1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/write-threshold.h" 34 #include "qemu/cutils.h" 35 #include "qemu/memalign.h" 36 #include "qapi/error.h" 37 #include "qemu/error-report.h" 38 #include "qemu/main-loop.h" 39 #include "sysemu/replay.h" 40 41 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 42 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 43 44 static void bdrv_parent_cb_resize(BlockDriverState *bs); 45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 46 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 47 48 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 49 bool ignore_bds_parents) 50 { 51 BdrvChild *c, *next; 52 53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 54 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 55 continue; 56 } 57 bdrv_parent_drained_begin_single(c, false); 58 } 59 } 60 61 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 62 int *drained_end_counter) 63 { 64 assert(c->parent_quiesce_counter > 0); 65 c->parent_quiesce_counter--; 66 if (c->klass->drained_end) { 67 c->klass->drained_end(c, drained_end_counter); 68 } 69 } 70 71 void bdrv_parent_drained_end_single(BdrvChild *c) 72 { 73 int drained_end_counter = 0; 74 IO_OR_GS_CODE(); 75 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 76 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0); 77 } 78 79 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 80 bool ignore_bds_parents, 81 int *drained_end_counter) 82 { 83 BdrvChild *c; 84 85 QLIST_FOREACH(c, &bs->parents, next_parent) { 86 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 87 continue; 88 } 89 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 90 } 91 } 92 93 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 94 { 95 if (c->klass->drained_poll) { 96 return c->klass->drained_poll(c); 97 } 98 return false; 99 } 100 101 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 102 bool ignore_bds_parents) 103 { 104 BdrvChild *c, *next; 105 bool busy = false; 106 107 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 108 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 109 continue; 110 } 111 busy |= bdrv_parent_drained_poll_single(c); 112 } 113 114 return busy; 115 } 116 117 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 118 { 119 IO_OR_GS_CODE(); 120 c->parent_quiesce_counter++; 121 if (c->klass->drained_begin) { 122 c->klass->drained_begin(c); 123 } 124 if (poll) { 125 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 126 } 127 } 128 129 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 130 { 131 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 132 src->pdiscard_alignment); 133 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 134 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 135 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 136 src->max_hw_transfer); 137 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 138 src->opt_mem_alignment); 139 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 140 src->min_mem_alignment); 141 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 142 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 143 } 144 145 typedef struct BdrvRefreshLimitsState { 146 BlockDriverState *bs; 147 BlockLimits old_bl; 148 } BdrvRefreshLimitsState; 149 150 static void bdrv_refresh_limits_abort(void *opaque) 151 { 152 BdrvRefreshLimitsState *s = opaque; 153 154 s->bs->bl = s->old_bl; 155 } 156 157 static TransactionActionDrv bdrv_refresh_limits_drv = { 158 .abort = bdrv_refresh_limits_abort, 159 .clean = g_free, 160 }; 161 162 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 163 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 164 { 165 ERRP_GUARD(); 166 BlockDriver *drv = bs->drv; 167 BdrvChild *c; 168 bool have_limits; 169 170 GLOBAL_STATE_CODE(); 171 172 if (tran) { 173 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 174 *s = (BdrvRefreshLimitsState) { 175 .bs = bs, 176 .old_bl = bs->bl, 177 }; 178 tran_add(tran, &bdrv_refresh_limits_drv, s); 179 } 180 181 memset(&bs->bl, 0, sizeof(bs->bl)); 182 183 if (!drv) { 184 return; 185 } 186 187 /* Default alignment based on whether driver has byte interface */ 188 bs->bl.request_alignment = (drv->bdrv_co_preadv || 189 drv->bdrv_aio_preadv || 190 drv->bdrv_co_preadv_part) ? 1 : 512; 191 192 /* Take some limits from the children as a default */ 193 have_limits = false; 194 QLIST_FOREACH(c, &bs->children, next) { 195 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 196 { 197 bdrv_merge_limits(&bs->bl, &c->bs->bl); 198 have_limits = true; 199 } 200 } 201 202 if (!have_limits) { 203 bs->bl.min_mem_alignment = 512; 204 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 205 206 /* Safe default since most protocols use readv()/writev()/etc */ 207 bs->bl.max_iov = IOV_MAX; 208 } 209 210 /* Then let the driver override it */ 211 if (drv->bdrv_refresh_limits) { 212 drv->bdrv_refresh_limits(bs, errp); 213 if (*errp) { 214 return; 215 } 216 } 217 218 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 219 error_setg(errp, "Driver requires too large request alignment"); 220 } 221 } 222 223 /** 224 * The copy-on-read flag is actually a reference count so multiple users may 225 * use the feature without worrying about clobbering its previous state. 226 * Copy-on-read stays enabled until all users have called to disable it. 227 */ 228 void bdrv_enable_copy_on_read(BlockDriverState *bs) 229 { 230 IO_CODE(); 231 qatomic_inc(&bs->copy_on_read); 232 } 233 234 void bdrv_disable_copy_on_read(BlockDriverState *bs) 235 { 236 int old = qatomic_fetch_dec(&bs->copy_on_read); 237 IO_CODE(); 238 assert(old >= 1); 239 } 240 241 typedef struct { 242 Coroutine *co; 243 BlockDriverState *bs; 244 bool done; 245 bool begin; 246 bool recursive; 247 bool poll; 248 BdrvChild *parent; 249 bool ignore_bds_parents; 250 int *drained_end_counter; 251 } BdrvCoDrainData; 252 253 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 254 { 255 BdrvCoDrainData *data = opaque; 256 BlockDriverState *bs = data->bs; 257 258 if (data->begin) { 259 bs->drv->bdrv_co_drain_begin(bs); 260 } else { 261 bs->drv->bdrv_co_drain_end(bs); 262 } 263 264 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 265 qatomic_mb_set(&data->done, true); 266 if (!data->begin) { 267 qatomic_dec(data->drained_end_counter); 268 } 269 bdrv_dec_in_flight(bs); 270 271 g_free(data); 272 } 273 274 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 275 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 276 int *drained_end_counter) 277 { 278 BdrvCoDrainData *data; 279 280 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 281 (!begin && !bs->drv->bdrv_co_drain_end)) { 282 return; 283 } 284 285 data = g_new(BdrvCoDrainData, 1); 286 *data = (BdrvCoDrainData) { 287 .bs = bs, 288 .done = false, 289 .begin = begin, 290 .drained_end_counter = drained_end_counter, 291 }; 292 293 if (!begin) { 294 qatomic_inc(drained_end_counter); 295 } 296 297 /* Make sure the driver callback completes during the polling phase for 298 * drain_begin. */ 299 bdrv_inc_in_flight(bs); 300 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 301 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 302 } 303 304 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 305 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 306 BdrvChild *ignore_parent, bool ignore_bds_parents) 307 { 308 BdrvChild *child, *next; 309 IO_OR_GS_CODE(); 310 311 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 312 return true; 313 } 314 315 if (qatomic_read(&bs->in_flight)) { 316 return true; 317 } 318 319 if (recursive) { 320 assert(!ignore_bds_parents); 321 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 322 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 323 return true; 324 } 325 } 326 } 327 328 return false; 329 } 330 331 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 332 BdrvChild *ignore_parent) 333 { 334 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 335 } 336 337 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 338 BdrvChild *parent, bool ignore_bds_parents, 339 bool poll); 340 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 341 BdrvChild *parent, bool ignore_bds_parents, 342 int *drained_end_counter); 343 344 static void bdrv_co_drain_bh_cb(void *opaque) 345 { 346 BdrvCoDrainData *data = opaque; 347 Coroutine *co = data->co; 348 BlockDriverState *bs = data->bs; 349 350 if (bs) { 351 AioContext *ctx = bdrv_get_aio_context(bs); 352 aio_context_acquire(ctx); 353 bdrv_dec_in_flight(bs); 354 if (data->begin) { 355 assert(!data->drained_end_counter); 356 bdrv_do_drained_begin(bs, data->recursive, data->parent, 357 data->ignore_bds_parents, data->poll); 358 } else { 359 assert(!data->poll); 360 bdrv_do_drained_end(bs, data->recursive, data->parent, 361 data->ignore_bds_parents, 362 data->drained_end_counter); 363 } 364 aio_context_release(ctx); 365 } else { 366 assert(data->begin); 367 bdrv_drain_all_begin(); 368 } 369 370 data->done = true; 371 aio_co_wake(co); 372 } 373 374 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 375 bool begin, bool recursive, 376 BdrvChild *parent, 377 bool ignore_bds_parents, 378 bool poll, 379 int *drained_end_counter) 380 { 381 BdrvCoDrainData data; 382 Coroutine *self = qemu_coroutine_self(); 383 AioContext *ctx = bdrv_get_aio_context(bs); 384 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 385 386 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 387 * other coroutines run if they were queued by aio_co_enter(). */ 388 389 assert(qemu_in_coroutine()); 390 data = (BdrvCoDrainData) { 391 .co = self, 392 .bs = bs, 393 .done = false, 394 .begin = begin, 395 .recursive = recursive, 396 .parent = parent, 397 .ignore_bds_parents = ignore_bds_parents, 398 .poll = poll, 399 .drained_end_counter = drained_end_counter, 400 }; 401 402 if (bs) { 403 bdrv_inc_in_flight(bs); 404 } 405 406 /* 407 * Temporarily drop the lock across yield or we would get deadlocks. 408 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 409 * 410 * When we yield below, the lock for the current context will be 411 * released, so if this is actually the lock that protects bs, don't drop 412 * it a second time. 413 */ 414 if (ctx != co_ctx) { 415 aio_context_release(ctx); 416 } 417 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data); 418 419 qemu_coroutine_yield(); 420 /* If we are resumed from some other event (such as an aio completion or a 421 * timer callback), it is a bug in the caller that should be fixed. */ 422 assert(data.done); 423 424 /* Reaquire the AioContext of bs if we dropped it */ 425 if (ctx != co_ctx) { 426 aio_context_acquire(ctx); 427 } 428 } 429 430 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 431 BdrvChild *parent, bool ignore_bds_parents) 432 { 433 IO_OR_GS_CODE(); 434 assert(!qemu_in_coroutine()); 435 436 /* Stop things in parent-to-child order */ 437 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 438 aio_disable_external(bdrv_get_aio_context(bs)); 439 } 440 441 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 442 bdrv_drain_invoke(bs, true, NULL); 443 } 444 445 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 446 BdrvChild *parent, bool ignore_bds_parents, 447 bool poll) 448 { 449 BdrvChild *child, *next; 450 451 if (qemu_in_coroutine()) { 452 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 453 poll, NULL); 454 return; 455 } 456 457 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 458 459 if (recursive) { 460 assert(!ignore_bds_parents); 461 bs->recursive_quiesce_counter++; 462 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 463 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 464 false); 465 } 466 } 467 468 /* 469 * Wait for drained requests to finish. 470 * 471 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 472 * call is needed so things in this AioContext can make progress even 473 * though we don't return to the main AioContext loop - this automatically 474 * includes other nodes in the same AioContext and therefore all child 475 * nodes. 476 */ 477 if (poll) { 478 assert(!ignore_bds_parents); 479 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 480 } 481 } 482 483 void bdrv_drained_begin(BlockDriverState *bs) 484 { 485 IO_OR_GS_CODE(); 486 bdrv_do_drained_begin(bs, false, NULL, false, true); 487 } 488 489 void bdrv_subtree_drained_begin(BlockDriverState *bs) 490 { 491 IO_OR_GS_CODE(); 492 bdrv_do_drained_begin(bs, true, NULL, false, true); 493 } 494 495 /** 496 * This function does not poll, nor must any of its recursively called 497 * functions. The *drained_end_counter pointee will be incremented 498 * once for every background operation scheduled, and decremented once 499 * the operation settles. Therefore, the pointer must remain valid 500 * until the pointee reaches 0. That implies that whoever sets up the 501 * pointee has to poll until it is 0. 