1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/blockjob.h" 29 #include "block/blockjob_int.h" 30 #include "block/block_int.h" 31 #include "qemu/cutils.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 36 37 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 38 int64_t offset, int bytes, BdrvRequestFlags flags); 39 40 void bdrv_parent_drained_begin(BlockDriverState *bs) 41 { 42 BdrvChild *c; 43 44 QLIST_FOREACH(c, &bs->parents, next_parent) { 45 if (c->role->drained_begin) { 46 c->role->drained_begin(c); 47 } 48 } 49 } 50 51 void bdrv_parent_drained_end(BlockDriverState *bs) 52 { 53 BdrvChild *c; 54 55 QLIST_FOREACH(c, &bs->parents, next_parent) { 56 if (c->role->drained_end) { 57 c->role->drained_end(c); 58 } 59 } 60 } 61 62 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 63 { 64 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 65 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 66 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 67 src->opt_mem_alignment); 68 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 69 src->min_mem_alignment); 70 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 71 } 72 73 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 74 { 75 BlockDriver *drv = bs->drv; 76 Error *local_err = NULL; 77 78 memset(&bs->bl, 0, sizeof(bs->bl)); 79 80 if (!drv) { 81 return; 82 } 83 84 /* Default alignment based on whether driver has byte interface */ 85 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512; 86 87 /* Take some limits from the children as a default */ 88 if (bs->file) { 89 bdrv_refresh_limits(bs->file->bs, &local_err); 90 if (local_err) { 91 error_propagate(errp, local_err); 92 return; 93 } 94 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 95 } else { 96 bs->bl.min_mem_alignment = 512; 97 bs->bl.opt_mem_alignment = getpagesize(); 98 99 /* Safe default since most protocols use readv()/writev()/etc */ 100 bs->bl.max_iov = IOV_MAX; 101 } 102 103 if (bs->backing) { 104 bdrv_refresh_limits(bs->backing->bs, &local_err); 105 if (local_err) { 106 error_propagate(errp, local_err); 107 return; 108 } 109 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 110 } 111 112 /* Then let the driver override it */ 113 if (drv->bdrv_refresh_limits) { 114 drv->bdrv_refresh_limits(bs, errp); 115 } 116 } 117 118 /** 119 * The copy-on-read flag is actually a reference count so multiple users may 120 * use the feature without worrying about clobbering its previous state. 121 * Copy-on-read stays enabled until all users have called to disable it. 122 */ 123 void bdrv_enable_copy_on_read(BlockDriverState *bs) 124 { 125 atomic_inc(&bs->copy_on_read); 126 } 127 128 void bdrv_disable_copy_on_read(BlockDriverState *bs) 129 { 130 int old = atomic_fetch_dec(&bs->copy_on_read); 131 assert(old >= 1); 132 } 133 134 /* Check if any requests are in-flight (including throttled requests) */ 135 bool bdrv_requests_pending(BlockDriverState *bs) 136 { 137 BdrvChild *child; 138 139 if (atomic_read(&bs->in_flight)) { 140 return true; 141 } 142 143 QLIST_FOREACH(child, &bs->children, next) { 144 if (bdrv_requests_pending(child->bs)) { 145 return true; 146 } 147 } 148 149 return false; 150 } 151 152 static bool bdrv_drain_recurse(BlockDriverState *bs) 153 { 154 BdrvChild *child, *tmp; 155 bool waited; 156 157 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0); 158 159 if (bs->drv && bs->drv->bdrv_drain) { 160 bs->drv->bdrv_drain(bs); 161 } 162 163 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) { 164 BlockDriverState *bs = child->bs; 165 bool in_main_loop = 166 qemu_get_current_aio_context() == qemu_get_aio_context(); 167 assert(bs->refcnt > 0); 168 if (in_main_loop) { 169 /* In case the recursive bdrv_drain_recurse processes a 170 * block_job_defer_to_main_loop BH and modifies the graph, 171 * let's hold a reference to bs until we are done. 172 * 173 * IOThread doesn't have such a BH, and it is not safe to call 174 * bdrv_unref without BQL, so skip doing it there. 175 */ 176 bdrv_ref(bs); 177 } 178 waited |= bdrv_drain_recurse(bs); 179 if (in_main_loop) { 180 bdrv_unref(bs); 181 } 182 } 183 184 return waited; 185 } 186 187 typedef struct { 188 Coroutine *co; 189 BlockDriverState *bs; 190 bool done; 191 } BdrvCoDrainData; 192 193 static void bdrv_co_drain_bh_cb(void *opaque) 194 { 195 BdrvCoDrainData *data = opaque; 196 Coroutine *co = data->co; 197 BlockDriverState *bs = data->bs; 198 199 bdrv_dec_in_flight(bs); 200 bdrv_drained_begin(bs); 201 data->done = true; 202 aio_co_wake(co); 203 } 204 205 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs) 206 { 207 BdrvCoDrainData data; 208 209 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 210 * other coroutines run if they were queued from 211 * qemu_co_queue_run_restart(). */ 212 213 assert(qemu_in_coroutine()); 214 data = (BdrvCoDrainData) { 215 .co = qemu_coroutine_self(), 216 .bs = bs, 217 .done = false, 218 }; 219 bdrv_inc_in_flight(bs); 220 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 221 bdrv_co_drain_bh_cb, &data); 222 223 qemu_coroutine_yield(); 224 /* If we are resumed from some other event (such as an aio completion or a 225 * timer callback), it is a bug in the caller that should be fixed. */ 226 assert(data.done); 227 } 228 229 void bdrv_drained_begin(BlockDriverState *bs) 230 { 231 if (qemu_in_coroutine()) { 232 bdrv_co_yield_to_drain(bs); 233 return; 234 } 235 236 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 237 aio_disable_external(bdrv_get_aio_context(bs)); 238 bdrv_parent_drained_begin(bs); 239 } 240 241 bdrv_drain_recurse(bs); 242 } 243 244 void bdrv_drained_end(BlockDriverState *bs) 245 { 246 assert(bs->quiesce_counter > 0); 247 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) { 248 return; 249 } 250 251 bdrv_parent_drained_end(bs); 252 aio_enable_external(bdrv_get_aio_context(bs)); 253 } 254 255 /* 256 * Wait for pending requests to complete on a single BlockDriverState subtree, 257 * and suspend block driver's internal I/O until next request arrives. 258 * 259 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 260 * AioContext. 261 * 262 * Only this BlockDriverState's AioContext is run, so in-flight requests must 263 * not depend on events in other AioContexts. In that case, use 264 * bdrv_drain_all() instead. 265 */ 266 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 267 { 268 assert(qemu_in_coroutine()); 269 bdrv_drained_begin(bs); 270 bdrv_drained_end(bs); 271 } 272 273 void bdrv_drain(BlockDriverState *bs) 274 { 275 bdrv_drained_begin(bs); 276 bdrv_drained_end(bs); 277 } 278 279 /* 280 * Wait for pending requests to complete across all BlockDriverStates 281 * 282 * This function does not flush data to disk, use bdrv_flush_all() for that 283 * after calling this function. 284 * 285 * This pauses all block jobs and disables external clients. It must 286 * be paired with bdrv_drain_all_end(). 287 * 288 * NOTE: no new block jobs or BlockDriverStates can be created between 289 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 290 */ 291 void bdrv_drain_all_begin(void) 292 { 293 /* Always run first iteration so any pending completion BHs run */ 294 bool waited = true; 295 BlockDriverState *bs; 296 BdrvNextIterator it; 297 GSList *aio_ctxs = NULL, *ctx; 298 299 block_job_pause_all(); 300 301 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 302 AioContext *aio_context = bdrv_get_aio_context(bs); 303 304 aio_context_acquire(aio_context); 305 bdrv_parent_drained_begin(bs); 306 aio_disable_external(aio_context); 307 aio_context_release(aio_context); 308 309 if (!g_slist_find(aio_ctxs, aio_context)) { 310 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context); 311 } 312 } 313 314 /* Note that completion of an asynchronous I/O operation can trigger any 315 * number of other I/O operations on other devices---for example a 316 * coroutine can submit an I/O request to another device in response to 317 * request completion. Therefore we must keep looping until there was no 318 * more activity rather than simply draining each device independently. 319 */ 320 while (waited) { 321 waited = false; 322 323 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) { 324 AioContext *aio_context = ctx->data; 325 326 aio_context_acquire(aio_context); 327 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 328 if (aio_context == bdrv_get_aio_context(bs)) { 329 waited |= bdrv_drain_recurse(bs); 330 } 331 } 332 aio_context_release(aio_context); 333 } 334 } 335 336 g_slist_free(aio_ctxs); 337 } 338 339 void bdrv_drain_all_end(void) 340 { 341 BlockDriverState *bs; 342 BdrvNextIterator it; 343 344 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 345 AioContext *aio_context = bdrv_get_aio_context(bs); 346 347 aio_context_acquire(aio_context); 348 aio_enable_external(aio_context); 349 bdrv_parent_drained_end(bs); 350 aio_context_release(aio_context); 351 } 352 353 block_job_resume_all(); 354 } 355 356 void bdrv_drain_all(void) 357 { 358 bdrv_drain_all_begin(); 359 bdrv_drain_all_end(); 360 } 361 362 /** 363 * Remove an active request from the tracked requests list 364 * 365 * This function should be called when a tracked request is completing. 