1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "qemu/cutils.h" 33 #include "qapi/error.h" 34 #include "qemu/error-report.h" 35 #include "qemu/main-loop.h" 36 37 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 38 39 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 40 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 41 42 static void bdrv_parent_cb_resize(BlockDriverState *bs); 43 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 44 int64_t offset, int bytes, BdrvRequestFlags flags); 45 46 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 47 bool ignore_bds_parents) 48 { 49 BdrvChild *c, *next; 50 51 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 52 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 53 continue; 54 } 55 bdrv_parent_drained_begin_single(c, false); 56 } 57 } 58 59 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 60 int *drained_end_counter) 61 { 62 assert(c->parent_quiesce_counter > 0); 63 c->parent_quiesce_counter--; 64 if (c->role->drained_end) { 65 c->role->drained_end(c, drained_end_counter); 66 } 67 } 68 69 void bdrv_parent_drained_end_single(BdrvChild *c) 70 { 71 int drained_end_counter = 0; 72 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 73 BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0); 74 } 75 76 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 77 bool ignore_bds_parents, 78 int *drained_end_counter) 79 { 80 BdrvChild *c; 81 82 QLIST_FOREACH(c, &bs->parents, next_parent) { 83 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 84 continue; 85 } 86 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 87 } 88 } 89 90 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 91 { 92 if (c->role->drained_poll) { 93 return c->role->drained_poll(c); 94 } 95 return false; 96 } 97 98 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 99 bool ignore_bds_parents) 100 { 101 BdrvChild *c, *next; 102 bool busy = false; 103 104 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 105 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 106 continue; 107 } 108 busy |= bdrv_parent_drained_poll_single(c); 109 } 110 111 return busy; 112 } 113 114 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 115 { 116 c->parent_quiesce_counter++; 117 if (c->role->drained_begin) { 118 c->role->drained_begin(c); 119 } 120 if (poll) { 121 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 122 } 123 } 124 125 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 126 { 127 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 128 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 130 src->opt_mem_alignment); 131 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 132 src->min_mem_alignment); 133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 134 } 135 136 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 137 { 138 BlockDriver *drv = bs->drv; 139 Error *local_err = NULL; 140 141 memset(&bs->bl, 0, sizeof(bs->bl)); 142 143 if (!drv) { 144 return; 145 } 146 147 /* Default alignment based on whether driver has byte interface */ 148 bs->bl.request_alignment = (drv->bdrv_co_preadv || 149 drv->bdrv_aio_preadv) ? 1 : 512; 150 151 /* Take some limits from the children as a default */ 152 if (bs->file) { 153 bdrv_refresh_limits(bs->file->bs, &local_err); 154 if (local_err) { 155 error_propagate(errp, local_err); 156 return; 157 } 158 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 159 } else { 160 bs->bl.min_mem_alignment = 512; 161 bs->bl.opt_mem_alignment = getpagesize(); 162 163 /* Safe default since most protocols use readv()/writev()/etc */ 164 bs->bl.max_iov = IOV_MAX; 165 } 166 167 if (bs->backing) { 168 bdrv_refresh_limits(bs->backing->bs, &local_err); 169 if (local_err) { 170 error_propagate(errp, local_err); 171 return; 172 } 173 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 174 } 175 176 /* Then let the driver override it */ 177 if (drv->bdrv_refresh_limits) { 178 drv->bdrv_refresh_limits(bs, errp); 179 } 180 } 181 182 /** 183 * The copy-on-read flag is actually a reference count so multiple users may 184 * use the feature without worrying about clobbering its previous state. 185 * Copy-on-read stays enabled until all users have called to disable it. 186 */ 187 void bdrv_enable_copy_on_read(BlockDriverState *bs) 188 { 189 atomic_inc(&bs->copy_on_read); 190 } 191 192 void bdrv_disable_copy_on_read(BlockDriverState *bs) 193 { 194 int old = atomic_fetch_dec(&bs->copy_on_read); 195 assert(old >= 1); 196 } 197 198 typedef struct { 199 Coroutine *co; 200 BlockDriverState *bs; 201 bool done; 202 bool begin; 203 bool recursive; 204 bool poll; 205 BdrvChild *parent; 206 bool ignore_bds_parents; 207 int *drained_end_counter; 208 } BdrvCoDrainData; 209 210 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 211 { 212 BdrvCoDrainData *data = opaque; 213 BlockDriverState *bs = data->bs; 214 215 if (data->begin) { 216 bs->drv->bdrv_co_drain_begin(bs); 217 } else { 218 bs->drv->bdrv_co_drain_end(bs); 219 } 220 221 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 222 atomic_mb_set(&data->done, true); 223 if (!data->begin) { 224 atomic_dec(data->drained_end_counter); 225 } 226 bdrv_dec_in_flight(bs); 227 228 g_free(data); 229 } 230 231 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 232 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 233 int *drained_end_counter) 234 { 235 BdrvCoDrainData *data; 236 237 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 238 (!begin && !bs->drv->bdrv_co_drain_end)) { 239 return; 240 } 241 242 data = g_new(BdrvCoDrainData, 1); 243 *data = (BdrvCoDrainData) { 244 .bs = bs, 245 .done = false, 246 .begin = begin, 247 .drained_end_counter = drained_end_counter, 248 }; 249 250 if (!begin) { 251 atomic_inc(drained_end_counter); 252 } 253 254 /* Make sure the driver callback completes during the polling phase for 255 * drain_begin. */ 256 