1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "qemu/cutils.h" 33 #include "qapi/error.h" 34 #include "qemu/error-report.h" 35 36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 37 38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 40 41 static void bdrv_parent_cb_resize(BlockDriverState *bs); 42 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 43 int64_t offset, int bytes, BdrvRequestFlags flags); 44 45 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 46 bool ignore_bds_parents) 47 { 48 BdrvChild *c, *next; 49 50 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 51 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 52 continue; 53 } 54 bdrv_parent_drained_begin_single(c, false); 55 } 56 } 57 58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 59 bool ignore_bds_parents) 60 { 61 BdrvChild *c, *next; 62 63 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 64 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 65 continue; 66 } 67 if (c->role->drained_end) { 68 c->role->drained_end(c); 69 } 70 } 71 } 72 73 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 74 { 75 if (c->role->drained_poll) { 76 return c->role->drained_poll(c); 77 } 78 return false; 79 } 80 81 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 82 bool ignore_bds_parents) 83 { 84 BdrvChild *c, *next; 85 bool busy = false; 86 87 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 88 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 89 continue; 90 } 91 busy |= bdrv_parent_drained_poll_single(c); 92 } 93 94 return busy; 95 } 96 97 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 98 { 99 if (c->role->drained_begin) { 100 c->role->drained_begin(c); 101 } 102 if (poll) { 103 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 104 } 105 } 106 107 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 108 { 109 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 110 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 111 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 112 src->opt_mem_alignment); 113 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 114 src->min_mem_alignment); 115 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 116 } 117 118 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 119 { 120 BlockDriver *drv = bs->drv; 121 Error *local_err = NULL; 122 123 memset(&bs->bl, 0, sizeof(bs->bl)); 124 125 if (!drv) { 126 return; 127 } 128 129 /* Default alignment based on whether driver has byte interface */ 130 bs->bl.request_alignment = (drv->bdrv_co_preadv || 131 drv->bdrv_aio_preadv) ? 1 : 512; 132 133 /* Take some limits from the children as a default */ 134 if (bs->file) { 135 bdrv_refresh_limits(bs->file->bs, &local_err); 136 if (local_err) { 137 error_propagate(errp, local_err); 138 return; 139 } 140 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 141 } else { 142 bs->bl.min_mem_alignment = 512; 143 bs->bl.opt_mem_alignment = getpagesize(); 144 145 /* Safe default since most protocols use readv()/writev()/etc */ 146 bs->bl.max_iov = IOV_MAX; 147 } 148 149 if (bs->backing) { 150 bdrv_refresh_limits(bs->backing->bs, &local_err); 151 if (local_err) { 152 error_propagate(errp, local_err); 153 return; 154 } 155 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 156 } 157 158 /* Then let the driver override it */ 159 if (drv->bdrv_refresh_limits) { 160 drv->bdrv_refresh_limits(bs, errp); 161 } 162 } 163 164 /** 165 * The copy-on-read flag is actually a reference count so multiple users may 166 * use the feature without worrying about clobbering its previous state. 167 * Copy-on-read stays enabled until all users have called to disable it. 168 */ 169 void bdrv_enable_copy_on_read(BlockDriverState *bs) 170 { 171 atomic_inc(&bs->copy_on_read); 172 } 173 174 void bdrv_disable_copy_on_read(BlockDriverState *bs) 175 { 176 int old = atomic_fetch_dec(&bs->copy_on_read); 177 assert(old >= 1); 178 } 179 180 typedef struct { 181 Coroutine *co; 182 BlockDriverState *bs; 183 bool done; 184 bool begin; 185 bool recursive; 186 bool poll; 187 BdrvChild *parent; 188 bool ignore_bds_parents; 189 } BdrvCoDrainData; 190 191 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 192 { 193 BdrvCoDrainData *data = opaque; 194 BlockDriverState *bs = data->bs; 195 196 if (data->begin) { 197 bs->drv->bdrv_co_drain_begin(bs); 198 } else { 199 bs->drv->bdrv_co_drain_end(bs); 200 } 201 202 /* Set data->done before reading bs->wakeup. */ 203 atomic_mb_set(&data->done, true); 204 bdrv_dec_in_flight(bs); 205 206 if (data->begin) { 207 g_free(data); 208 } 209 } 210 211 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 212 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin) 213 { 214 BdrvCoDrainData *data; 215 216 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 217 (!begin && !bs->drv->bdrv_co_drain_end)) { 218 return; 219 } 220 221 data = g_new(BdrvCoDrainData, 1); 222 *data = (BdrvCoDrainData) { 223 .bs = bs, 224 .done = false, 225 .begin = begin 226 }; 227 228 /* Make sure the driver callback completes during the polling phase for 229 * drain_begin. */ 230 bdrv_inc_in_flight(bs); 231 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 232 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 233 234 if (!begin) { 235 BDRV_POLL_WHILE(bs, !data->done); 236 g_free(data); 237 } 238 } 239 240 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 241 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 242 BdrvChild *ignore_parent, bool ignore_bds_parents) 243 { 244 BdrvChild *child, *next; 245 246 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 247 return true; 248 } 249 250 if (atomic_read(&bs->in_flight)) { 251 return true; 252 } 253 254 if (recursive) { 255 assert(!ignore_bds_parents); 256 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 257 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 258 return true; 259 } 260 } 261 } 262 263 return false; 264 } 265 266 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 267 BdrvChild *ignore_parent) 268 { 269 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 270 } 271 272 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 273 BdrvChild *parent, bool ignore_bds_parents, 274 bool poll); 275 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 276 BdrvChild *parent, bool ignore_bds_parents); 277 278 static void bdrv_co_drain_bh_cb(void *opaque) 279 { 280 BdrvCoDrainData *data = opaque; 281 Coroutine *co = data->co; 282 BlockDriverState *bs = data->bs; 283 284 if (bs) { 285 AioContext *ctx = bdrv_get_aio_context(bs); 286 AioContext *co_ctx = qemu_coroutine_get_aio_context(co); 287 288 /* 289 * When the coroutine yielded, the lock for its home context was 290 * released, so we need to re-acquire it here. If it explicitly 291 * acquired a different context, the lock is still held and we don't 292 * want to lock it a second time (or AIO_WAIT_WHILE() would hang). 293 */ 294 if (ctx == co_ctx) { 295 aio_context_acquire(ctx); 296 } 297 bdrv_dec_in_flight(bs); 298 if (data->begin) { 299 bdrv_do_drained_begin(bs, data->recursive, data->parent, 300 data->ignore_bds_parents, data->poll); 301 } else { 302 bdrv_do_drained_end(bs, data->recursive, data->parent, 303 data->ignore_bds_parents); 304 } 305 if (ctx == co_ctx) { 306 aio_context_release(ctx); 307 } 308 } else { 309 assert(data->begin); 310 bdrv_drain_all_begin(); 311 } 312 313 data->done = true; 314 aio_co_wake(co); 315 } 316 317 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 318 bool begin, bool recursive, 319 BdrvChild *parent, 320 bool ignore_bds_parents, 321 bool poll) 322 { 323 BdrvCoDrainData data; 324 325 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 326 * other coroutines run if they were queued by aio_co_enter(). */ 327 328 assert(qemu_in_coroutine()); 329 data = (BdrvCoDrainData) { 330 .co = qemu_coroutine_self(), 331 .bs = bs, 332 .done = false, 333 .begin = begin, 334 .recursive = recursive, 335 .parent = parent, 336 .ignore_bds_parents = ignore_bds_parents, 337 .poll = poll, 338 }; 339 if (bs) { 340 bdrv_inc_in_flight(bs); 341 } 342 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 343 bdrv_co_drain_bh_cb, &data); 344 345 qemu_coroutine_yield(); 346 /* If we are resumed from some other event (such as an aio completion or a 347 * timer callback), it is a bug in the caller that should be fixed. */ 348 assert(data.done); 349 } 350 351 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 352 BdrvChild *parent, bool ignore_bds_parents) 353 { 354 assert(!qemu_in_coroutine()); 355 356 /* Stop things in parent-to-child order */ 357 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 358 aio_disable_external(bdrv_get_aio_context(bs)); 359 } 360 361 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 362 bdrv_drain_invoke(bs, true); 363 } 364 365 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 366 BdrvChild *parent, bool ignore_bds_parents, 367 bool poll) 368 { 369 BdrvChild *child, *next; 370 371 if (qemu_in_coroutine()) { 372 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 373 poll); 374 return; 375 } 376 377 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 378 379 if (recursive) { 380 assert(!ignore_bds_parents); 381 bs->recursive_quiesce_counter++; 382 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 383 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 384 false); 385 } 386 } 387 388 /* 389 * Wait for drained requests to finish. 390 * 391 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 392 * call is needed so things in this AioContext can make progress even 393 * though we don't return to the main AioContext loop - this automatically 394 * includes other nodes in the same AioContext and therefore all child 395 * nodes. 396 */ 397 if (poll) { 398 assert(!ignore_bds_parents); 399 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 400 } 401 } 402 403 void bdrv_drained_begin(BlockDriverState *bs) 404 { 405 bdrv_do_drained_begin(bs, false, NULL, false, true); 406 } 407 408 void bdrv_subtree_drained_begin(BlockDriverState *bs) 409 { 410 bdrv_do_drained_begin(bs, true, NULL, false, true); 411 } 412 413 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 414 BdrvChild *parent, bool ignore_bds_parents) 415 { 416 BdrvChild *child, *next; 417 int old_quiesce_counter; 418 419 if (qemu_in_coroutine()) { 420 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 421 false); 422 return; 423 } 424 assert(bs->quiesce_counter > 0); 425 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter); 426 427 /* Re-enable things in child-to-parent order */ 428 bdrv_drain_invoke(bs, false); 429 bdrv_parent_drained_end(bs, parent, ignore_bds_parents); 430 if (old_quiesce_counter == 1) { 431 aio_enable_external(bdrv_get_aio_context(bs)); 432 } 433 434 if (recursive) { 435 assert(!ignore_bds_parents); 436 bs->recursive_quiesce_counter--; 437 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 438 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents); 439 } 440 } 441 } 442 443 void bdrv_drained_end(BlockDriverState *bs) 444 { 445 bdrv_do_drained_end(bs, false, NULL, false); 446 } 447 448 void bdrv_subtree_drained_end(BlockDriverState *bs) 449 { 450 bdrv_do_drained_end(bs, true, NULL, false); 451 } 452 453 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 454 { 455 int i; 456 457 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 458 bdrv_do_drained_begin(child->bs, true, child, false, true); 459 } 460 } 461 462 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 463 { 464 int i; 465 466 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 467 bdrv_do_drained_end(child->bs, true, child, false); 468 } 469 } 470 471 /* 472 * Wait for pending requests to complete on a single BlockDriverState subtree, 473 * and suspend block driver's internal I/O until next request arrives. 