xref: /openbmc/qemu/block/io.c (revision 83734919c408ba02adb6ea616d68cd1a72837fbe)
1  /*
2   * Block layer I/O functions
3   *
4   * Copyright (c) 2003 Fabrice Bellard
5   *
6   * Permission is hereby granted, free of charge, to any person obtaining a copy
7   * of this software and associated documentation files (the "Software"), to deal
8   * in the Software without restriction, including without limitation the rights
9   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10   * copies of the Software, and to permit persons to whom the Software is
11   * furnished to do so, subject to the following conditions:
12   *
13   * The above copyright notice and this permission notice shall be included in
14   * all copies or substantial portions of the Software.
15   *
16   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19   * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22   * THE SOFTWARE.
23   */
24  
25  #include "qemu/osdep.h"
26  #include "trace.h"
27  #include "sysemu/block-backend.h"
28  #include "block/aio-wait.h"
29  #include "block/blockjob.h"
30  #include "block/blockjob_int.h"
31  #include "block/block_int.h"
32  #include "block/coroutines.h"
33  #include "qemu/cutils.h"
34  #include "qapi/error.h"
35  #include "qemu/error-report.h"
36  #include "qemu/main-loop.h"
37  #include "sysemu/replay.h"
38  
39  /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
40  #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
41  
42  static void bdrv_parent_cb_resize(BlockDriverState *bs);
43  static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
44      int64_t offset, int bytes, BdrvRequestFlags flags);
45  
46  static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
47                                        bool ignore_bds_parents)
48  {
49      BdrvChild *c, *next;
50  
51      QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
52          if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
53              continue;
54          }
55          bdrv_parent_drained_begin_single(c, false);
56      }
57  }
58  
59  static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
60                                                     int *drained_end_counter)
61  {
62      assert(c->parent_quiesce_counter > 0);
63      c->parent_quiesce_counter--;
64      if (c->klass->drained_end) {
65          c->klass->drained_end(c, drained_end_counter);
66      }
67  }
68  
69  void bdrv_parent_drained_end_single(BdrvChild *c)
70  {
71      int drained_end_counter = 0;
72      bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
73      BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
74  }
75  
76  static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
77                                      bool ignore_bds_parents,
78                                      int *drained_end_counter)
79  {
80      BdrvChild *c;
81  
82      QLIST_FOREACH(c, &bs->parents, next_parent) {
83          if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
84              continue;
85          }
86          bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
87      }
88  }
89  
90  static bool bdrv_parent_drained_poll_single(BdrvChild *c)
91  {
92      if (c->klass->drained_poll) {
93          return c->klass->drained_poll(c);
94      }
95      return false;
96  }
97  
98  static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
99                                       bool ignore_bds_parents)
100  {
101      BdrvChild *c, *next;
102      bool busy = false;
103  
104      QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
105          if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
106              continue;
107          }
108          busy |= bdrv_parent_drained_poll_single(c);
109      }
110  
111      return busy;
112  }
113  
114  void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
115  {
116      c->parent_quiesce_counter++;
117      if (c->klass->drained_begin) {
118          c->klass->drained_begin(c);
119      }
120      if (poll) {
121          BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
122      }
123  }
124  
125  static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
126  {
127      dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
128      dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
129      dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130                                   src->opt_mem_alignment);
131      dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132                                   src->min_mem_alignment);
133      dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
134  }
135  
136  void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
137  {
138      ERRP_GUARD();
139      BlockDriver *drv = bs->drv;
140      BdrvChild *c;
141      bool have_limits;
142  
143      memset(&bs->bl, 0, sizeof(bs->bl));
144  
145      if (!drv) {
146          return;
147      }
148  
149      /* Default alignment based on whether driver has byte interface */
150      bs->bl.request_alignment = (drv->bdrv_co_preadv ||
151                                  drv->bdrv_aio_preadv ||
152                                  drv->bdrv_co_preadv_part) ? 1 : 512;
153  
154      /* Take some limits from the children as a default */
155      have_limits = false;
156      QLIST_FOREACH(c, &bs->children, next) {
157          if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
158          {
159              bdrv_refresh_limits(c->bs, errp);
160              if (*errp) {
161                  return;
162              }
163              bdrv_merge_limits(&bs->bl, &c->bs->bl);
164              have_limits = true;
165          }
166      }
167  
168      if (!have_limits) {
169          bs->bl.min_mem_alignment = 512;
170          bs->bl.opt_mem_alignment = qemu_real_host_page_size;
171  
172          /* Safe default since most protocols use readv()/writev()/etc */
173          bs->bl.max_iov = IOV_MAX;
174      }
175  
176      /* Then let the driver override it */
177      if (drv->bdrv_refresh_limits) {
178          drv->bdrv_refresh_limits(bs, errp);
179          if (*errp) {
180              return;
181          }
182      }
183  
184      if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
185          error_setg(errp, "Driver requires too large request alignment");
186      }
187  }
188  
189  /**
190   * The copy-on-read flag is actually a reference count so multiple users may
191   * use the feature without worrying about clobbering its previous state.
192   * Copy-on-read stays enabled until all users have called to disable it.
193   */
194  void bdrv_enable_copy_on_read(BlockDriverState *bs)
195  {
196      qatomic_inc(&bs->copy_on_read);
197  }
198  
199  void bdrv_disable_copy_on_read(BlockDriverState *bs)
200  {
201      int old = qatomic_fetch_dec(&bs->copy_on_read);
202      assert(old >= 1);
203  }
204  
205  typedef struct {
206      Coroutine *co;
207      BlockDriverState *bs;
208      bool done;
209      bool begin;
210      bool recursive;
211      bool poll;
212      BdrvChild *parent;
213      bool ignore_bds_parents;
214      int *drained_end_counter;
215  } BdrvCoDrainData;
216  
217  static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
218  {
219      BdrvCoDrainData *data = opaque;
220      BlockDriverState *bs = data->bs;
221  
222      if (data->begin) {
223          bs->drv->bdrv_co_drain_begin(bs);
224      } else {
225          bs->drv->bdrv_co_drain_end(bs);
226      }
227  
228      /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
229      qatomic_mb_set(&data->done, true);
230      if (!data->begin) {
231          qatomic_dec(data->drained_end_counter);
232      }
233      bdrv_dec_in_flight(bs);
234  
235      g_free(data);
236  }
237  
238  /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
239  static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
240                                int *drained_end_counter)
241  {
242      BdrvCoDrainData *data;
243  
244      if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
245              (!begin && !bs->drv->bdrv_co_drain_end)) {
246          return;
247      }
248  
249      data = g_new(BdrvCoDrainData, 1);
250      *data = (BdrvCoDrainData) {
251          .bs = bs,
252          .done = false,
253          .begin = begin,
254          .drained_end_counter = drained_end_counter,
255      };
256  
257      if (!begin) {
258          qatomic_inc(drained_end_counter);
259      }
260  
261      /* Make sure the driver callback completes during the polling phase for
262       * drain_begin. */
263      bdrv_inc_in_flight(bs);
264      data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
265      aio_co_schedule(bdrv_get_aio_context(bs), data->co);
266  }
267  
268  /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
269  bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
270                       BdrvChild *ignore_parent, bool ignore_bds_parents)
271  {
272      BdrvChild *child, *next;
273  
274      if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
275          return true;
276      }
277  
278      if (qatomic_read(&bs->in_flight)) {
279          return true;
280      }
281  
282      if (recursive) {
283          assert(!ignore_bds_parents);
284          QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
285              if (bdrv_drain_poll(child->bs, recursive, child, false)) {
286                  return true;
287              }
288          }
289      }
290  
291      return false;
292  }
293  
294  static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
295                                        BdrvChild *ignore_parent)
296  {
297      return bdrv_drain_poll(bs, recursive, ignore_parent, false);
298  }
299  
300  static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
301                                    BdrvChild *parent, bool ignore_bds_parents,
302                                    bool poll);
303  static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
304                                  BdrvChild *parent, bool ignore_bds_parents,
305                                  int *drained_end_counter);
306  
307  static void bdrv_co_drain_bh_cb(void *opaque)
308  {
309      BdrvCoDrainData *data = opaque;
310      Coroutine *co = data->co;
311      BlockDriverState *bs = data->bs;
312  
313      if (bs) {
314          AioContext *ctx = bdrv_get_aio_context(bs);
315          aio_context_acquire(ctx);
316          bdrv_dec_in_flight(bs);
317          if (data->begin) {
318              assert(!data->drained_end_counter);
319              bdrv_do_drained_begin(bs, data->recursive, data->parent,
320                                    data->ignore_bds_parents, data->poll);
321          } else {
322              assert(!data->poll);
323              bdrv_do_drained_end(bs, data->recursive, data->parent,
324                                  data->ignore_bds_parents,
325                                  data->drained_end_counter);
326          }
327          aio_context_release(ctx);
328      } else {
329          assert(data->begin);
330          bdrv_drain_all_begin();
331      }
332  
333      data->done = true;
334      aio_co_wake(co);
335  }
336  
337  static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
338                                                  bool begin, bool recursive,
339                                                  BdrvChild *parent,
340                                                  bool ignore_bds_parents,
341                                                  bool poll,
342                                                  int *drained_end_counter)
343  {
344      BdrvCoDrainData data;
345      Coroutine *self = qemu_coroutine_self();
346      AioContext *ctx = bdrv_get_aio_context(bs);
347      AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
348  
349      /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
350       * other coroutines run if they were queued by aio_co_enter(). */
351  
352      assert(qemu_in_coroutine());
353      data = (BdrvCoDrainData) {
354          .co = self,
355          .bs = bs,
356          .done = false,
357          .begin = begin,
358          .recursive = recursive,
359          .parent = parent,
360          .ignore_bds_parents = ignore_bds_parents,
361          .poll = poll,
362          .drained_end_counter = drained_end_counter,
363      };
364  
365      if (bs) {
366          bdrv_inc_in_flight(bs);
367      }
368  
369      /*
370       * Temporarily drop the lock across yield or we would get deadlocks.
371       * bdrv_co_drain_bh_cb() reaquires the lock as needed.
372       *
373       * When we yield below, the lock for the current context will be
374       * released, so if this is actually the lock that protects bs, don't drop
375       * it a second time.
376       */
377      if (ctx != co_ctx) {
378          aio_context_release(ctx);
379      }
380      replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
381  
382      qemu_coroutine_yield();
383      /* If we are resumed from some other event (such as an aio completion or a
384       * timer callback), it is a bug in the caller that should be fixed. */
385      assert(data.done);
386  
387      /* Reaquire the AioContext of bs if we dropped it */
388      if (ctx != co_ctx) {
389          aio_context_acquire(ctx);
390      }
391  }
392  
393  void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
394                                     BdrvChild *parent, bool ignore_bds_parents)
395  {
396      assert(!qemu_in_coroutine());
397  
398      /* Stop things in parent-to-child order */
399      if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
400          aio_disable_external(bdrv_get_aio_context(bs));
401      }
402  
403      bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
404      bdrv_drain_invoke(bs, true, NULL);
405  }
406  
407  static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
408                                    BdrvChild *parent, bool ignore_bds_parents,
409                                    bool poll)
410  {
411      BdrvChild *child, *next;
412  
413      if (qemu_in_coroutine()) {
414          bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
415                                 poll, NULL);
416          return;
417      }
418  
419      bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
420  
421      if (recursive) {
422          assert(!ignore_bds_parents);
423          bs->recursive_quiesce_counter++;
424          QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
425              bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
426                                    false);
427          }
428      }
429  
430      /*
431       * Wait for drained requests to finish.
432       *
433       * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
434       * call is needed so things in this AioContext can make progress even
435       * though we don't return to the main AioContext loop - this automatically
436       * includes other nodes in the same AioContext and therefore all child
437       * nodes.