bdrv_inc_in_flight(bs); 257 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 258 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 259 } 260 261 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 262 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 263 BdrvChild *ignore_parent, bool ignore_bds_parents) 264 { 265 BdrvChild *child, *next; 266 267 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 268 return true; 269 } 270 271 if (atomic_read(&bs->in_flight)) { 272 return true; 273 } 274 275 if (recursive) { 276 assert(!ignore_bds_parents); 277 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 278 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 279 return true; 280 } 281 } 282 } 283 284 return false; 285 } 286 287 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 288 BdrvChild *ignore_parent) 289 { 290 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 291 } 292 293 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 294 BdrvChild *parent, bool ignore_bds_parents, 295 bool poll); 296 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 297 BdrvChild *parent, bool ignore_bds_parents, 298 int *drained_end_counter); 299 300 static void bdrv_co_drain_bh_cb(void *opaque) 301 { 302 BdrvCoDrainData *data = opaque; 303 Coroutine *co = data->co; 304 BlockDriverState *bs = data->bs; 305 306 if (bs) { 307 AioContext *ctx = bdrv_get_aio_context(bs); 308 AioContext *co_ctx = qemu_coroutine_get_aio_context(co); 309 310 /* 311 * When the coroutine yielded, the lock for its home context was 312 * released, so we need to re-acquire it here. If it explicitly 313 * acquired a different context, the lock is still held and we don't 314 * want to lock it a second time (or AIO_WAIT_WHILE() would hang). 315 */ 316 if (ctx == co_ctx) { 317 aio_context_acquire(ctx); 318 } 319 bdrv_dec_in_flight(bs); 320 if (data->begin) { 321 assert(!data->drained_end_counter); 322 bdrv_do_drained_begin(bs, data->recursive, data->parent, 323 data->ignore_bds_parents, data->poll); 324 } else { 325 assert(!data->poll); 326 bdrv_do_drained_end(bs, data->recursive, data->parent, 327 data->ignore_bds_parents, 328 data->drained_end_counter); 329 } 330 if (ctx == co_ctx) { 331 aio_context_release(ctx); 332 } 333 } else { 334 assert(data->begin); 335 bdrv_drain_all_begin(); 336 } 337 338 data->done = true; 339 aio_co_wake(co); 340 } 341 342 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 343 bool begin, bool recursive, 344 BdrvChild *parent, 345 bool ignore_bds_parents, 346 bool poll, 347 int *drained_end_counter) 348 { 349 BdrvCoDrainData data; 350 351 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 352 * other coroutines run if they were queued by aio_co_enter(). */ 353 354 assert(qemu_in_coroutine()); 355 data = (BdrvCoDrainData) { 356 .co = qemu_coroutine_self(), 357 .bs = bs, 358 .done = false, 359 .begin = begin, 360 .recursive = recursive, 361 .parent = parent, 362 .ignore_bds_parents = ignore_bds_parents, 363 .poll = poll, 364 .drained_end_counter = drained_end_counter, 365 }; 366 367 if (bs) { 368 bdrv_inc_in_flight(bs); 369 } 370 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 371 bdrv_co_drain_bh_cb, &data); 372 373 qemu_coroutine_yield(); 374 /* If we are resumed from some other event (such as an aio completion or a 375 * timer callback), it is a bug in the caller that should be fixed. */ 376 assert(data.done); 377 } 378 379 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 380 BdrvChild *parent, bool ignore_bds_parents) 381 { 382 assert(!qemu_in_coroutine()); 383 384 /* Stop things in parent-to-child order */ 385 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 386 aio_disable_external(bdrv_get_aio_context(bs)); 387 } 388 389 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 390 bdrv_drain_invoke(bs, true, NULL); 391 } 392 393 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 394 BdrvChild *parent, bool ignore_bds_parents, 395 bool poll) 396 { 397 BdrvChild *child, *next; 398 399 if (qemu_in_coroutine()) { 400 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 401 poll, NULL); 402 return; 403 } 404 405 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 406 407 if (recursive) { 408 assert(!ignore_bds_parents); 409 bs->recursive_quiesce_counter++; 410 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 411 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 412 false); 413 } 414 } 415 416 /* 417 * Wait for drained requests to finish. 418 * 419 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 420 * call is needed so things in this AioContext can make progress even 421 * though we don't return to the main AioContext loop - this automatically 422 * includes other nodes in the same AioContext and therefore all child 423 * nodes. 424 */ 425 if (poll) { 426 assert(!ignore_bds_parents); 427 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 428 } 429 } 430 431 void bdrv_drained_begin(BlockDriverState *bs) 432 { 433 bdrv_do_drained_begin(bs, false, NULL, false, true); 434 } 435 436 void bdrv_subtree_drained_begin(BlockDriverState *bs) 437 { 438 bdrv_do_drained_begin(bs, true, NULL, false, true); 439 } 440 441 /** 442 * This function does not poll, nor must any of its recursively called 443 * functions. The *drained_end_counter pointee will be incremented 444 * once for every background operation scheduled, and decremented once 445 * the operation settles. Therefore, the pointer must remain valid 446 * until the pointee reaches 0. That implies that whoever sets up the 447 * pointee has to poll until it is 0. 