502 * 503 * We use atomic operations to access *drained_end_counter, because 504 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 505 * @bs may contain nodes in different AioContexts, 506 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 507 * regardless of which AioContext they are in. 508 */ 509 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 510 BdrvChild *parent, bool ignore_bds_parents, 511 int *drained_end_counter) 512 { 513 BdrvChild *child; 514 int old_quiesce_counter; 515 516 assert(drained_end_counter != NULL); 517 518 if (qemu_in_coroutine()) { 519 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 520 false, drained_end_counter); 521 return; 522 } 523 assert(bs->quiesce_counter > 0); 524 525 /* Re-enable things in child-to-parent order */ 526 bdrv_drain_invoke(bs, false, drained_end_counter); 527 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 528 drained_end_counter); 529 530 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 531 if (old_quiesce_counter == 1) { 532 aio_enable_external(bdrv_get_aio_context(bs)); 533 } 534 535 if (recursive) { 536 assert(!ignore_bds_parents); 537 bs->recursive_quiesce_counter--; 538 QLIST_FOREACH(child, &bs->children, next) { 539 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 540 drained_end_counter); 541 } 542 } 543 } 544 545 void bdrv_drained_end(BlockDriverState *bs) 546 { 547 int drained_end_counter = 0; 548 IO_OR_GS_CODE(); 549 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 550 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 551 } 552 553 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 554 { 555 IO_CODE(); 556 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 557 } 558 559 void bdrv_subtree_drained_end(BlockDriverState *bs) 560 { 561 int drained_end_counter = 0; 562 IO_OR_GS_CODE(); 563 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 564 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 565 } 566 567 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 568 { 569 int i; 570 IO_OR_GS_CODE(); 571 572 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 573 bdrv_do_drained_begin(child->bs, true, child, false, true); 574 } 575 } 576 577 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 578 { 579 int drained_end_counter = 0; 580 int i; 581 IO_OR_GS_CODE(); 582 583 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 584 bdrv_do_drained_end(child->bs, true, child, false, 585 &drained_end_counter); 586 } 587 588 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0); 589 } 590 591 void bdrv_drain(BlockDriverState *bs) 592 { 593 IO_OR_GS_CODE(); 594 bdrv_drained_begin(bs); 595 bdrv_drained_end(bs); 596 } 597 598 static void bdrv_drain_assert_idle(BlockDriverState *bs) 599 { 600 BdrvChild *child, *next; 601 602 assert(qatomic_read(&bs->in_flight) == 0); 603 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 604 bdrv_drain_assert_idle(child->bs); 605 } 606 } 607 608 unsigned int bdrv_drain_all_count = 0; 609 610 static bool bdrv_drain_all_poll(void) 611 { 612 BlockDriverState *bs = NULL; 613 bool result = false; 614 GLOBAL_STATE_CODE(); 615 616 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 617 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 618 while ((bs = bdrv_next_all_states(bs))) { 619 AioContext *aio_context = bdrv_get_aio_context(bs); 620 aio_context_acquire(aio_context); 621 result |= bdrv_drain_poll(bs, false, NULL, true); 622 aio_context_release(aio_context); 623 } 624 625 return result; 626 } 627 628 /* 629 * Wait for pending requests to complete across all BlockDriverStates 630 * 631 * This function does not flush data to disk, use bdrv_flush_all() for that 632 * after calling this function. 633 * 634 * This pauses all block jobs and disables external clients. It must 635 * be paired with bdrv_drain_all_end(). 636 * 637 * NOTE: no new block jobs or BlockDriverStates can be created between 638 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 639 */ 640 void bdrv_drain_all_begin(void) 641 { 642 BlockDriverState *bs = NULL; 643 GLOBAL_STATE_CODE(); 644 645 if (qemu_in_coroutine()) { 646 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 647 return; 648 } 649 650 /* 651 * bdrv queue is managed by record/replay, 652 * waiting for finishing the I/O requests may 653 * be infinite 654 */ 655 if (replay_events_enabled()) { 656 return; 657 } 658 659 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 660 * loop AioContext, so make sure we're in the main context. */ 661 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 662 assert(bdrv_drain_all_count < INT_MAX); 663 bdrv_drain_all_count++; 664 665 /* Quiesce all nodes, without polling in-flight requests yet. The graph 666 * cannot change during this loop. */ 667 while ((bs = bdrv_next_all_states(bs))) { 668 AioContext *aio_context = bdrv_get_aio_context(bs); 669 670 aio_context_acquire(aio_context); 671 bdrv_do_drained_begin(bs, false, NULL, true, false); 672 aio_context_release(aio_context); 673 } 674 675 /* Now poll the in-flight requests */ 676 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 677 678 while ((bs = bdrv_next_all_states(bs))) { 679 bdrv_drain_assert_idle(bs); 680 } 681 } 682 683 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 684 { 685 int drained_end_counter = 0; 686 GLOBAL_STATE_CODE(); 687 688 g_assert(bs->quiesce_counter > 0); 689 g_assert(!bs->refcnt); 690 691 while (bs->quiesce_counter) { 692 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 693 } 694 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 695 } 696 697 void bdrv_drain_all_end(void) 698 { 699 BlockDriverState *bs = NULL; 700 int drained_end_counter = 0; 701 GLOBAL_STATE_CODE(); 702 703 /* 704 * bdrv queue is managed by record/replay, 705 * waiting for finishing the I/O requests may 706 * be endless 707 */ 708 if (replay_events_enabled()) { 709 return; 710 } 711 712 while ((bs = bdrv_next_all_states(bs))) { 713 AioContext *aio_context = bdrv_get_aio_context(bs); 714 715 aio_context_acquire(aio_context); 716 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 717 aio_context_release(aio_context); 718 } 719 720 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 721 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0); 722 723 assert(bdrv_drain_all_count > 0); 724 bdrv_drain_all_count--; 725 } 726 727 void bdrv_drain_all(void) 728 { 729 GLOBAL_STATE_CODE(); 730 bdrv_drain_all_begin(); 731 bdrv_drain_all_end(); 732 } 733 734 /** 735 * Remove an active request from the tracked requests list 736 * 737 * This function should be called when a tracked request is completing. 738 */ 739 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 740 { 741 if (req->serialising) { 742 qatomic_dec(&req->bs->serialising_in_flight); 743 } 744 745 qemu_co_mutex_lock(&req->bs->reqs_lock); 746 QLIST_REMOVE(req, list); 747 qemu_co_queue_restart_all(&req->wait_queue); 748 qemu_co_mutex_unlock(&req->bs->reqs_lock); 749 } 750 751 /** 752 * Add an active request to the tracked requests list 753 */ 754 static void tracked_request_begin(BdrvTrackedRequest *req, 755 BlockDriverState *bs, 756 int64_t offset, 757 int64_t bytes, 758 enum BdrvTrackedRequestType type) 759 { 760 bdrv_check_request(offset, bytes, &error_abort); 761 762 *req = (BdrvTrackedRequest){ 763 .bs = bs, 764 .offset = offset, 765 .bytes = bytes, 766 .type = type, 767 .co = qemu_coroutine_self(), 768 .serialising = false, 769 .overlap_offset = offset, 770 .overlap_bytes = bytes, 771 }; 772 773 qemu_co_queue_init(&req->wait_queue); 774 775 qemu_co_mutex_lock(&bs->reqs_lock); 776 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 777 qemu_co_mutex_unlock(&bs->reqs_lock); 778 } 779 780 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 781 int64_t offset, int64_t bytes) 782 { 783 bdrv_check_request(offset, bytes, &error_abort); 784 785 /* aaaa bbbb */ 786 if (offset >= req->overlap_offset + req->overlap_bytes) { 787 return false; 788 } 789 /* bbbb aaaa */ 790 if (req->overlap_offset >= offset + bytes) { 791 return false; 792 } 793 return true; 794 } 795 796 /* Called with self->bs->reqs_lock held */ 797 static BdrvTrackedRequest * 798 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 799 { 800 BdrvTrackedRequest *req; 801 802 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 803 if (req == self || (!req->serialising && !self->serialising)) { 804 continue; 805 } 806 if (tracked_request_overlaps(req, self->overlap_offset, 807 self->overlap_bytes)) 808 { 809 /* 810 * Hitting this means there was a reentrant request, for 811 * example, a block driver issuing nested requests. This must 812 * never happen since it means deadlock. 813 */ 814 assert(qemu_coroutine_self() != req->co); 815 816 /* 817 * If the request is already (indirectly) waiting for us, or 818 * will wait for us as soon as it wakes up, then just go on 819 * (instead of producing a deadlock in the former case). 820 */ 821 if (!req->waiting_for) { 822 return req; 823 } 824 } 825 } 826 827 return NULL; 828 } 829 830 /* Called with self->bs->reqs_lock held */ 831 static bool coroutine_fn 832 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 833 { 834 BdrvTrackedRequest *req; 835 bool waited = false; 836 837 while ((req = bdrv_find_conflicting_request(self))) { 838 self->waiting_for = req; 839 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 840 self->waiting_for = NULL; 841 waited = true; 842 } 843 844 return waited; 845 } 846 847 /* Called with req->bs->reqs_lock held */ 848 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 849 uint64_t align) 850 { 851 int64_t overlap_offset = req->offset & ~(align - 1); 852 int64_t overlap_bytes = 853 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 854 855 bdrv_check_request(req->offset, req->bytes, &error_abort); 856 857 if (!req->serialising) { 858 qatomic_inc(&req->bs->serialising_in_flight); 859 req->serialising = true; 860 } 861 862 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 863 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 864 } 865 866 /** 867 * Return the tracked request on @bs for the current coroutine, or 868 * NULL if there is none. 869 */ 870 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 871 { 872 BdrvTrackedRequest *req; 873 Coroutine *self = qemu_coroutine_self(); 874 IO_CODE(); 875 876 QLIST_FOREACH(req, &bs->tracked_requests, list) { 877 if (req->co == self) { 878 return req; 879 } 880 } 881 882 return NULL; 883 } 884 885 /** 886 * Round a region to cluster boundaries 887 */ 888 void bdrv_round_to_clusters(BlockDriverState *bs, 889 int64_t offset, int64_t bytes, 890 int64_t *cluster_offset, 891 int64_t *cluster_bytes) 892 { 893 BlockDriverInfo bdi; 894 IO_CODE(); 895 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 896 *cluster_offset = offset; 897 *cluster_bytes = bytes; 898 } else { 899 int64_t c = bdi.cluster_size; 900 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 901 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 902 } 903 } 904 905 static int bdrv_get_cluster_size(BlockDriverState *bs) 906 { 907 BlockDriverInfo bdi; 908 int ret; 909 910 ret = bdrv_get_info(bs, &bdi); 911 if (ret < 0 || bdi.cluster_size == 0) { 912 return bs->bl.request_alignment; 913 } else { 914 return bdi.cluster_size; 915 } 916 } 917 918 void bdrv_inc_in_flight(BlockDriverState *bs) 919 { 920 IO_CODE(); 921 qatomic_inc(&bs->in_flight); 922 } 923 924 void bdrv_wakeup(BlockDriverState *bs) 925 { 926 IO_CODE(); 927 aio_wait_kick(); 928 } 929 930 void bdrv_dec_in_flight(BlockDriverState *bs) 931 { 932 IO_CODE(); 933 qatomic_dec(&bs->in_flight); 934 bdrv_wakeup(bs); 935 } 936 937 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 938 { 939 BlockDriverState *bs = self->bs; 940 bool waited = false; 941 942 if (!qatomic_read(&bs->serialising_in_flight)) { 943 return false; 944 } 945 946 qemu_co_mutex_lock(&bs->reqs_lock); 947 waited = bdrv_wait_serialising_requests_locked(self); 948 qemu_co_mutex_unlock(&bs->reqs_lock); 949 950 return waited; 951 } 952 953 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 954 uint64_t align) 955 { 956 bool waited; 957 IO_CODE(); 958 959 qemu_co_mutex_lock(&req->bs->reqs_lock); 960 961 tracked_request_set_serialising(req, align); 962 waited = bdrv_wait_serialising_requests_locked(req); 963 964 qemu_co_mutex_unlock(&req->bs->reqs_lock); 965 966 return waited; 967 } 968 969 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 970 QEMUIOVector *qiov, size_t qiov_offset, 971 Error **errp) 972 { 973 /* 974 * Check generic offset/bytes correctness 975 */ 976 977 if (offset < 0) { 978 error_setg(errp, "offset is negative: %" PRIi64, offset); 979 return -EIO; 980 } 981 982 if (bytes < 0) { 983 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 984 return -EIO; 985 } 986 987 if (bytes > BDRV_MAX_LENGTH) { 988 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 989 bytes, BDRV_MAX_LENGTH); 990 return -EIO; 991 } 992 993 if (offset > BDRV_MAX_LENGTH) { 994 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 995 offset, BDRV_MAX_LENGTH); 996 return -EIO; 997 } 998 999 if (offset > BDRV_MAX_LENGTH - bytes) { 1000 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 1001 "exceeds maximum(%" PRIi64 ")", offset, bytes, 1002 BDRV_MAX_LENGTH); 1003 return -EIO; 1004 } 1005 1006 if (!qiov) { 1007 return 0; 1008 } 1009 1010 /* 1011 * Check qiov and qiov_offset 1012 */ 1013 1014 if (qiov_offset > qiov->size) { 1015 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 1016 qiov_offset, qiov->size); 1017 return -EIO; 1018 } 1019 1020 if (bytes > qiov->size - qiov_offset) { 1021 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 1022 "vector size(%zu)", bytes, qiov_offset, qiov->size); 1023 return -EIO; 1024 } 1025 1026 return 0; 1027 } 1028 1029 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 1030 { 1031 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 1032 } 1033 1034 static int bdrv_check_request32(int64_t offset, int64_t bytes, 1035 QEMUIOVector *qiov, size_t qiov_offset) 1036 { 1037 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 1038 if (ret < 0) { 1039 return ret; 1040 } 1041 1042 if (bytes > BDRV_REQUEST_MAX_BYTES) { 1043 return -EIO; 1044 } 1045 1046 return 0; 1047 } 1048 1049 /* 1050 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 1051 * The operation is sped up by checking the block status and only writing 1052 * zeroes to the device if they currently do not return zeroes. Optional 1053 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 1054 * BDRV_REQ_FUA). 1055 * 1056 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 1057 */ 1058 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 1059 { 1060 int ret; 1061 int64_t target_size, bytes, offset = 0; 1062 BlockDriverState *bs = child->bs; 1063 IO_CODE(); 1064 1065 target_size = bdrv_getlength(bs); 1066 if (target_size < 0) { 1067 return target_size; 1068 } 1069 1070 for (;;) { 1071 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 1072 if (bytes <= 0) { 1073 return 0; 1074 } 1075 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 1076 if (ret < 0) { 1077 return ret; 1078 } 1079 if (ret & BDRV_BLOCK_ZERO) { 1080 offset += bytes; 1081 continue; 1082 } 1083 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 1084 if (ret < 0) { 1085 return ret; 1086 } 1087 offset += bytes; 1088 } 1089 } 1090 1091 /* 1092 * Writes to the file and ensures that no writes are reordered across this 1093 * request (acts as a barrier) 1094 * 1095 * Returns 0 on success, -errno in error cases. 1096 */ 1097 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 1098 int64_t bytes, const void *buf, 1099 BdrvRequestFlags flags) 1100 { 1101 int ret; 1102 IO_CODE(); 1103 1104 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 1105 if (ret < 0) { 1106 return ret; 1107 } 1108 1109 ret = bdrv_co_flush(child->bs); 1110 if (ret < 0) { 1111 return ret; 1112 } 1113 1114 return 0; 1115 } 1116 1117 typedef struct CoroutineIOCompletion { 1118 Coroutine *coroutine; 1119 int ret; 1120 } CoroutineIOCompletion; 1121 1122 static void bdrv_co_io_em_complete(void *opaque, int ret) 1123 { 1124 CoroutineIOCompletion *co = opaque; 1125 1126 co->ret = ret; 1127 aio_co_wake(co->coroutine); 1128 } 1129 1130 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1131 int64_t offset, int64_t bytes, 1132 QEMUIOVector *qiov, 1133 size_t qiov_offset, int flags) 1134 { 1135 BlockDriver *drv = bs->drv; 1136 int64_t sector_num; 1137 unsigned int nb_sectors; 1138 QEMUIOVector local_qiov; 1139 int ret; 1140 1141 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1142 assert(!(flags & ~BDRV_REQ_MASK)); 1143 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1144 1145 if (!drv) { 1146 return -ENOMEDIUM; 1147 } 1148 1149 if (drv->bdrv_co_preadv_part) { 1150 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1151 flags); 1152 } 1153 1154 if (qiov_offset > 0 || bytes != qiov->size) { 1155 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1156 qiov = &local_qiov; 1157 } 1158 1159 if (drv->bdrv_co_preadv) { 1160 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1161 goto out; 1162 } 1163 1164 if (drv->bdrv_aio_preadv) { 1165 BlockAIOCB *acb; 1166 CoroutineIOCompletion co = { 1167 .coroutine = qemu_coroutine_self(), 1168 }; 1169 1170 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1171 bdrv_co_io_em_complete, &co); 1172 if (acb == NULL) { 1173 ret = -EIO; 1174 goto out; 1175 } else { 1176 qemu_coroutine_yield(); 1177 ret = co.ret; 1178 goto out; 1179 } 1180 } 1181 1182 sector_num = offset >> BDRV_SECTOR_BITS; 1183 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1184 1185 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1186 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1187 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1188 assert(drv->bdrv_co_readv); 1189 1190 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1191 1192 out: 1193 if (qiov == &local_qiov) { 1194 qemu_iovec_destroy(&local_qiov); 1195 } 1196 1197 return ret; 1198 } 1199 1200 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1201 int64_t offset, int64_t bytes, 1202 QEMUIOVector *qiov, 1203 size_t qiov_offset, 1204 BdrvRequestFlags flags) 1205 { 1206 BlockDriver *drv = bs->drv; 1207 int64_t sector_num; 1208 unsigned int nb_sectors; 1209 QEMUIOVector local_qiov; 1210 int ret; 1211 1212 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1213 assert(!(flags & ~BDRV_REQ_MASK)); 1214 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1215 1216 if (!drv) { 1217 return -ENOMEDIUM; 1218 } 1219 1220 if (drv->bdrv_co_pwritev_part) { 1221 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1222 flags & bs->supported_write_flags); 1223 flags &= ~bs->supported_write_flags; 1224 goto emulate_flags; 1225 } 1226 1227 if (qiov_offset > 0 || bytes != qiov->size) { 1228 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1229 qiov = &local_qiov; 1230 } 1231 1232 if (drv->bdrv_co_pwritev) { 1233 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1234 flags & bs->supported_write_flags); 1235 flags &= ~bs->supported_write_flags; 1236 goto emulate_flags; 1237 } 1238 1239 if (drv->bdrv_aio_pwritev) { 1240 BlockAIOCB *acb; 1241 CoroutineIOCompletion co = { 1242 .coroutine = qemu_coroutine_self(), 1243 }; 1244 1245 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1246 flags & bs->supported_write_flags, 1247 bdrv_co_io_em_complete, &co); 1248 flags &= ~bs->supported_write_flags; 1249 if (acb == NULL) { 1250 ret = -EIO; 1251 } else { 1252 qemu_coroutine_yield(); 1253 ret = co.ret; 1254 } 1255 goto emulate_flags; 1256 } 1257 1258 sector_num = offset >> BDRV_SECTOR_BITS; 1259 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1260 1261 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1262 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1263 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1264 1265 assert(drv->bdrv_co_writev); 1266 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1267 flags & bs->supported_write_flags); 1268 flags &= ~bs->supported_write_flags; 1269 1270 emulate_flags: 1271 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1272 ret = bdrv_co_flush(bs); 1273 } 1274 1275 if (qiov == &local_qiov) { 1276 qemu_iovec_destroy(&local_qiov); 1277 } 1278 1279 return ret; 1280 } 1281 1282 static int coroutine_fn 1283 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1284 int64_t bytes, QEMUIOVector *qiov, 1285 size_t qiov_offset) 1286 { 1287 BlockDriver *drv = bs->drv; 1288 QEMUIOVector local_qiov; 1289 int ret; 1290 1291 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1292 1293 if (!drv) { 1294 return -ENOMEDIUM; 1295 } 1296 1297 if (!block_driver_can_compress(drv)) { 1298 return -ENOTSUP; 1299 } 1300 1301 if (drv->bdrv_co_pwritev_compressed_part) { 1302 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1303 qiov, qiov_offset); 1304 } 1305 1306 if (qiov_offset == 0) { 1307 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1308 } 1309 1310 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1311 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1312 qemu_iovec_destroy(&local_qiov); 1313 1314 return ret; 1315 } 1316 1317 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1318 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1319 size_t qiov_offset, int flags) 1320 { 1321 BlockDriverState *bs = child->bs; 1322 1323 /* Perform I/O through a temporary buffer so that users who scribble over 1324 * their read buffer while the operation is in progress do not end up 1325 * modifying the image file. This is critical for zero-copy guest I/O 1326 * where anything might happen inside guest memory. 1327 */ 1328 void *bounce_buffer = NULL; 1329 1330 BlockDriver *drv = bs->drv; 1331 int64_t cluster_offset; 1332 int64_t cluster_bytes; 1333 int64_t skip_bytes; 1334 int ret; 1335 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1336 BDRV_REQUEST_MAX_BYTES); 1337 int64_t progress = 0; 1338 bool skip_write; 1339 1340 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1341 1342 if (!drv) { 1343 return -ENOMEDIUM; 1344 } 1345 1346 /* 1347 * Do not write anything when the BDS is inactive. That is not 1348 * allowed, and it would not help. 1349 */ 1350 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1351 1352 /* FIXME We cannot require callers to have write permissions when all they 1353 * are doing is a read request. If we did things right, write permissions 1354 * would be obtained anyway, but internally by the copy-on-read code. As 1355 * long as it is implemented here rather than in a separate filter driver, 1356 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1357 * it could request permissions. Therefore we have to bypass the permission 1358 * system for the moment. */ 1359 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1360 1361 /* Cover entire cluster so no additional backing file I/O is required when 1362 * allocating cluster in the image file. Note that this value may exceed 1363 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1364 * is one reason we loop rather than doing it all at once. 1365 */ 1366 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1367 skip_bytes = offset - cluster_offset; 1368 1369 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1370 cluster_offset, cluster_bytes); 1371 1372 while (cluster_bytes) { 1373 int64_t pnum; 1374 1375 if (skip_write) { 1376 ret = 1; /* "already allocated", so nothing will be copied */ 1377 pnum = MIN(cluster_bytes, max_transfer); 1378 } else { 1379 ret = bdrv_is_allocated(bs, cluster_offset, 1380 MIN(cluster_bytes, max_transfer), &pnum); 1381 if (ret < 0) { 1382 /* 1383 * Safe to treat errors in querying allocation as if 1384 * unallocated; we'll probably fail again soon on the 1385 * read, but at least that will set a decent errno. 1386 */ 1387 pnum = MIN(cluster_bytes, max_transfer); 1388 } 1389 1390 /* Stop at EOF if the image ends in the middle of the cluster */ 1391 if (ret == 0 && pnum == 0) { 1392 assert(progress >= bytes); 1393 break; 1394 } 1395 1396 assert(skip_bytes < pnum); 1397 } 1398 1399 if (ret <= 0) { 1400 QEMUIOVector local_qiov; 1401 1402 /* Must copy-on-read; use the bounce buffer */ 1403 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1404 if (!bounce_buffer) { 1405 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1406 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1407 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1408 1409 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1410 if (!bounce_buffer) { 1411 ret = -ENOMEM; 1412 goto err; 1413 } 1414 } 1415 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1416 1417 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1418 &local_qiov, 0, 0); 1419 if (ret < 0) { 1420 goto err; 1421 } 1422 1423 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1424 if (drv->bdrv_co_pwrite_zeroes && 1425 buffer_is_zero(bounce_buffer, pnum)) { 1426 /* FIXME: Should we (perhaps conditionally) be setting 1427 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1428 * that still correctly reads as zero? */ 1429 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1430 BDRV_REQ_WRITE_UNCHANGED); 1431 } else { 1432 /* This does not change the data on the disk, it is not 1433 * necessary to flush even in cache=writethrough mode. 1434 */ 1435 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1436 &local_qiov, 0, 1437 BDRV_REQ_WRITE_UNCHANGED); 1438 } 1439 1440 if (ret < 0) { 1441 /* It might be okay to ignore write errors for guest 1442 * requests. If this is a deliberate copy-on-read 1443 * then we don't want to ignore the error. Simply 1444 * report it in all cases. 