1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "qemu/cutils.h" 33 #include "qapi/error.h" 34 #include "qemu/error-report.h" 35 36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 37 38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 40 41 static void bdrv_parent_cb_resize(BlockDriverState *bs); 42 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 43 int64_t offset, int bytes, BdrvRequestFlags flags); 44 45 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 46 bool ignore_bds_parents) 47 { 48 BdrvChild *c, *next; 49 50 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 51 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 52 continue; 53 } 54 bdrv_parent_drained_begin_single(c, false); 55 } 56 } 57 58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 59 bool ignore_bds_parents) 60 { 61 BdrvChild *c, *next; 62 63 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 64 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 65 continue; 66 } 67 if (c->role->drained_end) { 68 c->role->drained_end(c); 69 } 70 } 71 } 72 73 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 74 { 75 if (c->role->drained_poll) { 76 return c->role->drained_poll(c); 77 } 78 return false; 79 } 80 81 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 82 bool ignore_bds_parents) 83 { 84 BdrvChild *c, *next; 85 bool busy = false; 86 87 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 88 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 89 continue; 90 } 91 busy |= bdrv_parent_drained_poll_single(c); 92 } 93 94 return busy; 95 } 96 97 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 98 { 99 if (c->role->drained_begin) { 100 c->role->drained_begin(c); 101 } 102 if (poll) { 103 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 104 } 105 } 106 107 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 108 { 109 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 110 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 111 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 112 src->opt_mem_alignment); 113 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 114 src->min_mem_alignment); 115 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 116 } 117 118 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 119 { 120 BlockDriver *drv = bs->drv; 121 Error *local_err = NULL; 122 123 memset(&bs->bl, 0, sizeof(bs->bl)); 124 125 if (!drv) { 126 return; 127 } 128 129 /* Default alignment based on whether driver has byte interface */ 130 bs->bl.request_alignment = (drv->bdrv_co_preadv || 131 drv->bdrv_aio_preadv) ? 1 : 512; 132 133 /* Take some limits from the children as a default */ 134 if (bs->file) { 135 bdrv_refresh_limits(bs->file->bs, &local_err); 136 if (local_err) { 137 error_propagate(errp, local_err); 138 return; 139 } 140 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 141 } else { 142 bs->bl.min_mem_alignment = 512; 143 bs->bl.opt_mem_alignment = getpagesize(); 144 145 /* Safe default since most protocols use readv()/writev()/etc */ 146 bs->bl.max_iov = IOV_MAX; 147 } 148 149 if (bs->backing) { 150 bdrv_refresh_limits(bs->backing->bs, &local_err); 151 if (local_err) { 152 error_propagate(errp, local_err); 153 return; 154 } 155 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 156 } 157 158 /* Then let the driver override it */ 159 if (drv->bdrv_refresh_limits) { 160 drv->bdrv_refresh_limits(bs, errp); 161 } 162 } 163 164 /** 165 * The copy-on-read flag is actually a reference count so multiple users may 166 * use the feature without worrying about clobbering its previous state. 167 * Copy-on-read stays enabled until all users have called to disable it. 168 */ 169 void bdrv_enable_copy_on_read(BlockDriverState *bs) 170 { 171 atomic_inc(&bs->copy_on_read); 172 } 173 174 void bdrv_disable_copy_on_read(BlockDriverState *bs) 175 { 176 int old = atomic_fetch_dec(&bs->copy_on_read); 177 assert(old >= 1); 178 } 179 180 typedef struct { 181 Coroutine *co; 182 BlockDriverState *bs; 183 bool done; 184 bool begin; 185 bool recursive; 186 bool poll; 187 BdrvChild *parent; 188 bool ignore_bds_parents; 189 } BdrvCoDrainData; 190 191 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 192 { 193 BdrvCoDrainData *data = opaque; 194 BlockDriverState *bs = data->bs; 195 196 if (data->begin) { 197 bs->drv->bdrv_co_drain_begin(bs); 198 } else { 199 bs->drv->bdrv_co_drain_end(bs); 200 } 201 202 /* Set data->done before reading bs->wakeup. */ 203 atomic_mb_set(&data->done, true); 204 bdrv_dec_in_flight(bs); 205 206 if (data->begin) { 207 g_free(data); 208 } 209 } 210 211 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 212 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin) 213 { 214 BdrvCoDrainData *data; 215 216 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 217 (!begin && !bs->drv->bdrv_co_drain_end)) { 218 return; 219 } 220 221 data = g_new(BdrvCoDrainData, 1); 222 *data = (BdrvCoDrainData) { 223 .bs = bs, 224 .done = false, 225 .begin = begin 226 }; 227 228 /* Make sure the driver callback completes during the polling phase for 229 * drain_begin. */ 230 bdrv_inc_in_flight(bs); 231 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 232 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 233 234 if (!begin) { 235 BDRV_POLL_WHILE(bs, !data->done); 236 g_free(data); 237 } 238 } 239 240 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 241 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 242 BdrvChild *ignore_parent, bool ignore_bds_parents) 243 { 244 BdrvChild *child, *next; 245 246 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 247 return true; 248 } 249 250 if (atomic_read(&bs->in_flight)) { 251 return true; 252 } 253 254 if (recursive) { 255 assert(!ignore_bds_parents); 256 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 257 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 258 return true; 259 } 260 } 261 } 262 263 return false; 264 } 265 266 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 267 BdrvChild *ignore_parent) 268 { 269 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 270 } 271 272 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 273 BdrvChild *parent, bool ignore_bds_parents, 274 bool poll); 275 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 276 BdrvChild *parent, bool ignore_bds_parents); 277 278 static void bdrv_co_drain_bh_cb(void *opaque) 279 { 280 BdrvCoDrainData *data = opaque; 281 Coroutine *co = data->co; 282 BlockDriverState *bs = data->bs; 283 284 if (bs) { 285 AioContext *ctx = bdrv_get_aio_context(bs); 286 AioContext *co_ctx = qemu_coroutine_get_aio_context(co); 287 288 /* 289 * When the coroutine yielded, the lock for its home context was 290 * released, so we need to re-acquire it here. If it explicitly 291 * acquired a different context, the lock is still held and we don't 292 * want to lock it a second time (or AIO_WAIT_WHILE() would hang). 293 */ 294 if (ctx == co_ctx) { 295 aio_context_acquire(ctx); 296 } 297 bdrv_dec_in_flight(bs); 298 if (data->begin) { 299 bdrv_do_drained_begin(bs, data->recursive, data->parent, 300 data->ignore_bds_parents, data->poll); 301 } else { 302 bdrv_do_drained_end(bs, data->recursive, data->parent, 303 data->ignore_bds_parents); 304 } 305 if (ctx == co_ctx) { 306 aio_context_release(ctx); 307 } 308 } else { 309 assert(data->begin); 310 bdrv_drain_all_begin(); 311 } 312 313 data->done = true; 314 aio_co_wake(co); 315 } 316 317 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 318 bool begin, bool recursive, 319 BdrvChild *parent, 320 bool ignore_bds_parents, 321 bool poll) 322 { 323 BdrvCoDrainData data; 324 325 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 326 * other coroutines run if they were queued by aio_co_enter(). */ 327 328 assert(qemu_in_coroutine()); 329 data = (BdrvCoDrainData) { 330 .co = qemu_coroutine_self(), 331 .bs = bs, 332 .done = false, 333 .begin = begin, 334 .recursive = recursive, 335 .parent = parent, 336 .ignore_bds_parents = ignore_bds_parents, 337 .poll = poll, 338 }; 339 if (bs) { 340 bdrv_inc_in_flight(bs); 341 } 342 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 343 bdrv_co_drain_bh_cb, &data); 344 345 qemu_coroutine_yield(); 346 /* If we are resumed from some other event (such as an aio completion or a 347 * timer callback), it is a bug in the caller that should be fixed. */ 348 assert(data.done); 349 } 350 351 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 352 BdrvChild *parent, bool ignore_bds_parents) 353 { 354 assert(!qemu_in_coroutine()); 355 356 /* Stop things in parent-to-child order */ 357 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 358 aio_disable_external(bdrv_get_aio_context(bs)); 359 } 360 361 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 362 bdrv_drain_invoke(bs, true); 363 } 364 365 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 366 BdrvChild *parent, bool ignore_bds_parents, 367 bool poll) 368 { 369 BdrvChild *child, *next; 370 371 if (qemu_in_coroutine()) { 372 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 373 poll); 374 return; 375 } 376 377 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 378 379 if (recursive) { 380 assert(!ignore_bds_parents); 381 bs->recursive_quiesce_counter++; 382 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 383 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 384 false); 385 } 386 } 387 388 /* 389 * Wait for drained requests to finish. 390 * 391 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 392 * call is needed so things in this AioContext can make progress even 393 * though we don't return to the main AioContext loop - this automatically 394 * includes other nodes in the same AioContext and therefore all child 395 * nodes. 396 */ 397 if (poll) { 398 assert(!ignore_bds_parents); 399 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 400 } 401 } 402 403 void bdrv_drained_begin(BlockDriverState *bs) 404 { 405 bdrv_do_drained_begin(bs, false, NULL, false, true); 406 } 407 408 void bdrv_subtree_drained_begin(BlockDriverState *bs) 409 { 410 bdrv_do_drained_begin(bs, true, NULL, false, true); 411 } 412 413 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 414 BdrvChild *parent, bool ignore_bds_parents) 415 { 416 BdrvChild *child, *next; 417 int old_quiesce_counter; 418 419 if (qemu_in_coroutine()) { 420 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 421 false); 422 return; 423 } 424 assert(bs->quiesce_counter > 0); 425 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter); 426 427 /* Re-enable things in child-to-parent order */ 428 bdrv_drain_invoke(bs, false); 429 bdrv_parent_drained_end(bs, parent, ignore_bds_parents); 430 if (old_quiesce_counter == 1) { 431 aio_enable_external(bdrv_get_aio_context(bs)); 432 } 433 434 if (recursive) { 435 assert(!ignore_bds_parents); 436 bs->recursive_quiesce_counter--; 437 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 438 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents); 439 } 440 } 441 } 442 443 void bdrv_drained_end(BlockDriverState *bs) 444 { 445 bdrv_do_drained_end(bs, false, NULL, false); 446 } 447 448 void bdrv_subtree_drained_end(BlockDriverState *bs) 449 { 450 bdrv_do_drained_end(bs, true, NULL, false); 451 } 452 453 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 454 { 455 int i; 456 457 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 458 bdrv_do_drained_begin(child->bs, true, child, false, true); 459 } 460 } 461 462 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 463 { 464 int i; 465 466 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 467 bdrv_do_drained_end(child->bs, true, child, false); 468 } 469 } 470 471 /* 472 * Wait for pending requests to complete on a single BlockDriverState subtree, 473 * and suspend block driver's internal I/O until next request arrives. 