1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/dirty-bitmap.h" 34 #include "block/write-threshold.h" 35 #include "qemu/cutils.h" 36 #include "qemu/memalign.h" 37 #include "qapi/error.h" 38 #include "qemu/error-report.h" 39 #include "qemu/main-loop.h" 40 #include "sysemu/replay.h" 41 42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 44 45 static void bdrv_parent_cb_resize(BlockDriverState *bs); 46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 47 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 48 49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore) 50 { 51 BdrvChild *c, *next; 52 53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 54 if (c == ignore) { 55 continue; 56 } 57 bdrv_parent_drained_begin_single(c); 58 } 59 } 60 61 void bdrv_parent_drained_end_single(BdrvChild *c) 62 { 63 IO_OR_GS_CODE(); 64 65 assert(c->quiesced_parent); 66 c->quiesced_parent = false; 67 68 if (c->klass->drained_end) { 69 c->klass->drained_end(c); 70 } 71 } 72 73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore) 74 { 75 BdrvChild *c; 76 77 QLIST_FOREACH(c, &bs->parents, next_parent) { 78 if (c == ignore) { 79 continue; 80 } 81 bdrv_parent_drained_end_single(c); 82 } 83 } 84 85 bool bdrv_parent_drained_poll_single(BdrvChild *c) 86 { 87 if (c->klass->drained_poll) { 88 return c->klass->drained_poll(c); 89 } 90 return false; 91 } 92 93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 94 bool ignore_bds_parents) 95 { 96 BdrvChild *c, *next; 97 bool busy = false; 98 99 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 100 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 101 continue; 102 } 103 busy |= bdrv_parent_drained_poll_single(c); 104 } 105 106 return busy; 107 } 108 109 void bdrv_parent_drained_begin_single(BdrvChild *c) 110 { 111 IO_OR_GS_CODE(); 112 113 assert(!c->quiesced_parent); 114 c->quiesced_parent = true; 115 116 if (c->klass->drained_begin) { 117 c->klass->drained_begin(c); 118 } 119 } 120 121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 122 { 123 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 124 src->pdiscard_alignment); 125 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 126 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 127 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 128 src->max_hw_transfer); 129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 130 src->opt_mem_alignment); 131 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 132 src->min_mem_alignment); 133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 134 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 135 } 136 137 typedef struct BdrvRefreshLimitsState { 138 BlockDriverState *bs; 139 BlockLimits old_bl; 140 } BdrvRefreshLimitsState; 141 142 static void bdrv_refresh_limits_abort(void *opaque) 143 { 144 BdrvRefreshLimitsState *s = opaque; 145 146 s->bs->bl = s->old_bl; 147 } 148 149 static TransactionActionDrv bdrv_refresh_limits_drv = { 150 .abort = bdrv_refresh_limits_abort, 151 .clean = g_free, 152 }; 153 154 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 156 { 157 ERRP_GUARD(); 158 BlockDriver *drv = bs->drv; 159 BdrvChild *c; 160 bool have_limits; 161 162 GLOBAL_STATE_CODE(); 163 164 if (tran) { 165 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 166 *s = (BdrvRefreshLimitsState) { 167 .bs = bs, 168 .old_bl = bs->bl, 169 }; 170 tran_add(tran, &bdrv_refresh_limits_drv, s); 171 } 172 173 memset(&bs->bl, 0, sizeof(bs->bl)); 174 175 if (!drv) { 176 return; 177 } 178 179 /* Default alignment based on whether driver has byte interface */ 180 bs->bl.request_alignment = (drv->bdrv_co_preadv || 181 drv->bdrv_aio_preadv || 182 drv->bdrv_co_preadv_part) ? 1 : 512; 183 184 /* Take some limits from the children as a default */ 185 have_limits = false; 186 QLIST_FOREACH(c, &bs->children, next) { 187 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 188 { 189 bdrv_merge_limits(&bs->bl, &c->bs->bl); 190 have_limits = true; 191 } 192 } 193 194 if (!have_limits) { 195 bs->bl.min_mem_alignment = 512; 196 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 197 198 /* Safe default since most protocols use readv()/writev()/etc */ 199 bs->bl.max_iov = IOV_MAX; 200 } 201 202 /* Then let the driver override it */ 203 if (drv->bdrv_refresh_limits) { 204 drv->bdrv_refresh_limits(bs, errp); 205 if (*errp) { 206 return; 207 } 208 } 209 210 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 211 error_setg(errp, "Driver requires too large request alignment"); 212 } 213 } 214 215 /** 216 * The copy-on-read flag is actually a reference count so multiple users may 217 * use the feature without worrying about clobbering its previous state. 218 * Copy-on-read stays enabled until all users have called to disable it. 219 */ 220 void bdrv_enable_copy_on_read(BlockDriverState *bs) 221 { 222 IO_CODE(); 223 qatomic_inc(&bs->copy_on_read); 224 } 225 226 void bdrv_disable_copy_on_read(BlockDriverState *bs) 227 { 228 int old = qatomic_fetch_dec(&bs->copy_on_read); 229 IO_CODE(); 230 assert(old >= 1); 231 } 232 233 typedef struct { 234 Coroutine *co; 235 BlockDriverState *bs; 236 bool done; 237 bool begin; 238 bool poll; 239 BdrvChild *parent; 240 } BdrvCoDrainData; 241 242 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 243 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent, 244 bool ignore_bds_parents) 245 { 246 IO_OR_GS_CODE(); 247 248 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 249 return true; 250 } 251 252 if (qatomic_read(&bs->in_flight)) { 253 return true; 254 } 255 256 return false; 257 } 258 259 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, 260 BdrvChild *ignore_parent) 261 { 262 return bdrv_drain_poll(bs, ignore_parent, false); 263 } 264 265 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 266 bool poll); 267 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent); 268 269 static void bdrv_co_drain_bh_cb(void *opaque) 270 { 271 BdrvCoDrainData *data = opaque; 272 Coroutine *co = data->co; 273 BlockDriverState *bs = data->bs; 274 275 if (bs) { 276 AioContext *ctx = bdrv_get_aio_context(bs); 277 aio_context_acquire(ctx); 278 bdrv_dec_in_flight(bs); 279 if (data->begin) { 280 bdrv_do_drained_begin(bs, data->parent, data->poll); 281 } else { 282 assert(!data->poll); 283 bdrv_do_drained_end(bs, data->parent); 284 } 285 aio_context_release(ctx); 286 } else { 287 assert(data->begin); 288 bdrv_drain_all_begin(); 289 } 290 291 data->done = true; 292 aio_co_wake(co); 293 } 294 295 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 296 bool begin, 297 BdrvChild *parent, 298 bool poll) 299 { 300 BdrvCoDrainData data; 301 Coroutine *self = qemu_coroutine_self(); 302 AioContext *ctx = bdrv_get_aio_context(bs); 303 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 304 305 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 306 * other coroutines run if they were queued by aio_co_enter(). */ 307 308 assert(qemu_in_coroutine()); 309 data = (BdrvCoDrainData) { 310 .co = self, 311 .bs = bs, 312 .done = false, 313 .begin = begin, 314 .parent = parent, 315 .poll = poll, 316 }; 317 318 if (bs) { 319 bdrv_inc_in_flight(bs); 320 } 321 322 /* 323 * Temporarily drop the lock across yield or we would get deadlocks. 324 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 325 * 326 * When we yield below, the lock for the current context will be 327 * released, so if this is actually the lock that protects bs, don't drop 328 * it a second time. 329 */ 330 if (ctx != co_ctx) { 331 aio_context_release(ctx); 332 } 333 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data); 334 335 qemu_coroutine_yield(); 336 /* If we are resumed from some other event (such as an aio completion or a 337 * timer callback), it is a bug in the caller that should be fixed. */ 338 assert(data.done); 339 340 /* Reaquire the AioContext of bs if we dropped it */ 341 if (ctx != co_ctx) { 342 aio_context_acquire(ctx); 343 } 344 } 345 346 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 347 bool poll) 348 { 349 IO_OR_GS_CODE(); 350 351 if (qemu_in_coroutine()) { 352 bdrv_co_yield_to_drain(bs, true, parent, poll); 353 return; 354 } 355 356 /* Stop things in parent-to-child order */ 357 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 358 aio_disable_external(bdrv_get_aio_context(bs)); 359 bdrv_parent_drained_begin(bs, parent); 360 if (bs->drv && bs->drv->bdrv_drain_begin) { 361 bs->drv->bdrv_drain_begin(bs); 362 } 363 } 364 365 /* 366 * Wait for drained requests to finish. 367 * 368 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 369 * call is needed so things in this AioContext can make progress even 370 * though we don't return to the main AioContext loop - this automatically 371 * includes other nodes in the same AioContext and therefore all child 372 * nodes. 373 */ 374 if (poll) { 375 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent)); 376 } 377 } 378 379 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent) 380 { 381 bdrv_do_drained_begin(bs, parent, false); 382 } 383 384 void bdrv_drained_begin(BlockDriverState *bs) 385 { 386 IO_OR_GS_CODE(); 387 bdrv_do_drained_begin(bs, NULL, true); 388 } 389 390 /** 391 * This function does not poll, nor must any of its recursively called 392 * functions. 393 */ 394 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent) 395 { 396 int old_quiesce_counter; 397 398 if (qemu_in_coroutine()) { 399 bdrv_co_yield_to_drain(bs, false, parent, false); 400 return; 401 } 402 assert(bs->quiesce_counter > 0); 403 404 /* Re-enable things in child-to-parent order */ 405 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 406 if (old_quiesce_counter == 1) { 407 if (bs->drv && bs->drv->bdrv_drain_end) { 408 bs->drv->bdrv_drain_end(bs); 409 } 410 bdrv_parent_drained_end(bs, parent); 411 aio_enable_external(bdrv_get_aio_context(bs)); 412 } 413 } 414 415 void bdrv_drained_end(BlockDriverState *bs) 416 { 417 IO_OR_GS_CODE(); 418 bdrv_do_drained_end(bs, NULL); 419 } 420 421 void bdrv_drain(BlockDriverState *bs) 422 { 423 IO_OR_GS_CODE(); 424 bdrv_drained_begin(bs); 425 bdrv_drained_end(bs); 426 } 427 428 static void bdrv_drain_assert_idle(BlockDriverState *bs) 429 { 430 BdrvChild *child, *next; 431 432 assert(qatomic_read(&bs->in_flight) == 0); 433 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 434 bdrv_drain_assert_idle(child->bs); 435 } 436 } 437 438 unsigned int bdrv_drain_all_count = 0; 439 440 static bool bdrv_drain_all_poll(void) 441 { 442 BlockDriverState *bs = NULL; 443 bool result = false; 444 GLOBAL_STATE_CODE(); 445 446 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 447 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 448 while ((bs = bdrv_next_all_states(bs))) { 449 AioContext *aio_context = bdrv_get_aio_context(bs); 450 aio_context_acquire(aio_context); 451 result |= bdrv_drain_poll(bs, NULL, true); 452 aio_context_release(aio_context); 453 } 454 455 return result; 456 } 457 458 /* 459 * Wait for pending requests to complete across all BlockDriverStates 460 * 461 * This function does not flush data to disk, use bdrv_flush_all() for that 462 * after calling this function. 463 * 464 * This pauses all block jobs and disables external clients. It must 465 * be paired with bdrv_drain_all_end(). 