474 * 475 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 476 * AioContext. 477 */ 478 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 479 { 480 assert(qemu_in_coroutine()); 481 bdrv_drained_begin(bs); 482 bdrv_drained_end(bs); 483 } 484 485 void bdrv_drain(BlockDriverState *bs) 486 { 487 bdrv_drained_begin(bs); 488 bdrv_drained_end(bs); 489 } 490 491 static void bdrv_drain_assert_idle(BlockDriverState *bs) 492 { 493 BdrvChild *child, *next; 494 495 assert(atomic_read(&bs->in_flight) == 0); 496 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 497 bdrv_drain_assert_idle(child->bs); 498 } 499 } 500 501 unsigned int bdrv_drain_all_count = 0; 502 503 static bool bdrv_drain_all_poll(void) 504 { 505 BlockDriverState *bs = NULL; 506 bool result = false; 507 508 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 509 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 510 while ((bs = bdrv_next_all_states(bs))) { 511 AioContext *aio_context = bdrv_get_aio_context(bs); 512 aio_context_acquire(aio_context); 513 result |= bdrv_drain_poll(bs, false, NULL, true); 514 aio_context_release(aio_context); 515 } 516 517 return result; 518 } 519 520 /* 521 * Wait for pending requests to complete across all BlockDriverStates 522 * 523 * This function does not flush data to disk, use bdrv_flush_all() for that 524 * after calling this function. 525 * 526 * This pauses all block jobs and disables external clients. It must 527 * be paired with bdrv_drain_all_end(). 528 * 529 * NOTE: no new block jobs or BlockDriverStates can be created between 530 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 531 */ 532 void bdrv_drain_all_begin(void) 533 { 534 BlockDriverState *bs = NULL; 535 536 if (qemu_in_coroutine()) { 537 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true); 538 return; 539 } 540 541 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 542 * loop AioContext, so make sure we're in the main context. */ 543 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 544 assert(bdrv_drain_all_count < INT_MAX); 545 bdrv_drain_all_count++; 546 547 /* Quiesce all nodes, without polling in-flight requests yet. The graph 548 * cannot change during this loop. */ 549 while ((bs = bdrv_next_all_states(bs))) { 550 AioContext *aio_context = bdrv_get_aio_context(bs); 551 552 aio_context_acquire(aio_context); 553 bdrv_do_drained_begin(bs, false, NULL, true, false); 554 aio_context_release(aio_context); 555 } 556 557 /* Now poll the in-flight requests */ 558 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 559 560 while ((bs = bdrv_next_all_states(bs))) { 561 bdrv_drain_assert_idle(bs); 562 } 563 } 564 565 void bdrv_drain_all_end(void) 566 { 567 BlockDriverState *bs = NULL; 568 569 while ((bs = bdrv_next_all_states(bs))) { 570 AioContext *aio_context = bdrv_get_aio_context(bs); 571 572 aio_context_acquire(aio_context); 573 bdrv_do_drained_end(bs, false, NULL, true); 574 aio_context_release(aio_context); 575 } 576 577 assert(bdrv_drain_all_count > 0); 578 bdrv_drain_all_count--; 579 } 580 581 void bdrv_drain_all(void) 582 { 583 bdrv_drain_all_begin(); 584 bdrv_drain_all_end(); 585 } 586 587 /** 588 * Remove an active request from the tracked requests list 589 * 590 * This function should be called when a tracked request is completing. 591 */ 592 static void tracked_request_end(BdrvTrackedRequest *req) 593 { 594 if (req->serialising) { 595 atomic_dec(&req->bs->serialising_in_flight); 596 } 597 598 qemu_co_mutex_lock(&req->bs->reqs_lock); 599 QLIST_REMOVE(req, list); 600 qemu_co_queue_restart_all(&req->wait_queue); 601 qemu_co_mutex_unlock(&req->bs->reqs_lock); 602 } 603 604 /** 605 * Add an active request to the tracked requests list 606 */ 607 static void tracked_request_begin(BdrvTrackedRequest *req, 608 BlockDriverState *bs, 609 int64_t offset, 610 uint64_t bytes, 611 enum BdrvTrackedRequestType type) 612 { 613 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes); 614 615 *req = (BdrvTrackedRequest){ 616 .bs = bs, 617 .offset = offset, 618 .bytes = bytes, 619 .type = type, 620 .co = qemu_coroutine_self(), 621 .serialising = false, 622 .overlap_offset = offset, 623 .overlap_bytes = bytes, 624 }; 625 626 qemu_co_queue_init(&req->wait_queue); 627 628 qemu_co_mutex_lock(&bs->reqs_lock); 629 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 630 qemu_co_mutex_unlock(&bs->reqs_lock); 631 } 632 633 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 634 { 635 int64_t overlap_offset = req->offset & ~(align - 1); 636 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 637 - overlap_offset; 638 639 if (!req->serialising) { 640 atomic_inc(&req->bs->serialising_in_flight); 641 req->serialising = true; 642 } 643 644 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 645 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 646 } 647 648 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req) 649 { 650 /* 651 * If the request is serialising, overlap_offset and overlap_bytes are set, 652 * so we can check if the request is aligned. Otherwise, don't care and 653 * return false. 654 */ 655 656 return req->serialising && (req->offset == req->overlap_offset) && 657 (req->bytes == req->overlap_bytes); 658 } 659 660 /** 661 * Round a region to cluster boundaries 662 */ 663 void bdrv_round_to_clusters(BlockDriverState *bs, 664 int64_t offset, int64_t bytes, 665 int64_t *cluster_offset, 666 int64_t *cluster_bytes) 667 { 668 BlockDriverInfo bdi; 669 670 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 671 *cluster_offset = offset; 672 *cluster_bytes = bytes; 673 } else { 674 int64_t c = bdi.cluster_size; 675 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 676 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 677 } 678 } 679 680 static int bdrv_get_cluster_size(BlockDriverState *bs) 681 { 682 BlockDriverInfo bdi; 683 int ret; 684 685 ret = bdrv_get_info(bs, &bdi); 686 if (ret < 0 || bdi.cluster_size == 0) { 687 return bs->bl.request_alignment; 688 } else { 689 return bdi.cluster_size; 690 } 691 } 692 693 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 694 int64_t offset, uint64_t bytes) 695 { 696 /* aaaa bbbb */ 697 if (offset >= req->overlap_offset + req->overlap_bytes) { 698 return false; 699 } 700 /* bbbb aaaa */ 701 if (req->overlap_offset >= offset + bytes) { 702 return false; 703 } 704 return true; 705 } 706 707 void bdrv_inc_in_flight(BlockDriverState *bs) 708 { 709 atomic_inc(&bs->in_flight); 710 } 711 712 void bdrv_wakeup(BlockDriverState *bs) 713 { 714 aio_wait_kick(); 715 } 716 717 void bdrv_dec_in_flight(BlockDriverState *bs) 718 { 719 atomic_dec(&bs->in_flight); 720 bdrv_wakeup(bs); 721 } 722 723 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 724 { 725 BlockDriverState *bs = self->bs; 726 BdrvTrackedRequest *req; 727 bool retry; 728 bool waited = false; 729 730 if (!atomic_read(&bs->serialising_in_flight)) { 731 return false; 732 } 733 734 do { 735 retry = false; 736 qemu_co_mutex_lock(&bs->reqs_lock); 737 QLIST_FOREACH(req, &bs->tracked_requests, list) { 738 if (req == self || (!req->serialising && !self->serialising)) { 739 continue; 740 } 741 if (tracked_request_overlaps(req, self->overlap_offset, 742 self->overlap_bytes)) 743 { 744 /* Hitting this means there was a reentrant request, for 745 * example, a block driver issuing nested requests. This must 746 * never happen since it means deadlock. 747 */ 748 assert(qemu_coroutine_self() != req->co); 749 750 /* If the request is already (indirectly) waiting for us, or 751 * will wait for us as soon as it wakes up, then just go on 752 * (instead of producing a deadlock in the former case). */ 753 if (!req->waiting_for) { 754 self->waiting_for = req; 755 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 756 self->waiting_for = NULL; 757 retry = true; 758 waited = true; 759 break; 760 } 761 } 762 } 763 qemu_co_mutex_unlock(&bs->reqs_lock); 764 } while (retry); 765 766 return waited; 767 } 768 769 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 770 size_t size) 771 { 772 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 773 return -EIO; 774 } 775 776 if (!bdrv_is_inserted(bs)) { 777 return -ENOMEDIUM; 778 } 779 780 if (offset < 0) { 781 return -EIO; 782 } 783 784 return 0; 785 } 786 787 typedef struct RwCo { 788 BdrvChild *child; 789 int64_t offset; 790 QEMUIOVector *qiov; 791 bool is_write; 792 int ret; 793 BdrvRequestFlags flags; 794 } RwCo; 795 796 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 797 { 798 RwCo *rwco = opaque; 799 800 if (!rwco->is_write) { 801 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 802 rwco->qiov->size, rwco->qiov, 803 rwco->flags); 804 } else { 805 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 806 rwco->qiov->size, rwco->qiov, 807 rwco->flags); 808 } 809 } 810 811 /* 812 * Process a vectored synchronous request using coroutines 813 */ 814 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 815 QEMUIOVector *qiov, bool is_write, 816 BdrvRequestFlags flags) 817 { 818 Coroutine *co; 819 RwCo rwco = { 820 .child = child, 821 .offset = offset, 822 .qiov = qiov, 823 .is_write = is_write, 824 .ret = NOT_DONE, 825 .flags = flags, 826 }; 827 828 if (qemu_in_coroutine()) { 829 /* Fast-path if already in coroutine context */ 830 bdrv_rw_co_entry(&rwco); 831 } else { 832 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 833 bdrv_coroutine_enter(child->bs, co); 834 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 835 } 836 return rwco.ret; 837 } 838 839 /* 840 * Process a synchronous request using coroutines 841 */ 842 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, 843 int nb_sectors, bool is_write, BdrvRequestFlags flags) 844 { 845 QEMUIOVector qiov; 846 struct iovec iov = { 847 .iov_base = (void *)buf, 848 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 849 }; 850 851 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 852 return -EINVAL; 853 } 854 855 qemu_iovec_init_external(&qiov, &iov, 1); 856 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, 857 &qiov, is_write, flags); 858 } 859 860 /* return < 0 if error. See bdrv_write() for the return codes */ 861 int bdrv_read(BdrvChild *child, int64_t sector_num, 862 uint8_t *buf, int nb_sectors) 863 { 864 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); 865 } 866 867 /* Return < 0 if error. Important errors are: 868 -EIO generic I/O error (may happen for all errors) 869 -ENOMEDIUM No media inserted. 