474 * 475 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 476 * AioContext. 477 */ 478 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 479 { 480 assert(qemu_in_coroutine()); 481 bdrv_drained_begin(bs); 482 bdrv_drained_end(bs); 483 } 484 485 void bdrv_drain(BlockDriverState *bs) 486 { 487 bdrv_drained_begin(bs); 488 bdrv_drained_end(bs); 489 } 490 491 static void bdrv_drain_assert_idle(BlockDriverState *bs) 492 { 493 BdrvChild *child, *next; 494 495 assert(atomic_read(&bs->in_flight) == 0); 496 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 497 bdrv_drain_assert_idle(child->bs); 498 } 499 } 500 501 unsigned int bdrv_drain_all_count = 0; 502 503 static bool bdrv_drain_all_poll(void) 504 { 505 BlockDriverState *bs = NULL; 506 bool result = false; 507 508 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 509 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 510 while ((bs = bdrv_next_all_states(bs))) { 511 AioContext *aio_context = bdrv_get_aio_context(bs); 512 aio_context_acquire(aio_context); 513 result |= bdrv_drain_poll(bs, false, NULL, true); 514 aio_context_release(aio_context); 515 } 516 517 return result; 518 } 519 520 /* 521 * Wait for pending requests to complete across all BlockDriverStates 522 * 523 * This function does not flush data to disk, use bdrv_flush_all() for that 524 * after calling this function. 525 * 526 * This pauses all block jobs and disables external clients. It must 527 * be paired with bdrv_drain_all_end(). 528 * 529 * NOTE: no new block jobs or BlockDriverStates can be created between 530 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 531 */ 532 void bdrv_drain_all_begin(void) 533 { 534 BlockDriverState *bs = NULL; 535 536 if (qemu_in_coroutine()) { 537 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true); 538 return; 539 } 540 541 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 542 * loop AioContext, so make sure we're in the main context. */ 543 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 544 assert(bdrv_drain_all_count < INT_MAX); 545 bdrv_drain_all_count++; 546 547 /* Quiesce all nodes, without polling in-flight requests yet. The graph 548 * cannot change during this loop. */ 549 while ((bs = bdrv_next_all_states(bs))) { 550 AioContext *aio_context = bdrv_get_aio_context(bs); 551 552 aio_context_acquire(aio_context); 553 bdrv_do_drained_begin(bs, false, NULL, true, false); 554 aio_context_release(aio_context); 555 } 556 557 /* Now poll the in-flight requests */ 558 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 559 560 while ((bs = bdrv_next_all_states(bs))) { 561 bdrv_drain_assert_idle(bs); 562 } 563 } 564 565 void bdrv_drain_all_end(void) 566 { 567 BlockDriverState *bs = NULL; 568 569 while ((bs = bdrv_next_all_states(bs))) { 570 AioContext *aio_context = bdrv_get_aio_context(bs); 571 572 aio_context_acquire(aio_context); 573 bdrv_do_drained_end(bs, false, NULL, true); 574 aio_context_release(aio_context); 575 } 576 577 assert(bdrv_drain_all_count > 0); 578 bdrv_drain_all_count--; 579 } 580 581 void bdrv_drain_all(void) 582 { 583 bdrv_drain_all_begin(); 584 bdrv_drain_all_end(); 585 } 586 587 /** 588 * Remove an active request from the tracked requests list 589 * 590 * This function should be called when a tracked request is completing. 591 */ 592 static void tracked_request_end(BdrvTrackedRequest *req) 593 { 594 if (req->serialising) { 595 atomic_dec(&req->bs->serialising_in_flight); 596 } 597 598 qemu_co_mutex_lock(&req->bs->reqs_lock); 599 QLIST_REMOVE(req, list); 600 qemu_co_queue_restart_all(&req->wait_queue); 601 qemu_co_mutex_unlock(&req->bs->reqs_lock); 602 } 603 604 /** 605 * Add an active request to the tracked requests list 606 */ 607 static void tracked_request_begin(BdrvTrackedRequest *req, 608 BlockDriverState *bs, 609 int64_t offset, 610 uint64_t bytes, 611 enum BdrvTrackedRequestType type) 612 { 613 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes); 614 615 *req = (BdrvTrackedRequest){ 616 .bs = bs, 617 .offset = offset, 618 .bytes = bytes, 619 .type = type, 620 .co = qemu_coroutine_self(), 621 .serialising = false, 622 .overlap_offset = offset, 623 .overlap_bytes = bytes, 624 }; 625 626 qemu_co_queue_init(&req->wait_queue); 627 628 qemu_co_mutex_lock(&bs->reqs_lock); 629 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 630 qemu_co_mutex_unlock(&bs->reqs_lock); 631 } 632 633 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 634 { 635 int64_t overlap_offset = req->offset & ~(align - 1); 636 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 637 - overlap_offset; 638 639 if (!req->serialising) { 640 atomic_inc(&req->bs->serialising_in_flight); 641 req->serialising = true; 642 } 643 644 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 645 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 646 } 647 648 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req) 649 { 650 /* 651 * If the request is serialising, overlap_offset and overlap_bytes are set, 652 * so we can check if the request is aligned. Otherwise, don't care and 653 * return false. 654 */ 655 656 return req->serialising && (req->offset == req->overlap_offset) && 657 (req->bytes == req->overlap_bytes); 658 } 659 660 /** 661 * Round a region to cluster boundaries 662 */ 663 void bdrv_round_to_clusters(BlockDriverState *bs, 664 int64_t offset, int64_t bytes, 665 int64_t *cluster_offset, 666 int64_t *cluster_bytes) 667 { 668 BlockDriverInfo bdi; 669 670 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 671 *cluster_offset = offset; 672 *cluster_bytes = bytes; 673 } else { 674 int64_t c = bdi.cluster_size; 675 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 676 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 677 } 678 } 679 680 static int bdrv_get_cluster_size(BlockDriverState *bs) 681 { 682 BlockDriverInfo bdi; 683 int ret; 684 685 ret = bdrv_get_info(bs, &bdi); 686 if (ret < 0 || bdi.cluster_size == 0) { 687 return bs->bl.request_alignment; 688 } else { 689 return bdi.cluster_size; 690 } 691 } 692 693 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 694 int64_t offset, uint64_t bytes) 695 { 696 /* aaaa bbbb */ 697 if (offset >= req->overlap_offset + req->overlap_bytes) { 698 return false; 699 } 700 /* bbbb aaaa */ 701 if (req->overlap_offset >= offset + bytes) { 702 return false; 703 } 704 return true; 705 } 706 707 void bdrv_inc_in_flight(BlockDriverState *bs) 708 { 709 atomic_inc(&bs->in_flight); 710 } 711 712 void bdrv_wakeup(BlockDriverState *bs) 713 { 714 aio_wait_kick(); 715 } 716 717 void bdrv_dec_in_flight(BlockDriverState *bs) 718 { 719 atomic_dec(&bs->in_flight); 720 bdrv_wakeup(bs); 721 } 722 723 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 724 { 725 BlockDriverState *bs = self->bs; 726 BdrvTrackedRequest *req; 727 bool retry; 728 bool waited = false; 729 730 if (!atomic_read(&bs->serialising_in_flight)) { 731 return false; 732 } 733 734 do { 735 retry = false; 736 qemu_co_mutex_lock(&bs->reqs_lock); 737 QLIST_FOREACH(req, &bs->tracked_requests, list) { 738 if (req == self || (!req->serialising && !self->serialising)) { 739 continue; 740 } 741 if (tracked_request_overlaps(req, self->overlap_offset, 742 self->overlap_bytes)) 743 { 744 /* Hitting this means there was a reentrant request, for 745 * example, a block driver issuing nested requests. This must 746 * never happen since it means deadlock. 747 */ 748 assert(qemu_coroutine_self() != req->co); 749 750 /* If the request is already (indirectly) waiting for us, or 751 * will wait for us as soon as it wakes up, then just go on 752 * (instead of producing a deadlock in the former case). */ 753 if (!req->waiting_for) { 754 self->waiting_for = req; 755 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 756 self->waiting_for = NULL; 757 retry = true; 758 waited = true; 759 break; 760 } 761 } 762 } 763 qemu_co_mutex_unlock(&bs->reqs_lock); 764 } while (retry); 765 766 return waited; 767 } 768 769 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 770 size_t size) 771 { 772 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 773 return -EIO; 774 } 775 776 if (!bdrv_is_inserted(bs)) { 777 return -ENOMEDIUM; 778 } 779 780 if (offset < 0) { 781 return -EIO; 782 } 783 784 return 0; 785 } 786 787 typedef struct RwCo { 788 BdrvChild *child; 789 int64_t offset; 790 QEMUIOVector *qiov; 791 bool is_write; 792 int ret; 793 BdrvRequestFlags flags; 794 } RwCo; 795 796 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 797 { 798 RwCo *rwco = opaque; 799 800 if (!rwco->is_write) { 801 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 802 rwco->qiov->size, rwco->qiov, 803 rwco->flags); 804 } else { 805 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 806 rwco->qiov->size, rwco->qiov, 807 rwco->flags); 808 } 809 aio_wait_kick(); 810 } 811 812 /* 813 * Process a vectored synchronous request using coroutines 814 */ 815 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 816 QEMUIOVector *qiov, bool is_write, 817 BdrvRequestFlags flags) 818 { 819 Coroutine *co; 820 RwCo rwco = { 821 .child = child, 822 .offset = offset, 823 .qiov = qiov, 824 .is_write = is_write, 825 .ret = NOT_DONE, 826 .flags = flags, 827 }; 828 829 if (qemu_in_coroutine()) { 830 /* Fast-path if already in coroutine context */ 831 bdrv_rw_co_entry(&rwco); 832 } else { 833 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 834 bdrv_coroutine_enter(child->bs, co); 835 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 836 } 837 return rwco.ret; 838 } 839 840 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 841 int bytes, BdrvRequestFlags flags) 842 { 843 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes); 844 845 return bdrv_prwv_co(child, offset, &qiov, true, 846 BDRV_REQ_ZERO_WRITE | flags); 847 } 848 849 /* 850 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 851 * The operation is sped up by checking the block status and only writing 852 * zeroes to the device if they currently do not return zeroes. Optional 853 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 854 * BDRV_REQ_FUA). 