1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/dirty-bitmap.h" 34 #include "block/write-threshold.h" 35 #include "qemu/cutils.h" 36 #include "qemu/memalign.h" 37 #include "qapi/error.h" 38 #include "qemu/error-report.h" 39 #include "qemu/main-loop.h" 40 #include "sysemu/replay.h" 41 42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 44 45 static void bdrv_parent_cb_resize(BlockDriverState *bs); 46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 47 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 48 49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore) 50 { 51 BdrvChild *c, *next; 52 53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 54 if (c == ignore) { 55 continue; 56 } 57 bdrv_parent_drained_begin_single(c); 58 } 59 } 60 61 void bdrv_parent_drained_end_single(BdrvChild *c) 62 { 63 GLOBAL_STATE_CODE(); 64 65 assert(c->quiesced_parent); 66 c->quiesced_parent = false; 67 68 if (c->klass->drained_end) { 69 c->klass->drained_end(c); 70 } 71 } 72 73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore) 74 { 75 BdrvChild *c; 76 77 QLIST_FOREACH(c, &bs->parents, next_parent) { 78 if (c == ignore) { 79 continue; 80 } 81 bdrv_parent_drained_end_single(c); 82 } 83 } 84 85 bool bdrv_parent_drained_poll_single(BdrvChild *c) 86 { 87 if (c->klass->drained_poll) { 88 return c->klass->drained_poll(c); 89 } 90 return false; 91 } 92 93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 94 bool ignore_bds_parents) 95 { 96 BdrvChild *c, *next; 97 bool busy = false; 98 99 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 100 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 101 continue; 102 } 103 busy |= bdrv_parent_drained_poll_single(c); 104 } 105 106 return busy; 107 } 108 109 void bdrv_parent_drained_begin_single(BdrvChild *c) 110 { 111 GLOBAL_STATE_CODE(); 112 113 assert(!c->quiesced_parent); 114 c->quiesced_parent = true; 115 116 if (c->klass->drained_begin) { 117 c->klass->drained_begin(c); 118 } 119 } 120 121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 122 { 123 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 124 src->pdiscard_alignment); 125 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 126 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 127 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 128 src->max_hw_transfer); 129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 130 src->opt_mem_alignment); 131 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 132 src->min_mem_alignment); 133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 134 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 135 } 136 137 typedef struct BdrvRefreshLimitsState { 138 BlockDriverState *bs; 139 BlockLimits old_bl; 140 } BdrvRefreshLimitsState; 141 142 static void bdrv_refresh_limits_abort(void *opaque) 143 { 144 BdrvRefreshLimitsState *s = opaque; 145 146 s->bs->bl = s->old_bl; 147 } 148 149 static TransactionActionDrv bdrv_refresh_limits_drv = { 150 .abort = bdrv_refresh_limits_abort, 151 .clean = g_free, 152 }; 153 154 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 156 { 157 ERRP_GUARD(); 158 BlockDriver *drv = bs->drv; 159 BdrvChild *c; 160 bool have_limits; 161 162 GLOBAL_STATE_CODE(); 163 164 if (tran) { 165 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 166 *s = (BdrvRefreshLimitsState) { 167 .bs = bs, 168 .old_bl = bs->bl, 169 }; 170 tran_add(tran, &bdrv_refresh_limits_drv, s); 171 } 172 173 memset(&bs->bl, 0, sizeof(bs->bl)); 174 175 if (!drv) { 176 return; 177 } 178 179 /* Default alignment based on whether driver has byte interface */ 180 bs->bl.request_alignment = (drv->bdrv_co_preadv || 181 drv->bdrv_aio_preadv || 182 drv->bdrv_co_preadv_part) ? 1 : 512; 183 184 /* Take some limits from the children as a default */ 185 have_limits = false; 186 QLIST_FOREACH(c, &bs->children, next) { 187 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 188 { 189 bdrv_merge_limits(&bs->bl, &c->bs->bl); 190 have_limits = true; 191 } 192 193 if (c->role & BDRV_CHILD_FILTERED) { 194 bs->bl.has_variable_length |= c->bs->bl.has_variable_length; 195 } 196 } 197 198 if (!have_limits) { 199 bs->bl.min_mem_alignment = 512; 200 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 201 202 /* Safe default since most protocols use readv()/writev()/etc */ 203 bs->bl.max_iov = IOV_MAX; 204 } 205 206 /* Then let the driver override it */ 207 if (drv->bdrv_refresh_limits) { 208 drv->bdrv_refresh_limits(bs, errp); 209 if (*errp) { 210 return; 211 } 212 } 213 214 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 215 error_setg(errp, "Driver requires too large request alignment"); 216 } 217 } 218 219 /** 220 * The copy-on-read flag is actually a reference count so multiple users may 221 * use the feature without worrying about clobbering its previous state. 222 * Copy-on-read stays enabled until all users have called to disable it. 223 */ 224 void bdrv_enable_copy_on_read(BlockDriverState *bs) 225 { 226 IO_CODE(); 227 qatomic_inc(&bs->copy_on_read); 228 } 229 230 void bdrv_disable_copy_on_read(BlockDriverState *bs) 231 { 232 int old = qatomic_fetch_dec(&bs->copy_on_read); 233 IO_CODE(); 234 assert(old >= 1); 235 } 236 237 typedef struct { 238 Coroutine *co; 239 BlockDriverState *bs; 240 bool done; 241 bool begin; 242 bool poll; 243 BdrvChild *parent; 244 } BdrvCoDrainData; 245 246 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 247 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent, 248 bool ignore_bds_parents) 249 { 250 GLOBAL_STATE_CODE(); 251 252 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 253 return true; 254 } 255 256 if (qatomic_read(&bs->in_flight)) { 257 return true; 258 } 259 260 return false; 261 } 262 263 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, 264 BdrvChild *ignore_parent) 265 { 266 return bdrv_drain_poll(bs, ignore_parent, false); 267 } 268 269 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 270 bool poll); 271 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent); 272 273 static void bdrv_co_drain_bh_cb(void *opaque) 274 { 275 BdrvCoDrainData *data = opaque; 276 Coroutine *co = data->co; 277 BlockDriverState *bs = data->bs; 278 279 if (bs) { 280 AioContext *ctx = bdrv_get_aio_context(bs); 281 aio_context_acquire(ctx); 282 bdrv_dec_in_flight(bs); 283 if (data->begin) { 284 bdrv_do_drained_begin(bs, data->parent, data->poll); 285 } else { 286 assert(!data->poll); 287 bdrv_do_drained_end(bs, data->parent); 288 } 289 aio_context_release(ctx); 290 } else { 291 assert(data->begin); 292 bdrv_drain_all_begin(); 293 } 294 295 data->done = true; 296 aio_co_wake(co); 297 } 298 299 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 300 bool begin, 301 BdrvChild *parent, 302 bool poll) 303 { 304 BdrvCoDrainData data; 305 Coroutine *self = qemu_coroutine_self(); 306 AioContext *ctx = bdrv_get_aio_context(bs); 307 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 308 309 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 310 * other coroutines run if they were queued by aio_co_enter(). */ 311 312 assert(qemu_in_coroutine()); 313 data = (BdrvCoDrainData) { 314 .co = self, 315 .bs = bs, 316 .done = false, 317 .begin = begin, 318 .parent = parent, 319 .poll = poll, 320 }; 321 322 if (bs) { 323 bdrv_inc_in_flight(bs); 324 } 325 326 /* 327 * Temporarily drop the lock across yield or we would get deadlocks. 328 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 329 * 330 * When we yield below, the lock for the current context will be 331 * released, so if this is actually the lock that protects bs, don't drop 332 * it a second time. 333 */ 334 if (ctx != co_ctx) { 335 aio_context_release(ctx); 336 } 337 replay_bh_schedule_oneshot_event(qemu_get_aio_context(), 338 bdrv_co_drain_bh_cb, &data); 339 340 qemu_coroutine_yield(); 341 /* If we are resumed from some other event (such as an aio completion or a 342 * timer callback), it is a bug in the caller that should be fixed. */ 343 assert(data.done); 344 345 /* Reaquire the AioContext of bs if we dropped it */ 346 if (ctx != co_ctx) { 347 aio_context_acquire(ctx); 348 } 349 } 350 351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 352 bool poll) 353 { 354 IO_OR_GS_CODE(); 355 356 if (qemu_in_coroutine()) { 357 bdrv_co_yield_to_drain(bs, true, parent, poll); 358 return; 359 } 360 361 GLOBAL_STATE_CODE(); 362 363 /* Stop things in parent-to-child order */ 364 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 365 bdrv_parent_drained_begin(bs, parent); 366 if (bs->drv && bs->drv->bdrv_drain_begin) { 367 bs->drv->bdrv_drain_begin(bs); 368 } 369 } 370 371 /* 372 * Wait for drained requests to finish. 373 * 374 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 375 * call is needed so things in this AioContext can make progress even 376 * though we don't return to the main AioContext loop - this automatically 377 * includes other nodes in the same AioContext and therefore all child 378 * nodes. 379 */ 380 if (poll) { 381 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent)); 382 } 383 } 384 385 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent) 386 { 387 bdrv_do_drained_begin(bs, parent, false); 388 } 389 390 void bdrv_drained_begin(BlockDriverState *bs) 391 { 392 IO_OR_GS_CODE(); 393 bdrv_do_drained_begin(bs, NULL, true); 394 } 395 396 /** 397 * This function does not poll, nor must any of its recursively called 398 * functions. 399 */ 400 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent) 401 { 402 int old_quiesce_counter; 403 404 IO_OR_GS_CODE(); 405 406 if (qemu_in_coroutine()) { 407 bdrv_co_yield_to_drain(bs, false, parent, false); 408 return; 409 } 410 assert(bs->quiesce_counter > 0); 411 GLOBAL_STATE_CODE(); 412 413 /* Re-enable things in child-to-parent order */ 414 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 415 if (old_quiesce_counter == 1) { 416 if (bs->drv && bs->drv->bdrv_drain_end) { 417 bs->drv->bdrv_drain_end(bs); 418 } 419 bdrv_parent_drained_end(bs, parent); 420 } 421 } 422 423 void bdrv_drained_end(BlockDriverState *bs) 424 { 425 IO_OR_GS_CODE(); 426 bdrv_do_drained_end(bs, NULL); 427 } 428 429 void bdrv_drain(BlockDriverState *bs) 430 { 431 IO_OR_GS_CODE(); 432 bdrv_drained_begin(bs); 433 bdrv_drained_end(bs); 434 } 435 436 static void bdrv_drain_assert_idle(BlockDriverState *bs) 437 { 438 BdrvChild *child, *next; 439 440 assert(qatomic_read(&bs->in_flight) == 0); 441 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 442 bdrv_drain_assert_idle(child->bs); 443 } 444 } 445 446 unsigned int bdrv_drain_all_count = 0; 447 448 static bool bdrv_drain_all_poll(void) 449 { 450 BlockDriverState *bs = NULL; 451 bool result = false; 452 GLOBAL_STATE_CODE(); 453 454 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 455 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 456 while ((bs = bdrv_next_all_states(bs))) { 457 AioContext *aio_context = bdrv_get_aio_context(bs); 458 aio_context_acquire(aio_context); 459 result |= bdrv_drain_poll(bs, NULL, true); 460 aio_context_release(aio_context); 461 } 462 463 return result; 464 } 465 466 /* 467 * Wait for pending requests to complete across all BlockDriverStates 468 * 469 * This function does not flush data to disk, use bdrv_flush_all() for that 470 * after calling this function. 471 * 472 * This pauses all block jobs and disables external clients. It must 473 * be paired with bdrv_drain_all_end(). 