-on-read 1434 * then we don't want to ignore the error. Simply 1435 * report it in all cases. 1436 */ 1437 goto err; 1438 } 1439 1440 if (!(flags & BDRV_REQ_PREFETCH)) { 1441 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1442 bounce_buffer + skip_bytes, 1443 MIN(pnum - skip_bytes, bytes - progress)); 1444 } 1445 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1446 /* Read directly into the destination */ 1447 ret = bdrv_driver_preadv(bs, offset + progress, 1448 MIN(pnum - skip_bytes, bytes - progress), 1449 qiov, qiov_offset + progress, 0); 1450 if (ret < 0) { 1451 goto err; 1452 } 1453 } 1454 1455 cluster_offset += pnum; 1456 cluster_bytes -= pnum; 1457 progress += pnum - skip_bytes; 1458 skip_bytes = 0; 1459 } 1460 ret = 0; 1461 1462 err: 1463 qemu_vfree(bounce_buffer); 1464 return ret; 1465 } 1466 1467 /* 1468 * Forwards an already correctly aligned request to the BlockDriver. This 1469 * handles copy on read, zeroing after EOF, and fragmentation of large 1470 * reads; any other features must be implemented by the caller. 1471 */ 1472 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1473 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1474 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1475 { 1476 BlockDriverState *bs = child->bs; 1477 int64_t total_bytes, max_bytes; 1478 int ret = 0; 1479 int64_t bytes_remaining = bytes; 1480 int max_transfer; 1481 1482 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1483 assert(is_power_of_2(align)); 1484 assert((offset & (align - 1)) == 0); 1485 assert((bytes & (align - 1)) == 0); 1486 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1487 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1488 align); 1489 1490 /* TODO: We would need a per-BDS .supported_read_flags and 1491 * potential fallback support, if we ever implement any read flags 1492 * to pass through to drivers. For now, there aren't any 1493 * passthrough flags. */ 1494 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH))); 1495 1496 /* Handle Copy on Read and associated serialisation */ 1497 if (flags & BDRV_REQ_COPY_ON_READ) { 1498 /* If we touch the same cluster it counts as an overlap. This 1499 * guarantees that allocating writes will be serialized and not race 1500 * with each other for the same cluster. For example, in copy-on-read 1501 * it ensures that the CoR read and write operations are atomic and 1502 * guest writes cannot interleave between them. */ 1503 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1504 } else { 1505 bdrv_wait_serialising_requests(req); 1506 } 1507 1508 if (flags & BDRV_REQ_COPY_ON_READ) { 1509 int64_t pnum; 1510 1511 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1512 flags &= ~BDRV_REQ_COPY_ON_READ; 1513 1514 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1515 if (ret < 0) { 1516 goto out; 1517 } 1518 1519 if (!ret || pnum != bytes) { 1520 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1521 qiov, qiov_offset, flags); 1522 goto out; 1523 } else if (flags & BDRV_REQ_PREFETCH) { 1524 goto out; 1525 } 1526 } 1527 1528 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1529 total_bytes = bdrv_getlength(bs); 1530 if (total_bytes < 0) { 1531 ret = total_bytes; 1532 goto out; 1533 } 1534 1535 assert(!(flags & ~bs->supported_read_flags)); 1536 1537 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1538 if (bytes <= max_bytes && bytes <= max_transfer) { 1539 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1540 goto out; 1541 } 1542 1543 while (bytes_remaining) { 1544 int64_t num; 1545 1546 if (max_bytes) { 1547 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1548 assert(num); 1549 1550 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1551 num, qiov, 1552 qiov_offset + bytes - bytes_remaining, 1553 flags); 1554 max_bytes -= num; 1555 } else { 1556 num = bytes_remaining; 1557 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1558 0, bytes_remaining); 1559 } 1560 if (ret < 0) { 1561 goto out; 1562 } 1563 bytes_remaining -= num; 1564 } 1565 1566 out: 1567 return ret < 0 ? ret : 0; 1568 } 1569 1570 /* 1571 * Request padding 1572 * 1573 * |<---- align ----->| |<----- align ---->| 1574 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1575 * | | | | | | 1576 * -*----------$-------*-------- ... --------*-----$------------*--- 1577 * | | | | | | 1578 * | offset | | end | 1579 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1580 * [buf ... ) [tail_buf ) 1581 * 1582 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1583 * is placed at the beginning of @buf and @tail at the @end. 1584 * 1585 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1586 * around tail, if tail exists. 1587 * 1588 * @merge_reads is true for small requests, 1589 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1590 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1591 */ 1592 typedef struct BdrvRequestPadding { 1593 uint8_t *buf; 1594 size_t buf_len; 1595 uint8_t *tail_buf; 1596 size_t head; 1597 size_t tail; 1598 bool merge_reads; 1599 QEMUIOVector local_qiov; 1600 } BdrvRequestPadding; 1601 1602 static bool bdrv_init_padding(BlockDriverState *bs, 1603 int64_t offset, int64_t bytes, 1604 BdrvRequestPadding *pad) 1605 { 1606 int64_t align = bs->bl.request_alignment; 1607 int64_t sum; 1608 1609 bdrv_check_request(offset, bytes, &error_abort); 1610 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1611 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1612 1613 memset(pad, 0, sizeof(*pad)); 1614 1615 pad->head = offset & (align - 1); 1616 pad->tail = ((offset + bytes) & (align - 1)); 1617 if (pad->tail) { 1618 pad->tail = align - pad->tail; 1619 } 1620 1621 if (!pad->head && !pad->tail) { 1622 return false; 1623 } 1624 1625 assert(bytes); /* Nothing good in aligning zero-length requests */ 1626 1627 sum = pad->head + bytes + pad->tail; 1628 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1629 pad->buf = qemu_blockalign(bs, pad->buf_len); 1630 pad->merge_reads = sum == pad->buf_len; 1631 if (pad->tail) { 1632 pad->tail_buf = pad->buf + pad->buf_len - align; 1633 } 1634 1635 return true; 1636 } 1637 1638 static coroutine_fn int bdrv_padding_rmw_read(BdrvChild *child, 1639 BdrvTrackedRequest *req, 1640 BdrvRequestPadding *pad, 1641 bool zero_middle) 1642 { 1643 QEMUIOVector local_qiov; 1644 BlockDriverState *bs = child->bs; 1645 uint64_t align = bs->bl.request_alignment; 1646 int ret; 1647 1648 assert(req->serialising && pad->buf); 1649 1650 if (pad->head || pad->merge_reads) { 1651 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1652 1653 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1654 1655 if (pad->head) { 1656 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1657 } 1658 if (pad->merge_reads && pad->tail) { 1659 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1660 } 1661 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1662 align, &local_qiov, 0, 0); 1663 if (ret < 0) { 1664 return ret; 1665 } 1666 if (pad->head) { 1667 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1668 } 1669 if (pad->merge_reads && pad->tail) { 1670 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1671 } 1672 1673 if (pad->merge_reads) { 1674 goto zero_mem; 1675 } 1676 } 1677 1678 if (pad->tail) { 1679 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1680 1681 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1682 ret = bdrv_aligned_preadv( 1683 child, req, 1684 req->overlap_offset + req->overlap_bytes - align, 1685 align, align, &local_qiov, 0, 0); 1686 if (ret < 0) { 1687 return ret; 1688 } 1689 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1690 } 1691 1692 zero_mem: 1693 if (zero_middle) { 1694 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1695 } 1696 1697 return 0; 1698 } 1699 1700 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1701 { 1702 if (pad->buf) { 1703 qemu_vfree(pad->buf); 1704 qemu_iovec_destroy(&pad->local_qiov); 1705 } 1706 memset(pad, 0, sizeof(*pad)); 1707 } 1708 1709 /* 1710 * bdrv_pad_request 1711 * 1712 * Exchange request parameters with padded request if needed. Don't include RMW 1713 * read of padding, bdrv_padding_rmw_read() should be called separately if 1714 * needed. 