855 * 856 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 857 */ 858 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 859 { 860 int ret; 861 int64_t target_size, bytes, offset = 0; 862 BlockDriverState *bs = child->bs; 863 864 target_size = bdrv_getlength(bs); 865 if (target_size < 0) { 866 return target_size; 867 } 868 869 for (;;) { 870 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 871 if (bytes <= 0) { 872 return 0; 873 } 874 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 875 if (ret < 0) { 876 return ret; 877 } 878 if (ret & BDRV_BLOCK_ZERO) { 879 offset += bytes; 880 continue; 881 } 882 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 883 if (ret < 0) { 884 return ret; 885 } 886 offset += bytes; 887 } 888 } 889 890 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 891 { 892 int ret; 893 894 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 895 if (ret < 0) { 896 return ret; 897 } 898 899 return qiov->size; 900 } 901 902 /* See bdrv_pwrite() for the return codes */ 903 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 904 { 905 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 906 907 if (bytes < 0) { 908 return -EINVAL; 909 } 910 911 return bdrv_preadv(child, offset, &qiov); 912 } 913 914 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 915 { 916 int ret; 917 918 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 919 if (ret < 0) { 920 return ret; 921 } 922 923 return qiov->size; 924 } 925 926 /* Return no. of bytes on success or < 0 on error. Important errors are: 927 -EIO generic I/O error (may happen for all errors) 928 -ENOMEDIUM No media inserted. 929 -EINVAL Invalid offset or number of bytes 930 -EACCES Trying to write a read-only device 931 */ 932 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 933 { 934 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 935 936 if (bytes < 0) { 937 return -EINVAL; 938 } 939 940 return bdrv_pwritev(child, offset, &qiov); 941 } 942 943 /* 944 * Writes to the file and ensures that no writes are reordered across this 945 * request (acts as a barrier) 946 * 947 * Returns 0 on success, -errno in error cases. 948 */ 949 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 950 const void *buf, int count) 951 { 952 int ret; 953 954 ret = bdrv_pwrite(child, offset, buf, count); 955 if (ret < 0) { 956 return ret; 957 } 958 959 ret = bdrv_flush(child->bs); 960 if (ret < 0) { 961 return ret; 962 } 963 964 return 0; 965 } 966 967 typedef struct CoroutineIOCompletion { 968 Coroutine *coroutine; 969 int ret; 970 } CoroutineIOCompletion; 971 972 static void bdrv_co_io_em_complete(void *opaque, int ret) 973 { 974 CoroutineIOCompletion *co = opaque; 975 976 co->ret = ret; 977 aio_co_wake(co->coroutine); 978 } 979 980 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 981 uint64_t offset, uint64_t bytes, 982 QEMUIOVector *qiov, int flags) 983 { 984 BlockDriver *drv = bs->drv; 985 int64_t sector_num; 986 unsigned int nb_sectors; 987 988 assert(!(flags & ~BDRV_REQ_MASK)); 989 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 990 991 if (!drv) { 992 return -ENOMEDIUM; 993 } 994 995 if (drv->bdrv_co_preadv) { 996 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 997 } 998 999 if (drv->bdrv_aio_preadv) { 1000 BlockAIOCB *acb; 1001 CoroutineIOCompletion co = { 1002 .coroutine = qemu_coroutine_self(), 1003 }; 1004 1005 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1006 bdrv_co_io_em_complete, &co); 1007 if (acb == NULL) { 1008 return -EIO; 1009 } else { 1010 qemu_coroutine_yield(); 1011 return co.ret; 1012 } 1013 } 1014 1015 sector_num = offset >> BDRV_SECTOR_BITS; 1016 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1017 1018 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1019 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1020 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 1021 assert(drv->bdrv_co_readv); 1022 1023 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1024 } 1025 1026 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1027 uint64_t offset, uint64_t bytes, 1028 QEMUIOVector *qiov, int flags) 1029 { 1030 BlockDriver *drv = bs->drv; 1031 int64_t sector_num; 1032 unsigned int nb_sectors; 1033 int ret; 1034 1035 assert(!(flags & ~BDRV_REQ_MASK)); 1036 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1037 1038 if (!drv) { 1039 return -ENOMEDIUM; 1040 } 1041 1042 if (drv->bdrv_co_pwritev) { 1043 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1044 flags & bs->supported_write_flags); 1045 flags &= ~bs->supported_write_flags; 1046 goto emulate_flags; 1047 } 1048 1049 if (drv->bdrv_aio_pwritev) { 1050 BlockAIOCB *acb; 1051 CoroutineIOCompletion co = { 1052 .coroutine = qemu_coroutine_self(), 1053 }; 1054 1055 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1056 flags & bs->supported_write_flags, 1057 bdrv_co_io_em_complete, &co); 1058 flags &= ~bs->supported_write_flags; 1059 if (acb == NULL) { 1060 ret = -EIO; 1061 } else { 1062 qemu_coroutine_yield(); 1063 ret = co.ret; 1064 } 1065 goto emulate_flags; 1066 } 1067 1068 sector_num = offset >> BDRV_SECTOR_BITS; 1069 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1070 1071 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1072 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1073 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 1074 1075 assert(drv->bdrv_co_writev); 1076 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1077 flags & bs->supported_write_flags); 1078 flags &= ~bs->supported_write_flags; 1079 1080 emulate_flags: 1081 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1082 ret = bdrv_co_flush(bs); 1083 } 1084 1085 return ret; 1086 } 1087 1088 static int coroutine_fn 1089 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 1090 uint64_t bytes, QEMUIOVector *qiov) 1091 { 1092 BlockDriver *drv = bs->drv; 1093 1094 if (!drv) { 1095 return -ENOMEDIUM; 1096 } 1097 1098 if (!drv->bdrv_co_pwritev_compressed) { 1099 return -ENOTSUP; 1100 } 1101 1102 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1103 } 1104 1105 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1106 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 1107 { 1108 BlockDriverState *bs = child->bs; 1109 1110 /* Perform I/O through a temporary buffer so that users who scribble over 1111 * their read buffer while the operation is in progress do not end up 1112 * modifying the image file. This is critical for zero-copy guest I/O 1113 * where anything might happen inside guest memory. 1114 */ 1115 void *bounce_buffer; 1116 1117 BlockDriver *drv = bs->drv; 1118 QEMUIOVector local_qiov; 1119 int64_t cluster_offset; 1120 int64_t cluster_bytes; 1121 size_t skip_bytes; 1122 int ret; 1123 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1124 BDRV_REQUEST_MAX_BYTES); 1125 unsigned int progress = 0; 1126 1127 if (!drv) { 1128 return -ENOMEDIUM; 1129 } 1130 1131 /* FIXME We cannot require callers to have write permissions when all they 1132 * are doing is a read request. If we did things right, write permissions 1133 * would be obtained anyway, but internally by the copy-on-read code. As 1134 * long as it is implemented here rather than in a separate filter driver, 1135 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1136 * it could request permissions. Therefore we have to bypass the permission 1137 * system for the moment. */ 1138 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1139 1140 /* Cover entire cluster so no additional backing file I/O is required when 1141 * allocating cluster in the image file. Note that this value may exceed 1142 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1143 * is one reason we loop rather than doing it all at once. 1144 */ 1145 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1146 skip_bytes = offset - cluster_offset; 1147 1148 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1149 cluster_offset, cluster_bytes); 1150 1151 bounce_buffer = qemu_try_blockalign(bs, 1152 MIN(MIN(max_transfer, cluster_bytes), 1153 MAX_BOUNCE_BUFFER)); 1154 if (bounce_buffer == NULL) { 1155 ret = -ENOMEM; 1156 goto err; 1157 } 1158 1159 while (cluster_bytes) { 1160 int64_t pnum; 1161 1162 ret = bdrv_is_allocated(bs, cluster_offset, 1163 MIN(cluster_bytes, max_transfer), &pnum); 1164 if (ret < 0) { 1165 /* Safe to treat errors in querying allocation as if 1166 * unallocated; we'll probably fail again soon on the 1167 * read, but at least that will set a decent errno. 1168 */ 1169 pnum = MIN(cluster_bytes, max_transfer); 1170 } 1171 1172 /* Stop at EOF if the image ends in the middle of the cluster */ 1173 if (ret == 0 && pnum == 0) { 1174 assert(progress >= bytes); 1175 break; 1176 } 1177 1178 assert(skip_bytes < pnum); 1179 1180 if (ret <= 0) { 1181 /* Must copy-on-read; use the bounce buffer */ 1182 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1183 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1184 1185 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1186 &local_qiov, 0); 1187 if (ret < 0) { 1188 goto err; 1189 } 1190 1191 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1192 if (drv->bdrv_co_pwrite_zeroes && 1193 buffer_is_zero(bounce_buffer, pnum)) { 1194 /* FIXME: Should we (perhaps conditionally) be setting 1195 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1196 * that still correctly reads as zero? */ 1197 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1198 BDRV_REQ_WRITE_UNCHANGED); 1199 } else { 1200 /* This does not change the data on the disk, it is not 1201 * necessary to flush even in cache=writethrough mode. 1202 */ 1203 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1204 &local_qiov, 1205 BDRV_REQ_WRITE_UNCHANGED); 1206 } 1207 1208 if (ret < 0) { 1209 /* It might be okay to ignore write errors for guest 1210 * requests. If this is a deliberate copy-on-read 1211 * then we don't want to ignore the error. Simply 1212 * report it in all cases. 1213 */ 1214 goto err; 1215 } 1216 1217 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes, 1218 pnum - skip_bytes); 1219 } else { 1220 /* Read directly into the destination */ 1221 qemu_iovec_init(&local_qiov, qiov->niov); 1222 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes); 1223 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size, 1224 &local_qiov, 0); 1225 qemu_iovec_destroy(&local_qiov); 1226 if (ret < 0) { 1227 goto err; 1228 } 1229 } 1230 1231 cluster_offset += pnum; 1232 cluster_bytes -= pnum; 1233 progress += pnum - skip_bytes; 1234 skip_bytes = 0; 1235 } 1236 ret = 0; 1237 1238 err: 1239 qemu_vfree(bounce_buffer); 1240 return ret; 1241 } 1242 1243 /* 1244 * Forwards an already correctly aligned request to the BlockDriver. This 1245 * handles copy on read, zeroing after EOF, and fragmentation of large 1246 * reads; any other features must be implemented by the caller. 