xref: /openbmc/qemu/block/io.c (revision 61b9251a)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "trace.h"
26 #include "sysemu/block-backend.h"
27 #include "block/blockjob.h"
28 #include "block/block_int.h"
29 #include "block/throttle-groups.h"
30 #include "qemu/error-report.h"
31 
32 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
33 
34 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
35         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
36         BlockCompletionFunc *cb, void *opaque);
37 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
38         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
39         BlockCompletionFunc *cb, void *opaque);
40 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
41                                          int64_t sector_num, int nb_sectors,
42                                          QEMUIOVector *iov);
43 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
44                                          int64_t sector_num, int nb_sectors,
45                                          QEMUIOVector *iov);
46 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
47     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
48     BdrvRequestFlags flags);
49 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
50     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
51     BdrvRequestFlags flags);
52 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
53                                          int64_t sector_num,
54                                          QEMUIOVector *qiov,
55                                          int nb_sectors,
56                                          BdrvRequestFlags flags,
57                                          BlockCompletionFunc *cb,
58                                          void *opaque,
59                                          bool is_write);
60 static void coroutine_fn bdrv_co_do_rw(void *opaque);
61 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
62     int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
63 
64 /* throttling disk I/O limits */
65 void bdrv_set_io_limits(BlockDriverState *bs,
66                         ThrottleConfig *cfg)
67 {
68     int i;
69 
70     throttle_group_config(bs, cfg);
71 
72     for (i = 0; i < 2; i++) {
73         qemu_co_enter_next(&bs->throttled_reqs[i]);
74     }
75 }
76 
77 /* this function drain all the throttled IOs */
78 static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
79 {
80     bool drained = false;
81     bool enabled = bs->io_limits_enabled;
82     int i;
83 
84     bs->io_limits_enabled = false;
85 
86     for (i = 0; i < 2; i++) {
87         while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
88             drained = true;
89         }
90     }
91 
92     bs->io_limits_enabled = enabled;
93 
94     return drained;
95 }
96 
97 void bdrv_io_limits_disable(BlockDriverState *bs)
98 {
99     bs->io_limits_enabled = false;
100     bdrv_start_throttled_reqs(bs);
101     throttle_group_unregister_bs(bs);
102 }
103 
104 /* should be called before bdrv_set_io_limits if a limit is set */
105 void bdrv_io_limits_enable(BlockDriverState *bs, const char *group)
106 {
107     assert(!bs->io_limits_enabled);
108     throttle_group_register_bs(bs, group);
109     bs->io_limits_enabled = true;
110 }
111 
112 void bdrv_io_limits_update_group(BlockDriverState *bs, const char *group)
113 {
114     /* this bs is not part of any group */
115     if (!bs->throttle_state) {
116         return;
117     }
118 
119     /* this bs is a part of the same group than the one we want */
120     if (!g_strcmp0(throttle_group_get_name(bs), group)) {
121         return;
122     }
123 
124     /* need to change the group this bs belong to */
125     bdrv_io_limits_disable(bs);
126     bdrv_io_limits_enable(bs, group);
127 }
128 
129 void bdrv_setup_io_funcs(BlockDriver *bdrv)
130 {
131     /* Block drivers without coroutine functions need emulation */
132     if (!bdrv->bdrv_co_readv) {
133         bdrv->bdrv_co_readv = bdrv_co_readv_em;
134         bdrv->bdrv_co_writev = bdrv_co_writev_em;
135 
136         /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
137          * the block driver lacks aio we need to emulate that too.
138          */
139         if (!bdrv->bdrv_aio_readv) {
140             /* add AIO emulation layer */
141             bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
142             bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
143         }
144     }
145 }
146 
147 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
148 {
149     BlockDriver *drv = bs->drv;
150     Error *local_err = NULL;
151 
152     memset(&bs->bl, 0, sizeof(bs->bl));
153 
154     if (!drv) {
155         return;
156     }
157 
158     /* Take some limits from the children as a default */
159     if (bs->file) {
160         bdrv_refresh_limits(bs->file->bs, &local_err);
161         if (local_err) {
162             error_propagate(errp, local_err);
163             return;
164         }
165         bs->bl.opt_transfer_length = bs->file->bs->bl.opt_transfer_length;
166         bs->bl.max_transfer_length = bs->file->bs->bl.max_transfer_length;
167         bs->bl.min_mem_alignment = bs->file->bs->bl.min_mem_alignment;
168         bs->bl.opt_mem_alignment = bs->file->bs->bl.opt_mem_alignment;
169     } else {
170         bs->bl.min_mem_alignment = 512;
171         bs->bl.opt_mem_alignment = getpagesize();
172     }
173 
174     if (bs->backing) {
175         bdrv_refresh_limits(bs->backing->bs, &local_err);
176         if (local_err) {
177             error_propagate(errp, local_err);
178             return;
179         }
180         bs->bl.opt_transfer_length =
181             MAX(bs->bl.opt_transfer_length,
182                 bs->backing->bs->bl.opt_transfer_length);
183         bs->bl.max_transfer_length =
184             MIN_NON_ZERO(bs->bl.max_transfer_length,
185                          bs->backing->bs->bl.max_transfer_length);
186         bs->bl.opt_mem_alignment =
187             MAX(bs->bl.opt_mem_alignment,
188                 bs->backing->bs->bl.opt_mem_alignment);
189         bs->bl.min_mem_alignment =
190             MAX(bs->bl.min_mem_alignment,
191                 bs->backing->bs->bl.min_mem_alignment);
192     }
193 
194     /* Then let the driver override it */
195     if (drv->bdrv_refresh_limits) {
196         drv->bdrv_refresh_limits(bs, errp);
197     }
198 }
199 
200 /**
201  * The copy-on-read flag is actually a reference count so multiple users may
202  * use the feature without worrying about clobbering its previous state.
203  * Copy-on-read stays enabled until all users have called to disable it.
204  */
205 void bdrv_enable_copy_on_read(BlockDriverState *bs)
206 {
207     bs->copy_on_read++;
208 }
209 
210 void bdrv_disable_copy_on_read(BlockDriverState *bs)
211 {
212     assert(bs->copy_on_read > 0);
213     bs->copy_on_read--;
214 }
215 
216 /* Check if any requests are in-flight (including throttled requests) */
217 bool bdrv_requests_pending(BlockDriverState *bs)
218 {
219     BdrvChild *child;
220 
221     if (!QLIST_EMPTY(&bs->tracked_requests)) {
222         return true;
223     }
224     if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
225         return true;
226     }
227     if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
228         return true;
229     }
230 
231     QLIST_FOREACH(child, &bs->children, next) {
232         if (bdrv_requests_pending(child->bs)) {
233             return true;
234         }
235     }
236 
237     return false;
238 }
239 
240 static void bdrv_drain_recurse(BlockDriverState *bs)
241 {
242     BdrvChild *child;
243 
244     if (bs->drv && bs->drv->bdrv_drain) {
245         bs->drv->bdrv_drain(bs);
246     }
247     QLIST_FOREACH(child, &bs->children, next) {
248         bdrv_drain_recurse(child->bs);
249     }
250 }
251 
252 /*
253  * Wait for pending requests to complete on a single BlockDriverState subtree,
254  * and suspend block driver's internal I/O until next request arrives.
255  *
256  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
257  * AioContext.
258  *
259  * Only this BlockDriverState's AioContext is run, so in-flight requests must
260  * not depend on events in other AioContexts.  In that case, use
261  * bdrv_drain_all() instead.
262  */
263 void bdrv_drain(BlockDriverState *bs)
264 {
265     bool busy = true;
266 
267     bdrv_drain_recurse(bs);
268     while (busy) {
269         /* Keep iterating */
270          bdrv_flush_io_queue(bs);
271          busy = bdrv_requests_pending(bs);
272          busy |= aio_poll(bdrv_get_aio_context(bs), busy);
273     }
274 }
275 
276 /*
277  * Wait for pending requests to complete across all BlockDriverStates
278  *
279  * This function does not flush data to disk, use bdrv_flush_all() for that
280  * after calling this function.
281  */
282 void bdrv_drain_all(void)
283 {
284     /* Always run first iteration so any pending completion BHs run */
285     bool busy = true;
286     BlockDriverState *bs = NULL;
287     GSList *aio_ctxs = NULL, *ctx;
288 
289     while ((bs = bdrv_next(bs))) {
290         AioContext *aio_context = bdrv_get_aio_context(bs);
291 
292         aio_context_acquire(aio_context);
293         if (bs->job) {
294             block_job_pause(bs->job);
295         }
296         aio_context_release(aio_context);
297 
298         if (!g_slist_find(aio_ctxs, aio_context)) {
299             aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
300         }
301     }
302 
303     /* Note that completion of an asynchronous I/O operation can trigger any
304      * number of other I/O operations on other devices---for example a
305      * coroutine can submit an I/O request to another device in response to
306      * request completion.  Therefore we must keep looping until there was no
307      * more activity rather than simply draining each device independently.
308      */
309     while (busy) {
310         busy = false;
311 
312         for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
313             AioContext *aio_context = ctx->data;
314             bs = NULL;
315 
316             aio_context_acquire(aio_context);
317             while ((bs = bdrv_next(bs))) {
318                 if (aio_context == bdrv_get_aio_context(bs)) {
319                     bdrv_flush_io_queue(bs);
320                     if (bdrv_requests_pending(bs)) {
321                         busy = true;
322                         aio_poll(aio_context, busy);
323                     }
324                 }
325             }
326             busy |= aio_poll(aio_context, false);
327             aio_context_release(aio_context);
328         }
329     }
330 
331     bs = NULL;
332     while ((bs = bdrv_next(bs))) {
333         AioContext *aio_context = bdrv_get_aio_context(bs);
334 
335         aio_context_acquire(aio_context);
336         if (bs->job) {
337             block_job_resume(bs->job);
338         }
339         aio_context_release(aio_context);
340     }
341     g_slist_free(aio_ctxs);
342 }
343 
344 /**
345  * Remove an active request from the tracked requests list
346  *
347  * This function should be called when a tracked request is completing.