448 * 449 * We use atomic operations to access *drained_end_counter, because 450 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 451 * @bs may contain nodes in different AioContexts, 452 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 453 * regardless of which AioContext they are in. 454 */ 455 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 456 BdrvChild *parent, bool ignore_bds_parents, 457 int *drained_end_counter) 458 { 459 BdrvChild *child; 460 int old_quiesce_counter; 461 462 assert(drained_end_counter != NULL); 463 464 if (qemu_in_coroutine()) { 465 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 466 false, drained_end_counter); 467 return; 468 } 469 assert(bs->quiesce_counter > 0); 470 471 /* Re-enable things in child-to-parent order */ 472 bdrv_drain_invoke(bs, false, drained_end_counter); 473 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 474 drained_end_counter); 475 476 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter); 477 if (old_quiesce_counter == 1) { 478 aio_enable_external(bdrv_get_aio_context(bs)); 479 } 480 481 if (recursive) { 482 assert(!ignore_bds_parents); 483 bs->recursive_quiesce_counter--; 484 QLIST_FOREACH(child, &bs->children, next) { 485 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 486 drained_end_counter); 487 } 488 } 489 } 490 491 void bdrv_drained_end(BlockDriverState *bs) 492 { 493 int drained_end_counter = 0; 494 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 495 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0); 496 } 497 498 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 499 { 500 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 501 } 502 503 void bdrv_subtree_drained_end(BlockDriverState *bs) 504 { 505 int drained_end_counter = 0; 506 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 507 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0); 508 } 509 510 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 511 { 512 int i; 513 514 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 515 bdrv_do_drained_begin(child->bs, true, child, false, true); 516 } 517 } 518 519 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 520 { 521 int drained_end_counter = 0; 522 int i; 523 524 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 525 bdrv_do_drained_end(child->bs, true, child, false, 526 &drained_end_counter); 527 } 528 529 BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0); 530 } 531 532 /* 533 * Wait for pending requests to complete on a single BlockDriverState subtree, 534 * and suspend block driver's internal I/O until next request arrives. 535 * 536 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 537 * AioContext. 538 */ 539 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 540 { 541 assert(qemu_in_coroutine()); 542 bdrv_drained_begin(bs); 543 bdrv_drained_end(bs); 544 } 545 546 void bdrv_drain(BlockDriverState *bs) 547 { 548 bdrv_drained_begin(bs); 549 bdrv_drained_end(bs); 550 } 551 552 static void bdrv_drain_assert_idle(BlockDriverState *bs) 553 { 554 BdrvChild *child, *next; 555 556 assert(atomic_read(&bs->in_flight) == 0); 557 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 558 bdrv_drain_assert_idle(child->bs); 559 } 560 } 561 562 unsigned int bdrv_drain_all_count = 0; 563 564 static bool bdrv_drain_all_poll(void) 565 { 566 BlockDriverState *bs = NULL; 567 bool result = false; 568 569 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 570 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 571 while ((bs = bdrv_next_all_states(bs))) { 572 AioContext *aio_context = bdrv_get_aio_context(bs); 573 aio_context_acquire(aio_context); 574 result |= bdrv_drain_poll(bs, false, NULL, true); 575 aio_context_release(aio_context); 576 } 577 578 return result; 579 } 580 581 /* 582 * Wait for pending requests to complete across all BlockDriverStates 583 * 584 * This function does not flush data to disk, use bdrv_flush_all() for that 585 * after calling this function. 586 * 587 * This pauses all block jobs and disables external clients. It must 588 * be paired with bdrv_drain_all_end(). 589 * 590 * NOTE: no new block jobs or BlockDriverStates can be created between 591 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 592 */ 593 void bdrv_drain_all_begin(void) 594 { 595 BlockDriverState *bs = NULL; 596 597 if (qemu_in_coroutine()) { 598 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 599 return; 600 } 601 602 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 603 * loop AioContext, so make sure we're in the main context. */ 604 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 605 assert(bdrv_drain_all_count < INT_MAX); 606 bdrv_drain_all_count++; 607 608 /* Quiesce all nodes, without polling in-flight requests yet. The graph 609 * cannot change during this loop. */ 610 while ((bs = bdrv_next_all_states(bs))) { 611 AioContext *aio_context = bdrv_get_aio_context(bs); 612 613 aio_context_acquire(aio_context); 614 bdrv_do_drained_begin(bs, false, NULL, true, false); 615 aio_context_release(aio_context); 616 } 617 618 /* Now poll the in-flight requests */ 619 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 620 621 while ((bs = bdrv_next_all_states(bs))) { 622 bdrv_drain_assert_idle(bs); 623 } 624 } 625 626 void bdrv_drain_all_end(void) 627 { 628 BlockDriverState *bs = NULL; 629 int drained_end_counter = 0; 630 631 while ((bs = bdrv_next_all_states(bs))) { 632 AioContext *aio_context = bdrv_get_aio_context(bs); 633 634 aio_context_acquire(aio_context); 635 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 636 aio_context_release(aio_context); 637 } 638 639 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 640 AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0); 641 642 assert(bdrv_drain_all_count > 0); 643 bdrv_drain_all_count--; 644 } 645 646 void bdrv_drain_all(void) 647 { 648 bdrv_drain_all_begin(); 649 bdrv_drain_all_end(); 650 } 651 652 /** 653 * Remove an active request from the tracked requests list 654 * 655 * This function should be called when a tracked request is completing. 