1445 */ 1446 goto err; 1447 } 1448 1449 if (!(flags & BDRV_REQ_PREFETCH)) { 1450 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1451 bounce_buffer + skip_bytes, 1452 MIN(pnum - skip_bytes, bytes - progress)); 1453 } 1454 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1455 /* Read directly into the destination */ 1456 ret = bdrv_driver_preadv(bs, offset + progress, 1457 MIN(pnum - skip_bytes, bytes - progress), 1458 qiov, qiov_offset + progress, 0); 1459 if (ret < 0) { 1460 goto err; 1461 } 1462 } 1463 1464 cluster_offset += pnum; 1465 cluster_bytes -= pnum; 1466 progress += pnum - skip_bytes; 1467 skip_bytes = 0; 1468 } 1469 ret = 0; 1470 1471 err: 1472 qemu_vfree(bounce_buffer); 1473 return ret; 1474 } 1475 1476 /* 1477 * Forwards an already correctly aligned request to the BlockDriver. This 1478 * handles copy on read, zeroing after EOF, and fragmentation of large 1479 * reads; any other features must be implemented by the caller. 1480 */ 1481 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1482 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1483 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1484 { 1485 BlockDriverState *bs = child->bs; 1486 int64_t total_bytes, max_bytes; 1487 int ret = 0; 1488 int64_t bytes_remaining = bytes; 1489 int max_transfer; 1490 1491 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1492 assert(is_power_of_2(align)); 1493 assert((offset & (align - 1)) == 0); 1494 assert((bytes & (align - 1)) == 0); 1495 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1496 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1497 align); 1498 1499 /* TODO: We would need a per-BDS .supported_read_flags and 1500 * potential fallback support, if we ever implement any read flags 1501 * to pass through to drivers. For now, there aren't any 1502 * passthrough flags. */ 1503 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH))); 1504 1505 /* Handle Copy on Read and associated serialisation */ 1506 if (flags & BDRV_REQ_COPY_ON_READ) { 1507 /* If we touch the same cluster it counts as an overlap. This 1508 * guarantees that allocating writes will be serialized and not race 1509 * with each other for the same cluster. For example, in copy-on-read 1510 * it ensures that the CoR read and write operations are atomic and 1511 * guest writes cannot interleave between them. */ 1512 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1513 } else { 1514 bdrv_wait_serialising_requests(req); 1515 } 1516 1517 if (flags & BDRV_REQ_COPY_ON_READ) { 1518 int64_t pnum; 1519 1520 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1521 flags &= ~BDRV_REQ_COPY_ON_READ; 1522 1523 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1524 if (ret < 0) { 1525 goto out; 1526 } 1527 1528 if (!ret || pnum != bytes) { 1529 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1530 qiov, qiov_offset, flags); 1531 goto out; 1532 } else if (flags & BDRV_REQ_PREFETCH) { 1533 goto out; 1534 } 1535 } 1536 1537 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1538 total_bytes = bdrv_getlength(bs); 1539 if (total_bytes < 0) { 1540 ret = total_bytes; 1541 goto out; 1542 } 1543 1544 assert(!(flags & ~bs->supported_read_flags)); 1545 1546 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1547 if (bytes <= max_bytes && bytes <= max_transfer) { 1548 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1549 goto out; 1550 } 1551 1552 while (bytes_remaining) { 1553 int64_t num; 1554 1555 if (max_bytes) { 1556 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1557 assert(num); 1558 1559 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1560 num, qiov, 1561 qiov_offset + bytes - bytes_remaining, 1562 flags); 1563 max_bytes -= num; 1564 } else { 1565 num = bytes_remaining; 1566 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1567 0, bytes_remaining); 1568 } 1569 if (ret < 0) { 1570 goto out; 1571 } 1572 bytes_remaining -= num; 1573 } 1574 1575 out: 1576 return ret < 0 ? ret : 0; 1577 } 1578 1579 /* 1580 * Request padding 1581 * 1582 * |<---- align ----->| |<----- align ---->| 1583 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1584 * | | | | | | 1585 * -*----------$-------*-------- ... --------*-----$------------*--- 1586 * | | | | | | 1587 * | offset | | end | 1588 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1589 * [buf ... ) [tail_buf ) 1590 * 1591 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1592 * is placed at the beginning of @buf and @tail at the @end. 1593 * 1594 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1595 * around tail, if tail exists. 1596 * 1597 * @merge_reads is true for small requests, 1598 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1599 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1600 */ 1601 typedef struct BdrvRequestPadding { 1602 uint8_t *buf; 1603 size_t buf_len; 1604 uint8_t *tail_buf; 1605 size_t head; 1606 size_t tail; 1607 bool merge_reads; 1608 QEMUIOVector local_qiov; 1609 } BdrvRequestPadding; 1610 1611 static bool bdrv_init_padding(BlockDriverState *bs, 1612 int64_t offset, int64_t bytes, 1613 BdrvRequestPadding *pad) 1614 { 1615 int64_t align = bs->bl.request_alignment; 1616 int64_t sum; 1617 1618 bdrv_check_request(offset, bytes, &error_abort); 1619 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1620 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1621 1622 memset(pad, 0, sizeof(*pad)); 1623 1624 pad->head = offset & (align - 1); 1625 pad->tail = ((offset + bytes) & (align - 1)); 1626 if (pad->tail) { 1627 pad->tail = align - pad->tail; 1628 } 1629 1630 if (!pad->head && !pad->tail) { 1631 return false; 1632 } 1633 1634 assert(bytes); /* Nothing good in aligning zero-length requests */ 1635 1636 sum = pad->head + bytes + pad->tail; 1637 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1638 pad->buf = qemu_blockalign(bs, pad->buf_len); 1639 pad->merge_reads = sum == pad->buf_len; 1640 if (pad->tail) { 1641 pad->tail_buf = pad->buf + pad->buf_len - align; 1642 } 1643 1644 return true; 1645 } 1646 1647 static int bdrv_padding_rmw_read(BdrvChild *child, 1648 BdrvTrackedRequest *req, 1649 BdrvRequestPadding *pad, 1650 bool zero_middle) 1651 { 1652 QEMUIOVector local_qiov; 1653 BlockDriverState *bs = child->bs; 1654 uint64_t align = bs->bl.request_alignment; 1655 int ret; 1656 1657 assert(req->serialising && pad->buf); 1658 1659 if (pad->head || pad->merge_reads) { 1660 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1661 1662 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1663 1664 if (pad->head) { 1665 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1666 } 1667 if (pad->merge_reads && pad->tail) { 1668 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1669 } 1670 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1671 align, &local_qiov, 0, 0); 1672 if (ret < 0) { 1673 return ret; 1674 } 1675 if (pad->head) { 1676 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1677 } 1678 if (pad->merge_reads && pad->tail) { 1679 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1680 } 1681 1682 if (pad->merge_reads) { 1683 goto zero_mem; 1684 } 1685 } 1686 1687 if (pad->tail) { 1688 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1689 1690 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1691 ret = bdrv_aligned_preadv( 1692 child, req, 1693 req->overlap_offset + req->overlap_bytes - align, 1694 align, align, &local_qiov, 0, 0); 1695 if (ret < 0) { 1696 return ret; 1697 } 1698 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1699 } 1700 1701 zero_mem: 1702 if (zero_middle) { 1703 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1704 } 1705 1706 return 0; 1707 } 1708 1709 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1710 { 1711 if (pad->buf) { 1712 qemu_vfree(pad->buf); 1713 qemu_iovec_destroy(&pad->local_qiov); 1714 } 1715 memset(pad, 0, sizeof(*pad)); 1716 } 1717 1718 /* 1719 * bdrv_pad_request 1720 * 1721 * Exchange request parameters with padded request if needed. Don't include RMW 1722 * read of padding, bdrv_padding_rmw_read() should be called separately if 1723 * needed. 1724 * 1725 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1726 * - on function start they represent original request 1727 * - on failure or when padding is not needed they are unchanged 1728 * - on success when padding is needed they represent padded request 1729 */ 1730 static int bdrv_pad_request(BlockDriverState *bs, 1731 QEMUIOVector **qiov, size_t *qiov_offset, 1732 int64_t *offset, int64_t *bytes, 1733 BdrvRequestPadding *pad, bool *padded) 1734 { 1735 int ret; 1736 1737 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1738 1739 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1740 if (padded) { 1741 *padded = false; 1742 } 1743 return 0; 1744 } 1745 1746 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1747 *qiov, *qiov_offset, *bytes, 1748 pad->buf + pad->buf_len - pad->tail, 1749 pad->tail); 1750 if (ret < 0) { 1751 bdrv_padding_destroy(pad); 1752 return ret; 1753 } 1754 *bytes += pad->head + pad->tail; 1755 *offset -= pad->head; 1756 *qiov = &pad->local_qiov; 1757 *qiov_offset = 0; 1758 if (padded) { 1759 *padded = true; 1760 } 1761 1762 return 0; 1763 } 1764 1765 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1766 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1767 BdrvRequestFlags flags) 1768 { 1769 IO_CODE(); 1770 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1771 } 1772 1773 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1774 int64_t offset, int64_t bytes, 1775 QEMUIOVector *qiov, size_t qiov_offset, 1776 BdrvRequestFlags flags) 1777 { 1778 BlockDriverState *bs = child->bs; 1779 BdrvTrackedRequest req; 1780 BdrvRequestPadding pad; 1781 int ret; 1782 IO_CODE(); 1783 1784 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1785 1786 if (!bdrv_is_inserted(bs)) { 1787 return -ENOMEDIUM; 1788 } 1789 1790 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1791 if (ret < 0) { 1792 return ret; 1793 } 1794 1795 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1796 /* 1797 * Aligning zero request is nonsense. Even if driver has special meaning 1798 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1799 * it to driver due to request_alignment. 1800 * 1801 * Still, no reason to return an error if someone do unaligned 1802 * zero-length read occasionally. 1803 */ 1804 return 0; 1805 } 1806 1807 bdrv_inc_in_flight(bs); 1808 1809 /* Don't do copy-on-read if we read data before write operation */ 1810 if (qatomic_read(&bs->copy_on_read)) { 1811 flags |= BDRV_REQ_COPY_ON_READ; 1812 } 1813 1814 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 1815 NULL); 1816 if (ret < 0) { 1817 goto fail; 1818 } 1819 1820 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1821 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1822 bs->bl.request_alignment, 1823 qiov, qiov_offset, flags); 1824 tracked_request_end(&req); 1825 bdrv_padding_destroy(&pad); 1826 1827 fail: 1828 bdrv_dec_in_flight(bs); 1829 1830 return ret; 1831 } 1832 1833 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1834 int64_t offset, int64_t bytes, BdrvRequestFlags flags) 1835 { 1836 BlockDriver *drv = bs->drv; 1837 QEMUIOVector qiov; 1838 void *buf = NULL; 1839 int ret = 0; 1840 bool need_flush = false; 1841 int head = 0; 1842 int tail = 0; 1843 1844 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1845 INT64_MAX); 1846 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1847 bs->bl.request_alignment); 1848 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1849 1850 bdrv_check_request(offset, bytes, &error_abort); 1851 1852 if (!drv) { 1853 return -ENOMEDIUM; 1854 } 1855 1856 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1857 return -ENOTSUP; 1858 } 1859 1860 /* Invalidate the cached block-status data range if this write overlaps */ 1861 bdrv_bsc_invalidate_range(bs, offset, bytes); 1862 1863 assert(alignment % bs->bl.request_alignment == 0); 1864 head = offset % alignment; 1865 tail = (offset + bytes) % alignment; 1866 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1867 assert(max_write_zeroes >= bs->bl.request_alignment); 1868 1869 while (bytes > 0 && !ret) { 1870 int64_t num = bytes; 1871 1872 /* Align request. Block drivers can expect the "bulk" of the request 1873 * to be aligned, and that unaligned requests do not cross cluster 1874 * boundaries. 