438       */
439      if (poll) {
440          assert(!ignore_bds_parents);
441          BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
442      }
443  }
444  
445  void bdrv_drained_begin(BlockDriverState *bs)
446  {
447      bdrv_do_drained_begin(bs, false, NULL, false, true);
448  }
449  
450  void bdrv_subtree_drained_begin(BlockDriverState *bs)
451  {
452      bdrv_do_drained_begin(bs, true, NULL, false, true);
453  }
454  
455  /**
456   * This function does not poll, nor must any of its recursively called
457   * functions.  The *drained_end_counter pointee will be incremented
458   * once for every background operation scheduled, and decremented once
459   * the operation settles.  Therefore, the pointer must remain valid
460   * until the pointee reaches 0.  That implies that whoever sets up the
461   * pointee has to poll until it is 0.
462   *
463   * We use atomic operations to access *drained_end_counter, because
464   * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
465   *     @bs may contain nodes in different AioContexts,
466   * (2) bdrv_drain_all_end() uses the same counter for all nodes,
467   *     regardless of which AioContext they are in.
468   */
469  static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
470                                  BdrvChild *parent, bool ignore_bds_parents,
471                                  int *drained_end_counter)
472  {
473      BdrvChild *child;
474      int old_quiesce_counter;
475  
476      assert(drained_end_counter != NULL);
477  
478      if (qemu_in_coroutine()) {
479          bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
480                                 false, drained_end_counter);
481          return;
482      }
483      assert(bs->quiesce_counter > 0);
484  
485      /* Re-enable things in child-to-parent order */
486      bdrv_drain_invoke(bs, false, drained_end_counter);
487      bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
488                              drained_end_counter);
489  
490      old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
491      if (old_quiesce_counter == 1) {
492          aio_enable_external(bdrv_get_aio_context(bs));
493      }
494  
495      if (recursive) {
496          assert(!ignore_bds_parents);
497          bs->recursive_quiesce_counter--;
498          QLIST_FOREACH(child, &bs->children, next) {
499              bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
500                                  drained_end_counter);
501          }
502      }
503  }
504  
505  void bdrv_drained_end(BlockDriverState *bs)
506  {
507      int drained_end_counter = 0;
508      bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
509      BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
510  }
511  
512  void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
513  {
514      bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
515  }
516  
517  void bdrv_subtree_drained_end(BlockDriverState *bs)
518  {
519      int drained_end_counter = 0;
520      bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
521      BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
522  }
523  
524  void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
525  {
526      int i;
527  
528      for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
529          bdrv_do_drained_begin(child->bs, true, child, false, true);
530      }
531  }
532  
533  void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
534  {
535      int drained_end_counter = 0;
536      int i;
537  
538      for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
539          bdrv_do_drained_end(child->bs, true, child, false,
540                              &drained_end_counter);
541      }
542  
543      BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
544  }
545  
546  /*
547   * Wait for pending requests to complete on a single BlockDriverState subtree,
548   * and suspend block driver's internal I/O until next request arrives.
549   *
550   * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
551   * AioContext.
552   */
553  void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
554  {
555      assert(qemu_in_coroutine());
556      bdrv_drained_begin(bs);
557      bdrv_drained_end(bs);
558  }
559  
560  void bdrv_drain(BlockDriverState *bs)
561  {
562      bdrv_drained_begin(bs);
563      bdrv_drained_end(bs);
564  }
565  
566  static void bdrv_drain_assert_idle(BlockDriverState *bs)
567  {
568      BdrvChild *child, *next;
569  
570      assert(qatomic_read(&bs->in_flight) == 0);
571      QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
572          bdrv_drain_assert_idle(child->bs);
573      }
574  }
575  
576  unsigned int bdrv_drain_all_count = 0;
577  
578  static bool bdrv_drain_all_poll(void)
579  {
580      BlockDriverState *bs = NULL;
581      bool result = false;
582  
583      /* bdrv_drain_poll() can't make changes to the graph and we are holding the
584       * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
585      while ((bs = bdrv_next_all_states(bs))) {
586          AioContext *aio_context = bdrv_get_aio_context(bs);
587          aio_context_acquire(aio_context);
588          result |= bdrv_drain_poll(bs, false, NULL, true);
589          aio_context_release(aio_context);
590      }
591  
592      return result;
593  }
594  
595  /*
596   * Wait for pending requests to complete across all BlockDriverStates
597   *
598   * This function does not flush data to disk, use bdrv_flush_all() for that
599   * after calling this function.
600   *
601   * This pauses all block jobs and disables external clients. It must
602   * be paired with bdrv_drain_all_end().
603   *
604   * NOTE: no new block jobs or BlockDriverStates can be created between
605   * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
606   */
607  void bdrv_drain_all_begin(void)
608  {
609      BlockDriverState *bs = NULL;
610  
611      if (qemu_in_coroutine()) {
612          bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
613          return;
614      }
615  
616      /*
617       * bdrv queue is managed by record/replay,
618       * waiting for finishing the I/O requests may
619       * be infinite
620       */
621      if (replay_events_enabled()) {
622          return;
623      }
624  
625      /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
626       * loop AioContext, so make sure we're in the main context. */
627      assert(qemu_get_current_aio_context() == qemu_get_aio_context());
628      assert(bdrv_drain_all_count < INT_MAX);
629      bdrv_drain_all_count++;
630  
631      /* Quiesce all nodes, without polling in-flight requests yet. The graph
632       * cannot change during this loop. */
633      while ((bs = bdrv_next_all_states(bs))) {
634          AioContext *aio_context = bdrv_get_aio_context(bs);
635  
636          aio_context_acquire(aio_context);
637          bdrv_do_drained_begin(bs, false, NULL, true, false);
638          aio_context_release(aio_context);
639      }
640  
641      /* Now poll the in-flight requests */
642      AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
643  
644      while ((bs = bdrv_next_all_states(bs))) {
645          bdrv_drain_assert_idle(bs);
646      }
647  }
648  
649  void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
650  {
651      int drained_end_counter = 0;
652  
653      g_assert(bs->quiesce_counter > 0);
654      g_assert(!bs->refcnt);
655  
656      while (bs->quiesce_counter) {
657          bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
658      }
659      BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
660  }
661  
662  void bdrv_drain_all_end(void)
663  {
664      BlockDriverState *bs = NULL;
665      int drained_end_counter = 0;
666  
667      /*
668       * bdrv queue is managed by record/replay,
669       * waiting for finishing the I/O requests may
670       * be endless
671       */
672      if (replay_events_enabled()) {
673          return;
674      }
675  
676      while ((bs = bdrv_next_all_states(bs))) {
677          AioContext *aio_context = bdrv_get_aio_context(bs);
678  
679          aio_context_acquire(aio_context);
680          bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
681          aio_context_release(aio_context);
682      }
683  
684      assert(qemu_get_current_aio_context() == qemu_get_aio_context());
685      AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
686  
687      assert(bdrv_drain_all_count > 0);
688      bdrv_drain_all_count--;
689  }
690  
691  void bdrv_drain_all(void)
692  {
693      bdrv_drain_all_begin();
694      bdrv_drain_all_end();
695  }
696  
697  /**
698   * Remove an active request from the tracked requests list
699   *
700   * This function should be called when a tracked request is completing.
701   */
702  static void tracked_request_end(BdrvTrackedRequest *req)
703  {
704      if (req->serialising) {
705          qatomic_dec(&req->bs->serialising_in_flight);
706      }
707  
708      qemu_co_mutex_lock(&req->bs->reqs_lock);
709      QLIST_REMOVE(req, list);
710      qemu_co_queue_restart_all(&req->wait_queue);
711      qemu_co_mutex_unlock(&req->bs->reqs_lock);
712  }
713  
714  /**
715   * Add an active request to the tracked requests list
716   */
717  static void tracked_request_begin(BdrvTrackedRequest *req,
718                                    BlockDriverState *bs,
719                                    int64_t offset,
720                                    uint64_t bytes,
721                                    enum BdrvTrackedRequestType type)
722  {
723      assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
724  
725      *req = (BdrvTrackedRequest){
726          .bs = bs,
727          .offset         = offset,
728          .bytes          = bytes,
729          .type           = type,
730          .co             = qemu_coroutine_self(),
731          .serialising    = false,
732          .overlap_offset = offset,
733          .overlap_bytes  = bytes,
734      };
735  
736      qemu_co_queue_init(&req->wait_queue);
737  
738      qemu_co_mutex_lock(&bs->reqs_lock);
739      QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
740      qemu_co_mutex_unlock(&bs->reqs_lock);
741  }
742  
743  static bool tracked_request_overlaps(BdrvTrackedRequest *req,
744                                       int64_t offset, uint64_t bytes)
745  {
746      /*        aaaa   bbbb */
747      if (offset >= req->overlap_offset + req->overlap_bytes) {
748          return false;
749      }
750      /* bbbb   aaaa        */
751      if (req->overlap_offset >= offset + bytes) {
752          return false;
753      }
754      return true;
755  }
756  
757  /* Called with self->bs->reqs_lock held */
758  static BdrvTrackedRequest *
759  bdrv_find_conflicting_request(BdrvTrackedRequest *self)
760  {
761      BdrvTrackedRequest *req;
762  
763      QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
764          if (req == self || (!req->serialising && !self->serialising)) {
765              continue;
766          }
767          if (tracked_request_overlaps(req, self->overlap_offset,
768                                       self->overlap_bytes))
769          {
770              /*
771               * Hitting this means there was a reentrant request, for
772               * example, a block driver issuing nested requests.  This must
773               * never happen since it means deadlock.
774               */
775              assert(qemu_coroutine_self() != req->co);
776  
777              /*
778               * If the request is already (indirectly) waiting for us, or
779               * will wait for us as soon as it wakes up, then just go on
780               * (instead of producing a deadlock in the former case).
781               */
782              if (!req->waiting_for) {
783                  return req;
784              }
785          }
786      }
787  
788      return NULL;
789  }
790  
791  /* Called with self->bs->reqs_lock held */
792  static bool coroutine_fn
793  bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
794  {
795      BdrvTrackedRequest *req;
796      bool waited = false;
797  
798      while ((req = bdrv_find_conflicting_request(self))) {
799          self->waiting_for = req;
800          qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
801          self->waiting_for = NULL;
802          waited = true;
803      }
804  
805      return waited;
806  }
807  
808  /* Called with req->bs->reqs_lock held */
809  static void tracked_request_set_serialising(BdrvTrackedRequest *req,
810                                              uint64_t align)
811  {
812      int64_t overlap_offset = req->offset & ~(align - 1);
813      uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
814                                 - overlap_offset;
815  
816      if (!req->serialising) {
817          qatomic_inc(&req->bs->serialising_in_flight);
818          req->serialising = true;
819      }
820  
821      req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
822      req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
823  }
824  
825  /**
826   * Return the tracked request on @bs for the current coroutine, or
827   * NULL if there is none.