466 * 467 * NOTE: no new block jobs or BlockDriverStates can be created between 468 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 469 */ 470 void bdrv_drain_all_begin_nopoll(void) 471 { 472 BlockDriverState *bs = NULL; 473 GLOBAL_STATE_CODE(); 474 475 /* 476 * bdrv queue is managed by record/replay, 477 * waiting for finishing the I/O requests may 478 * be infinite 479 */ 480 if (replay_events_enabled()) { 481 return; 482 } 483 484 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 485 * loop AioContext, so make sure we're in the main context. */ 486 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 487 assert(bdrv_drain_all_count < INT_MAX); 488 bdrv_drain_all_count++; 489 490 /* Quiesce all nodes, without polling in-flight requests yet. The graph 491 * cannot change during this loop. */ 492 while ((bs = bdrv_next_all_states(bs))) { 493 AioContext *aio_context = bdrv_get_aio_context(bs); 494 495 aio_context_acquire(aio_context); 496 bdrv_do_drained_begin(bs, NULL, false); 497 aio_context_release(aio_context); 498 } 499 } 500 501 void bdrv_drain_all_begin(void) 502 { 503 BlockDriverState *bs = NULL; 504 505 if (qemu_in_coroutine()) { 506 bdrv_co_yield_to_drain(NULL, true, NULL, true); 507 return; 508 } 509 510 /* 511 * bdrv queue is managed by record/replay, 512 * waiting for finishing the I/O requests may 513 * be infinite 514 */ 515 if (replay_events_enabled()) { 516 return; 517 } 518 519 bdrv_drain_all_begin_nopoll(); 520 521 /* Now poll the in-flight requests */ 522 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 523 524 while ((bs = bdrv_next_all_states(bs))) { 525 bdrv_drain_assert_idle(bs); 526 } 527 } 528 529 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 530 { 531 GLOBAL_STATE_CODE(); 532 533 g_assert(bs->quiesce_counter > 0); 534 g_assert(!bs->refcnt); 535 536 while (bs->quiesce_counter) { 537 bdrv_do_drained_end(bs, NULL); 538 } 539 } 540 541 void bdrv_drain_all_end(void) 542 { 543 BlockDriverState *bs = NULL; 544 GLOBAL_STATE_CODE(); 545 546 /* 547 * bdrv queue is managed by record/replay, 548 * waiting for finishing the I/O requests may 549 * be endless 550 */ 551 if (replay_events_enabled()) { 552 return; 553 } 554 555 while ((bs = bdrv_next_all_states(bs))) { 556 AioContext *aio_context = bdrv_get_aio_context(bs); 557 558 aio_context_acquire(aio_context); 559 bdrv_do_drained_end(bs, NULL); 560 aio_context_release(aio_context); 561 } 562 563 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 564 assert(bdrv_drain_all_count > 0); 565 bdrv_drain_all_count--; 566 } 567 568 void bdrv_drain_all(void) 569 { 570 GLOBAL_STATE_CODE(); 571 bdrv_drain_all_begin(); 572 bdrv_drain_all_end(); 573 } 574 575 /** 576 * Remove an active request from the tracked requests list 577 * 578 * This function should be called when a tracked request is completing. 579 */ 580 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 581 { 582 if (req->serialising) { 583 qatomic_dec(&req->bs->serialising_in_flight); 584 } 585 586 qemu_co_mutex_lock(&req->bs->reqs_lock); 587 QLIST_REMOVE(req, list); 588 qemu_co_queue_restart_all(&req->wait_queue); 589 qemu_co_mutex_unlock(&req->bs->reqs_lock); 590 } 591 592 /** 593 * Add an active request to the tracked requests list 594 */ 595 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req, 596 BlockDriverState *bs, 597 int64_t offset, 598 int64_t bytes, 599 enum BdrvTrackedRequestType type) 600 { 601 bdrv_check_request(offset, bytes, &error_abort); 602 603 *req = (BdrvTrackedRequest){ 604 .bs = bs, 605 .offset = offset, 606 .bytes = bytes, 607 .type = type, 608 .co = qemu_coroutine_self(), 609 .serialising = false, 610 .overlap_offset = offset, 611 .overlap_bytes = bytes, 612 }; 613 614 qemu_co_queue_init(&req->wait_queue); 615 616 qemu_co_mutex_lock(&bs->reqs_lock); 617 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 618 qemu_co_mutex_unlock(&bs->reqs_lock); 619 } 620 621 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 622 int64_t offset, int64_t bytes) 623 { 624 bdrv_check_request(offset, bytes, &error_abort); 625 626 /* aaaa bbbb */ 627 if (offset >= req->overlap_offset + req->overlap_bytes) { 628 return false; 629 } 630 /* bbbb aaaa */ 631 if (req->overlap_offset >= offset + bytes) { 632 return false; 633 } 634 return true; 635 } 636 637 /* Called with self->bs->reqs_lock held */ 638 static coroutine_fn BdrvTrackedRequest * 639 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 640 { 641 BdrvTrackedRequest *req; 642 643 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 644 if (req == self || (!req->serialising && !self->serialising)) { 645 continue; 646 } 647 if (tracked_request_overlaps(req, self->overlap_offset, 648 self->overlap_bytes)) 649 { 650 /* 651 * Hitting this means there was a reentrant request, for 652 * example, a block driver issuing nested requests. This must 653 * never happen since it means deadlock. 654 */ 655 assert(qemu_coroutine_self() != req->co); 656 657 /* 658 * If the request is already (indirectly) waiting for us, or 659 * will wait for us as soon as it wakes up, then just go on 660 * (instead of producing a deadlock in the former case). 661 */ 662 if (!req->waiting_for) { 663 return req; 664 } 665 } 666 } 667 668 return NULL; 669 } 670 671 /* Called with self->bs->reqs_lock held */ 672 static void coroutine_fn 673 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 674 { 675 BdrvTrackedRequest *req; 676 677 while ((req = bdrv_find_conflicting_request(self))) { 678 self->waiting_for = req; 679 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 680 self->waiting_for = NULL; 681 } 682 } 683 684 /* Called with req->bs->reqs_lock held */ 685 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 686 uint64_t align) 687 { 688 int64_t overlap_offset = req->offset & ~(align - 1); 689 int64_t overlap_bytes = 690 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 691 692 bdrv_check_request(req->offset, req->bytes, &error_abort); 693 694 if (!req->serialising) { 695 qatomic_inc(&req->bs->serialising_in_flight); 696 req->serialising = true; 697 } 698 699 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 700 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 701 } 702 703 /** 704 * Return the tracked request on @bs for the current coroutine, or 705 * NULL if there is none. 706 */ 707 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 708 { 709 BdrvTrackedRequest *req; 710 Coroutine *self = qemu_coroutine_self(); 711 IO_CODE(); 712 713 QLIST_FOREACH(req, &bs->tracked_requests, list) { 714 if (req->co == self) { 715 return req; 716 } 717 } 718 719 return NULL; 720 } 721 722 /** 723 * Round a region to cluster boundaries 724 */ 725 void bdrv_round_to_clusters(BlockDriverState *bs, 726 int64_t offset, int64_t bytes, 727 int64_t *cluster_offset, 728 int64_t *cluster_bytes) 729 { 730 BlockDriverInfo bdi; 731 IO_CODE(); 732 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 733 *cluster_offset = offset; 734 *cluster_bytes = bytes; 735 } else { 736 int64_t c = bdi.cluster_size; 737 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 738 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 739 } 740 } 741 742 static int bdrv_get_cluster_size(BlockDriverState *bs) 743 { 744 BlockDriverInfo bdi; 745 int ret; 746 747 ret = bdrv_get_info(bs, &bdi); 748 if (ret < 0 || bdi.cluster_size == 0) { 749 return bs->bl.request_alignment; 750 } else { 751 return bdi.cluster_size; 752 } 753 } 754 755 void bdrv_inc_in_flight(BlockDriverState *bs) 756 { 757 IO_CODE(); 758 qatomic_inc(&bs->in_flight); 759 } 760 761 void bdrv_wakeup(BlockDriverState *bs) 762 { 763 IO_CODE(); 764 aio_wait_kick(); 765 } 766 767 void bdrv_dec_in_flight(BlockDriverState *bs) 768 { 769 IO_CODE(); 770 qatomic_dec(&bs->in_flight); 771 bdrv_wakeup(bs); 772 } 773 774 static void coroutine_fn 775 bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 776 { 777 BlockDriverState *bs = self->bs; 778 779 if (!qatomic_read(&bs->serialising_in_flight)) { 780 return; 781 } 782 783 qemu_co_mutex_lock(&bs->reqs_lock); 784 bdrv_wait_serialising_requests_locked(self); 785 qemu_co_mutex_unlock(&bs->reqs_lock); 786 } 787 788 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 789 uint64_t align) 790 { 791 IO_CODE(); 792 793 qemu_co_mutex_lock(&req->bs->reqs_lock); 794 795 tracked_request_set_serialising(req, align); 796 bdrv_wait_serialising_requests_locked(req); 797 798 qemu_co_mutex_unlock(&req->bs->reqs_lock); 799 } 800 801 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 802 QEMUIOVector *qiov, size_t qiov_offset, 803 Error **errp) 804 { 805 /* 806 * Check generic offset/bytes correctness 807 */ 808 809 if (offset < 0) { 810 error_setg(errp, "offset is negative: %" PRIi64, offset); 811 return -EIO; 812 } 813 814 if (bytes < 0) { 815 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 816 return -EIO; 817 } 818 819 if (bytes > BDRV_MAX_LENGTH) { 820 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 821 bytes, BDRV_MAX_LENGTH); 822 return -EIO; 823 } 824 825 if (offset > BDRV_MAX_LENGTH) { 826 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 827 offset, BDRV_MAX_LENGTH); 828 return -EIO; 829 } 830 831 if (offset > BDRV_MAX_LENGTH - bytes) { 832 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 833 "exceeds maximum(%" PRIi64 ")", offset, bytes, 834 BDRV_MAX_LENGTH); 835 return -EIO; 836 } 837 838 if (!qiov) { 839 return 0; 840 } 841 842 /* 843 * Check qiov and qiov_offset 844 */ 845 846 if (qiov_offset > qiov->size) { 847 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 848 qiov_offset, qiov->size); 849 return -EIO; 850 } 851 852 if (bytes > qiov->size - qiov_offset) { 853 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 854 "vector size(%zu)", bytes, qiov_offset, qiov->size); 855 return -EIO; 856 } 857 858 return 0; 859 } 860 861 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 862 { 863 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 864 } 865 866 static int bdrv_check_request32(int64_t offset, int64_t bytes, 867 QEMUIOVector *qiov, size_t qiov_offset) 868 { 869 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 870 if (ret < 0) { 871 return ret; 872 } 873 874 if (bytes > BDRV_REQUEST_MAX_BYTES) { 875 return -EIO; 876 } 877 878 return 0; 879 } 880 881 /* 882 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 883 * The operation is sped up by checking the block status and only writing 884 * zeroes to the device if they currently do not return zeroes. Optional 885 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 886 * BDRV_REQ_FUA). 887 * 888 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 889 */ 890 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 891 { 892 int ret; 893 int64_t target_size, bytes, offset = 0; 894 BlockDriverState *bs = child->bs; 895 IO_CODE(); 896 897 target_size = bdrv_getlength(bs); 898 if (target_size < 0) { 899 return target_size; 900 } 901 902 for (;;) { 903 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 904 if (bytes <= 0) { 905 return 0; 906 } 907 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 908 if (ret < 0) { 909 return ret; 910 } 911 if (ret & BDRV_BLOCK_ZERO) { 912 offset += bytes; 913 continue; 914 } 915 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 916 if (ret < 0) { 917 return ret; 918 } 919 offset += bytes; 920 } 921 } 922 923 /* 924 * Writes to the file and ensures that no writes are reordered across this 925 * request (acts as a barrier) 926 * 927 * Returns 0 on success, -errno in error cases. 928 */ 929 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 930 int64_t bytes, const void *buf, 931 BdrvRequestFlags flags) 932 { 933 int ret; 934 IO_CODE(); 935 936 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 937 if (ret < 0) { 938 return ret; 939 } 940 941 ret = bdrv_co_flush(child->bs); 942 if (ret < 0) { 943 return ret; 944 } 945 946 return 0; 947 } 948 949 typedef struct CoroutineIOCompletion { 950 Coroutine *coroutine; 951 int ret; 952 } CoroutineIOCompletion; 953 954 static void bdrv_co_io_em_complete(void *opaque, int ret) 955 { 956 CoroutineIOCompletion *co = opaque; 957 958 co->ret = ret; 959 aio_co_wake(co->coroutine); 960 } 961 962 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 963 int64_t offset, int64_t bytes, 964 QEMUIOVector *qiov, 965 size_t qiov_offset, int flags) 966 { 967 BlockDriver *drv = bs->drv; 968 int64_t sector_num; 969 unsigned int nb_sectors; 970 QEMUIOVector local_qiov; 971 int ret; 972 973 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 974 assert(!