1247 */ 1248 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1249 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1250 int64_t align, QEMUIOVector *qiov, int flags) 1251 { 1252 BlockDriverState *bs = child->bs; 1253 int64_t total_bytes, max_bytes; 1254 int ret = 0; 1255 uint64_t bytes_remaining = bytes; 1256 int max_transfer; 1257 1258 assert(is_power_of_2(align)); 1259 assert((offset & (align - 1)) == 0); 1260 assert((bytes & (align - 1)) == 0); 1261 assert(!qiov || bytes == qiov->size); 1262 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1263 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1264 align); 1265 1266 /* TODO: We would need a per-BDS .supported_read_flags and 1267 * potential fallback support, if we ever implement any read flags 1268 * to pass through to drivers. For now, there aren't any 1269 * passthrough flags. */ 1270 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 1271 1272 /* Handle Copy on Read and associated serialisation */ 1273 if (flags & BDRV_REQ_COPY_ON_READ) { 1274 /* If we touch the same cluster it counts as an overlap. This 1275 * guarantees that allocating writes will be serialized and not race 1276 * with each other for the same cluster. For example, in copy-on-read 1277 * it ensures that the CoR read and write operations are atomic and 1278 * guest writes cannot interleave between them. */ 1279 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1280 } 1281 1282 /* BDRV_REQ_SERIALISING is only for write operation */ 1283 assert(!(flags & BDRV_REQ_SERIALISING)); 1284 1285 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1286 wait_serialising_requests(req); 1287 } 1288 1289 if (flags & BDRV_REQ_COPY_ON_READ) { 1290 int64_t pnum; 1291 1292 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1293 if (ret < 0) { 1294 goto out; 1295 } 1296 1297 if (!ret || pnum != bytes) { 1298 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); 1299 goto out; 1300 } 1301 } 1302 1303 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1304 total_bytes = bdrv_getlength(bs); 1305 if (total_bytes < 0) { 1306 ret = total_bytes; 1307 goto out; 1308 } 1309 1310 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1311 if (bytes <= max_bytes && bytes <= max_transfer) { 1312 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1313 goto out; 1314 } 1315 1316 while (bytes_remaining) { 1317 int num; 1318 1319 if (max_bytes) { 1320 QEMUIOVector local_qiov; 1321 1322 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1323 assert(num); 1324 qemu_iovec_init(&local_qiov, qiov->niov); 1325 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1326 1327 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1328 num, &local_qiov, 0); 1329 max_bytes -= num; 1330 qemu_iovec_destroy(&local_qiov); 1331 } else { 1332 num = bytes_remaining; 1333 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1334 bytes_remaining); 1335 } 1336 if (ret < 0) { 1337 goto out; 1338 } 1339 bytes_remaining -= num; 1340 } 1341 1342 out: 1343 return ret < 0 ? ret : 0; 1344 } 1345 1346 /* 1347 * Handle a read request in coroutine context 1348 */ 1349 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1350 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1351 BdrvRequestFlags flags) 1352 { 1353 BlockDriverState *bs = child->bs; 1354 BlockDriver *drv = bs->drv; 1355 BdrvTrackedRequest req; 1356 1357 uint64_t align = bs->bl.request_alignment; 1358 uint8_t *head_buf = NULL; 1359 uint8_t *tail_buf = NULL; 1360 QEMUIOVector local_qiov; 1361 bool use_local_qiov = false; 1362 int ret; 1363 1364 trace_bdrv_co_preadv(child->bs, offset, bytes, flags); 1365 1366 if (!drv) { 1367 return -ENOMEDIUM; 1368 } 1369 1370 ret = bdrv_check_byte_request(bs, offset, bytes); 1371 if (ret < 0) { 1372 return ret; 1373 } 1374 1375 bdrv_inc_in_flight(bs); 1376 1377 /* Don't do copy-on-read if we read data before write operation */ 1378 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1379 flags |= BDRV_REQ_COPY_ON_READ; 1380 } 1381 1382 /* Align read if necessary by padding qiov */ 1383 if (offset & (align - 1)) { 1384 head_buf = qemu_blockalign(bs, align); 1385 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1386 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1387 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1388 use_local_qiov = true; 1389 1390 bytes += offset & (align - 1); 1391 offset = offset & ~(align - 1); 1392 } 1393 1394 if ((offset + bytes) & (align - 1)) { 1395 if (!use_local_qiov) { 1396 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1397 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1398 use_local_qiov = true; 1399 } 1400 tail_buf = qemu_blockalign(bs, align); 1401 qemu_iovec_add(&local_qiov, tail_buf, 1402 align - ((offset + bytes) & (align - 1))); 1403 1404 bytes = ROUND_UP(bytes, align); 1405 } 1406 1407 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1408 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1409 use_local_qiov ? &local_qiov : qiov, 1410 flags); 1411 tracked_request_end(&req); 1412 bdrv_dec_in_flight(bs); 1413 1414 if (use_local_qiov) { 1415 qemu_iovec_destroy(&local_qiov); 1416 qemu_vfree(head_buf); 1417 qemu_vfree(tail_buf); 1418 } 1419 1420 return ret; 1421 } 1422 1423 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1424 int64_t offset, int bytes, BdrvRequestFlags flags) 1425 { 1426 BlockDriver *drv = bs->drv; 1427 QEMUIOVector qiov; 1428 void *buf = NULL; 1429 int ret = 0; 1430 bool need_flush = false; 1431 int head = 0; 1432 int tail = 0; 1433 1434 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1435 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1436 bs->bl.request_alignment); 1437 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1438 1439 if (!drv) { 1440 return -ENOMEDIUM; 1441 } 1442 1443 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1444 return -ENOTSUP; 1445 } 1446 1447 assert(alignment % bs->bl.request_alignment == 0); 1448 head = offset % alignment; 1449 tail = (offset + bytes) % alignment; 1450 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1451 assert(max_write_zeroes >= bs->bl.request_alignment); 1452 1453 while (bytes > 0 && !ret) { 1454 int num = bytes; 1455 1456 /* Align request. Block drivers can expect the "bulk" of the request 1457 * to be aligned, and that unaligned requests do not cross cluster 1458 * boundaries. 1459 */ 1460 if (head) { 1461 /* Make a small request up to the first aligned sector. For 1462 * convenience, limit this request to max_transfer even if 1463 * we don't need to fall back to writes. */ 1464 num = MIN(MIN(bytes, max_transfer), alignment - head); 1465 head = (head + num) % alignment; 1466 assert(num < max_write_zeroes); 1467 } else if (tail && num > alignment) { 1468 /* Shorten the request to the last aligned sector. */ 1469 num -= tail; 1470 } 1471 1472 /* limit request size */ 1473 if (num > max_write_zeroes) { 1474 num = max_write_zeroes; 1475 } 1476 1477 ret = -ENOTSUP; 1478 /* First try the efficient write zeroes operation */ 1479 if (drv->bdrv_co_pwrite_zeroes) { 1480 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1481 flags & bs->supported_zero_flags); 1482 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1483 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1484 need_flush = true; 1485 } 1486 } else { 1487 assert(!bs->supported_zero_flags); 1488 } 1489 1490 if (ret < 0 && !(flags & BDRV_REQ_NO_FALLBACK)) { 1491 /* Fall back to bounce buffer if write zeroes is unsupported */ 1492 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1493 1494 if ((flags & BDRV_REQ_FUA) && 1495 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1496 /* No need for bdrv_driver_pwrite() to do a fallback 1497 * flush on each chunk; use just one at the end */ 1498 write_flags &= ~BDRV_REQ_FUA; 1499 need_flush = true; 1500 } 1501 num = MIN(num, max_transfer); 1502 if (buf == NULL) { 1503 buf = qemu_try_blockalign0(bs, num); 1504 if (buf == NULL) { 1505 ret = -ENOMEM; 1506 goto fail; 1507 } 1508 } 1509 qemu_iovec_init_buf(&qiov, buf, num); 1510 1511 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1512 1513 /* Keep bounce buffer around if it is big enough for all 1514 * all future requests. 1515 */ 1516 if (num < max_transfer) { 1517 qemu_vfree(buf); 1518 buf = NULL; 1519 } 1520 } 1521 1522 offset += num; 1523 bytes -= num; 1524 } 1525 1526 fail: 1527 if (ret == 0 && need_flush) { 1528 ret = bdrv_co_flush(bs); 1529 } 1530 qemu_vfree(buf); 1531 return ret; 1532 } 1533 1534 static inline int coroutine_fn 1535 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes, 1536 BdrvTrackedRequest *req, int flags) 1537 { 1538 BlockDriverState *bs = child->bs; 1539 bool waited; 1540 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1541 1542 if (bs->read_only) { 1543 return -EPERM; 1544 } 1545 1546 /* BDRV_REQ_NO_SERIALISING is only for read operation */ 1547 assert(!(flags & BDRV_REQ_NO_SERIALISING)); 1548 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1549 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1550 assert(!(flags & ~BDRV_REQ_MASK)); 1551 1552 if (flags & BDRV_REQ_SERIALISING) { 1553 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1554 } 1555 1556 waited = wait_serialising_requests(req); 1557 1558 assert(!waited || !req->serialising || 1559 is_request_serialising_and_aligned(req)); 1560 assert(req->overlap_offset <= offset); 1561 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1562 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1563 1564 switch (req->type) { 1565 case BDRV_TRACKED_WRITE: 1566 case BDRV_TRACKED_DISCARD: 1567 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1568 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1569 } else { 1570 assert(child->perm & BLK_PERM_WRITE); 1571 } 1572 return notifier_with_return_list_notify(&bs->before_write_notifiers, 1573 req); 1574 case BDRV_TRACKED_TRUNCATE: 1575 assert(child->perm & BLK_PERM_RESIZE); 1576 return 0; 1577 default: 1578 abort(); 1579 } 1580 } 1581 1582 static inline void coroutine_fn 1583 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes, 1584 BdrvTrackedRequest *req, int ret) 1585 { 1586 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1587 BlockDriverState *bs = child->bs; 1588 1589 atomic_inc(&bs->write_gen); 1590 1591 /* 1592 * Discard cannot extend the image, but in error handling cases, such as 1593 * when reverting a qcow2 cluster allocation, the discarded range can pass 1594 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1595 * here. Instead, just skip it, since semantically a discard request 1596 * beyond EOF cannot expand the image anyway. 