656 */ 657 static void tracked_request_end(BdrvTrackedRequest *req) 658 { 659 if (req->serialising) { 660 atomic_dec(&req->bs->serialising_in_flight); 661 } 662 663 qemu_co_mutex_lock(&req->bs->reqs_lock); 664 QLIST_REMOVE(req, list); 665 qemu_co_queue_restart_all(&req->wait_queue); 666 qemu_co_mutex_unlock(&req->bs->reqs_lock); 667 } 668 669 /** 670 * Add an active request to the tracked requests list 671 */ 672 static void tracked_request_begin(BdrvTrackedRequest *req, 673 BlockDriverState *bs, 674 int64_t offset, 675 uint64_t bytes, 676 enum BdrvTrackedRequestType type) 677 { 678 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes); 679 680 *req = (BdrvTrackedRequest){ 681 .bs = bs, 682 .offset = offset, 683 .bytes = bytes, 684 .type = type, 685 .co = qemu_coroutine_self(), 686 .serialising = false, 687 .overlap_offset = offset, 688 .overlap_bytes = bytes, 689 }; 690 691 qemu_co_queue_init(&req->wait_queue); 692 693 qemu_co_mutex_lock(&bs->reqs_lock); 694 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 695 qemu_co_mutex_unlock(&bs->reqs_lock); 696 } 697 698 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 699 { 700 int64_t overlap_offset = req->offset & ~(align - 1); 701 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 702 - overlap_offset; 703 704 if (!req->serialising) { 705 atomic_inc(&req->bs->serialising_in_flight); 706 req->serialising = true; 707 } 708 709 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 710 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 711 } 712 713 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req) 714 { 715 /* 716 * If the request is serialising, overlap_offset and overlap_bytes are set, 717 * so we can check if the request is aligned. Otherwise, don't care and 718 * return false. 719 */ 720 721 return req->serialising && (req->offset == req->overlap_offset) && 722 (req->bytes == req->overlap_bytes); 723 } 724 725 /** 726 * Round a region to cluster boundaries 727 */ 728 void bdrv_round_to_clusters(BlockDriverState *bs, 729 int64_t offset, int64_t bytes, 730 int64_t *cluster_offset, 731 int64_t *cluster_bytes) 732 { 733 BlockDriverInfo bdi; 734 735 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 736 *cluster_offset = offset; 737 *cluster_bytes = bytes; 738 } else { 739 int64_t c = bdi.cluster_size; 740 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 741 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 742 } 743 } 744 745 static int bdrv_get_cluster_size(BlockDriverState *bs) 746 { 747 BlockDriverInfo bdi; 748 int ret; 749 750 ret = bdrv_get_info(bs, &bdi); 751 if (ret < 0 || bdi.cluster_size == 0) { 752 return bs->bl.request_alignment; 753 } else { 754 return bdi.cluster_size; 755 } 756 } 757 758 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 759 int64_t offset, uint64_t bytes) 760 { 761 /* aaaa bbbb */ 762 if (offset >= req->overlap_offset + req->overlap_bytes) { 763 return false; 764 } 765 /* bbbb aaaa */ 766 if (req->overlap_offset >= offset + bytes) { 767 return false; 768 } 769 return true; 770 } 771 772 void bdrv_inc_in_flight(BlockDriverState *bs) 773 { 774 atomic_inc(&bs->in_flight); 775 } 776 777 void bdrv_wakeup(BlockDriverState *bs) 778 { 779 aio_wait_kick(); 780 } 781 782 void bdrv_dec_in_flight(BlockDriverState *bs) 783 { 784 atomic_dec(&bs->in_flight); 785 bdrv_wakeup(bs); 786 } 787 788 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 789 { 790 BlockDriverState *bs = self->bs; 791 BdrvTrackedRequest *req; 792 bool retry; 793 bool waited = false; 794 795 if (!atomic_read(&bs->serialising_in_flight)) { 796 return false; 797 } 798 799 do { 800 retry = false; 801 qemu_co_mutex_lock(&bs->reqs_lock); 802 QLIST_FOREACH(req, &bs->tracked_requests, list) { 803 if (req == self || (!req->serialising && !self->serialising)) { 804 continue; 805 } 806 if (tracked_request_overlaps(req, self->overlap_offset, 807 self->overlap_bytes)) 808 { 809 /* Hitting this means there was a reentrant request, for 810 * example, a block driver issuing nested requests. This must 811 * never happen since it means deadlock. 812 */ 813 assert(qemu_coroutine_self() != req->co); 814 815 /* If the request is already (indirectly) waiting for us, or 816 * will wait for us as soon as it wakes up, then just go on 817 * (instead of producing a deadlock in the former case). */ 818 if (!req->waiting_for) { 819 self->waiting_for = req; 820 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 821 self->waiting_for = NULL; 822 retry = true; 823 waited = true; 824 break; 825 } 826 } 827 } 828 qemu_co_mutex_unlock(&bs->reqs_lock); 829 } while (retry); 830 831 return waited; 832 } 833 834 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 835 size_t size) 836 { 837 if (size > BDRV_REQUEST_MAX_BYTES) { 838 return -EIO; 839 } 840 841 if (!bdrv_is_inserted(bs)) { 842 return -ENOMEDIUM; 843 } 844 845 if (offset < 0) { 846 return -EIO; 847 } 848 849 return 0; 850 } 851 852 typedef struct RwCo { 853 BdrvChild *child; 854 int64_t offset; 855 QEMUIOVector *qiov; 856 bool is_write; 857 int ret; 858 BdrvRequestFlags flags; 859 } RwCo; 860 861 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 862 { 863 RwCo *rwco = opaque; 864 865 if (!rwco->is_write) { 866 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 867 rwco->qiov->size, rwco->qiov, 868 rwco->flags); 869 } else { 870 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 871 rwco->qiov->size, rwco->qiov, 872 rwco->flags); 873 } 874 aio_wait_kick(); 875 } 876 877 /* 878 * Process a vectored synchronous request using coroutines 879 */ 880 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 881 QEMUIOVector *qiov, bool is_write, 882 BdrvRequestFlags flags) 883 { 884 Coroutine *co; 885 RwCo rwco = { 886 .child = child, 887 .offset = offset, 888 .qiov = qiov, 889 .is_write = is_write, 890 .ret = NOT_DONE, 891 .flags = flags, 892 }; 893 894 if (qemu_in_coroutine()) { 895 /* Fast-path if already in coroutine context */ 896 bdrv_rw_co_entry(&rwco); 897 } else { 898 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 899 bdrv_coroutine_enter(child->bs, co); 900 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 901 } 902 return rwco.ret; 903 } 904 905 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 906 int bytes, BdrvRequestFlags flags) 907 { 908 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes); 909 910 return bdrv_prwv_co(child, offset, &qiov, true, 911 BDRV_REQ_ZERO_WRITE | flags); 912 } 913 914 /* 915 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 916 * The operation is sped up by checking the block status and only writing 917 * zeroes to the device if they currently do not return zeroes. Optional 918 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 919 * BDRV_REQ_FUA). 