366 */ 367 static void tracked_request_end(BdrvTrackedRequest *req) 368 { 369 if (req->serialising) { 370 atomic_dec(&req->bs->serialising_in_flight); 371 } 372 373 qemu_co_mutex_lock(&req->bs->reqs_lock); 374 QLIST_REMOVE(req, list); 375 qemu_co_queue_restart_all(&req->wait_queue); 376 qemu_co_mutex_unlock(&req->bs->reqs_lock); 377 } 378 379 /** 380 * Add an active request to the tracked requests list 381 */ 382 static void tracked_request_begin(BdrvTrackedRequest *req, 383 BlockDriverState *bs, 384 int64_t offset, 385 unsigned int bytes, 386 enum BdrvTrackedRequestType type) 387 { 388 *req = (BdrvTrackedRequest){ 389 .bs = bs, 390 .offset = offset, 391 .bytes = bytes, 392 .type = type, 393 .co = qemu_coroutine_self(), 394 .serialising = false, 395 .overlap_offset = offset, 396 .overlap_bytes = bytes, 397 }; 398 399 qemu_co_queue_init(&req->wait_queue); 400 401 qemu_co_mutex_lock(&bs->reqs_lock); 402 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 403 qemu_co_mutex_unlock(&bs->reqs_lock); 404 } 405 406 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 407 { 408 int64_t overlap_offset = req->offset & ~(align - 1); 409 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 410 - overlap_offset; 411 412 if (!req->serialising) { 413 atomic_inc(&req->bs->serialising_in_flight); 414 req->serialising = true; 415 } 416 417 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 418 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 419 } 420 421 /** 422 * Round a region to cluster boundaries 423 */ 424 void bdrv_round_to_clusters(BlockDriverState *bs, 425 int64_t offset, unsigned int bytes, 426 int64_t *cluster_offset, 427 unsigned int *cluster_bytes) 428 { 429 BlockDriverInfo bdi; 430 431 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 432 *cluster_offset = offset; 433 *cluster_bytes = bytes; 434 } else { 435 int64_t c = bdi.cluster_size; 436 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 437 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 438 } 439 } 440 441 static int bdrv_get_cluster_size(BlockDriverState *bs) 442 { 443 BlockDriverInfo bdi; 444 int ret; 445 446 ret = bdrv_get_info(bs, &bdi); 447 if (ret < 0 || bdi.cluster_size == 0) { 448 return bs->bl.request_alignment; 449 } else { 450 return bdi.cluster_size; 451 } 452 } 453 454 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 455 int64_t offset, unsigned int bytes) 456 { 457 /* aaaa bbbb */ 458 if (offset >= req->overlap_offset + req->overlap_bytes) { 459 return false; 460 } 461 /* bbbb aaaa */ 462 if (req->overlap_offset >= offset + bytes) { 463 return false; 464 } 465 return true; 466 } 467 468 void bdrv_inc_in_flight(BlockDriverState *bs) 469 { 470 atomic_inc(&bs->in_flight); 471 } 472 473 static void dummy_bh_cb(void *opaque) 474 { 475 } 476 477 void bdrv_wakeup(BlockDriverState *bs) 478 { 479 /* The barrier (or an atomic op) is in the caller. */ 480 if (atomic_read(&bs->wakeup)) { 481 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL); 482 } 483 } 484 485 void bdrv_dec_in_flight(BlockDriverState *bs) 486 { 487 atomic_dec(&bs->in_flight); 488 bdrv_wakeup(bs); 489 } 490 491 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 492 { 493 BlockDriverState *bs = self->bs; 494 BdrvTrackedRequest *req; 495 bool retry; 496 bool waited = false; 497 498 if (!atomic_read(&bs->serialising_in_flight)) { 499 return false; 500 } 501 502 do { 503 retry = false; 504 qemu_co_mutex_lock(&bs->reqs_lock); 505 QLIST_FOREACH(req, &bs->tracked_requests, list) { 506 if (req == self || (!req->serialising && !self->serialising)) { 507 continue; 508 } 509 if (tracked_request_overlaps(req, self->overlap_offset, 510 self->overlap_bytes)) 511 { 512 /* Hitting this means there was a reentrant request, for 513 * example, a block driver issuing nested requests. This must 514 * never happen since it means deadlock. 515 */ 516 assert(qemu_coroutine_self() != req->co); 517 518 /* If the request is already (indirectly) waiting for us, or 519 * will wait for us as soon as it wakes up, then just go on 520 * (instead of producing a deadlock in the former case). */ 521 if (!req->waiting_for) { 522 self->waiting_for = req; 523 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 524 self->waiting_for = NULL; 525 retry = true; 526 waited = true; 527 break; 528 } 529 } 530 } 531 qemu_co_mutex_unlock(&bs->reqs_lock); 532 } while (retry); 533 534 return waited; 535 } 536 537 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 538 size_t size) 539 { 540 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 541 return -EIO; 542 } 543 544 if (!bdrv_is_inserted(bs)) { 545 return -ENOMEDIUM; 546 } 547 548 if (offset < 0) { 549 return -EIO; 550 } 551 552 return 0; 553 } 554 555 typedef struct RwCo { 556 BdrvChild *child; 557 int64_t offset; 558 QEMUIOVector *qiov; 559 bool is_write; 560 int ret; 561 BdrvRequestFlags flags; 562 } RwCo; 563 564 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 565 { 566 RwCo *rwco = opaque; 567 568 if (!rwco->is_write) { 569 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 570 rwco->qiov->size, rwco->qiov, 571 rwco->flags); 572 } else { 573 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 574 rwco->qiov->size, rwco->qiov, 575 rwco->flags); 576 } 577 } 578 579 /* 580 * Process a vectored synchronous request using coroutines 581 */ 582 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 583 QEMUIOVector *qiov, bool is_write, 584 BdrvRequestFlags flags) 585 { 586 Coroutine *co; 587 RwCo rwco = { 588 .child = child, 589 .offset = offset, 590 .qiov = qiov, 591 .is_write = is_write, 592 .ret = NOT_DONE, 593 .flags = flags, 594 }; 595 596 if (qemu_in_coroutine()) { 597 /* Fast-path if already in coroutine context */ 598 bdrv_rw_co_entry(&rwco); 599 } else { 600 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 601 bdrv_coroutine_enter(child->bs, co); 602 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 603 } 604 return rwco.ret; 605 } 606 607 /* 608 * Process a synchronous request using coroutines 609 */ 610 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, 611 int nb_sectors, bool is_write, BdrvRequestFlags flags) 612 { 613 QEMUIOVector qiov; 614 struct iovec iov = { 615 .iov_base = (void *)buf, 616 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 617 }; 618 619 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 620 return -EINVAL; 621 } 622 623 qemu_iovec_init_external(&qiov, &iov, 1); 624 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, 625 &qiov, is_write, flags); 626 } 627 628 /* return < 0 if error. See bdrv_write() for the return codes */ 629 int bdrv_read(BdrvChild *child, int64_t sector_num, 630 uint8_t *buf, int nb_sectors) 631 { 632 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); 633 } 634 635 /* Return < 0 if error. Important errors are: 636 -EIO generic I/O error (may happen for all errors) 637 -ENOMEDIUM No media inserted. 638 -EINVAL Invalid sector number or nb_sectors 639 -EACCES Trying to write a read-only device 640 */ 641 int bdrv_write(BdrvChild *child, int64_t sector_num, 642 const uint8_t *buf, int nb_sectors) 643 { 644 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 645 } 646 647 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 648 int bytes, BdrvRequestFlags flags) 649 { 650 QEMUIOVector qiov; 651 struct iovec iov = { 652 .iov_base = NULL, 653 .iov_len = bytes, 654 }; 655 656 qemu_iovec_init_external(&qiov, &iov, 1); 657 return bdrv_prwv_co(child, offset, &qiov, true, 658 BDRV_REQ_ZERO_WRITE | flags); 659 } 660 661 /* 662 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 663 * The operation is sped up by checking the block status and only writing 664 * zeroes to the device if they currently do not return zeroes. Optional 665 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 666 * BDRV_REQ_FUA). 