474 * 475 * NOTE: no new block jobs or BlockDriverStates can be created between 476 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 477 */ 478 void bdrv_drain_all_begin_nopoll(void) 479 { 480 BlockDriverState *bs = NULL; 481 GLOBAL_STATE_CODE(); 482 483 /* 484 * bdrv queue is managed by record/replay, 485 * waiting for finishing the I/O requests may 486 * be infinite 487 */ 488 if (replay_events_enabled()) { 489 return; 490 } 491 492 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 493 * loop AioContext, so make sure we're in the main context. */ 494 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 495 assert(bdrv_drain_all_count < INT_MAX); 496 bdrv_drain_all_count++; 497 498 /* Quiesce all nodes, without polling in-flight requests yet. The graph 499 * cannot change during this loop. */ 500 while ((bs = bdrv_next_all_states(bs))) { 501 AioContext *aio_context = bdrv_get_aio_context(bs); 502 503 aio_context_acquire(aio_context); 504 bdrv_do_drained_begin(bs, NULL, false); 505 aio_context_release(aio_context); 506 } 507 } 508 509 void bdrv_drain_all_begin(void) 510 { 511 BlockDriverState *bs = NULL; 512 513 if (qemu_in_coroutine()) { 514 bdrv_co_yield_to_drain(NULL, true, NULL, true); 515 return; 516 } 517 518 /* 519 * bdrv queue is managed by record/replay, 520 * waiting for finishing the I/O requests may 521 * be infinite 522 */ 523 if (replay_events_enabled()) { 524 return; 525 } 526 527 bdrv_drain_all_begin_nopoll(); 528 529 /* Now poll the in-flight requests */ 530 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll()); 531 532 while ((bs = bdrv_next_all_states(bs))) { 533 bdrv_drain_assert_idle(bs); 534 } 535 } 536 537 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 538 { 539 GLOBAL_STATE_CODE(); 540 541 g_assert(bs->quiesce_counter > 0); 542 g_assert(!bs->refcnt); 543 544 while (bs->quiesce_counter) { 545 bdrv_do_drained_end(bs, NULL); 546 } 547 } 548 549 void bdrv_drain_all_end(void) 550 { 551 BlockDriverState *bs = NULL; 552 GLOBAL_STATE_CODE(); 553 554 /* 555 * bdrv queue is managed by record/replay, 556 * waiting for finishing the I/O requests may 557 * be endless 558 */ 559 if (replay_events_enabled()) { 560 return; 561 } 562 563 while ((bs = bdrv_next_all_states(bs))) { 564 AioContext *aio_context = bdrv_get_aio_context(bs); 565 566 aio_context_acquire(aio_context); 567 bdrv_do_drained_end(bs, NULL); 568 aio_context_release(aio_context); 569 } 570 571 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 572 assert(bdrv_drain_all_count > 0); 573 bdrv_drain_all_count--; 574 } 575 576 void bdrv_drain_all(void) 577 { 578 GLOBAL_STATE_CODE(); 579 bdrv_drain_all_begin(); 580 bdrv_drain_all_end(); 581 } 582 583 /** 584 * Remove an active request from the tracked requests list 585 * 586 * This function should be called when a tracked request is completing. 587 */ 588 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 589 { 590 if (req->serialising) { 591 qatomic_dec(&req->bs->serialising_in_flight); 592 } 593 594 qemu_co_mutex_lock(&req->bs->reqs_lock); 595 QLIST_REMOVE(req, list); 596 qemu_co_queue_restart_all(&req->wait_queue); 597 qemu_co_mutex_unlock(&req->bs->reqs_lock); 598 } 599 600 /** 601 * Add an active request to the tracked requests list 602 */ 603 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req, 604 BlockDriverState *bs, 605 int64_t offset, 606 int64_t bytes, 607 enum BdrvTrackedRequestType type) 608 { 609 bdrv_check_request(offset, bytes, &error_abort); 610 611 *req = (BdrvTrackedRequest){ 612 .bs = bs, 613 .offset = offset, 614 .bytes = bytes, 615 .type = type, 616 .co = qemu_coroutine_self(), 617 .serialising = false, 618 .overlap_offset = offset, 619 .overlap_bytes = bytes, 620 }; 621 622 qemu_co_queue_init(&req->wait_queue); 623 624 qemu_co_mutex_lock(&bs->reqs_lock); 625 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 626 qemu_co_mutex_unlock(&bs->reqs_lock); 627 } 628 629 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 630 int64_t offset, int64_t bytes) 631 { 632 bdrv_check_request(offset, bytes, &error_abort); 633 634 /* aaaa bbbb */ 635 if (offset >= req->overlap_offset + req->overlap_bytes) { 636 return false; 637 } 638 /* bbbb aaaa */ 639 if (req->overlap_offset >= offset + bytes) { 640 return false; 641 } 642 return true; 643 } 644 645 /* Called with self->bs->reqs_lock held */ 646 static coroutine_fn BdrvTrackedRequest * 647 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 648 { 649 BdrvTrackedRequest *req; 650 651 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 652 if (req == self || (!req->serialising && !self->serialising)) { 653 continue; 654 } 655 if (tracked_request_overlaps(req, self->overlap_offset, 656 self->overlap_bytes)) 657 { 658 /* 659 * Hitting this means there was a reentrant request, for 660 * example, a block driver issuing nested requests. This must 661 * never happen since it means deadlock. 662 */ 663 assert(qemu_coroutine_self() != req->co); 664 665 /* 666 * If the request is already (indirectly) waiting for us, or 667 * will wait for us as soon as it wakes up, then just go on 668 * (instead of producing a deadlock in the former case). 669 */ 670 if (!req->waiting_for) { 671 return req; 672 } 673 } 674 } 675 676 return NULL; 677 } 678 679 /* Called with self->bs->reqs_lock held */ 680 static void coroutine_fn 681 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 682 { 683 BdrvTrackedRequest *req; 684 685 while ((req = bdrv_find_conflicting_request(self))) { 686 self->waiting_for = req; 687 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 688 self->waiting_for = NULL; 689 } 690 } 691 692 /* Called with req->bs->reqs_lock held */ 693 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 694 uint64_t align) 695 { 696 int64_t overlap_offset = req->offset & ~(align - 1); 697 int64_t overlap_bytes = 698 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 699 700 bdrv_check_request(req->offset, req->bytes, &error_abort); 701 702 if (!req->serialising) { 703 qatomic_inc(&req->bs->serialising_in_flight); 704 req->serialising = true; 705 } 706 707 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 708 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 709 } 710 711 /** 712 * Return the tracked request on @bs for the current coroutine, or 713 * NULL if there is none. 714 */ 715 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 716 { 717 BdrvTrackedRequest *req; 718 Coroutine *self = qemu_coroutine_self(); 719 IO_CODE(); 720 721 QLIST_FOREACH(req, &bs->tracked_requests, list) { 722 if (req->co == self) { 723 return req; 724 } 725 } 726 727 return NULL; 728 } 729 730 /** 731 * Round a region to cluster boundaries 732 */ 733 void coroutine_fn GRAPH_RDLOCK 734 bdrv_round_to_clusters(BlockDriverState *bs, int64_t offset, int64_t bytes, 735 int64_t *cluster_offset, int64_t *cluster_bytes) 736 { 737 BlockDriverInfo bdi; 738 IO_CODE(); 739 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 740 *cluster_offset = offset; 741 *cluster_bytes = bytes; 742 } else { 743 int64_t c = bdi.cluster_size; 744 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 745 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 746 } 747 } 748 749 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs) 750 { 751 BlockDriverInfo bdi; 752 int ret; 753 754 ret = bdrv_co_get_info(bs, &bdi); 755 if (ret < 0 || bdi.cluster_size == 0) { 756 return bs->bl.request_alignment; 757 } else { 758 return bdi.cluster_size; 759 } 760 } 761 762 void bdrv_inc_in_flight(BlockDriverState *bs) 763 { 764 IO_CODE(); 765 qatomic_inc(&bs->in_flight); 766 } 767 768 void bdrv_wakeup(BlockDriverState *bs) 769 { 770 IO_CODE(); 771 aio_wait_kick(); 772 } 773 774 void bdrv_dec_in_flight(BlockDriverState *bs) 775 { 776 IO_CODE(); 777 qatomic_dec(&bs->in_flight); 778 bdrv_wakeup(bs); 779 } 780 781 static void coroutine_fn 782 bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 783 { 784 BlockDriverState *bs = self->bs; 785 786 if (!qatomic_read(&bs->serialising_in_flight)) { 787 return; 788 } 789 790 qemu_co_mutex_lock(&bs->reqs_lock); 791 bdrv_wait_serialising_requests_locked(self); 792 qemu_co_mutex_unlock(&bs->reqs_lock); 793 } 794 795 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 796 uint64_t align) 797 { 798 IO_CODE(); 799 800 qemu_co_mutex_lock(&req->bs->reqs_lock); 801 802 tracked_request_set_serialising(req, align); 803 bdrv_wait_serialising_requests_locked(req); 804 805 qemu_co_mutex_unlock(&req->bs->reqs_lock); 806 } 807 808 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 809 QEMUIOVector *qiov, size_t qiov_offset, 810 Error **errp) 811 { 812 /* 813 * Check generic offset/bytes correctness 814 */ 815 816 if (offset < 0) { 817 error_setg(errp, "offset is negative: %" PRIi64, offset); 818 return -EIO; 819 } 820 821 if (bytes < 0) { 822 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 823 return -EIO; 824 } 825 826 if (bytes > BDRV_MAX_LENGTH) { 827 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 828 bytes, BDRV_MAX_LENGTH); 829 return -EIO; 830 } 831 832 if (offset > BDRV_MAX_LENGTH) { 833 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 834 offset, BDRV_MAX_LENGTH); 835 return -EIO; 836 } 837 838 if (offset > BDRV_MAX_LENGTH - bytes) { 839 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 840 "exceeds maximum(%" PRIi64 ")", offset, bytes, 841 BDRV_MAX_LENGTH); 842 return -EIO; 843 } 844 845 if (!qiov) { 846 return 0; 847 } 848 849 /* 850 * Check qiov and qiov_offset 851 */ 852 853 if (qiov_offset > qiov->size) { 854 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 855 qiov_offset, qiov->size); 856 return -EIO; 857 } 858 859 if (bytes > qiov->size - qiov_offset) { 860 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 861 "vector size(%zu)", bytes, qiov_offset, qiov->size); 862 return -EIO; 863 } 864 865 return 0; 866 } 867 868 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 869 { 870 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 871 } 872 873 static int bdrv_check_request32(int64_t offset, int64_t bytes, 874 QEMUIOVector *qiov, size_t qiov_offset) 875 { 876 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 877 if (ret < 0) { 878 return ret; 879 } 880 881 if (bytes > BDRV_REQUEST_MAX_BYTES) { 882 return -EIO; 883 } 884 885 return 0; 886 } 887 888 /* 889 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 890 * The operation is sped up by checking the block status and only writing 891 * zeroes to the device if they currently do not return zeroes. Optional 892 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 893 * BDRV_REQ_FUA). 894 * 895 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 896 */ 897 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 898 { 899 int ret; 900 int64_t target_size, bytes, offset = 0; 901 BlockDriverState *bs = child->bs; 902 IO_CODE(); 903 904 target_size = bdrv_getlength(bs); 905 if (target_size < 0) { 906 return target_size; 907 } 908 909 for (;;) { 910 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 911 if (bytes <= 0) { 912 return 0; 913 } 914 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 915 if (ret < 0) { 916 return ret; 917 } 918 if (ret & BDRV_BLOCK_ZERO) { 919 offset += bytes; 920 continue; 921 } 922 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 923 if (ret < 0) { 924 return ret; 925 } 926 offset += bytes; 927 } 928 } 929 930 /* 931 * Writes to the file and ensures that no writes are reordered across this 932 * request (acts as a barrier) 933 * 934 * Returns 0 on success, -errno in error cases. 935 */ 936 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 937 int64_t bytes, const void *buf, 938 BdrvRequestFlags flags) 939 { 940 int ret; 941 IO_CODE(); 942 assert_bdrv_graph_readable(); 943 944 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 945 if (ret < 0) { 946 return ret; 947 } 948 949 ret = bdrv_co_flush(child->bs); 950 if (ret < 0) { 951 return ret; 952 } 953 954 return 0; 955 } 956 957 typedef struct CoroutineIOCompletion { 958 Coroutine *coroutine; 959 int ret; 960 } CoroutineIOCompletion; 961 962 static void bdrv_co_io_em_complete(void *opaque, int ret) 963 { 964 CoroutineIOCompletion *co = opaque; 965 966 co->ret = ret; 967 aio_co_wake(co->coroutine); 968 } 969 970 static int coroutine_fn GRAPH_RDLOCK 971 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes, 972 QEMUIOVector *qiov, size_t qiov_offset, int flags) 973 { 974 BlockDriver *drv = bs->drv; 975 int64_t sector_num; 976 unsigned int nb_sectors; 977 QEMUIOVector local_qiov; 978 int ret; 979 assert_bdrv_graph_readable(); 980 981 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 982 assert(!