1875 */ 1876 if (head) { 1877 /* Make a small request up to the first aligned sector. For 1878 * convenience, limit this request to max_transfer even if 1879 * we don't need to fall back to writes. */ 1880 num = MIN(MIN(bytes, max_transfer), alignment - head); 1881 head = (head + num) % alignment; 1882 assert(num < max_write_zeroes); 1883 } else if (tail && num > alignment) { 1884 /* Shorten the request to the last aligned sector. */ 1885 num -= tail; 1886 } 1887 1888 /* limit request size */ 1889 if (num > max_write_zeroes) { 1890 num = max_write_zeroes; 1891 } 1892 1893 ret = -ENOTSUP; 1894 /* First try the efficient write zeroes operation */ 1895 if (drv->bdrv_co_pwrite_zeroes) { 1896 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1897 flags & bs->supported_zero_flags); 1898 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1899 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1900 need_flush = true; 1901 } 1902 } else { 1903 assert(!bs->supported_zero_flags); 1904 } 1905 1906 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1907 /* Fall back to bounce buffer if write zeroes is unsupported */ 1908 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1909 1910 if ((flags & BDRV_REQ_FUA) && 1911 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1912 /* No need for bdrv_driver_pwrite() to do a fallback 1913 * flush on each chunk; use just one at the end */ 1914 write_flags &= ~BDRV_REQ_FUA; 1915 need_flush = true; 1916 } 1917 num = MIN(num, max_transfer); 1918 if (buf == NULL) { 1919 buf = qemu_try_blockalign0(bs, num); 1920 if (buf == NULL) { 1921 ret = -ENOMEM; 1922 goto fail; 1923 } 1924 } 1925 qemu_iovec_init_buf(&qiov, buf, num); 1926 1927 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1928 1929 /* Keep bounce buffer around if it is big enough for all 1930 * all future requests. 1931 */ 1932 if (num < max_transfer) { 1933 qemu_vfree(buf); 1934 buf = NULL; 1935 } 1936 } 1937 1938 offset += num; 1939 bytes -= num; 1940 } 1941 1942 fail: 1943 if (ret == 0 && need_flush) { 1944 ret = bdrv_co_flush(bs); 1945 } 1946 qemu_vfree(buf); 1947 return ret; 1948 } 1949 1950 static inline int coroutine_fn 1951 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1952 BdrvTrackedRequest *req, int flags) 1953 { 1954 BlockDriverState *bs = child->bs; 1955 1956 bdrv_check_request(offset, bytes, &error_abort); 1957 1958 if (bdrv_is_read_only(bs)) { 1959 return -EPERM; 1960 } 1961 1962 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1963 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1964 assert(!(flags & ~BDRV_REQ_MASK)); 1965 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1966 1967 if (flags & BDRV_REQ_SERIALISING) { 1968 QEMU_LOCK_GUARD(&bs->reqs_lock); 1969 1970 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1971 1972 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1973 return -EBUSY; 1974 } 1975 1976 bdrv_wait_serialising_requests_locked(req); 1977 } else { 1978 bdrv_wait_serialising_requests(req); 1979 } 1980 1981 assert(req->overlap_offset <= offset); 1982 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1983 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 1984 child->perm & BLK_PERM_RESIZE); 1985 1986 switch (req->type) { 1987 case BDRV_TRACKED_WRITE: 1988 case BDRV_TRACKED_DISCARD: 1989 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1990 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1991 } else { 1992 assert(child->perm & BLK_PERM_WRITE); 1993 } 1994 bdrv_write_threshold_check_write(bs, offset, bytes); 1995 return 0; 1996 case BDRV_TRACKED_TRUNCATE: 1997 assert(child->perm & BLK_PERM_RESIZE); 1998 return 0; 1999 default: 2000 abort(); 2001 } 2002 } 2003 2004 static inline void coroutine_fn 2005 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2006 BdrvTrackedRequest *req, int ret) 2007 { 2008 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2009 BlockDriverState *bs = child->bs; 2010 2011 bdrv_check_request(offset, bytes, &error_abort); 2012 2013 qatomic_inc(&bs->write_gen); 2014 2015 /* 2016 * Discard cannot extend the image, but in error handling cases, such as 2017 * when reverting a qcow2 cluster allocation, the discarded range can pass 2018 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2019 * here. Instead, just skip it, since semantically a discard request 2020 * beyond EOF cannot expand the image anyway. 2021 */ 2022 if (ret == 0 && 2023 (req->type == BDRV_TRACKED_TRUNCATE || 2024 end_sector > bs->total_sectors) && 2025 req->type != BDRV_TRACKED_DISCARD) { 2026 bs->total_sectors = end_sector; 2027 bdrv_parent_cb_resize(bs); 2028 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2029 } 2030 if (req->bytes) { 2031 switch (req->type) { 2032 case BDRV_TRACKED_WRITE: 2033 stat64_max(&bs->wr_highest_offset, offset + bytes); 2034 /* fall through, to set dirty bits */ 2035 case BDRV_TRACKED_DISCARD: 2036 bdrv_set_dirty(bs, offset, bytes); 2037 break; 2038 default: 2039 break; 2040 } 2041 } 2042 } 2043 2044 /* 2045 * Forwards an already correctly aligned write request to the BlockDriver, 2046 * after possibly fragmenting it. 2047 */ 2048 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 2049 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 2050 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, 2051 BdrvRequestFlags flags) 2052 { 2053 BlockDriverState *bs = child->bs; 2054 BlockDriver *drv = bs->drv; 2055 int ret; 2056 2057 int64_t bytes_remaining = bytes; 2058 int max_transfer; 2059 2060 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2061 2062 if (!drv) { 2063 return -ENOMEDIUM; 2064 } 2065 2066 if (bdrv_has_readonly_bitmaps(bs)) { 2067 return -EPERM; 2068 } 2069 2070 assert(is_power_of_2(align)); 2071 assert((offset & (align - 1)) == 0); 2072 assert((bytes & (align - 1)) == 0); 2073 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2074 align); 2075 2076 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2077 2078 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2079 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2080 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2081 flags |= BDRV_REQ_ZERO_WRITE; 2082 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2083 flags |= BDRV_REQ_MAY_UNMAP; 2084 } 2085 } 2086 2087 if (ret < 0) { 2088 /* Do nothing, write notifier decided to fail this request */ 2089 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2090 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2091 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2092 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2093 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2094 qiov, qiov_offset); 2095 } else if (bytes <= max_transfer) { 2096 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2097 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2098 } else { 2099 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2100 while (bytes_remaining) { 2101 int num = MIN(bytes_remaining, max_transfer); 2102 int local_flags = flags; 2103 2104 assert(num); 2105 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2106 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2107 /* If FUA is going to be emulated by flush, we only 2108 * need to flush on the last iteration */ 2109 local_flags &= ~BDRV_REQ_FUA; 2110 } 2111 2112 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2113 num, qiov, 2114 qiov_offset + bytes - bytes_remaining, 2115 local_flags); 2116 if (ret < 0) { 2117 break; 2118 } 2119 bytes_remaining -= num; 2120 } 2121 } 2122 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 2123 2124 if (ret >= 0) { 2125 ret = 0; 2126 } 2127 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2128 2129 return ret; 2130 } 2131 2132 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 2133 int64_t offset, 2134 int64_t bytes, 2135 BdrvRequestFlags flags, 2136 BdrvTrackedRequest *req) 2137 { 2138 BlockDriverState *bs = child->bs; 2139 QEMUIOVector local_qiov; 2140 uint64_t align = bs->bl.request_alignment; 2141 int ret = 0; 2142 bool padding; 2143 BdrvRequestPadding pad; 2144 2145 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2146 if (padding) { 2147 assert(!(flags & BDRV_REQ_NO_WAIT)); 2148 bdrv_make_request_serialising(req, align); 2149 2150 bdrv_padding_rmw_read(child, req, &pad, true); 2151 2152 if (pad.head || pad.merge_reads) { 2153 int64_t aligned_offset = offset & ~(align - 1); 2154 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2155 2156 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2157 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2158 align, &local_qiov, 0, 2159 flags & ~BDRV_REQ_ZERO_WRITE); 2160 if (ret < 0 || pad.merge_reads) { 2161 /* Error or all work is done */ 2162 goto out; 2163 } 2164 offset += write_bytes - pad.head; 2165 bytes -= write_bytes - pad.head; 2166 } 2167 } 2168 2169 assert(!bytes || (offset & (align - 1)) == 0); 2170 if (bytes >= align) { 2171 /* Write the aligned part in the middle. */ 2172 int64_t aligned_bytes = bytes & ~(align - 1); 2173 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2174 NULL, 0, flags); 2175 if (ret < 0) { 2176 goto out; 2177 } 2178 bytes -= aligned_bytes; 2179 offset += aligned_bytes; 2180 } 2181 2182 assert(!bytes || (offset & (align - 1)) == 0); 2183 if (bytes) { 2184 assert(align == pad.tail + bytes); 2185 2186 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2187 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2188 &local_qiov, 0, 2189 flags & ~BDRV_REQ_ZERO_WRITE); 2190 } 2191 2192 out: 2193 bdrv_padding_destroy(&pad); 2194 2195 return ret; 2196 } 2197 2198 /* 2199 * Handle a write request in coroutine context 2200 */ 2201 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2202 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2203 BdrvRequestFlags flags) 2204 { 2205 IO_CODE(); 2206 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2207 } 2208 2209 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2210 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2211 BdrvRequestFlags flags) 2212 { 2213 BlockDriverState *bs = child->bs; 2214 BdrvTrackedRequest req; 2215 uint64_t align = bs->bl.request_alignment; 2216 BdrvRequestPadding pad; 2217 int ret; 2218 bool padded = false; 2219 IO_CODE(); 2220 2221 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2222 2223 if (!bdrv_is_inserted(bs)) { 2224 return -ENOMEDIUM; 2225 } 2226 2227 if (flags & BDRV_REQ_ZERO_WRITE) { 2228 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2229 } else { 2230 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2231 } 2232 if (ret < 0) { 2233 return ret; 2234 } 2235 2236 /* If the request is misaligned then we can't make it efficient */ 2237 if ((flags & BDRV_REQ_NO_FALLBACK) && 2238 !QEMU_IS_ALIGNED(offset | bytes, align)) 2239 { 2240 return -ENOTSUP; 2241 } 2242 2243 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2244 /* 2245 * Aligning zero request is nonsense. Even if driver has special meaning 2246 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2247 * it to driver due to request_alignment. 2248 * 2249 * Still, no reason to return an error if someone do unaligned 2250 * zero-length write occasionally. 2251 */ 2252 return 0; 2253 } 2254 2255 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2256 /* 2257 * Pad request for following read-modify-write cycle. 2258 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2259 * alignment only if there is no ZERO flag. 2260 */ 2261 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 2262 &padded); 2263 if (ret < 0) { 2264 return ret; 2265 } 2266 } 2267 2268 bdrv_inc_in_flight(bs); 2269 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2270 2271 if (flags & BDRV_REQ_ZERO_WRITE) { 2272 assert(!padded); 2273 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2274 goto out; 2275 } 2276 2277 if (padded) { 2278 /* 2279 * Request was unaligned to request_alignment and therefore 2280 * padded. We are going to do read-modify-write, and must 2281 * serialize the request to prevent interactions of the 2282 * widened region with other transactions. 2283 */ 2284 assert(!