667 * 668 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 669 */ 670 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 671 { 672 int64_t target_sectors, ret, nb_sectors, sector_num = 0; 673 BlockDriverState *bs = child->bs; 674 BlockDriverState *file; 675 int n; 676 677 target_sectors = bdrv_nb_sectors(bs); 678 if (target_sectors < 0) { 679 return target_sectors; 680 } 681 682 for (;;) { 683 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS); 684 if (nb_sectors <= 0) { 685 return 0; 686 } 687 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file); 688 if (ret < 0) { 689 error_report("error getting block status at sector %" PRId64 ": %s", 690 sector_num, strerror(-ret)); 691 return ret; 692 } 693 if (ret & BDRV_BLOCK_ZERO) { 694 sector_num += n; 695 continue; 696 } 697 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS, 698 n << BDRV_SECTOR_BITS, flags); 699 if (ret < 0) { 700 error_report("error writing zeroes at sector %" PRId64 ": %s", 701 sector_num, strerror(-ret)); 702 return ret; 703 } 704 sector_num += n; 705 } 706 } 707 708 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 709 { 710 int ret; 711 712 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 713 if (ret < 0) { 714 return ret; 715 } 716 717 return qiov->size; 718 } 719 720 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 721 { 722 QEMUIOVector qiov; 723 struct iovec iov = { 724 .iov_base = (void *)buf, 725 .iov_len = bytes, 726 }; 727 728 if (bytes < 0) { 729 return -EINVAL; 730 } 731 732 qemu_iovec_init_external(&qiov, &iov, 1); 733 return bdrv_preadv(child, offset, &qiov); 734 } 735 736 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 737 { 738 int ret; 739 740 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 741 if (ret < 0) { 742 return ret; 743 } 744 745 return qiov->size; 746 } 747 748 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 749 { 750 QEMUIOVector qiov; 751 struct iovec iov = { 752 .iov_base = (void *) buf, 753 .iov_len = bytes, 754 }; 755 756 if (bytes < 0) { 757 return -EINVAL; 758 } 759 760 qemu_iovec_init_external(&qiov, &iov, 1); 761 return bdrv_pwritev(child, offset, &qiov); 762 } 763 764 /* 765 * Writes to the file and ensures that no writes are reordered across this 766 * request (acts as a barrier) 767 * 768 * Returns 0 on success, -errno in error cases. 769 */ 770 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 771 const void *buf, int count) 772 { 773 int ret; 774 775 ret = bdrv_pwrite(child, offset, buf, count); 776 if (ret < 0) { 777 return ret; 778 } 779 780 ret = bdrv_flush(child->bs); 781 if (ret < 0) { 782 return ret; 783 } 784 785 return 0; 786 } 787 788 typedef struct CoroutineIOCompletion { 789 Coroutine *coroutine; 790 int ret; 791 } CoroutineIOCompletion; 792 793 static void bdrv_co_io_em_complete(void *opaque, int ret) 794 { 795 CoroutineIOCompletion *co = opaque; 796 797 co->ret = ret; 798 aio_co_wake(co->coroutine); 799 } 800 801 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 802 uint64_t offset, uint64_t bytes, 803 QEMUIOVector *qiov, int flags) 804 { 805 BlockDriver *drv = bs->drv; 806 int64_t sector_num; 807 unsigned int nb_sectors; 808 809 assert(!(flags & ~BDRV_REQ_MASK)); 810 811 if (drv->bdrv_co_preadv) { 812 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 813 } 814 815 sector_num = offset >> BDRV_SECTOR_BITS; 816 nb_sectors = bytes >> BDRV_SECTOR_BITS; 817 818 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 819 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 820 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 821 822 if (drv->bdrv_co_readv) { 823 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 824 } else { 825 BlockAIOCB *acb; 826 CoroutineIOCompletion co = { 827 .coroutine = qemu_coroutine_self(), 828 }; 829 830 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors, 831 bdrv_co_io_em_complete, &co); 832 if (acb == NULL) { 833 return -EIO; 834 } else { 835 qemu_coroutine_yield(); 836 return co.ret; 837 } 838 } 839 } 840 841 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 842 uint64_t offset, uint64_t bytes, 843 QEMUIOVector *qiov, int flags) 844 { 845 BlockDriver *drv = bs->drv; 846 int64_t sector_num; 847 unsigned int nb_sectors; 848 int ret; 849 850 assert(!(flags & ~BDRV_REQ_MASK)); 851 852 if (drv->bdrv_co_pwritev) { 853 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 854 flags & bs->supported_write_flags); 855 flags &= ~bs->supported_write_flags; 856 goto emulate_flags; 857 } 858 859 sector_num = offset >> BDRV_SECTOR_BITS; 860 nb_sectors = bytes >> BDRV_SECTOR_BITS; 861 862 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 863 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 864 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 865 866 if (drv->bdrv_co_writev_flags) { 867 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov, 868 flags & bs->supported_write_flags); 869 flags &= ~bs->supported_write_flags; 870 } else if (drv->bdrv_co_writev) { 871 assert(!bs->supported_write_flags); 872 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 873 } else { 874 BlockAIOCB *acb; 875 CoroutineIOCompletion co = { 876 .coroutine = qemu_coroutine_self(), 877 }; 878 879 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors, 880 bdrv_co_io_em_complete, &co); 881 if (acb == NULL) { 882 ret = -EIO; 883 } else { 884 qemu_coroutine_yield(); 885 ret = co.ret; 886 } 887 } 888 889 emulate_flags: 890 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 891 ret = bdrv_co_flush(bs); 892 } 893 894 return ret; 895 } 896 897 static int coroutine_fn 898 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 899 uint64_t bytes, QEMUIOVector *qiov) 900 { 901 BlockDriver *drv = bs->drv; 902 903 if (!drv->bdrv_co_pwritev_compressed) { 904 return -ENOTSUP; 905 } 906 907 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 908 } 909 910 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 911 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 912 { 913 BlockDriverState *bs = child->bs; 914 915 /* Perform I/O through a temporary buffer so that users who scribble over 916 * their read buffer while the operation is in progress do not end up 917 * modifying the image file. This is critical for zero-copy guest I/O 918 * where anything might happen inside guest memory. 919 */ 920 void *bounce_buffer; 921 922 BlockDriver *drv = bs->drv; 923 struct iovec iov; 924 QEMUIOVector bounce_qiov; 925 int64_t cluster_offset; 926 unsigned int cluster_bytes; 927 size_t skip_bytes; 928 int ret; 929 930 /* FIXME We cannot require callers to have write permissions when all they 931 * are doing is a read request. If we did things right, write permissions 932 * would be obtained anyway, but internally by the copy-on-read code. As 933 * long as it is implemented here rather than in a separat filter driver, 934 * the copy-on-read code doesn't have its own BdrvChild, however, for which 935 * it could request permissions. Therefore we have to bypass the permission 936 * system for the moment. */ 937 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 938 939 /* Cover entire cluster so no additional backing file I/O is required when 940 * allocating cluster in the image file. 941 */ 942 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 943 944 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 945 cluster_offset, cluster_bytes); 946 947 iov.iov_len = cluster_bytes; 948 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len); 949 if (bounce_buffer == NULL) { 950 ret = -ENOMEM; 951 goto err; 952 } 953 954 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 955 956 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes, 957 &bounce_qiov, 0); 958 if (ret < 0) { 959 goto err; 960 } 961 962 if (drv->bdrv_co_pwrite_zeroes && 963 buffer_is_zero(bounce_buffer, iov.iov_len)) { 964 /* FIXME: Should we (perhaps conditionally) be setting 965 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 966 * that still correctly reads as zero? */ 967 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0); 968 } else { 969 /* This does not change the data on the disk, it is not necessary 970 * to flush even in cache=writethrough mode. 971 */ 972 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes, 973 &bounce_qiov, 0); 974 } 975 976 if (ret < 0) { 977 /* It might be okay to ignore write errors for guest requests. If this 978 * is a deliberate copy-on-read then we don't want to ignore the error. 979 * Simply report it in all cases. 980 */ 981 goto err; 982 } 983 984 skip_bytes = offset - cluster_offset; 985 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes); 986 987 err: 988 qemu_vfree(bounce_buffer); 989 return ret; 990 } 991 992 /* 993 * Forwards an already correctly aligned request to the BlockDriver. This 994 * handles copy on read, zeroing after EOF, and fragmentation of large 995 * reads; any other features must be implemented by the caller. 