828   */
829  BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
830  {
831      BdrvTrackedRequest *req;
832      Coroutine *self = qemu_coroutine_self();
833  
834      QLIST_FOREACH(req, &bs->tracked_requests, list) {
835          if (req->co == self) {
836              return req;
837          }
838      }
839  
840      return NULL;
841  }
842  
843  /**
844   * Round a region to cluster boundaries
845   */
846  void bdrv_round_to_clusters(BlockDriverState *bs,
847                              int64_t offset, int64_t bytes,
848                              int64_t *cluster_offset,
849                              int64_t *cluster_bytes)
850  {
851      BlockDriverInfo bdi;
852  
853      if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
854          *cluster_offset = offset;
855          *cluster_bytes = bytes;
856      } else {
857          int64_t c = bdi.cluster_size;
858          *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
859          *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
860      }
861  }
862  
863  static int bdrv_get_cluster_size(BlockDriverState *bs)
864  {
865      BlockDriverInfo bdi;
866      int ret;
867  
868      ret = bdrv_get_info(bs, &bdi);
869      if (ret < 0 || bdi.cluster_size == 0) {
870          return bs->bl.request_alignment;
871      } else {
872          return bdi.cluster_size;
873      }
874  }
875  
876  void bdrv_inc_in_flight(BlockDriverState *bs)
877  {
878      qatomic_inc(&bs->in_flight);
879  }
880  
881  void bdrv_wakeup(BlockDriverState *bs)
882  {
883      aio_wait_kick();
884  }
885  
886  void bdrv_dec_in_flight(BlockDriverState *bs)
887  {
888      qatomic_dec(&bs->in_flight);
889      bdrv_wakeup(bs);
890  }
891  
892  static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
893  {
894      BlockDriverState *bs = self->bs;
895      bool waited = false;
896  
897      if (!qatomic_read(&bs->serialising_in_flight)) {
898          return false;
899      }
900  
901      qemu_co_mutex_lock(&bs->reqs_lock);
902      waited = bdrv_wait_serialising_requests_locked(self);
903      qemu_co_mutex_unlock(&bs->reqs_lock);
904  
905      return waited;
906  }
907  
908  bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
909                                                  uint64_t align)
910  {
911      bool waited;
912  
913      qemu_co_mutex_lock(&req->bs->reqs_lock);
914  
915      tracked_request_set_serialising(req, align);
916      waited = bdrv_wait_serialising_requests_locked(req);
917  
918      qemu_co_mutex_unlock(&req->bs->reqs_lock);
919  
920      return waited;
921  }
922  
923  int bdrv_check_request(int64_t offset, int64_t bytes)
924  {
925      if (offset < 0 || bytes < 0) {
926          return -EIO;
927      }
928  
929      if (bytes > BDRV_MAX_LENGTH) {
930          return -EIO;
931      }
932  
933      if (offset > BDRV_MAX_LENGTH - bytes) {
934          return -EIO;
935      }
936  
937      return 0;
938  }
939  
940  static int bdrv_check_request32(int64_t offset, int64_t bytes)
941  {
942      int ret = bdrv_check_request(offset, bytes);
943      if (ret < 0) {
944          return ret;
945      }
946  
947      if (bytes > BDRV_REQUEST_MAX_BYTES) {
948          return -EIO;
949      }
950  
951      return 0;
952  }
953  
954  int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
955                         int bytes, BdrvRequestFlags flags)
956  {
957      return bdrv_pwritev(child, offset, bytes, NULL,
958                          BDRV_REQ_ZERO_WRITE | flags);
959  }
960  
961  /*
962   * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
963   * The operation is sped up by checking the block status and only writing
964   * zeroes to the device if they currently do not return zeroes. Optional
965   * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
966   * BDRV_REQ_FUA).
967   *
968   * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
969   */
970  int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
971  {
972      int ret;
973      int64_t target_size, bytes, offset = 0;
974      BlockDriverState *bs = child->bs;
975  
976      target_size = bdrv_getlength(bs);
977      if (target_size < 0) {
978          return target_size;
979      }
980  
981      for (;;) {
982          bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
983          if (bytes <= 0) {
984              return 0;
985          }
986          ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
987          if (ret < 0) {
988              return ret;
989          }
990          if (ret & BDRV_BLOCK_ZERO) {
991              offset += bytes;
992              continue;
993          }
994          ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
995          if (ret < 0) {
996              return ret;
997          }
998          offset += bytes;
999      }
1000  }
1001  
1002  /* See bdrv_pwrite() for the return codes */
1003  int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
1004  {
1005      int ret;
1006      QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1007  
1008      if (bytes < 0) {
1009          return -EINVAL;
1010      }
1011  
1012      ret = bdrv_preadv(child, offset, bytes, &qiov,  0);
1013  
1014      return ret < 0 ? ret : bytes;
1015  }
1016  
1017  /* Return no. of bytes on success or < 0 on error. Important errors are:
1018    -EIO         generic I/O error (may happen for all errors)
1019    -ENOMEDIUM   No media inserted.
1020    -EINVAL      Invalid offset or number of bytes
1021    -EACCES      Trying to write a read-only device
1022  */
1023  int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
1024  {
1025      int ret;
1026      QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1027  
1028      if (bytes < 0) {
1029          return -EINVAL;
1030      }
1031  
1032      ret = bdrv_pwritev(child, offset, bytes, &qiov, 0);
1033  
1034      return ret < 0 ? ret : bytes;
1035  }
1036  
1037  /*
1038   * Writes to the file and ensures that no writes are reordered across this
1039   * request (acts as a barrier)
1040   *
1041   * Returns 0 on success, -errno in error cases.
1042   */
1043  int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1044                       const void *buf, int count)
1045  {
1046      int ret;
1047  
1048      ret = bdrv_pwrite(child, offset, buf, count);
1049      if (ret < 0) {
1050          return ret;
1051      }
1052  
1053      ret = bdrv_flush(child->bs);
1054      if (ret < 0) {
1055          return ret;
1056      }
1057  
1058      return 0;
1059  }
1060  
1061  typedef struct CoroutineIOCompletion {
1062      Coroutine *coroutine;
1063      int ret;
1064  } CoroutineIOCompletion;
1065  
1066  static void bdrv_co_io_em_complete(void *opaque, int ret)
1067  {
1068      CoroutineIOCompletion *co = opaque;
1069  
1070      co->ret = ret;
1071      aio_co_wake(co->coroutine);
1072  }
1073  
1074  static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1075                                             uint64_t offset, uint64_t bytes,
1076                                             QEMUIOVector *qiov,
1077                                             size_t qiov_offset, int flags)
1078  {
1079      BlockDriver *drv = bs->drv;
1080      int64_t sector_num;
1081      unsigned int nb_sectors;
1082      QEMUIOVector local_qiov;
1083      int ret;
1084  
1085      assert(!(flags & ~BDRV_REQ_MASK));
1086      assert(!(flags & BDRV_REQ_NO_FALLBACK));
1087  
1088      if (!drv) {
1089          return -ENOMEDIUM;
1090      }
1091  
1092      if (drv->bdrv_co_preadv_part) {
1093          return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1094                                          flags);
1095      }
1096  
1097      if (qiov_offset > 0 || bytes != qiov->size) {
1098          qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1099          qiov = &local_qiov;
1100      }
1101  
1102      if (drv->bdrv_co_preadv) {
1103          ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1104          goto out;
1105      }
1106  
1107      if (drv->bdrv_aio_preadv) {
1108          BlockAIOCB *acb;
1109          CoroutineIOCompletion co = {
1110              .coroutine = qemu_coroutine_self(),
1111          };
1112  
1113          acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1114                                     bdrv_co_io_em_complete, &co);
1115          if (acb == NULL) {
1116              ret = -EIO;
1117              goto out;
1118          } else {
1119              qemu_coroutine_yield();
1120              ret = co.ret;
1121              goto out;
1122          }
1123      }
1124  
1125      sector_num = offset >> BDRV_SECTOR_BITS;
1126      nb_sectors = bytes >> BDRV_SECTOR_BITS;
1127  
1128      assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1129      assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1130      assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1131      assert(drv->bdrv_co_readv);
1132  
1133      ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1134  
1135  out:
1136      if (qiov == &local_qiov) {
1137          qemu_iovec_destroy(&local_qiov);
1138      }
1139  
1140      return ret;
1141  }
1142  
1143  static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1144                                              uint64_t offset, uint64_t bytes,
1145                                              QEMUIOVector *qiov,
1146                                              size_t qiov_offset, int flags)
1147  {
1148      BlockDriver *drv = bs->drv;
1149      int64_t sector_num;
1150      unsigned int nb_sectors;
1151      QEMUIOVector local_qiov;
1152      int ret;
1153  
1154      assert(!(flags & ~BDRV_REQ_MASK));
1155      assert(!(flags & BDRV_REQ_NO_FALLBACK));
1156  
1157      if (!drv) {
1158          return -ENOMEDIUM;
1159      }
1160  
1161      if (drv->bdrv_co_pwritev_part) {
1162          ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1163                                          flags & bs->supported_write_flags);
1164          flags &= ~bs->supported_write_flags;
1165          goto emulate_flags;
1166      }
1167  
1168      if (qiov_offset > 0 || bytes != qiov->size) {
1169          qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1170          qiov = &local_qiov;
1171      }
1172  
1173      if (drv->bdrv_co_pwritev) {
1174          ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1175                                     flags & bs->supported_write_flags);
1176          flags &= ~bs->supported_write_flags;
1177          goto emulate_flags;
1178      }
1179  
1180      if (drv->bdrv_aio_pwritev) {
1181          BlockAIOCB *acb;
1182          CoroutineIOCompletion co = {
1183              .coroutine = qemu_coroutine_self(),
1184          };
1185  
1186          acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1187                                      flags & bs->supported_write_flags,
1188                                      bdrv_co_io_em_complete, &co);
1189          flags &= ~bs->supported_write_flags;
1190          if (acb == NULL) {
1191              ret = -EIO;
1192          } else {
1193              qemu_coroutine_yield();
1194              ret = co.ret;
1195          }
1196          goto emulate_flags;
1197      }
1198  
1199      sector_num = offset >> BDRV_SECTOR_BITS;
1200      nb_sectors = bytes >> BDRV_SECTOR_BITS;
1201  
1202      assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1203      assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1204      assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1205  
1206      assert(drv->bdrv_co_writev);
1207      ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1208                                flags & bs->supported_write_flags);
1209      flags &= ~bs->supported_write_flags;
1210  
1211  emulate_flags:
1212      if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1213          ret = bdrv_co_flush(bs);
1214      }
1215  
1216      if (qiov == &local_qiov) {
1217          qemu_iovec_destroy(&local_qiov);
1218      }
1219  
1220      return ret;
1221  }
1222  
1223  static int coroutine_fn
1224  bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1225                                 uint64_t bytes, QEMUIOVector *qiov,
1226                                 size_t qiov_offset)
1227  {
1228      BlockDriver *drv = bs->drv;
1229      QEMUIOVector local_qiov;
1230      int ret;
1231  
1232      if (!drv) {
1233          return -ENOMEDIUM;
1234      }
1235  
1236      if (!block_driver_can_compress(drv)) {
1237          return -ENOTSUP;
1238      }
1239  
1240      if (drv->bdrv_co_pwritev_compressed_part) {
1241          return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1242                                                      qiov, qiov_offset);
1243      }
1244  
1245      if (qiov_offset == 0) {
1246          return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1247      }
1248  
1249      qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1250      ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1251      qemu_iovec_destroy(&local_qiov);
1252  
1253      return ret;
1254  }
1255  
1256  static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1257          int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1258          size_t qiov_offset, int flags)
1259  {
1260      BlockDriverState *bs = child->bs;
1261  
1262      /* Perform I/O through a temporary buffer so that users who scribble over
1263       * their read buffer while the operation is in progress do not end up
1264       * modifying the image file.  This is critical for zero-copy guest I/O
1265       * where anything might happen inside guest memory.
1266       */
1267      void *bounce_buffer = NULL;
1268  
1269      BlockDriver *drv = bs->drv;
1270      int64_t cluster_offset;
1271      int64_t cluster_bytes;
1272      size_t skip_bytes;
1273      int ret;
1274      int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1275                                      BDRV_REQUEST_MAX_BYTES);
1276      unsigned int progress = 0;
1277      bool skip_write;
1278  
1279      if (!drv) {
1280          return -ENOMEDIUM;
1281      }
1282  
1283      /*
1284       * Do not write anything when the BDS is inactive.  That is not
1285       * allowed, and it would not help.
1286       */
1287      skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1288  
1289      /* FIXME We cannot require callers to have write permissions when all they
1290       * are doing is a read request. If we did things right, write permissions
1291       * would be obtained anyway, but internally by the copy-on-read code. As
1292       * long as it is implemented here rather than in a separate filter driver,
1293       * the copy-on-read code doesn't have its own BdrvChild, however, for which
1294       * it could request permissions. Therefore we have to bypass the permission
1295       * system for the moment. */
1296      // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1297  
1298      /* Cover entire cluster so no additional backing file I/O is required when
1299       * allocating cluster in the image file.  Note that this value may exceed
1300       * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1301       * is one reason we loop rather than doing it all at once.
1302       */
1303      bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1304      skip_bytes = offset - cluster_offset;
1305  
1306      trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1307                                     cluster_offset, cluster_bytes);
1308  
1309      while (cluster_bytes) {
1310          int64_t pnum;
1311  
1312          if (skip_write) {
1313              ret = 1; /* "already allocated", so nothing will be copied */
1314              pnum = MIN(cluster_bytes, max_transfer);
1315          } else {
1316              ret = bdrv_is_allocated(bs, cluster_offset,
1317                                      MIN(cluster_bytes, max_transfer), &pnum);
1318              if (ret < 0) {
1319                  /*
1320                   * Safe to treat errors in querying allocation as if
1321                   * unallocated; we'll probably fail again soon on the
1322                   * read, but at least that will set a decent errno.