(flags & ~bs->supported_read_flags)); 975 976 if (!drv) { 977 return -ENOMEDIUM; 978 } 979 980 if (drv->bdrv_co_preadv_part) { 981 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 982 flags); 983 } 984 985 if (qiov_offset > 0 || bytes != qiov->size) { 986 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 987 qiov = &local_qiov; 988 } 989 990 if (drv->bdrv_co_preadv) { 991 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 992 goto out; 993 } 994 995 if (drv->bdrv_aio_preadv) { 996 BlockAIOCB *acb; 997 CoroutineIOCompletion co = { 998 .coroutine = qemu_coroutine_self(), 999 }; 1000 1001 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1002 bdrv_co_io_em_complete, &co); 1003 if (acb == NULL) { 1004 ret = -EIO; 1005 goto out; 1006 } else { 1007 qemu_coroutine_yield(); 1008 ret = co.ret; 1009 goto out; 1010 } 1011 } 1012 1013 sector_num = offset >> BDRV_SECTOR_BITS; 1014 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1015 1016 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1017 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1018 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1019 assert(drv->bdrv_co_readv); 1020 1021 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1022 1023 out: 1024 if (qiov == &local_qiov) { 1025 qemu_iovec_destroy(&local_qiov); 1026 } 1027 1028 return ret; 1029 } 1030 1031 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1032 int64_t offset, int64_t bytes, 1033 QEMUIOVector *qiov, 1034 size_t qiov_offset, 1035 BdrvRequestFlags flags) 1036 { 1037 BlockDriver *drv = bs->drv; 1038 bool emulate_fua = false; 1039 int64_t sector_num; 1040 unsigned int nb_sectors; 1041 QEMUIOVector local_qiov; 1042 int ret; 1043 1044 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1045 1046 if (!drv) { 1047 return -ENOMEDIUM; 1048 } 1049 1050 if ((flags & BDRV_REQ_FUA) && 1051 (~bs->supported_write_flags & BDRV_REQ_FUA)) { 1052 flags &= ~BDRV_REQ_FUA; 1053 emulate_fua = true; 1054 } 1055 1056 flags &= bs->supported_write_flags; 1057 1058 if (drv->bdrv_co_pwritev_part) { 1059 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1060 flags); 1061 goto emulate_flags; 1062 } 1063 1064 if (qiov_offset > 0 || bytes != qiov->size) { 1065 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1066 qiov = &local_qiov; 1067 } 1068 1069 if (drv->bdrv_co_pwritev) { 1070 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags); 1071 goto emulate_flags; 1072 } 1073 1074 if (drv->bdrv_aio_pwritev) { 1075 BlockAIOCB *acb; 1076 CoroutineIOCompletion co = { 1077 .coroutine = qemu_coroutine_self(), 1078 }; 1079 1080 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags, 1081 bdrv_co_io_em_complete, &co); 1082 if (acb == NULL) { 1083 ret = -EIO; 1084 } else { 1085 qemu_coroutine_yield(); 1086 ret = co.ret; 1087 } 1088 goto emulate_flags; 1089 } 1090 1091 sector_num = offset >> BDRV_SECTOR_BITS; 1092 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1093 1094 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1095 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1096 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1097 1098 assert(drv->bdrv_co_writev); 1099 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags); 1100 1101 emulate_flags: 1102 if (ret == 0 && emulate_fua) { 1103 ret = bdrv_co_flush(bs); 1104 } 1105 1106 if (qiov == &local_qiov) { 1107 qemu_iovec_destroy(&local_qiov); 1108 } 1109 1110 return ret; 1111 } 1112 1113 static int coroutine_fn 1114 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1115 int64_t bytes, QEMUIOVector *qiov, 1116 size_t qiov_offset) 1117 { 1118 BlockDriver *drv = bs->drv; 1119 QEMUIOVector local_qiov; 1120 int ret; 1121 1122 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1123 1124 if (!drv) { 1125 return -ENOMEDIUM; 1126 } 1127 1128 if (!block_driver_can_compress(drv)) { 1129 return -ENOTSUP; 1130 } 1131 1132 if (drv->bdrv_co_pwritev_compressed_part) { 1133 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1134 qiov, qiov_offset); 1135 } 1136 1137 if (qiov_offset == 0) { 1138 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1139 } 1140 1141 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1142 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1143 qemu_iovec_destroy(&local_qiov); 1144 1145 return ret; 1146 } 1147 1148 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1149 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1150 size_t qiov_offset, int flags) 1151 { 1152 BlockDriverState *bs = child->bs; 1153 1154 /* Perform I/O through a temporary buffer so that users who scribble over 1155 * their read buffer while the operation is in progress do not end up 1156 * modifying the image file. This is critical for zero-copy guest I/O 1157 * where anything might happen inside guest memory. 1158 */ 1159 void *bounce_buffer = NULL; 1160 1161 BlockDriver *drv = bs->drv; 1162 int64_t cluster_offset; 1163 int64_t cluster_bytes; 1164 int64_t skip_bytes; 1165 int ret; 1166 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1167 BDRV_REQUEST_MAX_BYTES); 1168 int64_t progress = 0; 1169 bool skip_write; 1170 1171 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1172 1173 if (!drv) { 1174 return -ENOMEDIUM; 1175 } 1176 1177 /* 1178 * Do not write anything when the BDS is inactive. That is not 1179 * allowed, and it would not help. 1180 */ 1181 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1182 1183 /* FIXME We cannot require callers to have write permissions when all they 1184 * are doing is a read request. If we did things right, write permissions 1185 * would be obtained anyway, but internally by the copy-on-read code. As 1186 * long as it is implemented here rather than in a separate filter driver, 1187 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1188 * it could request permissions. Therefore we have to bypass the permission 1189 * system for the moment. */ 1190 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1191 1192 /* Cover entire cluster so no additional backing file I/O is required when 1193 * allocating cluster in the image file. Note that this value may exceed 1194 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1195 * is one reason we loop rather than doing it all at once. 1196 */ 1197 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1198 skip_bytes = offset - cluster_offset; 1199 1200 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1201 cluster_offset, cluster_bytes); 1202 1203 while (cluster_bytes) { 1204 int64_t pnum; 1205 1206 if (skip_write) { 1207 ret = 1; /* "already allocated", so nothing will be copied */ 1208 pnum = MIN(cluster_bytes, max_transfer); 1209 } else { 1210 ret = bdrv_is_allocated(bs, cluster_offset, 1211 MIN(cluster_bytes, max_transfer), &pnum); 1212 if (ret < 0) { 1213 /* 1214 * Safe to treat errors in querying allocation as if 1215 * unallocated; we'll probably fail again soon on the 1216 * read, but at least that will set a decent errno. 1217 */ 1218 pnum = MIN(cluster_bytes, max_transfer); 1219 } 1220 1221 /* Stop at EOF if the image ends in the middle of the cluster */ 1222 if (ret == 0 && pnum == 0) { 1223 assert(progress >= bytes); 1224 break; 1225 } 1226 1227 assert(skip_bytes < pnum); 1228 } 1229 1230 if (ret <= 0) { 1231 QEMUIOVector local_qiov; 1232 1233 /* Must copy-on-read; use the bounce buffer */ 1234 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1235 if (!bounce_buffer) { 1236 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1237 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1238 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1239 1240 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1241 if (!bounce_buffer) { 1242 ret = -ENOMEM; 1243 goto err; 1244 } 1245 } 1246 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1247 1248 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1249 &local_qiov, 0, 0); 1250 if (ret < 0) { 1251 goto err; 1252 } 1253 1254 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1255 if (drv->bdrv_co_pwrite_zeroes && 1256 buffer_is_zero(bounce_buffer, pnum)) { 1257 /* FIXME: Should we (perhaps conditionally) be setting 1258 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1259 * that still correctly reads as zero? */ 1260 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1261 BDRV_REQ_WRITE_UNCHANGED); 1262 } else { 1263 /* This does not change the data on the disk, it is not 1264 * necessary to flush even in cache=writethrough mode. 1265 */ 1266 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1267 &local_qiov, 0, 1268 BDRV_REQ_WRITE_UNCHANGED); 1269 } 1270 1271 if (ret < 0) { 1272 /* It might be okay to ignore write errors for guest 1273 * requests. If this is a deliberate copy-on-read 1274 * then we don't want to ignore the error. Simply 1275 * report it in all cases. 1276 */ 1277 goto err; 1278 } 1279 1280 if (!(flags & BDRV_REQ_PREFETCH)) { 1281 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1282 bounce_buffer + skip_bytes, 1283 MIN(pnum - skip_bytes, bytes - progress)); 1284 } 1285 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1286 /* Read directly into the destination */ 1287 ret = bdrv_driver_preadv(bs, offset + progress, 1288 MIN(pnum - skip_bytes, bytes - progress), 1289 qiov, qiov_offset + progress, 0); 1290 if (ret < 0) { 1291 goto err; 1292 } 1293 } 1294 1295 cluster_offset += pnum; 1296 cluster_bytes -= pnum; 1297 progress += pnum - skip_bytes; 1298 skip_bytes = 0; 1299 } 1300 ret = 0; 1301 1302 err: 1303 qemu_vfree(bounce_buffer); 1304 return ret; 1305 } 1306 1307 /* 1308 * Forwards an already correctly aligned request to the BlockDriver. This 1309 * handles copy on read, zeroing after EOF, and fragmentation of large 1310 * reads; any other features must be implemented by the caller. 1311 */ 1312 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1313 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1314 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1315 { 1316 BlockDriverState *bs = child->bs; 1317 int64_t total_bytes, max_bytes; 1318 int ret = 0; 1319 int64_t bytes_remaining = bytes; 1320 int max_transfer; 1321 1322 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1323 assert(is_power_of_2(align)); 1324 assert((offset & (align - 1)) == 0); 1325 assert((bytes & (align - 1)) == 0); 1326 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1327 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1328 align); 1329 1330 /* 1331 * TODO: We would need a per-BDS .supported_read_flags and 1332 * potential fallback support, if we ever implement any read flags 1333 * to pass through to drivers. For now, there aren't any 1334 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint. 1335 */ 1336 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH | 1337 BDRV_REQ_REGISTERED_BUF))); 1338 1339 /* Handle Copy on Read and associated serialisation */ 1340 if (flags & BDRV_REQ_COPY_ON_READ) { 1341 /* If we touch the same cluster it counts as an overlap. This 1342 * guarantees that allocating writes will be serialized and not race 1343 * with each other for the same cluster. For example, in copy-on-read 1344 * it ensures that the CoR read and write operations are atomic and 1345 * guest writes cannot interleave between them. */ 1346 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1347 } else { 1348 bdrv_wait_serialising_requests(req); 1349 } 1350 1351 if (flags & BDRV_REQ_COPY_ON_READ) { 1352 int64_t pnum; 1353 1354 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1355 flags &= ~BDRV_REQ_COPY_ON_READ; 1356 1357 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1358 if (ret < 0) { 1359 goto out; 1360 } 1361 1362 if (!ret || pnum != bytes) { 1363 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1364 qiov, qiov_offset, flags); 1365 goto out; 1366 } else if (flags & BDRV_REQ_PREFETCH) { 1367 goto out; 1368 } 1369 } 1370 1371 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1372 total_bytes = bdrv_getlength(bs); 1373 if (total_bytes < 0) { 1374 ret = total_bytes; 1375 goto out; 1376 } 1377 1378 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF))); 1379 1380 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1381 if (bytes <= max_bytes && bytes <= max_transfer) { 1382 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1383 goto out; 1384 } 1385 1386 while (bytes_remaining) { 1387 int64_t num; 1388 1389 if (max_bytes) { 1390 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1391 assert(num); 1392 1393 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1394 num, qiov, 1395 qiov_offset + bytes - bytes_remaining, 1396 flags); 1397 max_bytes -= num; 1398 } else { 1399 num = bytes_remaining; 1400 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1401 0, bytes_remaining); 1402 } 1403 if (ret < 0) { 1404 goto out; 1405 } 1406 bytes_remaining -= num; 1407 } 1408 1409 out: 1410 return ret < 0 ? ret : 0; 1411 } 1412 1413 /* 1414 * Request padding 1415 * 1416 * |<---- align ----->| |<----- align ---->| 1417 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1418 * | | | | | | 1419 * -*----------$-------*-------- ... --------*-----$------------*--- 1420 * | | | | | | 1421 * | offset | | end | 1422 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1423 * [buf ... ) [tail_buf ) 1424 * 1425 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1426 * is placed at the beginning of @buf and @tail at the @end. 1427 * 1428 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1429 * around tail, if tail exists. 