996 */ 997 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 998 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 999 int64_t align, QEMUIOVector *qiov, int flags) 1000 { 1001 BlockDriverState *bs = child->bs; 1002 int64_t total_bytes, max_bytes; 1003 int ret = 0; 1004 uint64_t bytes_remaining = bytes; 1005 int max_transfer; 1006 1007 assert(is_power_of_2(align)); 1008 assert((offset & (align - 1)) == 0); 1009 assert((bytes & (align - 1)) == 0); 1010 assert(!qiov || bytes == qiov->size); 1011 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1012 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1013 align); 1014 1015 /* TODO: We would need a per-BDS .supported_read_flags and 1016 * potential fallback support, if we ever implement any read flags 1017 * to pass through to drivers. For now, there aren't any 1018 * passthrough flags. */ 1019 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 1020 1021 /* Handle Copy on Read and associated serialisation */ 1022 if (flags & BDRV_REQ_COPY_ON_READ) { 1023 /* If we touch the same cluster it counts as an overlap. This 1024 * guarantees that allocating writes will be serialized and not race 1025 * with each other for the same cluster. For example, in copy-on-read 1026 * it ensures that the CoR read and write operations are atomic and 1027 * guest writes cannot interleave between them. */ 1028 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1029 } 1030 1031 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1032 wait_serialising_requests(req); 1033 } 1034 1035 if (flags & BDRV_REQ_COPY_ON_READ) { 1036 /* TODO: Simplify further once bdrv_is_allocated no longer 1037 * requires sector alignment */ 1038 int64_t start = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE); 1039 int64_t end = QEMU_ALIGN_UP(offset + bytes, BDRV_SECTOR_SIZE); 1040 int64_t pnum; 1041 1042 ret = bdrv_is_allocated(bs, start, end - start, &pnum); 1043 if (ret < 0) { 1044 goto out; 1045 } 1046 1047 if (!ret || pnum != end - start) { 1048 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); 1049 goto out; 1050 } 1051 } 1052 1053 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1054 total_bytes = bdrv_getlength(bs); 1055 if (total_bytes < 0) { 1056 ret = total_bytes; 1057 goto out; 1058 } 1059 1060 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1061 if (bytes <= max_bytes && bytes <= max_transfer) { 1062 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1063 goto out; 1064 } 1065 1066 while (bytes_remaining) { 1067 int num; 1068 1069 if (max_bytes) { 1070 QEMUIOVector local_qiov; 1071 1072 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1073 assert(num); 1074 qemu_iovec_init(&local_qiov, qiov->niov); 1075 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1076 1077 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1078 num, &local_qiov, 0); 1079 max_bytes -= num; 1080 qemu_iovec_destroy(&local_qiov); 1081 } else { 1082 num = bytes_remaining; 1083 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1084 bytes_remaining); 1085 } 1086 if (ret < 0) { 1087 goto out; 1088 } 1089 bytes_remaining -= num; 1090 } 1091 1092 out: 1093 return ret < 0 ? ret : 0; 1094 } 1095 1096 /* 1097 * Handle a read request in coroutine context 1098 */ 1099 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1100 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1101 BdrvRequestFlags flags) 1102 { 1103 BlockDriverState *bs = child->bs; 1104 BlockDriver *drv = bs->drv; 1105 BdrvTrackedRequest req; 1106 1107 uint64_t align = bs->bl.request_alignment; 1108 uint8_t *head_buf = NULL; 1109 uint8_t *tail_buf = NULL; 1110 QEMUIOVector local_qiov; 1111 bool use_local_qiov = false; 1112 int ret; 1113 1114 if (!drv) { 1115 return -ENOMEDIUM; 1116 } 1117 1118 ret = bdrv_check_byte_request(bs, offset, bytes); 1119 if (ret < 0) { 1120 return ret; 1121 } 1122 1123 bdrv_inc_in_flight(bs); 1124 1125 /* Don't do copy-on-read if we read data before write operation */ 1126 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1127 flags |= BDRV_REQ_COPY_ON_READ; 1128 } 1129 1130 /* Align read if necessary by padding qiov */ 1131 if (offset & (align - 1)) { 1132 head_buf = qemu_blockalign(bs, align); 1133 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1134 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1135 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1136 use_local_qiov = true; 1137 1138 bytes += offset & (align - 1); 1139 offset = offset & ~(align - 1); 1140 } 1141 1142 if ((offset + bytes) & (align - 1)) { 1143 if (!use_local_qiov) { 1144 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1145 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1146 use_local_qiov = true; 1147 } 1148 tail_buf = qemu_blockalign(bs, align); 1149 qemu_iovec_add(&local_qiov, tail_buf, 1150 align - ((offset + bytes) & (align - 1))); 1151 1152 bytes = ROUND_UP(bytes, align); 1153 } 1154 1155 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1156 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1157 use_local_qiov ? &local_qiov : qiov, 1158 flags); 1159 tracked_request_end(&req); 1160 bdrv_dec_in_flight(bs); 1161 1162 if (use_local_qiov) { 1163 qemu_iovec_destroy(&local_qiov); 1164 qemu_vfree(head_buf); 1165 qemu_vfree(tail_buf); 1166 } 1167 1168 return ret; 1169 } 1170 1171 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child, 1172 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1173 BdrvRequestFlags flags) 1174 { 1175 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1176 return -EINVAL; 1177 } 1178 1179 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS, 1180 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1181 } 1182 1183 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num, 1184 int nb_sectors, QEMUIOVector *qiov) 1185 { 1186 trace_bdrv_co_readv(child->bs, sector_num, nb_sectors); 1187 1188 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0); 1189 } 1190 1191 /* Maximum buffer for write zeroes fallback, in bytes */ 1192 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 1193 1194 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1195 int64_t offset, int bytes, BdrvRequestFlags flags) 1196 { 1197 BlockDriver *drv = bs->drv; 1198 QEMUIOVector qiov; 1199 struct iovec iov = {0}; 1200 int ret = 0; 1201 bool need_flush = false; 1202 int head = 0; 1203 int tail = 0; 1204 1205 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1206 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1207 bs->bl.request_alignment); 1208 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1209 MAX_WRITE_ZEROES_BOUNCE_BUFFER); 1210 1211 assert(alignment % bs->bl.request_alignment == 0); 1212 head = offset % alignment; 1213 tail = (offset + bytes) % alignment; 1214 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1215 assert(max_write_zeroes >= bs->bl.request_alignment); 1216 1217 while (bytes > 0 && !ret) { 1218 int num = bytes; 1219 1220 /* Align request. Block drivers can expect the "bulk" of the request 1221 * to be aligned, and that unaligned requests do not cross cluster 1222 * boundaries. 1223 */ 1224 if (head) { 1225 /* Make a small request up to the first aligned sector. For 1226 * convenience, limit this request to max_transfer even if 1227 * we don't need to fall back to writes. */ 1228 num = MIN(MIN(bytes, max_transfer), alignment - head); 1229 head = (head + num) % alignment; 1230 assert(num < max_write_zeroes); 1231 } else if (tail && num > alignment) { 1232 /* Shorten the request to the last aligned sector. */ 1233 num -= tail; 1234 } 1235 1236 /* limit request size */ 1237 if (num > max_write_zeroes) { 1238 num = max_write_zeroes; 1239 } 1240 1241 ret = -ENOTSUP; 1242 /* First try the efficient write zeroes operation */ 1243 if (drv->bdrv_co_pwrite_zeroes) { 1244 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1245 flags & bs->supported_zero_flags); 1246 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1247 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1248 need_flush = true; 1249 } 1250 } else { 1251 assert(!bs->supported_zero_flags); 1252 } 1253 1254 if (ret == -ENOTSUP) { 1255 /* Fall back to bounce buffer if write zeroes is unsupported */ 1256 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1257 1258 if ((flags & BDRV_REQ_FUA) && 1259 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1260 /* No need for bdrv_driver_pwrite() to do a fallback 1261 * flush on each chunk; use just one at the end */ 1262 write_flags &= ~BDRV_REQ_FUA; 1263 need_flush = true; 1264 } 1265 num = MIN(num, max_transfer); 1266 iov.iov_len = num; 1267 if (iov.iov_base == NULL) { 1268 iov.iov_base = qemu_try_blockalign(bs, num); 1269 if (iov.iov_base == NULL) { 1270 ret = -ENOMEM; 1271 goto fail; 1272 } 1273 memset(iov.iov_base, 0, num); 1274 } 1275 qemu_iovec_init_external(&qiov, &iov, 1); 1276 1277 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1278 1279 /* Keep bounce buffer around if it is big enough for all 1280 * all future requests. 