1323                   */
1324                  pnum = MIN(cluster_bytes, max_transfer);
1325              }
1326  
1327              /* Stop at EOF if the image ends in the middle of the cluster */
1328              if (ret == 0 && pnum == 0) {
1329                  assert(progress >= bytes);
1330                  break;
1331              }
1332  
1333              assert(skip_bytes < pnum);
1334          }
1335  
1336          if (ret <= 0) {
1337              QEMUIOVector local_qiov;
1338  
1339              /* Must copy-on-read; use the bounce buffer */
1340              pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1341              if (!bounce_buffer) {
1342                  int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1343                  int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1344                  int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1345  
1346                  bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1347                  if (!bounce_buffer) {
1348                      ret = -ENOMEM;
1349                      goto err;
1350                  }
1351              }
1352              qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1353  
1354              ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1355                                       &local_qiov, 0, 0);
1356              if (ret < 0) {
1357                  goto err;
1358              }
1359  
1360              bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1361              if (drv->bdrv_co_pwrite_zeroes &&
1362                  buffer_is_zero(bounce_buffer, pnum)) {
1363                  /* FIXME: Should we (perhaps conditionally) be setting
1364                   * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1365                   * that still correctly reads as zero? */
1366                  ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1367                                                 BDRV_REQ_WRITE_UNCHANGED);
1368              } else {
1369                  /* This does not change the data on the disk, it is not
1370                   * necessary to flush even in cache=writethrough mode.
1371                   */
1372                  ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1373                                            &local_qiov, 0,
1374                                            BDRV_REQ_WRITE_UNCHANGED);
1375              }
1376  
1377              if (ret < 0) {
1378                  /* It might be okay to ignore write errors for guest
1379                   * requests.  If this is a deliberate copy-on-read
1380                   * then we don't want to ignore the error.  Simply
1381                   * report it in all cases.
1382                   */
1383                  goto err;
1384              }
1385  
1386              if (!(flags & BDRV_REQ_PREFETCH)) {
1387                  qemu_iovec_from_buf(qiov, qiov_offset + progress,
1388                                      bounce_buffer + skip_bytes,
1389                                      MIN(pnum - skip_bytes, bytes - progress));
1390              }
1391          } else if (!(flags & BDRV_REQ_PREFETCH)) {
1392              /* Read directly into the destination */
1393              ret = bdrv_driver_preadv(bs, offset + progress,
1394                                       MIN(pnum - skip_bytes, bytes - progress),
1395                                       qiov, qiov_offset + progress, 0);
1396              if (ret < 0) {
1397                  goto err;
1398              }
1399          }
1400  
1401          cluster_offset += pnum;
1402          cluster_bytes -= pnum;
1403          progress += pnum - skip_bytes;
1404          skip_bytes = 0;
1405      }
1406      ret = 0;
1407  
1408  err:
1409      qemu_vfree(bounce_buffer);
1410      return ret;
1411  }
1412  
1413  /*
1414   * Forwards an already correctly aligned request to the BlockDriver. This
1415   * handles copy on read, zeroing after EOF, and fragmentation of large
1416   * reads; any other features must be implemented by the caller.
1417   */
1418  static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1419      BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1420      int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1421  {
1422      BlockDriverState *bs = child->bs;
1423      int64_t total_bytes, max_bytes;
1424      int ret = 0;
1425      uint64_t bytes_remaining = bytes;
1426      int max_transfer;
1427  
1428      assert(is_power_of_2(align));
1429      assert((offset & (align - 1)) == 0);
1430      assert((bytes & (align - 1)) == 0);
1431      assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1432      max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1433                                     align);
1434  
1435      /* TODO: We would need a per-BDS .supported_read_flags and
1436       * potential fallback support, if we ever implement any read flags
1437       * to pass through to drivers.  For now, there aren't any
1438       * passthrough flags.  */
1439      assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1440  
1441      /* Handle Copy on Read and associated serialisation */
1442      if (flags & BDRV_REQ_COPY_ON_READ) {
1443          /* If we touch the same cluster it counts as an overlap.  This
1444           * guarantees that allocating writes will be serialized and not race
1445           * with each other for the same cluster.  For example, in copy-on-read
1446           * it ensures that the CoR read and write operations are atomic and
1447           * guest writes cannot interleave between them. */
1448          bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1449      } else {
1450          bdrv_wait_serialising_requests(req);
1451      }
1452  
1453      if (flags & BDRV_REQ_COPY_ON_READ) {
1454          int64_t pnum;
1455  
1456          ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1457          if (ret < 0) {
1458              goto out;
1459          }
1460  
1461          if (!ret || pnum != bytes) {
1462              ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1463                                             qiov, qiov_offset, flags);
1464              goto out;
1465          } else if (flags & BDRV_REQ_PREFETCH) {
1466              goto out;
1467          }
1468      }
1469  
1470      /* Forward the request to the BlockDriver, possibly fragmenting it */
1471      total_bytes = bdrv_getlength(bs);
1472      if (total_bytes < 0) {
1473          ret = total_bytes;
1474          goto out;
1475      }
1476  
1477      max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1478      if (bytes <= max_bytes && bytes <= max_transfer) {
1479          ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, 0);
1480          goto out;
1481      }
1482  
1483      while (bytes_remaining) {
1484          int num;
1485  
1486          if (max_bytes) {
1487              num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1488              assert(num);
1489  
1490              ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1491                                       num, qiov,
1492                                       qiov_offset + bytes - bytes_remaining, 0);
1493              max_bytes -= num;
1494          } else {
1495              num = bytes_remaining;
1496              ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1497                                      0, bytes_remaining);
1498          }
1499          if (ret < 0) {
1500              goto out;
1501          }
1502          bytes_remaining -= num;
1503      }
1504  
1505  out:
1506      return ret < 0 ? ret : 0;
1507  }
1508  
1509  /*
1510   * Request padding
1511   *
1512   *  |<---- align ----->|                     |<----- align ---->|
1513   *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1514   *  |          |       |                     |     |            |
1515   * -*----------$-------*-------- ... --------*-----$------------*---
1516   *  |          |       |                     |     |            |
1517   *  |          offset  |                     |     end          |
1518   *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1519   *  [buf   ... )                             [tail_buf          )
1520   *
1521   * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1522   * is placed at the beginning of @buf and @tail at the @end.
1523   *
1524   * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1525   * around tail, if tail exists.
1526   *
1527   * @merge_reads is true for small requests,
1528   * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1529   * head and tail exist but @buf_len == align and @tail_buf == @buf.
1530   */
1531  typedef struct BdrvRequestPadding {
1532      uint8_t *buf;
1533      size_t buf_len;
1534      uint8_t *tail_buf;
1535      size_t head;
1536      size_t tail;
1537      bool merge_reads;
1538      QEMUIOVector local_qiov;
1539  } BdrvRequestPadding;
1540  
1541  static bool bdrv_init_padding(BlockDriverState *bs,
1542                                int64_t offset, int64_t bytes,
1543                                BdrvRequestPadding *pad)
1544  {
1545      uint64_t align = bs->bl.request_alignment;
1546      size_t sum;
1547  
1548      memset(pad, 0, sizeof(*pad));
1549  
1550      pad->head = offset & (align - 1);
1551      pad->tail = ((offset + bytes) & (align - 1));
1552      if (pad->tail) {
1553          pad->tail = align - pad->tail;
1554      }
1555  
1556      if (!pad->head && !pad->tail) {
1557          return false;
1558      }
1559  
1560      assert(bytes); /* Nothing good in aligning zero-length requests */
1561  
1562      sum = pad->head + bytes + pad->tail;
1563      pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1564      pad->buf = qemu_blockalign(bs, pad->buf_len);
1565      pad->merge_reads = sum == pad->buf_len;
1566      if (pad->tail) {
1567          pad->tail_buf = pad->buf + pad->buf_len - align;
1568      }
1569  
1570      return true;
1571  }
1572  
1573  static int bdrv_padding_rmw_read(BdrvChild *child,
1574                                   BdrvTrackedRequest *req,
1575                                   BdrvRequestPadding *pad,
1576                                   bool zero_middle)
1577  {
1578      QEMUIOVector local_qiov;
1579      BlockDriverState *bs = child->bs;
1580      uint64_t align = bs->bl.request_alignment;
1581      int ret;
1582  
1583      assert(req->serialising && pad->buf);
1584  
1585      if (pad->head || pad->merge_reads) {
1586          uint64_t bytes = pad->merge_reads ? pad->buf_len : align;
1587  
1588          qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1589  
1590          if (pad->head) {
1591              bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1592          }
1593          if (pad->merge_reads && pad->tail) {
1594              bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1595          }
1596          ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1597                                    align, &local_qiov, 0, 0);
1598          if (ret < 0) {
1599              return ret;
1600          }
1601          if (pad->head) {
1602              bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1603          }
1604          if (pad->merge_reads && pad->tail) {
1605              bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1606          }
1607  
1608          if (pad->merge_reads) {
1609              goto zero_mem;
1610          }
1611      }
1612  
1613      if (pad->tail) {
1614          qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1615  
1616          bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1617          ret = bdrv_aligned_preadv(
1618                  child, req,
1619                  req->overlap_offset + req->overlap_bytes - align,
1620                  align, align, &local_qiov, 0, 0);
1621          if (ret < 0) {
1622              return ret;
1623          }
1624          bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1625      }
1626  
1627  zero_mem:
1628      if (zero_middle) {
1629          memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1630      }
1631  
1632      return 0;
1633  }
1634  
1635  static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1636  {
1637      if (pad->buf) {
1638          qemu_vfree(pad->buf);
1639          qemu_iovec_destroy(&pad->local_qiov);
1640      }
1641  }
1642  
1643  /*
1644   * bdrv_pad_request
1645   *
1646   * Exchange request parameters with padded request if needed. Don't include RMW
1647   * read of padding, bdrv_padding_rmw_read() should be called separately if
1648   * needed.
1649   *
1650   * All parameters except @bs are in-out: they represent original request at
1651   * function call and padded (if padding needed) at function finish.
1652   *
1653   * Function always succeeds.
1654   */
1655  static bool bdrv_pad_request(BlockDriverState *bs,
1656                               QEMUIOVector **qiov, size_t *qiov_offset,
1657                               int64_t *offset, unsigned int *bytes,
1658                               BdrvRequestPadding *pad)
1659  {
1660      if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1661          return false;
1662      }
1663  
1664      qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1665                               *qiov, *qiov_offset, *bytes,
1666                               pad->buf + pad->buf_len - pad->tail, pad->tail);
1667      *bytes += pad->head + pad->tail;
1668      *offset -= pad->head;
1669      *qiov = &pad->local_qiov;
1670      *qiov_offset = 0;
1671  
1672      return true;
1673  }
1674  
1675  int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1676      int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1677      BdrvRequestFlags flags)
1678  {
1679      return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1680  }
1681  
1682  int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1683      int64_t offset, unsigned int bytes,
1684      QEMUIOVector *qiov, size_t qiov_offset,
1685      BdrvRequestFlags flags)
1686  {
1687      BlockDriverState *bs = child->bs;
1688      BdrvTrackedRequest req;
1689      BdrvRequestPadding pad;
1690      int ret;
1691  
1692      trace_bdrv_co_preadv(bs, offset, bytes, flags);
1693  
1694      if (!bdrv_is_inserted(bs)) {
1695          return -ENOMEDIUM;
1696      }
1697  
1698      ret = bdrv_check_request32(offset, bytes);
1699      if (ret < 0) {
1700          return ret;
1701      }
1702  
1703      if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1704          /*
1705           * Aligning zero request is nonsense. Even if driver has special meaning
1706           * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1707           * it to driver due to request_alignment.
1708           *
1709           * Still, no reason to return an error if someone do unaligned
1710           * zero-length read occasionally.