1430 * 1431 * @merge_reads is true for small requests, 1432 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1433 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1434 */ 1435 typedef struct BdrvRequestPadding { 1436 uint8_t *buf; 1437 size_t buf_len; 1438 uint8_t *tail_buf; 1439 size_t head; 1440 size_t tail; 1441 bool merge_reads; 1442 QEMUIOVector local_qiov; 1443 } BdrvRequestPadding; 1444 1445 static bool bdrv_init_padding(BlockDriverState *bs, 1446 int64_t offset, int64_t bytes, 1447 BdrvRequestPadding *pad) 1448 { 1449 int64_t align = bs->bl.request_alignment; 1450 int64_t sum; 1451 1452 bdrv_check_request(offset, bytes, &error_abort); 1453 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1454 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1455 1456 memset(pad, 0, sizeof(*pad)); 1457 1458 pad->head = offset & (align - 1); 1459 pad->tail = ((offset + bytes) & (align - 1)); 1460 if (pad->tail) { 1461 pad->tail = align - pad->tail; 1462 } 1463 1464 if (!pad->head && !pad->tail) { 1465 return false; 1466 } 1467 1468 assert(bytes); /* Nothing good in aligning zero-length requests */ 1469 1470 sum = pad->head + bytes + pad->tail; 1471 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1472 pad->buf = qemu_blockalign(bs, pad->buf_len); 1473 pad->merge_reads = sum == pad->buf_len; 1474 if (pad->tail) { 1475 pad->tail_buf = pad->buf + pad->buf_len - align; 1476 } 1477 1478 return true; 1479 } 1480 1481 static coroutine_fn int bdrv_padding_rmw_read(BdrvChild *child, 1482 BdrvTrackedRequest *req, 1483 BdrvRequestPadding *pad, 1484 bool zero_middle) 1485 { 1486 QEMUIOVector local_qiov; 1487 BlockDriverState *bs = child->bs; 1488 uint64_t align = bs->bl.request_alignment; 1489 int ret; 1490 1491 assert(req->serialising && pad->buf); 1492 1493 if (pad->head || pad->merge_reads) { 1494 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1495 1496 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1497 1498 if (pad->head) { 1499 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1500 } 1501 if (pad->merge_reads && pad->tail) { 1502 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1503 } 1504 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1505 align, &local_qiov, 0, 0); 1506 if (ret < 0) { 1507 return ret; 1508 } 1509 if (pad->head) { 1510 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1511 } 1512 if (pad->merge_reads && pad->tail) { 1513 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1514 } 1515 1516 if (pad->merge_reads) { 1517 goto zero_mem; 1518 } 1519 } 1520 1521 if (pad->tail) { 1522 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1523 1524 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1525 ret = bdrv_aligned_preadv( 1526 child, req, 1527 req->overlap_offset + req->overlap_bytes - align, 1528 align, align, &local_qiov, 0, 0); 1529 if (ret < 0) { 1530 return ret; 1531 } 1532 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1533 } 1534 1535 zero_mem: 1536 if (zero_middle) { 1537 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1538 } 1539 1540 return 0; 1541 } 1542 1543 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1544 { 1545 if (pad->buf) { 1546 qemu_vfree(pad->buf); 1547 qemu_iovec_destroy(&pad->local_qiov); 1548 } 1549 memset(pad, 0, sizeof(*pad)); 1550 } 1551 1552 /* 1553 * bdrv_pad_request 1554 * 1555 * Exchange request parameters with padded request if needed. Don't include RMW 1556 * read of padding, bdrv_padding_rmw_read() should be called separately if 1557 * needed. 1558 * 1559 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1560 * - on function start they represent original request 1561 * - on failure or when padding is not needed they are unchanged 1562 * - on success when padding is needed they represent padded request 1563 */ 1564 static int bdrv_pad_request(BlockDriverState *bs, 1565 QEMUIOVector **qiov, size_t *qiov_offset, 1566 int64_t *offset, int64_t *bytes, 1567 BdrvRequestPadding *pad, bool *padded, 1568 BdrvRequestFlags *flags) 1569 { 1570 int ret; 1571 1572 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1573 1574 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1575 if (padded) { 1576 *padded = false; 1577 } 1578 return 0; 1579 } 1580 1581 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1582 *qiov, *qiov_offset, *bytes, 1583 pad->buf + pad->buf_len - pad->tail, 1584 pad->tail); 1585 if (ret < 0) { 1586 bdrv_padding_destroy(pad); 1587 return ret; 1588 } 1589 *bytes += pad->head + pad->tail; 1590 *offset -= pad->head; 1591 *qiov = &pad->local_qiov; 1592 *qiov_offset = 0; 1593 if (padded) { 1594 *padded = true; 1595 } 1596 if (flags) { 1597 /* Can't use optimization hint with bounce buffer */ 1598 *flags &= ~BDRV_REQ_REGISTERED_BUF; 1599 } 1600 1601 return 0; 1602 } 1603 1604 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1605 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1606 BdrvRequestFlags flags) 1607 { 1608 IO_CODE(); 1609 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1610 } 1611 1612 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1613 int64_t offset, int64_t bytes, 1614 QEMUIOVector *qiov, size_t qiov_offset, 1615 BdrvRequestFlags flags) 1616 { 1617 BlockDriverState *bs = child->bs; 1618 BdrvTrackedRequest req; 1619 BdrvRequestPadding pad; 1620 int ret; 1621 IO_CODE(); 1622 1623 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1624 1625 if (!bdrv_co_is_inserted(bs)) { 1626 return -ENOMEDIUM; 1627 } 1628 1629 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1630 if (ret < 0) { 1631 return ret; 1632 } 1633 1634 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1635 /* 1636 * Aligning zero request is nonsense. Even if driver has special meaning 1637 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1638 * it to driver due to request_alignment. 1639 * 1640 * Still, no reason to return an error if someone do unaligned 1641 * zero-length read occasionally. 1642 */ 1643 return 0; 1644 } 1645 1646 bdrv_inc_in_flight(bs); 1647 1648 /* Don't do copy-on-read if we read data before write operation */ 1649 if (qatomic_read(&bs->copy_on_read)) { 1650 flags |= BDRV_REQ_COPY_ON_READ; 1651 } 1652 1653 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 1654 NULL, &flags); 1655 if (ret < 0) { 1656 goto fail; 1657 } 1658 1659 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1660 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1661 bs->bl.request_alignment, 1662 qiov, qiov_offset, flags); 1663 tracked_request_end(&req); 1664 bdrv_padding_destroy(&pad); 1665 1666 fail: 1667 bdrv_dec_in_flight(bs); 1668 1669 return ret; 1670 } 1671 1672 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1673 int64_t offset, int64_t bytes, BdrvRequestFlags flags) 1674 { 1675 BlockDriver *drv = bs->drv; 1676 QEMUIOVector qiov; 1677 void *buf = NULL; 1678 int ret = 0; 1679 bool need_flush = false; 1680 int head = 0; 1681 int tail = 0; 1682 1683 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1684 INT64_MAX); 1685 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1686 bs->bl.request_alignment); 1687 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1688 1689 bdrv_check_request(offset, bytes, &error_abort); 1690 1691 if (!drv) { 1692 return -ENOMEDIUM; 1693 } 1694 1695 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1696 return -ENOTSUP; 1697 } 1698 1699 /* By definition there is no user buffer so this flag doesn't make sense */ 1700 if (flags & BDRV_REQ_REGISTERED_BUF) { 1701 return -EINVAL; 1702 } 1703 1704 /* Invalidate the cached block-status data range if this write overlaps */ 1705 bdrv_bsc_invalidate_range(bs, offset, bytes); 1706 1707 assert(alignment % bs->bl.request_alignment == 0); 1708 head = offset % alignment; 1709 tail = (offset + bytes) % alignment; 1710 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1711 assert(max_write_zeroes >= bs->bl.request_alignment); 1712 1713 while (bytes > 0 && !ret) { 1714 int64_t num = bytes; 1715 1716 /* Align request. Block drivers can expect the "bulk" of the request 1717 * to be aligned, and that unaligned requests do not cross cluster 1718 * boundaries. 1719 */ 1720 if (head) { 1721 /* Make a small request up to the first aligned sector. For 1722 * convenience, limit this request to max_transfer even if 1723 * we don't need to fall back to writes. */ 1724 num = MIN(MIN(bytes, max_transfer), alignment - head); 1725 head = (head + num) % alignment; 1726 assert(num < max_write_zeroes); 1727 } else if (tail && num > alignment) { 1728 /* Shorten the request to the last aligned sector. */ 1729 num -= tail; 1730 } 1731 1732 /* limit request size */ 1733 if (num > max_write_zeroes) { 1734 num = max_write_zeroes; 1735 } 1736 1737 ret = -ENOTSUP; 1738 /* First try the efficient write zeroes operation */ 1739 if (drv->bdrv_co_pwrite_zeroes) { 1740 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1741 flags & bs->supported_zero_flags); 1742 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1743 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1744 need_flush = true; 1745 } 1746 } else { 1747 assert(!bs->supported_zero_flags); 1748 } 1749 1750 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1751 /* Fall back to bounce buffer if write zeroes is unsupported */ 1752 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1753 1754 if ((flags & BDRV_REQ_FUA) && 1755 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1756 /* No need for bdrv_driver_pwrite() to do a fallback 1757 * flush on each chunk; use just one at the end */ 1758 write_flags &= ~BDRV_REQ_FUA; 1759 need_flush = true; 1760 } 1761 num = MIN(num, max_transfer); 1762 if (buf == NULL) { 1763 buf = qemu_try_blockalign0(bs, num); 1764 if (buf == NULL) { 1765 ret = -ENOMEM; 1766 goto fail; 1767 } 1768 } 1769 qemu_iovec_init_buf(&qiov, buf, num); 1770 1771 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1772 1773 /* Keep bounce buffer around if it is big enough for all 1774 * all future requests. 1775 */ 1776 if (num < max_transfer) { 1777 qemu_vfree(buf); 1778 buf = NULL; 1779 } 1780 } 1781 1782 offset += num; 1783 bytes -= num; 1784 } 1785 1786 fail: 1787 if (ret == 0 && need_flush) { 1788 ret = bdrv_co_flush(bs); 1789 } 1790 qemu_vfree(buf); 1791 return ret; 1792 } 1793 1794 static inline int coroutine_fn 1795 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1796 BdrvTrackedRequest *req, int flags) 1797 { 1798 BlockDriverState *bs = child->bs; 1799 1800 bdrv_check_request(offset, bytes, &error_abort); 1801 1802 if (bdrv_is_read_only(bs)) { 1803 return -EPERM; 1804 } 1805 1806 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1807 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1808 assert(!(flags & ~BDRV_REQ_MASK)); 1809 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1810 1811 if (flags & BDRV_REQ_SERIALISING) { 1812 QEMU_LOCK_GUARD(&bs->reqs_lock); 1813 1814 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1815 1816 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1817 return -EBUSY; 1818 } 1819 1820 bdrv_wait_serialising_requests_locked(req); 1821 } else { 1822 bdrv_wait_serialising_requests(req); 1823 } 1824 1825 assert(req->overlap_offset <= offset); 1826 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1827 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 1828 child->perm & BLK_PERM_RESIZE); 1829 1830 switch (req->type) { 1831 case BDRV_TRACKED_WRITE: 1832 case BDRV_TRACKED_DISCARD: 1833 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1834 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1835 } else { 1836 assert(child->perm & BLK_PERM_WRITE); 1837 } 1838 bdrv_write_threshold_check_write(bs, offset, bytes); 1839 return 0; 1840 case BDRV_TRACKED_TRUNCATE: 1841 assert(child->perm & BLK_PERM_RESIZE); 1842 return 0; 1843 default: 1844 abort(); 1845 } 1846 } 1847 1848 static inline void coroutine_fn 1849 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 1850 BdrvTrackedRequest *req, int ret) 1851 { 1852 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1853 BlockDriverState *bs = child->bs; 1854 1855 bdrv_check_request(offset, bytes, &error_abort); 1856 1857 qatomic_inc(&bs->write_gen); 1858 1859 /* 1860 * Discard cannot extend the image, but in error handling cases, such as 1861 * when reverting a qcow2 cluster allocation, the discarded range can pass 1862 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1863 * here. Instead, just skip it, since semantically a discard request 1864 * beyond EOF cannot expand the image anyway. 