1281 */ 1282 if (num < max_transfer) { 1283 qemu_vfree(iov.iov_base); 1284 iov.iov_base = NULL; 1285 } 1286 } 1287 1288 offset += num; 1289 bytes -= num; 1290 } 1291 1292 fail: 1293 if (ret == 0 && need_flush) { 1294 ret = bdrv_co_flush(bs); 1295 } 1296 qemu_vfree(iov.iov_base); 1297 return ret; 1298 } 1299 1300 /* 1301 * Forwards an already correctly aligned write request to the BlockDriver, 1302 * after possibly fragmenting it. 1303 */ 1304 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1305 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1306 int64_t align, QEMUIOVector *qiov, int flags) 1307 { 1308 BlockDriverState *bs = child->bs; 1309 BlockDriver *drv = bs->drv; 1310 bool waited; 1311 int ret; 1312 1313 int64_t start_sector = offset >> BDRV_SECTOR_BITS; 1314 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1315 uint64_t bytes_remaining = bytes; 1316 int max_transfer; 1317 1318 assert(is_power_of_2(align)); 1319 assert((offset & (align - 1)) == 0); 1320 assert((bytes & (align - 1)) == 0); 1321 assert(!qiov || bytes == qiov->size); 1322 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1323 assert(!(flags & ~BDRV_REQ_MASK)); 1324 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1325 align); 1326 1327 waited = wait_serialising_requests(req); 1328 assert(!waited || !req->serialising); 1329 assert(req->overlap_offset <= offset); 1330 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1331 assert(child->perm & BLK_PERM_WRITE); 1332 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1333 1334 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); 1335 1336 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1337 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1338 qemu_iovec_is_zero(qiov)) { 1339 flags |= BDRV_REQ_ZERO_WRITE; 1340 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1341 flags |= BDRV_REQ_MAY_UNMAP; 1342 } 1343 } 1344 1345 if (ret < 0) { 1346 /* Do nothing, write notifier decided to fail this request */ 1347 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1348 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1349 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1350 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1351 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1352 } else if (bytes <= max_transfer) { 1353 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1354 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1355 } else { 1356 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1357 while (bytes_remaining) { 1358 int num = MIN(bytes_remaining, max_transfer); 1359 QEMUIOVector local_qiov; 1360 int local_flags = flags; 1361 1362 assert(num); 1363 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1364 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1365 /* If FUA is going to be emulated by flush, we only 1366 * need to flush on the last iteration */ 1367 local_flags &= ~BDRV_REQ_FUA; 1368 } 1369 qemu_iovec_init(&local_qiov, qiov->niov); 1370 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1371 1372 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1373 num, &local_qiov, local_flags); 1374 qemu_iovec_destroy(&local_qiov); 1375 if (ret < 0) { 1376 break; 1377 } 1378 bytes_remaining -= num; 1379 } 1380 } 1381 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1382 1383 atomic_inc(&bs->write_gen); 1384 bdrv_set_dirty(bs, start_sector, end_sector - start_sector); 1385 1386 stat64_max(&bs->wr_highest_offset, offset + bytes); 1387 1388 if (ret >= 0) { 1389 bs->total_sectors = MAX(bs->total_sectors, end_sector); 1390 ret = 0; 1391 } 1392 1393 return ret; 1394 } 1395 1396 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1397 int64_t offset, 1398 unsigned int bytes, 1399 BdrvRequestFlags flags, 1400 BdrvTrackedRequest *req) 1401 { 1402 BlockDriverState *bs = child->bs; 1403 uint8_t *buf = NULL; 1404 QEMUIOVector local_qiov; 1405 struct iovec iov; 1406 uint64_t align = bs->bl.request_alignment; 1407 unsigned int head_padding_bytes, tail_padding_bytes; 1408 int ret = 0; 1409 1410 head_padding_bytes = offset & (align - 1); 1411 tail_padding_bytes = (align - (offset + bytes)) & (align - 1); 1412 1413 1414 assert(flags & BDRV_REQ_ZERO_WRITE); 1415 if (head_padding_bytes || tail_padding_bytes) { 1416 buf = qemu_blockalign(bs, align); 1417 iov = (struct iovec) { 1418 .iov_base = buf, 1419 .iov_len = align, 1420 }; 1421 qemu_iovec_init_external(&local_qiov, &iov, 1); 1422 } 1423 if (head_padding_bytes) { 1424 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1425 1426 /* RMW the unaligned part before head. */ 1427 mark_request_serialising(req, align); 1428 wait_serialising_requests(req); 1429 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1430 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1431 align, &local_qiov, 0); 1432 if (ret < 0) { 1433 goto fail; 1434 } 1435 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1436 1437 memset(buf + head_padding_bytes, 0, zero_bytes); 1438 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1439 align, &local_qiov, 1440 flags & ~BDRV_REQ_ZERO_WRITE); 1441 if (ret < 0) { 1442 goto fail; 1443 } 1444 offset += zero_bytes; 1445 bytes -= zero_bytes; 1446 } 1447 1448 assert(!bytes || (offset & (align - 1)) == 0); 1449 if (bytes >= align) { 1450 /* Write the aligned part in the middle. */ 1451 uint64_t aligned_bytes = bytes & ~(align - 1); 1452 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1453 NULL, flags); 1454 if (ret < 0) { 1455 goto fail; 1456 } 1457 bytes -= aligned_bytes; 1458 offset += aligned_bytes; 1459 } 1460 1461 assert(!bytes || (offset & (align - 1)) == 0); 1462 if (bytes) { 1463 assert(align == tail_padding_bytes + bytes); 1464 /* RMW the unaligned part after tail. */ 1465 mark_request_serialising(req, align); 1466 wait_serialising_requests(req); 1467 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1468 ret = bdrv_aligned_preadv(child, req, offset, align, 1469 align, &local_qiov, 0); 1470 if (ret < 0) { 1471 goto fail; 1472 } 1473 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1474 1475 memset(buf, 0, bytes); 1476 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1477 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1478 } 1479 fail: 1480 qemu_vfree(buf); 1481 return ret; 1482 1483 } 1484 1485 /* 1486 * Handle a write request in coroutine context 1487 */ 1488 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1489 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1490 BdrvRequestFlags flags) 1491 { 1492 BlockDriverState *bs = child->bs; 1493 BdrvTrackedRequest req; 1494 uint64_t align = bs->bl.request_alignment; 1495 uint8_t *head_buf = NULL; 1496 uint8_t *tail_buf = NULL; 1497 QEMUIOVector local_qiov; 1498 bool use_local_qiov = false; 1499 int ret; 1500 1501 if (!bs->drv) { 1502 return -ENOMEDIUM; 1503 } 1504 if (bs->read_only) { 1505 return -EPERM; 1506 } 1507 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1508 1509 ret = bdrv_check_byte_request(bs, offset, bytes); 1510 if (ret < 0) { 1511 return ret; 1512 } 1513 1514 bdrv_inc_in_flight(bs); 1515 /* 1516 * Align write if necessary by performing a read-modify-write cycle. 1517 * Pad qiov with the read parts and be sure to have a tracked request not 1518 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1519 */ 1520 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1521 1522 if (!qiov) { 1523 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1524 goto out; 1525 } 1526 1527 if (offset & (align - 1)) { 1528 QEMUIOVector head_qiov; 1529 struct iovec head_iov; 1530 1531 mark_request_serialising(&req, align); 1532 wait_serialising_requests(&req); 1533 1534 head_buf = qemu_blockalign(bs, align); 1535 head_iov = (struct iovec) { 1536 .iov_base = head_buf, 1537 .iov_len = align, 1538 }; 1539 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1540 1541 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1542 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1543 align, &head_qiov, 0); 1544 if (ret < 0) { 1545 goto fail; 1546 } 1547 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1548 1549 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1550 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1551 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1552 use_local_qiov = true; 1553 1554 bytes += offset & (align - 1); 1555 offset = offset & ~(align - 1); 1556 1557 /* We have read the tail already if the request is smaller 1558 * than one aligned block. 