920 * 921 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 922 */ 923 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 924 { 925 int ret; 926 int64_t target_size, bytes, offset = 0; 927 BlockDriverState *bs = child->bs; 928 929 target_size = bdrv_getlength(bs); 930 if (target_size < 0) { 931 return target_size; 932 } 933 934 for (;;) { 935 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 936 if (bytes <= 0) { 937 return 0; 938 } 939 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 940 if (ret < 0) { 941 return ret; 942 } 943 if (ret & BDRV_BLOCK_ZERO) { 944 offset += bytes; 945 continue; 946 } 947 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 948 if (ret < 0) { 949 return ret; 950 } 951 offset += bytes; 952 } 953 } 954 955 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 956 { 957 int ret; 958 959 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 960 if (ret < 0) { 961 return ret; 962 } 963 964 return qiov->size; 965 } 966 967 /* See bdrv_pwrite() for the return codes */ 968 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 969 { 970 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 971 972 if (bytes < 0) { 973 return -EINVAL; 974 } 975 976 return bdrv_preadv(child, offset, &qiov); 977 } 978 979 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 980 { 981 int ret; 982 983 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 984 if (ret < 0) { 985 return ret; 986 } 987 988 return qiov->size; 989 } 990 991 /* Return no. of bytes on success or < 0 on error. Important errors are: 992 -EIO generic I/O error (may happen for all errors) 993 -ENOMEDIUM No media inserted. 994 -EINVAL Invalid offset or number of bytes 995 -EACCES Trying to write a read-only device 996 */ 997 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 998 { 999 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1000 1001 if (bytes < 0) { 1002 return -EINVAL; 1003 } 1004 1005 return bdrv_pwritev(child, offset, &qiov); 1006 } 1007 1008 /* 1009 * Writes to the file and ensures that no writes are reordered across this 1010 * request (acts as a barrier) 1011 * 1012 * Returns 0 on success, -errno in error cases. 1013 */ 1014 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1015 const void *buf, int count) 1016 { 1017 int ret; 1018 1019 ret = bdrv_pwrite(child, offset, buf, count); 1020 if (ret < 0) { 1021 return ret; 1022 } 1023 1024 ret = bdrv_flush(child->bs); 1025 if (ret < 0) { 1026 return ret; 1027 } 1028 1029 return 0; 1030 } 1031 1032 typedef struct CoroutineIOCompletion { 1033 Coroutine *coroutine; 1034 int ret; 1035 } CoroutineIOCompletion; 1036 1037 static void bdrv_co_io_em_complete(void *opaque, int ret) 1038 { 1039 CoroutineIOCompletion *co = opaque; 1040 1041 co->ret = ret; 1042 aio_co_wake(co->coroutine); 1043 } 1044 1045 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1046 uint64_t offset, uint64_t bytes, 1047 QEMUIOVector *qiov, int flags) 1048 { 1049 BlockDriver *drv = bs->drv; 1050 int64_t sector_num; 1051 unsigned int nb_sectors; 1052 1053 assert(!(flags & ~BDRV_REQ_MASK)); 1054 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1055 1056 if (!drv) { 1057 return -ENOMEDIUM; 1058 } 1059 1060 if (drv->bdrv_co_preadv) { 1061 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1062 } 1063 1064 if (drv->bdrv_aio_preadv) { 1065 BlockAIOCB *acb; 1066 CoroutineIOCompletion co = { 1067 .coroutine = qemu_coroutine_self(), 1068 }; 1069 1070 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1071 bdrv_co_io_em_complete, &co); 1072 if (acb == NULL) { 1073 return -EIO; 1074 } else { 1075 qemu_coroutine_yield(); 1076 return co.ret; 1077 } 1078 } 1079 1080 sector_num = offset >> BDRV_SECTOR_BITS; 1081 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1082 1083 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1084 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1085 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1086 assert(drv->bdrv_co_readv); 1087 1088 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1089 } 1090 1091 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1092 uint64_t offset, uint64_t bytes, 1093 QEMUIOVector *qiov, int flags) 1094 { 1095 BlockDriver *drv = bs->drv; 1096 int64_t sector_num; 1097 unsigned int nb_sectors; 1098 int ret; 1099 1100 assert(!(flags & ~BDRV_REQ_MASK)); 1101 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1102 1103 if (!drv) { 1104 return -ENOMEDIUM; 1105 } 1106 1107 if (drv->bdrv_co_pwritev) { 1108 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1109 flags & bs->supported_write_flags); 1110 flags &= ~bs->supported_write_flags; 1111 goto emulate_flags; 1112 } 1113 1114 if (drv->bdrv_aio_pwritev) { 1115 BlockAIOCB *acb; 1116 CoroutineIOCompletion co = { 1117 .coroutine = qemu_coroutine_self(), 1118 }; 1119 1120 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1121 flags & bs->supported_write_flags, 1122 bdrv_co_io_em_complete, &co); 1123 flags &= ~bs->supported_write_flags; 1124 if (acb == NULL) { 1125 ret = -EIO; 1126 } else { 1127 qemu_coroutine_yield(); 1128 ret = co.ret; 1129 } 1130 goto emulate_flags; 1131 } 1132 1133 sector_num = offset >> BDRV_SECTOR_BITS; 1134 