(flags & BDRV_REQ_NO_WAIT)); 2285 bdrv_make_request_serialising(&req, align); 2286 bdrv_padding_rmw_read(child, &req, &pad, false); 2287 } 2288 2289 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2290 qiov, qiov_offset, flags); 2291 2292 bdrv_padding_destroy(&pad); 2293 2294 out: 2295 tracked_request_end(&req); 2296 bdrv_dec_in_flight(bs); 2297 2298 return ret; 2299 } 2300 2301 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2302 int64_t bytes, BdrvRequestFlags flags) 2303 { 2304 IO_CODE(); 2305 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2306 2307 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2308 flags &= ~BDRV_REQ_MAY_UNMAP; 2309 } 2310 2311 return bdrv_co_pwritev(child, offset, bytes, NULL, 2312 BDRV_REQ_ZERO_WRITE | flags); 2313 } 2314 2315 /* 2316 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2317 */ 2318 int bdrv_flush_all(void) 2319 { 2320 BdrvNextIterator it; 2321 BlockDriverState *bs = NULL; 2322 int result = 0; 2323 2324 GLOBAL_STATE_CODE(); 2325 2326 /* 2327 * bdrv queue is managed by record/replay, 2328 * creating new flush request for stopping 2329 * the VM may break the determinism 2330 */ 2331 if (replay_events_enabled()) { 2332 return result; 2333 } 2334 2335 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2336 AioContext *aio_context = bdrv_get_aio_context(bs); 2337 int ret; 2338 2339 aio_context_acquire(aio_context); 2340 ret = bdrv_flush(bs); 2341 if (ret < 0 && !result) { 2342 result = ret; 2343 } 2344 aio_context_release(aio_context); 2345 } 2346 2347 return result; 2348 } 2349 2350 /* 2351 * Returns the allocation status of the specified sectors. 2352 * Drivers not implementing the functionality are assumed to not support 2353 * backing files, hence all their sectors are reported as allocated. 2354 * 2355 * If 'want_zero' is true, the caller is querying for mapping 2356 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2357 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2358 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2359 * 2360 * If 'offset' is beyond the end of the disk image the return value is 2361 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2362 * 2363 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2364 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2365 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2366 * 2367 * 'pnum' is set to the number of bytes (including and immediately 2368 * following the specified offset) that are easily known to be in the 2369 * same allocated/unallocated state. Note that a second call starting 2370 * at the original offset plus returned pnum may have the same status. 2371 * The returned value is non-zero on success except at end-of-file. 2372 * 2373 * Returns negative errno on failure. Otherwise, if the 2374 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2375 * set to the host mapping and BDS corresponding to the guest offset. 2376 */ 2377 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2378 bool want_zero, 2379 int64_t offset, int64_t bytes, 2380 int64_t *pnum, int64_t *map, 2381 BlockDriverState **file) 2382 { 2383 int64_t total_size; 2384 int64_t n; /* bytes */ 2385 int ret; 2386 int64_t local_map = 0; 2387 BlockDriverState *local_file = NULL; 2388 int64_t aligned_offset, aligned_bytes; 2389 uint32_t align; 2390 bool has_filtered_child; 2391 2392 assert(pnum); 2393 *pnum = 0; 2394 total_size = bdrv_getlength(bs); 2395 if (total_size < 0) { 2396 ret = total_size; 2397 goto early_out; 2398 } 2399 2400 if (offset >= total_size) { 2401 ret = BDRV_BLOCK_EOF; 2402 goto early_out; 2403 } 2404 if (!bytes) { 2405 ret = 0; 2406 goto early_out; 2407 } 2408 2409 n = total_size - offset; 2410 if (n < bytes) { 2411 bytes = n; 2412 } 2413 2414 /* Must be non-NULL or bdrv_getlength() would have failed */ 2415 assert(bs->drv); 2416 has_filtered_child = bdrv_filter_child(bs); 2417 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2418 *pnum = bytes; 2419 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2420 if (offset + bytes == total_size) { 2421 ret |= BDRV_BLOCK_EOF; 2422 } 2423 if (bs->drv->protocol_name) { 2424 ret |= BDRV_BLOCK_OFFSET_VALID; 2425 local_map = offset; 2426 local_file = bs; 2427 } 2428 goto early_out; 2429 } 2430 2431 bdrv_inc_in_flight(bs); 2432 2433 /* Round out to request_alignment boundaries */ 2434 align = bs->bl.request_alignment; 2435 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2436 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2437 2438 if (bs->drv->bdrv_co_block_status) { 2439 /* 2440 * Use the block-status cache only for protocol nodes: Format 2441 * drivers are generally quick to inquire the status, but protocol 2442 * drivers often need to get information from outside of qemu, so 2443 * we do not have control over the actual implementation. There 2444 * have been cases where inquiring the status took an unreasonably 2445 * long time, and we can do nothing in qemu to fix it. 2446 * This is especially problematic for images with large data areas, 2447 * because finding the few holes in them and giving them special 2448 * treatment does not gain much performance. Therefore, we try to 2449 * cache the last-identified data region. 2450 * 2451 * Second, limiting ourselves to protocol nodes allows us to assume 2452 * the block status for data regions to be DATA | OFFSET_VALID, and 2453 * that the host offset is the same as the guest offset. 2454 * 2455 * Note that it is possible that external writers zero parts of 2456 * the cached regions without the cache being invalidated, and so 2457 * we may report zeroes as data. This is not catastrophic, 2458 * however, because reporting zeroes as data is fine. 2459 */ 2460 if (QLIST_EMPTY(&bs->children) && 2461 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2462 { 2463 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2464 local_file = bs; 2465 local_map = aligned_offset; 2466 } else { 2467 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2468 aligned_bytes, pnum, &local_map, 2469 &local_file); 2470 2471 /* 2472 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2473 * the cache is queried above. Technically, we do not need to check 2474 * it here; the worst that can happen is that we fill the cache for 2475 * non-protocol nodes, and then it is never used. However, filling 2476 * the cache requires an RCU update, so double check here to avoid 2477 * such an update if possible. 2478 * 2479 * Check want_zero, because we only want to update the cache when we 2480 * have accurate information about what is zero and what is data. 2481 */ 2482 if (want_zero && 2483 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2484 QLIST_EMPTY(&bs->children)) 2485 { 2486 /* 2487 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2488 * returned local_map value must be the same as the offset we 2489 * have passed (aligned_offset), and local_bs must be the node 2490 * itself. 2491 * Assert this, because we follow this rule when reading from 2492 * the cache (see the `local_file = bs` and 2493 * `local_map = aligned_offset` assignments above), and the 2494 * result the cache delivers must be the same as the driver 2495 * would deliver. 2496 */ 2497 assert(local_file == bs); 2498 assert(local_map == aligned_offset); 2499 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2500 } 2501 } 2502 } else { 2503 /* Default code for filters */ 2504 2505 local_file = bdrv_filter_bs(bs); 2506 assert(local_file); 2507 2508 *pnum = aligned_bytes; 2509 local_map = aligned_offset; 2510 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2511 } 2512 if (ret < 0) { 2513 *pnum = 0; 2514 goto out; 2515 } 2516 2517 /* 2518 * The driver's result must be a non-zero multiple of request_alignment. 2519 * Clamp pnum and adjust map to original request. 2520 */ 2521 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2522 align > offset - aligned_offset); 2523 if (ret & BDRV_BLOCK_RECURSE) { 2524 assert(ret & BDRV_BLOCK_DATA); 2525 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2526 assert(!(ret & BDRV_BLOCK_ZERO)); 2527 } 2528 2529 *pnum -= offset - aligned_offset; 2530 if (*pnum > bytes) { 2531 *pnum = bytes; 2532 } 2533 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2534 local_map += offset - aligned_offset; 2535 } 2536 2537 if (ret & BDRV_BLOCK_RAW) { 2538 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2539 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2540 *pnum, pnum, &local_map, &local_file); 2541 goto out; 2542 } 2543 2544 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2545 ret |= BDRV_BLOCK_ALLOCATED; 2546 } else if (bs->drv->supports_backing) { 2547 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2548 2549 if (!cow_bs) { 2550 ret |= BDRV_BLOCK_ZERO; 2551 } else if (want_zero) { 2552 int64_t size2 = bdrv_getlength(cow_bs); 2553 2554 if (size2 >= 0 && offset >= size2) { 2555 ret |= BDRV_BLOCK_ZERO; 2556 } 2557 } 2558 } 2559 2560 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2561 local_file && local_file != bs && 2562 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2563 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2564 int64_t file_pnum; 2565 int ret2; 2566 2567 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2568 *pnum, &file_pnum, NULL, NULL); 2569 if (ret2 >= 0) { 2570 /* Ignore errors. This is just providing extra information, it 2571 * is useful but not necessary. 2572 */ 2573 if (ret2 & BDRV_BLOCK_EOF && 2574 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2575 /* 2576 * It is valid for the format block driver to read 2577 * beyond the end of the underlying file's current 2578 * size; such areas read as zero. 2579 */ 2580 ret |= BDRV_BLOCK_ZERO; 2581 } else { 2582 /* Limit request to the range reported by the protocol driver */ 2583 *pnum = file_pnum; 2584 ret |= (ret2 & BDRV_BLOCK_ZERO); 2585 } 2586 } 2587 } 2588 2589 out: 2590 bdrv_dec_in_flight(bs); 2591 if (ret >= 0 && offset + *pnum == total_size) { 2592 ret |= BDRV_BLOCK_EOF; 2593 } 2594 early_out: 2595 if (file) { 2596 *file = local_file; 2597 } 2598 if (map) { 2599 *map = local_map; 2600 } 2601 return ret; 2602 } 2603 2604 int coroutine_fn 2605 bdrv_co_common_block_status_above(BlockDriverState *bs, 2606 BlockDriverState *base, 2607 bool include_base, 2608 bool want_zero, 2609 int64_t offset, 2610 int64_t bytes, 2611 int64_t *pnum, 2612 int64_t *map, 2613 BlockDriverState **file, 2614 int *depth) 2615 { 2616 int ret; 2617 BlockDriverState *p; 2618 int64_t eof = 0; 2619 int dummy; 2620 IO_CODE(); 2621 2622 assert(!include_base || base); /* Can't include NULL base */ 2623 2624 if (!depth) { 2625 depth = &dummy; 2626 } 2627 *depth = 0; 2628 2629 if (!include_base && bs == base) { 2630 *pnum = bytes; 2631 return 0; 2632 } 2633 2634 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2635 ++*depth; 2636 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2637 return ret; 2638 } 2639 2640 if (ret & BDRV_BLOCK_EOF) { 2641 eof = offset + *pnum; 2642 } 2643 2644 assert(*pnum <= bytes); 2645 bytes = *pnum; 2646 2647 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2648 p = bdrv_filter_or_cow_bs(p)) 2649 { 2650 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2651 file); 2652 ++*depth; 2653 if (ret < 0) { 2654 return ret; 2655 } 2656 if (*pnum == 0) { 2657 /* 2658 * The top layer deferred to this layer, and because this layer is 2659 * short, any zeroes that we synthesize beyond EOF behave as if they 2660 * were allocated at this layer. 2661 * 2662 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2663 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2664 * below. 2665 */ 2666 assert(ret & BDRV_BLOCK_EOF); 2667 *pnum = bytes; 2668 if (file) { 2669 *file = p; 2670 } 2671 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2672 break; 2673 } 2674 if (ret & BDRV_BLOCK_ALLOCATED) { 2675 /* 2676 * We've found the node and the status, we must break. 2677 * 2678 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2679 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2680 * below. 2681 */ 2682 ret &= ~BDRV_BLOCK_EOF; 2683 break; 2684 } 2685 2686 if (p == base) { 2687 assert(include_base); 2688 break; 2689 } 2690 2691 /* 2692 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2693 * let's continue the diving. 2694 */ 2695 assert(*pnum <= bytes); 2696 bytes = *pnum; 2697 } 2698 2699 if (offset + *pnum == eof) { 2700 ret |= BDRV_BLOCK_EOF; 2701 } 2702 2703 return ret; 2704 } 2705 2706 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2707 int64_t offset, int64_t bytes, int64_t *pnum, 2708 int64_t *map, BlockDriverState **file) 2709 { 2710 IO_CODE(); 2711 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2712 pnum, map, file, NULL); 2713 } 2714 2715 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2716 int64_t *pnum, int64_t *map, BlockDriverState **file) 2717 { 2718 IO_CODE(); 2719 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2720 offset, bytes, pnum, map, file); 2721 } 2722 2723 /* 2724 * Check @bs (and its backing chain) to see if the range defined 2725 * by @offset and @bytes is known to read as zeroes. 2726 * Return 1 if that is the case, 0 otherwise and -errno on error. 