1559 */ 1560 if (bytes < align) { 1561 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1562 bytes = align; 1563 } 1564 } 1565 1566 if ((offset + bytes) & (align - 1)) { 1567 QEMUIOVector tail_qiov; 1568 struct iovec tail_iov; 1569 size_t tail_bytes; 1570 bool waited; 1571 1572 mark_request_serialising(&req, align); 1573 waited = wait_serialising_requests(&req); 1574 assert(!waited || !use_local_qiov); 1575 1576 tail_buf = qemu_blockalign(bs, align); 1577 tail_iov = (struct iovec) { 1578 .iov_base = tail_buf, 1579 .iov_len = align, 1580 }; 1581 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1582 1583 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1584 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1585 align, align, &tail_qiov, 0); 1586 if (ret < 0) { 1587 goto fail; 1588 } 1589 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1590 1591 if (!use_local_qiov) { 1592 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1593 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1594 use_local_qiov = true; 1595 } 1596 1597 tail_bytes = (offset + bytes) & (align - 1); 1598 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1599 1600 bytes = ROUND_UP(bytes, align); 1601 } 1602 1603 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1604 use_local_qiov ? &local_qiov : qiov, 1605 flags); 1606 1607 fail: 1608 1609 if (use_local_qiov) { 1610 qemu_iovec_destroy(&local_qiov); 1611 } 1612 qemu_vfree(head_buf); 1613 qemu_vfree(tail_buf); 1614 out: 1615 tracked_request_end(&req); 1616 bdrv_dec_in_flight(bs); 1617 return ret; 1618 } 1619 1620 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child, 1621 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1622 BdrvRequestFlags flags) 1623 { 1624 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1625 return -EINVAL; 1626 } 1627 1628 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS, 1629 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1630 } 1631 1632 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num, 1633 int nb_sectors, QEMUIOVector *qiov) 1634 { 1635 trace_bdrv_co_writev(child->bs, sector_num, nb_sectors); 1636 1637 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0); 1638 } 1639 1640 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1641 int bytes, BdrvRequestFlags flags) 1642 { 1643 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 1644 1645 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1646 flags &= ~BDRV_REQ_MAY_UNMAP; 1647 } 1648 1649 return bdrv_co_pwritev(child, offset, bytes, NULL, 1650 BDRV_REQ_ZERO_WRITE | flags); 1651 } 1652 1653 /* 1654 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1655 */ 1656 int bdrv_flush_all(void) 1657 { 1658 BdrvNextIterator it; 1659 BlockDriverState *bs = NULL; 1660 int result = 0; 1661 1662 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 1663 AioContext *aio_context = bdrv_get_aio_context(bs); 1664 int ret; 1665 1666 aio_context_acquire(aio_context); 1667 ret = bdrv_flush(bs); 1668 if (ret < 0 && !result) { 1669 result = ret; 1670 } 1671 aio_context_release(aio_context); 1672 } 1673 1674 return result; 1675 } 1676 1677 1678 typedef struct BdrvCoGetBlockStatusData { 1679 BlockDriverState *bs; 1680 BlockDriverState *base; 1681 BlockDriverState **file; 1682 int64_t sector_num; 1683 int nb_sectors; 1684 int *pnum; 1685 int64_t ret; 1686 bool done; 1687 } BdrvCoGetBlockStatusData; 1688 1689 /* 1690 * Returns the allocation status of the specified sectors. 1691 * Drivers not implementing the functionality are assumed to not support 1692 * backing files, hence all their sectors are reported as allocated. 1693 * 1694 * If 'sector_num' is beyond the end of the disk image the return value is 1695 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 1696 * 1697 * 'pnum' is set to the number of sectors (including and immediately following 1698 * the specified sector) that are known to be in the same 1699 * allocated/unallocated state. 1700 * 1701 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 1702 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 1703 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 1704 * 1705 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file' 1706 * points to the BDS which the sector range is allocated in. 1707 */ 1708 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs, 1709 int64_t sector_num, 1710 int nb_sectors, int *pnum, 1711 BlockDriverState **file) 1712 { 1713 int64_t total_sectors; 1714 int64_t n; 1715 int64_t ret, ret2; 1716 1717 *file = NULL; 1718 total_sectors = bdrv_nb_sectors(bs); 1719 if (total_sectors < 0) { 1720 return total_sectors; 1721 } 1722 1723 if (sector_num >= total_sectors) { 1724 *pnum = 0; 1725 return BDRV_BLOCK_EOF; 1726 } 1727 1728 n = total_sectors - sector_num; 1729 if (n < nb_sectors) { 1730 nb_sectors = n; 1731 } 1732 1733 if (!bs->drv->bdrv_co_get_block_status) { 1734 *pnum = nb_sectors; 1735 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 1736 if (sector_num + nb_sectors == total_sectors) { 1737 ret |= BDRV_BLOCK_EOF; 1738 } 1739 if (bs->drv->protocol_name) { 1740 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE); 1741 *file = bs; 1742 } 1743 return ret; 1744 } 1745 1746 bdrv_inc_in_flight(bs); 1747 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum, 1748 file); 1749 if (ret < 0) { 1750 *pnum = 0; 1751 goto out; 1752 } 1753 1754 if (ret & BDRV_BLOCK_RAW) { 1755 assert(ret & BDRV_BLOCK_OFFSET_VALID && *file); 1756 ret = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1757 *pnum, pnum, file); 1758 goto out; 1759 } 1760 1761 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 1762 ret |= BDRV_BLOCK_ALLOCATED; 1763 } else { 1764 if (bdrv_unallocated_blocks_are_zero(bs)) { 1765 ret |= BDRV_BLOCK_ZERO; 1766 } else if (bs->backing) { 1767 BlockDriverState *bs2 = bs->backing->bs; 1768 int64_t nb_sectors2 = bdrv_nb_sectors(bs2); 1769 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) { 1770 ret |= BDRV_BLOCK_ZERO; 1771 } 1772 } 1773 } 1774 1775 if (*file && *file != bs && 1776 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 1777 (ret & BDRV_BLOCK_OFFSET_VALID)) { 1778 BlockDriverState *file2; 1779 int file_pnum; 1780 1781 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1782 *pnum, &file_pnum, &file2); 1783 if (ret2 >= 0) { 1784 /* Ignore errors. This is just providing extra information, it 1785 * is useful but not necessary. 1786 */ 1787 if (ret2 & BDRV_BLOCK_EOF && 1788 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 1789 /* 1790 * It is valid for the format block driver to read 1791 * beyond the end of the underlying file's current 1792 * size; such areas read as zero. 1793 */ 1794 ret |= BDRV_BLOCK_ZERO; 1795 } else { 1796 /* Limit request to the range reported by the protocol driver */ 1797 *pnum = file_pnum; 1798 ret |= (ret2 & BDRV_BLOCK_ZERO); 1799 } 1800 } 1801 } 1802 1803 out: 1804 bdrv_dec_in_flight(bs); 1805 if (ret >= 0 && sector_num + *pnum == total_sectors) { 1806 ret |= BDRV_BLOCK_EOF; 1807 } 1808 return ret; 1809 } 1810 1811 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs, 1812 BlockDriverState *base, 1813 int64_t sector_num, 1814 int nb_sectors, 1815 int *pnum, 1816 BlockDriverState **file) 1817 { 1818 BlockDriverState *p; 1819 int64_t ret = 0; 1820 bool first = true; 1821 1822 assert(bs != base); 1823 for (p = bs; p != base; p = backing_bs(p)) { 1824 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file); 1825 if (ret < 0) { 1826 break; 1827 } 1828 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 1829 /* 1830 * Reading beyond the end of the file continues to read 1831 * zeroes, but we can only widen the result to the 1832 * unallocated length we learned from an earlier 1833 * iteration. 1834 */ 1835 *pnum = nb_sectors; 1836 } 1837 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 1838 break; 1839 } 1840 /* [sector_num, pnum] unallocated on this layer, which could be only 1841 * the first part of [sector_num, nb_sectors]. */ 1842 nb_sectors = MIN(nb_sectors, *pnum); 1843 first = false; 1844 } 1845 return ret; 1846 } 1847 1848 /* Coroutine wrapper for bdrv_get_block_status_above() */ 1849 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque) 1850 { 1851 BdrvCoGetBlockStatusData *data = opaque; 1852 1853 data->ret = bdrv_co_get_block_status_above(data->bs, data->base, 1854 data->sector_num, 1855 data->nb_sectors, 1856 data->pnum, 1857 data->file); 1858 data->done = true; 1859 } 1860 1861 /* 1862 * Synchronous wrapper around bdrv_co_get_block_status_above(). 1863 * 1864 * See bdrv_co_get_block_status_above() for details. 