(flags & ~bs->supported_read_flags)); 983 984 if (!drv) { 985 return -ENOMEDIUM; 986 } 987 988 if (drv->bdrv_co_preadv_part) { 989 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 990 flags); 991 } 992 993 if (qiov_offset > 0 || bytes != qiov->size) { 994 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 995 qiov = &local_qiov; 996 } 997 998 if (drv->bdrv_co_preadv) { 999 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1000 goto out; 1001 } 1002 1003 if (drv->bdrv_aio_preadv) { 1004 BlockAIOCB *acb; 1005 CoroutineIOCompletion co = { 1006 .coroutine = qemu_coroutine_self(), 1007 }; 1008 1009 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1010 bdrv_co_io_em_complete, &co); 1011 if (acb == NULL) { 1012 ret = -EIO; 1013 goto out; 1014 } else { 1015 qemu_coroutine_yield(); 1016 ret = co.ret; 1017 goto out; 1018 } 1019 } 1020 1021 sector_num = offset >> BDRV_SECTOR_BITS; 1022 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1023 1024 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1025 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1026 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1027 assert(drv->bdrv_co_readv); 1028 1029 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1030 1031 out: 1032 if (qiov == &local_qiov) { 1033 qemu_iovec_destroy(&local_qiov); 1034 } 1035 1036 return ret; 1037 } 1038 1039 static int coroutine_fn GRAPH_RDLOCK 1040 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes, 1041 QEMUIOVector *qiov, size_t qiov_offset, 1042 BdrvRequestFlags flags) 1043 { 1044 BlockDriver *drv = bs->drv; 1045 bool emulate_fua = false; 1046 int64_t sector_num; 1047 unsigned int nb_sectors; 1048 QEMUIOVector local_qiov; 1049 int ret; 1050 assert_bdrv_graph_readable(); 1051 1052 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1053 1054 if (!drv) { 1055 return -ENOMEDIUM; 1056 } 1057 1058 if ((flags & BDRV_REQ_FUA) && 1059 (~bs->supported_write_flags & BDRV_REQ_FUA)) { 1060 flags &= ~BDRV_REQ_FUA; 1061 emulate_fua = true; 1062 } 1063 1064 flags &= bs->supported_write_flags; 1065 1066 if (drv->bdrv_co_pwritev_part) { 1067 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1068 flags); 1069 goto emulate_flags; 1070 } 1071 1072 if (qiov_offset > 0 || bytes != qiov->size) { 1073 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1074 qiov = &local_qiov; 1075 } 1076 1077 if (drv->bdrv_co_pwritev) { 1078 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags); 1079 goto emulate_flags; 1080 } 1081 1082 if (drv->bdrv_aio_pwritev) { 1083 BlockAIOCB *acb; 1084 CoroutineIOCompletion co = { 1085 .coroutine = qemu_coroutine_self(), 1086 }; 1087 1088 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags, 1089 bdrv_co_io_em_complete, &co); 1090 if (acb == NULL) { 1091 ret = -EIO; 1092 } else { 1093 qemu_coroutine_yield(); 1094 ret = co.ret; 1095 } 1096 goto emulate_flags; 1097 } 1098 1099 sector_num = offset >> BDRV_SECTOR_BITS; 1100 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1101 1102 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1103 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1104 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1105 1106 assert(drv->bdrv_co_writev); 1107 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags); 1108 1109 emulate_flags: 1110 if (ret == 0 && emulate_fua) { 1111 ret = bdrv_co_flush(bs); 1112 } 1113 1114 if (qiov == &local_qiov) { 1115 qemu_iovec_destroy(&local_qiov); 1116 } 1117 1118 return ret; 1119 } 1120 1121 static int coroutine_fn GRAPH_RDLOCK 1122 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1123 int64_t bytes, QEMUIOVector *qiov, 1124 size_t qiov_offset) 1125 { 1126 BlockDriver *drv = bs->drv; 1127 QEMUIOVector local_qiov; 1128 int ret; 1129 assert_bdrv_graph_readable(); 1130 1131 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1132 1133 if (!drv) { 1134 return -ENOMEDIUM; 1135 } 1136 1137 if (!block_driver_can_compress(drv)) { 1138 return -ENOTSUP; 1139 } 1140 1141 if (drv->bdrv_co_pwritev_compressed_part) { 1142 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1143 qiov, qiov_offset); 1144 } 1145 1146 if (qiov_offset == 0) { 1147 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1148 } 1149 1150 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1151 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1152 qemu_iovec_destroy(&local_qiov); 1153 1154 return ret; 1155 } 1156 1157 static int coroutine_fn GRAPH_RDLOCK 1158 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes, 1159 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1160 { 1161 BlockDriverState *bs = child->bs; 1162 1163 /* Perform I/O through a temporary buffer so that users who scribble over 1164 * their read buffer while the operation is in progress do not end up 1165 * modifying the image file. This is critical for zero-copy guest I/O 1166 * where anything might happen inside guest memory. 1167 */ 1168 void *bounce_buffer = NULL; 1169 1170 BlockDriver *drv = bs->drv; 1171 int64_t cluster_offset; 1172 int64_t cluster_bytes; 1173 int64_t skip_bytes; 1174 int ret; 1175 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1176 BDRV_REQUEST_MAX_BYTES); 1177 int64_t progress = 0; 1178 bool skip_write; 1179 1180 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1181 1182 if (!drv) { 1183 return -ENOMEDIUM; 1184 } 1185 1186 /* 1187 * Do not write anything when the BDS is inactive. That is not 1188 * allowed, and it would not help. 1189 */ 1190 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1191 1192 /* FIXME We cannot require callers to have write permissions when all they 1193 * are doing is a read request. If we did things right, write permissions 1194 * would be obtained anyway, but internally by the copy-on-read code. As 1195 * long as it is implemented here rather than in a separate filter driver, 1196 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1197 * it could request permissions. Therefore we have to bypass the permission 1198 * system for the moment. */ 1199 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1200 1201 /* Cover entire cluster so no additional backing file I/O is required when 1202 * allocating cluster in the image file. Note that this value may exceed 1203 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1204 * is one reason we loop rather than doing it all at once. 1205 */ 1206 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1207 skip_bytes = offset - cluster_offset; 1208 1209 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1210 cluster_offset, cluster_bytes); 1211 1212 while (cluster_bytes) { 1213 int64_t pnum; 1214 1215 if (skip_write) { 1216 ret = 1; /* "already allocated", so nothing will be copied */ 1217 pnum = MIN(cluster_bytes, max_transfer); 1218 } else { 1219 ret = bdrv_is_allocated(bs, cluster_offset, 1220 MIN(cluster_bytes, max_transfer), &pnum); 1221 if (ret < 0) { 1222 /* 1223 * Safe to treat errors in querying allocation as if 1224 * unallocated; we'll probably fail again soon on the 1225 * read, but at least that will set a decent errno. 1226 */ 1227 pnum = MIN(cluster_bytes, max_transfer); 1228 } 1229 1230 /* Stop at EOF if the image ends in the middle of the cluster */ 1231 if (ret == 0 && pnum == 0) { 1232 assert(progress >= bytes); 1233 break; 1234 } 1235 1236 assert(skip_bytes < pnum); 1237 } 1238 1239 if (ret <= 0) { 1240 QEMUIOVector local_qiov; 1241 1242 /* Must copy-on-read; use the bounce buffer */ 1243 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1244 if (!bounce_buffer) { 1245 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1246 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1247 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1248 1249 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1250 if (!bounce_buffer) { 1251 ret = -ENOMEM; 1252 goto err; 1253 } 1254 } 1255 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1256 1257 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1258 &local_qiov, 0, 0); 1259 if (ret < 0) { 1260 goto err; 1261 } 1262 1263 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE); 1264 if (drv->bdrv_co_pwrite_zeroes && 1265 buffer_is_zero(bounce_buffer, pnum)) { 1266 /* FIXME: Should we (perhaps conditionally) be setting 1267 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1268 * that still correctly reads as zero? */ 1269 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1270 BDRV_REQ_WRITE_UNCHANGED); 1271 } else { 1272 /* This does not change the data on the disk, it is not 1273 * necessary to flush even in cache=writethrough mode. 1274 */ 1275 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1276 &local_qiov, 0, 1277 BDRV_REQ_WRITE_UNCHANGED); 1278 } 1279 1280 if (ret < 0) { 1281 /* It might be okay to ignore write errors for guest 1282 * requests. If this is a deliberate copy-on-read 1283 * then we don't want to ignore the error. Simply 1284 * report it in all cases. 1285 */ 1286 goto err; 1287 } 1288 1289 if (!(flags & BDRV_REQ_PREFETCH)) { 1290 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1291 bounce_buffer + skip_bytes, 1292 MIN(pnum - skip_bytes, bytes - progress)); 1293 } 1294 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1295 /* Read directly into the destination */ 1296 ret = bdrv_driver_preadv(bs, offset + progress, 1297 MIN(pnum - skip_bytes, bytes - progress), 1298 qiov, qiov_offset + progress, 0); 1299 if (ret < 0) { 1300 goto err; 1301 } 1302 } 1303 1304 cluster_offset += pnum; 1305 cluster_bytes -= pnum; 1306 progress += pnum - skip_bytes; 1307 skip_bytes = 0; 1308 } 1309 ret = 0; 1310 1311 err: 1312 qemu_vfree(bounce_buffer); 1313 return ret; 1314 } 1315 1316 /* 1317 * Forwards an already correctly aligned request to the BlockDriver. This 1318 * handles copy on read, zeroing after EOF, and fragmentation of large 1319 * reads; any other features must be implemented by the caller. 1320 */ 1321 static int coroutine_fn GRAPH_RDLOCK 1322 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req, 1323 int64_t offset, int64_t bytes, int64_t align, 1324 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1325 { 1326 BlockDriverState *bs = child->bs; 1327 int64_t total_bytes, max_bytes; 1328 int ret = 0; 1329 int64_t bytes_remaining = bytes; 1330 int max_transfer; 1331 1332 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1333 assert(is_power_of_2(align)); 1334 assert((offset & (align - 1)) == 0); 1335 assert((bytes & (align - 1)) == 0); 1336 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1337 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1338 align); 1339 1340 /* 1341 * TODO: We would need a per-BDS .supported_read_flags and 1342 * potential fallback support, if we ever implement any read flags 1343 * to pass through to drivers. For now, there aren't any 1344 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint. 1345 */ 1346 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH | 1347 BDRV_REQ_REGISTERED_BUF))); 1348 1349 /* Handle Copy on Read and associated serialisation */ 1350 if (flags & BDRV_REQ_COPY_ON_READ) { 1351 /* If we touch the same cluster it counts as an overlap. This 1352 * guarantees that allocating writes will be serialized and not race 1353 * with each other for the same cluster. For example, in copy-on-read 1354 * it ensures that the CoR read and write operations are atomic and 1355 * guest writes cannot interleave between them. */ 1356 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1357 } else { 1358 bdrv_wait_serialising_requests(req); 1359 } 1360 1361 if (flags & BDRV_REQ_COPY_ON_READ) { 1362 int64_t pnum; 1363 1364 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1365 flags &= ~BDRV_REQ_COPY_ON_READ; 1366 1367 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1368 if (ret < 0) { 1369 goto out; 1370 } 1371 1372 if (!ret || pnum != bytes) { 1373 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1374 qiov, qiov_offset, flags); 1375 goto out; 1376 } else if (flags & BDRV_REQ_PREFETCH) { 1377 goto out; 1378 } 1379 } 1380 1381 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1382 total_bytes = bdrv_getlength(bs); 1383 if (total_bytes < 0) { 1384 ret = total_bytes; 1385 goto out; 1386 } 1387 1388 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF))); 1389 1390 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1391 if (bytes <= max_bytes && bytes <= max_transfer) { 1392 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1393 goto out; 1394 } 1395 1396 while (bytes_remaining) { 1397 int64_t num; 1398 1399 if (max_bytes) { 1400 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1401 assert(num); 1402 1403 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1404 num, qiov, 1405 qiov_offset + bytes - bytes_remaining, 1406 flags); 1407 max_bytes -= num; 1408 } else { 1409 num = bytes_remaining; 1410 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1411 0, bytes_remaining); 1412 } 1413 if (ret < 0) { 1414 goto out; 1415 } 1416 bytes_remaining -= num; 1417 } 1418 1419 out: 1420 return ret < 0 ? ret : 0; 1421 } 1422 1423 /* 1424 * Request padding 1425 * 1426 * |<---- align ----->| |<----- align ---->| 1427 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1428 * | | | | | | 1429 * -*----------$-------*-------- ... --------*-----$------------*--- 1430 * | | | | | | 1431 * | offset | | end | 1432 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1433 * [buf ... ) [tail_buf ) 1434 * 1435 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1436 * is placed at the beginning of @buf and @tail at the @end. 1437 * 1438 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1439 * around tail, if tail exists. 