2727 * This test is meant to be fast rather than accurate so returning 0 2728 * does not guarantee non-zero data. 2729 */ 2730 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2731 int64_t bytes) 2732 { 2733 int ret; 2734 int64_t pnum = bytes; 2735 IO_CODE(); 2736 2737 if (!bytes) { 2738 return 1; 2739 } 2740 2741 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset, 2742 bytes, &pnum, NULL, NULL, NULL); 2743 2744 if (ret < 0) { 2745 return ret; 2746 } 2747 2748 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2749 } 2750 2751 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2752 int64_t bytes, int64_t *pnum) 2753 { 2754 int ret; 2755 int64_t dummy; 2756 IO_CODE(); 2757 2758 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2759 bytes, pnum ? pnum : &dummy, NULL, 2760 NULL, NULL); 2761 if (ret < 0) { 2762 return ret; 2763 } 2764 return !!(ret & BDRV_BLOCK_ALLOCATED); 2765 } 2766 2767 /* 2768 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2769 * 2770 * Return a positive depth if (a prefix of) the given range is allocated 2771 * in any image between BASE and TOP (BASE is only included if include_base 2772 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2773 * BASE can be NULL to check if the given offset is allocated in any 2774 * image of the chain. Return 0 otherwise, or negative errno on 2775 * failure. 2776 * 2777 * 'pnum' is set to the number of bytes (including and immediately 2778 * following the specified offset) that are known to be in the same 2779 * allocated/unallocated state. Note that a subsequent call starting 2780 * at 'offset + *pnum' may return the same allocation status (in other 2781 * words, the result is not necessarily the maximum possible range); 2782 * but 'pnum' will only be 0 when end of file is reached. 2783 */ 2784 int bdrv_is_allocated_above(BlockDriverState *top, 2785 BlockDriverState *base, 2786 bool include_base, int64_t offset, 2787 int64_t bytes, int64_t *pnum) 2788 { 2789 int depth; 2790 int ret = bdrv_common_block_status_above(top, base, include_base, false, 2791 offset, bytes, pnum, NULL, NULL, 2792 &depth); 2793 IO_CODE(); 2794 if (ret < 0) { 2795 return ret; 2796 } 2797 2798 if (ret & BDRV_BLOCK_ALLOCATED) { 2799 return depth; 2800 } 2801 return 0; 2802 } 2803 2804 int coroutine_fn 2805 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2806 { 2807 BlockDriver *drv = bs->drv; 2808 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2809 int ret; 2810 IO_CODE(); 2811 2812 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2813 if (ret < 0) { 2814 return ret; 2815 } 2816 2817 if (!drv) { 2818 return -ENOMEDIUM; 2819 } 2820 2821 bdrv_inc_in_flight(bs); 2822 2823 if (drv->bdrv_load_vmstate) { 2824 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2825 } else if (child_bs) { 2826 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2827 } else { 2828 ret = -ENOTSUP; 2829 } 2830 2831 bdrv_dec_in_flight(bs); 2832 2833 return ret; 2834 } 2835 2836 int coroutine_fn 2837 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2838 { 2839 BlockDriver *drv = bs->drv; 2840 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2841 int ret; 2842 IO_CODE(); 2843 2844 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2845 if (ret < 0) { 2846 return ret; 2847 } 2848 2849 if (!drv) { 2850 return -ENOMEDIUM; 2851 } 2852 2853 bdrv_inc_in_flight(bs); 2854 2855 if (drv->bdrv_save_vmstate) { 2856 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2857 } else if (child_bs) { 2858 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2859 } else { 2860 ret = -ENOTSUP; 2861 } 2862 2863 bdrv_dec_in_flight(bs); 2864 2865 return ret; 2866 } 2867 2868 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2869 int64_t pos, int size) 2870 { 2871 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2872 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2873 IO_CODE(); 2874 2875 return ret < 0 ? ret : size; 2876 } 2877 2878 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2879 int64_t pos, int size) 2880 { 2881 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2882 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2883 IO_CODE(); 2884 2885 return ret < 0 ? ret : size; 2886 } 2887 2888 /**************************************************************/ 2889 /* async I/Os */ 2890 2891 void bdrv_aio_cancel(BlockAIOCB *acb) 2892 { 2893 IO_CODE(); 2894 qemu_aio_ref(acb); 2895 bdrv_aio_cancel_async(acb); 2896 while (acb->refcnt > 1) { 2897 if (acb->aiocb_info->get_aio_context) { 2898 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2899 } else if (acb->bs) { 2900 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2901 * assert that we're not using an I/O thread. Thread-safe 2902 * code should use bdrv_aio_cancel_async exclusively. 2903 */ 2904 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2905 aio_poll(bdrv_get_aio_context(acb->bs), true); 2906 } else { 2907 abort(); 2908 } 2909 } 2910 qemu_aio_unref(acb); 2911 } 2912 2913 /* Async version of aio cancel. The caller is not blocked if the acb implements 2914 * cancel_async, otherwise we do nothing and let the request normally complete. 2915 * In either case the completion callback must be called. */ 2916 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2917 { 2918 IO_CODE(); 2919 if (acb->aiocb_info->cancel_async) { 2920 acb->aiocb_info->cancel_async(acb); 2921 } 2922 } 2923 2924 /**************************************************************/ 2925 /* Coroutine block device emulation */ 2926 2927 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2928 { 2929 BdrvChild *primary_child = bdrv_primary_child(bs); 2930 BdrvChild *child; 2931 int current_gen; 2932 int ret = 0; 2933 IO_CODE(); 2934 2935 bdrv_inc_in_flight(bs); 2936 2937 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2938 bdrv_is_sg(bs)) { 2939 goto early_exit; 2940 } 2941 2942 qemu_co_mutex_lock(&bs->reqs_lock); 2943 current_gen = qatomic_read(&bs->write_gen); 2944 2945 /* Wait until any previous flushes are completed */ 2946 while (bs->active_flush_req) { 2947 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2948 } 2949 2950 /* Flushes reach this point in nondecreasing current_gen order. */ 2951 bs->active_flush_req = true; 2952 qemu_co_mutex_unlock(&bs->reqs_lock); 2953 2954 /* Write back all layers by calling one driver function */ 2955 if (bs->drv->bdrv_co_flush) { 2956 ret = bs->drv->bdrv_co_flush(bs); 2957 goto out; 2958 } 2959 2960 /* Write back cached data to the OS even with cache=unsafe */ 2961 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 2962 if (bs->drv->bdrv_co_flush_to_os) { 2963 ret = bs->drv->bdrv_co_flush_to_os(bs); 2964 if (ret < 0) { 2965 goto out; 2966 } 2967 } 2968 2969 /* But don't actually force it to the disk with cache=unsafe */ 2970 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2971 goto flush_children; 2972 } 2973 2974 /* Check if we really need to flush anything */ 2975 if (bs->flushed_gen == current_gen) { 2976 goto flush_children; 2977 } 2978 2979 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 2980 if (!bs->drv) { 2981 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2982 * (even in case of apparent success) */ 2983 ret = -ENOMEDIUM; 2984 goto out; 2985 } 2986 if (bs->drv->bdrv_co_flush_to_disk) { 2987 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2988 } else if (bs->drv->bdrv_aio_flush) { 2989 BlockAIOCB *acb; 2990 CoroutineIOCompletion co = { 2991 .coroutine = qemu_coroutine_self(), 2992 }; 2993 2994 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2995 if (acb == NULL) { 2996 ret = -EIO; 2997 } else { 2998 qemu_coroutine_yield(); 2999 ret = co.ret; 3000 } 3001 } else { 3002 /* 3003 * Some block drivers always operate in either writethrough or unsafe 3004 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3005 * know how the server works (because the behaviour is hardcoded or 3006 * depends on server-side configuration), so we can't ensure that 3007 * everything is safe on disk. Returning an error doesn't work because 3008 * that would break guests even if the server operates in writethrough 3009 * mode. 3010 * 3011 * Let's hope the user knows what he's doing. 3012 */ 3013 ret = 0; 3014 } 3015 3016 if (ret < 0) { 3017 goto out; 3018 } 3019 3020 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3021 * in the case of cache=unsafe, so there are no useless flushes. 3022 */ 3023 flush_children: 3024 ret = 0; 3025 QLIST_FOREACH(child, &bs->children, next) { 3026 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3027 int this_child_ret = bdrv_co_flush(child->bs); 3028 if (!ret) { 3029 ret = this_child_ret; 3030 } 3031 } 3032 } 3033 3034 out: 3035 /* Notify any pending flushes that we have completed */ 3036 if (ret == 0) { 3037 bs->flushed_gen = current_gen; 3038 } 3039 3040 qemu_co_mutex_lock(&bs->reqs_lock); 3041 bs->active_flush_req = false; 3042 /* Return value is ignored - it's ok if wait queue is empty */ 3043 qemu_co_queue_next(&bs->flush_queue); 3044 qemu_co_mutex_unlock(&bs->reqs_lock); 3045 3046 early_exit: 3047 bdrv_dec_in_flight(bs); 3048 return ret; 3049 } 3050 3051 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3052 int64_t bytes) 3053 { 3054 BdrvTrackedRequest req; 3055 int ret; 3056 int64_t max_pdiscard; 3057 int head, tail, align; 3058 BlockDriverState *bs = child->bs; 3059 IO_CODE(); 3060 3061 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 3062 return -ENOMEDIUM; 3063 } 3064 3065 if (bdrv_has_readonly_bitmaps(bs)) { 3066 return -EPERM; 3067 } 3068 3069 ret = bdrv_check_request(offset, bytes, NULL); 3070 if (ret < 0) { 3071 return ret; 3072 } 3073 3074 /* Do nothing if disabled. */ 3075 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3076 return 0; 3077 } 3078 3079 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 3080 return 0; 3081 } 3082 3083 /* Invalidate the cached block-status data range if this discard overlaps */ 3084 bdrv_bsc_invalidate_range(bs, offset, bytes); 3085 3086 /* Discard is advisory, but some devices track and coalesce 3087 * unaligned requests, so we must pass everything down rather than 3088 * round here. Still, most devices will just silently ignore 3089 * unaligned requests (by returning -ENOTSUP), so we must fragment 3090 * the request accordingly. */ 3091 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3092 assert(align % bs->bl.request_alignment == 0); 3093 head = offset % align; 3094 tail = (offset + bytes) % align; 3095 3096 bdrv_inc_in_flight(bs); 3097 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3098 3099 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3100 if (ret < 0) { 3101 goto out; 3102 } 3103 3104 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3105 align); 3106 assert(max_pdiscard >= bs->bl.request_alignment); 3107 3108 while (bytes > 0) { 3109 int64_t num = bytes; 3110 3111 if (head) { 3112 /* Make small requests to get to alignment boundaries. */ 3113 num = MIN(bytes, align - head); 3114 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3115 num %= bs->bl.request_alignment; 3116 } 3117 head = (head + num) % align; 3118 assert(num < max_pdiscard); 3119 } else if (tail) { 3120 if (num > align) { 3121 /* Shorten the request to the last aligned cluster. */ 3122 num -= tail; 3123 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3124 tail > bs->bl.request_alignment) { 3125 tail %= bs->bl.request_alignment; 3126 num -= tail; 3127 } 3128 } 3129 /* limit request size */ 3130 if (num > max_pdiscard) { 3131 num = max_pdiscard; 3132 } 3133 3134 if (!bs->drv) { 3135 ret = -ENOMEDIUM; 3136 goto out; 3137 } 3138 if (bs->drv->bdrv_co_pdiscard) { 3139 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3140 } else { 3141 BlockAIOCB *acb; 3142 CoroutineIOCompletion co = { 3143 .coroutine = qemu_coroutine_self(), 3144 }; 3145 3146 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3147 bdrv_co_io_em_complete, &co); 3148 if (acb == NULL) { 3149 ret = -EIO; 3150 goto out; 3151 } else { 3152 qemu_coroutine_yield(); 3153 ret = co.ret; 3154 } 3155 } 3156 if (ret && ret != -ENOTSUP) { 3157 goto out; 3158 } 3159 3160 offset += num; 3161 bytes -= num; 3162 } 3163 ret = 0; 3164 out: 3165 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3166 tracked_request_end(&req); 3167 bdrv_dec_in_flight(bs); 3168 return ret; 3169 } 3170 3171 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3172 { 3173 BlockDriver *drv = bs->drv; 3174 CoroutineIOCompletion co = { 3175 .coroutine = qemu_coroutine_self(), 3176 }; 3177 BlockAIOCB *acb; 3178 IO_CODE(); 3179 3180 bdrv_inc_in_flight(bs); 3181 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3182 co.ret = -ENOTSUP; 3183 goto out; 3184 } 3185 3186 if (drv->bdrv_co_ioctl) { 3187 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3188 } else { 3189 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3190 if (!acb) { 3191 co.ret = -ENOTSUP; 3192 goto out; 3193 } 3194 qemu_coroutine_yield(); 3195 } 3196 out: 3197 bdrv_dec_in_flight(bs); 3198 return co.ret; 3199 } 3200 3201 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3202 { 3203 IO_CODE(); 3204 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3205 } 3206 3207 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3208 { 3209 IO_CODE(); 3210 return memset(qemu_blockalign(bs, size), 0, size); 3211 } 3212 3213 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3214 { 3215 size_t align = bdrv_opt_mem_align(bs); 3216 IO_CODE(); 3217 3218 /* Ensure that NULL is never returned on success */ 3219 assert(align > 0); 3220 if (size == 0) { 3221 size = align; 3222 } 3223 3224 return qemu_try_memalign(align, size); 3225 } 3226 3227 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3228 { 3229 void *mem = qemu_try_blockalign(bs, size); 3230 IO_CODE(); 3231 3232 if (mem) { 3233 memset(mem, 0, size); 3234 } 3235 3236 return mem; 3237 } 3238 3239 /* 3240 * Check if all memory in this vector is sector aligned. 