1865 */ 1866 int64_t bdrv_get_block_status_above(BlockDriverState *bs, 1867 BlockDriverState *base, 1868 int64_t sector_num, 1869 int nb_sectors, int *pnum, 1870 BlockDriverState **file) 1871 { 1872 Coroutine *co; 1873 BdrvCoGetBlockStatusData data = { 1874 .bs = bs, 1875 .base = base, 1876 .file = file, 1877 .sector_num = sector_num, 1878 .nb_sectors = nb_sectors, 1879 .pnum = pnum, 1880 .done = false, 1881 }; 1882 1883 if (qemu_in_coroutine()) { 1884 /* Fast-path if already in coroutine context */ 1885 bdrv_get_block_status_above_co_entry(&data); 1886 } else { 1887 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry, 1888 &data); 1889 bdrv_coroutine_enter(bs, co); 1890 BDRV_POLL_WHILE(bs, !data.done); 1891 } 1892 return data.ret; 1893 } 1894 1895 int64_t bdrv_get_block_status(BlockDriverState *bs, 1896 int64_t sector_num, 1897 int nb_sectors, int *pnum, 1898 BlockDriverState **file) 1899 { 1900 return bdrv_get_block_status_above(bs, backing_bs(bs), 1901 sector_num, nb_sectors, pnum, file); 1902 } 1903 1904 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 1905 int64_t bytes, int64_t *pnum) 1906 { 1907 BlockDriverState *file; 1908 int64_t sector_num = offset >> BDRV_SECTOR_BITS; 1909 int nb_sectors = bytes >> BDRV_SECTOR_BITS; 1910 int64_t ret; 1911 int psectors; 1912 1913 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1914 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE) && bytes < INT_MAX); 1915 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &psectors, 1916 &file); 1917 if (ret < 0) { 1918 return ret; 1919 } 1920 if (pnum) { 1921 *pnum = psectors * BDRV_SECTOR_SIZE; 1922 } 1923 return !!(ret & BDRV_BLOCK_ALLOCATED); 1924 } 1925 1926 /* 1927 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 1928 * 1929 * Return true if (a prefix of) the given range is allocated in any image 1930 * between BASE and TOP (inclusive). BASE can be NULL to check if the given 1931 * offset is allocated in any image of the chain. Return false otherwise, 1932 * or negative errno on failure. 1933 * 1934 * 'pnum' is set to the number of bytes (including and immediately 1935 * following the specified offset) that are known to be in the same 1936 * allocated/unallocated state. Note that a subsequent call starting 1937 * at 'offset + *pnum' may return the same allocation status (in other 1938 * words, the result is not necessarily the maximum possible range); 1939 * but 'pnum' will only be 0 when end of file is reached. 1940 * 1941 */ 1942 int bdrv_is_allocated_above(BlockDriverState *top, 1943 BlockDriverState *base, 1944 int64_t offset, int64_t bytes, int64_t *pnum) 1945 { 1946 BlockDriverState *intermediate; 1947 int ret; 1948 int64_t n = bytes; 1949 1950 intermediate = top; 1951 while (intermediate && intermediate != base) { 1952 int64_t pnum_inter; 1953 int64_t size_inter; 1954 1955 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 1956 if (ret < 0) { 1957 return ret; 1958 } 1959 if (ret) { 1960 *pnum = pnum_inter; 1961 return 1; 1962 } 1963 1964 size_inter = bdrv_getlength(intermediate); 1965 if (size_inter < 0) { 1966 return size_inter; 1967 } 1968 if (n > pnum_inter && 1969 (intermediate == top || offset + pnum_inter < size_inter)) { 1970 n = pnum_inter; 1971 } 1972 1973 intermediate = backing_bs(intermediate); 1974 } 1975 1976 *pnum = n; 1977 return 0; 1978 } 1979 1980 typedef struct BdrvVmstateCo { 1981 BlockDriverState *bs; 1982 QEMUIOVector *qiov; 1983 int64_t pos; 1984 bool is_read; 1985 int ret; 1986 } BdrvVmstateCo; 1987 1988 static int coroutine_fn 1989 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 1990 bool is_read) 1991 { 1992 BlockDriver *drv = bs->drv; 1993 int ret = -ENOTSUP; 1994 1995 bdrv_inc_in_flight(bs); 1996 1997 if (!drv) { 1998 ret = -ENOMEDIUM; 1999 } else if (drv->bdrv_load_vmstate) { 2000 if (is_read) { 2001 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2002 } else { 2003 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2004 } 2005 } else if (bs->file) { 2006 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2007 } 2008 2009 bdrv_dec_in_flight(bs); 2010 return ret; 2011 } 2012 2013 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2014 { 2015 BdrvVmstateCo *co = opaque; 2016 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2017 } 2018 2019 static inline int 2020 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2021 bool is_read) 2022 { 2023 if (qemu_in_coroutine()) { 2024 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2025 } else { 2026 BdrvVmstateCo data = { 2027 .bs = bs, 2028 .qiov = qiov, 2029 .pos = pos, 2030 .is_read = is_read, 2031 .ret = -EINPROGRESS, 2032 }; 2033 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2034 2035 bdrv_coroutine_enter(bs, co); 2036 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2037 return data.ret; 2038 } 2039 } 2040 2041 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2042 int64_t pos, int size) 2043 { 2044 QEMUIOVector qiov; 2045 struct iovec iov = { 2046 .iov_base = (void *) buf, 2047 .iov_len = size, 2048 }; 2049 int ret; 2050 2051 qemu_iovec_init_external(&qiov, &iov, 1); 2052 2053 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2054 if (ret < 0) { 2055 return ret; 2056 } 2057 2058 return size; 2059 } 2060 2061 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2062 { 2063 return bdrv_rw_vmstate(bs, qiov, pos, false); 2064 } 2065 2066 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2067 int64_t pos, int size) 2068 { 2069 QEMUIOVector qiov; 2070 struct iovec iov = { 2071 .iov_base = buf, 2072 .iov_len = size, 2073 }; 2074 int ret; 2075 2076 qemu_iovec_init_external(&qiov, &iov, 1); 2077 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2078 if (ret < 0) { 2079 return ret; 2080 } 2081 2082 return size; 2083 } 2084 2085 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2086 { 2087 return bdrv_rw_vmstate(bs, qiov, pos, true); 2088 } 2089 2090 /**************************************************************/ 2091 /* async I/Os */ 2092 2093 void bdrv_aio_cancel(BlockAIOCB *acb) 2094 { 2095 qemu_aio_ref(acb); 2096 bdrv_aio_cancel_async(acb); 2097 while (acb->refcnt > 1) { 2098 if (acb->aiocb_info->get_aio_context) { 2099 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2100 } else if (acb->bs) { 2101 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2102 * assert that we're not using an I/O thread. Thread-safe 2103 * code should use bdrv_aio_cancel_async exclusively. 2104 */ 2105 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2106 aio_poll(bdrv_get_aio_context(acb->bs), true); 2107 } else { 2108 abort(); 2109 } 2110 } 2111 qemu_aio_unref(acb); 2112 } 2113 2114 /* Async version of aio cancel. The caller is not blocked if the acb implements 2115 * cancel_async, otherwise we do nothing and let the request normally complete. 2116 * In either case the completion callback must be called. */ 2117 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2118 { 2119 if (acb->aiocb_info->cancel_async) { 2120 acb->aiocb_info->cancel_async(acb); 2121 } 2122 } 2123 2124 /**************************************************************/ 2125 /* Coroutine block device emulation */ 2126 2127 typedef struct FlushCo { 2128 BlockDriverState *bs; 2129 int ret; 2130 } FlushCo; 2131 2132 2133 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2134 { 2135 FlushCo *rwco = opaque; 2136 2137 rwco->ret = bdrv_co_flush(rwco->bs); 2138 } 2139 2140 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2141 { 2142 int current_gen; 2143 int ret = 0; 2144 2145 bdrv_inc_in_flight(bs); 2146 2147 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2148 bdrv_is_sg(bs)) { 2149 goto early_exit; 2150 } 2151 2152 qemu_co_mutex_lock(&bs->reqs_lock); 2153 current_gen = atomic_read(&bs->write_gen); 2154 2155 /* Wait until any previous flushes are completed */ 2156 while (bs->active_flush_req) { 2157 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2158 } 2159 2160 /* Flushes reach this point in nondecreasing current_gen order. */ 2161 bs->active_flush_req = true; 2162 qemu_co_mutex_unlock(&bs->reqs_lock); 2163 2164 /* Write back all layers by calling one driver function */ 2165 if (bs->drv->bdrv_co_flush) { 2166 ret = bs->drv->bdrv_co_flush(bs); 2167 goto out; 2168 } 2169 2170 /* Write back cached data to the OS even with cache=unsafe */ 2171 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2172 if (bs->drv->bdrv_co_flush_to_os) { 2173 ret = bs->drv->bdrv_co_flush_to_os(bs); 2174 if (ret < 0) { 2175 goto out; 2176 } 2177 } 2178 2179 /* But don't actually force it to the disk with cache=unsafe */ 2180 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2181 goto flush_parent; 2182 } 2183 2184 /* Check if we really need to flush anything */ 2185 if (bs->flushed_gen == current_gen) { 2186 goto flush_parent; 2187 } 2188 2189 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2190 if (bs->drv->bdrv_co_flush_to_disk) { 2191 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2192 } else if (bs->drv->bdrv_aio_flush) { 2193 BlockAIOCB *acb; 2194 CoroutineIOCompletion co = { 2195 .coroutine = qemu_coroutine_self(), 2196 }; 2197 2198 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2199 if (acb == NULL) { 2200 ret = -EIO; 2201 } else { 2202 qemu_coroutine_yield(); 2203 ret = co.ret; 2204 } 2205 } else { 2206 /* 2207 * Some block drivers always operate in either writethrough or unsafe 2208 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2209 * know how the server works (because the behaviour is hardcoded or 2210 * depends on server-side configuration), so we can't ensure that 2211 * everything is safe on disk. Returning an error doesn't work because 2212 * that would break guests even if the server operates in writethrough 2213 * mode. 2214 * 2215 * Let's hope the user knows what he's doing. 