1715 * 1716 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1717 * - on function start they represent original request 1718 * - on failure or when padding is not needed they are unchanged 1719 * - on success when padding is needed they represent padded request 1720 */ 1721 static int bdrv_pad_request(BlockDriverState *bs, 1722 QEMUIOVector **qiov, size_t *qiov_offset, 1723 int64_t *offset, int64_t *bytes, 1724 BdrvRequestPadding *pad, bool *padded) 1725 { 1726 int ret; 1727 1728 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1729 1730 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1731 if (padded) { 1732 *padded = false; 1733 } 1734 return 0; 1735 } 1736 1737 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1738 *qiov, *qiov_offset, *bytes, 1739 pad->buf + pad->buf_len - pad->tail, 1740 pad->tail); 1741 if (ret < 0) { 1742 bdrv_padding_destroy(pad); 1743 return ret; 1744 } 1745 *bytes += pad->head + pad->tail; 1746 *offset -= pad->head; 1747 *qiov = &pad->local_qiov; 1748 *qiov_offset = 0; 1749 if (padded) { 1750 *padded = true; 1751 } 1752 1753 return 0; 1754 } 1755 1756 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1757 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1758 BdrvRequestFlags flags) 1759 { 1760 IO_CODE(); 1761 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1762 } 1763 1764 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1765 int64_t offset, int64_t bytes, 1766 QEMUIOVector *qiov, size_t qiov_offset, 1767 BdrvRequestFlags flags) 1768 { 1769 BlockDriverState *bs = child->bs; 1770 BdrvTrackedRequest req; 1771 BdrvRequestPadding pad; 1772 int ret; 1773 IO_CODE(); 1774 1775 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1776 1777 if (!bdrv_is_inserted(bs)) { 1778 return -ENOMEDIUM; 1779 } 1780 1781 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1782 if (ret < 0) { 1783 return ret; 1784 } 1785 1786 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1787 /* 1788 * Aligning zero request is nonsense. Even if driver has special meaning 1789 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1790 * it to driver due to request_alignment. 1791 * 1792 * Still, no reason to return an error if someone do unaligned 1793 * zero-length read occasionally. 1794 */ 1795 return 0; 1796 } 1797 1798 bdrv_inc_in_flight(bs); 1799 1800 /* Don't do copy-on-read if we read data before write operation */ 1801 if (qatomic_read(&bs->copy_on_read)) { 1802 flags |= BDRV_REQ_COPY_ON_READ; 1803 } 1804 1805 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 1806 NULL); 1807 if (ret < 0) { 1808 goto fail; 1809 } 1810 1811 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1812 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1813 bs->bl.request_alignment, 1814 qiov, qiov_offset, flags); 1815 tracked_request_end(&req); 1816 bdrv_padding_destroy(&pad); 1817 1818 fail: 1819 bdrv_dec_in_flight(bs); 1820 1821 return ret; 1822 } 1823 1824 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1825 int64_t offset, int64_t bytes, BdrvRequestFlags flags) 1826 { 1827 BlockDriver *drv = bs->drv; 1828 QEMUIOVector qiov; 1829 void *buf = NULL; 1830 int ret = 0; 1831 bool need_flush = false; 1832 int head = 0; 1833 int tail = 0; 1834 1835 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1836 INT64_MAX); 1837 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1838 bs->bl.request_alignment); 1839 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1840 1841 bdrv_check_request(offset, bytes, &error_abort); 1842 1843 if (!drv) { 1844 return -ENOMEDIUM; 1845 } 1846 1847 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1848 return -ENOTSUP; 1849 } 1850 1851 /* Invalidate the cached block-status data range if this write overlaps */ 1852 bdrv_bsc_invalidate_range(bs, offset, bytes); 1853 1854 assert(alignment % bs->bl.request_alignment == 0); 1855 head = offset % alignment; 1856 tail = (offset + bytes) % alignment; 1857 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1858 assert(max_write_zeroes >= bs->bl.request_alignment); 1859 1860 while (bytes > 0 && !ret) { 1861 int64_t num = bytes; 1862 1863 /* Align request. Block drivers can expect the "bulk" of the request 1864 * to be aligned, and that unaligned requests do not cross cluster 1865 * boundaries. 1866 */ 1867 if (head) { 1868 /* Make a small request up to the first aligned sector. For 1869 * convenience, limit this request to max_transfer even if 1870 * we don't need to fall back to writes. */ 1871 num = MIN(MIN(bytes, max_transfer), alignment - head); 1872 head = (head + num) % alignment; 1873 assert(num < max_write_zeroes); 1874 } else if (tail && num > alignment) { 1875 /* Shorten the request to the last aligned sector. */ 1876 num -= tail; 1877 } 1878 1879 /* limit request size */ 1880 if (num > max_write_zeroes) { 1881 num = max_write_zeroes; 1882 } 1883 1884 ret = -ENOTSUP; 1885 /* First try the efficient write zeroes operation */ 1886 if (drv->bdrv_co_pwrite_zeroes) { 1887 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1888 flags & bs->supported_zero_flags); 1889 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1890 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1891 need_flush = true; 1892 } 1893 } else { 1894 assert(!bs->supported_zero_flags); 1895 } 1896 1897 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1898 /* Fall back to bounce buffer if write zeroes is unsupported */ 1899 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1900 1901 if ((flags & BDRV_REQ_FUA) && 1902 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1903 /* No need for bdrv_driver_pwrite() to do a fallback 1904 * flush on each chunk; use just one at the end */ 1905 write_flags &= ~BDRV_REQ_FUA; 1906 need_flush = true; 1907 } 1908 num = MIN(num, max_transfer); 1909 if (buf == NULL) { 1910 buf = qemu_try_blockalign0(bs, num); 1911 if (buf == NULL) { 1912 ret = -ENOMEM; 1913 goto fail; 1914 } 1915 } 1916 qemu_iovec_init_buf(&qiov, buf, num); 1917 1918 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1919 1920 /* Keep bounce buffer around if it is big enough for all 1921 * all future requests. 1922 */ 1923 if (num < max_transfer) { 1924 qemu_vfree(buf); 1925 buf = NULL; 1926 } 1927 } 1928 1929 offset += num; 1930 bytes -= num; 1931 } 1932 1933 fail: 1934 if (ret == 0 && need_flush) { 1935 ret = bdrv_co_flush(bs); 1936 } 1937 qemu_vfree(buf); 1938 return ret; 1939 } 1940 1941 static inline int coroutine_fn 1942 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1943 BdrvTrackedRequest *req, int flags) 1944 { 1945 BlockDriverState *bs = child->bs; 1946 1947 bdrv_check_request(offset, bytes, &error_abort); 1948 1949 if (bdrv_is_read_only(bs)) { 1950 return -EPERM; 1951 } 1952 1953 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1954 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1955 assert(!