1440 * 1441 * @merge_reads is true for small requests, 1442 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1443 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1444 */ 1445 typedef struct BdrvRequestPadding { 1446 uint8_t *buf; 1447 size_t buf_len; 1448 uint8_t *tail_buf; 1449 size_t head; 1450 size_t tail; 1451 bool merge_reads; 1452 QEMUIOVector local_qiov; 1453 } BdrvRequestPadding; 1454 1455 static bool bdrv_init_padding(BlockDriverState *bs, 1456 int64_t offset, int64_t bytes, 1457 BdrvRequestPadding *pad) 1458 { 1459 int64_t align = bs->bl.request_alignment; 1460 int64_t sum; 1461 1462 bdrv_check_request(offset, bytes, &error_abort); 1463 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1464 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1465 1466 memset(pad, 0, sizeof(*pad)); 1467 1468 pad->head = offset & (align - 1); 1469 pad->tail = ((offset + bytes) & (align - 1)); 1470 if (pad->tail) { 1471 pad->tail = align - pad->tail; 1472 } 1473 1474 if (!pad->head && !pad->tail) { 1475 return false; 1476 } 1477 1478 assert(bytes); /* Nothing good in aligning zero-length requests */ 1479 1480 sum = pad->head + bytes + pad->tail; 1481 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1482 pad->buf = qemu_blockalign(bs, pad->buf_len); 1483 pad->merge_reads = sum == pad->buf_len; 1484 if (pad->tail) { 1485 pad->tail_buf = pad->buf + pad->buf_len - align; 1486 } 1487 1488 return true; 1489 } 1490 1491 static int coroutine_fn GRAPH_RDLOCK 1492 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req, 1493 BdrvRequestPadding *pad, bool zero_middle) 1494 { 1495 QEMUIOVector local_qiov; 1496 BlockDriverState *bs = child->bs; 1497 uint64_t align = bs->bl.request_alignment; 1498 int ret; 1499 1500 assert(req->serialising && pad->buf); 1501 1502 if (pad->head || pad->merge_reads) { 1503 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1504 1505 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1506 1507 if (pad->head) { 1508 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1509 } 1510 if (pad->merge_reads && pad->tail) { 1511 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1512 } 1513 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1514 align, &local_qiov, 0, 0); 1515 if (ret < 0) { 1516 return ret; 1517 } 1518 if (pad->head) { 1519 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1520 } 1521 if (pad->merge_reads && pad->tail) { 1522 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1523 } 1524 1525 if (pad->merge_reads) { 1526 goto zero_mem; 1527 } 1528 } 1529 1530 if (pad->tail) { 1531 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1532 1533 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1534 ret = bdrv_aligned_preadv( 1535 child, req, 1536 req->overlap_offset + req->overlap_bytes - align, 1537 align, align, &local_qiov, 0, 0); 1538 if (ret < 0) { 1539 return ret; 1540 } 1541 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1542 } 1543 1544 zero_mem: 1545 if (zero_middle) { 1546 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1547 } 1548 1549 return 0; 1550 } 1551 1552 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1553 { 1554 if (pad->buf) { 1555 qemu_vfree(pad->buf); 1556 qemu_iovec_destroy(&pad->local_qiov); 1557 } 1558 memset(pad, 0, sizeof(*pad)); 1559 } 1560 1561 /* 1562 * bdrv_pad_request 1563 * 1564 * Exchange request parameters with padded request if needed. Don't include RMW 1565 * read of padding, bdrv_padding_rmw_read() should be called separately if 1566 * needed. 1567 * 1568 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1569 * - on function start they represent original request 1570 * - on failure or when padding is not needed they are unchanged 1571 * - on success when padding is needed they represent padded request 1572 */ 1573 static int bdrv_pad_request(BlockDriverState *bs, 1574 QEMUIOVector **qiov, size_t *qiov_offset, 1575 int64_t *offset, int64_t *bytes, 1576 BdrvRequestPadding *pad, bool *padded, 1577 BdrvRequestFlags *flags) 1578 { 1579 int ret; 1580 1581 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1582 1583 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1584 if (padded) { 1585 *padded = false; 1586 } 1587 return 0; 1588 } 1589 1590 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1591 *qiov, *qiov_offset, *bytes, 1592 pad->buf + pad->buf_len - pad->tail, 1593 pad->tail); 1594 if (ret < 0) { 1595 bdrv_padding_destroy(pad); 1596 return ret; 1597 } 1598 *bytes += pad->head + pad->tail; 1599 *offset -= pad->head; 1600 *qiov = &pad->local_qiov; 1601 *qiov_offset = 0; 1602 if (padded) { 1603 *padded = true; 1604 } 1605 if (flags) { 1606 /* Can't use optimization hint with bounce buffer */ 1607 *flags &= ~BDRV_REQ_REGISTERED_BUF; 1608 } 1609 1610 return 0; 1611 } 1612 1613 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1614 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1615 BdrvRequestFlags flags) 1616 { 1617 IO_CODE(); 1618 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1619 } 1620 1621 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1622 int64_t offset, int64_t bytes, 1623 QEMUIOVector *qiov, size_t qiov_offset, 1624 BdrvRequestFlags flags) 1625 { 1626 BlockDriverState *bs = child->bs; 1627 BdrvTrackedRequest req; 1628 BdrvRequestPadding pad; 1629 int ret; 1630 IO_CODE(); 1631 1632 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1633 1634 if (!bdrv_co_is_inserted(bs)) { 1635 return -ENOMEDIUM; 1636 } 1637 1638 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1639 if (ret < 0) { 1640 return ret; 1641 } 1642 1643 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1644 /* 1645 * Aligning zero request is nonsense. Even if driver has special meaning 1646 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1647 * it to driver due to request_alignment. 1648 * 1649 * Still, no reason to return an error if someone do unaligned 1650 * zero-length read occasionally. 1651 */ 1652 return 0; 1653 } 1654 1655 bdrv_inc_in_flight(bs); 1656 1657 /* Don't do copy-on-read if we read data before write operation */ 1658 if (qatomic_read(&bs->copy_on_read)) { 1659 flags |= BDRV_REQ_COPY_ON_READ; 1660 } 1661 1662 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 1663 NULL, &flags); 1664 if (ret < 0) { 1665 goto fail; 1666 } 1667 1668 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1669 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1670 bs->bl.request_alignment, 1671 qiov, qiov_offset, flags); 1672 tracked_request_end(&req); 1673 bdrv_padding_destroy(&pad); 1674 1675 fail: 1676 bdrv_dec_in_flight(bs); 1677 1678 return ret; 1679 } 1680 1681 static int coroutine_fn GRAPH_RDLOCK 1682 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes, 1683 BdrvRequestFlags flags) 1684 { 1685 BlockDriver *drv = bs->drv; 1686 QEMUIOVector qiov; 1687 void *buf = NULL; 1688 int ret = 0; 1689 bool need_flush = false; 1690 int head = 0; 1691 int tail = 0; 1692 1693 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1694 INT64_MAX); 1695 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1696 bs->bl.request_alignment); 1697 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1698 1699 assert_bdrv_graph_readable(); 1700 bdrv_check_request(offset, bytes, &error_abort); 1701 1702 if (!drv) { 1703 return -ENOMEDIUM; 1704 } 1705 1706 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1707 return -ENOTSUP; 1708 } 1709 1710 /* By definition there is no user buffer so this flag doesn't make sense */ 1711 if (flags & BDRV_REQ_REGISTERED_BUF) { 1712 return -EINVAL; 1713 } 1714 1715 /* Invalidate the cached block-status data range if this write overlaps */ 1716 bdrv_bsc_invalidate_range(bs, offset, bytes); 1717 1718 assert(alignment % bs->bl.request_alignment == 0); 1719 head = offset % alignment; 1720 tail = (offset + bytes) % alignment; 1721 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1722 assert(max_write_zeroes >= bs->bl.request_alignment); 1723 1724 while (bytes > 0 && !ret) { 1725 int64_t num = bytes; 1726 1727 /* Align request. Block drivers can expect the "bulk" of the request 1728 * to be aligned, and that unaligned requests do not cross cluster 1729 * boundaries. 1730 */ 1731 if (head) { 1732 /* Make a small request up to the first aligned sector. For 1733 * convenience, limit this request to max_transfer even if 1734 * we don't need to fall back to writes. */ 1735 num = MIN(MIN(bytes, max_transfer), alignment - head); 1736 head = (head + num) % alignment; 1737 assert(num < max_write_zeroes); 1738 } else if (tail && num > alignment) { 1739 /* Shorten the request to the last aligned sector. */ 1740 num -= tail; 1741 } 1742 1743 /* limit request size */ 1744 if (num > max_write_zeroes) { 1745 num = max_write_zeroes; 1746 } 1747 1748 ret = -ENOTSUP; 1749 /* First try the efficient write zeroes operation */ 1750 if (drv->bdrv_co_pwrite_zeroes) { 1751 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1752 flags & bs->supported_zero_flags); 1753 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1754 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1755 need_flush = true; 1756 } 1757 } else { 1758 assert(!bs->supported_zero_flags); 1759 } 1760 1761 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1762 /* Fall back to bounce buffer if write zeroes is unsupported */ 1763 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1764 1765 if ((flags & BDRV_REQ_FUA) && 1766 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1767 /* No need for bdrv_driver_pwrite() to do a fallback 1768 * flush on each chunk; use just one at the end */ 1769 write_flags &= ~BDRV_REQ_FUA; 1770 need_flush = true; 1771 } 1772 num = MIN(num, max_transfer); 1773 if (buf == NULL) { 1774 buf = qemu_try_blockalign0(bs, num); 1775 if (buf == NULL) { 1776 ret = -ENOMEM; 1777 goto fail; 1778 } 1779 } 1780 qemu_iovec_init_buf(&qiov, buf, num); 1781 1782 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1783 1784 /* Keep bounce buffer around if it is big enough for all 1785 * all future requests. 1786 */ 1787 if (num < max_transfer) { 1788 qemu_vfree(buf); 1789 buf = NULL; 1790 } 1791 } 1792 1793 offset += num; 1794 bytes -= num; 1795 } 1796 1797 fail: 1798 if (ret == 0 && need_flush) { 1799 ret = bdrv_co_flush(bs); 1800 } 1801 qemu_vfree(buf); 1802 return ret; 1803 } 1804 1805 static inline int coroutine_fn GRAPH_RDLOCK 1806 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1807 BdrvTrackedRequest *req, int flags) 1808 { 1809 BlockDriverState *bs = child->bs; 1810 1811 bdrv_check_request(offset, bytes, &error_abort); 1812 1813 if (bdrv_is_read_only(bs)) { 1814 return -EPERM; 1815 } 1816 1817 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1818 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1819 assert(!(flags & ~BDRV_REQ_MASK)); 1820 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1821 1822 if (flags & BDRV_REQ_SERIALISING) { 1823 QEMU_LOCK_GUARD(&bs->reqs_lock); 1824 1825 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1826 1827 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1828 return -EBUSY; 1829 } 1830 1831 bdrv_wait_serialising_requests_locked(req); 1832 } else { 1833 bdrv_wait_serialising_requests(req); 1834 } 1835 1836 assert(req->overlap_offset <= offset); 1837 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1838 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 1839 child->perm & BLK_PERM_RESIZE); 1840 1841 switch (req->type) { 1842 case BDRV_TRACKED_WRITE: 1843 case BDRV_TRACKED_DISCARD: 1844 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1845 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1846 } else { 1847 assert(child->perm & BLK_PERM_WRITE); 1848 } 1849 bdrv_write_threshold_check_write(bs, offset, bytes); 1850 return 0; 1851 case BDRV_TRACKED_TRUNCATE: 1852 assert(child->perm & BLK_PERM_RESIZE); 1853 return 0; 1854 default: 1855 abort(); 1856 } 1857 } 1858 1859 static inline void coroutine_fn 1860 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 1861 BdrvTrackedRequest *req, int ret) 1862 { 1863 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1864 BlockDriverState *bs = child->bs; 1865 1866 bdrv_check_request(offset, bytes, &error_abort); 1867 1868 qatomic_inc(&bs->write_gen); 1869 1870 /* 1871 * Discard cannot extend the image, but in error handling cases, such as 1872 * when reverting a qcow2 cluster allocation, the discarded range can pass 1873 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1874 * here. Instead, just skip it, since semantically a discard request 1875 * beyond EOF cannot expand the image anyway. 