1865 */ 1866 if (ret == 0 && 1867 (req->type == BDRV_TRACKED_TRUNCATE || 1868 end_sector > bs->total_sectors) && 1869 req->type != BDRV_TRACKED_DISCARD) { 1870 bs->total_sectors = end_sector; 1871 bdrv_parent_cb_resize(bs); 1872 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1873 } 1874 if (req->bytes) { 1875 switch (req->type) { 1876 case BDRV_TRACKED_WRITE: 1877 stat64_max(&bs->wr_highest_offset, offset + bytes); 1878 /* fall through, to set dirty bits */ 1879 case BDRV_TRACKED_DISCARD: 1880 bdrv_set_dirty(bs, offset, bytes); 1881 break; 1882 default: 1883 break; 1884 } 1885 } 1886 } 1887 1888 /* 1889 * Forwards an already correctly aligned write request to the BlockDriver, 1890 * after possibly fragmenting it. 1891 */ 1892 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1893 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1894 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, 1895 BdrvRequestFlags flags) 1896 { 1897 BlockDriverState *bs = child->bs; 1898 BlockDriver *drv = bs->drv; 1899 int ret; 1900 1901 int64_t bytes_remaining = bytes; 1902 int max_transfer; 1903 1904 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1905 1906 if (!drv) { 1907 return -ENOMEDIUM; 1908 } 1909 1910 if (bdrv_has_readonly_bitmaps(bs)) { 1911 return -EPERM; 1912 } 1913 1914 assert(is_power_of_2(align)); 1915 assert((offset & (align - 1)) == 0); 1916 assert((bytes & (align - 1)) == 0); 1917 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1918 align); 1919 1920 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1921 1922 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1923 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1924 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 1925 flags |= BDRV_REQ_ZERO_WRITE; 1926 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1927 flags |= BDRV_REQ_MAY_UNMAP; 1928 } 1929 } 1930 1931 if (ret < 0) { 1932 /* Do nothing, write notifier decided to fail this request */ 1933 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1934 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1935 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1936 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1937 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 1938 qiov, qiov_offset); 1939 } else if (bytes <= max_transfer) { 1940 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1941 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 1942 } else { 1943 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1944 while (bytes_remaining) { 1945 int num = MIN(bytes_remaining, max_transfer); 1946 int local_flags = flags; 1947 1948 assert(num); 1949 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1950 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1951 /* If FUA is going to be emulated by flush, we only 1952 * need to flush on the last iteration */ 1953 local_flags &= ~BDRV_REQ_FUA; 1954 } 1955 1956 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1957 num, qiov, 1958 qiov_offset + bytes - bytes_remaining, 1959 local_flags); 1960 if (ret < 0) { 1961 break; 1962 } 1963 bytes_remaining -= num; 1964 } 1965 } 1966 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1967 1968 if (ret >= 0) { 1969 ret = 0; 1970 } 1971 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 1972 1973 return ret; 1974 } 1975 1976 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1977 int64_t offset, 1978 int64_t bytes, 1979 BdrvRequestFlags flags, 1980 BdrvTrackedRequest *req) 1981 { 1982 BlockDriverState *bs = child->bs; 1983 QEMUIOVector local_qiov; 1984 uint64_t align = bs->bl.request_alignment; 1985 int ret = 0; 1986 bool padding; 1987 BdrvRequestPadding pad; 1988 1989 /* This flag doesn't make sense for padding or zero writes */ 1990 flags &= ~BDRV_REQ_REGISTERED_BUF; 1991 1992 padding = bdrv_init_padding(bs, offset, bytes, &pad); 1993 if (padding) { 1994 assert(!(flags & BDRV_REQ_NO_WAIT)); 1995 bdrv_make_request_serialising(req, align); 1996 1997 bdrv_padding_rmw_read(child, req, &pad, true); 1998 1999 if (pad.head || pad.merge_reads) { 2000 int64_t aligned_offset = offset & ~(align - 1); 2001 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2002 2003 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2004 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2005 align, &local_qiov, 0, 2006 flags & ~BDRV_REQ_ZERO_WRITE); 2007 if (ret < 0 || pad.merge_reads) { 2008 /* Error or all work is done */ 2009 goto out; 2010 } 2011 offset += write_bytes - pad.head; 2012 bytes -= write_bytes - pad.head; 2013 } 2014 } 2015 2016 assert(!bytes || (offset & (align - 1)) == 0); 2017 if (bytes >= align) { 2018 /* Write the aligned part in the middle. */ 2019 int64_t aligned_bytes = bytes & ~(align - 1); 2020 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2021 NULL, 0, flags); 2022 if (ret < 0) { 2023 goto out; 2024 } 2025 bytes -= aligned_bytes; 2026 offset += aligned_bytes; 2027 } 2028 2029 assert(!bytes || (offset & (align - 1)) == 0); 2030 if (bytes) { 2031 assert(align == pad.tail + bytes); 2032 2033 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2034 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2035 &local_qiov, 0, 2036 flags & ~BDRV_REQ_ZERO_WRITE); 2037 } 2038 2039 out: 2040 bdrv_padding_destroy(&pad); 2041 2042 return ret; 2043 } 2044 2045 /* 2046 * Handle a write request in coroutine context 2047 */ 2048 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2049 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2050 BdrvRequestFlags flags) 2051 { 2052 IO_CODE(); 2053 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2054 } 2055 2056 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2057 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2058 BdrvRequestFlags flags) 2059 { 2060 BlockDriverState *bs = child->bs; 2061 BdrvTrackedRequest req; 2062 uint64_t align = bs->bl.request_alignment; 2063 BdrvRequestPadding pad; 2064 int ret; 2065 bool padded = false; 2066 IO_CODE(); 2067 2068 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2069 2070 if (!bdrv_co_is_inserted(bs)) { 2071 return -ENOMEDIUM; 2072 } 2073 2074 if (flags & BDRV_REQ_ZERO_WRITE) { 2075 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2076 } else { 2077 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2078 } 2079 if (ret < 0) { 2080 return ret; 2081 } 2082 2083 /* If the request is misaligned then we can't make it efficient */ 2084 if ((flags & BDRV_REQ_NO_FALLBACK) && 2085 !QEMU_IS_ALIGNED(offset | bytes, align)) 2086 { 2087 return -ENOTSUP; 2088 } 2089 2090 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2091 /* 2092 * Aligning zero request is nonsense. Even if driver has special meaning 2093 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2094 * it to driver due to request_alignment. 2095 * 2096 * Still, no reason to return an error if someone do unaligned 2097 * zero-length write occasionally. 2098 */ 2099 return 0; 2100 } 2101 2102 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2103 /* 2104 * Pad request for following read-modify-write cycle. 2105 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2106 * alignment only if there is no ZERO flag. 2107 */ 2108 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 2109 &padded, &flags); 2110 if (ret < 0) { 2111 return ret; 2112 } 2113 } 2114 2115 bdrv_inc_in_flight(bs); 2116 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2117 2118 if (flags & BDRV_REQ_ZERO_WRITE) { 2119 assert(!padded); 2120 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2121 goto out; 2122 } 2123 2124 if (padded) { 2125 /* 2126 * Request was unaligned to request_alignment and therefore 2127 * padded. We are going to do read-modify-write, and must 2128 * serialize the request to prevent interactions of the 2129 * widened region with other transactions. 2130 */ 2131 assert(!(flags & BDRV_REQ_NO_WAIT)); 2132 bdrv_make_request_serialising(&req, align); 2133 bdrv_padding_rmw_read(child, &req, &pad, false); 2134 } 2135 2136 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2137 qiov, qiov_offset, flags); 2138 2139 bdrv_padding_destroy(&pad); 2140 2141 out: 2142 tracked_request_end(&req); 2143 bdrv_dec_in_flight(bs); 2144 2145 return ret; 2146 } 2147 2148 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2149 int64_t bytes, BdrvRequestFlags flags) 2150 { 2151 IO_CODE(); 2152 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2153 2154 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2155 flags &= ~BDRV_REQ_MAY_UNMAP; 2156 } 2157 2158 return bdrv_co_pwritev(child, offset, bytes, NULL, 2159 BDRV_REQ_ZERO_WRITE | flags); 2160 } 2161 2162 /* 2163 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2164 */ 2165 int bdrv_flush_all(void) 2166 { 2167 BdrvNextIterator it; 2168 BlockDriverState *bs = NULL; 2169 int result = 0; 2170 2171 GLOBAL_STATE_CODE(); 2172 2173 /* 2174 * bdrv queue is managed by record/replay, 2175 * creating new flush request for stopping 2176 * the VM may break the determinism 2177 */ 2178 if (replay_events_enabled()) { 2179 return result; 2180 } 2181 2182 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2183 AioContext *aio_context = bdrv_get_aio_context(bs); 2184 int ret; 2185 2186 aio_context_acquire(aio_context); 2187 ret = bdrv_flush(bs); 2188 if (ret < 0 && !result) { 2189 result = ret; 2190 } 2191 aio_context_release(aio_context); 2192 } 2193 2194 return result; 2195 } 2196 2197 /* 2198 * Returns the allocation status of the specified sectors. 2199 * Drivers not implementing the functionality are assumed to not support 2200 * backing files, hence all their sectors are reported as allocated. 2201 * 2202 * If 'want_zero' is true, the caller is querying for mapping 2203 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2204 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2205 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2206 * 2207 * If 'offset' is beyond the end of the disk image the return value is 2208 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2209 * 2210 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2211 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2212 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2213 * 2214 * 'pnum' is set to the number of bytes (including and immediately 2215 * following the specified offset) that are easily known to be in the 2216 * same allocated/unallocated state. Note that a second call starting 2217 * at the original offset plus returned pnum may have the same status. 2218 * The returned value is non-zero on success except at end-of-file. 2219 * 2220 * Returns negative errno on failure. Otherwise, if the 2221 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2222 * set to the host mapping and BDS corresponding to the guest offset. 