(flags & ~BDRV_REQ_MASK)); 1956 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1957 1958 if (flags & BDRV_REQ_SERIALISING) { 1959 QEMU_LOCK_GUARD(&bs->reqs_lock); 1960 1961 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1962 1963 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1964 return -EBUSY; 1965 } 1966 1967 bdrv_wait_serialising_requests_locked(req); 1968 } else { 1969 bdrv_wait_serialising_requests(req); 1970 } 1971 1972 assert(req->overlap_offset <= offset); 1973 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1974 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 1975 child->perm & BLK_PERM_RESIZE); 1976 1977 switch (req->type) { 1978 case BDRV_TRACKED_WRITE: 1979 case BDRV_TRACKED_DISCARD: 1980 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1981 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1982 } else { 1983 assert(child->perm & BLK_PERM_WRITE); 1984 } 1985 bdrv_write_threshold_check_write(bs, offset, bytes); 1986 return 0; 1987 case BDRV_TRACKED_TRUNCATE: 1988 assert(child->perm & BLK_PERM_RESIZE); 1989 return 0; 1990 default: 1991 abort(); 1992 } 1993 } 1994 1995 static inline void coroutine_fn 1996 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 1997 BdrvTrackedRequest *req, int ret) 1998 { 1999 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2000 BlockDriverState *bs = child->bs; 2001 2002 bdrv_check_request(offset, bytes, &error_abort); 2003 2004 qatomic_inc(&bs->write_gen); 2005 2006 /* 2007 * Discard cannot extend the image, but in error handling cases, such as 2008 * when reverting a qcow2 cluster allocation, the discarded range can pass 2009 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2010 * here. Instead, just skip it, since semantically a discard request 2011 * beyond EOF cannot expand the image anyway. 2012 */ 2013 if (ret == 0 && 2014 (req->type == BDRV_TRACKED_TRUNCATE || 2015 end_sector > bs->total_sectors) && 2016 req->type != BDRV_TRACKED_DISCARD) { 2017 bs->total_sectors = end_sector; 2018 bdrv_parent_cb_resize(bs); 2019 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2020 } 2021 if (req->bytes) { 2022 switch (req->type) { 2023 case BDRV_TRACKED_WRITE: 2024 stat64_max(&bs->wr_highest_offset, offset + bytes); 2025 /* fall through, to set dirty bits */ 2026 case BDRV_TRACKED_DISCARD: 2027 bdrv_set_dirty(bs, offset, bytes); 2028 break; 2029 default: 2030 break; 2031 } 2032 } 2033 } 2034 2035 /* 2036 * Forwards an already correctly aligned write request to the BlockDriver, 2037 * after possibly fragmenting it. 2038 */ 2039 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 2040 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 2041 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, 2042 BdrvRequestFlags flags) 2043 { 2044 BlockDriverState *bs = child->bs; 2045 BlockDriver *drv = bs->drv; 2046 int ret; 2047 2048 int64_t bytes_remaining = bytes; 2049 int max_transfer; 2050 2051 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2052 2053 if (!drv) { 2054 return -ENOMEDIUM; 2055 } 2056 2057 if (bdrv_has_readonly_bitmaps(bs)) { 2058 return -EPERM; 2059 } 2060 2061 assert(is_power_of_2(align)); 2062 assert((offset & (align - 1)) == 0); 2063 assert((bytes & (align - 1)) == 0); 2064 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2065 align); 2066 2067 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2068 2069 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2070 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2071 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2072 flags |= BDRV_REQ_ZERO_WRITE; 2073 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2074 flags |= BDRV_REQ_MAY_UNMAP; 2075 } 2076 } 2077 2078 if (ret < 0) { 2079 /* Do nothing, write notifier decided to fail this request */ 2080 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2081 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2082 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2083 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2084 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2085 qiov, qiov_offset); 2086 } else if (bytes <= max_transfer) { 2087 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2088 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2089 } else { 2090 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2091 while (bytes_remaining) { 2092 int num = MIN(bytes_remaining, max_transfer); 2093 int local_flags = flags; 2094 2095 assert(num); 2096 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2097 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2098 /* If FUA is going to be emulated by flush, we only 2099 * need to flush on the last iteration */ 2100 local_flags &= ~BDRV_REQ_FUA; 2101 } 2102 2103 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2104 num, qiov, 2105 qiov_offset + bytes - bytes_remaining, 2106 local_flags); 2107 if (ret < 0) { 2108 break; 2109 } 2110 bytes_remaining -= num; 2111 } 2112 } 2113 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 2114 2115 if (ret >= 0) { 2116 ret = 0; 2117 } 2118 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2119 2120 return ret; 2121 } 2122 2123 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 2124 int64_t offset, 2125 int64_t bytes, 2126 BdrvRequestFlags flags, 2127 BdrvTrackedRequest *req) 2128 { 2129 BlockDriverState *bs = child->bs; 2130 QEMUIOVector local_qiov; 2131 uint64_t align = bs->bl.request_alignment; 2132 int ret = 0; 2133 bool padding; 2134 BdrvRequestPadding pad; 2135 2136 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2137 if (padding) { 2138 assert(!(flags & BDRV_REQ_NO_WAIT)); 2139 bdrv_make_request_serialising(req, align); 2140 2141 bdrv_padding_rmw_read(child, req, &pad, true); 2142 2143 if (pad.head || pad.merge_reads) { 2144 int64_t aligned_offset = offset & ~(align - 1); 2145 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2146 2147 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2148 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2149 align, &local_qiov, 0, 2150 flags & ~BDRV_REQ_ZERO_WRITE); 2151 if (ret < 0 || pad.merge_reads) { 2152 /* Error or all work is done */ 2153 goto out; 2154 } 2155 offset += write_bytes - pad.head; 2156 bytes -= write_bytes - pad.head; 2157 } 2158 } 2159 2160 assert(!bytes || (offset & (align - 1)) == 0); 2161 if (bytes >= align) { 2162 /* Write the aligned part in the middle. */ 2163 int64_t aligned_bytes = bytes & ~(align - 1); 2164 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2165 NULL, 0, flags); 2166 if (ret < 0) { 2167 goto out; 2168 } 2169 bytes -= aligned_bytes; 2170 offset += aligned_bytes; 2171 } 2172 2173 assert(!bytes || (offset & (align - 1)) == 0); 2174 if (bytes) { 2175 assert(align == pad.tail + bytes); 2176 2177 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2178 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2179 &local_qiov, 0, 2180 flags & ~BDRV_REQ_ZERO_WRITE); 2181 } 2182 2183 out: 2184 bdrv_padding_destroy(&pad); 2185 2186 return ret; 2187 } 2188 2189 /* 2190 * Handle a write request in coroutine context 2191 */ 2192 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2193 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2194 BdrvRequestFlags flags) 2195 { 2196 IO_CODE(); 2197 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2198 } 2199 2200 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2201 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2202 BdrvRequestFlags flags) 2203 { 2204 BlockDriverState *bs = child->bs; 2205 BdrvTrackedRequest req; 2206 uint64_t align = bs->bl.request_alignment; 2207 BdrvRequestPadding pad; 2208 int ret; 2209 bool padded = false; 2210 IO_CODE(); 2211 2212 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2213 2214 if (!bdrv_is_inserted(bs)) { 2215 return -ENOMEDIUM; 2216 } 2217 2218 if (flags & BDRV_REQ_ZERO_WRITE) { 2219 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2220 } else { 2221 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2222 } 2223 if (ret < 0) { 2224 return ret; 2225 } 2226 2227 /* If the request is misaligned then we can't make it efficient */ 2228 if ((flags & BDRV_REQ_NO_FALLBACK) && 2229 !QEMU_IS_ALIGNED(offset | bytes, align)) 2230 { 2231 return -ENOTSUP; 2232 } 2233 2234 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2235 /* 2236 * Aligning zero request is nonsense. Even if driver has special meaning 2237 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2238 * it to driver due to request_alignment. 