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1135 1136 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1137 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1138 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1139 1140 assert(drv->bdrv_co_writev); 1141 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1142 flags & bs->supported_write_flags); 1143 flags &= ~bs->supported_write_flags; 1144 1145 emulate_flags: 1146 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1147 ret = bdrv_co_flush(bs); 1148 } 1149 1150 return ret; 1151 } 1152 1153 static int coroutine_fn 1154 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 1155 uint64_t bytes, QEMUIOVector *qiov) 1156 { 1157 BlockDriver *drv = bs->drv; 1158 1159 if (!drv) { 1160 return -ENOMEDIUM; 1161 } 1162 1163 if (!drv->bdrv_co_pwritev_compressed) { 1164 return -ENOTSUP; 1165 } 1166 1167 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1168 } 1169 1170 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1171 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1172 int flags) 1173 { 1174 BlockDriverState *bs = child->bs; 1175 1176 /* Perform I/O through a temporary buffer so that users who scribble over 1177 * their read buffer while the operation is in progress do not end up 1178 * modifying the image file. This is critical for zero-copy guest I/O 1179 * where anything might happen inside guest memory. 1180 */ 1181 void *bounce_buffer; 1182 1183 BlockDriver *drv = bs->drv; 1184 QEMUIOVector local_qiov; 1185 int64_t cluster_offset; 1186 int64_t cluster_bytes; 1187 size_t skip_bytes; 1188 int ret; 1189 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1190 BDRV_REQUEST_MAX_BYTES); 1191 unsigned int progress = 0; 1192 1193 if (!drv) { 1194 return -ENOMEDIUM; 1195 } 1196 1197 /* FIXME We cannot require callers to have write permissions when all they 1198 * are doing is a read request. If we did things right, write permissions 1199 * would be obtained anyway, but internally by the copy-on-read code. As 1200 * long as it is implemented here rather than in a separate filter driver, 1201 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1202 * it could request permissions. Therefore we have to bypass the permission 1203 * system for the moment. */ 1204 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1205 1206 /* Cover entire cluster so no additional backing file I/O is required when 1207 * allocating cluster in the image file. Note that this value may exceed 1208 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1209 * is one reason we loop rather than doing it all at once. 1210 */ 1211 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1212 skip_bytes = offset - cluster_offset; 1213 1214 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1215 cluster_offset, cluster_bytes); 1216 1217 bounce_buffer = qemu_try_blockalign(bs, 1218 MIN(MIN(max_transfer, cluster_bytes), 1219 MAX_BOUNCE_BUFFER)); 1220 if (bounce_buffer == NULL) { 1221 ret = -ENOMEM; 1222 goto err; 1223 } 1224 1225 while (cluster_bytes) { 1226 int64_t pnum; 1227 1228 ret = bdrv_is_allocated(bs, cluster_offset, 1229 MIN(cluster_bytes, max_transfer), &pnum); 1230 if (ret < 0) { 1231 /* Safe to treat errors in querying allocation as if 1232 * unallocated; we'll probably fail again soon on the 1233 * read, but at least that will set a decent errno. 1234 */ 1235 pnum = MIN(cluster_bytes, max_transfer); 1236 } 1237 1238 /* Stop at EOF if the image ends in the middle of the cluster */ 1239 if (ret == 0 && pnum == 0) { 1240 assert(progress >= bytes); 1241 break; 1242 } 1243 1244 assert(skip_bytes < pnum); 1245 1246 if (ret <= 0) { 1247 /* Must copy-on-read; use the bounce buffer */ 1248 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1249 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1250 1251 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1252 &local_qiov, 0); 1253 if (ret < 0) { 1254 goto err; 1255 } 1256 1257 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1258 if (drv->bdrv_co_pwrite_zeroes && 1259 buffer_is_zero(bounce_buffer, pnum)) { 1260 /* FIXME: Should we (perhaps conditionally) be setting 1261 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1262 * that still correctly reads as zero? */ 1263 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1264 BDRV_REQ_WRITE_UNCHANGED); 1265 } else { 1266 /* This does not change the data on the disk, it is not 1267 * necessary to flush even in cache=writethrough mode. 1268 */ 1269 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1270 &local_qiov, 1271 BDRV_REQ_WRITE_UNCHANGED); 1272 } 1273 1274 if (ret < 0) { 1275 /* It might be okay to ignore write errors for guest 1276 * requests. If this is a deliberate copy-on-read 1277 * then we don't want to ignore the error. Simply 1278 * report it in all cases. 1279 */ 1280 goto err; 1281 } 1282 1283 if (!(flags & BDRV_REQ_PREFETCH)) { 1284 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes, 1285 pnum - skip_bytes); 1286 } 1287 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1288 /* Read directly into the destination */ 1289 qemu_iovec_init(&local_qiov, qiov->niov); 1290 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes); 1291 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size, 1292 &local_qiov, 0); 1293 qemu_iovec_destroy(&local_qiov); 1294 if (ret < 0) { 1295 goto err; 1296 } 1297 } 1298 1299 cluster_offset += pnum; 1300 cluster_bytes -= pnum; 1301 progress += pnum - skip_bytes; 1302 skip_bytes = 0; 1303 } 1304 ret = 0; 1305 1306 err: 1307 qemu_vfree(bounce_buffer); 1308 return ret; 1309 } 1310 1311 /* 1312 * Forwards an already correctly aligned request to the BlockDriver. This 1313 * handles copy on read, zeroing after EOF, and fragmentation of large 1314 * reads; any other features must be implemented by the caller. 