870 -EINVAL Invalid sector number or nb_sectors 871 -EACCES Trying to write a read-only device 872 */ 873 int bdrv_write(BdrvChild *child, int64_t sector_num, 874 const uint8_t *buf, int nb_sectors) 875 { 876 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 877 } 878 879 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 880 int bytes, BdrvRequestFlags flags) 881 { 882 QEMUIOVector qiov; 883 struct iovec iov = { 884 .iov_base = NULL, 885 .iov_len = bytes, 886 }; 887 888 qemu_iovec_init_external(&qiov, &iov, 1); 889 return bdrv_prwv_co(child, offset, &qiov, true, 890 BDRV_REQ_ZERO_WRITE | flags); 891 } 892 893 /* 894 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 895 * The operation is sped up by checking the block status and only writing 896 * zeroes to the device if they currently do not return zeroes. Optional 897 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 898 * BDRV_REQ_FUA). 899 * 900 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 901 */ 902 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 903 { 904 int ret; 905 int64_t target_size, bytes, offset = 0; 906 BlockDriverState *bs = child->bs; 907 908 target_size = bdrv_getlength(bs); 909 if (target_size < 0) { 910 return target_size; 911 } 912 913 for (;;) { 914 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 915 if (bytes <= 0) { 916 return 0; 917 } 918 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 919 if (ret < 0) { 920 error_report("error getting block status at offset %" PRId64 ": %s", 921 offset, strerror(-ret)); 922 return ret; 923 } 924 if (ret & BDRV_BLOCK_ZERO) { 925 offset += bytes; 926 continue; 927 } 928 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 929 if (ret < 0) { 930 error_report("error writing zeroes at offset %" PRId64 ": %s", 931 offset, strerror(-ret)); 932 return ret; 933 } 934 offset += bytes; 935 } 936 } 937 938 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 939 { 940 int ret; 941 942 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 943 if (ret < 0) { 944 return ret; 945 } 946 947 return qiov->size; 948 } 949 950 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 951 { 952 QEMUIOVector qiov; 953 struct iovec iov = { 954 .iov_base = (void *)buf, 955 .iov_len = bytes, 956 }; 957 958 if (bytes < 0) { 959 return -EINVAL; 960 } 961 962 qemu_iovec_init_external(&qiov, &iov, 1); 963 return bdrv_preadv(child, offset, &qiov); 964 } 965 966 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 967 { 968 int ret; 969 970 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 971 if (ret < 0) { 972 return ret; 973 } 974 975 return qiov->size; 976 } 977 978 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 979 { 980 QEMUIOVector qiov; 981 struct iovec iov = { 982 .iov_base = (void *) buf, 983 .iov_len = bytes, 984 }; 985 986 if (bytes < 0) { 987 return -EINVAL; 988 } 989 990 qemu_iovec_init_external(&qiov, &iov, 1); 991 return bdrv_pwritev(child, offset, &qiov); 992 } 993 994 /* 995 * Writes to the file and ensures that no writes are reordered across this 996 * request (acts as a barrier) 997 * 998 * Returns 0 on success, -errno in error cases. 999 */ 1000 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1001 const void *buf, int count) 1002 { 1003 int ret; 1004 1005 ret = bdrv_pwrite(child, offset, buf, count); 1006 if (ret < 0) { 1007 return ret; 1008 } 1009 1010 ret = bdrv_flush(child->bs); 1011 if (ret < 0) { 1012 return ret; 1013 } 1014 1015 return 0; 1016 } 1017 1018 typedef struct CoroutineIOCompletion { 1019 Coroutine *coroutine; 1020 int ret; 1021 } CoroutineIOCompletion; 1022 1023 static void bdrv_co_io_em_complete(void *opaque, int ret) 1024 { 1025 CoroutineIOCompletion *co = opaque; 1026 1027 co->ret = ret; 1028 aio_co_wake(co->coroutine); 1029 } 1030 1031 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1032 uint64_t offset, uint64_t bytes, 1033 QEMUIOVector *qiov, int flags) 1034 { 1035 BlockDriver *drv = bs->drv; 1036 int64_t sector_num; 1037 unsigned int nb_sectors; 1038 1039 assert(!(flags & ~BDRV_REQ_MASK)); 1040 1041 if (!drv) { 1042 return -ENOMEDIUM; 1043 } 1044 1045 if (drv->bdrv_co_preadv) { 1046 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1047 } 1048 1049 if (drv->bdrv_aio_preadv) { 1050 BlockAIOCB *acb; 1051 CoroutineIOCompletion co = { 1052 .coroutine = qemu_coroutine_self(), 1053 }; 1054 1055 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1056 bdrv_co_io_em_complete, &co); 1057 if (acb == NULL) { 1058 return -EIO; 1059 } else { 1060 qemu_coroutine_yield(); 1061 return co.ret; 1062 } 1063 } 1064 1065 sector_num = offset >> BDRV_SECTOR_BITS; 1066 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1067 1068 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1069 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1070 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 1071 assert(drv->bdrv_co_readv); 1072 1073 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1074 } 1075 1076 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1077 uint64_t offset, uint64_t bytes, 1078 QEMUIOVector *qiov, int flags) 1079 { 1080 BlockDriver *drv = bs->drv; 1081 int64_t sector_num; 1082 unsigned int nb_sectors; 1083 int ret; 1084 1085 assert(!(flags & ~BDRV_REQ_MASK)); 1086 1087 if (!drv) { 1088 return -ENOMEDIUM; 1089 } 1090 1091 if (drv->bdrv_co_pwritev) { 1092 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1093 flags & bs->supported_write_flags); 1094 flags &= ~bs->supported_write_flags; 1095 goto emulate_flags; 1096 } 1097 1098 if (drv->bdrv_aio_pwritev) { 1099 BlockAIOCB *acb; 1100 CoroutineIOCompletion co = { 1101 .coroutine = qemu_coroutine_self(), 1102 }; 1103 1104 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1105 flags & bs->supported_write_flags, 1106 bdrv_co_io_em_complete, &co); 1107 flags &= ~bs->supported_write_flags; 1108 if (acb == NULL) { 1109 ret = -EIO; 1110 } else { 1111 qemu_coroutine_yield(); 1112 ret = co.ret; 1113 } 1114 goto emulate_flags; 1115 } 1116 1117 sector_num = offset >> BDRV_SECTOR_BITS; 1118 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1119 1120 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1121 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1122 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 1123 1124 assert(drv->bdrv_co_writev); 1125 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1126 flags & bs->supported_write_flags); 1127 flags &= ~bs->supported_write_flags; 1128 1129 emulate_flags: 1130 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1131 ret = bdrv_co_flush(bs); 1132 } 1133 1134 return ret; 1135 } 1136 1137 static int coroutine_fn 1138 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 1139 uint64_t bytes, QEMUIOVector *qiov) 1140 { 1141 BlockDriver *drv = bs->drv; 1142 1143 if (!drv) { 1144 return -ENOMEDIUM; 1145 } 1146 1147 if (!drv->bdrv_co_pwritev_compressed) { 1148 return -ENOTSUP; 1149 } 1150 1151 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1152 } 1153 1154 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1155 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 1156 { 1157 BlockDriverState *bs = child->bs; 1158 1159 /* Perform I/O through a temporary buffer so that users who scribble over 1160 * their read buffer while the operation is in progress do not end up 1161 * modifying the image file. This is critical for zero-copy guest I/O 1162 * where anything might happen inside guest memory. 1163 */ 1164 void *bounce_buffer; 1165 1166 BlockDriver *drv = bs->drv; 1167 struct iovec iov; 1168 QEMUIOVector local_qiov; 1169 int64_t cluster_offset; 1170 int64_t cluster_bytes; 1171 size_t skip_bytes; 1172 int ret; 1173 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1174 BDRV_REQUEST_MAX_BYTES); 1175 unsigned int progress = 0; 1176 1177 if (!drv) { 1178 return -ENOMEDIUM; 1179 } 1180 1181 /* FIXME We cannot require callers to have write permissions when all they 1182 * are doing is a read request. If we did things right, write permissions 1183 * would be obtained anyway, but internally by the copy-on-read code. As 1184 * long as it is implemented here rather than in a separate filter driver, 1185 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1186 * it could request permissions. Therefore we have to bypass the permission 1187 * system for the moment. */ 1188 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1189 1190 /* Cover entire cluster so no additional backing file I/O is required when 1191 * allocating cluster in the image file. Note that this value may exceed 1192 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1193 * is one reason we loop rather than doing it all at once. 1194 */ 1195 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1196 skip_bytes = offset - cluster_offset; 1197 1198 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1199 cluster_offset, cluster_bytes); 1200 1201 bounce_buffer = qemu_try_blockalign(bs, 1202 MIN(MIN(max_transfer, cluster_bytes), 1203 MAX_BOUNCE_BUFFER)); 1204 if (bounce_buffer == NULL) { 1205 ret = -ENOMEM; 1206 goto err; 1207 } 1208 1209 while (cluster_bytes) { 1210 int64_t pnum; 1211 1212 ret = bdrv_is_allocated(bs, cluster_offset, 1213 MIN(cluster_bytes, max_transfer), &pnum); 1214 if (ret < 0) { 1215 /* Safe to treat errors in querying allocation as if 1216 * unallocated; we'll probably fail again soon on the 1217 * read, but at least that will set a decent errno. 1218 */ 1219 pnum = MIN(cluster_bytes, max_transfer); 1220 } 1221 1222 /* Stop at EOF if the image ends in the middle of the cluster */ 1223 if (ret == 0 && pnum == 0) { 1224 assert(progress >= bytes); 1225 break; 1226 } 1227 1228 assert(skip_bytes < pnum); 1229 1230 if (ret <= 0) { 1231 /* Must copy-on-read; use the bounce buffer */ 1232 iov.iov_base = bounce_buffer; 1233 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1234 qemu_iovec_init_external(&local_qiov, &iov, 1); 1235 1236 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1237 &local_qiov, 0); 1238 if (ret < 0) { 1239 goto err; 1240 } 1241 1242 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1243 if (drv->bdrv_co_pwrite_zeroes && 1244 buffer_is_zero(bounce_buffer, pnum)) { 1245 /* FIXME: Should we (perhaps conditionally) be setting 1246 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1247 * that still correctly reads as zero? */ 1248 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1249 BDRV_REQ_WRITE_UNCHANGED); 1250 } else { 1251 /* This does not change the data on the disk, it is not 1252 * necessary to flush even in cache=writethrough mode. 1253 */ 1254 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1255 &local_qiov, 1256 BDRV_REQ_WRITE_UNCHANGED); 1257 } 1258 1259 if (ret < 0) { 1260 /* It might be okay to ignore write errors for guest 1261 * requests. If this is a deliberate copy-on-read 1262 * then we don't want to ignore the error. Simply 1263 * report it in all cases. 