2216 */ 2217 ret = 0; 2218 } 2219 2220 if (ret < 0) { 2221 goto out; 2222 } 2223 2224 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2225 * in the case of cache=unsafe, so there are no useless flushes. 2226 */ 2227 flush_parent: 2228 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2229 out: 2230 /* Notify any pending flushes that we have completed */ 2231 if (ret == 0) { 2232 bs->flushed_gen = current_gen; 2233 } 2234 2235 qemu_co_mutex_lock(&bs->reqs_lock); 2236 bs->active_flush_req = false; 2237 /* Return value is ignored - it's ok if wait queue is empty */ 2238 qemu_co_queue_next(&bs->flush_queue); 2239 qemu_co_mutex_unlock(&bs->reqs_lock); 2240 2241 early_exit: 2242 bdrv_dec_in_flight(bs); 2243 return ret; 2244 } 2245 2246 int bdrv_flush(BlockDriverState *bs) 2247 { 2248 Coroutine *co; 2249 FlushCo flush_co = { 2250 .bs = bs, 2251 .ret = NOT_DONE, 2252 }; 2253 2254 if (qemu_in_coroutine()) { 2255 /* Fast-path if already in coroutine context */ 2256 bdrv_flush_co_entry(&flush_co); 2257 } else { 2258 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2259 bdrv_coroutine_enter(bs, co); 2260 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2261 } 2262 2263 return flush_co.ret; 2264 } 2265 2266 typedef struct DiscardCo { 2267 BlockDriverState *bs; 2268 int64_t offset; 2269 int bytes; 2270 int ret; 2271 } DiscardCo; 2272 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2273 { 2274 DiscardCo *rwco = opaque; 2275 2276 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes); 2277 } 2278 2279 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset, 2280 int bytes) 2281 { 2282 BdrvTrackedRequest req; 2283 int max_pdiscard, ret; 2284 int head, tail, align; 2285 2286 if (!bs->drv) { 2287 return -ENOMEDIUM; 2288 } 2289 2290 ret = bdrv_check_byte_request(bs, offset, bytes); 2291 if (ret < 0) { 2292 return ret; 2293 } else if (bs->read_only) { 2294 return -EPERM; 2295 } 2296 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2297 2298 /* Do nothing if disabled. */ 2299 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2300 return 0; 2301 } 2302 2303 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2304 return 0; 2305 } 2306 2307 /* Discard is advisory, but some devices track and coalesce 2308 * unaligned requests, so we must pass everything down rather than 2309 * round here. Still, most devices will just silently ignore 2310 * unaligned requests (by returning -ENOTSUP), so we must fragment 2311 * the request accordingly. */ 2312 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2313 assert(align % bs->bl.request_alignment == 0); 2314 head = offset % align; 2315 tail = (offset + bytes) % align; 2316 2317 bdrv_inc_in_flight(bs); 2318 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2319 2320 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req); 2321 if (ret < 0) { 2322 goto out; 2323 } 2324 2325 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2326 align); 2327 assert(max_pdiscard >= bs->bl.request_alignment); 2328 2329 while (bytes > 0) { 2330 int ret; 2331 int num = bytes; 2332 2333 if (head) { 2334 /* Make small requests to get to alignment boundaries. */ 2335 num = MIN(bytes, align - head); 2336 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2337 num %= bs->bl.request_alignment; 2338 } 2339 head = (head + num) % align; 2340 assert(num < max_pdiscard); 2341 } else if (tail) { 2342 if (num > align) { 2343 /* Shorten the request to the last aligned cluster. */ 2344 num -= tail; 2345 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2346 tail > bs->bl.request_alignment) { 2347 tail %= bs->bl.request_alignment; 2348 num -= tail; 2349 } 2350 } 2351 /* limit request size */ 2352 if (num > max_pdiscard) { 2353 num = max_pdiscard; 2354 } 2355 2356 if (bs->drv->bdrv_co_pdiscard) { 2357 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2358 } else { 2359 BlockAIOCB *acb; 2360 CoroutineIOCompletion co = { 2361 .coroutine = qemu_coroutine_self(), 2362 }; 2363 2364 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2365 bdrv_co_io_em_complete, &co); 2366 if (acb == NULL) { 2367 ret = -EIO; 2368 goto out; 2369 } else { 2370 qemu_coroutine_yield(); 2371 ret = co.ret; 2372 } 2373 } 2374 if (ret && ret != -ENOTSUP) { 2375 goto out; 2376 } 2377 2378 offset += num; 2379 bytes -= num; 2380 } 2381 ret = 0; 2382 out: 2383 atomic_inc(&bs->write_gen); 2384 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS, 2385 req.bytes >> BDRV_SECTOR_BITS); 2386 tracked_request_end(&req); 2387 bdrv_dec_in_flight(bs); 2388 return ret; 2389 } 2390 2391 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes) 2392 { 2393 Coroutine *co; 2394 DiscardCo rwco = { 2395 .bs = bs, 2396 .offset = offset, 2397 .bytes = bytes, 2398 .ret = NOT_DONE, 2399 }; 2400 2401 if (qemu_in_coroutine()) { 2402 /* Fast-path if already in coroutine context */ 2403 bdrv_pdiscard_co_entry(&rwco); 2404 } else { 2405 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2406 bdrv_coroutine_enter(bs, co); 2407 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE); 2408 } 2409 2410 return rwco.ret; 2411 } 2412 2413 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2414 { 2415 BlockDriver *drv = bs->drv; 2416 CoroutineIOCompletion co = { 2417 .coroutine = qemu_coroutine_self(), 2418 }; 2419 BlockAIOCB *acb; 2420 2421 bdrv_inc_in_flight(bs); 2422 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2423 co.ret = -ENOTSUP; 2424 goto out; 2425 } 2426 2427 if (drv->bdrv_co_ioctl) { 2428 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2429 } else { 2430 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2431 if (!acb) { 2432 co.ret = -ENOTSUP; 2433 goto out; 2434 } 2435 qemu_coroutine_yield(); 2436 } 2437 out: 2438 bdrv_dec_in_flight(bs); 2439 return co.ret; 2440 } 2441 2442 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2443 { 2444 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2445 } 2446 2447 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2448 { 2449 return memset(qemu_blockalign(bs, size), 0, size); 2450 } 2451 2452 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2453 { 2454 size_t align = bdrv_opt_mem_align(bs); 2455 2456 /* Ensure that NULL is never returned on success */ 2457 assert(align > 0); 2458 if (size == 0) { 2459 size = align; 2460 } 2461 2462 return qemu_try_memalign(align, size); 2463 } 2464 2465 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2466 { 2467 void *mem = qemu_try_blockalign(bs, size); 2468 2469 if (mem) { 2470 memset(mem, 0, size); 2471 } 2472 2473 return mem; 2474 } 2475 2476 /* 2477 * Check if all memory in this vector is sector aligned. 2478 */ 2479 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2480 { 2481 int i; 2482 size_t alignment = bdrv_min_mem_align(bs); 2483 2484 for (i = 0; i < qiov->niov; i++) { 2485 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2486 return false; 2487 } 2488 if (qiov->iov[i].iov_len % alignment) { 2489 return false; 2490 } 2491 } 2492 2493 return true; 2494 } 2495 2496 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2497 NotifierWithReturn *notifier) 2498 { 2499 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2500 } 2501 2502 void bdrv_io_plug(BlockDriverState *bs) 2503 { 2504 BdrvChild *child; 2505 2506 QLIST_FOREACH(child, &bs->children, next) { 2507 bdrv_io_plug(child->bs); 2508 } 2509 2510 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 2511 BlockDriver *drv = bs->drv; 2512 if (drv && drv->bdrv_io_plug) { 2513 drv->bdrv_io_plug(bs); 2514 } 2515 } 2516 } 2517 2518 void bdrv_io_unplug(BlockDriverState *bs) 2519 { 2520 BdrvChild *child; 2521 2522 assert(bs->io_plugged); 2523 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 2524 BlockDriver *drv = bs->drv; 2525 if (drv && drv->bdrv_io_unplug) { 2526 drv->bdrv_io_unplug(bs); 2527 } 2528 } 2529 2530 QLIST_FOREACH(child, &bs->children, next) { 2531 bdrv_io_unplug(child->bs); 2532 } 2533 } 2534