1315 */ 1316 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1317 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1318 int64_t align, QEMUIOVector *qiov, int flags) 1319 { 1320 BlockDriverState *bs = child->bs; 1321 int64_t total_bytes, max_bytes; 1322 int ret = 0; 1323 uint64_t bytes_remaining = bytes; 1324 int max_transfer; 1325 1326 assert(is_power_of_2(align)); 1327 assert((offset & (align - 1)) == 0); 1328 assert((bytes & (align - 1)) == 0); 1329 assert(!qiov || bytes == qiov->size); 1330 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1331 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1332 align); 1333 1334 /* TODO: We would need a per-BDS .supported_read_flags and 1335 * potential fallback support, if we ever implement any read flags 1336 * to pass through to drivers. For now, there aren't any 1337 * passthrough flags. */ 1338 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ | 1339 BDRV_REQ_PREFETCH))); 1340 1341 /* Handle Copy on Read and associated serialisation */ 1342 if (flags & BDRV_REQ_COPY_ON_READ) { 1343 /* If we touch the same cluster it counts as an overlap. This 1344 * guarantees that allocating writes will be serialized and not race 1345 * with each other for the same cluster. For example, in copy-on-read 1346 * it ensures that the CoR read and write operations are atomic and 1347 * guest writes cannot interleave between them. */ 1348 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1349 } 1350 1351 /* BDRV_REQ_SERIALISING is only for write operation */ 1352 assert(!(flags & BDRV_REQ_SERIALISING)); 1353 1354 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1355 wait_serialising_requests(req); 1356 } 1357 1358 if (flags & BDRV_REQ_COPY_ON_READ) { 1359 int64_t pnum; 1360 1361 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1362 if (ret < 0) { 1363 goto out; 1364 } 1365 1366 if (!ret || pnum != bytes) { 1367 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov, flags); 1368 goto out; 1369 } else if (flags & BDRV_REQ_PREFETCH) { 1370 goto out; 1371 } 1372 } 1373 1374 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1375 total_bytes = bdrv_getlength(bs); 1376 if (total_bytes < 0) { 1377 ret = total_bytes; 1378 goto out; 1379 } 1380 1381 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1382 if (bytes <= max_bytes && bytes <= max_transfer) { 1383 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1384 goto out; 1385 } 1386 1387 while (bytes_remaining) { 1388 int num; 1389 1390 if (max_bytes) { 1391 QEMUIOVector local_qiov; 1392 1393 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1394 assert(num); 1395 qemu_iovec_init(&local_qiov, qiov->niov); 1396 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1397 1398 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1399 num, &local_qiov, 0); 1400 max_bytes -= num; 1401 qemu_iovec_destroy(&local_qiov); 1402 } else { 1403 num = bytes_remaining; 1404 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1405 bytes_remaining); 1406 } 1407 if (ret < 0) { 1408 goto out; 1409 } 1410 bytes_remaining -= num; 1411 } 1412 1413 out: 1414 return ret < 0 ? ret : 0; 1415 } 1416 1417 /* 1418 * Handle a read request in coroutine context 1419 */ 1420 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1421 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1422 BdrvRequestFlags flags) 1423 { 1424 BlockDriverState *bs = child->bs; 1425 BlockDriver *drv = bs->drv; 1426 BdrvTrackedRequest req; 1427 1428 uint64_t align = bs->bl.request_alignment; 1429 uint8_t *head_buf = NULL; 1430 uint8_t *tail_buf = NULL; 1431 QEMUIOVector local_qiov; 1432 bool use_local_qiov = false; 1433 int ret; 1434 1435 trace_bdrv_co_preadv(child->bs, offset, bytes, flags); 1436 1437 if (!drv) { 1438 return -ENOMEDIUM; 1439 } 1440 1441 ret = bdrv_check_byte_request(bs, offset, bytes); 1442 if (ret < 0) { 1443 return ret; 1444 } 1445 1446 bdrv_inc_in_flight(bs); 1447 1448 /* Don't do copy-on-read if we read data before write operation */ 1449 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1450 flags |= BDRV_REQ_COPY_ON_READ; 1451 } 1452 1453 /* Align read if necessary by padding qiov */ 1454 if (offset & (align - 1)) { 1455 head_buf = qemu_blockalign(bs, align); 1456 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1457 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1458 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1459 use_local_qiov = true; 1460 1461 bytes += offset & (align - 1); 1462 offset = offset & ~(align - 1); 1463 } 1464 1465 if ((offset + bytes) & (align - 1)) { 1466 if (!use_local_qiov) { 1467 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1468 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1469 use_local_qiov = true; 1470 } 1471 tail_buf = qemu_blockalign(bs, align); 1472 qemu_iovec_add(&local_qiov, tail_buf, 1473 align - ((offset + bytes) & (align - 1))); 1474 1475 bytes = ROUND_UP(bytes, align); 1476 } 1477 1478 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1479 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1480 use_local_qiov ? &local_qiov : qiov, 1481 flags); 1482 tracked_request_end(&req); 1483 bdrv_dec_in_flight(bs); 1484 1485 if (use_local_qiov) { 1486 qemu_iovec_destroy(&local_qiov); 1487 qemu_vfree(head_buf); 1488 qemu_vfree(tail_buf); 1489 } 1490 1491 return ret; 1492 } 1493 1494 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1495 int64_t offset, int bytes, BdrvRequestFlags flags) 1496 { 1497 BlockDriver *drv = bs->drv; 1498 QEMUIOVector qiov; 1499 void *buf = NULL; 1500 int ret = 0; 1501 bool need_flush = false; 1502 int head = 0; 1503 int tail = 0; 1504 1505 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1506 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1507 bs->bl.request_alignment); 1508 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1509 1510 if (!drv) { 1511 return -ENOMEDIUM; 1512 } 1513 1514 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1515 return -ENOTSUP; 1516 } 1517 1518 assert(alignment % bs->bl.request_alignment == 0); 1519 head = offset % alignment; 1520 tail = (offset + bytes) % alignment; 1521 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1522 assert(max_write_zeroes >= bs->bl.request_alignment); 1523 1524 while (bytes > 0 && !ret) { 1525 int num = bytes; 1526 1527 /* Align request. Block drivers can expect the "bulk" of the request 1528 * to be aligned, and that unaligned requests do not cross cluster 1529 * boundaries. 