1597 */ 1598 if (ret == 0 && 1599 (req->type == BDRV_TRACKED_TRUNCATE || 1600 end_sector > bs->total_sectors) && 1601 req->type != BDRV_TRACKED_DISCARD) { 1602 bs->total_sectors = end_sector; 1603 bdrv_parent_cb_resize(bs); 1604 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1605 } 1606 if (req->bytes) { 1607 switch (req->type) { 1608 case BDRV_TRACKED_WRITE: 1609 stat64_max(&bs->wr_highest_offset, offset + bytes); 1610 /* fall through, to set dirty bits */ 1611 case BDRV_TRACKED_DISCARD: 1612 bdrv_set_dirty(bs, offset, bytes); 1613 break; 1614 default: 1615 break; 1616 } 1617 } 1618 } 1619 1620 /* 1621 * Forwards an already correctly aligned write request to the BlockDriver, 1622 * after possibly fragmenting it. 1623 */ 1624 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1625 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1626 int64_t align, QEMUIOVector *qiov, int flags) 1627 { 1628 BlockDriverState *bs = child->bs; 1629 BlockDriver *drv = bs->drv; 1630 int ret; 1631 1632 uint64_t bytes_remaining = bytes; 1633 int max_transfer; 1634 1635 if (!drv) { 1636 return -ENOMEDIUM; 1637 } 1638 1639 if (bdrv_has_readonly_bitmaps(bs)) { 1640 return -EPERM; 1641 } 1642 1643 assert(is_power_of_2(align)); 1644 assert((offset & (align - 1)) == 0); 1645 assert((bytes & (align - 1)) == 0); 1646 assert(!qiov || bytes == qiov->size); 1647 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1648 align); 1649 1650 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1651 1652 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1653 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1654 qemu_iovec_is_zero(qiov)) { 1655 flags |= BDRV_REQ_ZERO_WRITE; 1656 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1657 flags |= BDRV_REQ_MAY_UNMAP; 1658 } 1659 } 1660 1661 if (ret < 0) { 1662 /* Do nothing, write notifier decided to fail this request */ 1663 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1664 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1665 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1666 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1667 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1668 } else if (bytes <= max_transfer) { 1669 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1670 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1671 } else { 1672 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1673 while (bytes_remaining) { 1674 int num = MIN(bytes_remaining, max_transfer); 1675 QEMUIOVector local_qiov; 1676 int local_flags = flags; 1677 1678 assert(num); 1679 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1680 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1681 /* If FUA is going to be emulated by flush, we only 1682 * need to flush on the last iteration */ 1683 local_flags &= ~BDRV_REQ_FUA; 1684 } 1685 qemu_iovec_init(&local_qiov, qiov->niov); 1686 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1687 1688 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1689 num, &local_qiov, local_flags); 1690 qemu_iovec_destroy(&local_qiov); 1691 if (ret < 0) { 1692 break; 1693 } 1694 bytes_remaining -= num; 1695 } 1696 } 1697 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1698 1699 if (ret >= 0) { 1700 ret = 0; 1701 } 1702 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 1703 1704 return ret; 1705 } 1706 1707 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1708 int64_t offset, 1709 unsigned int bytes, 1710 BdrvRequestFlags flags, 1711 BdrvTrackedRequest *req) 1712 { 1713 BlockDriverState *bs = child->bs; 1714 uint8_t *buf = NULL; 1715 QEMUIOVector local_qiov; 1716 uint64_t align = bs->bl.request_alignment; 1717 unsigned int head_padding_bytes, tail_padding_bytes; 1718 int ret = 0; 1719 1720 head_padding_bytes = offset & (align - 1); 1721 tail_padding_bytes = (align - (offset + bytes)) & (align - 1); 1722 1723 1724 assert(flags & BDRV_REQ_ZERO_WRITE); 1725 if (head_padding_bytes || tail_padding_bytes) { 1726 buf = qemu_blockalign(bs, align); 1727 qemu_iovec_init_buf(&local_qiov, buf, align); 1728 } 1729 if (head_padding_bytes) { 1730 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1731 1732 /* RMW the unaligned part before head. */ 1733 mark_request_serialising(req, align); 1734 wait_serialising_requests(req); 1735 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1736 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1737 align, &local_qiov, 0); 1738 if (ret < 0) { 1739 goto fail; 1740 } 1741 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1742 1743 memset(buf + head_padding_bytes, 0, zero_bytes); 1744 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1745 align, &local_qiov, 1746 flags & ~BDRV_REQ_ZERO_WRITE); 1747 if (ret < 0) { 1748 goto fail; 1749 } 1750 offset += zero_bytes; 1751 bytes -= zero_bytes; 1752 } 1753 1754 assert(!bytes || (offset & (align - 1)) == 0); 1755 if (bytes >= align) { 1756 /* Write the aligned part in the middle. */ 1757 uint64_t aligned_bytes = bytes & ~(align - 1); 1758 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1759 NULL, flags); 1760 if (ret < 0) { 1761 goto fail; 1762 } 1763 bytes -= aligned_bytes; 1764 offset += aligned_bytes; 1765 } 1766 1767 assert(!bytes || (offset & (align - 1)) == 0); 1768 if (bytes) { 1769 assert(align == tail_padding_bytes + bytes); 1770 /* RMW the unaligned part after tail. */ 1771 mark_request_serialising(req, align); 1772 wait_serialising_requests(req); 1773 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1774 ret = bdrv_aligned_preadv(child, req, offset, align, 1775 align, &local_qiov, 0); 1776 if (ret < 0) { 1777 goto fail; 1778 } 1779 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1780 1781 memset(buf, 0, bytes); 1782 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1783 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1784 } 1785 fail: 1786 qemu_vfree(buf); 1787 return ret; 1788 1789 } 1790 1791 /* 1792 * Handle a write request in coroutine context 1793 */ 1794 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1795 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1796 BdrvRequestFlags flags) 1797 { 1798 BlockDriverState *bs = child->bs; 1799 BdrvTrackedRequest req; 1800 uint64_t align = bs->bl.request_alignment; 1801 uint8_t *head_buf = NULL; 1802 uint8_t *tail_buf = NULL; 1803 QEMUIOVector local_qiov; 1804 bool use_local_qiov = false; 1805 int ret; 1806 1807 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 1808 1809 if (!bs->drv) { 1810 return -ENOMEDIUM; 1811 } 1812 1813 ret = bdrv_check_byte_request(bs, offset, bytes); 1814 if (ret < 0) { 1815 return ret; 1816 } 1817 1818 bdrv_inc_in_flight(bs); 1819 /* 1820 * Align write if necessary by performing a read-modify-write cycle. 1821 * Pad qiov with the read parts and be sure to have a tracked request not 1822 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1823 */ 1824 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1825 1826 if (flags & BDRV_REQ_ZERO_WRITE) { 1827 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1828 goto out; 1829 } 1830 1831 if (offset & (align - 1)) { 1832 QEMUIOVector head_qiov; 1833 1834 mark_request_serialising(&req, align); 1835 wait_serialising_requests(&req); 1836 1837 head_buf = qemu_blockalign(bs, align); 1838 qemu_iovec_init_buf(&head_qiov, head_buf, align); 1839 1840 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1841 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1842 align, &head_qiov, 0); 1843 if (ret < 0) { 1844 goto fail; 1845 } 1846 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1847 1848 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1849 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1850 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1851 use_local_qiov = true; 1852 1853 bytes += offset & (align - 1); 1854 offset = offset & ~(align - 1); 1855 1856 /* We have read the tail already if the request is smaller 1857 * than one aligned block. 1858 */ 1859 if (bytes < align) { 1860 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1861 bytes = align; 1862 } 1863 } 1864 1865 if ((offset + bytes) & (align - 1)) { 1866 QEMUIOVector tail_qiov; 1867 size_t tail_bytes; 1868 bool waited; 1869 1870 mark_request_serialising(&req, align); 1871 waited = wait_serialising_requests(&req); 1872 assert(!waited || !use_local_qiov); 1873 1874 tail_buf = qemu_blockalign(bs, align); 1875 qemu_iovec_init_buf(&tail_qiov, tail_buf, align); 1876 1877 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1878 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1879 align, align, &tail_qiov, 0); 1880 if (ret < 0) { 1881 goto fail; 1882 } 1883 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1884 1885 if (!use_local_qiov) { 1886 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1887 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1888 use_local_qiov = true; 1889 } 1890 1891 tail_bytes = (offset + bytes) & (align - 1); 1892 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1893 1894 bytes = ROUND_UP(bytes, align); 1895 } 1896 1897 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1898 use_local_qiov ? &local_qiov : qiov, 1899 flags); 1900 1901 fail: 1902 1903 if (use_local_qiov) { 1904 qemu_iovec_destroy(&local_qiov); 1905 } 1906 qemu_vfree(head_buf); 1907 qemu_vfree(tail_buf); 1908 out: 1909 tracked_request_end(&req); 1910 bdrv_dec_in_flight(bs); 1911 return ret; 1912 } 1913 1914 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1915 int bytes, BdrvRequestFlags flags) 1916 { 1917 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 1918 1919 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1920 flags &= ~BDRV_REQ_MAY_UNMAP; 1921 } 1922 1923 return bdrv_co_pwritev(child, offset, bytes, NULL, 1924 BDRV_REQ_ZERO_WRITE | flags); 1925 } 1926 1927 /* 1928 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1929 */ 1930 int bdrv_flush_all(void) 1931 { 1932 BdrvNextIterator it; 1933 BlockDriverState *bs = NULL; 1934 int result = 0; 1935 1936 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 1937 AioContext *aio_context = bdrv_get_aio_context(bs); 1938 int ret; 1939 1940 aio_context_acquire(aio_context); 1941 ret = bdrv_flush(bs); 1942 if (ret < 0 && !result) { 1943 result = ret; 1944 } 1945 aio_context_release(aio_context); 1946 } 1947 1948 return result; 1949 } 1950 1951 1952 typedef struct BdrvCoBlockStatusData { 1953 BlockDriverState *bs; 1954 BlockDriverState *base; 1955 bool want_zero; 1956 int64_t offset; 1957 int64_t bytes; 1958 int64_t *pnum; 1959 int64_t *map; 1960 BlockDriverState **file; 1961 int ret; 1962 bool done; 1963 } BdrvCoBlockStatusData; 1964 1965 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs, 1966 bool want_zero, 1967 int64_t offset, 1968 int64_t bytes, 1969 int64_t *pnum, 1970 int64_t *map, 1971 BlockDriverState **file) 1972 { 1973 assert(bs->file && bs->file->bs); 1974 *pnum = bytes; 1975 *map = offset; 1976 *file = bs->file->bs; 1977 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 1978 } 1979 1980 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs, 1981 bool want_zero, 1982 int64_t offset, 1983 int64_t bytes, 1984 int64_t *pnum, 1985 int64_t *map, 1986 BlockDriverState **file) 1987 { 1988 assert(bs->backing && bs->backing->bs); 1989 *pnum = bytes; 1990 *map = offset; 1991 *file = bs->backing->bs; 1992 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 1993 } 1994 1995 /* 1996 * Returns the allocation status of the specified sectors. 