1264 */ 1265 goto err; 1266 } 1267 1268 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes, 1269 pnum - skip_bytes); 1270 } else { 1271 /* Read directly into the destination */ 1272 qemu_iovec_init(&local_qiov, qiov->niov); 1273 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes); 1274 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size, 1275 &local_qiov, 0); 1276 qemu_iovec_destroy(&local_qiov); 1277 if (ret < 0) { 1278 goto err; 1279 } 1280 } 1281 1282 cluster_offset += pnum; 1283 cluster_bytes -= pnum; 1284 progress += pnum - skip_bytes; 1285 skip_bytes = 0; 1286 } 1287 ret = 0; 1288 1289 err: 1290 qemu_vfree(bounce_buffer); 1291 return ret; 1292 } 1293 1294 /* 1295 * Forwards an already correctly aligned request to the BlockDriver. This 1296 * handles copy on read, zeroing after EOF, and fragmentation of large 1297 * reads; any other features must be implemented by the caller. 1298 */ 1299 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1300 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1301 int64_t align, QEMUIOVector *qiov, int flags) 1302 { 1303 BlockDriverState *bs = child->bs; 1304 int64_t total_bytes, max_bytes; 1305 int ret = 0; 1306 uint64_t bytes_remaining = bytes; 1307 int max_transfer; 1308 1309 assert(is_power_of_2(align)); 1310 assert((offset & (align - 1)) == 0); 1311 assert((bytes & (align - 1)) == 0); 1312 assert(!qiov || bytes == qiov->size); 1313 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1314 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1315 align); 1316 1317 /* TODO: We would need a per-BDS .supported_read_flags and 1318 * potential fallback support, if we ever implement any read flags 1319 * to pass through to drivers. For now, there aren't any 1320 * passthrough flags. */ 1321 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 1322 1323 /* Handle Copy on Read and associated serialisation */ 1324 if (flags & BDRV_REQ_COPY_ON_READ) { 1325 /* If we touch the same cluster it counts as an overlap. This 1326 * guarantees that allocating writes will be serialized and not race 1327 * with each other for the same cluster. For example, in copy-on-read 1328 * it ensures that the CoR read and write operations are atomic and 1329 * guest writes cannot interleave between them. */ 1330 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1331 } 1332 1333 /* BDRV_REQ_SERIALISING is only for write operation */ 1334 assert(!(flags & BDRV_REQ_SERIALISING)); 1335 1336 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1337 wait_serialising_requests(req); 1338 } 1339 1340 if (flags & BDRV_REQ_COPY_ON_READ) { 1341 int64_t pnum; 1342 1343 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1344 if (ret < 0) { 1345 goto out; 1346 } 1347 1348 if (!ret || pnum != bytes) { 1349 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); 1350 goto out; 1351 } 1352 } 1353 1354 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1355 total_bytes = bdrv_getlength(bs); 1356 if (total_bytes < 0) { 1357 ret = total_bytes; 1358 goto out; 1359 } 1360 1361 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1362 if (bytes <= max_bytes && bytes <= max_transfer) { 1363 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1364 goto out; 1365 } 1366 1367 while (bytes_remaining) { 1368 int num; 1369 1370 if (max_bytes) { 1371 QEMUIOVector local_qiov; 1372 1373 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1374 assert(num); 1375 qemu_iovec_init(&local_qiov, qiov->niov); 1376 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1377 1378 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1379 num, &local_qiov, 0); 1380 max_bytes -= num; 1381 qemu_iovec_destroy(&local_qiov); 1382 } else { 1383 num = bytes_remaining; 1384 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1385 bytes_remaining); 1386 } 1387 if (ret < 0) { 1388 goto out; 1389 } 1390 bytes_remaining -= num; 1391 } 1392 1393 out: 1394 return ret < 0 ? ret : 0; 1395 } 1396 1397 /* 1398 * Handle a read request in coroutine context 1399 */ 1400 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1401 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1402 BdrvRequestFlags flags) 1403 { 1404 BlockDriverState *bs = child->bs; 1405 BlockDriver *drv = bs->drv; 1406 BdrvTrackedRequest req; 1407 1408 uint64_t align = bs->bl.request_alignment; 1409 uint8_t *head_buf = NULL; 1410 uint8_t *tail_buf = NULL; 1411 QEMUIOVector local_qiov; 1412 bool use_local_qiov = false; 1413 int ret; 1414 1415 trace_bdrv_co_preadv(child->bs, offset, bytes, flags); 1416 1417 if (!drv) { 1418 return -ENOMEDIUM; 1419 } 1420 1421 ret = bdrv_check_byte_request(bs, offset, bytes); 1422 if (ret < 0) { 1423 return ret; 1424 } 1425 1426 bdrv_inc_in_flight(bs); 1427 1428 /* Don't do copy-on-read if we read data before write operation */ 1429 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1430 flags |= BDRV_REQ_COPY_ON_READ; 1431 } 1432 1433 /* Align read if necessary by padding qiov */ 1434 if (offset & (align - 1)) { 1435 head_buf = qemu_blockalign(bs, align); 1436 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1437 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1438 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1439 use_local_qiov = true; 1440 1441 bytes += offset & (align - 1); 1442 offset = offset & ~(align - 1); 1443 } 1444 1445 if ((offset + bytes) & (align - 1)) { 1446 if (!use_local_qiov) { 1447 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1448 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1449 use_local_qiov = true; 1450 } 1451 tail_buf = qemu_blockalign(bs, align); 1452 qemu_iovec_add(&local_qiov, tail_buf, 1453 align - ((offset + bytes) & (align - 1))); 1454 1455 bytes = ROUND_UP(bytes, align); 1456 } 1457 1458 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1459 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1460 use_local_qiov ? &local_qiov : qiov, 1461 flags); 1462 tracked_request_end(&req); 1463 bdrv_dec_in_flight(bs); 1464 1465 if (use_local_qiov) { 1466 qemu_iovec_destroy(&local_qiov); 1467 qemu_vfree(head_buf); 1468 qemu_vfree(tail_buf); 1469 } 1470 1471 return ret; 1472 } 1473 1474 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1475 int64_t offset, int bytes, BdrvRequestFlags flags) 1476 { 1477 BlockDriver *drv = bs->drv; 1478 QEMUIOVector qiov; 1479 struct iovec iov = {0}; 1480 int ret = 0; 1481 bool need_flush = false; 1482 int head = 0; 1483 int tail = 0; 1484 1485 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1486 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1487 bs->bl.request_alignment); 1488 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1489 1490 if (!drv) { 1491 return -ENOMEDIUM; 1492 } 1493 1494 assert(alignment % bs->bl.request_alignment == 0); 1495 head = offset % alignment; 1496 tail = (offset + bytes) % alignment; 1497 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1498 assert(max_write_zeroes >= bs->bl.request_alignment); 1499 1500 while (bytes > 0 && !ret) { 1501 int num = bytes; 1502 1503 /* Align request. Block drivers can expect the "bulk" of the request 1504 * to be aligned, and that unaligned requests do not cross cluster 1505 * boundaries. 1506 */ 1507 if (head) { 1508 /* Make a small request up to the first aligned sector. For 1509 * convenience, limit this request to max_transfer even if 1510 * we don't need to fall back to writes. */ 1511 num = MIN(MIN(bytes, max_transfer), alignment - head); 1512 head = (head + num) % alignment; 1513 assert(num < max_write_zeroes); 1514 } else if (tail && num > alignment) { 1515 /* Shorten the request to the last aligned sector. */ 1516 num -= tail; 1517 } 1518 1519 /* limit request size */ 1520 if (num > max_write_zeroes) { 1521 num = max_write_zeroes; 1522 } 1523 1524 ret = -ENOTSUP; 1525 /* First try the efficient write zeroes operation */ 1526 if (drv->bdrv_co_pwrite_zeroes) { 1527 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1528 flags & bs->supported_zero_flags); 1529 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1530 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1531 need_flush = true; 1532 } 1533 } else { 1534 assert(!bs->supported_zero_flags); 1535 } 1536 1537 if (ret == -ENOTSUP) { 1538 /* Fall back to bounce buffer if write zeroes is unsupported */ 1539 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1540 1541 if ((flags & BDRV_REQ_FUA) && 1542 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1543 /* No need for bdrv_driver_pwrite() to do a fallback 1544 * flush on each chunk; use just one at the end */ 1545 write_flags &= ~BDRV_REQ_FUA; 1546 need_flush = true; 1547 } 1548 num = MIN(num, max_transfer); 1549 iov.iov_len = num; 1550 if (iov.iov_base == NULL) { 1551 iov.iov_base = qemu_try_blockalign(bs, num); 1552 if (iov.iov_base == NULL) { 1553 ret = -ENOMEM; 1554 goto fail; 1555 } 1556 memset(iov.iov_base, 0, num); 1557 } 1558 qemu_iovec_init_external(&qiov, &iov, 1); 1559 1560 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1561 1562 /* Keep bounce buffer around if it is big enough for all 1563 * all future requests. 1564 */ 1565 if (num < max_transfer) { 1566 qemu_vfree(iov.iov_base); 1567 iov.iov_base = NULL; 1568 } 1569 } 1570 1571 offset += num; 1572 bytes -= num; 1573 } 1574 1575 fail: 1576 if (ret == 0 && need_flush) { 1577 ret = bdrv_co_flush(bs); 1578 } 1579 qemu_vfree(iov.iov_base); 1580 return ret; 1581 } 1582 1583 static inline int coroutine_fn 1584 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes, 1585 BdrvTrackedRequest *req, int flags) 1586 { 1587 BlockDriverState *bs = child->bs; 1588 bool waited; 1589 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1590 1591 if (bs->read_only) { 1592 return -EPERM; 1593 } 1594 1595 /* BDRV_REQ_NO_SERIALISING is only for read operation */ 1596 assert(!(flags & BDRV_REQ_NO_SERIALISING)); 1597 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1598 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1599 assert(!(flags & ~BDRV_REQ_MASK)); 1600 1601 if (flags & BDRV_REQ_SERIALISING) { 1602 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1603 } 1604 1605 waited = wait_serialising_requests(req); 1606 1607 assert(!waited || !req->serialising || 1608 is_request_serialising_and_aligned(req)); 1609 assert(req->overlap_offset <= offset); 1610 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1611 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1612 1613 switch (req->type) { 1614 case BDRV_TRACKED_WRITE: 1615 case BDRV_TRACKED_DISCARD: 1616 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1617 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1618 } else { 1619 assert(child->perm & BLK_PERM_WRITE); 1620 } 1621 return notifier_with_return_list_notify(&bs->before_write_notifiers, 1622 req); 1623 case BDRV_TRACKED_TRUNCATE: 1624 assert(child->perm & BLK_PERM_RESIZE); 1625 return 0; 1626 default: 1627 abort(); 1628 } 1629 } 1630 1631 static inline void coroutine_fn 1632 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes, 1633 BdrvTrackedRequest *req, int ret) 1634 { 1635 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1636 BlockDriverState *bs = child->bs; 1637 1638 atomic_inc(&bs->write_gen); 1639 1640 /* 1641 * Discard cannot extend the image, but in error handling cases, such as 1642 * when reverting a qcow2 cluster allocation, the discarded range can pass 1643 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1644 * here. Instead, just skip it, since semantically a discard request 1645 * beyond EOF cannot expand the image anyway. 