2223 */ 2224 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2225 bool want_zero, 2226 int64_t offset, int64_t bytes, 2227 int64_t *pnum, int64_t *map, 2228 BlockDriverState **file) 2229 { 2230 int64_t total_size; 2231 int64_t n; /* bytes */ 2232 int ret; 2233 int64_t local_map = 0; 2234 BlockDriverState *local_file = NULL; 2235 int64_t aligned_offset, aligned_bytes; 2236 uint32_t align; 2237 bool has_filtered_child; 2238 2239 assert(pnum); 2240 *pnum = 0; 2241 total_size = bdrv_getlength(bs); 2242 if (total_size < 0) { 2243 ret = total_size; 2244 goto early_out; 2245 } 2246 2247 if (offset >= total_size) { 2248 ret = BDRV_BLOCK_EOF; 2249 goto early_out; 2250 } 2251 if (!bytes) { 2252 ret = 0; 2253 goto early_out; 2254 } 2255 2256 n = total_size - offset; 2257 if (n < bytes) { 2258 bytes = n; 2259 } 2260 2261 /* Must be non-NULL or bdrv_getlength() would have failed */ 2262 assert(bs->drv); 2263 has_filtered_child = bdrv_filter_child(bs); 2264 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2265 *pnum = bytes; 2266 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2267 if (offset + bytes == total_size) { 2268 ret |= BDRV_BLOCK_EOF; 2269 } 2270 if (bs->drv->protocol_name) { 2271 ret |= BDRV_BLOCK_OFFSET_VALID; 2272 local_map = offset; 2273 local_file = bs; 2274 } 2275 goto early_out; 2276 } 2277 2278 bdrv_inc_in_flight(bs); 2279 2280 /* Round out to request_alignment boundaries */ 2281 align = bs->bl.request_alignment; 2282 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2283 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2284 2285 if (bs->drv->bdrv_co_block_status) { 2286 /* 2287 * Use the block-status cache only for protocol nodes: Format 2288 * drivers are generally quick to inquire the status, but protocol 2289 * drivers often need to get information from outside of qemu, so 2290 * we do not have control over the actual implementation. There 2291 * have been cases where inquiring the status took an unreasonably 2292 * long time, and we can do nothing in qemu to fix it. 2293 * This is especially problematic for images with large data areas, 2294 * because finding the few holes in them and giving them special 2295 * treatment does not gain much performance. Therefore, we try to 2296 * cache the last-identified data region. 2297 * 2298 * Second, limiting ourselves to protocol nodes allows us to assume 2299 * the block status for data regions to be DATA | OFFSET_VALID, and 2300 * that the host offset is the same as the guest offset. 2301 * 2302 * Note that it is possible that external writers zero parts of 2303 * the cached regions without the cache being invalidated, and so 2304 * we may report zeroes as data. This is not catastrophic, 2305 * however, because reporting zeroes as data is fine. 2306 */ 2307 if (QLIST_EMPTY(&bs->children) && 2308 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2309 { 2310 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2311 local_file = bs; 2312 local_map = aligned_offset; 2313 } else { 2314 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2315 aligned_bytes, pnum, &local_map, 2316 &local_file); 2317 2318 /* 2319 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2320 * the cache is queried above. Technically, we do not need to check 2321 * it here; the worst that can happen is that we fill the cache for 2322 * non-protocol nodes, and then it is never used. However, filling 2323 * the cache requires an RCU update, so double check here to avoid 2324 * such an update if possible. 2325 * 2326 * Check want_zero, because we only want to update the cache when we 2327 * have accurate information about what is zero and what is data. 2328 */ 2329 if (want_zero && 2330 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2331 QLIST_EMPTY(&bs->children)) 2332 { 2333 /* 2334 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2335 * returned local_map value must be the same as the offset we 2336 * have passed (aligned_offset), and local_bs must be the node 2337 * itself. 2338 * Assert this, because we follow this rule when reading from 2339 * the cache (see the `local_file = bs` and 2340 * `local_map = aligned_offset` assignments above), and the 2341 * result the cache delivers must be the same as the driver 2342 * would deliver. 2343 */ 2344 assert(local_file == bs); 2345 assert(local_map == aligned_offset); 2346 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2347 } 2348 } 2349 } else { 2350 /* Default code for filters */ 2351 2352 local_file = bdrv_filter_bs(bs); 2353 assert(local_file); 2354 2355 *pnum = aligned_bytes; 2356 local_map = aligned_offset; 2357 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2358 } 2359 if (ret < 0) { 2360 *pnum = 0; 2361 goto out; 2362 } 2363 2364 /* 2365 * The driver's result must be a non-zero multiple of request_alignment. 2366 * Clamp pnum and adjust map to original request. 2367 */ 2368 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2369 align > offset - aligned_offset); 2370 if (ret & BDRV_BLOCK_RECURSE) { 2371 assert(ret & BDRV_BLOCK_DATA); 2372 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2373 assert(!(ret & BDRV_BLOCK_ZERO)); 2374 } 2375 2376 *pnum -= offset - aligned_offset; 2377 if (*pnum > bytes) { 2378 *pnum = bytes; 2379 } 2380 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2381 local_map += offset - aligned_offset; 2382 } 2383 2384 if (ret & BDRV_BLOCK_RAW) { 2385 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2386 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2387 *pnum, pnum, &local_map, &local_file); 2388 goto out; 2389 } 2390 2391 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2392 ret |= BDRV_BLOCK_ALLOCATED; 2393 } else if (bs->drv->supports_backing) { 2394 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2395 2396 if (!cow_bs) { 2397 ret |= BDRV_BLOCK_ZERO; 2398 } else if (want_zero) { 2399 int64_t size2 = bdrv_getlength(cow_bs); 2400 2401 if (size2 >= 0 && offset >= size2) { 2402 ret |= BDRV_BLOCK_ZERO; 2403 } 2404 } 2405 } 2406 2407 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2408 local_file && local_file != bs && 2409 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2410 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2411 int64_t file_pnum; 2412 int ret2; 2413 2414 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2415 *pnum, &file_pnum, NULL, NULL); 2416 if (ret2 >= 0) { 2417 /* Ignore errors. This is just providing extra information, it 2418 * is useful but not necessary. 2419 */ 2420 if (ret2 & BDRV_BLOCK_EOF && 2421 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2422 /* 2423 * It is valid for the format block driver to read 2424 * beyond the end of the underlying file's current 2425 * size; such areas read as zero. 2426 */ 2427 ret |= BDRV_BLOCK_ZERO; 2428 } else { 2429 /* Limit request to the range reported by the protocol driver */ 2430 *pnum = file_pnum; 2431 ret |= (ret2 & BDRV_BLOCK_ZERO); 2432 } 2433 } 2434 } 2435 2436 out: 2437 bdrv_dec_in_flight(bs); 2438 if (ret >= 0 && offset + *pnum == total_size) { 2439 ret |= BDRV_BLOCK_EOF; 2440 } 2441 early_out: 2442 if (file) { 2443 *file = local_file; 2444 } 2445 if (map) { 2446 *map = local_map; 2447 } 2448 return ret; 2449 } 2450 2451 int coroutine_fn 2452 bdrv_co_common_block_status_above(BlockDriverState *bs, 2453 BlockDriverState *base, 2454 bool include_base, 2455 bool want_zero, 2456 int64_t offset, 2457 int64_t bytes, 2458 int64_t *pnum, 2459 int64_t *map, 2460 BlockDriverState **file, 2461 int *depth) 2462 { 2463 int ret; 2464 BlockDriverState *p; 2465 int64_t eof = 0; 2466 int dummy; 2467 IO_CODE(); 2468 2469 assert(!include_base || base); /* Can't include NULL base */ 2470 2471 if (!depth) { 2472 depth = &dummy; 2473 } 2474 *depth = 0; 2475 2476 if (!include_base && bs == base) { 2477 *pnum = bytes; 2478 return 0; 2479 } 2480 2481 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2482 ++*depth; 2483 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2484 return ret; 2485 } 2486 2487 if (ret & BDRV_BLOCK_EOF) { 2488 eof = offset + *pnum; 2489 } 2490 2491 assert(*pnum <= bytes); 2492 bytes = *pnum; 2493 2494 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2495 p = bdrv_filter_or_cow_bs(p)) 2496 { 2497 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2498 file); 2499 ++*depth; 2500 if (ret < 0) { 2501 return ret; 2502 } 2503 if (*pnum == 0) { 2504 /* 2505 * The top layer deferred to this layer, and because this layer is 2506 * short, any zeroes that we synthesize beyond EOF behave as if they 2507 * were allocated at this layer. 2508 * 2509 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2510 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2511 * below. 2512 */ 2513 assert(ret & BDRV_BLOCK_EOF); 2514 *pnum = bytes; 2515 if (file) { 2516 *file = p; 2517 } 2518 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2519 break; 2520 } 2521 if (ret & BDRV_BLOCK_ALLOCATED) { 2522 /* 2523 * We've found the node and the status, we must break. 2524 * 2525 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2526 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2527 * below. 2528 */ 2529 ret &= ~BDRV_BLOCK_EOF; 2530 break; 2531 } 2532 2533 if (p == base) { 2534 assert(include_base); 2535 break; 2536 } 2537 2538 /* 2539 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2540 * let's continue the diving. 2541 */ 2542 assert(*pnum <= bytes); 2543 bytes = *pnum; 2544 } 2545 2546 if (offset + *pnum == eof) { 2547 ret |= BDRV_BLOCK_EOF; 2548 } 2549 2550 return ret; 2551 } 2552 2553 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2554 BlockDriverState *base, 2555 int64_t offset, int64_t bytes, 2556 int64_t *pnum, int64_t *map, 2557 BlockDriverState **file) 2558 { 2559 IO_CODE(); 2560 return bdrv_co_common_block_status_above(bs, base, false, true, offset, 2561 bytes, pnum, map, file, NULL); 2562 } 2563 2564 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2565 int64_t offset, int64_t bytes, int64_t *pnum, 2566 int64_t *map, BlockDriverState **file) 2567 { 2568 IO_CODE(); 2569 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2570 pnum, map, file, NULL); 2571 } 2572 2573 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2574 int64_t *pnum, int64_t *map, BlockDriverState **file) 2575 { 2576 IO_CODE(); 2577 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2578 offset, bytes, pnum, map, file); 2579 } 2580 2581 /* 2582 * Check @bs (and its backing chain) to see if the range defined 2583 * by @offset and @bytes is known to read as zeroes. 2584 * Return 1 if that is the case, 0 otherwise and -errno on error. 2585 * This test is meant to be fast rather than accurate so returning 0 2586 * does not guarantee non-zero data. 2587 */ 2588 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2589 int64_t bytes) 2590 { 2591 int ret; 2592 int64_t pnum = bytes; 2593 IO_CODE(); 2594 2595 if (!bytes) { 2596 return 1; 2597 } 2598 2599 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset, 2600 bytes, &pnum, NULL, NULL, NULL); 2601 2602 if (ret < 0) { 2603 return ret; 2604 } 2605 2606 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2607 } 2608 2609 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset, 2610 int64_t bytes, int64_t *pnum) 2611 { 2612 int ret; 2613 int64_t dummy; 2614 IO_CODE(); 2615 2616 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset, 2617 bytes, pnum ? pnum : &dummy, NULL, 2618 NULL, NULL); 2619 if (ret < 0) { 2620 return ret; 2621 } 2622 return !!(ret & BDRV_BLOCK_ALLOCATED); 2623 } 2624 2625 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes, 2626 int64_t *pnum) 2627 { 2628 int ret; 2629 int64_t dummy; 2630 IO_CODE(); 2631 2632 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2633 bytes, pnum ? pnum : &dummy, NULL, 2634 NULL, NULL); 2635 if (ret < 0) { 2636 return ret; 2637 } 2638 return !!(ret & BDRV_BLOCK_ALLOCATED); 2639 } 2640 2641 /* See bdrv_is_allocated_above for documentation */ 2642 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2643 BlockDriverState *base, 2644 bool include_base, int64_t offset, 2645 int64_t bytes, int64_t *pnum) 2646 { 2647 int depth; 2648 int ret; 2649 IO_CODE(); 2650 2651 ret = bdrv_co_common_block_status_above(top, base, include_base, false, 2652 offset, bytes, pnum, NULL, NULL, 2653 &depth); 2654 if (ret < 0) { 2655 return ret; 2656 } 2657 2658 if (ret & BDRV_BLOCK_ALLOCATED) { 2659 return depth; 2660 } 2661 return 0; 2662 } 2663 2664 /* 2665 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2666 * 2667 * Return a positive depth if (a prefix of) the given range is allocated 2668 * in any image between BASE and TOP (BASE is only included if include_base 2669 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2670 * BASE can be NULL to check if the given offset is allocated in any 2671 * image of the chain. Return 0 otherwise, or negative errno on 2672 * failure. 