2239 * 2240 * Still, no reason to return an error if someone do unaligned 2241 * zero-length write occasionally. 2242 */ 2243 return 0; 2244 } 2245 2246 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2247 /* 2248 * Pad request for following read-modify-write cycle. 2249 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2250 * alignment only if there is no ZERO flag. 2251 */ 2252 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 2253 &padded); 2254 if (ret < 0) { 2255 return ret; 2256 } 2257 } 2258 2259 bdrv_inc_in_flight(bs); 2260 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2261 2262 if (flags & BDRV_REQ_ZERO_WRITE) { 2263 assert(!padded); 2264 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2265 goto out; 2266 } 2267 2268 if (padded) { 2269 /* 2270 * Request was unaligned to request_alignment and therefore 2271 * padded. We are going to do read-modify-write, and must 2272 * serialize the request to prevent interactions of the 2273 * widened region with other transactions. 2274 */ 2275 assert(!(flags & BDRV_REQ_NO_WAIT)); 2276 bdrv_make_request_serialising(&req, align); 2277 bdrv_padding_rmw_read(child, &req, &pad, false); 2278 } 2279 2280 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2281 qiov, qiov_offset, flags); 2282 2283 bdrv_padding_destroy(&pad); 2284 2285 out: 2286 tracked_request_end(&req); 2287 bdrv_dec_in_flight(bs); 2288 2289 return ret; 2290 } 2291 2292 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2293 int64_t bytes, BdrvRequestFlags flags) 2294 { 2295 IO_CODE(); 2296 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2297 2298 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2299 flags &= ~BDRV_REQ_MAY_UNMAP; 2300 } 2301 2302 return bdrv_co_pwritev(child, offset, bytes, NULL, 2303 BDRV_REQ_ZERO_WRITE | flags); 2304 } 2305 2306 /* 2307 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2308 */ 2309 int bdrv_flush_all(void) 2310 { 2311 BdrvNextIterator it; 2312 BlockDriverState *bs = NULL; 2313 int result = 0; 2314 2315 GLOBAL_STATE_CODE(); 2316 2317 /* 2318 * bdrv queue is managed by record/replay, 2319 * creating new flush request for stopping 2320 * the VM may break the determinism 2321 */ 2322 if (replay_events_enabled()) { 2323 return result; 2324 } 2325 2326 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2327 AioContext *aio_context = bdrv_get_aio_context(bs); 2328 int ret; 2329 2330 aio_context_acquire(aio_context); 2331 ret = bdrv_flush(bs); 2332 if (ret < 0 && !result) { 2333 result = ret; 2334 } 2335 aio_context_release(aio_context); 2336 } 2337 2338 return result; 2339 } 2340 2341 /* 2342 * Returns the allocation status of the specified sectors. 2343 * Drivers not implementing the functionality are assumed to not support 2344 * backing files, hence all their sectors are reported as allocated. 2345 * 2346 * If 'want_zero' is true, the caller is querying for mapping 2347 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2348 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2349 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2350 * 2351 * If 'offset' is beyond the end of the disk image the return value is 2352 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2353 * 2354 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2355 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2356 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2357 * 2358 * 'pnum' is set to the number of bytes (including and immediately 2359 * following the specified offset) that are easily known to be in the 2360 * same allocated/unallocated state. Note that a second call starting 2361 * at the original offset plus returned pnum may have the same status. 2362 * The returned value is non-zero on success except at end-of-file. 2363 * 2364 * Returns negative errno on failure. Otherwise, if the 2365 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2366 * set to the host mapping and BDS corresponding to the guest offset. 2367 */ 2368 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2369 bool want_zero, 2370 int64_t offset, int64_t bytes, 2371 int64_t *pnum, int64_t *map, 2372 BlockDriverState **file) 2373 { 2374 int64_t total_size; 2375 int64_t n; /* bytes */ 2376 int ret; 2377 int64_t local_map = 0; 2378 BlockDriverState *local_file = NULL; 2379 int64_t aligned_offset, aligned_bytes; 2380 uint32_t align; 2381 bool has_filtered_child; 2382 2383 assert(pnum); 2384 *pnum = 0; 2385 total_size = bdrv_getlength(bs); 2386 if (total_size < 0) { 2387 ret = total_size; 2388 goto early_out; 2389 } 2390 2391 if (offset >= total_size) { 2392 ret = BDRV_BLOCK_EOF; 2393 goto early_out; 2394 } 2395 if (!bytes) { 2396 ret = 0; 2397 goto early_out; 2398 } 2399 2400 n = total_size - offset; 2401 if (n < bytes) { 2402 bytes = n; 2403 } 2404 2405 /* Must be non-NULL or bdrv_getlength() would have failed */ 2406 assert(bs->drv); 2407 has_filtered_child = bdrv_filter_child(bs); 2408 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2409 *pnum = bytes; 2410 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2411 if (offset + bytes == total_size) { 2412 ret |= BDRV_BLOCK_EOF; 2413 } 2414 if (bs->drv->protocol_name) { 2415 ret |= BDRV_BLOCK_OFFSET_VALID; 2416 local_map = offset; 2417 local_file = bs; 2418 } 2419 goto early_out; 2420 } 2421 2422 bdrv_inc_in_flight(bs); 2423 2424 /* Round out to request_alignment boundaries */ 2425 align = bs->bl.request_alignment; 2426 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2427 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2428 2429 if (bs->drv->bdrv_co_block_status) { 2430 /* 2431 * Use the block-status cache only for protocol nodes: Format 2432 * drivers are generally quick to inquire the status, but protocol 2433 * drivers often need to get information from outside of qemu, so 2434 * we do not have control over the actual implementation. There 2435 * have been cases where inquiring the status took an unreasonably 2436 * long time, and we can do nothing in qemu to fix it. 2437 * This is especially problematic for images with large data areas, 2438 * because finding the few holes in them and giving them special 2439 * treatment does not gain much performance. Therefore, we try to 2440 * cache the last-identified data region. 2441 * 2442 * Second, limiting ourselves to protocol nodes allows us to assume 2443 * the block status for data regions to be DATA | OFFSET_VALID, and 2444 * that the host offset is the same as the guest offset. 2445 * 2446 * Note that it is possible that external writers zero parts of 2447 * the cached regions without the cache being invalidated, and so 2448 * we may report zeroes as data. This is not catastrophic, 2449 * however, because reporting zeroes as data is fine. 2450 */ 2451 if (QLIST_EMPTY(&bs->children) && 2452 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2453 { 2454 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2455 local_file = bs; 2456 local_map = aligned_offset; 2457 } else { 2458 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2459 aligned_bytes, pnum, &local_map, 2460 &local_file); 2461 2462 /* 2463 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2464 * the cache is queried above. Technically, we do not need to check 2465 * it here; the worst that can happen is that we fill the cache for 2466 * non-protocol nodes, and then it is never used. However, filling 2467 * the cache requires an RCU update, so double check here to avoid 2468 * such an update if possible. 2469 * 2470 * Check want_zero, because we only want to update the cache when we 2471 * have accurate information about what is zero and what is data. 2472 */ 2473 if (want_zero && 2474 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2475 QLIST_EMPTY(&bs->children)) 2476 { 2477 /* 2478 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2479 * returned local_map value must be the same as the offset we 2480 * have passed (aligned_offset), and local_bs must be the node 2481 * itself. 