1646 */ 1647 if (ret == 0 && 1648 (req->type == BDRV_TRACKED_TRUNCATE || 1649 end_sector > bs->total_sectors) && 1650 req->type != BDRV_TRACKED_DISCARD) { 1651 bs->total_sectors = end_sector; 1652 bdrv_parent_cb_resize(bs); 1653 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1654 } 1655 if (req->bytes) { 1656 switch (req->type) { 1657 case BDRV_TRACKED_WRITE: 1658 stat64_max(&bs->wr_highest_offset, offset + bytes); 1659 /* fall through, to set dirty bits */ 1660 case BDRV_TRACKED_DISCARD: 1661 bdrv_set_dirty(bs, offset, bytes); 1662 break; 1663 default: 1664 break; 1665 } 1666 } 1667 } 1668 1669 /* 1670 * Forwards an already correctly aligned write request to the BlockDriver, 1671 * after possibly fragmenting it. 1672 */ 1673 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1674 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1675 int64_t align, QEMUIOVector *qiov, int flags) 1676 { 1677 BlockDriverState *bs = child->bs; 1678 BlockDriver *drv = bs->drv; 1679 int ret; 1680 1681 uint64_t bytes_remaining = bytes; 1682 int max_transfer; 1683 1684 if (!drv) { 1685 return -ENOMEDIUM; 1686 } 1687 1688 if (bdrv_has_readonly_bitmaps(bs)) { 1689 return -EPERM; 1690 } 1691 1692 assert(is_power_of_2(align)); 1693 assert((offset & (align - 1)) == 0); 1694 assert((bytes & (align - 1)) == 0); 1695 assert(!qiov || bytes == qiov->size); 1696 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1697 align); 1698 1699 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1700 1701 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1702 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1703 qemu_iovec_is_zero(qiov)) { 1704 flags |= BDRV_REQ_ZERO_WRITE; 1705 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1706 flags |= BDRV_REQ_MAY_UNMAP; 1707 } 1708 } 1709 1710 if (ret < 0) { 1711 /* Do nothing, write notifier decided to fail this request */ 1712 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1713 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1714 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1715 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1716 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1717 } else if (bytes <= max_transfer) { 1718 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1719 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1720 } else { 1721 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1722 while (bytes_remaining) { 1723 int num = MIN(bytes_remaining, max_transfer); 1724 QEMUIOVector local_qiov; 1725 int local_flags = flags; 1726 1727 assert(num); 1728 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1729 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1730 /* If FUA is going to be emulated by flush, we only 1731 * need to flush on the last iteration */ 1732 local_flags &= ~BDRV_REQ_FUA; 1733 } 1734 qemu_iovec_init(&local_qiov, qiov->niov); 1735 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1736 1737 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1738 num, &local_qiov, local_flags); 1739 qemu_iovec_destroy(&local_qiov); 1740 if (ret < 0) { 1741 break; 1742 } 1743 bytes_remaining -= num; 1744 } 1745 } 1746 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1747 1748 if (ret >= 0) { 1749 ret = 0; 1750 } 1751 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 1752 1753 return ret; 1754 } 1755 1756 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1757 int64_t offset, 1758 unsigned int bytes, 1759 BdrvRequestFlags flags, 1760 BdrvTrackedRequest *req) 1761 { 1762 BlockDriverState *bs = child->bs; 1763 uint8_t *buf = NULL; 1764 QEMUIOVector local_qiov; 1765 struct iovec iov; 1766 uint64_t align = bs->bl.request_alignment; 1767 unsigned int head_padding_bytes, tail_padding_bytes; 1768 int ret = 0; 1769 1770 head_padding_bytes = offset & (align - 1); 1771 tail_padding_bytes = (align - (offset + bytes)) & (align - 1); 1772 1773 1774 assert(flags & BDRV_REQ_ZERO_WRITE); 1775 if (head_padding_bytes || tail_padding_bytes) { 1776 buf = qemu_blockalign(bs, align); 1777 iov = (struct iovec) { 1778 .iov_base = buf, 1779 .iov_len = align, 1780 }; 1781 qemu_iovec_init_external(&local_qiov, &iov, 1); 1782 } 1783 if (head_padding_bytes) { 1784 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1785 1786 /* RMW the unaligned part before head. */ 1787 mark_request_serialising(req, align); 1788 wait_serialising_requests(req); 1789 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1790 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1791 align, &local_qiov, 0); 1792 if (ret < 0) { 1793 goto fail; 1794 } 1795 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1796 1797 memset(buf + head_padding_bytes, 0, zero_bytes); 1798 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1799 align, &local_qiov, 1800 flags & ~BDRV_REQ_ZERO_WRITE); 1801 if (ret < 0) { 1802 goto fail; 1803 } 1804 offset += zero_bytes; 1805 bytes -= zero_bytes; 1806 } 1807 1808 assert(!bytes || (offset & (align - 1)) == 0); 1809 if (bytes >= align) { 1810 /* Write the aligned part in the middle. */ 1811 uint64_t aligned_bytes = bytes & ~(align - 1); 1812 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1813 NULL, flags); 1814 if (ret < 0) { 1815 goto fail; 1816 } 1817 bytes -= aligned_bytes; 1818 offset += aligned_bytes; 1819 } 1820 1821 assert(!bytes || (offset & (align - 1)) == 0); 1822 if (bytes) { 1823 assert(align == tail_padding_bytes + bytes); 1824 /* RMW the unaligned part after tail. */ 1825 mark_request_serialising(req, align); 1826 wait_serialising_requests(req); 1827 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1828 ret = bdrv_aligned_preadv(child, req, offset, align, 1829 align, &local_qiov, 0); 1830 if (ret < 0) { 1831 goto fail; 1832 } 1833 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1834 1835 memset(buf, 0, bytes); 1836 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1837 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1838 } 1839 fail: 1840 qemu_vfree(buf); 1841 return ret; 1842 1843 } 1844 1845 /* 1846 * Handle a write request in coroutine context 1847 */ 1848 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1849 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1850 BdrvRequestFlags flags) 1851 { 1852 BlockDriverState *bs = child->bs; 1853 BdrvTrackedRequest req; 1854 uint64_t align = bs->bl.request_alignment; 1855 uint8_t *head_buf = NULL; 1856 uint8_t *tail_buf = NULL; 1857 QEMUIOVector local_qiov; 1858 bool use_local_qiov = false; 1859 int ret; 1860 1861 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 1862 1863 if (!bs->drv) { 1864 return -ENOMEDIUM; 1865 } 1866 1867 ret = bdrv_check_byte_request(bs, offset, bytes); 1868 if (ret < 0) { 1869 return ret; 1870 } 1871 1872 bdrv_inc_in_flight(bs); 1873 /* 1874 * Align write if necessary by performing a read-modify-write cycle. 1875 * Pad qiov with the read parts and be sure to have a tracked request not 1876 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1877 */ 1878 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1879 1880 if (flags & BDRV_REQ_ZERO_WRITE) { 1881 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1882 goto out; 1883 } 1884 1885 if (offset & (align - 1)) { 1886 QEMUIOVector head_qiov; 1887 struct iovec head_iov; 1888 1889 mark_request_serialising(&req, align); 1890 wait_serialising_requests(&req); 1891 1892 head_buf = qemu_blockalign(bs, align); 1893 head_iov = (struct iovec) { 1894 .iov_base = head_buf, 1895 .iov_len = align, 1896 }; 1897 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1898 1899 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1900 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1901 align, &head_qiov, 0); 1902 if (ret < 0) { 1903 goto fail; 1904 } 1905 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1906 1907 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1908 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1909 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1910 use_local_qiov = true; 1911 1912 bytes += offset & (align - 1); 1913 offset = offset & ~(align - 1); 1914 1915 /* We have read the tail already if the request is smaller 1916 * than one aligned block. 1917 */ 1918 if (bytes < align) { 1919 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1920 bytes = align; 1921 } 1922 } 1923 1924 if ((offset + bytes) & (align - 1)) { 1925 QEMUIOVector tail_qiov; 1926 struct iovec tail_iov; 1927 size_t tail_bytes; 1928 bool waited; 1929 1930 mark_request_serialising(&req, align); 1931 waited = wait_serialising_requests(&req); 1932 assert(!waited || !use_local_qiov); 1933 1934 tail_buf = qemu_blockalign(bs, align); 1935 tail_iov = (struct iovec) { 1936 .iov_base = tail_buf, 1937 .iov_len = align, 1938 }; 1939 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1940 1941 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1942 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1943 align, align, &tail_qiov, 0); 1944 if (ret < 0) { 1945 goto fail; 1946 } 1947 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1948 1949 if (!use_local_qiov) { 1950 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1951 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1952 use_local_qiov = true; 1953 } 1954 1955 tail_bytes = (offset + bytes) & (align - 1); 1956 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1957 1958 bytes = ROUND_UP(bytes, align); 1959 } 1960 1961 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1962 use_local_qiov ? &local_qiov : qiov, 1963 flags); 1964 1965 fail: 1966 1967 if (use_local_qiov) { 1968 qemu_iovec_destroy(&local_qiov); 1969 } 1970 qemu_vfree(head_buf); 1971 qemu_vfree(tail_buf); 1972 out: 1973 tracked_request_end(&req); 1974 bdrv_dec_in_flight(bs); 1975 return ret; 1976 } 1977 1978 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1979 int bytes, BdrvRequestFlags flags) 1980 { 1981 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 1982 1983 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1984 flags &= ~BDRV_REQ_MAY_UNMAP; 1985 } 1986 1987 return bdrv_co_pwritev(child, offset, bytes, NULL, 1988 BDRV_REQ_ZERO_WRITE | flags); 1989 } 1990 1991 /* 1992 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1993 */ 1994 int bdrv_flush_all(void) 1995 { 1996 BdrvNextIterator it; 1997 BlockDriverState *bs = NULL; 1998 int result = 0; 1999 2000 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2001 AioContext *aio_context = bdrv_get_aio_context(bs); 2002 int ret; 2003 2004 aio_context_acquire(aio_context); 2005 ret = bdrv_flush(bs); 2006 if (ret < 0 && !result) { 2007 result = ret; 2008 } 2009 aio_context_release(aio_context); 2010 } 2011 2012 return result; 2013 } 2014 2015 2016 typedef struct BdrvCoBlockStatusData { 2017 BlockDriverState *bs; 2018 BlockDriverState *base; 2019 bool want_zero; 2020 int64_t offset; 2021 int64_t bytes; 2022 int64_t *pnum; 2023 int64_t *map; 2024 BlockDriverState **file; 2025 int ret; 2026 bool done; 2027 } BdrvCoBlockStatusData; 2028 2029 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs, 2030 bool want_zero, 2031 int64_t offset, 2032 int64_t bytes, 2033 int64_t *pnum, 2034 int64_t *map, 2035 BlockDriverState **file) 2036 { 2037 assert(bs->file && bs->file->bs); 2038 *pnum = bytes; 2039 *map = offset; 2040 *file = bs->file->bs; 2041 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2042 } 2043 2044 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs, 2045 bool want_zero, 2046 int64_t offset, 2047 int64_t bytes, 2048 int64_t *pnum, 2049 int64_t *map, 2050 BlockDriverState **file) 2051 { 2052 assert(bs->backing && bs->backing->bs); 2053 *pnum = bytes; 2054 *map = offset; 2055 *file = bs->backing->bs; 2056 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2057 } 2058 2059 /* 2060 * Returns the allocation status of the specified sectors. 