1711           */
1712          return 0;
1713      }
1714  
1715      bdrv_inc_in_flight(bs);
1716  
1717      /* Don't do copy-on-read if we read data before write operation */
1718      if (qatomic_read(&bs->copy_on_read)) {
1719          flags |= BDRV_REQ_COPY_ON_READ;
1720      }
1721  
1722      bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad);
1723  
1724      tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1725      ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1726                                bs->bl.request_alignment,
1727                                qiov, qiov_offset, flags);
1728      tracked_request_end(&req);
1729      bdrv_dec_in_flight(bs);
1730  
1731      bdrv_padding_destroy(&pad);
1732  
1733      return ret;
1734  }
1735  
1736  static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1737      int64_t offset, int bytes, BdrvRequestFlags flags)
1738  {
1739      BlockDriver *drv = bs->drv;
1740      QEMUIOVector qiov;
1741      void *buf = NULL;
1742      int ret = 0;
1743      bool need_flush = false;
1744      int head = 0;
1745      int tail = 0;
1746  
1747      int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1748      int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1749                          bs->bl.request_alignment);
1750      int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1751  
1752      if (!drv) {
1753          return -ENOMEDIUM;
1754      }
1755  
1756      if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1757          return -ENOTSUP;
1758      }
1759  
1760      assert(alignment % bs->bl.request_alignment == 0);
1761      head = offset % alignment;
1762      tail = (offset + bytes) % alignment;
1763      max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1764      assert(max_write_zeroes >= bs->bl.request_alignment);
1765  
1766      while (bytes > 0 && !ret) {
1767          int num = bytes;
1768  
1769          /* Align request.  Block drivers can expect the "bulk" of the request
1770           * to be aligned, and that unaligned requests do not cross cluster
1771           * boundaries.
1772           */
1773          if (head) {
1774              /* Make a small request up to the first aligned sector. For
1775               * convenience, limit this request to max_transfer even if
1776               * we don't need to fall back to writes.  */
1777              num = MIN(MIN(bytes, max_transfer), alignment - head);
1778              head = (head + num) % alignment;
1779              assert(num < max_write_zeroes);
1780          } else if (tail && num > alignment) {
1781              /* Shorten the request to the last aligned sector.  */
1782              num -= tail;
1783          }
1784  
1785          /* limit request size */
1786          if (num > max_write_zeroes) {
1787              num = max_write_zeroes;
1788          }
1789  
1790          ret = -ENOTSUP;
1791          /* First try the efficient write zeroes operation */
1792          if (drv->bdrv_co_pwrite_zeroes) {
1793              ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1794                                               flags & bs->supported_zero_flags);
1795              if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1796                  !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1797                  need_flush = true;
1798              }
1799          } else {
1800              assert(!bs->supported_zero_flags);
1801          }
1802  
1803          if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1804              /* Fall back to bounce buffer if write zeroes is unsupported */
1805              BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1806  
1807              if ((flags & BDRV_REQ_FUA) &&
1808                  !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1809                  /* No need for bdrv_driver_pwrite() to do a fallback
1810                   * flush on each chunk; use just one at the end */
1811                  write_flags &= ~BDRV_REQ_FUA;
1812                  need_flush = true;
1813              }
1814              num = MIN(num, max_transfer);
1815              if (buf == NULL) {
1816                  buf = qemu_try_blockalign0(bs, num);
1817                  if (buf == NULL) {
1818                      ret = -ENOMEM;
1819                      goto fail;
1820                  }
1821              }
1822              qemu_iovec_init_buf(&qiov, buf, num);
1823  
1824              ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1825  
1826              /* Keep bounce buffer around if it is big enough for all
1827               * all future requests.
1828               */
1829              if (num < max_transfer) {
1830                  qemu_vfree(buf);
1831                  buf = NULL;
1832              }
1833          }
1834  
1835          offset += num;
1836          bytes -= num;
1837      }
1838  
1839  fail:
1840      if (ret == 0 && need_flush) {
1841          ret = bdrv_co_flush(bs);
1842      }
1843      qemu_vfree(buf);
1844      return ret;
1845  }
1846  
1847  static inline int coroutine_fn
1848  bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1849                            BdrvTrackedRequest *req, int flags)
1850  {
1851      BlockDriverState *bs = child->bs;
1852      int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1853  
1854      if (bs->read_only) {
1855          return -EPERM;
1856      }
1857  
1858      assert(!(bs->open_flags & BDRV_O_INACTIVE));
1859      assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1860      assert(!(flags & ~BDRV_REQ_MASK));
1861      assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1862  
1863      if (flags & BDRV_REQ_SERIALISING) {
1864          QEMU_LOCK_GUARD(&bs->reqs_lock);
1865  
1866          tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1867  
1868          if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1869              return -EBUSY;
1870          }
1871  
1872          bdrv_wait_serialising_requests_locked(req);
1873      } else {
1874          bdrv_wait_serialising_requests(req);
1875      }
1876  
1877      assert(req->overlap_offset <= offset);
1878      assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1879      assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1880  
1881      switch (req->type) {
1882      case BDRV_TRACKED_WRITE:
1883      case BDRV_TRACKED_DISCARD:
1884          if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1885              assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1886          } else {
1887              assert(child->perm & BLK_PERM_WRITE);
1888          }
1889          return notifier_with_return_list_notify(&bs->before_write_notifiers,
1890                                                  req);
1891      case BDRV_TRACKED_TRUNCATE:
1892          assert(child->perm & BLK_PERM_RESIZE);
1893          return 0;
1894      default:
1895          abort();
1896      }
1897  }
1898  
1899  static inline void coroutine_fn
1900  bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1901                           BdrvTrackedRequest *req, int ret)
1902  {
1903      int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1904      BlockDriverState *bs = child->bs;
1905  
1906      qatomic_inc(&bs->write_gen);
1907  
1908      /*
1909       * Discard cannot extend the image, but in error handling cases, such as
1910       * when reverting a qcow2 cluster allocation, the discarded range can pass
1911       * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1912       * here. Instead, just skip it, since semantically a discard request
1913       * beyond EOF cannot expand the image anyway.
1914       */
1915      if (ret == 0 &&
1916          (req->type == BDRV_TRACKED_TRUNCATE ||
1917           end_sector > bs->total_sectors) &&
1918          req->type != BDRV_TRACKED_DISCARD) {
1919          bs->total_sectors = end_sector;
1920          bdrv_parent_cb_resize(bs);
1921          bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1922      }
1923      if (req->bytes) {
1924          switch (req->type) {
1925          case BDRV_TRACKED_WRITE:
1926              stat64_max(&bs->wr_highest_offset, offset + bytes);
1927              /* fall through, to set dirty bits */
1928          case BDRV_TRACKED_DISCARD:
1929              bdrv_set_dirty(bs, offset, bytes);
1930              break;
1931          default:
1932              break;
1933          }
1934      }
1935  }
1936  
1937  /*
1938   * Forwards an already correctly aligned write request to the BlockDriver,
1939   * after possibly fragmenting it.
1940   */
1941  static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1942      BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1943      int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1944  {
1945      BlockDriverState *bs = child->bs;
1946      BlockDriver *drv = bs->drv;
1947      int ret;
1948  
1949      uint64_t bytes_remaining = bytes;
1950      int max_transfer;
1951  
1952      if (!drv) {
1953          return -ENOMEDIUM;
1954      }
1955  
1956      if (bdrv_has_readonly_bitmaps(bs)) {
1957          return -EPERM;
1958      }
1959  
1960      assert(is_power_of_2(align));
1961      assert((offset & (align - 1)) == 0);
1962      assert((bytes & (align - 1)) == 0);
1963      assert(!qiov || qiov_offset + bytes <= qiov->size);
1964      max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1965                                     align);
1966  
1967      ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1968  
1969      if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1970          !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1971          qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1972          flags |= BDRV_REQ_ZERO_WRITE;
1973          if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1974              flags |= BDRV_REQ_MAY_UNMAP;
1975          }
1976      }
1977  
1978      if (ret < 0) {
1979          /* Do nothing, write notifier decided to fail this request */
1980      } else if (flags & BDRV_REQ_ZERO_WRITE) {
1981          bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1982          ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1983      } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1984          ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1985                                               qiov, qiov_offset);
1986      } else if (bytes <= max_transfer) {
1987          bdrv_debug_event(bs, BLKDBG_PWRITEV);
1988          ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1989      } else {
1990          bdrv_debug_event(bs, BLKDBG_PWRITEV);
1991          while (bytes_remaining) {
1992              int num = MIN(bytes_remaining, max_transfer);
1993              int local_flags = flags;
1994  
1995              assert(num);
1996              if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1997                  !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1998                  /* If FUA is going to be emulated by flush, we only
1999                   * need to flush on the last iteration */
2000                  local_flags &= ~BDRV_REQ_FUA;
2001              }
2002  
2003              ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2004                                        num, qiov,
2005                                        qiov_offset + bytes - bytes_remaining,
2006                                        local_flags);
2007              if (ret < 0) {
2008                  break;
2009              }
2010              bytes_remaining -= num;
2011          }
2012      }
2013      bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2014  
2015      if (ret >= 0) {
2016          ret = 0;
2017      }
2018      bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2019  
2020      return ret;
2021  }
2022  
2023  static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2024                                                  int64_t offset,
2025                                                  unsigned int bytes,
2026                                                  BdrvRequestFlags flags,
2027                                                  BdrvTrackedRequest *req)
2028  {
2029      BlockDriverState *bs = child->bs;
2030      QEMUIOVector local_qiov;
2031      uint64_t align = bs->bl.request_alignment;
2032      int ret = 0;
2033      bool padding;
2034      BdrvRequestPadding pad;
2035  
2036      padding = bdrv_init_padding(bs, offset, bytes, &pad);
2037      if (padding) {
2038          bdrv_make_request_serialising(req, align);
2039  
2040          bdrv_padding_rmw_read(child, req, &pad, true);
2041  
2042          if (pad.head || pad.merge_reads) {
2043              int64_t aligned_offset = offset & ~(align - 1);
2044              int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2045  
2046              qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2047              ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2048                                         align, &local_qiov, 0,
2049                                         flags & ~BDRV_REQ_ZERO_WRITE);
2050              if (ret < 0 || pad.merge_reads) {
2051                  /* Error or all work is done */
2052                  goto out;
2053              }
2054              offset += write_bytes - pad.head;
2055              bytes -= write_bytes - pad.head;
2056          }
2057      }
2058  
2059      assert(!bytes || (offset & (align - 1)) == 0);
2060      if (bytes >= align) {
2061          /* Write the aligned part in the middle. */
2062          uint64_t aligned_bytes = bytes & ~(align - 1);
2063          ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2064                                     NULL, 0, flags);
2065          if (ret < 0) {
2066              goto out;
2067          }
2068          bytes -= aligned_bytes;
2069          offset += aligned_bytes;
2070      }
2071  
2072      assert(!bytes || (offset & (align - 1)) == 0);
2073      if (bytes) {
2074          assert(align == pad.tail + bytes);
2075  
2076          qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2077          ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2078                                     &local_qiov, 0,
2079                                     flags & ~BDRV_REQ_ZERO_WRITE);
2080      }
2081  
2082  out:
2083      bdrv_padding_destroy(&pad);
2084  
2085      return ret;
2086  }
2087  
2088  /*
2089   * Handle a write request in coroutine context
2090   */
2091  int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2092      int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
2093      BdrvRequestFlags flags)
2094  {
2095      return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2096  }
2097  
2098  int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2099      int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset,
2100      BdrvRequestFlags flags)
2101  {
2102      BlockDriverState *bs = child->bs;
2103      BdrvTrackedRequest req;
2104      uint64_t align = bs->bl.request_alignment;
2105      BdrvRequestPadding pad;
2106      int ret;
2107  
2108      trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
2109  
2110      if (!bdrv_is_inserted(bs)) {
2111          return -ENOMEDIUM;
2112      }
2113  
2114      ret = bdrv_check_request32(offset, bytes);
2115      if (ret < 0) {
2116          return ret;
2117      }
2118  
2119      /* If the request is misaligned then we can't make it efficient */
2120      if ((flags & BDRV_REQ_NO_FALLBACK) &&
2121          !QEMU_IS_ALIGNED(offset | bytes, align))
2122      {
2123          return -ENOTSUP;
2124      }
2125  
2126      if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2127          /*
2128           * Aligning zero request is nonsense. Even if driver has special meaning
2129           * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2130           * it to driver due to request_alignment.