348  */
349 static void tracked_request_end(BdrvTrackedRequest *req)
350 {
351     if (req->serialising) {
352         req->bs->serialising_in_flight--;
353     }
354 
355     QLIST_REMOVE(req, list);
356     qemu_co_queue_restart_all(&req->wait_queue);
357 }
358 
359 /**
360  * Add an active request to the tracked requests list
361  */
362 static void tracked_request_begin(BdrvTrackedRequest *req,
363                                   BlockDriverState *bs,
364                                   int64_t offset,
365                                   unsigned int bytes,
366                                   enum BdrvTrackedRequestType type)
367 {
368     *req = (BdrvTrackedRequest){
369         .bs = bs,
370         .offset         = offset,
371         .bytes          = bytes,
372         .type           = type,
373         .co             = qemu_coroutine_self(),
374         .serialising    = false,
375         .overlap_offset = offset,
376         .overlap_bytes  = bytes,
377     };
378 
379     qemu_co_queue_init(&req->wait_queue);
380 
381     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
382 }
383 
384 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
385 {
386     int64_t overlap_offset = req->offset & ~(align - 1);
387     unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
388                                - overlap_offset;
389 
390     if (!req->serialising) {
391         req->bs->serialising_in_flight++;
392         req->serialising = true;
393     }
394 
395     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
396     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
397 }
398 
399 /**
400  * Round a region to cluster boundaries
401  */
402 void bdrv_round_to_clusters(BlockDriverState *bs,
403                             int64_t sector_num, int nb_sectors,
404                             int64_t *cluster_sector_num,
405                             int *cluster_nb_sectors)
406 {
407     BlockDriverInfo bdi;
408 
409     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
410         *cluster_sector_num = sector_num;
411         *cluster_nb_sectors = nb_sectors;
412     } else {
413         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
414         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
415         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
416                                             nb_sectors, c);
417     }
418 }
419 
420 static int bdrv_get_cluster_size(BlockDriverState *bs)
421 {
422     BlockDriverInfo bdi;
423     int ret;
424 
425     ret = bdrv_get_info(bs, &bdi);
426     if (ret < 0 || bdi.cluster_size == 0) {
427         return bs->request_alignment;
428     } else {
429         return bdi.cluster_size;
430     }
431 }
432 
433 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
434                                      int64_t offset, unsigned int bytes)
435 {
436     /*        aaaa   bbbb */
437     if (offset >= req->overlap_offset + req->overlap_bytes) {
438         return false;
439     }
440     /* bbbb   aaaa        */
441     if (req->overlap_offset >= offset + bytes) {
442         return false;
443     }
444     return true;
445 }
446 
447 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
448 {
449     BlockDriverState *bs = self->bs;
450     BdrvTrackedRequest *req;
451     bool retry;
452     bool waited = false;
453 
454     if (!bs->serialising_in_flight) {
455         return false;
456     }
457 
458     do {
459         retry = false;
460         QLIST_FOREACH(req, &bs->tracked_requests, list) {
461             if (req == self || (!req->serialising && !self->serialising)) {
462                 continue;
463             }
464             if (tracked_request_overlaps(req, self->overlap_offset,
465                                          self->overlap_bytes))
466             {
467                 /* Hitting this means there was a reentrant request, for
468                  * example, a block driver issuing nested requests.  This must
469                  * never happen since it means deadlock.
470                  */
471                 assert(qemu_coroutine_self() != req->co);
472 
473                 /* If the request is already (indirectly) waiting for us, or
474                  * will wait for us as soon as it wakes up, then just go on
475                  * (instead of producing a deadlock in the former case). */
476                 if (!req->waiting_for) {
477                     self->waiting_for = req;
478                     qemu_co_queue_wait(&req->wait_queue);
479                     self->waiting_for = NULL;
480                     retry = true;
481                     waited = true;
482                     break;
483                 }
484             }
485         }
486     } while (retry);
487 
488     return waited;
489 }
490 
491 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
492                                    size_t size)
493 {
494     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
495         return -EIO;
496     }
497 
498     if (!bdrv_is_inserted(bs)) {
499         return -ENOMEDIUM;
500     }
501 
502     if (offset < 0) {
503         return -EIO;
504     }
505 
506     return 0;
507 }
508 
509 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
510                               int nb_sectors)
511 {
512     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
513         return -EIO;
514     }
515 
516     return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
517                                    nb_sectors * BDRV_SECTOR_SIZE);
518 }
519 
520 typedef struct RwCo {
521     BlockDriverState *bs;
522     int64_t offset;
523     QEMUIOVector *qiov;
524     bool is_write;
525     int ret;
526     BdrvRequestFlags flags;
527 } RwCo;
528 
529 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
530 {
531     RwCo *rwco = opaque;
532 
533     if (!rwco->is_write) {
534         rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
535                                       rwco->qiov->size, rwco->qiov,
536                                       rwco->flags);
537     } else {
538         rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
539                                        rwco->qiov->size, rwco->qiov,
540                                        rwco->flags);
541     }
542 }
543 
544 /*
545  * Process a vectored synchronous request using coroutines
546  */
547 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
548                         QEMUIOVector *qiov, bool is_write,
549                         BdrvRequestFlags flags)
550 {
551     Coroutine *co;
552     RwCo rwco = {
553         .bs = bs,
554         .offset = offset,
555         .qiov = qiov,
556         .is_write = is_write,
557         .ret = NOT_DONE,
558         .flags = flags,
559     };
560 
561     /**
562      * In sync call context, when the vcpu is blocked, this throttling timer
563      * will not fire; so the I/O throttling function has to be disabled here
564      * if it has been enabled.
565      */
566     if (bs->io_limits_enabled) {
567         fprintf(stderr, "Disabling I/O throttling on '%s' due "
568                         "to synchronous I/O.\n", bdrv_get_device_name(bs));
569         bdrv_io_limits_disable(bs);
570     }
571 
572     if (qemu_in_coroutine()) {
573         /* Fast-path if already in coroutine context */
574         bdrv_rw_co_entry(&rwco);
575     } else {
576         AioContext *aio_context = bdrv_get_aio_context(bs);
577 
578         co = qemu_coroutine_create(bdrv_rw_co_entry);
579         qemu_coroutine_enter(co, &rwco);
580         while (rwco.ret == NOT_DONE) {
581             aio_poll(aio_context, true);
582         }
583     }
584     return rwco.ret;
585 }
586 
587 /*
588  * Process a synchronous request using coroutines
589  */
590 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
591                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
592 {
593     QEMUIOVector qiov;
594     struct iovec iov = {
595         .iov_base = (void *)buf,
596         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
597     };
598 
599     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
600         return -EINVAL;
601     }
602 
603     qemu_iovec_init_external(&qiov, &iov, 1);
604     return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
605                         &qiov, is_write, flags);
606 }
607 
608 /* return < 0 if error. See bdrv_write() for the return codes */
609 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
610               uint8_t *buf, int nb_sectors)
611 {
612     return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
613 }
614 
615 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
616 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
617                           uint8_t *buf, int nb_sectors)
618 {
619     bool enabled;
620     int ret;
621 
622     enabled = bs->io_limits_enabled;
623     bs->io_limits_enabled = false;
624     ret = bdrv_read(bs, sector_num, buf, nb_sectors);
625     bs->io_limits_enabled = enabled;
626     return ret;
627 }
628 
629 /* Return < 0 if error. Important errors are:
630   -EIO         generic I/O error (may happen for all errors)
631   -ENOMEDIUM   No media inserted.
632   -EINVAL      Invalid sector number or nb_sectors
633   -EACCES      Trying to write a read-only device
634 */
635 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
636                const uint8_t *buf, int nb_sectors)
637 {
638     return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
639 }
640 
641 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
642                       int nb_sectors, BdrvRequestFlags flags)
643 {
644     return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
645                       BDRV_REQ_ZERO_WRITE | flags);
646 }
647 
648 /*
649  * Completely zero out a block device with the help of bdrv_write_zeroes.
650  * The operation is sped up by checking the block status and only writing
651  * zeroes to the device if they currently do not return zeroes. Optional
652  * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
653  *
654  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
655  */
656 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
657 {
658     int64_t target_sectors, ret, nb_sectors, sector_num = 0;
659     int n;
660 
661     target_sectors = bdrv_nb_sectors(bs);
662     if (target_sectors < 0) {
663         return target_sectors;
664     }
665 
666     for (;;) {
667         nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
668         if (nb_sectors <= 0) {
669             return 0;
670         }
671         ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n);
672         if (ret < 0) {
673             error_report("error getting block status at sector %" PRId64 ": %s",
674                          sector_num, strerror(-ret));
675             return ret;
676         }
677         if (ret & BDRV_BLOCK_ZERO) {
678             sector_num += n;
679             continue;
680         }
681         ret = bdrv_write_zeroes(bs, sector_num, n, flags);
682         if (ret < 0) {
683             error_report("error writing zeroes at sector %" PRId64 ": %s",
684                          sector_num, strerror(-ret));
685             return ret;
686         }
687         sector_num += n;
688     }
689 }
690 
691 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
692 {
693     QEMUIOVector qiov;
694     struct iovec iov = {
695         .iov_base = (void *)buf,
696         .iov_len = bytes,
697     };
698     int ret;
699 
700     if (bytes < 0) {
701         return -EINVAL;
702     }
703 
704     qemu_iovec_init_external(&qiov, &iov, 1);
705     ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
706     if (ret < 0) {
707         return ret;
708     }
709 
710     return bytes;
711 }
712 
713 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
714 {
715     int ret;
716 
717     ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
718     if (ret < 0) {
719         return ret;
720     }
721 
722     return qiov->size;
723 }
724 
725 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
726                 const void *buf, int bytes)
727 {
728     QEMUIOVector qiov;
729     struct iovec iov = {
730         .iov_base   = (void *) buf,
731         .iov_len    = bytes,
732     };
733 
734     if (bytes < 0) {
735         return -EINVAL;
736     }
737 
738     qemu_iovec_init_external(&qiov, &iov, 1);
739     return bdrv_pwritev(bs, offset, &qiov);
740 }
741 
742 /*
743  * Writes to the file and ensures that no writes are reordered across this
744  * request (acts as a barrier)
745  *
746  * Returns 0 on success, -errno in error cases.