2482 * Assert this, because we follow this rule when reading from 2483 * the cache (see the `local_file = bs` and 2484 * `local_map = aligned_offset` assignments above), and the 2485 * result the cache delivers must be the same as the driver 2486 * would deliver. 2487 */ 2488 assert(local_file == bs); 2489 assert(local_map == aligned_offset); 2490 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2491 } 2492 } 2493 } else { 2494 /* Default code for filters */ 2495 2496 local_file = bdrv_filter_bs(bs); 2497 assert(local_file); 2498 2499 *pnum = aligned_bytes; 2500 local_map = aligned_offset; 2501 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2502 } 2503 if (ret < 0) { 2504 *pnum = 0; 2505 goto out; 2506 } 2507 2508 /* 2509 * The driver's result must be a non-zero multiple of request_alignment. 2510 * Clamp pnum and adjust map to original request. 2511 */ 2512 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2513 align > offset - aligned_offset); 2514 if (ret & BDRV_BLOCK_RECURSE) { 2515 assert(ret & BDRV_BLOCK_DATA); 2516 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2517 assert(!(ret & BDRV_BLOCK_ZERO)); 2518 } 2519 2520 *pnum -= offset - aligned_offset; 2521 if (*pnum > bytes) { 2522 *pnum = bytes; 2523 } 2524 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2525 local_map += offset - aligned_offset; 2526 } 2527 2528 if (ret & BDRV_BLOCK_RAW) { 2529 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2530 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2531 *pnum, pnum, &local_map, &local_file); 2532 goto out; 2533 } 2534 2535 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2536 ret |= BDRV_BLOCK_ALLOCATED; 2537 } else if (bs->drv->supports_backing) { 2538 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2539 2540 if (!cow_bs) { 2541 ret |= BDRV_BLOCK_ZERO; 2542 } else if (want_zero) { 2543 int64_t size2 = bdrv_getlength(cow_bs); 2544 2545 if (size2 >= 0 && offset >= size2) { 2546 ret |= BDRV_BLOCK_ZERO; 2547 } 2548 } 2549 } 2550 2551 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2552 local_file && local_file != bs && 2553 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2554 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2555 int64_t file_pnum; 2556 int ret2; 2557 2558 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2559 *pnum, &file_pnum, NULL, NULL); 2560 if (ret2 >= 0) { 2561 /* Ignore errors. This is just providing extra information, it 2562 * is useful but not necessary. 2563 */ 2564 if (ret2 & BDRV_BLOCK_EOF && 2565 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2566 /* 2567 * It is valid for the format block driver to read 2568 * beyond the end of the underlying file's current 2569 * size; such areas read as zero. 2570 */ 2571 ret |= BDRV_BLOCK_ZERO; 2572 } else { 2573 /* Limit request to the range reported by the protocol driver */ 2574 *pnum = file_pnum; 2575 ret |= (ret2 & BDRV_BLOCK_ZERO); 2576 } 2577 } 2578 } 2579 2580 out: 2581 bdrv_dec_in_flight(bs); 2582 if (ret >= 0 && offset + *pnum == total_size) { 2583 ret |= BDRV_BLOCK_EOF; 2584 } 2585 early_out: 2586 if (file) { 2587 *file = local_file; 2588 } 2589 if (map) { 2590 *map = local_map; 2591 } 2592 return ret; 2593 } 2594 2595 int coroutine_fn 2596 bdrv_co_common_block_status_above(BlockDriverState *bs, 2597 BlockDriverState *base, 2598 bool include_base, 2599 bool want_zero, 2600 int64_t offset, 2601 int64_t bytes, 2602 int64_t *pnum, 2603 int64_t *map, 2604 BlockDriverState **file, 2605 int *depth) 2606 { 2607 int ret; 2608 BlockDriverState *p; 2609 int64_t eof = 0; 2610 int dummy; 2611 IO_CODE(); 2612 2613 assert(!include_base || base); /* Can't include NULL base */ 2614 2615 if (!depth) { 2616 depth = &dummy; 2617 } 2618 *depth = 0; 2619 2620 if (!include_base && bs == base) { 2621 *pnum = bytes; 2622 return 0; 2623 } 2624 2625 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2626 ++*depth; 2627 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2628 return ret; 2629 } 2630 2631 if (ret & BDRV_BLOCK_EOF) { 2632 eof = offset + *pnum; 2633 } 2634 2635 assert(*pnum <= bytes); 2636 bytes = *pnum; 2637 2638 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2639 p = bdrv_filter_or_cow_bs(p)) 2640 { 2641 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2642 file); 2643 ++*depth; 2644 if (ret < 0) { 2645 return ret; 2646 } 2647 if (*pnum == 0) { 2648 /* 2649 * The top layer deferred to this layer, and because this layer is 2650 * short, any zeroes that we synthesize beyond EOF behave as if they 2651 * were allocated at this layer. 2652 * 2653 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2654 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2655 * below. 2656 */ 2657 assert(ret & BDRV_BLOCK_EOF); 2658 *pnum = bytes; 2659 if (file) { 2660 *file = p; 2661 } 2662 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2663 break; 2664 } 2665 if (ret & BDRV_BLOCK_ALLOCATED) { 2666 /* 2667 * We've found the node and the status, we must break. 2668 * 2669 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2670 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2671 * below. 2672 */ 2673 ret &= ~BDRV_BLOCK_EOF; 2674 break; 2675 } 2676 2677 if (p == base) { 2678 assert(include_base); 2679 break; 2680 } 2681 2682 /* 2683 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2684 * let's continue the diving. 2685 */ 2686 assert(*pnum <= bytes); 2687 bytes = *pnum; 2688 } 2689 2690 if (offset + *pnum == eof) { 2691 ret |= BDRV_BLOCK_EOF; 2692 } 2693 2694 return ret; 2695 } 2696 2697 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2698 int64_t offset, int64_t bytes, int64_t *pnum, 2699 int64_t *map, BlockDriverState **file) 2700 { 2701 IO_CODE(); 2702 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2703 pnum, map, file, NULL); 2704 } 2705 2706 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2707 int64_t *pnum, int64_t *map, BlockDriverState **file) 2708 { 2709 IO_CODE(); 2710 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2711 offset, bytes, pnum, map, file); 2712 } 2713 2714 /* 2715 * Check @bs (and its backing chain) to see if the range defined 2716 * by @offset and @bytes is known to read as zeroes. 2717 * Return 1 if that is the case, 0 otherwise and -errno on error. 2718 * This test is meant to be fast rather than accurate so returning 0 2719 * does not guarantee non-zero data. 2720 */ 2721 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2722 int64_t bytes) 2723 { 2724 int ret; 2725 int64_t pnum = bytes; 2726 IO_CODE(); 2727 2728 if (!bytes) { 2729 return 1; 2730 } 2731 2732 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset, 2733 bytes, &pnum, NULL, NULL, NULL); 2734 2735 if (ret < 0) { 2736 return ret; 2737 } 2738 2739 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2740 } 2741 2742 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2743 int64_t bytes, int64_t *pnum) 2744 { 2745 int ret; 2746 int64_t dummy; 2747 IO_CODE(); 2748 2749 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2750 bytes, pnum ? pnum : &dummy, NULL, 2751 NULL, NULL); 2752 if (ret < 0) { 2753 return ret; 2754 } 2755 return !!(ret & BDRV_BLOCK_ALLOCATED); 2756 } 2757 2758 /* 2759 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2760 * 2761 * Return a positive depth if (a prefix of) the given range is allocated 2762 * in any image between BASE and TOP (BASE is only included if include_base 2763 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2764 * BASE can be NULL to check if the given offset is allocated in any 2765 * image of the chain. Return 0 otherwise, or negative errno on 2766 * failure. 