2131           *
2132           * Still, no reason to return an error if someone do unaligned
2133           * zero-length write occasionally.
2134           */
2135          return 0;
2136      }
2137  
2138      bdrv_inc_in_flight(bs);
2139      /*
2140       * Align write if necessary by performing a read-modify-write cycle.
2141       * Pad qiov with the read parts and be sure to have a tracked request not
2142       * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
2143       */
2144      tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2145  
2146      if (flags & BDRV_REQ_ZERO_WRITE) {
2147          ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2148          goto out;
2149      }
2150  
2151      if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) {
2152          bdrv_make_request_serialising(&req, align);
2153          bdrv_padding_rmw_read(child, &req, &pad, false);
2154      }
2155  
2156      ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2157                                 qiov, qiov_offset, flags);
2158  
2159      bdrv_padding_destroy(&pad);
2160  
2161  out:
2162      tracked_request_end(&req);
2163      bdrv_dec_in_flight(bs);
2164  
2165      return ret;
2166  }
2167  
2168  int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2169                                         int bytes, BdrvRequestFlags flags)
2170  {
2171      trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2172  
2173      if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2174          flags &= ~BDRV_REQ_MAY_UNMAP;
2175      }
2176  
2177      return bdrv_co_pwritev(child, offset, bytes, NULL,
2178                             BDRV_REQ_ZERO_WRITE | flags);
2179  }
2180  
2181  /*
2182   * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2183   */
2184  int bdrv_flush_all(void)
2185  {
2186      BdrvNextIterator it;
2187      BlockDriverState *bs = NULL;
2188      int result = 0;
2189  
2190      /*
2191       * bdrv queue is managed by record/replay,
2192       * creating new flush request for stopping
2193       * the VM may break the determinism
2194       */
2195      if (replay_events_enabled()) {
2196          return result;
2197      }
2198  
2199      for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2200          AioContext *aio_context = bdrv_get_aio_context(bs);
2201          int ret;
2202  
2203          aio_context_acquire(aio_context);
2204          ret = bdrv_flush(bs);
2205          if (ret < 0 && !result) {
2206              result = ret;
2207          }
2208          aio_context_release(aio_context);
2209      }
2210  
2211      return result;
2212  }
2213  
2214  /*
2215   * Returns the allocation status of the specified sectors.
2216   * Drivers not implementing the functionality are assumed to not support
2217   * backing files, hence all their sectors are reported as allocated.
2218   *
2219   * If 'want_zero' is true, the caller is querying for mapping
2220   * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2221   * _ZERO where possible; otherwise, the result favors larger 'pnum',
2222   * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2223   *
2224   * If 'offset' is beyond the end of the disk image the return value is
2225   * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2226   *
2227   * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2228   * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2229   * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2230   *
2231   * 'pnum' is set to the number of bytes (including and immediately
2232   * following the specified offset) that are easily known to be in the
2233   * same allocated/unallocated state.  Note that a second call starting
2234   * at the original offset plus returned pnum may have the same status.
2235   * The returned value is non-zero on success except at end-of-file.
2236   *
2237   * Returns negative errno on failure.  Otherwise, if the
2238   * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2239   * set to the host mapping and BDS corresponding to the guest offset.
2240   */
2241  static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2242                                               bool want_zero,
2243                                               int64_t offset, int64_t bytes,
2244                                               int64_t *pnum, int64_t *map,
2245                                               BlockDriverState **file)
2246  {
2247      int64_t total_size;
2248      int64_t n; /* bytes */
2249      int ret;
2250      int64_t local_map = 0;
2251      BlockDriverState *local_file = NULL;
2252      int64_t aligned_offset, aligned_bytes;
2253      uint32_t align;
2254      bool has_filtered_child;
2255  
2256      assert(pnum);
2257      *pnum = 0;
2258      total_size = bdrv_getlength(bs);
2259      if (total_size < 0) {
2260          ret = total_size;
2261          goto early_out;
2262      }
2263  
2264      if (offset >= total_size) {
2265          ret = BDRV_BLOCK_EOF;
2266          goto early_out;
2267      }
2268      if (!bytes) {
2269          ret = 0;
2270          goto early_out;
2271      }
2272  
2273      n = total_size - offset;
2274      if (n < bytes) {
2275          bytes = n;
2276      }
2277  
2278      /* Must be non-NULL or bdrv_getlength() would have failed */
2279      assert(bs->drv);
2280      has_filtered_child = bdrv_filter_child(bs);
2281      if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2282          *pnum = bytes;
2283          ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2284          if (offset + bytes == total_size) {
2285              ret |= BDRV_BLOCK_EOF;
2286          }
2287          if (bs->drv->protocol_name) {
2288              ret |= BDRV_BLOCK_OFFSET_VALID;
2289              local_map = offset;
2290              local_file = bs;
2291          }
2292          goto early_out;
2293      }
2294  
2295      bdrv_inc_in_flight(bs);
2296  
2297      /* Round out to request_alignment boundaries */
2298      align = bs->bl.request_alignment;
2299      aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2300      aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2301  
2302      if (bs->drv->bdrv_co_block_status) {
2303          ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2304                                              aligned_bytes, pnum, &local_map,
2305                                              &local_file);
2306      } else {
2307          /* Default code for filters */
2308  
2309          local_file = bdrv_filter_bs(bs);
2310          assert(local_file);
2311  
2312          *pnum = aligned_bytes;
2313          local_map = aligned_offset;
2314          ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2315      }
2316      if (ret < 0) {
2317          *pnum = 0;
2318          goto out;
2319      }
2320  
2321      /*
2322       * The driver's result must be a non-zero multiple of request_alignment.
2323       * Clamp pnum and adjust map to original request.
2324       */
2325      assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2326             align > offset - aligned_offset);
2327      if (ret & BDRV_BLOCK_RECURSE) {
2328          assert(ret & BDRV_BLOCK_DATA);
2329          assert(ret & BDRV_BLOCK_OFFSET_VALID);
2330          assert(!(ret & BDRV_BLOCK_ZERO));
2331      }
2332  
2333      *pnum -= offset - aligned_offset;
2334      if (*pnum > bytes) {
2335          *pnum = bytes;
2336      }
2337      if (ret & BDRV_BLOCK_OFFSET_VALID) {
2338          local_map += offset - aligned_offset;
2339      }
2340  
2341      if (ret & BDRV_BLOCK_RAW) {
2342          assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2343          ret = bdrv_co_block_status(local_file, want_zero, local_map,
2344                                     *pnum, pnum, &local_map, &local_file);
2345          goto out;
2346      }
2347  
2348      if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2349          ret |= BDRV_BLOCK_ALLOCATED;
2350      } else if (bs->drv->supports_backing) {
2351          BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2352  
2353          if (!cow_bs) {
2354              ret |= BDRV_BLOCK_ZERO;
2355          } else if (want_zero) {
2356              int64_t size2 = bdrv_getlength(cow_bs);
2357  
2358              if (size2 >= 0 && offset >= size2) {
2359                  ret |= BDRV_BLOCK_ZERO;
2360              }
2361          }
2362      }
2363  
2364      if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2365          local_file && local_file != bs &&
2366          (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2367          (ret & BDRV_BLOCK_OFFSET_VALID)) {
2368          int64_t file_pnum;
2369          int ret2;
2370  
2371          ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2372                                      *pnum, &file_pnum, NULL, NULL);
2373          if (ret2 >= 0) {
2374              /* Ignore errors.  This is just providing extra information, it
2375               * is useful but not necessary.
2376               */
2377              if (ret2 & BDRV_BLOCK_EOF &&
2378                  (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2379                  /*
2380                   * It is valid for the format block driver to read
2381                   * beyond the end of the underlying file's current
2382                   * size; such areas read as zero.
2383                   */
2384                  ret |= BDRV_BLOCK_ZERO;
2385              } else {
2386                  /* Limit request to the range reported by the protocol driver */
2387                  *pnum = file_pnum;
2388                  ret |= (ret2 & BDRV_BLOCK_ZERO);
2389              }
2390          }
2391      }
2392  
2393  out:
2394      bdrv_dec_in_flight(bs);
2395      if (ret >= 0 && offset + *pnum == total_size) {
2396          ret |= BDRV_BLOCK_EOF;
2397      }
2398  early_out:
2399      if (file) {
2400          *file = local_file;
2401      }
2402      if (map) {
2403          *map = local_map;
2404      }
2405      return ret;
2406  }
2407  
2408  int coroutine_fn
2409  bdrv_co_common_block_status_above(BlockDriverState *bs,
2410                                    BlockDriverState *base,
2411                                    bool include_base,
2412                                    bool want_zero,
2413                                    int64_t offset,
2414                                    int64_t bytes,
2415                                    int64_t *pnum,
2416                                    int64_t *map,
2417                                    BlockDriverState **file,
2418                                    int *depth)
2419  {
2420      int ret;
2421      BlockDriverState *p;
2422      int64_t eof = 0;
2423      int dummy;
2424  
2425      assert(!include_base || base); /* Can't include NULL base */
2426  
2427      if (!depth) {
2428          depth = &dummy;
2429      }
2430      *depth = 0;
2431  
2432      if (!include_base && bs == base) {
2433          *pnum = bytes;
2434          return 0;
2435      }
2436  
2437      ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2438      ++*depth;
2439      if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2440          return ret;
2441      }
2442  
2443      if (ret & BDRV_BLOCK_EOF) {
2444          eof = offset + *pnum;
2445      }
2446  
2447      assert(*pnum <= bytes);
2448      bytes = *pnum;
2449  
2450      for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2451           p = bdrv_filter_or_cow_bs(p))
2452      {
2453          ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2454                                     file);
2455          ++*depth;
2456          if (ret < 0) {
2457              return ret;
2458          }
2459          if (*pnum == 0) {
2460              /*
2461               * The top layer deferred to this layer, and because this layer is
2462               * short, any zeroes that we synthesize beyond EOF behave as if they
2463               * were allocated at this layer.
2464               *
2465               * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2466               * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2467               * below.
2468               */
2469              assert(ret & BDRV_BLOCK_EOF);
2470              *pnum = bytes;
2471              if (file) {
2472                  *file = p;
2473              }
2474              ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2475              break;
2476          }
2477          if (ret & BDRV_BLOCK_ALLOCATED) {
2478              /*
2479               * We've found the node and the status, we must break.
2480               *
2481               * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2482               * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2483               * below.
2484               */
2485              ret &= ~BDRV_BLOCK_EOF;
2486              break;
2487          }
2488  
2489          if (p == base) {
2490              assert(include_base);
2491              break;
2492          }
2493  
2494          /*
2495           * OK, [offset, offset + *pnum) region is unallocated on this layer,
2496           * let's continue the diving.
2497           */
2498          assert(*pnum <= bytes);
2499          bytes = *pnum;
2500      }
2501  
2502      if (offset + *pnum == eof) {
2503          ret |= BDRV_BLOCK_EOF;
2504      }
2505  
2506      return ret;
2507  }
2508  
2509  int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2510                              int64_t offset, int64_t bytes, int64_t *pnum,
2511                              int64_t *map, BlockDriverState **file)
2512  {
2513      return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2514                                            pnum, map, file, NULL);
2515  }
2516  
2517  int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2518                        int64_t *pnum, int64_t *map, BlockDriverState **file)
2519  {
2520      return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2521                                     offset, bytes, pnum, map, file);
2522  }
2523  
2524  /*
2525   * Check @bs (and its backing chain) to see if the range defined
2526   * by @offset and @bytes is known to read as zeroes.
2527   * Return 1 if that is the case, 0 otherwise and -errno on error.
2528   * This test is meant to be fast rather than accurate so returning 0
2529   * does not guarantee non-zero data.