3241 */ 3242 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 3243 { 3244 int i; 3245 size_t alignment = bdrv_min_mem_align(bs); 3246 IO_CODE(); 3247 3248 for (i = 0; i < qiov->niov; i++) { 3249 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 3250 return false; 3251 } 3252 if (qiov->iov[i].iov_len % alignment) { 3253 return false; 3254 } 3255 } 3256 3257 return true; 3258 } 3259 3260 void bdrv_io_plug(BlockDriverState *bs) 3261 { 3262 BdrvChild *child; 3263 IO_CODE(); 3264 3265 QLIST_FOREACH(child, &bs->children, next) { 3266 bdrv_io_plug(child->bs); 3267 } 3268 3269 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3270 BlockDriver *drv = bs->drv; 3271 if (drv && drv->bdrv_io_plug) { 3272 drv->bdrv_io_plug(bs); 3273 } 3274 } 3275 } 3276 3277 void bdrv_io_unplug(BlockDriverState *bs) 3278 { 3279 BdrvChild *child; 3280 IO_CODE(); 3281 3282 assert(bs->io_plugged); 3283 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3284 BlockDriver *drv = bs->drv; 3285 if (drv && drv->bdrv_io_unplug) { 3286 drv->bdrv_io_unplug(bs); 3287 } 3288 } 3289 3290 QLIST_FOREACH(child, &bs->children, next) { 3291 bdrv_io_unplug(child->bs); 3292 } 3293 } 3294 3295 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 3296 { 3297 BdrvChild *child; 3298 3299 GLOBAL_STATE_CODE(); 3300 if (bs->drv && bs->drv->bdrv_register_buf) { 3301 bs->drv->bdrv_register_buf(bs, host, size); 3302 } 3303 QLIST_FOREACH(child, &bs->children, next) { 3304 bdrv_register_buf(child->bs, host, size); 3305 } 3306 } 3307 3308 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 3309 { 3310 BdrvChild *child; 3311 3312 GLOBAL_STATE_CODE(); 3313 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3314 bs->drv->bdrv_unregister_buf(bs, host); 3315 } 3316 QLIST_FOREACH(child, &bs->children, next) { 3317 bdrv_unregister_buf(child->bs, host); 3318 } 3319 } 3320 3321 static int coroutine_fn bdrv_co_copy_range_internal( 3322 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3323 int64_t dst_offset, int64_t bytes, 3324 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3325 bool recurse_src) 3326 { 3327 BdrvTrackedRequest req; 3328 int ret; 3329 3330 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3331 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3332 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3333 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3334 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3335 3336 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) { 3337 return -ENOMEDIUM; 3338 } 3339 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3340 if (ret) { 3341 return ret; 3342 } 3343 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3344 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3345 } 3346 3347 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) { 3348 return -ENOMEDIUM; 3349 } 3350 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3351 if (ret) { 3352 return ret; 3353 } 3354 3355 if (!src->bs->drv->bdrv_co_copy_range_from 3356 || !dst->bs->drv->bdrv_co_copy_range_to 3357 || src->bs->encrypted || dst->bs->encrypted) { 3358 return -ENOTSUP; 3359 } 3360 3361 if (recurse_src) { 3362 bdrv_inc_in_flight(src->bs); 3363 tracked_request_begin(&req, src->bs, src_offset, bytes, 3364 BDRV_TRACKED_READ); 3365 3366 /* BDRV_REQ_SERIALISING is only for write operation */ 3367 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3368 bdrv_wait_serialising_requests(&req); 3369 3370 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3371 src, src_offset, 3372 dst, dst_offset, 3373 bytes, 3374 read_flags, write_flags); 3375 3376 tracked_request_end(&req); 3377 bdrv_dec_in_flight(src->bs); 3378 } else { 3379 bdrv_inc_in_flight(dst->bs); 3380 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3381 BDRV_TRACKED_WRITE); 3382 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3383 write_flags); 3384 if (!ret) { 3385 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3386 src, src_offset, 3387 dst, dst_offset, 3388 bytes, 3389 read_flags, write_flags); 3390 } 3391 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3392 tracked_request_end(&req); 3393 bdrv_dec_in_flight(dst->bs); 3394 } 3395 3396 return ret; 3397 } 3398 3399 /* Copy range from @src to @dst. 3400 * 3401 * See the comment of bdrv_co_copy_range for the parameter and return value 3402 * semantics. */ 3403 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3404 BdrvChild *dst, int64_t dst_offset, 3405 int64_t bytes, 3406 BdrvRequestFlags read_flags, 3407 BdrvRequestFlags write_flags) 3408 { 3409 IO_CODE(); 3410 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3411 read_flags, write_flags); 3412 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3413 bytes, read_flags, write_flags, true); 3414 } 3415 3416 /* Copy range from @src to @dst. 3417 * 3418 * See the comment of bdrv_co_copy_range for the parameter and return value 3419 * semantics. */ 3420 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3421 BdrvChild *dst, int64_t dst_offset, 3422 int64_t bytes, 3423 BdrvRequestFlags read_flags, 3424 BdrvRequestFlags write_flags) 3425 { 3426 IO_CODE(); 3427 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3428 read_flags, write_flags); 3429 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3430 bytes, read_flags, write_flags, false); 3431 } 3432 3433 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3434 BdrvChild *dst, int64_t dst_offset, 3435 int64_t bytes, BdrvRequestFlags read_flags, 3436 BdrvRequestFlags write_flags) 3437 { 3438 IO_CODE(); 3439 return bdrv_co_copy_range_from(src, src_offset, 3440 dst, dst_offset, 3441 bytes, read_flags, write_flags); 3442 } 3443 3444 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3445 { 3446 BdrvChild *c; 3447 QLIST_FOREACH(c, &bs->parents, next_parent) { 3448 if (c->klass->resize) { 3449 c->klass->resize(c); 3450 } 3451 } 3452 } 3453 3454 /** 3455 * Truncate file to 'offset' bytes (needed only for file protocols) 3456 * 3457 * If 'exact' is true, the file must be resized to exactly the given 3458 * 'offset'. Otherwise, it is sufficient for the node to be at least 3459 * 'offset' bytes in length. 3460 */ 3461 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3462 PreallocMode prealloc, BdrvRequestFlags flags, 3463 Error **errp) 3464 { 3465 BlockDriverState *bs = child->bs; 3466 BdrvChild *filtered, *backing; 3467 BlockDriver *drv = bs->drv; 3468 BdrvTrackedRequest req; 3469 int64_t old_size, new_bytes; 3470 int ret; 3471 IO_CODE(); 3472 3473 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3474 if (!drv) { 3475 error_setg(errp, "No medium inserted"); 3476 return -ENOMEDIUM; 3477 } 3478 if (offset < 0) { 3479 error_setg(errp, "Image size cannot be negative"); 3480 return -EINVAL; 3481 } 3482 3483 ret = bdrv_check_request(offset, 0, errp); 3484 if (ret < 0) { 3485 return ret; 3486 } 3487 3488 old_size = bdrv_getlength(bs); 3489 if (old_size < 0) { 3490 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3491 return old_size; 3492 } 3493 3494 if (bdrv_is_read_only(bs)) { 3495 error_setg(errp, "Image is read-only"); 3496 return -EACCES; 3497 } 3498 3499 if (offset > old_size) { 3500 new_bytes = offset - old_size; 3501 } else { 3502 new_bytes = 0; 3503 } 3504 3505 bdrv_inc_in_flight(bs); 3506 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3507 BDRV_TRACKED_TRUNCATE); 3508 3509 /* If we are growing the image and potentially using preallocation for the 3510 * new area, we need to make sure that no write requests are made to it 3511 * concurrently or they might be overwritten by preallocation. */ 3512 if (new_bytes) { 3513 bdrv_make_request_serialising(&req, 1); 3514 } 3515 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3516 0); 3517 if (ret < 0) { 3518 error_setg_errno(errp, -ret, 3519 "Failed to prepare request for truncation"); 3520 goto out; 3521 } 3522 3523 filtered = bdrv_filter_child(bs); 3524 backing = bdrv_cow_child(bs); 3525 3526 /* 3527 * If the image has a backing file that is large enough that it would 3528 * provide data for the new area, we cannot leave it unallocated because 3529 * then the backing file content would become visible. Instead, zero-fill 3530 * the new area. 3531 * 3532 * Note that if the image has a backing file, but was opened without the 3533 * backing file, taking care of keeping things consistent with that backing 3534 * file is the user's responsibility. 3535 */ 3536 if (new_bytes && backing) { 3537 int64_t backing_len; 3538 3539 backing_len = bdrv_getlength(backing->bs); 3540 if (backing_len < 0) { 3541 ret = backing_len; 3542 error_setg_errno(errp, -ret, "Could not get backing file size"); 3543 goto out; 3544 } 3545 3546 if (backing_len > old_size) { 3547 flags |= BDRV_REQ_ZERO_WRITE; 3548 } 3549 } 3550 3551 if (drv->bdrv_co_truncate) { 3552 if (flags & ~bs->supported_truncate_flags) { 3553 error_setg(errp, "Block driver does not support requested flags"); 3554 ret = -ENOTSUP; 3555 goto out; 3556 } 3557 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3558 } else if (filtered) { 3559 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3560 } else { 3561 error_setg(errp, "Image format driver does not support resize"); 3562 ret = -ENOTSUP; 3563 goto out; 3564 } 3565 if (ret < 0) { 3566 goto out; 3567 } 3568 3569 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3570 if (ret < 0) { 3571 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3572 } else { 3573 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3574 } 3575 /* It's possible that truncation succeeded but refresh_total_sectors 3576 * failed, but the latter doesn't affect how we should finish the request. 3577 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3578 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3579 3580 out: 3581 tracked_request_end(&req); 3582 bdrv_dec_in_flight(bs); 3583 3584 return ret; 3585 } 3586 3587 void bdrv_cancel_in_flight(BlockDriverState *bs) 3588 { 3589 GLOBAL_STATE_CODE(); 3590 if (!bs || !bs->drv) { 3591 return; 3592 } 3593 3594 if (bs->drv->bdrv_cancel_in_flight) { 3595 bs->drv->bdrv_cancel_in_flight(bs); 3596 } 3597 } 3598 3599 int coroutine_fn 3600 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3601 QEMUIOVector *qiov, size_t qiov_offset) 3602 { 3603 BlockDriverState *bs = child->bs; 3604 BlockDriver *drv = bs->drv; 3605 int ret; 3606 IO_CODE(); 3607 3608 if (!drv) { 3609 return -ENOMEDIUM; 3610 } 3611 3612 if (!drv->bdrv_co_preadv_snapshot) { 3613 return -ENOTSUP; 3614 } 3615 3616 bdrv_inc_in_flight(bs); 3617 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3618 bdrv_dec_in_flight(bs); 3619 3620 return ret; 3621 } 3622 3623 int coroutine_fn 3624 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3625 bool want_zero, int64_t offset, int64_t bytes, 3626 int64_t *pnum, int64_t *map, 3627 BlockDriverState **file) 3628 { 3629 BlockDriver *drv = bs->drv; 3630 int ret; 3631 IO_CODE(); 3632 3633 if (!drv) { 3634 return -ENOMEDIUM; 3635 } 3636 3637 if (!drv->bdrv_co_snapshot_block_status) { 3638 return -ENOTSUP; 3639 } 3640 3641 bdrv_inc_in_flight(bs); 3642 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3643 pnum, map, file); 3644 bdrv_dec_in_flight(bs); 3645 3646 return ret; 3647 } 3648 3649 int coroutine_fn 3650 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3651 { 3652 BlockDriver *drv = bs->drv; 3653 int ret; 3654 IO_CODE(); 3655 3656 if (!drv) { 3657 return -ENOMEDIUM; 3658 } 3659 3660 if (!drv->bdrv_co_pdiscard_snapshot) { 3661 return -ENOTSUP; 3662 } 3663 3664 bdrv_inc_in_flight(bs); 3665 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3666 bdrv_dec_in_flight(bs); 3667 3668 return ret; 3669 } 3670