747  */
748 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
749     const void *buf, int count)
750 {
751     int ret;
752 
753     ret = bdrv_pwrite(bs, offset, buf, count);
754     if (ret < 0) {
755         return ret;
756     }
757 
758     /* No flush needed for cache modes that already do it */
759     if (bs->enable_write_cache) {
760         bdrv_flush(bs);
761     }
762 
763     return 0;
764 }
765 
766 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
767         int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
768 {
769     /* Perform I/O through a temporary buffer so that users who scribble over
770      * their read buffer while the operation is in progress do not end up
771      * modifying the image file.  This is critical for zero-copy guest I/O
772      * where anything might happen inside guest memory.
773      */
774     void *bounce_buffer;
775 
776     BlockDriver *drv = bs->drv;
777     struct iovec iov;
778     QEMUIOVector bounce_qiov;
779     int64_t cluster_sector_num;
780     int cluster_nb_sectors;
781     size_t skip_bytes;
782     int ret;
783 
784     /* Cover entire cluster so no additional backing file I/O is required when
785      * allocating cluster in the image file.
786      */
787     bdrv_round_to_clusters(bs, sector_num, nb_sectors,
788                            &cluster_sector_num, &cluster_nb_sectors);
789 
790     trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
791                                    cluster_sector_num, cluster_nb_sectors);
792 
793     iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
794     iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
795     if (bounce_buffer == NULL) {
796         ret = -ENOMEM;
797         goto err;
798     }
799 
800     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
801 
802     ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
803                              &bounce_qiov);
804     if (ret < 0) {
805         goto err;
806     }
807 
808     if (drv->bdrv_co_write_zeroes &&
809         buffer_is_zero(bounce_buffer, iov.iov_len)) {
810         ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
811                                       cluster_nb_sectors, 0);
812     } else {
813         /* This does not change the data on the disk, it is not necessary
814          * to flush even in cache=writethrough mode.
815          */
816         ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
817                                   &bounce_qiov);
818     }
819 
820     if (ret < 0) {
821         /* It might be okay to ignore write errors for guest requests.  If this
822          * is a deliberate copy-on-read then we don't want to ignore the error.
823          * Simply report it in all cases.
824          */
825         goto err;
826     }
827 
828     skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
829     qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
830                         nb_sectors * BDRV_SECTOR_SIZE);
831 
832 err:
833     qemu_vfree(bounce_buffer);
834     return ret;
835 }
836 
837 /*
838  * Forwards an already correctly aligned request to the BlockDriver. This
839  * handles copy on read and zeroing after EOF; any other features must be
840  * implemented by the caller.
841  */
842 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
843     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
844     int64_t align, QEMUIOVector *qiov, int flags)
845 {
846     BlockDriver *drv = bs->drv;
847     int ret;
848 
849     int64_t sector_num = offset >> BDRV_SECTOR_BITS;
850     unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
851 
852     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
853     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
854     assert(!qiov || bytes == qiov->size);
855 
856     /* Handle Copy on Read and associated serialisation */
857     if (flags & BDRV_REQ_COPY_ON_READ) {
858         /* If we touch the same cluster it counts as an overlap.  This
859          * guarantees that allocating writes will be serialized and not race
860          * with each other for the same cluster.  For example, in copy-on-read
861          * it ensures that the CoR read and write operations are atomic and
862          * guest writes cannot interleave between them. */
863         mark_request_serialising(req, bdrv_get_cluster_size(bs));
864     }
865 
866     wait_serialising_requests(req);
867 
868     if (flags & BDRV_REQ_COPY_ON_READ) {
869         int pnum;
870 
871         ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
872         if (ret < 0) {
873             goto out;
874         }
875 
876         if (!ret || pnum != nb_sectors) {
877             ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
878             goto out;
879         }
880     }
881 
882     /* Forward the request to the BlockDriver */
883     if (!bs->zero_beyond_eof) {
884         ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
885     } else {
886         /* Read zeros after EOF */
887         int64_t total_sectors, max_nb_sectors;
888 
889         total_sectors = bdrv_nb_sectors(bs);
890         if (total_sectors < 0) {
891             ret = total_sectors;
892             goto out;
893         }
894 
895         max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
896                                   align >> BDRV_SECTOR_BITS);
897         if (nb_sectors < max_nb_sectors) {
898             ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
899         } else if (max_nb_sectors > 0) {
900             QEMUIOVector local_qiov;
901 
902             qemu_iovec_init(&local_qiov, qiov->niov);
903             qemu_iovec_concat(&local_qiov, qiov, 0,
904                               max_nb_sectors * BDRV_SECTOR_SIZE);
905 
906             ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
907                                      &local_qiov);
908 
909             qemu_iovec_destroy(&local_qiov);
910         } else {
911             ret = 0;
912         }
913 
914         /* Reading beyond end of file is supposed to produce zeroes */
915         if (ret == 0 && total_sectors < sector_num + nb_sectors) {
916             uint64_t offset = MAX(0, total_sectors - sector_num);
917             uint64_t bytes = (sector_num + nb_sectors - offset) *
918                               BDRV_SECTOR_SIZE;
919             qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
920         }
921     }
922 
923 out:
924     return ret;
925 }
926 
927 /*
928  * Handle a read request in coroutine context
929  */
930 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
931     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
932     BdrvRequestFlags flags)
933 {
934     BlockDriver *drv = bs->drv;
935     BdrvTrackedRequest req;
936 
937     /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
938     uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
939     uint8_t *head_buf = NULL;
940     uint8_t *tail_buf = NULL;
941     QEMUIOVector local_qiov;
942     bool use_local_qiov = false;
943     int ret;
944 
945     if (!drv) {
946         return -ENOMEDIUM;
947     }
948 
949     ret = bdrv_check_byte_request(bs, offset, bytes);
950     if (ret < 0) {
951         return ret;
952     }
953 
954     /* Don't do copy-on-read if we read data before write operation */
955     if (bs->copy_on_read && !(flags & BDRV_REQ_NO_COPY_ON_READ)) {
956         flags |= BDRV_REQ_COPY_ON_READ;
957     }
958 
959     /* throttling disk I/O */
960     if (bs->io_limits_enabled) {
961         throttle_group_co_io_limits_intercept(bs, bytes, false);
962     }
963 
964     /* Align read if necessary by padding qiov */
965     if (offset & (align - 1)) {
966         head_buf = qemu_blockalign(bs, align);
967         qemu_iovec_init(&local_qiov, qiov->niov + 2);
968         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
969         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
970         use_local_qiov = true;
971 
972         bytes += offset & (align - 1);
973         offset = offset & ~(align - 1);
974     }
975 
976     if ((offset + bytes) & (align - 1)) {
977         if (!use_local_qiov) {
978             qemu_iovec_init(&local_qiov, qiov->niov + 1);
979             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
980             use_local_qiov = true;
981         }
982         tail_buf = qemu_blockalign(bs, align);
983         qemu_iovec_add(&local_qiov, tail_buf,
984                        align - ((offset + bytes) & (align - 1)));
985 
986         bytes = ROUND_UP(bytes, align);
987     }
988 
989     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
990     ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
991                               use_local_qiov ? &local_qiov : qiov,
992                               flags);
993     tracked_request_end(&req);
994 
995     if (use_local_qiov) {
996         qemu_iovec_destroy(&local_qiov);
997         qemu_vfree(head_buf);
998         qemu_vfree(tail_buf);
999     }
1000 
1001     return ret;
1002 }
1003 
1004 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1005     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1006     BdrvRequestFlags flags)
1007 {
1008     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1009         return -EINVAL;
1010     }
1011 
1012     return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
1013                              nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1014 }
1015 
1016 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1017     int nb_sectors, QEMUIOVector *qiov)
1018 {
1019     trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1020 
1021     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1022 }
1023 
1024 int coroutine_fn bdrv_co_no_copy_on_readv(BlockDriverState *bs,
1025     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1026 {
1027     trace_bdrv_co_no_copy_on_readv(bs, sector_num, nb_sectors);
1028 
1029     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1030                             BDRV_REQ_NO_COPY_ON_READ);
1031 }
1032 
1033 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1034     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1035 {
1036     trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1037 
1038     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1039                             BDRV_REQ_COPY_ON_READ);
1040 }
1041 
1042 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1043 
1044 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1045     int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1046 {
1047     BlockDriver *drv = bs->drv;
1048     QEMUIOVector qiov;
1049     struct iovec iov = {0};
1050     int ret = 0;
1051 
1052     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1053                                         BDRV_REQUEST_MAX_SECTORS);
1054 
1055     while (nb_sectors > 0 && !ret) {
1056         int num = nb_sectors;
1057 
1058         /* Align request.  Block drivers can expect the "bulk" of the request
1059          * to be aligned.