2061 * Drivers not implementing the functionality are assumed to not support 2062 * backing files, hence all their sectors are reported as allocated. 2063 * 2064 * If 'want_zero' is true, the caller is querying for mapping 2065 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2066 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2067 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2068 * 2069 * If 'offset' is beyond the end of the disk image the return value is 2070 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2071 * 2072 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2073 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2074 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2075 * 2076 * 'pnum' is set to the number of bytes (including and immediately 2077 * following the specified offset) that are easily known to be in the 2078 * same allocated/unallocated state. Note that a second call starting 2079 * at the original offset plus returned pnum may have the same status. 2080 * The returned value is non-zero on success except at end-of-file. 2081 * 2082 * Returns negative errno on failure. Otherwise, if the 2083 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2084 * set to the host mapping and BDS corresponding to the guest offset. 2085 */ 2086 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2087 bool want_zero, 2088 int64_t offset, int64_t bytes, 2089 int64_t *pnum, int64_t *map, 2090 BlockDriverState **file) 2091 { 2092 int64_t total_size; 2093 int64_t n; /* bytes */ 2094 int ret; 2095 int64_t local_map = 0; 2096 BlockDriverState *local_file = NULL; 2097 int64_t aligned_offset, aligned_bytes; 2098 uint32_t align; 2099 2100 assert(pnum); 2101 *pnum = 0; 2102 total_size = bdrv_getlength(bs); 2103 if (total_size < 0) { 2104 ret = total_size; 2105 goto early_out; 2106 } 2107 2108 if (offset >= total_size) { 2109 ret = BDRV_BLOCK_EOF; 2110 goto early_out; 2111 } 2112 if (!bytes) { 2113 ret = 0; 2114 goto early_out; 2115 } 2116 2117 n = total_size - offset; 2118 if (n < bytes) { 2119 bytes = n; 2120 } 2121 2122 /* Must be non-NULL or bdrv_getlength() would have failed */ 2123 assert(bs->drv); 2124 if (!bs->drv->bdrv_co_block_status) { 2125 *pnum = bytes; 2126 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2127 if (offset + bytes == total_size) { 2128 ret |= BDRV_BLOCK_EOF; 2129 } 2130 if (bs->drv->protocol_name) { 2131 ret |= BDRV_BLOCK_OFFSET_VALID; 2132 local_map = offset; 2133 local_file = bs; 2134 } 2135 goto early_out; 2136 } 2137 2138 bdrv_inc_in_flight(bs); 2139 2140 /* Round out to request_alignment boundaries */ 2141 align = bs->bl.request_alignment; 2142 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2143 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2144 2145 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2146 aligned_bytes, pnum, &local_map, 2147 &local_file); 2148 if (ret < 0) { 2149 *pnum = 0; 2150 goto out; 2151 } 2152 2153 /* 2154 * The driver's result must be a non-zero multiple of request_alignment. 2155 * Clamp pnum and adjust map to original request. 2156 */ 2157 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2158 align > offset - aligned_offset); 2159 *pnum -= offset - aligned_offset; 2160 if (*pnum > bytes) { 2161 *pnum = bytes; 2162 } 2163 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2164 local_map += offset - aligned_offset; 2165 } 2166 2167 if (ret & BDRV_BLOCK_RAW) { 2168 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2169 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2170 *pnum, pnum, &local_map, &local_file); 2171 goto out; 2172 } 2173 2174 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2175 ret |= BDRV_BLOCK_ALLOCATED; 2176 } else if (want_zero) { 2177 if (bdrv_unallocated_blocks_are_zero(bs)) { 2178 ret |= BDRV_BLOCK_ZERO; 2179 } else if (bs->backing) { 2180 BlockDriverState *bs2 = bs->backing->bs; 2181 int64_t size2 = bdrv_getlength(bs2); 2182 2183 if (size2 >= 0 && offset >= size2) { 2184 ret |= BDRV_BLOCK_ZERO; 2185 } 2186 } 2187 } 2188 2189 if (want_zero && local_file && local_file != bs && 2190 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2191 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2192 int64_t file_pnum; 2193 int ret2; 2194 2195 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2196 *pnum, &file_pnum, NULL, NULL); 2197 if (ret2 >= 0) { 2198 /* Ignore errors. This is just providing extra information, it 2199 * is useful but not necessary. 2200 */ 2201 if (ret2 & BDRV_BLOCK_EOF && 2202 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2203 /* 2204 * It is valid for the format block driver to read 2205 * beyond the end of the underlying file's current 2206 * size; such areas read as zero. 2207 */ 2208 ret |= BDRV_BLOCK_ZERO; 2209 } else { 2210 /* Limit request to the range reported by the protocol driver */ 2211 *pnum = file_pnum; 2212 ret |= (ret2 & BDRV_BLOCK_ZERO); 2213 } 2214 } 2215 } 2216 2217 out: 2218 bdrv_dec_in_flight(bs); 2219 if (ret >= 0 && offset + *pnum == total_size) { 2220 ret |= BDRV_BLOCK_EOF; 2221 } 2222 early_out: 2223 if (file) { 2224 *file = local_file; 2225 } 2226 if (map) { 2227 *map = local_map; 2228 } 2229 return ret; 2230 } 2231 2232 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2233 BlockDriverState *base, 2234 bool want_zero, 2235 int64_t offset, 2236 int64_t bytes, 2237 int64_t *pnum, 2238 int64_t *map, 2239 BlockDriverState **file) 2240 { 2241 BlockDriverState *p; 2242 int ret = 0; 2243 bool first = true; 2244 2245 assert(bs != base); 2246 for (p = bs; p != base; p = backing_bs(p)) { 2247 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2248 file); 2249 if (ret < 0) { 2250 break; 2251 } 2252 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 2253 /* 2254 * Reading beyond the end of the file continues to read 2255 * zeroes, but we can only widen the result to the 2256 * unallocated length we learned from an earlier 2257 * iteration. 2258 */ 2259 *pnum = bytes; 2260 } 2261 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 2262 break; 2263 } 2264 /* [offset, pnum] unallocated on this layer, which could be only 2265 * the first part of [offset, bytes]. */ 2266 bytes = MIN(bytes, *pnum); 2267 first = false; 2268 } 2269 return ret; 2270 } 2271 2272 /* Coroutine wrapper for bdrv_block_status_above() */ 2273 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque) 2274 { 2275 BdrvCoBlockStatusData *data = opaque; 2276 2277 data->ret = bdrv_co_block_status_above(data->bs, data->base, 2278 data->want_zero, 2279 data->offset, data->bytes, 2280 data->pnum, data->map, data->file); 2281 data->done = true; 2282 } 2283 2284 /* 2285 * Synchronous wrapper around bdrv_co_block_status_above(). 2286 * 2287 * See bdrv_co_block_status_above() for details. 2288 */ 2289 static int bdrv_common_block_status_above(BlockDriverState *bs, 2290 BlockDriverState *base, 2291 bool want_zero, int64_t offset, 2292 int64_t bytes, int64_t *pnum, 2293 int64_t *map, 2294 BlockDriverState **file) 2295 { 2296 Coroutine *co; 2297 BdrvCoBlockStatusData data = { 2298 .bs = bs, 2299 .base = base, 2300 .want_zero = want_zero, 2301 .offset = offset, 2302 .bytes = bytes, 2303 .pnum = pnum, 2304 .map = map, 2305 .file = file, 2306 .done = false, 2307 }; 2308 2309 if (qemu_in_coroutine()) { 2310 /* Fast-path if already in coroutine context */ 2311 bdrv_block_status_above_co_entry(&data); 2312 } else { 2313 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data); 2314 bdrv_coroutine_enter(bs, co); 2315 BDRV_POLL_WHILE(bs, !data.done); 2316 } 2317 return data.ret; 2318 } 2319 2320 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2321 int64_t offset, int64_t bytes, int64_t *pnum, 2322 int64_t *map, BlockDriverState **file) 2323 { 2324 return bdrv_common_block_status_above(bs, base, true, offset, bytes, 2325 pnum, map, file); 2326 } 2327 2328 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2329 int64_t *pnum, int64_t *map, BlockDriverState **file) 2330 { 2331 return bdrv_block_status_above(bs, backing_bs(bs), 2332 offset, bytes, pnum, map, file); 2333 } 2334 2335 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2336 int64_t bytes, int64_t *pnum) 2337 { 2338 int ret; 2339 int64_t dummy; 2340 2341 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset, 2342 bytes, pnum ? pnum : &dummy, NULL, 2343 NULL); 2344 if (ret < 0) { 2345 return ret; 2346 } 2347 return !!(ret & BDRV_BLOCK_ALLOCATED); 2348 } 2349 2350 /* 2351 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2352 * 2353 * Return true if (a prefix of) the given range is allocated in any image 2354 * between BASE and TOP (inclusive). BASE can be NULL to check if the given 2355 * offset is allocated in any image of the chain. Return false otherwise, 2356 * or negative errno on failure. 2357 * 2358 * 'pnum' is set to the number of bytes (including and immediately 2359 * following the specified offset) that are known to be in the same 2360 * allocated/unallocated state. Note that a subsequent call starting 2361 * at 'offset + *pnum' may return the same allocation status (in other 2362 * words, the result is not necessarily the maximum possible range); 2363 * but 'pnum' will only be 0 when end of file is reached. 