1876 */ 1877 if (ret == 0 && 1878 (req->type == BDRV_TRACKED_TRUNCATE || 1879 end_sector > bs->total_sectors) && 1880 req->type != BDRV_TRACKED_DISCARD) { 1881 bs->total_sectors = end_sector; 1882 bdrv_parent_cb_resize(bs); 1883 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1884 } 1885 if (req->bytes) { 1886 switch (req->type) { 1887 case BDRV_TRACKED_WRITE: 1888 stat64_max(&bs->wr_highest_offset, offset + bytes); 1889 /* fall through, to set dirty bits */ 1890 case BDRV_TRACKED_DISCARD: 1891 bdrv_set_dirty(bs, offset, bytes); 1892 break; 1893 default: 1894 break; 1895 } 1896 } 1897 } 1898 1899 /* 1900 * Forwards an already correctly aligned write request to the BlockDriver, 1901 * after possibly fragmenting it. 1902 */ 1903 static int coroutine_fn GRAPH_RDLOCK 1904 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req, 1905 int64_t offset, int64_t bytes, int64_t align, 1906 QEMUIOVector *qiov, size_t qiov_offset, 1907 BdrvRequestFlags flags) 1908 { 1909 BlockDriverState *bs = child->bs; 1910 BlockDriver *drv = bs->drv; 1911 int ret; 1912 1913 int64_t bytes_remaining = bytes; 1914 int max_transfer; 1915 1916 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1917 1918 if (!drv) { 1919 return -ENOMEDIUM; 1920 } 1921 1922 if (bdrv_has_readonly_bitmaps(bs)) { 1923 return -EPERM; 1924 } 1925 1926 assert(is_power_of_2(align)); 1927 assert((offset & (align - 1)) == 0); 1928 assert((bytes & (align - 1)) == 0); 1929 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1930 align); 1931 1932 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1933 1934 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1935 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1936 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 1937 flags |= BDRV_REQ_ZERO_WRITE; 1938 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1939 flags |= BDRV_REQ_MAY_UNMAP; 1940 } 1941 1942 /* Can't use optimization hint with bufferless zero write */ 1943 flags &= ~BDRV_REQ_REGISTERED_BUF; 1944 } 1945 1946 if (ret < 0) { 1947 /* Do nothing, write notifier decided to fail this request */ 1948 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1949 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1950 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1951 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1952 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 1953 qiov, qiov_offset); 1954 } else if (bytes <= max_transfer) { 1955 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 1956 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 1957 } else { 1958 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 1959 while (bytes_remaining) { 1960 int num = MIN(bytes_remaining, max_transfer); 1961 int local_flags = flags; 1962 1963 assert(num); 1964 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1965 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1966 /* If FUA is going to be emulated by flush, we only 1967 * need to flush on the last iteration */ 1968 local_flags &= ~BDRV_REQ_FUA; 1969 } 1970 1971 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1972 num, qiov, 1973 qiov_offset + bytes - bytes_remaining, 1974 local_flags); 1975 if (ret < 0) { 1976 break; 1977 } 1978 bytes_remaining -= num; 1979 } 1980 } 1981 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE); 1982 1983 if (ret >= 0) { 1984 ret = 0; 1985 } 1986 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 1987 1988 return ret; 1989 } 1990 1991 static int coroutine_fn GRAPH_RDLOCK 1992 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes, 1993 BdrvRequestFlags flags, BdrvTrackedRequest *req) 1994 { 1995 BlockDriverState *bs = child->bs; 1996 QEMUIOVector local_qiov; 1997 uint64_t align = bs->bl.request_alignment; 1998 int ret = 0; 1999 bool padding; 2000 BdrvRequestPadding pad; 2001 2002 /* This flag doesn't make sense for padding or zero writes */ 2003 flags &= ~BDRV_REQ_REGISTERED_BUF; 2004 2005 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2006 if (padding) { 2007 assert(!(flags & BDRV_REQ_NO_WAIT)); 2008 bdrv_make_request_serialising(req, align); 2009 2010 bdrv_padding_rmw_read(child, req, &pad, true); 2011 2012 if (pad.head || pad.merge_reads) { 2013 int64_t aligned_offset = offset & ~(align - 1); 2014 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2015 2016 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2017 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2018 align, &local_qiov, 0, 2019 flags & ~BDRV_REQ_ZERO_WRITE); 2020 if (ret < 0 || pad.merge_reads) { 2021 /* Error or all work is done */ 2022 goto out; 2023 } 2024 offset += write_bytes - pad.head; 2025 bytes -= write_bytes - pad.head; 2026 } 2027 } 2028 2029 assert(!bytes || (offset & (align - 1)) == 0); 2030 if (bytes >= align) { 2031 /* Write the aligned part in the middle. */ 2032 int64_t aligned_bytes = bytes & ~(align - 1); 2033 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2034 NULL, 0, flags); 2035 if (ret < 0) { 2036 goto out; 2037 } 2038 bytes -= aligned_bytes; 2039 offset += aligned_bytes; 2040 } 2041 2042 assert(!bytes || (offset & (align - 1)) == 0); 2043 if (bytes) { 2044 assert(align == pad.tail + bytes); 2045 2046 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2047 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2048 &local_qiov, 0, 2049 flags & ~BDRV_REQ_ZERO_WRITE); 2050 } 2051 2052 out: 2053 bdrv_padding_destroy(&pad); 2054 2055 return ret; 2056 } 2057 2058 /* 2059 * Handle a write request in coroutine context 2060 */ 2061 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2062 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2063 BdrvRequestFlags flags) 2064 { 2065 IO_CODE(); 2066 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2067 } 2068 2069 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2070 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2071 BdrvRequestFlags flags) 2072 { 2073 BlockDriverState *bs = child->bs; 2074 BdrvTrackedRequest req; 2075 uint64_t align = bs->bl.request_alignment; 2076 BdrvRequestPadding pad; 2077 int ret; 2078 bool padded = false; 2079 IO_CODE(); 2080 2081 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2082 2083 if (!bdrv_co_is_inserted(bs)) { 2084 return -ENOMEDIUM; 2085 } 2086 2087 if (flags & BDRV_REQ_ZERO_WRITE) { 2088 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2089 } else { 2090 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2091 } 2092 if (ret < 0) { 2093 return ret; 2094 } 2095 2096 /* If the request is misaligned then we can't make it efficient */ 2097 if ((flags & BDRV_REQ_NO_FALLBACK) && 2098 !QEMU_IS_ALIGNED(offset | bytes, align)) 2099 { 2100 return -ENOTSUP; 2101 } 2102 2103 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2104 /* 2105 * Aligning zero request is nonsense. Even if driver has special meaning 2106 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2107 * it to driver due to request_alignment. 2108 * 2109 * Still, no reason to return an error if someone do unaligned 2110 * zero-length write occasionally. 2111 */ 2112 return 0; 2113 } 2114 2115 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2116 /* 2117 * Pad request for following read-modify-write cycle. 2118 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2119 * alignment only if there is no ZERO flag. 2120 */ 2121 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 2122 &padded, &flags); 2123 if (ret < 0) { 2124 return ret; 2125 } 2126 } 2127 2128 bdrv_inc_in_flight(bs); 2129 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2130 2131 if (flags & BDRV_REQ_ZERO_WRITE) { 2132 assert(!padded); 2133 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2134 goto out; 2135 } 2136 2137 if (padded) { 2138 /* 2139 * Request was unaligned to request_alignment and therefore 2140 * padded. We are going to do read-modify-write, and must 2141 * serialize the request to prevent interactions of the 2142 * widened region with other transactions. 2143 */ 2144 assert(!(flags & BDRV_REQ_NO_WAIT)); 2145 bdrv_make_request_serialising(&req, align); 2146 bdrv_padding_rmw_read(child, &req, &pad, false); 2147 } 2148 2149 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2150 qiov, qiov_offset, flags); 2151 2152 bdrv_padding_destroy(&pad); 2153 2154 out: 2155 tracked_request_end(&req); 2156 bdrv_dec_in_flight(bs); 2157 2158 return ret; 2159 } 2160 2161 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2162 int64_t bytes, BdrvRequestFlags flags) 2163 { 2164 IO_CODE(); 2165 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2166 assert_bdrv_graph_readable(); 2167 2168 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2169 flags &= ~BDRV_REQ_MAY_UNMAP; 2170 } 2171 2172 return bdrv_co_pwritev(child, offset, bytes, NULL, 2173 BDRV_REQ_ZERO_WRITE | flags); 2174 } 2175 2176 /* 2177 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2178 */ 2179 int bdrv_flush_all(void) 2180 { 2181 BdrvNextIterator it; 2182 BlockDriverState *bs = NULL; 2183 int result = 0; 2184 2185 GLOBAL_STATE_CODE(); 2186 2187 /* 2188 * bdrv queue is managed by record/replay, 2189 * creating new flush request for stopping 2190 * the VM may break the determinism 2191 */ 2192 if (replay_events_enabled()) { 2193 return result; 2194 } 2195 2196 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2197 AioContext *aio_context = bdrv_get_aio_context(bs); 2198 int ret; 2199 2200 aio_context_acquire(aio_context); 2201 ret = bdrv_flush(bs); 2202 if (ret < 0 && !result) { 2203 result = ret; 2204 } 2205 aio_context_release(aio_context); 2206 } 2207 2208 return result; 2209 } 2210 2211 /* 2212 * Returns the allocation status of the specified sectors. 2213 * Drivers not implementing the functionality are assumed to not support 2214 * backing files, hence all their sectors are reported as allocated. 2215 * 2216 * If 'want_zero' is true, the caller is querying for mapping 2217 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2218 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2219 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2220 * 2221 * If 'offset' is beyond the end of the disk image the return value is 2222 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2223 * 2224 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2225 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2226 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2227 * 2228 * 'pnum' is set to the number of bytes (including and immediately 2229 * following the specified offset) that are easily known to be in the 2230 * same allocated/unallocated state. Note that a second call starting 2231 * at the original offset plus returned pnum may have the same status. 2232 * The returned value is non-zero on success except at end-of-file. 2233 * 2234 * Returns negative errno on failure. Otherwise, if the 2235 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2236 * set to the host mapping and BDS corresponding to the guest offset. 2237 */ 2238 static int coroutine_fn GRAPH_RDLOCK 2239 bdrv_co_block_status(BlockDriverState *bs, bool want_zero, 2240 int64_t offset, int64_t bytes, 2241 int64_t *pnum, int64_t *map, BlockDriverState **file) 2242 { 2243 int64_t total_size; 2244 int64_t n; /* bytes */ 2245 int ret; 2246 int64_t local_map = 0; 2247 BlockDriverState *local_file = NULL; 2248 int64_t aligned_offset, aligned_bytes; 2249 uint32_t align; 2250 bool has_filtered_child; 2251 2252 assert(pnum); 2253 assert_bdrv_graph_readable(); 2254 *pnum = 0; 2255 total_size = bdrv_getlength(bs); 2256 if (total_size < 0) { 2257 ret = total_size; 2258 goto early_out; 2259 } 2260 2261 if (offset >= total_size) { 2262 ret = BDRV_BLOCK_EOF; 2263 goto early_out; 2264 } 2265 if (!bytes) { 2266 ret = 0; 2267 goto early_out; 2268 } 2269 2270 n = total_size - offset; 2271 if (n < bytes) { 2272 bytes = n; 2273 } 2274 2275 /* Must be non-NULL or bdrv_getlength() would have failed */ 2276 assert(bs->drv); 2277 has_filtered_child = bdrv_filter_child(bs); 2278 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2279 *pnum = bytes; 2280 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2281 if (offset + bytes == total_size) { 2282 ret |= BDRV_BLOCK_EOF; 2283 } 2284 if (bs->drv->protocol_name) { 2285 ret |= BDRV_BLOCK_OFFSET_VALID; 2286 local_map = offset; 2287 local_file = bs; 2288 } 2289 goto early_out; 2290 } 2291 2292 bdrv_inc_in_flight(bs); 2293 2294 /* Round out to request_alignment boundaries */ 2295 align = bs->bl.request_alignment; 2296 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2297 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2298 2299 if (bs->drv->bdrv_co_block_status) { 2300 /* 2301 * Use the block-status cache only for protocol nodes: Format 2302 * drivers are generally quick to inquire the status, but protocol 2303 * drivers often need to get information from outside of qemu, so 2304 * we do not have control over the actual implementation. There 2305 * have been cases where inquiring the status took an unreasonably 2306 * long time, and we can do nothing in qemu to fix it. 2307 * This is especially problematic for images with large data areas, 2308 * because finding the few holes in them and giving them special 2309 * treatment does not gain much performance. Therefore, we try to 2310 * cache the last-identified data region. 