1060          */
1061         if (bs->bl.write_zeroes_alignment
1062             && num > bs->bl.write_zeroes_alignment) {
1063             if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1064                 /* Make a small request up to the first aligned sector.  */
1065                 num = bs->bl.write_zeroes_alignment;
1066                 num -= sector_num % bs->bl.write_zeroes_alignment;
1067             } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1068                 /* Shorten the request to the last aligned sector.  num cannot
1069                  * underflow because num > bs->bl.write_zeroes_alignment.
1070                  */
1071                 num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1072             }
1073         }
1074 
1075         /* limit request size */
1076         if (num > max_write_zeroes) {
1077             num = max_write_zeroes;
1078         }
1079 
1080         ret = -ENOTSUP;
1081         /* First try the efficient write zeroes operation */
1082         if (drv->bdrv_co_write_zeroes) {
1083             ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1084         }
1085 
1086         if (ret == -ENOTSUP) {
1087             /* Fall back to bounce buffer if write zeroes is unsupported */
1088             int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1089                                             MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1090             num = MIN(num, max_xfer_len);
1091             iov.iov_len = num * BDRV_SECTOR_SIZE;
1092             if (iov.iov_base == NULL) {
1093                 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1094                 if (iov.iov_base == NULL) {
1095                     ret = -ENOMEM;
1096                     goto fail;
1097                 }
1098                 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1099             }
1100             qemu_iovec_init_external(&qiov, &iov, 1);
1101 
1102             ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1103 
1104             /* Keep bounce buffer around if it is big enough for all
1105              * all future requests.
1106              */
1107             if (num < max_xfer_len) {
1108                 qemu_vfree(iov.iov_base);
1109                 iov.iov_base = NULL;
1110             }
1111         }
1112 
1113         sector_num += num;
1114         nb_sectors -= num;
1115     }
1116 
1117 fail:
1118     qemu_vfree(iov.iov_base);
1119     return ret;
1120 }
1121 
1122 /*
1123  * Forwards an already correctly aligned write request to the BlockDriver.
1124  */
1125 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1126     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1127     QEMUIOVector *qiov, int flags)
1128 {
1129     BlockDriver *drv = bs->drv;
1130     bool waited;
1131     int ret;
1132 
1133     int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1134     unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1135 
1136     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1137     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1138     assert(!qiov || bytes == qiov->size);
1139 
1140     waited = wait_serialising_requests(req);
1141     assert(!waited || !req->serialising);
1142     assert(req->overlap_offset <= offset);
1143     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1144 
1145     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1146 
1147     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1148         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1149         qemu_iovec_is_zero(qiov)) {
1150         flags |= BDRV_REQ_ZERO_WRITE;
1151         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1152             flags |= BDRV_REQ_MAY_UNMAP;
1153         }
1154     }
1155 
1156     if (ret < 0) {
1157         /* Do nothing, write notifier decided to fail this request */
1158     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1159         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1160         ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1161     } else {
1162         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1163         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1164     }
1165     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1166 
1167     if (ret == 0 && !bs->enable_write_cache) {
1168         ret = bdrv_co_flush(bs);
1169     }
1170 
1171     bdrv_set_dirty(bs, sector_num, nb_sectors);
1172 
1173     if (bs->wr_highest_offset < offset + bytes) {
1174         bs->wr_highest_offset = offset + bytes;
1175     }
1176 
1177     if (ret >= 0) {
1178         bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1179     }
1180 
1181     return ret;
1182 }
1183 
1184 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1185                                                 int64_t offset,
1186                                                 unsigned int bytes,
1187                                                 BdrvRequestFlags flags,
1188                                                 BdrvTrackedRequest *req)
1189 {
1190     uint8_t *buf = NULL;
1191     QEMUIOVector local_qiov;
1192     struct iovec iov;
1193     uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1194     unsigned int head_padding_bytes, tail_padding_bytes;
1195     int ret = 0;
1196 
1197     head_padding_bytes = offset & (align - 1);
1198     tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1199 
1200 
1201     assert(flags & BDRV_REQ_ZERO_WRITE);
1202     if (head_padding_bytes || tail_padding_bytes) {
1203         buf = qemu_blockalign(bs, align);
1204         iov = (struct iovec) {
1205             .iov_base   = buf,
1206             .iov_len    = align,
1207         };
1208         qemu_iovec_init_external(&local_qiov, &iov, 1);
1209     }
1210     if (head_padding_bytes) {
1211         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1212 
1213         /* RMW the unaligned part before head. */
1214         mark_request_serialising(req, align);
1215         wait_serialising_requests(req);
1216         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1217         ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1218                                   align, &local_qiov, 0);
1219         if (ret < 0) {
1220             goto fail;
1221         }
1222         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1223 
1224         memset(buf + head_padding_bytes, 0, zero_bytes);
1225         ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1226                                    &local_qiov,
1227                                    flags & ~BDRV_REQ_ZERO_WRITE);
1228         if (ret < 0) {
1229             goto fail;
1230         }
1231         offset += zero_bytes;
1232         bytes -= zero_bytes;
1233     }
1234 
1235     assert(!bytes || (offset & (align - 1)) == 0);
1236     if (bytes >= align) {
1237         /* Write the aligned part in the middle. */
1238         uint64_t aligned_bytes = bytes & ~(align - 1);
1239         ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes,
1240                                    NULL, flags);
1241         if (ret < 0) {
1242             goto fail;
1243         }
1244         bytes -= aligned_bytes;
1245         offset += aligned_bytes;
1246     }
1247 
1248     assert(!bytes || (offset & (align - 1)) == 0);
1249     if (bytes) {
1250         assert(align == tail_padding_bytes + bytes);
1251         /* RMW the unaligned part after tail. */
1252         mark_request_serialising(req, align);
1253         wait_serialising_requests(req);
1254         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1255         ret = bdrv_aligned_preadv(bs, req, offset, align,
1256                                   align, &local_qiov, 0);
1257         if (ret < 0) {
1258             goto fail;
1259         }
1260         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1261 
1262         memset(buf, 0, bytes);
1263         ret = bdrv_aligned_pwritev(bs, req, offset, align,
1264                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1265     }
1266 fail:
1267     qemu_vfree(buf);
1268     return ret;
1269 
1270 }
1271 
1272 /*
1273  * Handle a write request in coroutine context
1274  */
1275 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1276     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1277     BdrvRequestFlags flags)
1278 {
1279     BdrvTrackedRequest req;
1280     /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1281     uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1282     uint8_t *head_buf = NULL;
1283     uint8_t *tail_buf = NULL;
1284     QEMUIOVector local_qiov;
1285     bool use_local_qiov = false;
1286     int ret;
1287 
1288     if (!bs->drv) {
1289         return -ENOMEDIUM;
1290     }
1291     if (bs->read_only) {
1292         return -EPERM;
1293     }
1294 
1295     ret = bdrv_check_byte_request(bs, offset, bytes);
1296     if (ret < 0) {
1297         return ret;
1298     }
1299 
1300     /* throttling disk I/O */
1301     if (bs->io_limits_enabled) {
1302         throttle_group_co_io_limits_intercept(bs, bytes, true);
1303     }
1304 
1305     /*
1306      * Align write if necessary by performing a read-modify-write cycle.
1307      * Pad qiov with the read parts and be sure to have a tracked request not
1308      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1309      */
1310     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1311 
1312     if (!qiov) {
1313         ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1314         goto out;
1315     }
1316 
1317     if (offset & (align - 1)) {
1318         QEMUIOVector head_qiov;
1319         struct iovec head_iov;
1320 
1321         mark_request_serialising(&req, align);
1322         wait_serialising_requests(&req);
1323 
1324         head_buf = qemu_blockalign(bs, align);
1325         head_iov = (struct iovec) {
1326             .iov_base   = head_buf,
1327             .iov_len    = align,
1328         };
1329         qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1330 
1331         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1332         ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1333                                   align, &head_qiov, 0);
1334         if (ret < 0) {
1335             goto fail;
1336         }
1337         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1338 
1339         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1340         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1341         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1342         use_local_qiov = true;
1343 
1344         bytes += offset & (align - 1);
1345         offset = offset & ~(align - 1);
1346     }
1347 
1348     if ((offset + bytes) & (align - 1)) {
1349         QEMUIOVector tail_qiov;
1350         struct iovec tail_iov;
1351         size_t tail_bytes;
1352         bool waited;
1353 
1354         mark_request_serialising(&req, align);
1355         waited = wait_serialising_requests(&req);
1356         assert(!waited || !use_local_qiov);
1357 
1358         tail_buf = qemu_blockalign(bs, align);
1359         tail_iov = (struct iovec) {
1360             .iov_base   = tail_buf,
1361             .iov_len    = align,
1362         };
1363         qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1364 
1365         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1366         ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1367                                   align, &tail_qiov, 0);
1368         if (ret < 0) {
1369             goto fail;
1370         }
1371         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1372 
1373         if (!use_local_qiov) {
1374             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1375             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1376             use_local_qiov = true;
1377         }
1378 
1379         tail_bytes = (offset + bytes) & (align - 1);
1380         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1381 
1382         bytes = ROUND_UP(bytes, align);
1383     }
1384 
1385     ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1386                                use_local_qiov ? &local_qiov : qiov,
1387                                flags);
1388 
1389 fail:
1390 
1391     if (use_local_qiov) {
1392         qemu_iovec_destroy(&local_qiov);
1393     }
1394     qemu_vfree(head_buf);
1395     qemu_vfree(tail_buf);
1396 out:
1397     tracked_request_end(&req);
1398     return ret;
1399 }
1400 
1401 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1402     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1403     BdrvRequestFlags flags)
1404 {
1405     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1406         return -EINVAL;
1407     }
1408 
1409     return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1410                               nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1411 }
1412 
1413 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1414     int nb_sectors, QEMUIOVector *qiov)
1415 {
1416     trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1417 
1418     return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1419 }
1420 
1421 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1422                                       int64_t sector_num, int nb_sectors,
1423                                       BdrvRequestFlags flags)
1424 {
1425     trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1426 
1427     if (!(bs->open_flags & BDRV_O_UNMAP)) {
1428         flags &= ~BDRV_REQ_MAY_UNMAP;
1429     }
1430 
1431     return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1432                              BDRV_REQ_ZERO_WRITE | flags);
1433 }
1434 
1435 int bdrv_flush_all(void)
1436 {
1437     BlockDriverState *bs = NULL;
1438     int result = 0;
1439 
1440     while ((bs = bdrv_next(bs))) {
1441         AioContext *aio_context = bdrv_get_aio_context(bs);
1442         int ret;
1443 
1444         aio_context_acquire(aio_context);
1445         ret = bdrv_flush(bs);
1446         if (ret < 0 && !result) {
1447             result = ret;
1448         }
1449         aio_context_release(aio_context);
1450     }
1451 
1452     return result;
1453 }
1454 
1455 typedef struct BdrvCoGetBlockStatusData {
1456     BlockDriverState *bs;
1457     BlockDriverState *base;
1458     int64_t sector_num;
1459     int nb_sectors;
1460     int *pnum;
1461     int64_t ret;
1462     bool done;
1463 } BdrvCoGetBlockStatusData;
1464 
1465 /*
1466  * Returns the allocation status of the specified sectors.