2767 * 2768 * 'pnum' is set to the number of bytes (including and immediately 2769 * following the specified offset) that are known to be in the same 2770 * allocated/unallocated state. Note that a subsequent call starting 2771 * at 'offset + *pnum' may return the same allocation status (in other 2772 * words, the result is not necessarily the maximum possible range); 2773 * but 'pnum' will only be 0 when end of file is reached. 2774 */ 2775 int bdrv_is_allocated_above(BlockDriverState *top, 2776 BlockDriverState *base, 2777 bool include_base, int64_t offset, 2778 int64_t bytes, int64_t *pnum) 2779 { 2780 int depth; 2781 int ret = bdrv_common_block_status_above(top, base, include_base, false, 2782 offset, bytes, pnum, NULL, NULL, 2783 &depth); 2784 IO_CODE(); 2785 if (ret < 0) { 2786 return ret; 2787 } 2788 2789 if (ret & BDRV_BLOCK_ALLOCATED) { 2790 return depth; 2791 } 2792 return 0; 2793 } 2794 2795 int coroutine_fn 2796 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2797 { 2798 BlockDriver *drv = bs->drv; 2799 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2800 int ret; 2801 IO_CODE(); 2802 2803 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2804 if (ret < 0) { 2805 return ret; 2806 } 2807 2808 if (!drv) { 2809 return -ENOMEDIUM; 2810 } 2811 2812 bdrv_inc_in_flight(bs); 2813 2814 if (drv->bdrv_load_vmstate) { 2815 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2816 } else if (child_bs) { 2817 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2818 } else { 2819 ret = -ENOTSUP; 2820 } 2821 2822 bdrv_dec_in_flight(bs); 2823 2824 return ret; 2825 } 2826 2827 int coroutine_fn 2828 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2829 { 2830 BlockDriver *drv = bs->drv; 2831 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2832 int ret; 2833 IO_CODE(); 2834 2835 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2836 if (ret < 0) { 2837 return ret; 2838 } 2839 2840 if (!drv) { 2841 return -ENOMEDIUM; 2842 } 2843 2844 bdrv_inc_in_flight(bs); 2845 2846 if (drv->bdrv_save_vmstate) { 2847 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2848 } else if (child_bs) { 2849 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2850 } else { 2851 ret = -ENOTSUP; 2852 } 2853 2854 bdrv_dec_in_flight(bs); 2855 2856 return ret; 2857 } 2858 2859 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2860 int64_t pos, int size) 2861 { 2862 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2863 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2864 IO_CODE(); 2865 2866 return ret < 0 ? ret : size; 2867 } 2868 2869 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2870 int64_t pos, int size) 2871 { 2872 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2873 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2874 IO_CODE(); 2875 2876 return ret < 0 ? ret : size; 2877 } 2878 2879 /**************************************************************/ 2880 /* async I/Os */ 2881 2882 void bdrv_aio_cancel(BlockAIOCB *acb) 2883 { 2884 IO_CODE(); 2885 qemu_aio_ref(acb); 2886 bdrv_aio_cancel_async(acb); 2887 while (acb->refcnt > 1) { 2888 if (acb->aiocb_info->get_aio_context) { 2889 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2890 } else if (acb->bs) { 2891 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2892 * assert that we're not using an I/O thread. Thread-safe 2893 * code should use bdrv_aio_cancel_async exclusively. 2894 */ 2895 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2896 aio_poll(bdrv_get_aio_context(acb->bs), true); 2897 } else { 2898 abort(); 2899 } 2900 } 2901 qemu_aio_unref(acb); 2902 } 2903 2904 /* Async version of aio cancel. The caller is not blocked if the acb implements 2905 * cancel_async, otherwise we do nothing and let the request normally complete. 2906 * In either case the completion callback must be called. */ 2907 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2908 { 2909 IO_CODE(); 2910 if (acb->aiocb_info->cancel_async) { 2911 acb->aiocb_info->cancel_async(acb); 2912 } 2913 } 2914 2915 /**************************************************************/ 2916 /* Coroutine block device emulation */ 2917 2918 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2919 { 2920 BdrvChild *primary_child = bdrv_primary_child(bs); 2921 BdrvChild *child; 2922 int current_gen; 2923 int ret = 0; 2924 IO_CODE(); 2925 2926 bdrv_inc_in_flight(bs); 2927 2928 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2929 bdrv_is_sg(bs)) { 2930 goto early_exit; 2931 } 2932 2933 qemu_co_mutex_lock(&bs->reqs_lock); 2934 current_gen = qatomic_read(&bs->write_gen); 2935 2936 /* Wait until any previous flushes are completed */ 2937 while (bs->active_flush_req) { 2938 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2939 } 2940 2941 /* Flushes reach this point in nondecreasing current_gen order. */ 2942 bs->active_flush_req = true; 2943 qemu_co_mutex_unlock(&bs->reqs_lock); 2944 2945 /* Write back all layers by calling one driver function */ 2946 if (bs->drv->bdrv_co_flush) { 2947 ret = bs->drv->bdrv_co_flush(bs); 2948 goto out; 2949 } 2950 2951 /* Write back cached data to the OS even with cache=unsafe */ 2952 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 2953 if (bs->drv->bdrv_co_flush_to_os) { 2954 ret = bs->drv->bdrv_co_flush_to_os(bs); 2955 if (ret < 0) { 2956 goto out; 2957 } 2958 } 2959 2960 /* But don't actually force it to the disk with cache=unsafe */ 2961 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2962 goto flush_children; 2963 } 2964 2965 /* Check if we really need to flush anything */ 2966 if (bs->flushed_gen == current_gen) { 2967 goto flush_children; 2968 } 2969 2970 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 2971 if (!bs->drv) { 2972 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2973 * (even in case of apparent success) */ 2974 ret = -ENOMEDIUM; 2975 goto out; 2976 } 2977 if (bs->drv->bdrv_co_flush_to_disk) { 2978 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2979 } else if (bs->drv->bdrv_aio_flush) { 2980 BlockAIOCB *acb; 2981 CoroutineIOCompletion co = { 2982 .coroutine = qemu_coroutine_self(), 2983 }; 2984 2985 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2986 if (acb == NULL) { 2987 ret = -EIO; 2988 } else { 2989 qemu_coroutine_yield(); 2990 ret = co.ret; 2991 } 2992 } else { 2993 /* 2994 * Some block drivers always operate in either writethrough or unsafe 2995 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2996 * know how the server works (because the behaviour is hardcoded or 2997 * depends on server-side configuration), so we can't ensure that 2998 * everything is safe on disk. Returning an error doesn't work because 2999 * that would break guests even if the server operates in writethrough 3000 * mode. 3001 * 3002 * Let's hope the user knows what he's doing. 3003 */ 3004 ret = 0; 3005 } 3006 3007 if (ret < 0) { 3008 goto out; 3009 } 3010 3011 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3012 * in the case of cache=unsafe, so there are no useless flushes. 