1997 * Drivers not implementing the functionality are assumed to not support 1998 * backing files, hence all their sectors are reported as allocated. 1999 * 2000 * If 'want_zero' is true, the caller is querying for mapping 2001 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2002 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2003 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2004 * 2005 * If 'offset' is beyond the end of the disk image the return value is 2006 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2007 * 2008 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2009 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2010 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2011 * 2012 * 'pnum' is set to the number of bytes (including and immediately 2013 * following the specified offset) that are easily known to be in the 2014 * same allocated/unallocated state. Note that a second call starting 2015 * at the original offset plus returned pnum may have the same status. 2016 * The returned value is non-zero on success except at end-of-file. 2017 * 2018 * Returns negative errno on failure. Otherwise, if the 2019 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2020 * set to the host mapping and BDS corresponding to the guest offset. 2021 */ 2022 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2023 bool want_zero, 2024 int64_t offset, int64_t bytes, 2025 int64_t *pnum, int64_t *map, 2026 BlockDriverState **file) 2027 { 2028 int64_t total_size; 2029 int64_t n; /* bytes */ 2030 int ret; 2031 int64_t local_map = 0; 2032 BlockDriverState *local_file = NULL; 2033 int64_t aligned_offset, aligned_bytes; 2034 uint32_t align; 2035 2036 assert(pnum); 2037 *pnum = 0; 2038 total_size = bdrv_getlength(bs); 2039 if (total_size < 0) { 2040 ret = total_size; 2041 goto early_out; 2042 } 2043 2044 if (offset >= total_size) { 2045 ret = BDRV_BLOCK_EOF; 2046 goto early_out; 2047 } 2048 if (!bytes) { 2049 ret = 0; 2050 goto early_out; 2051 } 2052 2053 n = total_size - offset; 2054 if (n < bytes) { 2055 bytes = n; 2056 } 2057 2058 /* Must be non-NULL or bdrv_getlength() would have failed */ 2059 assert(bs->drv); 2060 if (!bs->drv->bdrv_co_block_status) { 2061 *pnum = bytes; 2062 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2063 if (offset + bytes == total_size) { 2064 ret |= BDRV_BLOCK_EOF; 2065 } 2066 if (bs->drv->protocol_name) { 2067 ret |= BDRV_BLOCK_OFFSET_VALID; 2068 local_map = offset; 2069 local_file = bs; 2070 } 2071 goto early_out; 2072 } 2073 2074 bdrv_inc_in_flight(bs); 2075 2076 /* Round out to request_alignment boundaries */ 2077 align = bs->bl.request_alignment; 2078 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2079 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2080 2081 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2082 aligned_bytes, pnum, &local_map, 2083 &local_file); 2084 if (ret < 0) { 2085 *pnum = 0; 2086 goto out; 2087 } 2088 2089 /* 2090 * The driver's result must be a non-zero multiple of request_alignment. 2091 * Clamp pnum and adjust map to original request. 2092 */ 2093 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2094 align > offset - aligned_offset); 2095 *pnum -= offset - aligned_offset; 2096 if (*pnum > bytes) { 2097 *pnum = bytes; 2098 } 2099 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2100 local_map += offset - aligned_offset; 2101 } 2102 2103 if (ret & BDRV_BLOCK_RAW) { 2104 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2105 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2106 *pnum, pnum, &local_map, &local_file); 2107 goto out; 2108 } 2109 2110 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2111 ret |= BDRV_BLOCK_ALLOCATED; 2112 } else if (want_zero) { 2113 if (bdrv_unallocated_blocks_are_zero(bs)) { 2114 ret |= BDRV_BLOCK_ZERO; 2115 } else if (bs->backing) { 2116 BlockDriverState *bs2 = bs->backing->bs; 2117 int64_t size2 = bdrv_getlength(bs2); 2118 2119 if (size2 >= 0 && offset >= size2) { 2120 ret |= BDRV_BLOCK_ZERO; 2121 } 2122 } 2123 } 2124 2125 if (want_zero && local_file && local_file != bs && 2126 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2127 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2128 int64_t file_pnum; 2129 int ret2; 2130 2131 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2132 *pnum, &file_pnum, NULL, NULL); 2133 if (ret2 >= 0) { 2134 /* Ignore errors. This is just providing extra information, it 2135 * is useful but not necessary. 2136 */ 2137 if (ret2 & BDRV_BLOCK_EOF && 2138 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2139 /* 2140 * It is valid for the format block driver to read 2141 * beyond the end of the underlying file's current 2142 * size; such areas read as zero. 2143 */ 2144 ret |= BDRV_BLOCK_ZERO; 2145 } else { 2146 /* Limit request to the range reported by the protocol driver */ 2147 *pnum = file_pnum; 2148 ret |= (ret2 & BDRV_BLOCK_ZERO); 2149 } 2150 } 2151 } 2152 2153 out: 2154 bdrv_dec_in_flight(bs); 2155 if (ret >= 0 && offset + *pnum == total_size) { 2156 ret |= BDRV_BLOCK_EOF; 2157 } 2158 early_out: 2159 if (file) { 2160 *file = local_file; 2161 } 2162 if (map) { 2163 *map = local_map; 2164 } 2165 return ret; 2166 } 2167 2168 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2169 BlockDriverState *base, 2170 bool want_zero, 2171 int64_t offset, 2172 int64_t bytes, 2173 int64_t *pnum, 2174 int64_t *map, 2175 BlockDriverState **file) 2176 { 2177 BlockDriverState *p; 2178 int ret = 0; 2179 bool first = true; 2180 2181 assert(bs != base); 2182 for (p = bs; p != base; p = backing_bs(p)) { 2183 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2184 file); 2185 if (ret < 0) { 2186 break; 2187 } 2188 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 2189 /* 2190 * Reading beyond the end of the file continues to read 2191 * zeroes, but we can only widen the result to the 2192 * unallocated length we learned from an earlier 2193 * iteration. 2194 */ 2195 *pnum = bytes; 2196 } 2197 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 2198 break; 2199 } 2200 /* [offset, pnum] unallocated on this layer, which could be only 2201 * the first part of [offset, bytes]. */ 2202 bytes = MIN(bytes, *pnum); 2203 first = false; 2204 } 2205 return ret; 2206 } 2207 2208 /* Coroutine wrapper for bdrv_block_status_above() */ 2209 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque) 2210 { 2211 BdrvCoBlockStatusData *data = opaque; 2212 2213 data->ret = bdrv_co_block_status_above(data->bs, data->base, 2214 data->want_zero, 2215 data->offset, data->bytes, 2216 data->pnum, data->map, data->file); 2217 data->done = true; 2218 aio_wait_kick(); 2219 } 2220 2221 /* 2222 * Synchronous wrapper around bdrv_co_block_status_above(). 2223 * 2224 * See bdrv_co_block_status_above() for details. 2225 */ 2226 static int bdrv_common_block_status_above(BlockDriverState *bs, 2227 BlockDriverState *base, 2228 bool want_zero, int64_t offset, 2229 int64_t bytes, int64_t *pnum, 2230 int64_t *map, 2231 BlockDriverState **file) 2232 { 2233 Coroutine *co; 2234 BdrvCoBlockStatusData data = { 2235 .bs = bs, 2236 .base = base, 2237 .want_zero = want_zero, 2238 .offset = offset, 2239 .bytes = bytes, 2240 .pnum = pnum, 2241 .map = map, 2242 .file = file, 2243 .done = false, 2244 }; 2245 2246 if (qemu_in_coroutine()) { 2247 /* Fast-path if already in coroutine context */ 2248 bdrv_block_status_above_co_entry(&data); 2249 } else { 2250 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data); 2251 bdrv_coroutine_enter(bs, co); 2252 BDRV_POLL_WHILE(bs, !data.done); 2253 } 2254 return data.ret; 2255 } 2256 2257 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2258 int64_t offset, int64_t bytes, int64_t *pnum, 2259 int64_t *map, BlockDriverState **file) 2260 { 2261 return bdrv_common_block_status_above(bs, base, true, offset, bytes, 2262 pnum, map, file); 2263 } 2264 2265 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2266 int64_t *pnum, int64_t *map, BlockDriverState **file) 2267 { 2268 return bdrv_block_status_above(bs, backing_bs(bs), 2269 offset, bytes, pnum, map, file); 2270 } 2271 2272 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2273 int64_t bytes, int64_t *pnum) 2274 { 2275 int ret; 2276 int64_t dummy; 2277 2278 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset, 2279 bytes, pnum ? pnum : &dummy, NULL, 2280 NULL); 2281 if (ret < 0) { 2282 return ret; 2283 } 2284 return !!(ret & BDRV_BLOCK_ALLOCATED); 2285 } 2286 2287 /* 2288 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2289 * 2290 * Return true if (a prefix of) the given range is allocated in any image 2291 * between BASE and TOP (inclusive). BASE can be NULL to check if the given 2292 * offset is allocated in any image of the chain. Return false otherwise, 2293 * or negative errno on failure. 2294 * 2295 * 'pnum' is set to the number of bytes (including and immediately 2296 * following the specified offset) that are known to be in the same 2297 * allocated/unallocated state. Note that a subsequent call starting 2298 * at 'offset + *pnum' may return the same allocation status (in other 2299 * words, the result is not necessarily the maximum possible range); 2300 * but 'pnum' will only be 0 when end of file is reached. 