1467  * Drivers not implementing the functionality are assumed to not support
1468  * backing files, hence all their sectors are reported as allocated.
1469  *
1470  * If 'sector_num' is beyond the end of the disk image the return value is 0
1471  * and 'pnum' is set to 0.
1472  *
1473  * 'pnum' is set to the number of sectors (including and immediately following
1474  * the specified sector) that are known to be in the same
1475  * allocated/unallocated state.
1476  *
1477  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
1478  * beyond the end of the disk image it will be clamped.
1479  */
1480 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1481                                                      int64_t sector_num,
1482                                                      int nb_sectors, int *pnum)
1483 {
1484     int64_t total_sectors;
1485     int64_t n;
1486     int64_t ret, ret2;
1487 
1488     total_sectors = bdrv_nb_sectors(bs);
1489     if (total_sectors < 0) {
1490         return total_sectors;
1491     }
1492 
1493     if (sector_num >= total_sectors) {
1494         *pnum = 0;
1495         return 0;
1496     }
1497 
1498     n = total_sectors - sector_num;
1499     if (n < nb_sectors) {
1500         nb_sectors = n;
1501     }
1502 
1503     if (!bs->drv->bdrv_co_get_block_status) {
1504         *pnum = nb_sectors;
1505         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1506         if (bs->drv->protocol_name) {
1507             ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1508         }
1509         return ret;
1510     }
1511 
1512     ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum);
1513     if (ret < 0) {
1514         *pnum = 0;
1515         return ret;
1516     }
1517 
1518     if (ret & BDRV_BLOCK_RAW) {
1519         assert(ret & BDRV_BLOCK_OFFSET_VALID);
1520         return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1521                                      *pnum, pnum);
1522     }
1523 
1524     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1525         ret |= BDRV_BLOCK_ALLOCATED;
1526     } else {
1527         if (bdrv_unallocated_blocks_are_zero(bs)) {
1528             ret |= BDRV_BLOCK_ZERO;
1529         } else if (bs->backing) {
1530             BlockDriverState *bs2 = bs->backing->bs;
1531             int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1532             if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1533                 ret |= BDRV_BLOCK_ZERO;
1534             }
1535         }
1536     }
1537 
1538     if (bs->file &&
1539         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1540         (ret & BDRV_BLOCK_OFFSET_VALID)) {
1541         int file_pnum;
1542 
1543         ret2 = bdrv_co_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1544                                         *pnum, &file_pnum);
1545         if (ret2 >= 0) {
1546             /* Ignore errors.  This is just providing extra information, it
1547              * is useful but not necessary.
1548              */
1549             if (!file_pnum) {
1550                 /* !file_pnum indicates an offset at or beyond the EOF; it is
1551                  * perfectly valid for the format block driver to point to such
1552                  * offsets, so catch it and mark everything as zero */
1553                 ret |= BDRV_BLOCK_ZERO;
1554             } else {
1555                 /* Limit request to the range reported by the protocol driver */
1556                 *pnum = file_pnum;
1557                 ret |= (ret2 & BDRV_BLOCK_ZERO);
1558             }
1559         }
1560     }
1561 
1562     return ret;
1563 }
1564 
1565 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1566         BlockDriverState *base,
1567         int64_t sector_num,
1568         int nb_sectors,
1569         int *pnum)
1570 {
1571     BlockDriverState *p;
1572     int64_t ret = 0;
1573 
1574     assert(bs != base);
1575     for (p = bs; p != base; p = backing_bs(p)) {
1576         ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum);
1577         if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1578             break;
1579         }
1580         /* [sector_num, pnum] unallocated on this layer, which could be only
1581          * the first part of [sector_num, nb_sectors].  */
1582         nb_sectors = MIN(nb_sectors, *pnum);
1583     }
1584     return ret;
1585 }
1586 
1587 /* Coroutine wrapper for bdrv_get_block_status_above() */
1588 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1589 {
1590     BdrvCoGetBlockStatusData *data = opaque;
1591 
1592     data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1593                                                data->sector_num,
1594                                                data->nb_sectors,
1595                                                data->pnum);
1596     data->done = true;
1597 }
1598 
1599 /*
1600  * Synchronous wrapper around bdrv_co_get_block_status_above().
1601  *
1602  * See bdrv_co_get_block_status_above() for details.
1603  */
1604 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1605                                     BlockDriverState *base,
1606                                     int64_t sector_num,
1607                                     int nb_sectors, int *pnum)
1608 {
1609     Coroutine *co;
1610     BdrvCoGetBlockStatusData data = {
1611         .bs = bs,
1612         .base = base,
1613         .sector_num = sector_num,
1614         .nb_sectors = nb_sectors,
1615         .pnum = pnum,
1616         .done = false,
1617     };
1618 
1619     if (qemu_in_coroutine()) {
1620         /* Fast-path if already in coroutine context */
1621         bdrv_get_block_status_above_co_entry(&data);
1622     } else {
1623         AioContext *aio_context = bdrv_get_aio_context(bs);
1624 
1625         co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry);
1626         qemu_coroutine_enter(co, &data);
1627         while (!data.done) {
1628             aio_poll(aio_context, true);
1629         }
1630     }
1631     return data.ret;
1632 }
1633 
1634 int64_t bdrv_get_block_status(BlockDriverState *bs,
1635                               int64_t sector_num,
1636                               int nb_sectors, int *pnum)
1637 {
1638     return bdrv_get_block_status_above(bs, backing_bs(bs),
1639                                        sector_num, nb_sectors, pnum);
1640 }
1641 
1642 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1643                                    int nb_sectors, int *pnum)
1644 {
1645     int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum);
1646     if (ret < 0) {
1647         return ret;
1648     }
1649     return !!(ret & BDRV_BLOCK_ALLOCATED);
1650 }
1651 
1652 /*
1653  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1654  *
1655  * Return true if the given sector is allocated in any image between
1656  * BASE and TOP (inclusive).  BASE can be NULL to check if the given
1657  * sector is allocated in any image of the chain.  Return false otherwise.
1658  *
1659  * 'pnum' is set to the number of sectors (including and immediately following
1660  *  the specified sector) that are known to be in the same
1661  *  allocated/unallocated state.
1662  *
1663  */
1664 int bdrv_is_allocated_above(BlockDriverState *top,
1665                             BlockDriverState *base,
1666                             int64_t sector_num,
1667                             int nb_sectors, int *pnum)
1668 {
1669     BlockDriverState *intermediate;
1670     int ret, n = nb_sectors;
1671 
1672     intermediate = top;
1673     while (intermediate && intermediate != base) {
1674         int pnum_inter;
1675         ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1676                                 &pnum_inter);
1677         if (ret < 0) {
1678             return ret;
1679         } else if (ret) {
1680             *pnum = pnum_inter;
1681             return 1;
1682         }
1683 
1684         /*
1685          * [sector_num, nb_sectors] is unallocated on top but intermediate
1686          * might have
1687          *
1688          * [sector_num+x, nr_sectors] allocated.