2311 * 2312 * Second, limiting ourselves to protocol nodes allows us to assume 2313 * the block status for data regions to be DATA | OFFSET_VALID, and 2314 * that the host offset is the same as the guest offset. 2315 * 2316 * Note that it is possible that external writers zero parts of 2317 * the cached regions without the cache being invalidated, and so 2318 * we may report zeroes as data. This is not catastrophic, 2319 * however, because reporting zeroes as data is fine. 2320 */ 2321 if (QLIST_EMPTY(&bs->children) && 2322 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2323 { 2324 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2325 local_file = bs; 2326 local_map = aligned_offset; 2327 } else { 2328 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2329 aligned_bytes, pnum, &local_map, 2330 &local_file); 2331 2332 /* 2333 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2334 * the cache is queried above. Technically, we do not need to check 2335 * it here; the worst that can happen is that we fill the cache for 2336 * non-protocol nodes, and then it is never used. However, filling 2337 * the cache requires an RCU update, so double check here to avoid 2338 * such an update if possible. 2339 * 2340 * Check want_zero, because we only want to update the cache when we 2341 * have accurate information about what is zero and what is data. 2342 */ 2343 if (want_zero && 2344 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2345 QLIST_EMPTY(&bs->children)) 2346 { 2347 /* 2348 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2349 * returned local_map value must be the same as the offset we 2350 * have passed (aligned_offset), and local_bs must be the node 2351 * itself. 2352 * Assert this, because we follow this rule when reading from 2353 * the cache (see the `local_file = bs` and 2354 * `local_map = aligned_offset` assignments above), and the 2355 * result the cache delivers must be the same as the driver 2356 * would deliver. 2357 */ 2358 assert(local_file == bs); 2359 assert(local_map == aligned_offset); 2360 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2361 } 2362 } 2363 } else { 2364 /* Default code for filters */ 2365 2366 local_file = bdrv_filter_bs(bs); 2367 assert(local_file); 2368 2369 *pnum = aligned_bytes; 2370 local_map = aligned_offset; 2371 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2372 } 2373 if (ret < 0) { 2374 *pnum = 0; 2375 goto out; 2376 } 2377 2378 /* 2379 * The driver's result must be a non-zero multiple of request_alignment. 2380 * Clamp pnum and adjust map to original request. 2381 */ 2382 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2383 align > offset - aligned_offset); 2384 if (ret & BDRV_BLOCK_RECURSE) { 2385 assert(ret & BDRV_BLOCK_DATA); 2386 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2387 assert(!(ret & BDRV_BLOCK_ZERO)); 2388 } 2389 2390 *pnum -= offset - aligned_offset; 2391 if (*pnum > bytes) { 2392 *pnum = bytes; 2393 } 2394 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2395 local_map += offset - aligned_offset; 2396 } 2397 2398 if (ret & BDRV_BLOCK_RAW) { 2399 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2400 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2401 *pnum, pnum, &local_map, &local_file); 2402 goto out; 2403 } 2404 2405 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2406 ret |= BDRV_BLOCK_ALLOCATED; 2407 } else if (bs->drv->supports_backing) { 2408 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2409 2410 if (!cow_bs) { 2411 ret |= BDRV_BLOCK_ZERO; 2412 } else if (want_zero) { 2413 int64_t size2 = bdrv_getlength(cow_bs); 2414 2415 if (size2 >= 0 && offset >= size2) { 2416 ret |= BDRV_BLOCK_ZERO; 2417 } 2418 } 2419 } 2420 2421 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2422 local_file && local_file != bs && 2423 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2424 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2425 int64_t file_pnum; 2426 int ret2; 2427 2428 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2429 *pnum, &file_pnum, NULL, NULL); 2430 if (ret2 >= 0) { 2431 /* Ignore errors. This is just providing extra information, it 2432 * is useful but not necessary. 2433 */ 2434 if (ret2 & BDRV_BLOCK_EOF && 2435 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2436 /* 2437 * It is valid for the format block driver to read 2438 * beyond the end of the underlying file's current 2439 * size; such areas read as zero. 2440 */ 2441 ret |= BDRV_BLOCK_ZERO; 2442 } else { 2443 /* Limit request to the range reported by the protocol driver */ 2444 *pnum = file_pnum; 2445 ret |= (ret2 & BDRV_BLOCK_ZERO); 2446 } 2447 } 2448 } 2449 2450 out: 2451 bdrv_dec_in_flight(bs); 2452 if (ret >= 0 && offset + *pnum == total_size) { 2453 ret |= BDRV_BLOCK_EOF; 2454 } 2455 early_out: 2456 if (file) { 2457 *file = local_file; 2458 } 2459 if (map) { 2460 *map = local_map; 2461 } 2462 return ret; 2463 } 2464 2465 int coroutine_fn 2466 bdrv_co_common_block_status_above(BlockDriverState *bs, 2467 BlockDriverState *base, 2468 bool include_base, 2469 bool want_zero, 2470 int64_t offset, 2471 int64_t bytes, 2472 int64_t *pnum, 2473 int64_t *map, 2474 BlockDriverState **file, 2475 int *depth) 2476 { 2477 int ret; 2478 BlockDriverState *p; 2479 int64_t eof = 0; 2480 int dummy; 2481 IO_CODE(); 2482 2483 assert(!include_base || base); /* Can't include NULL base */ 2484 assert_bdrv_graph_readable(); 2485 2486 if (!depth) { 2487 depth = &dummy; 2488 } 2489 *depth = 0; 2490 2491 if (!include_base && bs == base) { 2492 *pnum = bytes; 2493 return 0; 2494 } 2495 2496 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2497 ++*depth; 2498 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2499 return ret; 2500 } 2501 2502 if (ret & BDRV_BLOCK_EOF) { 2503 eof = offset + *pnum; 2504 } 2505 2506 assert(*pnum <= bytes); 2507 bytes = *pnum; 2508 2509 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2510 p = bdrv_filter_or_cow_bs(p)) 2511 { 2512 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2513 file); 2514 ++*depth; 2515 if (ret < 0) { 2516 return ret; 2517 } 2518 if (*pnum == 0) { 2519 /* 2520 * The top layer deferred to this layer, and because this layer is 2521 * short, any zeroes that we synthesize beyond EOF behave as if they 2522 * were allocated at this layer. 2523 * 2524 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2525 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2526 * below. 2527 */ 2528 assert(ret & BDRV_BLOCK_EOF); 2529 *pnum = bytes; 2530 if (file) { 2531 *file = p; 2532 } 2533 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2534 break; 2535 } 2536 if (ret & BDRV_BLOCK_ALLOCATED) { 2537 /* 2538 * We've found the node and the status, we must break. 2539 * 2540 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2541 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2542 * below. 2543 */ 2544 ret &= ~BDRV_BLOCK_EOF; 2545 break; 2546 } 2547 2548 if (p == base) { 2549 assert(include_base); 2550 break; 2551 } 2552 2553 /* 2554 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2555 * let's continue the diving. 2556 */ 2557 assert(*pnum <= bytes); 2558 bytes = *pnum; 2559 } 2560 2561 if (offset + *pnum == eof) { 2562 ret |= BDRV_BLOCK_EOF; 2563 } 2564 2565 return ret; 2566 } 2567 2568 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2569 BlockDriverState *base, 2570 int64_t offset, int64_t bytes, 2571 int64_t *pnum, int64_t *map, 2572 BlockDriverState **file) 2573 { 2574 IO_CODE(); 2575 return bdrv_co_common_block_status_above(bs, base, false, true, offset, 2576 bytes, pnum, map, file, NULL); 2577 } 2578 2579 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2580 int64_t offset, int64_t bytes, int64_t *pnum, 2581 int64_t *map, BlockDriverState **file) 2582 { 2583 IO_CODE(); 2584 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2585 pnum, map, file, NULL); 2586 } 2587 2588 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2589 int64_t *pnum, int64_t *map, BlockDriverState **file) 2590 { 2591 IO_CODE(); 2592 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2593 offset, bytes, pnum, map, file); 2594 } 2595 2596 /* 2597 * Check @bs (and its backing chain) to see if the range defined 2598 * by @offset and @bytes is known to read as zeroes. 2599 * Return 1 if that is the case, 0 otherwise and -errno on error. 2600 * This test is meant to be fast rather than accurate so returning 0 2601 * does not guarantee non-zero data. 2602 */ 2603 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2604 int64_t bytes) 2605 { 2606 int ret; 2607 int64_t pnum = bytes; 2608 IO_CODE(); 2609 2610 if (!bytes) { 2611 return 1; 2612 } 2613 2614 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset, 2615 bytes, &pnum, NULL, NULL, NULL); 2616 2617 if (ret < 0) { 2618 return ret; 2619 } 2620 2621 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2622 } 2623 2624 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset, 2625 int64_t bytes, int64_t *pnum) 2626 { 2627 int ret; 2628 int64_t dummy; 2629 IO_CODE(); 2630 2631 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset, 2632 bytes, pnum ? pnum : &dummy, NULL, 2633 NULL, NULL); 2634 if (ret < 0) { 2635 return ret; 2636 } 2637 return !!(ret & BDRV_BLOCK_ALLOCATED); 2638 } 2639 2640 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes, 2641 int64_t *pnum) 2642 { 2643 int ret; 2644 int64_t dummy; 2645 IO_CODE(); 2646 2647 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2648 bytes, pnum ? pnum : &dummy, NULL, 2649 NULL, NULL); 2650 if (ret < 0) { 2651 return ret; 2652 } 2653 return !!(ret & BDRV_BLOCK_ALLOCATED); 2654 } 2655 2656 /* See bdrv_is_allocated_above for documentation */ 2657 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2658 BlockDriverState *base, 2659 bool include_base, int64_t offset, 2660 int64_t bytes, int64_t *pnum) 2661 { 2662 int depth; 2663 int ret; 2664 IO_CODE(); 2665 2666 ret = bdrv_co_common_block_status_above(top, base, include_base, false, 2667 offset, bytes, pnum, NULL, NULL, 2668 &depth); 2669 if (ret < 0) { 2670 return ret; 2671 } 2672 2673 if (ret & BDRV_BLOCK_ALLOCATED) { 2674 return depth; 2675 } 2676 return 0; 2677 } 2678 2679 /* 2680 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2681 * 2682 * Return a positive depth if (a prefix of) the given range is allocated 2683 * in any image between BASE and TOP (BASE is only included if include_base 2684 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2685 * BASE can be NULL to check if the given offset is allocated in any 2686 * image of the chain. Return 0 otherwise, or negative errno on 2687 * failure. 2688 * 2689 * 'pnum' is set to the number of bytes (including and immediately 2690 * following the specified offset) that are known to be in the same 2691 * allocated/unallocated state. Note that a subsequent call starting 2692 * at 'offset + *pnum' may return the same allocation status (in other 2693 * words, the result is not necessarily the maximum possible range); 2694 * but 'pnum' will only be 0 when end of file is reached. 