2301 * 2302 */ 2303 int bdrv_is_allocated_above(BlockDriverState *top, 2304 BlockDriverState *base, 2305 int64_t offset, int64_t bytes, int64_t *pnum) 2306 { 2307 BlockDriverState *intermediate; 2308 int ret; 2309 int64_t n = bytes; 2310 2311 intermediate = top; 2312 while (intermediate && intermediate != base) { 2313 int64_t pnum_inter; 2314 int64_t size_inter; 2315 2316 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2317 if (ret < 0) { 2318 return ret; 2319 } 2320 if (ret) { 2321 *pnum = pnum_inter; 2322 return 1; 2323 } 2324 2325 size_inter = bdrv_getlength(intermediate); 2326 if (size_inter < 0) { 2327 return size_inter; 2328 } 2329 if (n > pnum_inter && 2330 (intermediate == top || offset + pnum_inter < size_inter)) { 2331 n = pnum_inter; 2332 } 2333 2334 intermediate = backing_bs(intermediate); 2335 } 2336 2337 *pnum = n; 2338 return 0; 2339 } 2340 2341 typedef struct BdrvVmstateCo { 2342 BlockDriverState *bs; 2343 QEMUIOVector *qiov; 2344 int64_t pos; 2345 bool is_read; 2346 int ret; 2347 } BdrvVmstateCo; 2348 2349 static int coroutine_fn 2350 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2351 bool is_read) 2352 { 2353 BlockDriver *drv = bs->drv; 2354 int ret = -ENOTSUP; 2355 2356 bdrv_inc_in_flight(bs); 2357 2358 if (!drv) { 2359 ret = -ENOMEDIUM; 2360 } else if (drv->bdrv_load_vmstate) { 2361 if (is_read) { 2362 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2363 } else { 2364 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2365 } 2366 } else if (bs->file) { 2367 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2368 } 2369 2370 bdrv_dec_in_flight(bs); 2371 return ret; 2372 } 2373 2374 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2375 { 2376 BdrvVmstateCo *co = opaque; 2377 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2378 aio_wait_kick(); 2379 } 2380 2381 static inline int 2382 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2383 bool is_read) 2384 { 2385 if (qemu_in_coroutine()) { 2386 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2387 } else { 2388 BdrvVmstateCo data = { 2389 .bs = bs, 2390 .qiov = qiov, 2391 .pos = pos, 2392 .is_read = is_read, 2393 .ret = -EINPROGRESS, 2394 }; 2395 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2396 2397 bdrv_coroutine_enter(bs, co); 2398 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2399 return data.ret; 2400 } 2401 } 2402 2403 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2404 int64_t pos, int size) 2405 { 2406 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2407 int ret; 2408 2409 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2410 if (ret < 0) { 2411 return ret; 2412 } 2413 2414 return size; 2415 } 2416 2417 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2418 { 2419 return bdrv_rw_vmstate(bs, qiov, pos, false); 2420 } 2421 2422 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2423 int64_t pos, int size) 2424 { 2425 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2426 int ret; 2427 2428 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2429 if (ret < 0) { 2430 return ret; 2431 } 2432 2433 return size; 2434 } 2435 2436 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2437 { 2438 return bdrv_rw_vmstate(bs, qiov, pos, true); 2439 } 2440 2441 /**************************************************************/ 2442 /* async I/Os */ 2443 2444 void bdrv_aio_cancel(BlockAIOCB *acb) 2445 { 2446 qemu_aio_ref(acb); 2447 bdrv_aio_cancel_async(acb); 2448 while (acb->refcnt > 1) { 2449 if (acb->aiocb_info->get_aio_context) { 2450 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2451 } else if (acb->bs) { 2452 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2453 * assert that we're not using an I/O thread. Thread-safe 2454 * code should use bdrv_aio_cancel_async exclusively. 2455 */ 2456 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2457 aio_poll(bdrv_get_aio_context(acb->bs), true); 2458 } else { 2459 abort(); 2460 } 2461 } 2462 qemu_aio_unref(acb); 2463 } 2464 2465 /* Async version of aio cancel. The caller is not blocked if the acb implements 2466 * cancel_async, otherwise we do nothing and let the request normally complete. 2467 * In either case the completion callback must be called. */ 2468 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2469 { 2470 if (acb->aiocb_info->cancel_async) { 2471 acb->aiocb_info->cancel_async(acb); 2472 } 2473 } 2474 2475 /**************************************************************/ 2476 /* Coroutine block device emulation */ 2477 2478 typedef struct FlushCo { 2479 BlockDriverState *bs; 2480 int ret; 2481 } FlushCo; 2482 2483 2484 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2485 { 2486 FlushCo *rwco = opaque; 2487 2488 rwco->ret = bdrv_co_flush(rwco->bs); 2489 aio_wait_kick(); 2490 } 2491 2492 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2493 { 2494 int current_gen; 2495 int ret = 0; 2496 2497 bdrv_inc_in_flight(bs); 2498 2499 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2500 bdrv_is_sg(bs)) { 2501 goto early_exit; 2502 } 2503 2504 qemu_co_mutex_lock(&bs->reqs_lock); 2505 current_gen = atomic_read(&bs->write_gen); 2506 2507 /* Wait until any previous flushes are completed */ 2508 while (bs->active_flush_req) { 2509 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2510 } 2511 2512 /* Flushes reach this point in nondecreasing current_gen order. */ 2513 bs->active_flush_req = true; 2514 qemu_co_mutex_unlock(&bs->reqs_lock); 2515 2516 /* Write back all layers by calling one driver function */ 2517 if (bs->drv->bdrv_co_flush) { 2518 ret = bs->drv->bdrv_co_flush(bs); 2519 goto out; 2520 } 2521 2522 /* Write back cached data to the OS even with cache=unsafe */ 2523 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2524 if (bs->drv->bdrv_co_flush_to_os) { 2525 ret = bs->drv->bdrv_co_flush_to_os(bs); 2526 if (ret < 0) { 2527 goto out; 2528 } 2529 } 2530 2531 /* But don't actually force it to the disk with cache=unsafe */ 2532 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2533 goto flush_parent; 2534 } 2535 2536 /* Check if we really need to flush anything */ 2537 if (bs->flushed_gen == current_gen) { 2538 goto flush_parent; 2539 } 2540 2541 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2542 if (!bs->drv) { 2543 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2544 * (even in case of apparent success) */ 2545 ret = -ENOMEDIUM; 2546 goto out; 2547 } 2548 if (bs->drv->bdrv_co_flush_to_disk) { 2549 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2550 } else if (bs->drv->bdrv_aio_flush) { 2551 BlockAIOCB *acb; 2552 CoroutineIOCompletion co = { 2553 .coroutine = qemu_coroutine_self(), 2554 }; 2555 2556 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2557 if (acb == NULL) { 2558 ret = -EIO; 2559 } else { 2560 qemu_coroutine_yield(); 2561 ret = co.ret; 2562 } 2563 } else { 2564 /* 2565 * Some block drivers always operate in either writethrough or unsafe 2566 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2567 * know how the server works (because the behaviour is hardcoded or 2568 * depends on server-side configuration), so we can't ensure that 2569 * everything is safe on disk. Returning an error doesn't work because 2570 * that would break guests even if the server operates in writethrough 2571 * mode. 2572 * 2573 * Let's hope the user knows what he's doing. 2574 */ 2575 ret = 0; 2576 } 2577 2578 if (ret < 0) { 2579 goto out; 2580 } 2581 2582 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2583 * in the case of cache=unsafe, so there are no useless flushes. 2584 */ 2585 flush_parent: 2586 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2587 out: 2588 /* Notify any pending flushes that we have completed */ 2589 if (ret == 0) { 2590 bs->flushed_gen = current_gen; 2591 } 2592 2593 qemu_co_mutex_lock(&bs->reqs_lock); 2594 bs->active_flush_req = false; 2595 /* Return value is ignored - it's ok if wait queue is empty */ 2596 qemu_co_queue_next(&bs->flush_queue); 2597 qemu_co_mutex_unlock(&bs->reqs_lock); 2598 2599 early_exit: 2600 bdrv_dec_in_flight(bs); 2601 return ret; 2602 } 2603 2604 int bdrv_flush(BlockDriverState *bs) 2605 { 2606 Coroutine *co; 2607 FlushCo flush_co = { 2608 .bs = bs, 2609 .ret = NOT_DONE, 2610 }; 2611 2612 if (qemu_in_coroutine()) { 2613 /* Fast-path if already in coroutine context */ 2614 bdrv_flush_co_entry(&flush_co); 2615 } else { 2616 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2617 bdrv_coroutine_enter(bs, co); 2618 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2619 } 2620 2621 return flush_co.ret; 2622 } 2623 2624 typedef struct DiscardCo { 2625 BdrvChild *child; 2626 int64_t offset; 2627 int bytes; 2628 int ret; 2629 } DiscardCo; 2630 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2631 { 2632 DiscardCo *rwco = opaque; 2633 2634 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes); 2635 aio_wait_kick(); 2636 } 2637 2638 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, int bytes) 2639 { 2640 BdrvTrackedRequest req; 2641 int max_pdiscard, ret; 2642 int head, tail, align; 2643 BlockDriverState *bs = child->bs; 2644 2645 if (!bs || !bs->drv) { 2646 return -ENOMEDIUM; 2647 } 2648 2649 if (bdrv_has_readonly_bitmaps(bs)) { 2650 return -EPERM; 2651 } 2652 2653 ret = bdrv_check_byte_request(bs, offset, bytes); 2654 if (ret < 0) { 2655 return ret; 2656 } 2657 2658 /* Do nothing if disabled. */ 2659 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2660 return 0; 2661 } 2662 2663 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2664 return 0; 2665 } 2666 2667 /* Discard is advisory, but some devices track and coalesce 2668 * unaligned requests, so we must pass everything down rather than 2669 * round here. Still, most devices will just silently ignore 2670 * unaligned requests (by returning -ENOTSUP), so we must fragment 2671 * the request accordingly. */ 2672 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2673 assert(align % bs->bl.request_alignment == 0); 2674 head = offset % align; 2675 tail = (offset + bytes) % align; 2676 2677 bdrv_inc_in_flight(bs); 2678 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2679 2680 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 2681 if (ret < 0) { 2682 goto out; 2683 } 2684 2685 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2686 align); 2687 assert(max_pdiscard >= bs->bl.request_alignment); 2688 2689 while (bytes > 0) { 2690 int num = bytes; 2691 2692 if (head) { 2693 /* Make small requests to get to alignment boundaries. */ 2694 num = MIN(bytes, align - head); 2695 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2696 num %= bs->bl.request_alignment; 2697 } 2698 head = (head + num) % align; 2699 assert(num < max_pdiscard); 2700 } else if (tail) { 2701 if (num > align) { 2702 /* Shorten the request to the last aligned cluster. */ 2703 num -= tail; 2704 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2705 tail > bs->bl.request_alignment) { 2706 tail %= bs->bl.request_alignment; 2707 num -= tail; 2708 } 2709 } 2710 /* limit request size */ 2711 if (num > max_pdiscard) { 2712 num = max_pdiscard; 2713 } 2714 2715 if (!bs->drv) { 2716 ret = -ENOMEDIUM; 2717 goto out; 2718 } 2719 if (bs->drv->bdrv_co_pdiscard) { 2720 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2721 } else { 2722 BlockAIOCB *acb; 2723 CoroutineIOCompletion co = { 2724 .coroutine = qemu_coroutine_self(), 2725 }; 2726 2727 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2728 bdrv_co_io_em_complete, &co); 2729 if (acb == NULL) { 2730 ret = -EIO; 2731 goto out; 2732 } else { 2733 qemu_coroutine_yield(); 2734 ret = co.ret; 2735 } 2736 } 2737 if (ret && ret != -ENOTSUP) { 2738 goto out; 2739 } 2740 2741 offset += num; 2742 bytes -= num; 2743 } 2744 ret = 0; 2745 out: 2746 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 2747 tracked_request_end(&req); 2748 bdrv_dec_in_flight(bs); 2749 return ret; 2750 } 2751 2752 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int bytes) 2753 { 2754 Coroutine *co; 2755 DiscardCo rwco = { 2756 .child = child, 2757 .offset = offset, 2758 .bytes = bytes, 2759 .ret = NOT_DONE, 2760 }; 2761 2762 if (qemu_in_coroutine()) { 2763 /* Fast-path if already in coroutine context */ 2764 bdrv_pdiscard_co_entry(&rwco); 2765 } else { 2766 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2767 bdrv_coroutine_enter(child->bs, co); 2768 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 2769 } 2770 2771 return rwco.ret; 2772 } 2773 2774 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2775 { 2776 BlockDriver *drv = bs->drv; 2777 CoroutineIOCompletion co = { 2778 .coroutine = qemu_coroutine_self(), 2779 }; 2780 BlockAIOCB *acb; 2781 2782 bdrv_inc_in_flight(bs); 2783 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2784 co.ret = -ENOTSUP; 2785 goto out; 2786 } 2787 2788 if (drv->bdrv_co_ioctl) { 2789 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2790 } else { 2791 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2792 if (!acb) { 2793 co.ret = -ENOTSUP; 2794 goto out; 2795 } 2796 qemu_coroutine_yield(); 2797 } 2798 out: 2799 bdrv_dec_in_flight(bs); 2800 return co.ret; 2801 } 2802 2803 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2804 { 2805 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2806 } 2807 2808 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2809 { 2810 return memset(qemu_blockalign(bs, size), 0, size); 2811 } 2812 2813 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2814 { 2815 size_t align = bdrv_opt_mem_align(bs); 2816 2817 /* Ensure that NULL is never returned on success */ 2818 assert(align > 0); 2819 if (size == 0) { 2820 size = align; 2821 } 2822 2823 return qemu_try_memalign(align, size); 2824 } 2825 2826 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2827 { 2828 void *mem = qemu_try_blockalign(bs, size); 2829 2830 if (mem) { 2831 memset(mem, 0, size); 2832 } 2833 2834 return mem; 2835 } 2836 2837 /* 2838 * Check if all memory in this vector is sector aligned. 