1689          */
1690         if (n > pnum_inter &&
1691             (intermediate == top ||
1692              sector_num + pnum_inter < intermediate->total_sectors)) {
1693             n = pnum_inter;
1694         }
1695 
1696         intermediate = backing_bs(intermediate);
1697     }
1698 
1699     *pnum = n;
1700     return 0;
1701 }
1702 
1703 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1704                           const uint8_t *buf, int nb_sectors)
1705 {
1706     BlockDriver *drv = bs->drv;
1707     int ret;
1708 
1709     if (!drv) {
1710         return -ENOMEDIUM;
1711     }
1712     if (!drv->bdrv_write_compressed) {
1713         return -ENOTSUP;
1714     }
1715     ret = bdrv_check_request(bs, sector_num, nb_sectors);
1716     if (ret < 0) {
1717         return ret;
1718     }
1719 
1720     assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1721 
1722     return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1723 }
1724 
1725 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1726                       int64_t pos, int size)
1727 {
1728     QEMUIOVector qiov;
1729     struct iovec iov = {
1730         .iov_base   = (void *) buf,
1731         .iov_len    = size,
1732     };
1733 
1734     qemu_iovec_init_external(&qiov, &iov, 1);
1735     return bdrv_writev_vmstate(bs, &qiov, pos);
1736 }
1737 
1738 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1739 {
1740     BlockDriver *drv = bs->drv;
1741 
1742     if (!drv) {
1743         return -ENOMEDIUM;
1744     } else if (drv->bdrv_save_vmstate) {
1745         return drv->bdrv_save_vmstate(bs, qiov, pos);
1746     } else if (bs->file) {
1747         return bdrv_writev_vmstate(bs->file->bs, qiov, pos);
1748     }
1749 
1750     return -ENOTSUP;
1751 }
1752 
1753 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1754                       int64_t pos, int size)
1755 {
1756     BlockDriver *drv = bs->drv;
1757     if (!drv)
1758         return -ENOMEDIUM;
1759     if (drv->bdrv_load_vmstate)
1760         return drv->bdrv_load_vmstate(bs, buf, pos, size);
1761     if (bs->file)
1762         return bdrv_load_vmstate(bs->file->bs, buf, pos, size);
1763     return -ENOTSUP;
1764 }
1765 
1766 /**************************************************************/
1767 /* async I/Os */
1768 
1769 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1770                            QEMUIOVector *qiov, int nb_sectors,
1771                            BlockCompletionFunc *cb, void *opaque)
1772 {
1773     trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1774 
1775     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1776                                  cb, opaque, false);
1777 }
1778 
1779 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1780                             QEMUIOVector *qiov, int nb_sectors,
1781                             BlockCompletionFunc *cb, void *opaque)
1782 {
1783     trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1784 
1785     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1786                                  cb, opaque, true);
1787 }
1788 
1789 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1790         int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1791         BlockCompletionFunc *cb, void *opaque)
1792 {
1793     trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1794 
1795     return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1796                                  BDRV_REQ_ZERO_WRITE | flags,
1797                                  cb, opaque, true);
1798 }
1799 
1800 
1801 typedef struct MultiwriteCB {
1802     int error;
1803     int num_requests;
1804     int num_callbacks;
1805     struct {
1806         BlockCompletionFunc *cb;
1807         void *opaque;
1808         QEMUIOVector *free_qiov;
1809     } callbacks[];
1810 } MultiwriteCB;
1811 
1812 static void multiwrite_user_cb(MultiwriteCB *mcb)
1813 {
1814     int i;
1815 
1816     for (i = 0; i < mcb->num_callbacks; i++) {
1817         mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1818         if (mcb->callbacks[i].free_qiov) {
1819             qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1820         }
1821         g_free(mcb->callbacks[i].free_qiov);
1822     }
1823 }
1824 
1825 static void multiwrite_cb(void *opaque, int ret)
1826 {
1827     MultiwriteCB *mcb = opaque;
1828 
1829     trace_multiwrite_cb(mcb, ret);
1830 
1831     if (ret < 0 && !mcb->error) {
1832         mcb->error = ret;
1833     }
1834 
1835     mcb->num_requests--;
1836     if (mcb->num_requests == 0) {
1837         multiwrite_user_cb(mcb);
1838         g_free(mcb);
1839     }
1840 }
1841 
1842 static int multiwrite_req_compare(const void *a, const void *b)
1843 {
1844     const BlockRequest *req1 = a, *req2 = b;
1845 
1846     /*
1847      * Note that we can't simply subtract req2->sector from req1->sector
1848      * here as that could overflow the return value.
1849      */
1850     if (req1->sector > req2->sector) {
1851         return 1;
1852     } else if (req1->sector < req2->sector) {
1853         return -1;
1854     } else {
1855         return 0;
1856     }
1857 }
1858 
1859 /*
1860  * Takes a bunch of requests and tries to merge them. Returns the number of
1861  * requests that remain after merging.
1862  */
1863 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1864     int num_reqs, MultiwriteCB *mcb)
1865 {
1866     int i, outidx;
1867 
1868     // Sort requests by start sector
1869     qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1870 
1871     // Check if adjacent requests touch the same clusters. If so, combine them,
1872     // filling up gaps with zero sectors.
1873     outidx = 0;
1874     for (i = 1; i < num_reqs; i++) {
1875         int merge = 0;
1876         int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1877 
1878         // Handle exactly sequential writes and overlapping writes.
1879         if (reqs[i].sector <= oldreq_last) {
1880             merge = 1;
1881         }
1882 
1883         if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
1884             merge = 0;
1885         }
1886 
1887         if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1888             reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1889             merge = 0;
1890         }
1891 
1892         if (merge) {
1893             size_t size;
1894             QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1895             qemu_iovec_init(qiov,
1896                 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1897 
1898             // Add the first request to the merged one. If the requests are
1899             // overlapping, drop the last sectors of the first request.
1900             size = (reqs[i].sector - reqs[outidx].sector) << 9;
1901             qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1902 
1903             // We should need to add any zeros between the two requests
1904             assert (reqs[i].sector <= oldreq_last);
1905 
1906             // Add the second request
1907             qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1908 
1909             // Add tail of first request, if necessary
1910             if (qiov->size < reqs[outidx].qiov->size) {
1911                 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1912                                   reqs[outidx].qiov->size - qiov->size);
1913             }
1914 
1915             reqs[outidx].nb_sectors = qiov->size >> 9;
1916             reqs[outidx].qiov = qiov;
1917 
1918             mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1919         } else {
1920             outidx++;
1921             reqs[outidx].sector     = reqs[i].sector;
1922             reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1923             reqs[outidx].qiov       = reqs[i].qiov;
1924         }
1925     }
1926 
1927     if (bs->blk) {
1928         block_acct_merge_done(blk_get_stats(bs->blk), BLOCK_ACCT_WRITE,
1929                               num_reqs - outidx - 1);
1930     }
1931 
1932     return outidx + 1;
1933 }
1934 
1935 /*
1936  * Submit multiple AIO write requests at once.
1937  *
1938  * On success, the function returns 0 and all requests in the reqs array have
1939  * been submitted. In error case this function returns -1, and any of the
1940  * requests may or may not be submitted yet. In particular, this means that the
1941  * callback will be called for some of the requests, for others it won't. The
1942  * caller must check the error field of the BlockRequest to wait for the right
1943  * callbacks (if error != 0, no callback will be called).
1944  *
1945  * The implementation may modify the contents of the reqs array, e.g. to merge
1946  * requests. However, the fields opaque and error are left unmodified as they
1947  * are used to signal failure for a single request to the caller.
1948  */
1949 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1950 {
1951     MultiwriteCB *mcb;
1952     int i;
1953 
1954     /* don't submit writes if we don't have a medium */
1955     if (bs->drv == NULL) {
1956         for (i = 0; i < num_reqs; i++) {
1957             reqs[i].error = -ENOMEDIUM;
1958         }
1959         return -1;
1960     }
1961 
1962     if (num_reqs == 0) {
1963         return 0;
1964     }
1965 
1966     // Create MultiwriteCB structure
1967     mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
1968     mcb->num_requests = 0;
1969     mcb->num_callbacks = num_reqs;
1970 
1971     for (i = 0; i < num_reqs; i++) {
1972         mcb->callbacks[i].cb = reqs[i].cb;
1973         mcb->callbacks[i].opaque = reqs[i].opaque;
1974     }
1975 
1976     // Check for mergable requests
1977     num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
1978 
1979     trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
1980 
1981     /* Run the aio requests. */
1982     mcb->num_requests = num_reqs;
1983     for (i = 0; i < num_reqs; i++) {
1984         bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
1985                               reqs[i].nb_sectors, reqs[i].flags,
1986                               multiwrite_cb, mcb,
1987                               true);
1988     }
1989 
1990     return 0;
1991 }
1992 
1993 void bdrv_aio_cancel(BlockAIOCB *acb)
1994 {
1995     qemu_aio_ref(acb);
1996     bdrv_aio_cancel_async(acb);
1997     while (acb->refcnt > 1) {
1998         if (acb->aiocb_info->get_aio_context) {
1999             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2000         } else if (acb->bs) {
2001             aio_poll(bdrv_get_aio_context(acb->bs), true);
2002         } else {
2003             abort();
2004         }
2005     }
2006     qemu_aio_unref(acb);
2007 }
2008 
2009 /* Async version of aio cancel. The caller is not blocked if the acb implements
2010  * cancel_async, otherwise we do nothing and let the request normally complete.