3013 */ 3014 flush_children: 3015 ret = 0; 3016 QLIST_FOREACH(child, &bs->children, next) { 3017 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3018 int this_child_ret = bdrv_co_flush(child->bs); 3019 if (!ret) { 3020 ret = this_child_ret; 3021 } 3022 } 3023 } 3024 3025 out: 3026 /* Notify any pending flushes that we have completed */ 3027 if (ret == 0) { 3028 bs->flushed_gen = current_gen; 3029 } 3030 3031 qemu_co_mutex_lock(&bs->reqs_lock); 3032 bs->active_flush_req = false; 3033 /* Return value is ignored - it's ok if wait queue is empty */ 3034 qemu_co_queue_next(&bs->flush_queue); 3035 qemu_co_mutex_unlock(&bs->reqs_lock); 3036 3037 early_exit: 3038 bdrv_dec_in_flight(bs); 3039 return ret; 3040 } 3041 3042 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3043 int64_t bytes) 3044 { 3045 BdrvTrackedRequest req; 3046 int ret; 3047 int64_t max_pdiscard; 3048 int head, tail, align; 3049 BlockDriverState *bs = child->bs; 3050 IO_CODE(); 3051 3052 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 3053 return -ENOMEDIUM; 3054 } 3055 3056 if (bdrv_has_readonly_bitmaps(bs)) { 3057 return -EPERM; 3058 } 3059 3060 ret = bdrv_check_request(offset, bytes, NULL); 3061 if (ret < 0) { 3062 return ret; 3063 } 3064 3065 /* Do nothing if disabled. */ 3066 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3067 return 0; 3068 } 3069 3070 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 3071 return 0; 3072 } 3073 3074 /* Invalidate the cached block-status data range if this discard overlaps */ 3075 bdrv_bsc_invalidate_range(bs, offset, bytes); 3076 3077 /* Discard is advisory, but some devices track and coalesce 3078 * unaligned requests, so we must pass everything down rather than 3079 * round here. Still, most devices will just silently ignore 3080 * unaligned requests (by returning -ENOTSUP), so we must fragment 3081 * the request accordingly. */ 3082 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3083 assert(align % bs->bl.request_alignment == 0); 3084 head = offset % align; 3085 tail = (offset + bytes) % align; 3086 3087 bdrv_inc_in_flight(bs); 3088 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3089 3090 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3091 if (ret < 0) { 3092 goto out; 3093 } 3094 3095 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3096 align); 3097 assert(max_pdiscard >= bs->bl.request_alignment); 3098 3099 while (bytes > 0) { 3100 int64_t num = bytes; 3101 3102 if (head) { 3103 /* Make small requests to get to alignment boundaries. */ 3104 num = MIN(bytes, align - head); 3105 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3106 num %= bs->bl.request_alignment; 3107 } 3108 head = (head + num) % align; 3109 assert(num < max_pdiscard); 3110 } else if (tail) { 3111 if (num > align) { 3112 /* Shorten the request to the last aligned cluster. */ 3113 num -= tail; 3114 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3115 tail > bs->bl.request_alignment) { 3116 tail %= bs->bl.request_alignment; 3117 num -= tail; 3118 } 3119 } 3120 /* limit request size */ 3121 if (num > max_pdiscard) { 3122 num = max_pdiscard; 3123 } 3124 3125 if (!bs->drv) { 3126 ret = -ENOMEDIUM; 3127 goto out; 3128 } 3129 if (bs->drv->bdrv_co_pdiscard) { 3130 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3131 } else { 3132 BlockAIOCB *acb; 3133 CoroutineIOCompletion co = { 3134 .coroutine = qemu_coroutine_self(), 3135 }; 3136 3137 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3138 bdrv_co_io_em_complete, &co); 3139 if (acb == NULL) { 3140 ret = -EIO; 3141 goto out; 3142 } else { 3143 qemu_coroutine_yield(); 3144 ret = co.ret; 3145 } 3146 } 3147 if (ret && ret != -ENOTSUP) { 3148 goto out; 3149 } 3150 3151 offset += num; 3152 bytes -= num; 3153 } 3154 ret = 0; 3155 out: 3156 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3157 tracked_request_end(&req); 3158 bdrv_dec_in_flight(bs); 3159 return ret; 3160 } 3161 3162 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3163 { 3164 BlockDriver *drv = bs->drv; 3165 CoroutineIOCompletion co = { 3166 .coroutine = qemu_coroutine_self(), 3167 }; 3168 BlockAIOCB *acb; 3169 IO_CODE(); 3170 3171 bdrv_inc_in_flight(bs); 3172 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3173 co.ret = -ENOTSUP; 3174 goto out; 3175 } 3176 3177 if (drv->bdrv_co_ioctl) { 3178 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3179 } else { 3180 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3181 if (!acb) { 3182 co.ret = -ENOTSUP; 3183 goto out; 3184 } 3185 qemu_coroutine_yield(); 3186 } 3187 out: 3188 bdrv_dec_in_flight(bs); 3189 return co.ret; 3190 } 3191 3192 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3193 { 3194 IO_CODE(); 3195 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3196 } 3197 3198 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3199 { 3200 IO_CODE(); 3201 return memset(qemu_blockalign(bs, size), 0, size); 3202 } 3203 3204 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3205 { 3206 size_t align = bdrv_opt_mem_align(bs); 3207 IO_CODE(); 3208 3209 /* Ensure that NULL is never returned on success */ 3210 assert(align > 0); 3211 if (size == 0) { 3212 size = align; 3213 } 3214 3215 return qemu_try_memalign(align, size); 3216 } 3217 3218 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3219 { 3220 void *mem = qemu_try_blockalign(bs, size); 3221 IO_CODE(); 3222 3223 if (mem) { 3224 memset(mem, 0, size); 3225 } 3226 3227 return mem; 3228 } 3229 3230 void bdrv_io_plug(BlockDriverState *bs) 3231 { 3232 BdrvChild *child; 3233 IO_CODE(); 3234 3235 QLIST_FOREACH(child, &bs->children, next) { 3236 bdrv_io_plug(child->bs); 3237 } 3238 3239 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3240 BlockDriver *drv = bs->drv; 3241 if (drv && drv->bdrv_io_plug) { 3242 drv->bdrv_io_plug(bs); 3243 } 3244 } 3245 } 3246 3247 void bdrv_io_unplug(BlockDriverState *bs) 3248 { 3249 BdrvChild *child; 3250 IO_CODE(); 3251 3252 assert(bs->io_plugged); 3253 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3254 BlockDriver *drv = bs->drv; 3255 if (drv && drv->bdrv_io_unplug) { 3256 drv->bdrv_io_unplug(bs); 3257 } 3258 } 3259 3260 QLIST_FOREACH(child, &bs->children, next) { 3261 bdrv_io_unplug(child->bs); 3262 } 3263 } 3264 3265 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 3266 { 3267 BdrvChild *child; 3268 3269 GLOBAL_STATE_CODE(); 3270 if (bs->drv && bs->drv->bdrv_register_buf) { 3271 bs->drv->bdrv_register_buf(bs, host, size); 3272 } 3273 QLIST_FOREACH(child, &bs->children, next) { 3274 bdrv_register_buf(child->bs, host, size); 3275 } 3276 } 3277 3278 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 3279 { 3280 BdrvChild *child; 3281 3282 GLOBAL_STATE_CODE(); 3283 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3284 bs->drv->bdrv_unregister_buf(bs, host); 3285 } 3286 QLIST_FOREACH(child, &bs->children, next) { 3287 bdrv_unregister_buf(child->bs, host); 3288 } 3289 } 3290 3291 static int coroutine_fn bdrv_co_copy_range_internal( 3292 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3293 int64_t dst_offset, int64_t bytes, 3294 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3295 bool recurse_src) 3296 { 3297 BdrvTrackedRequest req; 3298 int ret; 3299 3300 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3301 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3302 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3303 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3304 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3305 3306 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) { 3307 return -ENOMEDIUM; 3308 } 3309 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3310 if (ret) { 3311 return ret; 3312 } 3313 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3314 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3315 } 3316 3317 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) { 3318 return -ENOMEDIUM; 3319 } 3320 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3321 if (ret) { 3322 return ret; 3323 } 3324 3325 if (!src->bs->drv->bdrv_co_copy_range_from 3326 || !dst->bs->drv->bdrv_co_copy_range_to 3327 || src->bs->encrypted || dst->bs->encrypted) { 3328 return -ENOTSUP; 3329 } 3330 3331 if (recurse_src) { 3332 bdrv_inc_in_flight(src->bs); 3333 tracked_request_begin(&req, src->bs, src_offset, bytes, 3334 BDRV_TRACKED_READ); 3335 3336 /* BDRV_REQ_SERIALISING is only for write operation */ 3337 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3338 bdrv_wait_serialising_requests(&req); 3339 3340 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3341 src, src_offset, 3342 dst, dst_offset, 3343 bytes, 3344 read_flags, write_flags); 3345 3346 tracked_request_end(&req); 3347 bdrv_dec_in_flight(src->bs); 3348 } else { 3349 bdrv_inc_in_flight(dst->bs); 3350 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3351 BDRV_TRACKED_WRITE); 