2839 */ 2840 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2841 { 2842 int i; 2843 size_t alignment = bdrv_min_mem_align(bs); 2844 2845 for (i = 0; i < qiov->niov; i++) { 2846 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2847 return false; 2848 } 2849 if (qiov->iov[i].iov_len % alignment) { 2850 return false; 2851 } 2852 } 2853 2854 return true; 2855 } 2856 2857 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2858 NotifierWithReturn *notifier) 2859 { 2860 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2861 } 2862 2863 void bdrv_io_plug(BlockDriverState *bs) 2864 { 2865 BdrvChild *child; 2866 2867 QLIST_FOREACH(child, &bs->children, next) { 2868 bdrv_io_plug(child->bs); 2869 } 2870 2871 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 2872 BlockDriver *drv = bs->drv; 2873 if (drv && drv->bdrv_io_plug) { 2874 drv->bdrv_io_plug(bs); 2875 } 2876 } 2877 } 2878 2879 void bdrv_io_unplug(BlockDriverState *bs) 2880 { 2881 BdrvChild *child; 2882 2883 assert(bs->io_plugged); 2884 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 2885 BlockDriver *drv = bs->drv; 2886 if (drv && drv->bdrv_io_unplug) { 2887 drv->bdrv_io_unplug(bs); 2888 } 2889 } 2890 2891 QLIST_FOREACH(child, &bs->children, next) { 2892 bdrv_io_unplug(child->bs); 2893 } 2894 } 2895 2896 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 2897 { 2898 BdrvChild *child; 2899 2900 if (bs->drv && bs->drv->bdrv_register_buf) { 2901 bs->drv->bdrv_register_buf(bs, host, size); 2902 } 2903 QLIST_FOREACH(child, &bs->children, next) { 2904 bdrv_register_buf(child->bs, host, size); 2905 } 2906 } 2907 2908 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 2909 { 2910 BdrvChild *child; 2911 2912 if (bs->drv && bs->drv->bdrv_unregister_buf) { 2913 bs->drv->bdrv_unregister_buf(bs, host); 2914 } 2915 QLIST_FOREACH(child, &bs->children, next) { 2916 bdrv_unregister_buf(child->bs, host); 2917 } 2918 } 2919 2920 static int coroutine_fn bdrv_co_copy_range_internal( 2921 BdrvChild *src, uint64_t src_offset, BdrvChild *dst, 2922 uint64_t dst_offset, uint64_t bytes, 2923 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 2924 bool recurse_src) 2925 { 2926 BdrvTrackedRequest req; 2927 int ret; 2928 2929 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 2930 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 2931 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 2932 2933 if (!dst || !dst->bs) { 2934 return -ENOMEDIUM; 2935 } 2936 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes); 2937 if (ret) { 2938 return ret; 2939 } 2940 if (write_flags & BDRV_REQ_ZERO_WRITE) { 2941 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 2942 } 2943 2944 if (!src || !src->bs) { 2945 return -ENOMEDIUM; 2946 } 2947 ret = bdrv_check_byte_request(src->bs, src_offset, bytes); 2948 if (ret) { 2949 return ret; 2950 } 2951 2952 if (!src->bs->drv->bdrv_co_copy_range_from 2953 || !dst->bs->drv->bdrv_co_copy_range_to 2954 || src->bs->encrypted || dst->bs->encrypted) { 2955 return -ENOTSUP; 2956 } 2957 2958 if (recurse_src) { 2959 bdrv_inc_in_flight(src->bs); 2960 tracked_request_begin(&req, src->bs, src_offset, bytes, 2961 BDRV_TRACKED_READ); 2962 2963 /* BDRV_REQ_SERIALISING is only for write operation */ 2964 assert(!(read_flags & BDRV_REQ_SERIALISING)); 2965 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) { 2966 wait_serialising_requests(&req); 2967 } 2968 2969 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 2970 src, src_offset, 2971 dst, dst_offset, 2972 bytes, 2973 read_flags, write_flags); 2974 2975 tracked_request_end(&req); 2976 bdrv_dec_in_flight(src->bs); 2977 } else { 2978 bdrv_inc_in_flight(dst->bs); 2979 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 2980 BDRV_TRACKED_WRITE); 2981 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 2982 write_flags); 2983 if (!ret) { 2984 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 2985 src, src_offset, 2986 dst, dst_offset, 2987 bytes, 2988 read_flags, write_flags); 2989 } 2990 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 2991 tracked_request_end(&req); 2992 bdrv_dec_in_flight(dst->bs); 2993 } 2994 2995 return ret; 2996 } 2997 2998 /* Copy range from @src to @dst. 2999 * 3000 * See the comment of bdrv_co_copy_range for the parameter and return value 3001 * semantics. */ 3002 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset, 3003 BdrvChild *dst, uint64_t dst_offset, 3004 uint64_t bytes, 3005 BdrvRequestFlags read_flags, 3006 BdrvRequestFlags write_flags) 3007 { 3008 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3009 read_flags, write_flags); 3010 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3011 bytes, read_flags, write_flags, true); 3012 } 3013 3014 /* Copy range from @src to @dst. 3015 * 3016 * See the comment of bdrv_co_copy_range for the parameter and return value 3017 * semantics. */ 3018 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset, 3019 BdrvChild *dst, uint64_t dst_offset, 3020 uint64_t bytes, 3021 BdrvRequestFlags read_flags, 3022 BdrvRequestFlags write_flags) 3023 { 3024 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3025 read_flags, write_flags); 3026 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3027 bytes, read_flags, write_flags, false); 3028 } 3029 3030 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset, 3031 BdrvChild *dst, uint64_t dst_offset, 3032 uint64_t bytes, BdrvRequestFlags read_flags, 3033 BdrvRequestFlags write_flags) 3034 { 3035 return bdrv_co_copy_range_from(src, src_offset, 3036 dst, dst_offset, 3037 bytes, read_flags, write_flags); 3038 } 3039 3040 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3041 { 3042 BdrvChild *c; 3043 QLIST_FOREACH(c, &bs->parents, next_parent) { 3044 if (c->role->resize) { 3045 c->role->resize(c); 3046 } 3047 } 3048 } 3049 3050 /** 3051 * Truncate file to 'offset' bytes (needed only for file protocols) 3052 */ 3053 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, 3054 PreallocMode prealloc, Error **errp) 3055 { 3056 BlockDriverState *bs = child->bs; 3057 BlockDriver *drv = bs->drv; 3058 BdrvTrackedRequest req; 3059 int64_t old_size, new_bytes; 3060 int ret; 3061 3062 3063 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3064 if (!drv) { 3065 error_setg(errp, "No medium inserted"); 3066 return -ENOMEDIUM; 3067 } 3068 if (offset < 0) { 3069 error_setg(errp, "Image size cannot be negative"); 3070 return -EINVAL; 3071 } 3072 3073 old_size = bdrv_getlength(bs); 3074 if (old_size < 0) { 3075 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3076 return old_size; 3077 } 3078 3079 if (offset > old_size) { 3080 new_bytes = offset - old_size; 3081 } else { 3082 new_bytes = 0; 3083 } 3084 3085 bdrv_inc_in_flight(bs); 3086 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3087 BDRV_TRACKED_TRUNCATE); 3088 3089 /* If we are growing the image and potentially using preallocation for the 3090 * new area, we need to make sure that no write requests are made to it 3091 * concurrently or they might be overwritten by preallocation. */ 3092 if (new_bytes) { 3093 mark_request_serialising(&req, 1); 3094 } 3095 if (bs->read_only) { 3096 error_setg(errp, "Image is read-only"); 3097 ret = -EACCES; 3098 goto out; 3099 } 3100 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3101 0); 3102 if (ret < 0) { 3103 error_setg_errno(errp, -ret, 3104 "Failed to prepare request for truncation"); 3105 goto out; 3106 } 3107 3108 if (!drv->bdrv_co_truncate) { 3109 if (bs->file && drv->is_filter) { 3110 ret = bdrv_co_truncate(bs->file, offset, prealloc, errp); 3111 goto out; 3112 } 3113 error_setg(errp, "Image format driver does not support resize"); 3114 ret = -ENOTSUP; 3115 goto out; 3116 } 3117 3118 ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp); 3119 if (ret < 0) { 3120 goto out; 3121 } 3122 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3123 if (ret < 0) { 3124 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3125 } else { 3126 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3127 } 3128 /* It's possible that truncation succeeded but refresh_total_sectors 3129 * failed, but the latter doesn't affect how we should finish the request. 3130 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3131 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3132 3133 out: 3134 tracked_request_end(&req); 3135 bdrv_dec_in_flight(bs); 3136 3137 return ret; 3138 } 3139 3140 typedef struct TruncateCo { 3141 BdrvChild *child; 3142 int64_t offset; 3143 PreallocMode prealloc; 3144 Error **errp; 3145 int ret; 3146 } TruncateCo; 3147 3148 static void coroutine_fn bdrv_truncate_co_entry(void *opaque) 3149 { 3150 TruncateCo *tco = opaque; 3151 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc, 3152 tco->errp); 3153 aio_wait_kick(); 3154 } 3155 3156 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc, 3157 Error **errp) 3158 { 3159 Coroutine *co; 3160 TruncateCo tco = { 3161 .child = child, 3162 .offset = offset, 3163 .prealloc = prealloc, 3164 .errp = errp, 3165 .ret = NOT_DONE, 3166 }; 3167 3168 if (qemu_in_coroutine()) { 3169 /* Fast-path if already in coroutine context */ 3170 bdrv_truncate_co_entry(&tco); 3171 } else { 3172 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco); 3173 bdrv_coroutine_enter(child->bs, co); 3174 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE); 3175 } 3176 3177 return tco.ret; 3178 } 3179