2695 */ 2696 int bdrv_is_allocated_above(BlockDriverState *top, 2697 BlockDriverState *base, 2698 bool include_base, int64_t offset, 2699 int64_t bytes, int64_t *pnum) 2700 { 2701 int depth; 2702 int ret; 2703 IO_CODE(); 2704 2705 ret = bdrv_common_block_status_above(top, base, include_base, false, 2706 offset, bytes, pnum, NULL, NULL, 2707 &depth); 2708 if (ret < 0) { 2709 return ret; 2710 } 2711 2712 if (ret & BDRV_BLOCK_ALLOCATED) { 2713 return depth; 2714 } 2715 return 0; 2716 } 2717 2718 int coroutine_fn 2719 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2720 { 2721 BlockDriver *drv = bs->drv; 2722 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2723 int ret; 2724 IO_CODE(); 2725 assert_bdrv_graph_readable(); 2726 2727 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2728 if (ret < 0) { 2729 return ret; 2730 } 2731 2732 if (!drv) { 2733 return -ENOMEDIUM; 2734 } 2735 2736 bdrv_inc_in_flight(bs); 2737 2738 if (drv->bdrv_co_load_vmstate) { 2739 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos); 2740 } else if (child_bs) { 2741 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2742 } else { 2743 ret = -ENOTSUP; 2744 } 2745 2746 bdrv_dec_in_flight(bs); 2747 2748 return ret; 2749 } 2750 2751 int coroutine_fn 2752 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2753 { 2754 BlockDriver *drv = bs->drv; 2755 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2756 int ret; 2757 IO_CODE(); 2758 assert_bdrv_graph_readable(); 2759 2760 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2761 if (ret < 0) { 2762 return ret; 2763 } 2764 2765 if (!drv) { 2766 return -ENOMEDIUM; 2767 } 2768 2769 bdrv_inc_in_flight(bs); 2770 2771 if (drv->bdrv_co_save_vmstate) { 2772 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos); 2773 } else if (child_bs) { 2774 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2775 } else { 2776 ret = -ENOTSUP; 2777 } 2778 2779 bdrv_dec_in_flight(bs); 2780 2781 return ret; 2782 } 2783 2784 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2785 int64_t pos, int size) 2786 { 2787 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2788 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2789 IO_CODE(); 2790 2791 return ret < 0 ? ret : size; 2792 } 2793 2794 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2795 int64_t pos, int size) 2796 { 2797 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2798 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2799 IO_CODE(); 2800 2801 return ret < 0 ? ret : size; 2802 } 2803 2804 /**************************************************************/ 2805 /* async I/Os */ 2806 2807 void bdrv_aio_cancel(BlockAIOCB *acb) 2808 { 2809 IO_CODE(); 2810 qemu_aio_ref(acb); 2811 bdrv_aio_cancel_async(acb); 2812 while (acb->refcnt > 1) { 2813 if (acb->aiocb_info->get_aio_context) { 2814 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2815 } else if (acb->bs) { 2816 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2817 * assert that we're not using an I/O thread. Thread-safe 2818 * code should use bdrv_aio_cancel_async exclusively. 2819 */ 2820 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2821 aio_poll(bdrv_get_aio_context(acb->bs), true); 2822 } else { 2823 abort(); 2824 } 2825 } 2826 qemu_aio_unref(acb); 2827 } 2828 2829 /* Async version of aio cancel. The caller is not blocked if the acb implements 2830 * cancel_async, otherwise we do nothing and let the request normally complete. 2831 * In either case the completion callback must be called. */ 2832 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2833 { 2834 IO_CODE(); 2835 if (acb->aiocb_info->cancel_async) { 2836 acb->aiocb_info->cancel_async(acb); 2837 } 2838 } 2839 2840 /**************************************************************/ 2841 /* Coroutine block device emulation */ 2842 2843 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2844 { 2845 BdrvChild *primary_child = bdrv_primary_child(bs); 2846 BdrvChild *child; 2847 int current_gen; 2848 int ret = 0; 2849 IO_CODE(); 2850 2851 assert_bdrv_graph_readable(); 2852 bdrv_inc_in_flight(bs); 2853 2854 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) || 2855 bdrv_is_sg(bs)) { 2856 goto early_exit; 2857 } 2858 2859 qemu_co_mutex_lock(&bs->reqs_lock); 2860 current_gen = qatomic_read(&bs->write_gen); 2861 2862 /* Wait until any previous flushes are completed */ 2863 while (bs->active_flush_req) { 2864 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2865 } 2866 2867 /* Flushes reach this point in nondecreasing current_gen order. */ 2868 bs->active_flush_req = true; 2869 qemu_co_mutex_unlock(&bs->reqs_lock); 2870 2871 /* Write back all layers by calling one driver function */ 2872 if (bs->drv->bdrv_co_flush) { 2873 ret = bs->drv->bdrv_co_flush(bs); 2874 goto out; 2875 } 2876 2877 /* Write back cached data to the OS even with cache=unsafe */ 2878 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 2879 if (bs->drv->bdrv_co_flush_to_os) { 2880 ret = bs->drv->bdrv_co_flush_to_os(bs); 2881 if (ret < 0) { 2882 goto out; 2883 } 2884 } 2885 2886 /* But don't actually force it to the disk with cache=unsafe */ 2887 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2888 goto flush_children; 2889 } 2890 2891 /* Check if we really need to flush anything */ 2892 if (bs->flushed_gen == current_gen) { 2893 goto flush_children; 2894 } 2895 2896 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 2897 if (!bs->drv) { 2898 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2899 * (even in case of apparent success) */ 2900 ret = -ENOMEDIUM; 2901 goto out; 2902 } 2903 if (bs->drv->bdrv_co_flush_to_disk) { 2904 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2905 } else if (bs->drv->bdrv_aio_flush) { 2906 BlockAIOCB *acb; 2907 CoroutineIOCompletion co = { 2908 .coroutine = qemu_coroutine_self(), 2909 }; 2910 2911 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2912 if (acb == NULL) { 2913 ret = -EIO; 2914 } else { 2915 qemu_coroutine_yield(); 2916 ret = co.ret; 2917 } 2918 } else { 2919 /* 2920 * Some block drivers always operate in either writethrough or unsafe 2921 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2922 * know how the server works (because the behaviour is hardcoded or 2923 * depends on server-side configuration), so we can't ensure that 2924 * everything is safe on disk. Returning an error doesn't work because 2925 * that would break guests even if the server operates in writethrough 2926 * mode. 2927 * 2928 * Let's hope the user knows what he's doing. 2929 */ 2930 ret = 0; 2931 } 2932 2933 if (ret < 0) { 2934 goto out; 2935 } 2936 2937 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2938 * in the case of cache=unsafe, so there are no useless flushes. 2939 */ 2940 flush_children: 2941 ret = 0; 2942 QLIST_FOREACH(child, &bs->children, next) { 2943 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 2944 int this_child_ret = bdrv_co_flush(child->bs); 2945 if (!ret) { 2946 ret = this_child_ret; 2947 } 2948 } 2949 } 2950 2951 out: 2952 /* Notify any pending flushes that we have completed */ 2953 if (ret == 0) { 2954 bs->flushed_gen = current_gen; 2955 } 2956 2957 qemu_co_mutex_lock(&bs->reqs_lock); 2958 bs->active_flush_req = false; 2959 /* Return value is ignored - it's ok if wait queue is empty */ 2960 qemu_co_queue_next(&bs->flush_queue); 2961 qemu_co_mutex_unlock(&bs->reqs_lock); 2962 2963 early_exit: 2964 bdrv_dec_in_flight(bs); 2965 return ret; 2966 } 2967 2968 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 2969 int64_t bytes) 2970 { 2971 BdrvTrackedRequest req; 2972 int ret; 2973 int64_t max_pdiscard; 2974 int head, tail, align; 2975 BlockDriverState *bs = child->bs; 2976 IO_CODE(); 2977 assert_bdrv_graph_readable(); 2978 2979 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) { 2980 return -ENOMEDIUM; 2981 } 2982 2983 if (bdrv_has_readonly_bitmaps(bs)) { 2984 return -EPERM; 2985 } 2986 2987 ret = bdrv_check_request(offset, bytes, NULL); 2988 if (ret < 0) { 2989 return ret; 2990 } 2991 2992 /* Do nothing if disabled. */ 2993 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2994 return 0; 2995 } 2996 2997 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2998 return 0; 2999 } 3000 3001 /* Invalidate the cached block-status data range if this discard overlaps */ 3002 bdrv_bsc_invalidate_range(bs, offset, bytes); 3003 3004 /* Discard is advisory, but some devices track and coalesce 3005 * unaligned requests, so we must pass everything down rather than 3006 * round here. Still, most devices will just silently ignore 3007 * unaligned requests (by returning -ENOTSUP), so we must fragment 3008 * the request accordingly. */ 3009 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3010 assert(align % bs->bl.request_alignment == 0); 3011 head = offset % align; 3012 tail = (offset + bytes) % align; 3013 3014 bdrv_inc_in_flight(bs); 3015 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3016 3017 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3018 if (ret < 0) { 3019 goto out; 3020 } 3021 3022 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3023 align); 3024 assert(max_pdiscard >= bs->bl.request_alignment); 3025 3026 while (bytes > 0) { 3027 int64_t num = bytes; 3028 3029 if (head) { 3030 /* Make small requests to get to alignment boundaries. */ 3031 num = MIN(bytes, align - head); 3032 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3033 num %= bs->bl.request_alignment; 3034 } 3035 head = (head + num) % align; 3036 assert(num < max_pdiscard); 3037 } else if (tail) { 3038 if (num > align) { 3039 /* Shorten the request to the last aligned cluster. */ 3040 num -= tail; 3041 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3042 tail > bs->bl.request_alignment) { 3043 tail %= bs->bl.request_alignment; 3044 num -= tail; 3045 } 3046 } 3047 /* limit request size */ 3048 if (num > max_pdiscard) { 3049 num = max_pdiscard; 3050 } 3051 3052 if (!bs->drv) { 3053 ret = -ENOMEDIUM; 3054 goto out; 3055 } 3056 if (bs->drv->bdrv_co_pdiscard) { 3057 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3058 } else { 3059 BlockAIOCB *acb; 3060 CoroutineIOCompletion co = { 3061 .coroutine = qemu_coroutine_self(), 3062 }; 3063 3064 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3065 bdrv_co_io_em_complete, &co); 3066 if (acb == NULL) { 3067 ret = -EIO; 3068 goto out; 3069 } else { 3070 qemu_coroutine_yield(); 3071 ret = co.ret; 3072 } 3073 } 3074 if (ret && ret != -ENOTSUP) { 3075 goto out; 3076 } 3077 3078 offset += num; 3079 bytes -= num; 3080 } 3081 ret = 0; 3082 out: 3083 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3084 tracked_request_end(&req); 3085 bdrv_dec_in_flight(bs); 3086 return ret; 3087 } 3088 3089 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3090 { 3091 BlockDriver *drv = bs->drv; 3092 CoroutineIOCompletion co = { 3093 .coroutine = qemu_coroutine_self(), 3094 }; 3095 BlockAIOCB *acb; 3096 IO_CODE(); 3097 assert_bdrv_graph_readable(); 3098 3099 bdrv_inc_in_flight(bs); 3100 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3101 co.ret = -ENOTSUP; 3102 goto out; 3103 } 3104 3105 if (drv->bdrv_co_ioctl) { 3106 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3107 } else { 3108 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3109 if (!acb) { 3110 co.ret = -ENOTSUP; 3111 goto out; 3112 } 3113 qemu_coroutine_yield(); 3114 } 3115 out: 3116 bdrv_dec_in_flight(bs); 3117 return co.ret; 3118 } 3119 3120 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset, 3121 unsigned int *nr_zones, 3122 BlockZoneDescriptor *zones) 3123 { 3124 BlockDriver *drv = bs->drv; 3125 CoroutineIOCompletion co = { 3126 .coroutine = qemu_coroutine_self(), 3127 }; 3128 IO_CODE(); 3129 3130 bdrv_inc_in_flight(bs); 3131 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) { 3132 co.ret = -ENOTSUP; 3133 goto out; 3134 } 3135 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones); 3136 out: 3137 bdrv_dec_in_flight(bs); 3138 return co.ret; 3139 } 3140 3141 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op, 3142 int64_t offset, int64_t len) 3143 { 3144 BlockDriver *drv = bs->drv; 3145 CoroutineIOCompletion co = { 3146 .coroutine = qemu_coroutine_self(), 3147 }; 3148 IO_CODE(); 3149 3150 bdrv_inc_in_flight(bs); 3151 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) { 3152 co.ret = -ENOTSUP; 3153 goto out; 3154 } 3155 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len); 3156 out: 3157 bdrv_dec_in_flight(bs); 3158 return co.ret; 3159 } 3160 3161 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset, 3162 QEMUIOVector *qiov, 3163 BdrvRequestFlags flags) 3164 { 3165 int ret; 3166 BlockDriver *drv = bs->drv; 3167 CoroutineIOCompletion co = { 3168 .coroutine = qemu_coroutine_self(), 3169 }; 3170 IO_CODE(); 3171 3172 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL); 3173 if (ret < 0) { 3174 return ret; 3175 } 3176 3177 bdrv_inc_in_flight(bs); 3178 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) { 3179 co.ret = -ENOTSUP; 3180 goto out; 3181 } 3182 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags); 3183 out: 3184 bdrv_dec_in_flight(bs); 3185 return co.ret; 3186 } 3187 3188 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3189 { 3190 IO_CODE(); 3191 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3192 } 3193 3194 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3195 { 3196 IO_CODE(); 3197 return memset(qemu_blockalign(bs, size), 0, size); 3198 } 3199 3200 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3201 { 3202 size_t align = bdrv_opt_mem_align(bs); 3203 IO_CODE(); 3204 3205 /* Ensure that NULL is never returned on success */ 3206 assert(align > 0); 3207 if (size == 0) { 3208 size = align; 3209 } 3210 3211 return qemu_try_memalign(align, size); 3212 } 3213 3214 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3215 { 3216 void *mem = qemu_try_blockalign(bs, size); 3217 IO_CODE(); 3218 3219 if (mem) { 3220 memset(mem, 0, size); 3221 } 3222 