2011  * In either case the completion callback must be called. */
2012 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2013 {
2014     if (acb->aiocb_info->cancel_async) {
2015         acb->aiocb_info->cancel_async(acb);
2016     }
2017 }
2018 
2019 /**************************************************************/
2020 /* async block device emulation */
2021 
2022 typedef struct BlockAIOCBSync {
2023     BlockAIOCB common;
2024     QEMUBH *bh;
2025     int ret;
2026     /* vector translation state */
2027     QEMUIOVector *qiov;
2028     uint8_t *bounce;
2029     int is_write;
2030 } BlockAIOCBSync;
2031 
2032 static const AIOCBInfo bdrv_em_aiocb_info = {
2033     .aiocb_size         = sizeof(BlockAIOCBSync),
2034 };
2035 
2036 static void bdrv_aio_bh_cb(void *opaque)
2037 {
2038     BlockAIOCBSync *acb = opaque;
2039 
2040     if (!acb->is_write && acb->ret >= 0) {
2041         qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
2042     }
2043     qemu_vfree(acb->bounce);
2044     acb->common.cb(acb->common.opaque, acb->ret);
2045     qemu_bh_delete(acb->bh);
2046     acb->bh = NULL;
2047     qemu_aio_unref(acb);
2048 }
2049 
2050 static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
2051                                       int64_t sector_num,
2052                                       QEMUIOVector *qiov,
2053                                       int nb_sectors,
2054                                       BlockCompletionFunc *cb,
2055                                       void *opaque,
2056                                       int is_write)
2057 
2058 {
2059     BlockAIOCBSync *acb;
2060 
2061     acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
2062     acb->is_write = is_write;
2063     acb->qiov = qiov;
2064     acb->bounce = qemu_try_blockalign(bs, qiov->size);
2065     acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
2066 
2067     if (acb->bounce == NULL) {
2068         acb->ret = -ENOMEM;
2069     } else if (is_write) {
2070         qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
2071         acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
2072     } else {
2073         acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
2074     }
2075 
2076     qemu_bh_schedule(acb->bh);
2077 
2078     return &acb->common;
2079 }
2080 
2081 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
2082         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2083         BlockCompletionFunc *cb, void *opaque)
2084 {
2085     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
2086 }
2087 
2088 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
2089         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2090         BlockCompletionFunc *cb, void *opaque)
2091 {
2092     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
2093 }
2094 
2095 
2096 typedef struct BlockAIOCBCoroutine {
2097     BlockAIOCB common;
2098     BlockRequest req;
2099     bool is_write;
2100     bool need_bh;
2101     bool *done;
2102     QEMUBH* bh;
2103 } BlockAIOCBCoroutine;
2104 
2105 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2106     .aiocb_size         = sizeof(BlockAIOCBCoroutine),
2107 };
2108 
2109 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2110 {
2111     if (!acb->need_bh) {
2112         acb->common.cb(acb->common.opaque, acb->req.error);
2113         qemu_aio_unref(acb);
2114     }
2115 }
2116 
2117 static void bdrv_co_em_bh(void *opaque)
2118 {
2119     BlockAIOCBCoroutine *acb = opaque;
2120 
2121     assert(!acb->need_bh);
2122     qemu_bh_delete(acb->bh);
2123     bdrv_co_complete(acb);
2124 }
2125 
2126 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2127 {
2128     acb->need_bh = false;
2129     if (acb->req.error != -EINPROGRESS) {
2130         BlockDriverState *bs = acb->common.bs;
2131 
2132         acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2133         qemu_bh_schedule(acb->bh);
2134     }
2135 }
2136 
2137 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2138 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2139 {
2140     BlockAIOCBCoroutine *acb = opaque;
2141     BlockDriverState *bs = acb->common.bs;
2142 
2143     if (!acb->is_write) {
2144         acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2145             acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2146     } else {
2147         acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2148             acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2149     }
2150 
2151     bdrv_co_complete(acb);
2152 }
2153 
2154 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2155                                          int64_t sector_num,
2156                                          QEMUIOVector *qiov,
2157                                          int nb_sectors,
2158                                          BdrvRequestFlags flags,
2159                                          BlockCompletionFunc *cb,
2160                                          void *opaque,
2161                                          bool is_write)
2162 {
2163     Coroutine *co;
2164     BlockAIOCBCoroutine *acb;
2165 
2166     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2167     acb->need_bh = true;
2168     acb->req.error = -EINPROGRESS;
2169     acb->req.sector = sector_num;
2170     acb->req.nb_sectors = nb_sectors;
2171     acb->req.qiov = qiov;
2172     acb->req.flags = flags;
2173     acb->is_write = is_write;
2174 
2175     co = qemu_coroutine_create(bdrv_co_do_rw);
2176     qemu_coroutine_enter(co, acb);
2177 
2178     bdrv_co_maybe_schedule_bh(acb);
2179     return &acb->common;
2180 }
2181 
2182 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2183 {
2184     BlockAIOCBCoroutine *acb = opaque;
2185     BlockDriverState *bs = acb->common.bs;
2186 
2187     acb->req.error = bdrv_co_flush(bs);
2188     bdrv_co_complete(acb);
2189 }
2190 
2191 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2192         BlockCompletionFunc *cb, void *opaque)
2193 {
2194     trace_bdrv_aio_flush(bs, opaque);
2195 
2196     Coroutine *co;
2197     BlockAIOCBCoroutine *acb;
2198 
2199     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2200     acb->need_bh = true;
2201     acb->req.error = -EINPROGRESS;
2202 
2203     co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2204     qemu_coroutine_enter(co, acb);
2205 
2206     bdrv_co_maybe_schedule_bh(acb);
2207     return &acb->common;
2208 }
2209 
2210 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2211 {
2212     BlockAIOCBCoroutine *acb = opaque;
2213     BlockDriverState *bs = acb->common.bs;
2214 
2215     acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2216     bdrv_co_complete(acb);
2217 }
2218 
2219 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2220         int64_t sector_num, int nb_sectors,
2221         BlockCompletionFunc *cb, void *opaque)
2222 {
2223     Coroutine *co;
2224     BlockAIOCBCoroutine *acb;
2225 
2226     trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2227 
2228     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2229     acb->need_bh = true;
2230     acb->req.error = -EINPROGRESS;
2231     acb->req.sector = sector_num;
2232     acb->req.nb_sectors = nb_sectors;
2233     co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2234     qemu_coroutine_enter(co, acb);
2235 
2236     bdrv_co_maybe_schedule_bh(acb);
2237     return &acb->common;
2238 }
2239 
2240 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2241                    BlockCompletionFunc *cb, void *opaque)
2242 {
2243     BlockAIOCB *acb;
2244 
2245     acb = g_malloc(aiocb_info->aiocb_size);
2246     acb->aiocb_info = aiocb_info;
2247     acb->bs = bs;
2248     acb->cb = cb;
2249     acb->opaque = opaque;
2250     acb->refcnt = 1;
2251     return acb;
2252 }
2253 
2254 void qemu_aio_ref(void *p)
2255 {
2256     BlockAIOCB *acb = p;
2257     acb->refcnt++;
2258 }
2259 
2260 void qemu_aio_unref(void *p)
2261 {
2262     BlockAIOCB *acb = p;
2263     assert(acb->refcnt > 0);
2264     if (--acb->refcnt == 0) {
2265         g_free(acb);
2266     }
2267 }
2268 
2269 /**************************************************************/
2270 /* Coroutine block device emulation */
2271 
2272 typedef struct CoroutineIOCompletion {
2273     Coroutine *coroutine;
2274     int ret;
2275 } CoroutineIOCompletion;
2276 
2277 static void bdrv_co_io_em_complete(void *opaque, int ret)
2278 {
2279     CoroutineIOCompletion *co = opaque;
2280 
2281     co->ret = ret;
2282     qemu_coroutine_enter(co->coroutine, NULL);
2283 }
2284 
2285 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2286                                       int nb_sectors, QEMUIOVector *iov,
2287                                       bool is_write)
2288 {
2289     CoroutineIOCompletion co = {
2290         .coroutine = qemu_coroutine_self(),
2291     };
2292     BlockAIOCB *acb;
2293 
2294     if (is_write) {
2295         acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2296                                        bdrv_co_io_em_complete, &co);
2297     } else {
2298         acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2299                                       bdrv_co_io_em_complete, &co);
2300     }
2301 
2302     trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2303     if (!acb) {
2304         return -EIO;
2305     }
2306     qemu_coroutine_yield();
2307 
2308     return co.ret;
2309 }
2310 
2311 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2312                                          int64_t sector_num, int nb_sectors,
2313                                          QEMUIOVector *iov)
2314 {
2315     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2316 }
2317 
2318 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2319                                          int64_t sector_num, int nb_sectors,
2320                                          QEMUIOVector *iov)
2321 {
2322     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2323 }
2324 
2325 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2326 {
2327     RwCo *rwco = opaque;
2328 
2329     rwco->ret = bdrv_co_flush(rwco->bs);
2330 }
2331 
2332 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2333 {
2334     int ret;
2335     BdrvTrackedRequest req;
2336 
2337     if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2338         bdrv_is_sg(bs)) {
2339         return 0;
2340     }
2341 
2342     tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH);
2343     /* Write back cached data to the OS even with cache=unsafe */
2344     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2345     if (bs->drv->bdrv_co_flush_to_os) {
2346         ret = bs->drv->bdrv_co_flush_to_os(bs);
2347         if (ret < 0) {
2348             goto out;
2349         }
2350     }
2351 
2352     /* But don't actually force it to the disk with cache=unsafe */
2353     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2354         goto flush_parent;
2355     }
2356 
2357     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2358     if (bs->drv->bdrv_co_flush_to_disk) {
2359         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2360     } else if (bs->drv->bdrv_aio_flush) {
2361         BlockAIOCB *acb;
2362         CoroutineIOCompletion co = {
2363             .coroutine = qemu_coroutine_self(),
2364         };
2365 
2366         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2367         if (acb == NULL) {
2368             ret = -EIO;
2369         } else {
2370             qemu_coroutine_yield();
2371             ret = co.ret;
2372         }
2373     } else {
2374         /*
2375          * Some block drivers always operate in either writethrough or unsafe
2376          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2377          * know how the server works (because the behaviour is hardcoded or
2378          * depends on server-side configuration), so we can't ensure that
2379          * everything is safe on disk. Returning an error doesn't work because
2380          * that would break guests even if the server operates in writethrough
2381          * mode.
2382          *
2383          * Let's hope the user knows what he's doing.
2384          */
2385         ret = 0;
2386     }
2387     if (ret < 0) {
2388         goto out;
2389     }
2390 
2391     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2392      * in the case of cache=unsafe, so there are no useless flushes.