2673 * 2674 * 'pnum' is set to the number of bytes (including and immediately 2675 * following the specified offset) that are known to be in the same 2676 * allocated/unallocated state. Note that a subsequent call starting 2677 * at 'offset + *pnum' may return the same allocation status (in other 2678 * words, the result is not necessarily the maximum possible range); 2679 * but 'pnum' will only be 0 when end of file is reached. 2680 */ 2681 int bdrv_is_allocated_above(BlockDriverState *top, 2682 BlockDriverState *base, 2683 bool include_base, int64_t offset, 2684 int64_t bytes, int64_t *pnum) 2685 { 2686 int depth; 2687 int ret; 2688 IO_CODE(); 2689 2690 ret = bdrv_common_block_status_above(top, base, include_base, false, 2691 offset, bytes, pnum, NULL, NULL, 2692 &depth); 2693 if (ret < 0) { 2694 return ret; 2695 } 2696 2697 if (ret & BDRV_BLOCK_ALLOCATED) { 2698 return depth; 2699 } 2700 return 0; 2701 } 2702 2703 int coroutine_fn 2704 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2705 { 2706 BlockDriver *drv = bs->drv; 2707 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2708 int ret; 2709 IO_CODE(); 2710 assert_bdrv_graph_readable(); 2711 2712 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2713 if (ret < 0) { 2714 return ret; 2715 } 2716 2717 if (!drv) { 2718 return -ENOMEDIUM; 2719 } 2720 2721 bdrv_inc_in_flight(bs); 2722 2723 if (drv->bdrv_load_vmstate) { 2724 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2725 } else if (child_bs) { 2726 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2727 } else { 2728 ret = -ENOTSUP; 2729 } 2730 2731 bdrv_dec_in_flight(bs); 2732 2733 return ret; 2734 } 2735 2736 int coroutine_fn 2737 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2738 { 2739 BlockDriver *drv = bs->drv; 2740 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2741 int ret; 2742 IO_CODE(); 2743 assert_bdrv_graph_readable(); 2744 2745 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2746 if (ret < 0) { 2747 return ret; 2748 } 2749 2750 if (!drv) { 2751 return -ENOMEDIUM; 2752 } 2753 2754 bdrv_inc_in_flight(bs); 2755 2756 if (drv->bdrv_save_vmstate) { 2757 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2758 } else if (child_bs) { 2759 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2760 } else { 2761 ret = -ENOTSUP; 2762 } 2763 2764 bdrv_dec_in_flight(bs); 2765 2766 return ret; 2767 } 2768 2769 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2770 int64_t pos, int size) 2771 { 2772 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2773 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2774 IO_CODE(); 2775 2776 return ret < 0 ? ret : size; 2777 } 2778 2779 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2780 int64_t pos, int size) 2781 { 2782 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2783 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2784 IO_CODE(); 2785 2786 return ret < 0 ? ret : size; 2787 } 2788 2789 /**************************************************************/ 2790 /* async I/Os */ 2791 2792 void bdrv_aio_cancel(BlockAIOCB *acb) 2793 { 2794 IO_CODE(); 2795 qemu_aio_ref(acb); 2796 bdrv_aio_cancel_async(acb); 2797 while (acb->refcnt > 1) { 2798 if (acb->aiocb_info->get_aio_context) { 2799 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2800 } else if (acb->bs) { 2801 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2802 * assert that we're not using an I/O thread. Thread-safe 2803 * code should use bdrv_aio_cancel_async exclusively. 2804 */ 2805 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2806 aio_poll(bdrv_get_aio_context(acb->bs), true); 2807 } else { 2808 abort(); 2809 } 2810 } 2811 qemu_aio_unref(acb); 2812 } 2813 2814 /* Async version of aio cancel. The caller is not blocked if the acb implements 2815 * cancel_async, otherwise we do nothing and let the request normally complete. 2816 * In either case the completion callback must be called. */ 2817 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2818 { 2819 IO_CODE(); 2820 if (acb->aiocb_info->cancel_async) { 2821 acb->aiocb_info->cancel_async(acb); 2822 } 2823 } 2824 2825 /**************************************************************/ 2826 /* Coroutine block device emulation */ 2827 2828 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2829 { 2830 BdrvChild *primary_child = bdrv_primary_child(bs); 2831 BdrvChild *child; 2832 int current_gen; 2833 int ret = 0; 2834 IO_CODE(); 2835 2836 bdrv_inc_in_flight(bs); 2837 2838 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) || 2839 bdrv_is_sg(bs)) { 2840 goto early_exit; 2841 } 2842 2843 qemu_co_mutex_lock(&bs->reqs_lock); 2844 current_gen = qatomic_read(&bs->write_gen); 2845 2846 /* Wait until any previous flushes are completed */ 2847 while (bs->active_flush_req) { 2848 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2849 } 2850 2851 /* Flushes reach this point in nondecreasing current_gen order. */ 2852 bs->active_flush_req = true; 2853 qemu_co_mutex_unlock(&bs->reqs_lock); 2854 2855 /* Write back all layers by calling one driver function */ 2856 if (bs->drv->bdrv_co_flush) { 2857 ret = bs->drv->bdrv_co_flush(bs); 2858 goto out; 2859 } 2860 2861 /* Write back cached data to the OS even with cache=unsafe */ 2862 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 2863 if (bs->drv->bdrv_co_flush_to_os) { 2864 ret = bs->drv->bdrv_co_flush_to_os(bs); 2865 if (ret < 0) { 2866 goto out; 2867 } 2868 } 2869 2870 /* But don't actually force it to the disk with cache=unsafe */ 2871 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2872 goto flush_children; 2873 } 2874 2875 /* Check if we really need to flush anything */ 2876 if (bs->flushed_gen == current_gen) { 2877 goto flush_children; 2878 } 2879 2880 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 2881 if (!bs->drv) { 2882 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2883 * (even in case of apparent success) */ 2884 ret = -ENOMEDIUM; 2885 goto out; 2886 } 2887 if (bs->drv->bdrv_co_flush_to_disk) { 2888 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2889 } else if (bs->drv->bdrv_aio_flush) { 2890 BlockAIOCB *acb; 2891 CoroutineIOCompletion co = { 2892 .coroutine = qemu_coroutine_self(), 2893 }; 2894 2895 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2896 if (acb == NULL) { 2897 ret = -EIO; 2898 } else { 2899 qemu_coroutine_yield(); 2900 ret = co.ret; 2901 } 2902 } else { 2903 /* 2904 * Some block drivers always operate in either writethrough or unsafe 2905 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2906 * know how the server works (because the behaviour is hardcoded or 2907 * depends on server-side configuration), so we can't ensure that 2908 * everything is safe on disk. Returning an error doesn't work because 2909 * that would break guests even if the server operates in writethrough 2910 * mode. 2911 * 2912 * Let's hope the user knows what he's doing. 2913 */ 2914 ret = 0; 2915 } 2916 2917 if (ret < 0) { 2918 goto out; 2919 } 2920 2921 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2922 * in the case of cache=unsafe, so there are no useless flushes. 2923 */ 2924 flush_children: 2925 ret = 0; 2926 QLIST_FOREACH(child, &bs->children, next) { 2927 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 2928 int this_child_ret = bdrv_co_flush(child->bs); 2929 if (!ret) { 2930 ret = this_child_ret; 2931 } 2932 } 2933 } 2934 2935 out: 2936 /* Notify any pending flushes that we have completed */ 2937 if (ret == 0) { 2938 bs->flushed_gen = current_gen; 2939 } 2940 2941 qemu_co_mutex_lock(&bs->reqs_lock); 2942 bs->active_flush_req = false; 2943 /* Return value is ignored - it's ok if wait queue is empty */ 2944 qemu_co_queue_next(&bs->flush_queue); 2945 qemu_co_mutex_unlock(&bs->reqs_lock); 2946 2947 early_exit: 2948 bdrv_dec_in_flight(bs); 2949 return ret; 2950 } 2951 2952 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 2953 int64_t bytes) 2954 { 2955 BdrvTrackedRequest req; 2956 int ret; 2957 int64_t max_pdiscard; 2958 int head, tail, align; 2959 BlockDriverState *bs = child->bs; 2960 IO_CODE(); 2961 2962 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) { 2963 return -ENOMEDIUM; 2964 } 2965 2966 if (bdrv_has_readonly_bitmaps(bs)) { 2967 return -EPERM; 2968 } 2969 2970 ret = bdrv_check_request(offset, bytes, NULL); 2971 if (ret < 0) { 2972 return ret; 2973 } 2974 2975 /* Do nothing if disabled. */ 2976 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2977 return 0; 2978 } 2979 2980 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2981 return 0; 2982 } 2983 2984 /* Invalidate the cached block-status data range if this discard overlaps */ 2985 bdrv_bsc_invalidate_range(bs, offset, bytes); 2986 2987 /* Discard is advisory, but some devices track and coalesce 2988 * unaligned requests, so we must pass everything down rather than 2989 * round here. Still, most devices will just silently ignore 2990 * unaligned requests (by returning -ENOTSUP), so we must fragment 2991 * the request accordingly. */ 2992 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2993 assert(align % bs->bl.request_alignment == 0); 2994 head = offset % align; 2995 tail = (offset + bytes) % align; 2996 2997 bdrv_inc_in_flight(bs); 2998 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2999 3000 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3001 if (ret < 0) { 3002 goto out; 3003 } 3004 3005 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3006 align); 3007 assert(max_pdiscard >= bs->bl.request_alignment); 3008 3009 while (bytes > 0) { 3010 int64_t num = bytes; 3011 3012 if (head) { 3013 /* Make small requests to get to alignment boundaries. */ 3014 num = MIN(bytes, align - head); 3015 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3016 num %= bs->bl.request_alignment; 3017 } 3018 head = (head + num) % align; 3019 assert(num < max_pdiscard); 3020 } else if (tail) { 3021 if (num > align) { 3022 /* Shorten the request to the last aligned cluster. */ 3023 num -= tail; 3024 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3025 tail > bs->bl.request_alignment) { 3026 tail %= bs->bl.request_alignment; 3027 num -= tail; 3028 } 3029 } 3030 /* limit request size */ 3031 if (num > max_pdiscard) { 3032 num = max_pdiscard; 3033 } 3034 3035 if (!bs->drv) { 3036 ret = -ENOMEDIUM; 3037 goto out; 3038 } 3039 if (bs->drv->bdrv_co_pdiscard) { 3040 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3041 } else { 3042 BlockAIOCB *acb; 3043 CoroutineIOCompletion co = { 3044 .coroutine = qemu_coroutine_self(), 3045 }; 3046 3047 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3048 bdrv_co_io_em_complete, &co); 3049 if (acb == NULL) { 3050 ret = -EIO; 3051 goto out; 3052 } else { 3053 qemu_coroutine_yield(); 3054 ret = co.ret; 3055 } 3056 } 3057 if (ret && ret != -ENOTSUP) { 3058 goto out; 3059 } 3060 3061 offset += num; 3062 bytes -= num; 3063 } 3064 ret = 0; 3065 out: 3066 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3067 tracked_request_end(&req); 3068 bdrv_dec_in_flight(bs); 3069 return ret; 3070 } 3071 3072 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3073 { 3074 BlockDriver *drv = bs->drv; 3075 CoroutineIOCompletion co = { 3076 .coroutine = qemu_coroutine_self(), 3077 }; 3078 BlockAIOCB *acb; 3079 IO_CODE(); 3080 3081 bdrv_inc_in_flight(bs); 3082 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3083 co.ret = -ENOTSUP; 3084 goto out; 3085 } 3086 3087 if (drv->bdrv_co_ioctl) { 3088 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3089 } else { 3090 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3091 if (!acb) { 3092 co.ret = -ENOTSUP; 3093 goto out; 3094 } 3095 qemu_coroutine_yield(); 3096 } 3097 out: 3098 bdrv_dec_in_flight(bs); 3099 return co.ret; 3100 } 3101 3102 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3103 { 3104 IO_CODE(); 3105 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3106 } 3107 3108 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3109 { 3110 IO_CODE(); 3111 return memset(qemu_blockalign(bs, size), 0, size); 3112 } 3113 3114 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3115 { 3116 size_t align = bdrv_opt_mem_align(bs); 3117 IO_CODE(); 3118 3119 /* Ensure that NULL is never returned on success */ 3120 assert(align > 0); 3121 if (size == 0) { 3122 size = align; 3123 } 3124 3125 return qemu_try_memalign(align, size); 3126 } 3127 3128 