3223 return mem; 3224 } 3225 3226 void coroutine_fn bdrv_co_io_plug(BlockDriverState *bs) 3227 { 3228 BdrvChild *child; 3229 IO_CODE(); 3230 assert_bdrv_graph_readable(); 3231 3232 QLIST_FOREACH(child, &bs->children, next) { 3233 bdrv_co_io_plug(child->bs); 3234 } 3235 3236 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3237 BlockDriver *drv = bs->drv; 3238 if (drv && drv->bdrv_co_io_plug) { 3239 drv->bdrv_co_io_plug(bs); 3240 } 3241 } 3242 } 3243 3244 void coroutine_fn bdrv_co_io_unplug(BlockDriverState *bs) 3245 { 3246 BdrvChild *child; 3247 IO_CODE(); 3248 assert_bdrv_graph_readable(); 3249 3250 assert(bs->io_plugged); 3251 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3252 BlockDriver *drv = bs->drv; 3253 if (drv && drv->bdrv_co_io_unplug) { 3254 drv->bdrv_co_io_unplug(bs); 3255 } 3256 } 3257 3258 QLIST_FOREACH(child, &bs->children, next) { 3259 bdrv_co_io_unplug(child->bs); 3260 } 3261 } 3262 3263 /* Helper that undoes bdrv_register_buf() when it fails partway through */ 3264 static void GRAPH_RDLOCK 3265 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size, 3266 BdrvChild *final_child) 3267 { 3268 BdrvChild *child; 3269 3270 GLOBAL_STATE_CODE(); 3271 assert_bdrv_graph_readable(); 3272 3273 QLIST_FOREACH(child, &bs->children, next) { 3274 if (child == final_child) { 3275 break; 3276 } 3277 3278 bdrv_unregister_buf(child->bs, host, size); 3279 } 3280 3281 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3282 bs->drv->bdrv_unregister_buf(bs, host, size); 3283 } 3284 } 3285 3286 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size, 3287 Error **errp) 3288 { 3289 BdrvChild *child; 3290 3291 GLOBAL_STATE_CODE(); 3292 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3293 3294 if (bs->drv && bs->drv->bdrv_register_buf) { 3295 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) { 3296 return false; 3297 } 3298 } 3299 QLIST_FOREACH(child, &bs->children, next) { 3300 if (!bdrv_register_buf(child->bs, host, size, errp)) { 3301 bdrv_register_buf_rollback(bs, host, size, child); 3302 return false; 3303 } 3304 } 3305 return true; 3306 } 3307 3308 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size) 3309 { 3310 BdrvChild *child; 3311 3312 GLOBAL_STATE_CODE(); 3313 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3314 3315 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3316 bs->drv->bdrv_unregister_buf(bs, host, size); 3317 } 3318 QLIST_FOREACH(child, &bs->children, next) { 3319 bdrv_unregister_buf(child->bs, host, size); 3320 } 3321 } 3322 3323 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal( 3324 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3325 int64_t dst_offset, int64_t bytes, 3326 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3327 bool recurse_src) 3328 { 3329 BdrvTrackedRequest req; 3330 int ret; 3331 assert_bdrv_graph_readable(); 3332 3333 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3334 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3335 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3336 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3337 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3338 3339 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) { 3340 return -ENOMEDIUM; 3341 } 3342 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3343 if (ret) { 3344 return ret; 3345 } 3346 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3347 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3348 } 3349 3350 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) { 3351 return -ENOMEDIUM; 3352 } 3353 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3354 if (ret) { 3355 return ret; 3356 } 3357 3358 if (!src->bs->drv->bdrv_co_copy_range_from 3359 || !dst->bs->drv->bdrv_co_copy_range_to 3360 || src->bs->encrypted || dst->bs->encrypted) { 3361 return -ENOTSUP; 3362 } 3363 3364 if (recurse_src) { 3365 bdrv_inc_in_flight(src->bs); 3366 tracked_request_begin(&req, src->bs, src_offset, bytes, 3367 BDRV_TRACKED_READ); 3368 3369 /* BDRV_REQ_SERIALISING is only for write operation */ 3370 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3371 bdrv_wait_serialising_requests(&req); 3372 3373 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3374 src, src_offset, 3375 dst, dst_offset, 3376 bytes, 3377 read_flags, write_flags); 3378 3379 tracked_request_end(&req); 3380 bdrv_dec_in_flight(src->bs); 3381 } else { 3382 bdrv_inc_in_flight(dst->bs); 3383 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3384 BDRV_TRACKED_WRITE); 3385 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3386 write_flags); 3387 if (!ret) { 3388 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3389 src, src_offset, 3390 dst, dst_offset, 3391 bytes, 3392 read_flags, write_flags); 3393 } 3394 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3395 tracked_request_end(&req); 3396 bdrv_dec_in_flight(dst->bs); 3397 } 3398 3399 return ret; 3400 } 3401 3402 /* Copy range from @src to @dst. 3403 * 3404 * See the comment of bdrv_co_copy_range for the parameter and return value 3405 * semantics. */ 3406 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3407 BdrvChild *dst, int64_t dst_offset, 3408 int64_t bytes, 3409 BdrvRequestFlags read_flags, 3410 BdrvRequestFlags write_flags) 3411 { 3412 IO_CODE(); 3413 assert_bdrv_graph_readable(); 3414 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3415 read_flags, write_flags); 3416 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3417 bytes, read_flags, write_flags, true); 3418 } 3419 3420 /* Copy range from @src to @dst. 3421 * 3422 * See the comment of bdrv_co_copy_range for the parameter and return value 3423 * semantics. */ 3424 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3425 BdrvChild *dst, int64_t dst_offset, 3426 int64_t bytes, 3427 BdrvRequestFlags read_flags, 3428 BdrvRequestFlags write_flags) 3429 { 3430 IO_CODE(); 3431 assert_bdrv_graph_readable(); 3432 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3433 read_flags, write_flags); 3434 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3435 bytes, read_flags, write_flags, false); 3436 } 3437 3438 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3439 BdrvChild *dst, int64_t dst_offset, 3440 int64_t bytes, BdrvRequestFlags read_flags, 3441 BdrvRequestFlags write_flags) 3442 { 3443 IO_CODE(); 3444 assert_bdrv_graph_readable(); 3445 3446 return bdrv_co_copy_range_from(src, src_offset, 3447 dst, dst_offset, 3448 bytes, read_flags, write_flags); 3449 } 3450 3451 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3452 { 3453 BdrvChild *c; 3454 QLIST_FOREACH(c, &bs->parents, next_parent) { 3455 if (c->klass->resize) { 3456 c->klass->resize(c); 3457 } 3458 } 3459 } 3460 3461 /** 3462 * Truncate file to 'offset' bytes (needed only for file protocols) 3463 * 3464 * If 'exact' is true, the file must be resized to exactly the given 3465 * 'offset'. Otherwise, it is sufficient for the node to be at least 3466 * 'offset' bytes in length. 3467 */ 3468 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3469 PreallocMode prealloc, BdrvRequestFlags flags, 3470 Error **errp) 3471 { 3472 BlockDriverState *bs = child->bs; 3473 BdrvChild *filtered, *backing; 3474 BlockDriver *drv = bs->drv; 3475 BdrvTrackedRequest req; 3476 int64_t old_size, new_bytes; 3477 int ret; 3478 IO_CODE(); 3479 assert_bdrv_graph_readable(); 3480 3481 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3482 if (!drv) { 3483 error_setg(errp, "No medium inserted"); 3484 return -ENOMEDIUM; 3485 } 3486 if (offset < 0) { 3487 error_setg(errp, "Image size cannot be negative"); 3488 return -EINVAL; 3489 } 3490 3491 ret = bdrv_check_request(offset, 0, errp); 3492 if (ret < 0) { 3493 return ret; 3494 } 3495 3496 old_size = bdrv_getlength(bs); 3497 if (old_size < 0) { 3498 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3499 return old_size; 3500 } 3501 3502 if (bdrv_is_read_only(bs)) { 3503 error_setg(errp, "Image is read-only"); 3504 return -EACCES; 3505 } 3506 3507 if (offset > old_size) { 3508 new_bytes = offset - old_size; 3509 } else { 3510 new_bytes = 0; 3511 } 3512 3513 bdrv_inc_in_flight(bs); 3514 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3515 BDRV_TRACKED_TRUNCATE); 3516 3517 /* If we are growing the image and potentially using preallocation for the 3518 * new area, we need to make sure that no write requests are made to it 3519 * concurrently or they might be overwritten by preallocation. */ 3520 if (new_bytes) { 3521 bdrv_make_request_serialising(&req, 1); 3522 } 3523 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3524 0); 3525 if (ret < 0) { 3526 error_setg_errno(errp, -ret, 3527 "Failed to prepare request for truncation"); 3528 goto out; 3529 } 3530 3531 filtered = bdrv_filter_child(bs); 3532 backing = bdrv_cow_child(bs); 3533 3534 /* 3535 * If the image has a backing file that is large enough that it would 3536 * provide data for the new area, we cannot leave it unallocated because 3537 * then the backing file content would become visible. Instead, zero-fill 3538 * the new area. 3539 * 3540 * Note that if the image has a backing file, but was opened without the 3541 * backing file, taking care of keeping things consistent with that backing 3542 * file is the user's responsibility. 3543 */ 3544 if (new_bytes && backing) { 3545 int64_t backing_len; 3546 3547 backing_len = bdrv_co_getlength(backing->bs); 3548 if (backing_len < 0) { 3549 ret = backing_len; 3550 error_setg_errno(errp, -ret, "Could not get backing file size"); 3551 goto out; 3552 } 3553 3554 if (backing_len > old_size) { 3555 flags |= BDRV_REQ_ZERO_WRITE; 3556 } 3557 } 3558 3559 if (drv->bdrv_co_truncate) { 3560 if (flags & ~bs->supported_truncate_flags) { 3561 error_setg(errp, "Block driver does not support requested flags"); 3562 ret = -ENOTSUP; 3563 goto out; 3564 } 3565 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3566 } else if (filtered) { 3567 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3568 } else { 3569 error_setg(errp, "Image format driver does not support resize"); 3570 ret = -ENOTSUP; 3571 goto out; 3572 } 3573 if (ret < 0) { 3574 goto out; 3575 } 3576 3577 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3578 if (ret < 0) { 3579 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3580 } else { 3581 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3582 } 3583 /* 3584 * It's possible that truncation succeeded but bdrv_refresh_total_sectors 3585 * failed, but the latter doesn't affect how we should finish the request. 3586 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. 3587 */ 3588 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3589 3590 out: 3591 tracked_request_end(&req); 3592 bdrv_dec_in_flight(bs); 3593 3594 return ret; 3595 } 3596 3597 void bdrv_cancel_in_flight(BlockDriverState *bs) 3598 { 3599 GLOBAL_STATE_CODE(); 3600 if (!bs || !bs->drv) { 3601 return; 3602 } 3603 3604 if (bs->drv->bdrv_cancel_in_flight) { 3605 bs->drv->bdrv_cancel_in_flight(bs); 3606 } 3607 } 3608 3609 int coroutine_fn 3610 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3611 QEMUIOVector *qiov, size_t qiov_offset) 3612 { 3613 BlockDriverState *bs = child->bs; 3614 BlockDriver *drv = bs->drv; 3615 int ret; 3616 IO_CODE(); 3617 assert_bdrv_graph_readable(); 3618 3619 if (!drv) { 3620 return -ENOMEDIUM; 3621 } 3622 3623 if (!drv->bdrv_co_preadv_snapshot) { 3624 return -ENOTSUP; 3625 } 3626 3627 bdrv_inc_in_flight(bs); 3628 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3629 bdrv_dec_in_flight(bs); 3630 3631 return ret; 3632 } 3633 3634 int coroutine_fn 3635 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3636 bool want_zero, int64_t offset, int64_t bytes, 3637 int64_t *pnum, int64_t *map, 3638 BlockDriverState **file) 3639 { 3640 BlockDriver *drv = bs->drv; 3641 int ret; 3642 IO_CODE(); 3643 assert_bdrv_graph_readable(); 3644 3645 if (!drv) { 3646 return -ENOMEDIUM; 3647 } 3648 3649 if (!drv->bdrv_co_snapshot_block_status) { 3650 return -ENOTSUP; 3651 } 3652 3653 bdrv_inc_in_flight(bs); 3654 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3655 pnum, map, file); 3656 bdrv_dec_in_flight(bs); 3657 3658 return ret; 3659 } 3660 3661 int coroutine_fn 3662 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3663 { 3664 BlockDriver *drv = bs->drv; 3665 int ret; 3666 IO_CODE(); 3667 assert_bdrv_graph_readable(); 3668 3669 if (!drv) { 3670 return -ENOMEDIUM; 3671 } 3672 3673 if (!drv->bdrv_co_pdiscard_snapshot) { 3674 return -ENOTSUP; 3675 } 3676 3677 bdrv_inc_in_flight(bs); 3678 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3679 bdrv_dec_in_flight(bs); 3680 3681 return ret; 3682 } 3683