2393      */
2394 flush_parent:
2395     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2396 out:
2397     tracked_request_end(&req);
2398     return ret;
2399 }
2400 
2401 int bdrv_flush(BlockDriverState *bs)
2402 {
2403     Coroutine *co;
2404     RwCo rwco = {
2405         .bs = bs,
2406         .ret = NOT_DONE,
2407     };
2408 
2409     if (qemu_in_coroutine()) {
2410         /* Fast-path if already in coroutine context */
2411         bdrv_flush_co_entry(&rwco);
2412     } else {
2413         AioContext *aio_context = bdrv_get_aio_context(bs);
2414 
2415         co = qemu_coroutine_create(bdrv_flush_co_entry);
2416         qemu_coroutine_enter(co, &rwco);
2417         while (rwco.ret == NOT_DONE) {
2418             aio_poll(aio_context, true);
2419         }
2420     }
2421 
2422     return rwco.ret;
2423 }
2424 
2425 typedef struct DiscardCo {
2426     BlockDriverState *bs;
2427     int64_t sector_num;
2428     int nb_sectors;
2429     int ret;
2430 } DiscardCo;
2431 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2432 {
2433     DiscardCo *rwco = opaque;
2434 
2435     rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2436 }
2437 
2438 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2439                                  int nb_sectors)
2440 {
2441     BdrvTrackedRequest req;
2442     int max_discard, ret;
2443 
2444     if (!bs->drv) {
2445         return -ENOMEDIUM;
2446     }
2447 
2448     ret = bdrv_check_request(bs, sector_num, nb_sectors);
2449     if (ret < 0) {
2450         return ret;
2451     } else if (bs->read_only) {
2452         return -EPERM;
2453     }
2454 
2455     /* Do nothing if disabled.  */
2456     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2457         return 0;
2458     }
2459 
2460     if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2461         return 0;
2462     }
2463 
2464     tracked_request_begin(&req, bs, sector_num, nb_sectors,
2465                           BDRV_TRACKED_DISCARD);
2466     bdrv_set_dirty(bs, sector_num, nb_sectors);
2467 
2468     max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2469     while (nb_sectors > 0) {
2470         int ret;
2471         int num = nb_sectors;
2472 
2473         /* align request */
2474         if (bs->bl.discard_alignment &&
2475             num >= bs->bl.discard_alignment &&
2476             sector_num % bs->bl.discard_alignment) {
2477             if (num > bs->bl.discard_alignment) {
2478                 num = bs->bl.discard_alignment;
2479             }
2480             num -= sector_num % bs->bl.discard_alignment;
2481         }
2482 
2483         /* limit request size */
2484         if (num > max_discard) {
2485             num = max_discard;
2486         }
2487 
2488         if (bs->drv->bdrv_co_discard) {
2489             ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2490         } else {
2491             BlockAIOCB *acb;
2492             CoroutineIOCompletion co = {
2493                 .coroutine = qemu_coroutine_self(),
2494             };
2495 
2496             acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2497                                             bdrv_co_io_em_complete, &co);
2498             if (acb == NULL) {
2499                 ret = -EIO;
2500                 goto out;
2501             } else {
2502                 qemu_coroutine_yield();
2503                 ret = co.ret;
2504             }
2505         }
2506         if (ret && ret != -ENOTSUP) {
2507             goto out;
2508         }
2509 
2510         sector_num += num;
2511         nb_sectors -= num;
2512     }
2513     ret = 0;
2514 out:
2515     tracked_request_end(&req);
2516     return ret;
2517 }
2518 
2519 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2520 {
2521     Coroutine *co;
2522     DiscardCo rwco = {
2523         .bs = bs,
2524         .sector_num = sector_num,
2525         .nb_sectors = nb_sectors,
2526         .ret = NOT_DONE,
2527     };
2528 
2529     if (qemu_in_coroutine()) {
2530         /* Fast-path if already in coroutine context */
2531         bdrv_discard_co_entry(&rwco);
2532     } else {
2533         AioContext *aio_context = bdrv_get_aio_context(bs);
2534 
2535         co = qemu_coroutine_create(bdrv_discard_co_entry);
2536         qemu_coroutine_enter(co, &rwco);
2537         while (rwco.ret == NOT_DONE) {
2538             aio_poll(aio_context, true);
2539         }
2540     }
2541 
2542     return rwco.ret;
2543 }
2544 
2545 typedef struct {
2546     CoroutineIOCompletion *co;
2547     QEMUBH *bh;
2548 } BdrvIoctlCompletionData;
2549 
2550 static void bdrv_ioctl_bh_cb(void *opaque)
2551 {
2552     BdrvIoctlCompletionData *data = opaque;
2553 
2554     bdrv_co_io_em_complete(data->co, -ENOTSUP);
2555     qemu_bh_delete(data->bh);
2556 }
2557 
2558 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf)
2559 {
2560     BlockDriver *drv = bs->drv;
2561     BdrvTrackedRequest tracked_req;
2562     CoroutineIOCompletion co = {
2563         .coroutine = qemu_coroutine_self(),
2564     };
2565     BlockAIOCB *acb;
2566 
2567     tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL);
2568     if (!drv || !drv->bdrv_aio_ioctl) {
2569         co.ret = -ENOTSUP;
2570         goto out;
2571     }
2572 
2573     acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2574     if (!acb) {
2575         BdrvIoctlCompletionData *data = g_new(BdrvIoctlCompletionData, 1);
2576         data->bh = aio_bh_new(bdrv_get_aio_context(bs),
2577                                 bdrv_ioctl_bh_cb, data);
2578         data->co = &co;
2579         qemu_bh_schedule(data->bh);
2580     }
2581     qemu_coroutine_yield();
2582 out:
2583     tracked_request_end(&tracked_req);
2584     return co.ret;
2585 }
2586 
2587 typedef struct {
2588     BlockDriverState *bs;
2589     int req;
2590     void *buf;
2591     int ret;
2592 } BdrvIoctlCoData;
2593 
2594 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque)
2595 {
2596     BdrvIoctlCoData *data = opaque;
2597     data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf);
2598 }
2599 
2600 /* needed for generic scsi interface */
2601 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2602 {
2603     BdrvIoctlCoData data = {
2604         .bs = bs,
2605         .req = req,
2606         .buf = buf,
2607         .ret = -EINPROGRESS,
2608     };
2609 
2610     if (qemu_in_coroutine()) {
2611         /* Fast-path if already in coroutine context */
2612         bdrv_co_ioctl_entry(&data);
2613     } else {
2614         Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry);
2615         qemu_coroutine_enter(co, &data);
2616     }
2617     while (data.ret == -EINPROGRESS) {
2618         aio_poll(bdrv_get_aio_context(bs), true);
2619     }
2620     return data.ret;
2621 }
2622 
2623 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque)
2624 {
2625     BlockAIOCBCoroutine *acb = opaque;
2626     acb->req.error = bdrv_co_do_ioctl(acb->common.bs,
2627                                       acb->req.req, acb->req.buf);
2628     bdrv_co_complete(acb);
2629 }
2630 
2631 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2632         unsigned long int req, void *buf,
2633         BlockCompletionFunc *cb, void *opaque)
2634 {
2635     BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info,
2636                                             bs, cb, opaque);
2637     Coroutine *co;
2638 
2639     acb->need_bh = true;
2640     acb->req.error = -EINPROGRESS;
2641     acb->req.req = req;
2642     acb->req.buf = buf;
2643     co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry);
2644     qemu_coroutine_enter(co, acb);
2645 
2646     bdrv_co_maybe_schedule_bh(acb);
2647     return &acb->common;
2648 }
2649 
2650 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2651 {
2652     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2653 }
2654 
2655 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2656 {
2657     return memset(qemu_blockalign(bs, size), 0, size);
2658 }
2659 
2660 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2661 {
2662     size_t align = bdrv_opt_mem_align(bs);
2663 
2664     /* Ensure that NULL is never returned on success */
2665     assert(align > 0);
2666     if (size == 0) {
2667         size = align;
2668     }
2669 
2670     return qemu_try_memalign(align, size);
2671 }
2672 
2673 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2674 {
2675     void *mem = qemu_try_blockalign(bs, size);
2676 
2677     if (mem) {
2678         memset(mem, 0, size);
2679     }
2680 
2681     return mem;
2682 }
2683 
2684 /*
2685  * Check if all memory in this vector is sector aligned.
2686  */
2687 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2688 {
2689     int i;
2690     size_t alignment = bdrv_min_mem_align(bs);
2691 
2692     for (i = 0; i < qiov->niov; i++) {
2693         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2694             return false;
2695         }
2696         if (qiov->iov[i].iov_len % alignment) {
2697             return false;
2698         }
2699     }
2700 
2701     return true;
2702 }
2703 
2704 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2705                                     NotifierWithReturn *notifier)
2706 {
2707     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2708 }
2709 
2710 void bdrv_io_plug(BlockDriverState *bs)
2711 {
2712     BlockDriver *drv = bs->drv;
2713     if (drv && drv->bdrv_io_plug) {
2714         drv->bdrv_io_plug(bs);
2715     } else if (bs->file) {
2716         bdrv_io_plug(bs->file->bs);
2717     }
2718 }
2719 
2720 void bdrv_io_unplug(BlockDriverState *bs)
2721 {
2722     BlockDriver *drv = bs->drv;
2723     if (drv && drv->bdrv_io_unplug) {
2724         drv->bdrv_io_unplug(bs);
2725     } else if (bs->file) {
2726         bdrv_io_unplug(bs->file->bs);
2727     }
2728 }
2729 
2730 void bdrv_flush_io_queue(BlockDriverState *bs)
2731 {
2732     BlockDriver *drv = bs->drv;
2733     if (drv && drv->bdrv_flush_io_queue) {
2734         drv->bdrv_flush_io_queue(bs);
2735     } else if (bs->file) {
2736         bdrv_flush_io_queue(bs->file->bs);
2737     }
2738     bdrv_start_throttled_reqs(bs);
2739 }
2740 
2741 void bdrv_drained_begin(BlockDriverState *bs)
2742 {
2743     if (!bs->quiesce_counter++) {
2744         aio_disable_external(bdrv_get_aio_context(bs));
2745     }
2746     bdrv_drain(bs);
2747 }
2748 
2749 void bdrv_drained_end(BlockDriverState *bs)
2750 {
2751     assert(bs->quiesce_counter > 0);
2752     if (--bs->quiesce_counter > 0) {
2753         return;
2754     }
2755     aio_enable_external(bdrv_get_aio_context(bs));
2756 }
2757