2530   */
2531  int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2532                                        int64_t bytes)
2533  {
2534      int ret;
2535      int64_t pnum = bytes;
2536  
2537      if (!bytes) {
2538          return 1;
2539      }
2540  
2541      ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2542                                           bytes, &pnum, NULL, NULL, NULL);
2543  
2544      if (ret < 0) {
2545          return ret;
2546      }
2547  
2548      return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2549  }
2550  
2551  int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2552                                     int64_t bytes, int64_t *pnum)
2553  {
2554      int ret;
2555      int64_t dummy;
2556  
2557      ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2558                                           bytes, pnum ? pnum : &dummy, NULL,
2559                                           NULL, NULL);
2560      if (ret < 0) {
2561          return ret;
2562      }
2563      return !!(ret & BDRV_BLOCK_ALLOCATED);
2564  }
2565  
2566  /*
2567   * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2568   *
2569   * Return a positive depth if (a prefix of) the given range is allocated
2570   * in any image between BASE and TOP (BASE is only included if include_base
2571   * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2572   * BASE can be NULL to check if the given offset is allocated in any
2573   * image of the chain.  Return 0 otherwise, or negative errno on
2574   * failure.
2575   *
2576   * 'pnum' is set to the number of bytes (including and immediately
2577   * following the specified offset) that are known to be in the same
2578   * allocated/unallocated state.  Note that a subsequent call starting
2579   * at 'offset + *pnum' may return the same allocation status (in other
2580   * words, the result is not necessarily the maximum possible range);
2581   * but 'pnum' will only be 0 when end of file is reached.
2582   */
2583  int bdrv_is_allocated_above(BlockDriverState *top,
2584                              BlockDriverState *base,
2585                              bool include_base, int64_t offset,
2586                              int64_t bytes, int64_t *pnum)
2587  {
2588      int depth;
2589      int ret = bdrv_common_block_status_above(top, base, include_base, false,
2590                                               offset, bytes, pnum, NULL, NULL,
2591                                               &depth);
2592      if (ret < 0) {
2593          return ret;
2594      }
2595  
2596      if (ret & BDRV_BLOCK_ALLOCATED) {
2597          return depth;
2598      }
2599      return 0;
2600  }
2601  
2602  int coroutine_fn
2603  bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2604  {
2605      BlockDriver *drv = bs->drv;
2606      BlockDriverState *child_bs = bdrv_primary_bs(bs);
2607      int ret = -ENOTSUP;
2608  
2609      if (!drv) {
2610          return -ENOMEDIUM;
2611      }
2612  
2613      bdrv_inc_in_flight(bs);
2614  
2615      if (drv->bdrv_load_vmstate) {
2616          ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2617      } else if (child_bs) {
2618          ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2619      }
2620  
2621      bdrv_dec_in_flight(bs);
2622  
2623      return ret;
2624  }
2625  
2626  int coroutine_fn
2627  bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2628  {
2629      BlockDriver *drv = bs->drv;
2630      BlockDriverState *child_bs = bdrv_primary_bs(bs);
2631      int ret = -ENOTSUP;
2632  
2633      if (!drv) {
2634          return -ENOMEDIUM;
2635      }
2636  
2637      bdrv_inc_in_flight(bs);
2638  
2639      if (drv->bdrv_save_vmstate) {
2640          ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2641      } else if (child_bs) {
2642          ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2643      }
2644  
2645      bdrv_dec_in_flight(bs);
2646  
2647      return ret;
2648  }
2649  
2650  int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2651                        int64_t pos, int size)
2652  {
2653      QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2654      int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2655  
2656      return ret < 0 ? ret : size;
2657  }
2658  
2659  int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2660                        int64_t pos, int size)
2661  {
2662      QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2663      int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2664  
2665      return ret < 0 ? ret : size;
2666  }
2667  
2668  /**************************************************************/
2669  /* async I/Os */
2670  
2671  void bdrv_aio_cancel(BlockAIOCB *acb)
2672  {
2673      qemu_aio_ref(acb);
2674      bdrv_aio_cancel_async(acb);
2675      while (acb->refcnt > 1) {
2676          if (acb->aiocb_info->get_aio_context) {
2677              aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2678          } else if (acb->bs) {
2679              /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2680               * assert that we're not using an I/O thread.  Thread-safe
2681               * code should use bdrv_aio_cancel_async exclusively.
2682               */
2683              assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2684              aio_poll(bdrv_get_aio_context(acb->bs), true);
2685          } else {
2686              abort();
2687          }
2688      }
2689      qemu_aio_unref(acb);
2690  }
2691  
2692  /* Async version of aio cancel. The caller is not blocked if the acb implements
2693   * cancel_async, otherwise we do nothing and let the request normally complete.
2694   * In either case the completion callback must be called. */
2695  void bdrv_aio_cancel_async(BlockAIOCB *acb)
2696  {
2697      if (acb->aiocb_info->cancel_async) {
2698          acb->aiocb_info->cancel_async(acb);
2699      }
2700  }
2701  
2702  /**************************************************************/
2703  /* Coroutine block device emulation */
2704  
2705  int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2706  {
2707      BdrvChild *primary_child = bdrv_primary_child(bs);
2708      BdrvChild *child;
2709      int current_gen;
2710      int ret = 0;
2711  
2712      bdrv_inc_in_flight(bs);
2713  
2714      if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2715          bdrv_is_sg(bs)) {
2716          goto early_exit;
2717      }
2718  
2719      qemu_co_mutex_lock(&bs->reqs_lock);
2720      current_gen = qatomic_read(&bs->write_gen);
2721  
2722      /* Wait until any previous flushes are completed */
2723      while (bs->active_flush_req) {
2724          qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2725      }
2726  
2727      /* Flushes reach this point in nondecreasing current_gen order.  */
2728      bs->active_flush_req = true;
2729      qemu_co_mutex_unlock(&bs->reqs_lock);
2730  
2731      /* Write back all layers by calling one driver function */
2732      if (bs->drv->bdrv_co_flush) {
2733          ret = bs->drv->bdrv_co_flush(bs);
2734          goto out;
2735      }
2736  
2737      /* Write back cached data to the OS even with cache=unsafe */
2738      BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2739      if (bs->drv->bdrv_co_flush_to_os) {
2740          ret = bs->drv->bdrv_co_flush_to_os(bs);
2741          if (ret < 0) {
2742              goto out;
2743          }
2744      }
2745  
2746      /* But don't actually force it to the disk with cache=unsafe */
2747      if (bs->open_flags & BDRV_O_NO_FLUSH) {
2748          goto flush_children;
2749      }
2750  
2751      /* Check if we really need to flush anything */
2752      if (bs->flushed_gen == current_gen) {
2753          goto flush_children;
2754      }
2755  
2756      BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2757      if (!bs->drv) {
2758          /* bs->drv->bdrv_co_flush() might have ejected the BDS
2759           * (even in case of apparent success) */
2760          ret = -ENOMEDIUM;
2761          goto out;
2762      }
2763      if (bs->drv->bdrv_co_flush_to_disk) {
2764          ret = bs->drv->bdrv_co_flush_to_disk(bs);
2765      } else if (bs->drv->bdrv_aio_flush) {
2766          BlockAIOCB *acb;
2767          CoroutineIOCompletion co = {
2768              .coroutine = qemu_coroutine_self(),
2769          };
2770  
2771          acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2772          if (acb == NULL) {
2773              ret = -EIO;
2774          } else {
2775              qemu_coroutine_yield();
2776              ret = co.ret;
2777          }
2778      } else {
2779          /*
2780           * Some block drivers always operate in either writethrough or unsafe
2781           * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2782           * know how the server works (because the behaviour is hardcoded or
2783           * depends on server-side configuration), so we can't ensure that
2784           * everything is safe on disk. Returning an error doesn't work because
2785           * that would break guests even if the server operates in writethrough
2786           * mode.
2787           *
2788           * Let's hope the user knows what he's doing.
2789           */
2790          ret = 0;
2791      }
2792  
2793      if (ret < 0) {
2794          goto out;
2795      }
2796  
2797      /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2798       * in the case of cache=unsafe, so there are no useless flushes.
2799       */
2800  flush_children:
2801      ret = 0;
2802      QLIST_FOREACH(child, &bs->children, next) {
2803          if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2804              int this_child_ret = bdrv_co_flush(child->bs);
2805              if (!ret) {
2806                  ret = this_child_ret;
2807              }
2808          }
2809      }
2810  
2811  out:
2812      /* Notify any pending flushes that we have completed */
2813      if (ret == 0) {
2814          bs->flushed_gen = current_gen;
2815      }
2816  
2817      qemu_co_mutex_lock(&bs->reqs_lock);
2818      bs->active_flush_req = false;
2819      /* Return value is ignored - it's ok if wait queue is empty */
2820      qemu_co_queue_next(&bs->flush_queue);
2821      qemu_co_mutex_unlock(&bs->reqs_lock);
2822  
2823  early_exit:
2824      bdrv_dec_in_flight(bs);
2825      return ret;
2826  }
2827  
2828  int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2829                                    int64_t bytes)
2830  {
2831      BdrvTrackedRequest req;
2832      int max_pdiscard, ret;
2833      int head, tail, align;
2834      BlockDriverState *bs = child->bs;
2835  
2836      if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2837          return -ENOMEDIUM;
2838      }
2839  
2840      if (bdrv_has_readonly_bitmaps(bs)) {
2841          return -EPERM;
2842      }
2843  
2844      ret = bdrv_check_request(offset, bytes);
2845      if (ret < 0) {
2846          return ret;
2847      }
2848  
2849      /* Do nothing if disabled.  */
2850      if (!(bs->open_flags & BDRV_O_UNMAP)) {
2851          return 0;
2852      }
2853  
2854      if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2855          return 0;
2856      }
2857  
2858      /* Discard is advisory, but some devices track and coalesce
2859       * unaligned requests, so we must pass everything down rather than
2860       * round here.  Still, most devices will just silently ignore
2861       * unaligned requests (by returning -ENOTSUP), so we must fragment
2862       * the request accordingly.  */
2863      align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2864      assert(align % bs->bl.request_alignment == 0);
2865      head = offset % align;
2866      tail = (offset + bytes) % align;
2867  
2868      bdrv_inc_in_flight(bs);
2869      tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2870  
2871      ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2872      if (ret < 0) {
2873          goto out;
2874      }
2875  
2876      max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2877                                     align);
2878      assert(max_pdiscard >= bs->bl.request_alignment);
2879  
2880      while (bytes > 0) {
2881          int64_t num = bytes;
2882  
2883          if (head) {
2884              /* Make small requests to get to alignment boundaries. */
2885              num = MIN(bytes, align - head);
2886              if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2887                  num %= bs->bl.request_alignment;
2888              }
2889              head = (head + num) % align;
2890              assert(num < max_pdiscard);
2891          } else if (tail) {
2892              if (num > align) {
2893                  /* Shorten the request to the last aligned cluster.  */
2894                  num -= tail;
2895              } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2896                         tail > bs->bl.request_alignment) {
2897                  tail %= bs->bl.request_alignment;
2898                  num -= tail;
2899              }
2900          }
2901          /* limit request size */
2902          if (num > max_pdiscard) {
2903              num = max_pdiscard;
2904          }
2905  
2906          if (!bs->drv) {
2907              ret = -ENOMEDIUM;
2908              goto out;
2909          }
2910          if (bs->drv->bdrv_co_pdiscard) {
2911              ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2912          } else {
2913              BlockAIOCB *acb;
2914              CoroutineIOCompletion co = {
2915                  .coroutine = qemu_coroutine_self(),
2916              };
2917  
2918              acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2919                                               bdrv_co_io_em_complete, &co);
2920              if (acb == NULL) {
2921                  ret = -EIO;
2922                  goto out;
2923              } else {
2924                  qemu_coroutine_yield();
2925                  ret = co.ret;
2926              }
2927          }
2928          if (ret && ret != -ENOTSUP) {
2929              goto out;
2930          }
2931  
2932          offset += num;
2933          bytes -= num;
2934      }
2935      ret = 0;
2936  out:
2937      bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
2938      tracked_request_end(&req);
2939      bdrv_dec_in_flight(bs);
2940      return ret;
2941  }
2942  
2943  int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2944  {
2945      BlockDriver *drv = bs->drv;
2946      CoroutineIOCompletion co = {
2947          .coroutine = qemu_coroutine_self(),
2948      };
2949      BlockAIOCB *acb;
2950  
2951      bdrv_inc_in_flight(bs);
2952      if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2953          co.ret = -ENOTSUP;
2954          goto out;
2955      }
2956  
2957      if (drv->bdrv_co_ioctl) {
2958          co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2959      } else {
2960          acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2961          if (!acb) {
2962              co.ret = -ENOTSUP;
2963              goto out;
2964          }
2965          qemu_coroutine_yield();
2966      }
2967  out:
2968      bdrv_dec_in_flight(bs);
2969      return co.ret;
2970  }
2971  
2972  void *qemu_blockalign(BlockDriverState *bs, size_t size)
2973  {
2974      return qemu_memalign(bdrv_opt_mem_align(bs), size);
2975  }
2976  
2977  void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2978  {
2979      return memset(qemu_blockalign(bs, size), 0, size);
2980  }
2981  
2982  void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2983  {
2984      size_t align = bdrv_opt_mem_align(bs);
2985  
2986      /* Ensure that NULL is never returned on success */
2987      assert(align > 0);
2988      if (size == 0) {
2989          size = align;
2990      }
2991  
2992      return qemu_try_memalign(align, size);
2993  }
2994  
2995  void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2996  {
2997      void *mem = qemu_try_blockalign(bs, size);
2998  
2999      if (mem) {
3000          memset(mem, 0, size);
3001      }
3002  
3003      return mem;
3004  }
3005  
3006  /*
3007   * Check if all memory in this vector is sector aligned.