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3129 { 3130 void *mem = qemu_try_blockalign(bs, size); 3131 IO_CODE(); 3132 3133 if (mem) { 3134 memset(mem, 0, size); 3135 } 3136 3137 return mem; 3138 } 3139 3140 void coroutine_fn bdrv_co_io_plug(BlockDriverState *bs) 3141 { 3142 BdrvChild *child; 3143 IO_CODE(); 3144 3145 QLIST_FOREACH(child, &bs->children, next) { 3146 bdrv_co_io_plug(child->bs); 3147 } 3148 3149 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3150 BlockDriver *drv = bs->drv; 3151 if (drv && drv->bdrv_co_io_plug) { 3152 drv->bdrv_co_io_plug(bs); 3153 } 3154 } 3155 } 3156 3157 void coroutine_fn bdrv_co_io_unplug(BlockDriverState *bs) 3158 { 3159 BdrvChild *child; 3160 IO_CODE(); 3161 3162 assert(bs->io_plugged); 3163 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3164 BlockDriver *drv = bs->drv; 3165 if (drv && drv->bdrv_co_io_unplug) { 3166 drv->bdrv_co_io_unplug(bs); 3167 } 3168 } 3169 3170 QLIST_FOREACH(child, &bs->children, next) { 3171 bdrv_co_io_unplug(child->bs); 3172 } 3173 } 3174 3175 /* Helper that undoes bdrv_register_buf() when it fails partway through */ 3176 static void bdrv_register_buf_rollback(BlockDriverState *bs, 3177 void *host, 3178 size_t size, 3179 BdrvChild *final_child) 3180 { 3181 BdrvChild *child; 3182 3183 QLIST_FOREACH(child, &bs->children, next) { 3184 if (child == final_child) { 3185 break; 3186 } 3187 3188 bdrv_unregister_buf(child->bs, host, size); 3189 } 3190 3191 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3192 bs->drv->bdrv_unregister_buf(bs, host, size); 3193 } 3194 } 3195 3196 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size, 3197 Error **errp) 3198 { 3199 BdrvChild *child; 3200 3201 GLOBAL_STATE_CODE(); 3202 if (bs->drv && bs->drv->bdrv_register_buf) { 3203 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) { 3204 return false; 3205 } 3206 } 3207 QLIST_FOREACH(child, &bs->children, next) { 3208 if (!bdrv_register_buf(child->bs, host, size, errp)) { 3209 bdrv_register_buf_rollback(bs, host, size, child); 3210 return false; 3211 } 3212 } 3213 return true; 3214 } 3215 3216 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size) 3217 { 3218 BdrvChild *child; 3219 3220 GLOBAL_STATE_CODE(); 3221 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3222 bs->drv->bdrv_unregister_buf(bs, host, size); 3223 } 3224 QLIST_FOREACH(child, &bs->children, next) { 3225 bdrv_unregister_buf(child->bs, host, size); 3226 } 3227 } 3228 3229 static int coroutine_fn bdrv_co_copy_range_internal( 3230 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3231 int64_t dst_offset, int64_t bytes, 3232 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3233 bool recurse_src) 3234 { 3235 BdrvTrackedRequest req; 3236 int ret; 3237 3238 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3239 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3240 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3241 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3242 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3243 3244 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) { 3245 return -ENOMEDIUM; 3246 } 3247 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3248 if (ret) { 3249 return ret; 3250 } 3251 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3252 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3253 } 3254 3255 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) { 3256 return -ENOMEDIUM; 3257 } 3258 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3259 if (ret) { 3260 return ret; 3261 } 3262 3263 if (!src->bs->drv->bdrv_co_copy_range_from 3264 || !dst->bs->drv->bdrv_co_copy_range_to 3265 || src->bs->encrypted || dst->bs->encrypted) { 3266 return -ENOTSUP; 3267 } 3268 3269 if (recurse_src) { 3270 bdrv_inc_in_flight(src->bs); 3271 tracked_request_begin(&req, src->bs, src_offset, bytes, 3272 BDRV_TRACKED_READ); 3273 3274 /* BDRV_REQ_SERIALISING is only for write operation */ 3275 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3276 bdrv_wait_serialising_requests(&req); 3277 3278 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3279 src, src_offset, 3280 dst, dst_offset, 3281 bytes, 3282 read_flags, write_flags); 3283 3284 tracked_request_end(&req); 3285 bdrv_dec_in_flight(src->bs); 3286 } else { 3287 bdrv_inc_in_flight(dst->bs); 3288 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3289 BDRV_TRACKED_WRITE); 3290 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3291 write_flags); 3292 if (!ret) { 3293 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3294 src, src_offset, 3295 dst, dst_offset, 3296 bytes, 3297 read_flags, write_flags); 3298 } 3299 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3300 tracked_request_end(&req); 3301 bdrv_dec_in_flight(dst->bs); 3302 } 3303 3304 return ret; 3305 } 3306 3307 /* Copy range from @src to @dst. 3308 * 3309 * See the comment of bdrv_co_copy_range for the parameter and return value 3310 * semantics. */ 3311 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3312 BdrvChild *dst, int64_t dst_offset, 3313 int64_t bytes, 3314 BdrvRequestFlags read_flags, 3315 BdrvRequestFlags write_flags) 3316 { 3317 IO_CODE(); 3318 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3319 read_flags, write_flags); 3320 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3321 bytes, read_flags, write_flags, true); 3322 } 3323 3324 /* Copy range from @src to @dst. 3325 * 3326 * See the comment of bdrv_co_copy_range for the parameter and return value 3327 * semantics. */ 3328 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3329 BdrvChild *dst, int64_t dst_offset, 3330 int64_t bytes, 3331 BdrvRequestFlags read_flags, 3332 BdrvRequestFlags write_flags) 3333 { 3334 IO_CODE(); 3335 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3336 read_flags, write_flags); 3337 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3338 bytes, read_flags, write_flags, false); 3339 } 3340 3341 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3342 BdrvChild *dst, int64_t dst_offset, 3343 int64_t bytes, BdrvRequestFlags read_flags, 3344 BdrvRequestFlags write_flags) 3345 { 3346 IO_CODE(); 3347 return bdrv_co_copy_range_from(src, src_offset, 3348 dst, dst_offset, 3349 bytes, read_flags, write_flags); 3350 } 3351 3352 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3353 { 3354 BdrvChild *c; 3355 QLIST_FOREACH(c, &bs->parents, next_parent) { 3356 if (c->klass->resize) { 3357 c->klass->resize(c); 3358 } 3359 } 3360 } 3361 3362 /** 3363 * Truncate file to 'offset' bytes (needed only for file protocols) 3364 * 3365 * If 'exact' is true, the file must be resized to exactly the given 3366 * 'offset'. Otherwise, it is sufficient for the node to be at least 3367 * 'offset' bytes in length. 3368 */ 3369 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3370 PreallocMode prealloc, BdrvRequestFlags flags, 3371 Error **errp) 3372 { 3373 BlockDriverState *bs = child->bs; 3374 BdrvChild *filtered, *backing; 3375 BlockDriver *drv = bs->drv; 3376 BdrvTrackedRequest req; 3377 int64_t old_size, new_bytes; 3378 int ret; 3379 IO_CODE(); 3380 3381 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3382 if (!drv) { 3383 error_setg(errp, "No medium inserted"); 3384 return -ENOMEDIUM; 3385 } 3386 if (offset < 0) { 3387 error_setg(errp, "Image size cannot be negative"); 3388 return -EINVAL; 3389 } 3390 3391 ret = bdrv_check_request(offset, 0, errp); 3392 if (ret < 0) { 3393 return ret; 3394 } 3395 3396 old_size = bdrv_getlength(bs); 3397 if (old_size < 0) { 3398 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3399 return old_size; 3400 } 3401 3402 if (bdrv_is_read_only(bs)) { 3403 error_setg(errp, "Image is read-only"); 3404 return -EACCES; 3405 } 3406 3407 if (offset > old_size) { 3408 new_bytes = offset - old_size; 3409 } else { 3410 new_bytes = 0; 3411 } 3412 3413 bdrv_inc_in_flight(bs); 3414 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3415 BDRV_TRACKED_TRUNCATE); 3416 3417 /* If we are growing the image and potentially using preallocation for the 3418 * new area, we need to make sure that no write requests are made to it 3419 * concurrently or they might be overwritten by preallocation. */ 3420 if (new_bytes) { 3421 bdrv_make_request_serialising(&req, 1); 3422 } 3423 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3424 0); 3425 if (ret < 0) { 3426 error_setg_errno(errp, -ret, 3427 "Failed to prepare request for truncation"); 3428 goto out; 3429 } 3430 3431 filtered = bdrv_filter_child(bs); 3432 backing = bdrv_cow_child(bs); 3433 3434 /* 3435 * If the image has a backing file that is large enough that it would 3436 * provide data for the new area, we cannot leave it unallocated because 3437 * then the backing file content would become visible. Instead, zero-fill 3438 * the new area. 3439 * 3440 * Note that if the image has a backing file, but was opened without the 3441 * backing file, taking care of keeping things consistent with that backing 3442 * file is the user's responsibility. 3443 */ 3444 if (new_bytes && backing) { 3445 int64_t backing_len; 3446 3447 backing_len = bdrv_co_getlength(backing->bs); 3448 if (backing_len < 0) { 3449 ret = backing_len; 3450 error_setg_errno(errp, -ret, "Could not get backing file size"); 3451 goto out; 3452 } 3453 3454 if (backing_len > old_size) { 3455 flags |= BDRV_REQ_ZERO_WRITE; 3456 } 3457 } 3458 3459 if (drv->bdrv_co_truncate) { 3460 if (flags & ~bs->supported_truncate_flags) { 3461 error_setg(errp, "Block driver does not support requested flags"); 3462 ret = -ENOTSUP; 3463 goto out; 3464 } 3465 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3466 } else if (filtered) { 3467 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3468 } else { 3469 error_setg(errp, "Image format driver does not support resize"); 3470 ret = -ENOTSUP; 3471 goto out; 3472 } 3473 if (ret < 0) { 3474 goto out; 3475 } 3476 3477 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3478 if (ret < 0) { 3479 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3480 } else { 3481 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3482 } 3483 /* 3484 * It's possible that truncation succeeded but bdrv_refresh_total_sectors 3485 * failed, but the latter doesn't affect how we should finish the request. 3486 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. 3487 */ 3488 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3489 3490 out: 3491 tracked_request_end(&req); 3492 bdrv_dec_in_flight(bs); 3493 3494 return ret; 3495 } 3496 3497 void bdrv_cancel_in_flight(BlockDriverState *bs) 3498 { 3499 GLOBAL_STATE_CODE(); 3500 if (!bs || !bs->drv) { 3501 return; 3502 } 3503 3504 if (bs->drv->bdrv_cancel_in_flight) { 3505 bs->drv->bdrv_cancel_in_flight(bs); 3506 } 3507 } 3508 3509 int coroutine_fn 3510 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3511 QEMUIOVector *qiov, size_t qiov_offset) 3512 { 3513 BlockDriverState *bs = child->bs; 3514 BlockDriver *drv = bs->drv; 3515 int ret; 3516 IO_CODE(); 3517 3518 if (!drv) { 3519 return -ENOMEDIUM; 3520 } 3521 3522 if (!drv->bdrv_co_preadv_snapshot) { 3523 return -ENOTSUP; 3524 } 3525 3526 bdrv_inc_in_flight(bs); 3527 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3528 bdrv_dec_in_flight(bs); 3529 3530 return ret; 3531 } 3532 3533 int coroutine_fn 3534 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3535 bool want_zero, int64_t offset, int64_t bytes, 3536 int64_t *pnum, int64_t *map, 3537 BlockDriverState **file) 3538 { 3539 BlockDriver *drv = bs->drv; 3540 int ret; 3541 IO_CODE(); 3542 3543 if (!drv) { 3544 return -ENOMEDIUM; 3545 } 3546 3547 if (!drv->bdrv_co_snapshot_block_status) { 3548 return -ENOTSUP; 3549 } 3550 3551 bdrv_inc_in_flight(bs); 3552 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3553 pnum, map, file); 3554 bdrv_dec_in_flight(bs); 3555 3556 return ret; 3557 } 3558 3559 int coroutine_fn 3560 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3561 { 3562 BlockDriver *drv = bs->drv; 3563 int ret; 3564 IO_CODE(); 3565 3566 if (!drv) { 3567 return -ENOMEDIUM; 3568 } 3569 3570 if (!drv->bdrv_co_pdiscard_snapshot) { 3571 return -ENOTSUP; 3572 } 3573 3574 bdrv_inc_in_flight(bs); 3575 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3576 bdrv_dec_in_flight(bs); 3577 3578 return ret; 3579 } 3580