3352 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3353 write_flags); 3354 if (!ret) { 3355 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3356 src, src_offset, 3357 dst, dst_offset, 3358 bytes, 3359 read_flags, write_flags); 3360 } 3361 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3362 tracked_request_end(&req); 3363 bdrv_dec_in_flight(dst->bs); 3364 } 3365 3366 return ret; 3367 } 3368 3369 /* Copy range from @src to @dst. 3370 * 3371 * See the comment of bdrv_co_copy_range for the parameter and return value 3372 * semantics. */ 3373 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3374 BdrvChild *dst, int64_t dst_offset, 3375 int64_t bytes, 3376 BdrvRequestFlags read_flags, 3377 BdrvRequestFlags write_flags) 3378 { 3379 IO_CODE(); 3380 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3381 read_flags, write_flags); 3382 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3383 bytes, read_flags, write_flags, true); 3384 } 3385 3386 /* Copy range from @src to @dst. 3387 * 3388 * See the comment of bdrv_co_copy_range for the parameter and return value 3389 * semantics. */ 3390 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3391 BdrvChild *dst, int64_t dst_offset, 3392 int64_t bytes, 3393 BdrvRequestFlags read_flags, 3394 BdrvRequestFlags write_flags) 3395 { 3396 IO_CODE(); 3397 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3398 read_flags, write_flags); 3399 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3400 bytes, read_flags, write_flags, false); 3401 } 3402 3403 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3404 BdrvChild *dst, int64_t dst_offset, 3405 int64_t bytes, BdrvRequestFlags read_flags, 3406 BdrvRequestFlags write_flags) 3407 { 3408 IO_CODE(); 3409 return bdrv_co_copy_range_from(src, src_offset, 3410 dst, dst_offset, 3411 bytes, read_flags, write_flags); 3412 } 3413 3414 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3415 { 3416 BdrvChild *c; 3417 QLIST_FOREACH(c, &bs->parents, next_parent) { 3418 if (c->klass->resize) { 3419 c->klass->resize(c); 3420 } 3421 } 3422 } 3423 3424 /** 3425 * Truncate file to 'offset' bytes (needed only for file protocols) 3426 * 3427 * If 'exact' is true, the file must be resized to exactly the given 3428 * 'offset'. Otherwise, it is sufficient for the node to be at least 3429 * 'offset' bytes in length. 3430 */ 3431 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3432 PreallocMode prealloc, BdrvRequestFlags flags, 3433 Error **errp) 3434 { 3435 BlockDriverState *bs = child->bs; 3436 BdrvChild *filtered, *backing; 3437 BlockDriver *drv = bs->drv; 3438 BdrvTrackedRequest req; 3439 int64_t old_size, new_bytes; 3440 int ret; 3441 IO_CODE(); 3442 3443 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3444 if (!drv) { 3445 error_setg(errp, "No medium inserted"); 3446 return -ENOMEDIUM; 3447 } 3448 if (offset < 0) { 3449 error_setg(errp, "Image size cannot be negative"); 3450 return -EINVAL; 3451 } 3452 3453 ret = bdrv_check_request(offset, 0, errp); 3454 if (ret < 0) { 3455 return ret; 3456 } 3457 3458 old_size = bdrv_getlength(bs); 3459 if (old_size < 0) { 3460 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3461 return old_size; 3462 } 3463 3464 if (bdrv_is_read_only(bs)) { 3465 error_setg(errp, "Image is read-only"); 3466 return -EACCES; 3467 } 3468 3469 if (offset > old_size) { 3470 new_bytes = offset - old_size; 3471 } else { 3472 new_bytes = 0; 3473 } 3474 3475 bdrv_inc_in_flight(bs); 3476 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3477 BDRV_TRACKED_TRUNCATE); 3478 3479 /* If we are growing the image and potentially using preallocation for the 3480 * new area, we need to make sure that no write requests are made to it 3481 * concurrently or they might be overwritten by preallocation. */ 3482 if (new_bytes) { 3483 bdrv_make_request_serialising(&req, 1); 3484 } 3485 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3486 0); 3487 if (ret < 0) { 3488 error_setg_errno(errp, -ret, 3489 "Failed to prepare request for truncation"); 3490 goto out; 3491 } 3492 3493 filtered = bdrv_filter_child(bs); 3494 backing = bdrv_cow_child(bs); 3495 3496 /* 3497 * If the image has a backing file that is large enough that it would 3498 * provide data for the new area, we cannot leave it unallocated because 3499 * then the backing file content would become visible. Instead, zero-fill 3500 * the new area. 3501 * 3502 * Note that if the image has a backing file, but was opened without the 3503 * backing file, taking care of keeping things consistent with that backing 3504 * file is the user's responsibility. 3505 */ 3506 if (new_bytes && backing) { 3507 int64_t backing_len; 3508 3509 backing_len = bdrv_getlength(backing->bs); 3510 if (backing_len < 0) { 3511 ret = backing_len; 3512 error_setg_errno(errp, -ret, "Could not get backing file size"); 3513 goto out; 3514 } 3515 3516 if (backing_len > old_size) { 3517 flags |= BDRV_REQ_ZERO_WRITE; 3518 } 3519 } 3520 3521 if (drv->bdrv_co_truncate) { 3522 if (flags & ~bs->supported_truncate_flags) { 3523 error_setg(errp, "Block driver does not support requested flags"); 3524 ret = -ENOTSUP; 3525 goto out; 3526 } 3527 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3528 } else if (filtered) { 3529 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3530 } else { 3531 error_setg(errp, "Image format driver does not support resize"); 3532 ret = -ENOTSUP; 3533 goto out; 3534 } 3535 if (ret < 0) { 3536 goto out; 3537 } 3538 3539 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3540 if (ret < 0) { 3541 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3542 } else { 3543 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3544 } 3545 /* It's possible that truncation succeeded but refresh_total_sectors 3546 * failed, but the latter doesn't affect how we should finish the request. 3547 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3548 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3549 3550 out: 3551 tracked_request_end(&req); 3552 bdrv_dec_in_flight(bs); 3553 3554 return ret; 3555 } 3556 3557 void bdrv_cancel_in_flight(BlockDriverState *bs) 3558 { 3559 GLOBAL_STATE_CODE(); 3560 if (!bs || !bs->drv) { 3561 return; 3562 } 3563 3564 if (bs->drv->bdrv_cancel_in_flight) { 3565 bs->drv->bdrv_cancel_in_flight(bs); 3566 } 3567 } 3568 3569 int coroutine_fn 3570 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3571 QEMUIOVector *qiov, size_t qiov_offset) 3572 { 3573 BlockDriverState *bs = child->bs; 3574 BlockDriver *drv = bs->drv; 3575 int ret; 3576 IO_CODE(); 3577 3578 if (!drv) { 3579 return -ENOMEDIUM; 3580 } 3581 3582 if (!drv->bdrv_co_preadv_snapshot) { 3583 return -ENOTSUP; 3584 } 3585 3586 bdrv_inc_in_flight(bs); 3587 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3588 bdrv_dec_in_flight(bs); 3589 3590 return ret; 3591 } 3592 3593 int coroutine_fn 3594 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3595 bool want_zero, int64_t offset, int64_t bytes, 3596 int64_t *pnum, int64_t *map, 3597 BlockDriverState **file) 3598 { 3599 BlockDriver *drv = bs->drv; 3600 int ret; 3601 IO_CODE(); 3602 3603 if (!drv) { 3604 return -ENOMEDIUM; 3605 } 3606 3607 if (!drv->bdrv_co_snapshot_block_status) { 3608 return -ENOTSUP; 3609 } 3610 3611 bdrv_inc_in_flight(bs); 3612 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3613 pnum, map, file); 3614 bdrv_dec_in_flight(bs); 3615 3616 return ret; 3617 } 3618 3619 int coroutine_fn 3620 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3621 { 3622 BlockDriver *drv = bs->drv; 3623 int ret; 3624 IO_CODE(); 3625 3626 if (!drv) { 3627 return -ENOMEDIUM; 3628 } 3629 3630 if (!drv->bdrv_co_pdiscard_snapshot) { 3631 return -ENOTSUP; 3632 } 3633 3634 bdrv_inc_in_flight(bs); 3635 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3636 bdrv_dec_in_flight(bs); 3637 3638 return ret; 3639 } 3640