2364 * 2365 */ 2366 int bdrv_is_allocated_above(BlockDriverState *top, 2367 BlockDriverState *base, 2368 int64_t offset, int64_t bytes, int64_t *pnum) 2369 { 2370 BlockDriverState *intermediate; 2371 int ret; 2372 int64_t n = bytes; 2373 2374 intermediate = top; 2375 while (intermediate && intermediate != base) { 2376 int64_t pnum_inter; 2377 int64_t size_inter; 2378 2379 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2380 if (ret < 0) { 2381 return ret; 2382 } 2383 if (ret) { 2384 *pnum = pnum_inter; 2385 return 1; 2386 } 2387 2388 size_inter = bdrv_getlength(intermediate); 2389 if (size_inter < 0) { 2390 return size_inter; 2391 } 2392 if (n > pnum_inter && 2393 (intermediate == top || offset + pnum_inter < size_inter)) { 2394 n = pnum_inter; 2395 } 2396 2397 intermediate = backing_bs(intermediate); 2398 } 2399 2400 *pnum = n; 2401 return 0; 2402 } 2403 2404 typedef struct BdrvVmstateCo { 2405 BlockDriverState *bs; 2406 QEMUIOVector *qiov; 2407 int64_t pos; 2408 bool is_read; 2409 int ret; 2410 } BdrvVmstateCo; 2411 2412 static int coroutine_fn 2413 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2414 bool is_read) 2415 { 2416 BlockDriver *drv = bs->drv; 2417 int ret = -ENOTSUP; 2418 2419 bdrv_inc_in_flight(bs); 2420 2421 if (!drv) { 2422 ret = -ENOMEDIUM; 2423 } else if (drv->bdrv_load_vmstate) { 2424 if (is_read) { 2425 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2426 } else { 2427 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2428 } 2429 } else if (bs->file) { 2430 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2431 } 2432 2433 bdrv_dec_in_flight(bs); 2434 return ret; 2435 } 2436 2437 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2438 { 2439 BdrvVmstateCo *co = opaque; 2440 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2441 } 2442 2443 static inline int 2444 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2445 bool is_read) 2446 { 2447 if (qemu_in_coroutine()) { 2448 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2449 } else { 2450 BdrvVmstateCo data = { 2451 .bs = bs, 2452 .qiov = qiov, 2453 .pos = pos, 2454 .is_read = is_read, 2455 .ret = -EINPROGRESS, 2456 }; 2457 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2458 2459 bdrv_coroutine_enter(bs, co); 2460 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2461 return data.ret; 2462 } 2463 } 2464 2465 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2466 int64_t pos, int size) 2467 { 2468 QEMUIOVector qiov; 2469 struct iovec iov = { 2470 .iov_base = (void *) buf, 2471 .iov_len = size, 2472 }; 2473 int ret; 2474 2475 qemu_iovec_init_external(&qiov, &iov, 1); 2476 2477 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2478 if (ret < 0) { 2479 return ret; 2480 } 2481 2482 return size; 2483 } 2484 2485 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2486 { 2487 return bdrv_rw_vmstate(bs, qiov, pos, false); 2488 } 2489 2490 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2491 int64_t pos, int size) 2492 { 2493 QEMUIOVector qiov; 2494 struct iovec iov = { 2495 .iov_base = buf, 2496 .iov_len = size, 2497 }; 2498 int ret; 2499 2500 qemu_iovec_init_external(&qiov, &iov, 1); 2501 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2502 if (ret < 0) { 2503 return ret; 2504 } 2505 2506 return size; 2507 } 2508 2509 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2510 { 2511 return bdrv_rw_vmstate(bs, qiov, pos, true); 2512 } 2513 2514 /**************************************************************/ 2515 /* async I/Os */ 2516 2517 void bdrv_aio_cancel(BlockAIOCB *acb) 2518 { 2519 qemu_aio_ref(acb); 2520 bdrv_aio_cancel_async(acb); 2521 while (acb->refcnt > 1) { 2522 if (acb->aiocb_info->get_aio_context) { 2523 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2524 } else if (acb->bs) { 2525 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2526 * assert that we're not using an I/O thread. Thread-safe 2527 * code should use bdrv_aio_cancel_async exclusively. 2528 */ 2529 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2530 aio_poll(bdrv_get_aio_context(acb->bs), true); 2531 } else { 2532 abort(); 2533 } 2534 } 2535 qemu_aio_unref(acb); 2536 } 2537 2538 /* Async version of aio cancel. The caller is not blocked if the acb implements 2539 * cancel_async, otherwise we do nothing and let the request normally complete. 2540 * In either case the completion callback must be called. */ 2541 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2542 { 2543 if (acb->aiocb_info->cancel_async) { 2544 acb->aiocb_info->cancel_async(acb); 2545 } 2546 } 2547 2548 /**************************************************************/ 2549 /* Coroutine block device emulation */ 2550 2551 typedef struct FlushCo { 2552 BlockDriverState *bs; 2553 int ret; 2554 } FlushCo; 2555 2556 2557 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2558 { 2559 FlushCo *rwco = opaque; 2560 2561 rwco->ret = bdrv_co_flush(rwco->bs); 2562 } 2563 2564 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2565 { 2566 int current_gen; 2567 int ret = 0; 2568 2569 bdrv_inc_in_flight(bs); 2570 2571 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2572 bdrv_is_sg(bs)) { 2573 goto early_exit; 2574 } 2575 2576 qemu_co_mutex_lock(&bs->reqs_lock); 2577 current_gen = atomic_read(&bs->write_gen); 2578 2579 /* Wait until any previous flushes are completed */ 2580 while (bs->active_flush_req) { 2581 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2582 } 2583 2584 /* Flushes reach this point in nondecreasing current_gen order. */ 2585 bs->active_flush_req = true; 2586 qemu_co_mutex_unlock(&bs->reqs_lock); 2587 2588 /* Write back all layers by calling one driver function */ 2589 if (bs->drv->bdrv_co_flush) { 2590 ret = bs->drv->bdrv_co_flush(bs); 2591 goto out; 2592 } 2593 2594 /* Write back cached data to the OS even with cache=unsafe */ 2595 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2596 if (bs->drv->bdrv_co_flush_to_os) { 2597 ret = bs->drv->bdrv_co_flush_to_os(bs); 2598 if (ret < 0) { 2599 goto out; 2600 } 2601 } 2602 2603 /* But don't actually force it to the disk with cache=unsafe */ 2604 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2605 goto flush_parent; 2606 } 2607 2608 /* Check if we really need to flush anything */ 2609 if (bs->flushed_gen == current_gen) { 2610 goto flush_parent; 2611 } 2612 2613 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2614 if (!bs->drv) { 2615 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2616 * (even in case of apparent success) */ 2617 ret = -ENOMEDIUM; 2618 goto out; 2619 } 2620 if (bs->drv->bdrv_co_flush_to_disk) { 2621 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2622 } else if (bs->drv->bdrv_aio_flush) { 2623 BlockAIOCB *acb; 2624 CoroutineIOCompletion co = { 2625 .coroutine = qemu_coroutine_self(), 2626 }; 2627 2628 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2629 if (acb == NULL) { 2630 ret = -EIO; 2631 } else { 2632 qemu_coroutine_yield(); 2633 ret = co.ret; 2634 } 2635 } else { 2636 /* 2637 * Some block drivers always operate in either writethrough or unsafe 2638 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2639 * know how the server works (because the behaviour is hardcoded or 2640 * depends on server-side configuration), so we can't ensure that 2641 * everything is safe on disk. Returning an error doesn't work because 2642 * that would break guests even if the server operates in writethrough 2643 * mode. 2644 * 2645 * Let's hope the user knows what he's doing. 2646 */ 2647 ret = 0; 2648 } 2649 2650 if (ret < 0) { 2651 goto out; 2652 } 2653 2654 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2655 * in the case of cache=unsafe, so there are no useless flushes. 2656 */ 2657 flush_parent: 2658 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2659 out: 2660 /* Notify any pending flushes that we have completed */ 2661 if (ret == 0) { 2662 bs->flushed_gen = current_gen; 2663 } 2664 2665 qemu_co_mutex_lock(&bs->reqs_lock); 2666 bs->active_flush_req = false; 2667 /* Return value is ignored - it's ok if wait queue is empty */ 2668 qemu_co_queue_next(&bs->flush_queue); 2669 qemu_co_mutex_unlock(&bs->reqs_lock); 2670 2671 early_exit: 2672 bdrv_dec_in_flight(bs); 2673 return ret; 2674 } 2675 2676 int bdrv_flush(BlockDriverState *bs) 2677 { 2678 Coroutine *co; 2679 FlushCo flush_co = { 2680 .bs = bs, 2681 .ret = NOT_DONE, 2682 }; 2683 2684 if (qemu_in_coroutine()) { 2685 /* Fast-path if already in coroutine context */ 2686 bdrv_flush_co_entry(&flush_co); 2687 } else { 2688 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2689 bdrv_coroutine_enter(bs, co); 2690 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2691 } 2692 2693 return flush_co.ret; 2694 } 2695 2696 typedef struct DiscardCo { 2697 BdrvChild *child; 2698 int64_t offset; 2699 int bytes; 2700 int ret; 2701 } DiscardCo; 2702 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2703 { 2704 DiscardCo *rwco = opaque; 2705 2706 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes); 2707 } 2708 2709 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, int bytes) 2710 { 2711 BdrvTrackedRequest req; 2712 int max_pdiscard, ret; 2713 int head, tail, align; 2714 BlockDriverState *bs = child->bs; 2715 2716 if (!bs || !bs->drv) { 2717 return -ENOMEDIUM; 2718 } 2719 2720 if (bdrv_has_readonly_bitmaps(bs)) { 2721 return -EPERM; 2722 } 2723 2724 ret = bdrv_check_byte_request(bs, offset, bytes); 2725 if (ret < 0) { 2726 return ret; 2727 } 2728 2729 /* Do nothing if disabled. */ 2730 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2731 return 0; 2732 } 2733 2734 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2735 return 0; 2736 } 2737 2738 /* Discard is advisory, but some devices track and coalesce 2739 * unaligned requests, so we must pass everything down rather than 2740 * round here. Still, most devices will just silently ignore 2741 * unaligned requests (by returning -ENOTSUP), so we must fragment 2742 * the request accordingly. */ 2743 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2744 assert(align % bs->bl.request_alignment == 0); 2745 head = offset % align; 2746 tail = (offset + bytes) % align; 2747 2748 bdrv_inc_in_flight(bs); 2749 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2750 2751 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 2752 if (ret < 0) { 2753 goto out; 2754 } 2755 2756 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2757 align); 2758 assert(max_pdiscard >= bs->bl.request_alignment); 2759 2760 while (bytes > 0) { 2761 int num = bytes; 2762 2763 if (head) { 2764 /* Make small requests to get to alignment boundaries. */ 2765 num = MIN(bytes, align - head); 2766 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2767 num %= bs->bl.request_alignment; 2768 } 2769 head = (head + num) % align; 2770 assert(num < max_pdiscard); 2771 } else if (tail) { 2772 if (num > align) { 2773 /* Shorten the request to the last aligned cluster. */ 2774 num -= tail; 2775 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2776 tail > bs->bl.request_alignment) { 2777 tail %= bs->bl.request_alignment; 2778 num -= tail; 2779 } 2780 } 2781 /* limit request size */ 2782 if (num > max_pdiscard) { 2783 num = max_pdiscard; 2784 } 2785 2786 if (!bs->drv) { 2787 ret = -ENOMEDIUM; 2788 goto out; 2789 } 2790 if (bs->drv->bdrv_co_pdiscard) { 2791 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2792 } else { 2793 BlockAIOCB *acb; 2794 CoroutineIOCompletion co = { 2795 .coroutine = qemu_coroutine_self(), 2796 }; 2797 2798 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2799 bdrv_co_io_em_complete, &co); 2800 if (acb == NULL) { 2801 ret = -EIO; 2802 goto out; 2803 } else { 2804 qemu_coroutine_yield(); 2805 ret = co.ret; 2806 } 2807 } 2808 if (ret && ret != -ENOTSUP) { 2809 goto out; 2810 } 2811 2812 offset += num; 2813 bytes -= num; 2814 } 2815 ret = 0; 2816 out: 2817 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 2818 tracked_request_end(&req); 2819 bdrv_dec_in_flight(bs); 2820 return ret; 2821 } 2822 2823 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int bytes) 2824 { 2825 Coroutine *co; 2826 DiscardCo rwco = { 2827 .child = child, 2828 .offset = offset, 2829 .bytes = bytes, 2830 .ret = NOT_DONE, 2831 }; 2832 2833 if (qemu_in_coroutine()) { 2834 /* Fast-path if already in coroutine context */ 2835 bdrv_pdiscard_co_entry(&rwco); 2836 } else { 2837 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2838 bdrv_coroutine_enter(child->bs, co); 2839 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 2840 } 2841 2842 return rwco.ret; 2843 } 2844 2845 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2846 { 2847 BlockDriver *drv = bs->drv; 2848 CoroutineIOCompletion co = { 2849 .coroutine = qemu_coroutine_self(), 2850 }; 2851 BlockAIOCB *acb; 2852 2853 bdrv_inc_in_flight(bs); 2854 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2855 co.ret = -ENOTSUP; 2856 goto out; 2857 } 2858 2859 if (drv->bdrv_co_ioctl) { 2860 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2861 } else { 2862 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2863 if (!acb) { 2864 co.ret = -ENOTSUP; 2865 goto out; 2866 } 2867 qemu_coroutine_yield(); 2868 } 2869 out: 2870 bdrv_dec_in_flight(bs); 2871 return co.ret; 2872 } 2873 2874 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2875 { 2876 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2877 } 2878 2879 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2880 { 2881 return memset(qemu_blockalign(bs, size), 0, size); 2882 } 2883 2884 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2885 { 2886 size_t align = bdrv_opt_mem_align(bs); 2887 2888 /* Ensure that NULL is never returned on success */ 2889 assert(align > 0); 2890 if (size == 0) { 2891 size = align; 2892 } 2893 2894 return qemu_try_memalign(align, size); 2895 } 2896 2897 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2898 { 2899 void *mem = qemu_try_blockalign(bs, size); 2900 2901 if (mem) { 2902 memset(mem, 0, size); 2903 } 2904 2905 return mem; 2906 } 2907 2908 /* 2909 * Check if all memory in this vector is sector aligned. 2910 */ 2911 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2912 { 2913 int i; 2914 size_t alignment = bdrv_min_mem_align(bs); 2915 2916 for (i = 0; i < qiov->niov; i++) { 2917 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2918 return false; 2919 } 2920 if (qiov->iov[i].iov_len % alignment) { 2921 return false; 2922 } 2923 } 2924 2925 return true; 2926 } 2927 2928 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2929 NotifierWithReturn *notifier) 2930 { 2931 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2932 } 2933 2934 void bdrv_io_plug(BlockDriverState *bs) 2935 { 2936 BdrvChild *child; 2937 2938 QLIST_FOREACH(child, &bs->children, next) { 2939 bdrv_io_plug(child->bs); 2940 } 2941 2942 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 2943 BlockDriver *drv = bs->drv; 2944 if (drv && drv->bdrv_io_plug) { 2945 drv->bdrv_io_plug(bs); 2946 } 2947 } 2948 } 2949 2950 void bdrv_io_unplug(BlockDriverState *bs) 2951 { 2952 BdrvChild *child; 2953 2954 assert(bs->io_plugged); 2955 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 2956 BlockDriver *drv = bs->drv; 2957 if (drv && drv->bdrv_io_unplug) { 2958 drv->bdrv_io_unplug(bs); 2959 } 2960 } 2961 2962 QLIST_FOREACH(child, &bs->children, next) { 2963 bdrv_io_unplug(child->bs); 2964 } 2965 } 2966 2967 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 2968 { 2969 BdrvChild *child; 2970 2971 if (bs->drv && bs->drv->bdrv_register_buf) { 2972 bs->drv->bdrv_register_buf(bs, host, size); 2973 } 2974 QLIST_FOREACH(child, &bs->children, next) { 2975 bdrv_register_buf(child->bs, host, size); 2976 } 2977 } 2978 2979 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 2980 { 2981 BdrvChild *child; 2982 2983 if (bs->drv && bs->drv->bdrv_unregister_buf) { 2984 bs->drv->bdrv_unregister_buf(bs, host); 2985 } 2986 QLIST_FOREACH(child, &bs->children, next) { 2987 bdrv_unregister_buf(child->bs, host); 2988 } 2989 } 2990 2991 static int coroutine_fn bdrv_co_copy_range_internal( 2992 BdrvChild *src, uint64_t src_offset, BdrvChild *dst, 2993 uint64_t dst_offset, uint64_t bytes, 2994 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 2995 bool recurse_src) 2996 { 2997 BdrvTrackedRequest req; 2998 int ret; 2999 3000 if (!dst || !dst->bs) { 3001 return -ENOMEDIUM; 3002 } 3003 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes); 3004 if (ret) { 3005 return ret; 3006 } 3007 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3008 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3009 } 3010 3011 if (!src || !src->bs) { 3012 return -ENOMEDIUM; 3013 } 3014 ret = bdrv_check_byte_request(src->bs, src_offset, bytes); 3015 if (ret) { 3016 return ret; 3017 } 3018 3019 if (!src->bs->drv->bdrv_co_copy_range_from 3020 || !dst->bs->drv->bdrv_co_copy_range_to 3021 || src->bs->encrypted || dst->bs->encrypted) { 3022 return -ENOTSUP; 3023 } 3024 3025 if (recurse_src) { 3026 bdrv_inc_in_flight(src->bs); 3027 tracked_request_begin(&req, src->bs, src_offset, bytes, 3028 BDRV_TRACKED_READ); 3029 3030 /* BDRV_REQ_SERIALISING is only for write operation */ 3031 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3032 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) { 3033 wait_serialising_requests(&req); 3034 } 3035 3036 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3037 src, src_offset, 3038 dst, dst_offset, 3039 bytes, 3040 read_flags, write_flags); 3041 3042 tracked_request_end(&req); 3043 bdrv_dec_in_flight(src->bs); 3044 } else { 3045 bdrv_inc_in_flight(dst->bs); 3046 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3047 BDRV_TRACKED_WRITE); 3048 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3049 write_flags); 3050 if (!ret) { 3051 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3052 src, src_offset, 3053 dst, dst_offset, 3054 bytes, 3055 read_flags, write_flags); 3056 } 3057 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3058 tracked_request_end(&req); 3059 bdrv_dec_in_flight(dst->bs); 3060 } 3061 3062 return ret; 3063 } 3064 3065 /* Copy range from @src to @dst. 3066 * 3067 * See the comment of bdrv_co_copy_range for the parameter and return value 3068 * semantics. */ 3069 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset, 3070 BdrvChild *dst, uint64_t dst_offset, 3071 uint64_t bytes, 3072 BdrvRequestFlags read_flags, 3073 BdrvRequestFlags write_flags) 3074 { 3075 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3076 read_flags, write_flags); 3077 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3078 bytes, read_flags, write_flags, true); 3079 } 3080 3081 /* Copy range from @src to @dst. 3082 * 3083 * See the comment of bdrv_co_copy_range for the parameter and return value 3084 * semantics. */ 3085 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset, 3086 BdrvChild *dst, uint64_t dst_offset, 3087 uint64_t bytes, 3088 BdrvRequestFlags read_flags, 3089 BdrvRequestFlags write_flags) 3090 { 3091 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3092 read_flags, write_flags); 3093 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3094 bytes, read_flags, write_flags, false); 3095 } 3096 3097 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset, 3098 BdrvChild *dst, uint64_t dst_offset, 3099 uint64_t bytes, BdrvRequestFlags read_flags, 3100 BdrvRequestFlags write_flags) 3101 { 3102 return bdrv_co_copy_range_from(src, src_offset, 3103 dst, dst_offset, 3104 bytes, read_flags, write_flags); 3105 } 3106 3107 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3108 { 3109 BdrvChild *c; 3110 QLIST_FOREACH(c, &bs->parents, next_parent) { 3111 if (c->role->resize) { 3112 c->role->resize(c); 3113 } 3114 } 3115 } 3116 3117 /** 3118 * Truncate file to 'offset' bytes (needed only for file protocols) 3119 */ 3120 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, 3121 PreallocMode prealloc, Error **errp) 3122 { 3123 BlockDriverState *bs = child->bs; 3124 BlockDriver *drv = bs->drv; 3125 BdrvTrackedRequest req; 3126 int64_t old_size, new_bytes; 3127 int ret; 3128 3129 3130 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3131 if (!drv) { 3132 error_setg(errp, "No medium inserted"); 3133 return -ENOMEDIUM; 3134 } 3135 if (offset < 0) { 3136 error_setg(errp, "Image size cannot be negative"); 3137 return -EINVAL; 3138 } 3139 3140 old_size = bdrv_getlength(bs); 3141 if (old_size < 0) { 3142 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3143 return old_size; 3144 } 3145 3146 if (offset > old_size) { 3147 new_bytes = offset - old_size; 3148 } else { 3149 new_bytes = 0; 3150 } 3151 3152 bdrv_inc_in_flight(bs); 3153 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3154 BDRV_TRACKED_TRUNCATE); 3155 3156 /* If we are growing the image and potentially using preallocation for the 3157 * new area, we need to make sure that no write requests are made to it 3158 * concurrently or they might be overwritten by preallocation. */ 3159 if (new_bytes) { 3160 mark_request_serialising(&req, 1); 3161 } 3162 if (bs->read_only) { 3163 error_setg(errp, "Image is read-only"); 3164 ret = -EACCES; 3165 goto out; 3166 } 3167 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3168 0); 3169 if (ret < 0) { 3170 error_setg_errno(errp, -ret, 3171 "Failed to prepare request for truncation"); 3172 goto out; 3173 } 3174 3175 if (!drv->bdrv_co_truncate) { 3176 if (bs->file && drv->is_filter) { 3177 ret = bdrv_co_truncate(bs->file, offset, prealloc, errp); 3178 goto out; 3179 } 3180 error_setg(errp, "Image format driver does not support resize"); 3181 ret = -ENOTSUP; 3182 goto out; 3183 } 3184 3185 ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp); 3186 if (ret < 0) { 3187 goto out; 3188 } 3189 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3190 if (ret < 0) { 3191 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3192 } else { 3193 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3194 } 3195 /* It's possible that truncation succeeded but refresh_total_sectors 3196 * failed, but the latter doesn't affect how we should finish the request. 3197 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3198 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3199 3200 out: 3201 tracked_request_end(&req); 3202 bdrv_dec_in_flight(bs); 3203 3204 return ret; 3205 } 3206 3207 typedef struct TruncateCo { 3208 BdrvChild *child; 3209 int64_t offset; 3210 PreallocMode prealloc; 3211 Error **errp; 3212 int ret; 3213 } TruncateCo; 3214 3215 static void coroutine_fn bdrv_truncate_co_entry(void *opaque) 3216 { 3217 TruncateCo *tco = opaque; 3218 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc, 3219 tco->errp); 3220 } 3221 3222 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc, 3223 Error **errp) 3224 { 3225 Coroutine *co; 3226 TruncateCo tco = { 3227 .child = child, 3228 .offset = offset, 3229 .prealloc = prealloc, 3230 .errp = errp, 3231 .ret = NOT_DONE, 3232 }; 3233 3234 if (qemu_in_coroutine()) { 3235 /* Fast-path if already in coroutine context */ 3236 bdrv_truncate_co_entry(&tco); 3237 } else { 3238 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco); 3239 qemu_coroutine_enter(co); 3240 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE); 3241 } 3242 3243 return tco.ret; 3244 } 3245