3008   */
3009  bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3010  {
3011      int i;
3012      size_t alignment = bdrv_min_mem_align(bs);
3013  
3014      for (i = 0; i < qiov->niov; i++) {
3015          if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3016              return false;
3017          }
3018          if (qiov->iov[i].iov_len % alignment) {
3019              return false;
3020          }
3021      }
3022  
3023      return true;
3024  }
3025  
3026  void bdrv_add_before_write_notifier(BlockDriverState *bs,
3027                                      NotifierWithReturn *notifier)
3028  {
3029      notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
3030  }
3031  
3032  void bdrv_io_plug(BlockDriverState *bs)
3033  {
3034      BdrvChild *child;
3035  
3036      QLIST_FOREACH(child, &bs->children, next) {
3037          bdrv_io_plug(child->bs);
3038      }
3039  
3040      if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3041          BlockDriver *drv = bs->drv;
3042          if (drv && drv->bdrv_io_plug) {
3043              drv->bdrv_io_plug(bs);
3044          }
3045      }
3046  }
3047  
3048  void bdrv_io_unplug(BlockDriverState *bs)
3049  {
3050      BdrvChild *child;
3051  
3052      assert(bs->io_plugged);
3053      if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3054          BlockDriver *drv = bs->drv;
3055          if (drv && drv->bdrv_io_unplug) {
3056              drv->bdrv_io_unplug(bs);
3057          }
3058      }
3059  
3060      QLIST_FOREACH(child, &bs->children, next) {
3061          bdrv_io_unplug(child->bs);
3062      }
3063  }
3064  
3065  void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3066  {
3067      BdrvChild *child;
3068  
3069      if (bs->drv && bs->drv->bdrv_register_buf) {
3070          bs->drv->bdrv_register_buf(bs, host, size);
3071      }
3072      QLIST_FOREACH(child, &bs->children, next) {
3073          bdrv_register_buf(child->bs, host, size);
3074      }
3075  }
3076  
3077  void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3078  {
3079      BdrvChild *child;
3080  
3081      if (bs->drv && bs->drv->bdrv_unregister_buf) {
3082          bs->drv->bdrv_unregister_buf(bs, host);
3083      }
3084      QLIST_FOREACH(child, &bs->children, next) {
3085          bdrv_unregister_buf(child->bs, host);
3086      }
3087  }
3088  
3089  static int coroutine_fn bdrv_co_copy_range_internal(
3090          BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
3091          uint64_t dst_offset, uint64_t bytes,
3092          BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3093          bool recurse_src)
3094  {
3095      BdrvTrackedRequest req;
3096      int ret;
3097  
3098      /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3099      assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3100      assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3101  
3102      if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3103          return -ENOMEDIUM;
3104      }
3105      ret = bdrv_check_request32(dst_offset, bytes);
3106      if (ret) {
3107          return ret;
3108      }
3109      if (write_flags & BDRV_REQ_ZERO_WRITE) {
3110          return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3111      }
3112  
3113      if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3114          return -ENOMEDIUM;
3115      }
3116      ret = bdrv_check_request32(src_offset, bytes);
3117      if (ret) {
3118          return ret;
3119      }
3120  
3121      if (!src->bs->drv->bdrv_co_copy_range_from
3122          || !dst->bs->drv->bdrv_co_copy_range_to
3123          || src->bs->encrypted || dst->bs->encrypted) {
3124          return -ENOTSUP;
3125      }
3126  
3127      if (recurse_src) {
3128          bdrv_inc_in_flight(src->bs);
3129          tracked_request_begin(&req, src->bs, src_offset, bytes,
3130                                BDRV_TRACKED_READ);
3131  
3132          /* BDRV_REQ_SERIALISING is only for write operation */
3133          assert(!(read_flags & BDRV_REQ_SERIALISING));
3134          bdrv_wait_serialising_requests(&req);
3135  
3136          ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3137                                                      src, src_offset,
3138                                                      dst, dst_offset,
3139                                                      bytes,
3140                                                      read_flags, write_flags);
3141  
3142          tracked_request_end(&req);
3143          bdrv_dec_in_flight(src->bs);
3144      } else {
3145          bdrv_inc_in_flight(dst->bs);
3146          tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3147                                BDRV_TRACKED_WRITE);
3148          ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3149                                          write_flags);
3150          if (!ret) {
3151              ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3152                                                        src, src_offset,
3153                                                        dst, dst_offset,
3154                                                        bytes,
3155                                                        read_flags, write_flags);
3156          }
3157          bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3158          tracked_request_end(&req);
3159          bdrv_dec_in_flight(dst->bs);
3160      }
3161  
3162      return ret;
3163  }
3164  
3165  /* Copy range from @src to @dst.
3166   *
3167   * See the comment of bdrv_co_copy_range for the parameter and return value
3168   * semantics. */
3169  int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3170                                           BdrvChild *dst, uint64_t dst_offset,
3171                                           uint64_t bytes,
3172                                           BdrvRequestFlags read_flags,
3173                                           BdrvRequestFlags write_flags)
3174  {
3175      trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3176                                    read_flags, write_flags);
3177      return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3178                                         bytes, read_flags, write_flags, true);
3179  }
3180  
3181  /* Copy range from @src to @dst.
3182   *
3183   * See the comment of bdrv_co_copy_range for the parameter and return value
3184   * semantics. */
3185  int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3186                                         BdrvChild *dst, uint64_t dst_offset,
3187                                         uint64_t bytes,
3188                                         BdrvRequestFlags read_flags,
3189                                         BdrvRequestFlags write_flags)
3190  {
3191      trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3192                                  read_flags, write_flags);
3193      return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3194                                         bytes, read_flags, write_flags, false);
3195  }
3196  
3197  int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3198                                      BdrvChild *dst, uint64_t dst_offset,
3199                                      uint64_t bytes, BdrvRequestFlags read_flags,
3200                                      BdrvRequestFlags write_flags)
3201  {
3202      return bdrv_co_copy_range_from(src, src_offset,
3203                                     dst, dst_offset,
3204                                     bytes, read_flags, write_flags);
3205  }
3206  
3207  static void bdrv_parent_cb_resize(BlockDriverState *bs)
3208  {
3209      BdrvChild *c;
3210      QLIST_FOREACH(c, &bs->parents, next_parent) {
3211          if (c->klass->resize) {
3212              c->klass->resize(c);
3213          }
3214      }
3215  }
3216  
3217  /**
3218   * Truncate file to 'offset' bytes (needed only for file protocols)
3219   *
3220   * If 'exact' is true, the file must be resized to exactly the given
3221   * 'offset'.  Otherwise, it is sufficient for the node to be at least
3222   * 'offset' bytes in length.
3223   */
3224  int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3225                                    PreallocMode prealloc, BdrvRequestFlags flags,
3226                                    Error **errp)
3227  {
3228      BlockDriverState *bs = child->bs;
3229      BdrvChild *filtered, *backing;
3230      BlockDriver *drv = bs->drv;
3231      BdrvTrackedRequest req;
3232      int64_t old_size, new_bytes;
3233      int ret;
3234  
3235  
3236      /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3237      if (!drv) {
3238          error_setg(errp, "No medium inserted");
3239          return -ENOMEDIUM;
3240      }
3241      if (offset < 0) {
3242          error_setg(errp, "Image size cannot be negative");
3243          return -EINVAL;
3244      }
3245  
3246      ret = bdrv_check_request(offset, 0);
3247      if (ret < 0) {
3248          error_setg(errp, "Required too big image size, it must be not greater "
3249                     "than %" PRId64, BDRV_MAX_LENGTH);
3250          return ret;
3251      }
3252  
3253      old_size = bdrv_getlength(bs);
3254      if (old_size < 0) {
3255          error_setg_errno(errp, -old_size, "Failed to get old image size");
3256          return old_size;
3257      }
3258  
3259      if (offset > old_size) {
3260          new_bytes = offset - old_size;
3261      } else {
3262          new_bytes = 0;
3263      }
3264  
3265      bdrv_inc_in_flight(bs);
3266      tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3267                            BDRV_TRACKED_TRUNCATE);
3268  
3269      /* If we are growing the image and potentially using preallocation for the
3270       * new area, we need to make sure that no write requests are made to it
3271       * concurrently or they might be overwritten by preallocation. */
3272      if (new_bytes) {
3273          bdrv_make_request_serialising(&req, 1);
3274      }
3275      if (bs->read_only) {
3276          error_setg(errp, "Image is read-only");
3277          ret = -EACCES;
3278          goto out;
3279      }
3280      ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3281                                      0);
3282      if (ret < 0) {
3283          error_setg_errno(errp, -ret,
3284                           "Failed to prepare request for truncation");
3285          goto out;
3286      }
3287  
3288      filtered = bdrv_filter_child(bs);
3289      backing = bdrv_cow_child(bs);
3290  
3291      /*
3292       * If the image has a backing file that is large enough that it would
3293       * provide data for the new area, we cannot leave it unallocated because
3294       * then the backing file content would become visible. Instead, zero-fill
3295       * the new area.
3296       *
3297       * Note that if the image has a backing file, but was opened without the
3298       * backing file, taking care of keeping things consistent with that backing
3299       * file is the user's responsibility.
3300       */
3301      if (new_bytes && backing) {
3302          int64_t backing_len;
3303  
3304          backing_len = bdrv_getlength(backing->bs);
3305          if (backing_len < 0) {
3306              ret = backing_len;
3307              error_setg_errno(errp, -ret, "Could not get backing file size");
3308              goto out;
3309          }
3310  
3311          if (backing_len > old_size) {
3312              flags |= BDRV_REQ_ZERO_WRITE;
3313          }
3314      }
3315  
3316      if (drv->bdrv_co_truncate) {
3317          if (flags & ~bs->supported_truncate_flags) {
3318              error_setg(errp, "Block driver does not support requested flags");
3319              ret = -ENOTSUP;
3320              goto out;
3321          }
3322          ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3323      } else if (filtered) {
3324          ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3325      } else {
3326          error_setg(errp, "Image format driver does not support resize");
3327          ret = -ENOTSUP;
3328          goto out;
3329      }
3330      if (ret < 0) {
3331          goto out;
3332      }
3333  
3334      ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3335      if (ret < 0) {
3336          error_setg_errno(errp, -ret, "Could not refresh total sector count");
3337      } else {
3338          offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3339      }
3340      /* It's possible that truncation succeeded but refresh_total_sectors
3341       * failed, but the latter doesn't affect how we should finish the request.
3342       * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3343      bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3344  
3345  out:
3346      tracked_request_end(&req);
3347      bdrv_dec_in_flight(bs);
3348  
3349      return ret;
3350  }
3351