1530 */ 1531 if (head) { 1532 /* Make a small request up to the first aligned sector. For 1533 * convenience, limit this request to max_transfer even if 1534 * we don't need to fall back to writes. */ 1535 num = MIN(MIN(bytes, max_transfer), alignment - head); 1536 head = (head + num) % alignment; 1537 assert(num < max_write_zeroes); 1538 } else if (tail && num > alignment) { 1539 /* Shorten the request to the last aligned sector. */ 1540 num -= tail; 1541 } 1542 1543 /* limit request size */ 1544 if (num > max_write_zeroes) { 1545 num = max_write_zeroes; 1546 } 1547 1548 ret = -ENOTSUP; 1549 /* First try the efficient write zeroes operation */ 1550 if (drv->bdrv_co_pwrite_zeroes) { 1551 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1552 flags & bs->supported_zero_flags); 1553 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1554 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1555 need_flush = true; 1556 } 1557 } else { 1558 assert(!bs->supported_zero_flags); 1559 } 1560 1561 if (ret < 0 && !(flags & BDRV_REQ_NO_FALLBACK)) { 1562 /* Fall back to bounce buffer if write zeroes is unsupported */ 1563 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1564 1565 if ((flags & BDRV_REQ_FUA) && 1566 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1567 /* No need for bdrv_driver_pwrite() to do a fallback 1568 * flush on each chunk; use just one at the end */ 1569 write_flags &= ~BDRV_REQ_FUA; 1570 need_flush = true; 1571 } 1572 num = MIN(num, max_transfer); 1573 if (buf == NULL) { 1574 buf = qemu_try_blockalign0(bs, num); 1575 if (buf == NULL) { 1576 ret = -ENOMEM; 1577 goto fail; 1578 } 1579 } 1580 qemu_iovec_init_buf(&qiov, buf, num); 1581 1582 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1583 1584 /* Keep bounce buffer around if it is big enough for all 1585 * all future requests. 1586 */ 1587 if (num < max_transfer) { 1588 qemu_vfree(buf); 1589 buf = NULL; 1590 } 1591 } 1592 1593 offset += num; 1594 bytes -= num; 1595 } 1596 1597 fail: 1598 if (ret == 0 && need_flush) { 1599 ret = bdrv_co_flush(bs); 1600 } 1601 qemu_vfree(buf); 1602 return ret; 1603 } 1604 1605 static inline int coroutine_fn 1606 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes, 1607 BdrvTrackedRequest *req, int flags) 1608 { 1609 BlockDriverState *bs = child->bs; 1610 bool waited; 1611 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1612 1613 if (bs->read_only) { 1614 return -EPERM; 1615 } 1616 1617 /* BDRV_REQ_NO_SERIALISING is only for read operation */ 1618 assert(!(flags & BDRV_REQ_NO_SERIALISING)); 1619 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1620 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1621 assert(!(flags & ~BDRV_REQ_MASK)); 1622 1623 if (flags & BDRV_REQ_SERIALISING) { 1624 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1625 } 1626 1627 waited = wait_serialising_requests(req); 1628 1629 assert(!waited || !req->serialising || 1630 is_request_serialising_and_aligned(req)); 1631 assert(req->overlap_offset <= offset); 1632 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1633 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1634 1635 switch (req->type) { 1636 case BDRV_TRACKED_WRITE: 1637 case BDRV_TRACKED_DISCARD: 1638 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1639 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1640 } else { 1641 assert(child->perm & BLK_PERM_WRITE); 1642 } 1643 return notifier_with_return_list_notify(&bs->before_write_notifiers, 1644 req); 1645 case BDRV_TRACKED_TRUNCATE: 1646 assert(child->perm & BLK_PERM_RESIZE); 1647 return 0; 1648 default: 1649 abort(); 1650 } 1651 } 1652 1653 static inline void coroutine_fn 1654 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes, 1655 BdrvTrackedRequest *req, int ret) 1656 { 1657 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1658 BlockDriverState *bs = child->bs; 1659 1660 atomic_inc(&bs->write_gen); 1661 1662 /* 1663 * Discard cannot extend the image, but in error handling cases, such as 1664 * when reverting a qcow2 cluster allocation, the discarded range can pass 1665 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1666 * here. Instead, just skip it, since semantically a discard request 1667 * beyond EOF cannot expand the image anyway. 1668 */ 1669 if (ret == 0 && 1670 (req->type == BDRV_TRACKED_TRUNCATE || 1671 end_sector > bs->total_sectors) && 1672 req->type != BDRV_TRACKED_DISCARD) { 1673 bs->total_sectors = end_sector; 1674 bdrv_parent_cb_resize(bs); 1675 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1676 } 1677 if (req->bytes) { 1678 switch (req->type) { 1679 case BDRV_TRACKED_WRITE: 1680 stat64_max(&bs->wr_highest_offset, offset + bytes); 1681 /* fall through, to set dirty bits */ 1682 case BDRV_TRACKED_DISCARD: 1683 bdrv_set_dirty(bs, offset, bytes); 1684 break; 1685 default: 1686 break; 1687 } 1688 } 1689 } 1690 1691 /* 1692 * Forwards an already correctly aligned write request to the BlockDriver, 1693 * after possibly fragmenting it. 1694 */ 1695 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1696 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1697 int64_t align, QEMUIOVector *qiov, int flags) 1698 { 1699 BlockDriverState *bs = child->bs; 1700 BlockDriver *drv = bs->drv; 1701 int ret; 1702 1703 uint64_t bytes_remaining = bytes; 1704 int max_transfer; 1705 1706 if (!drv) { 1707 return -ENOMEDIUM; 1708 } 1709 1710 if (bdrv_has_readonly_bitmaps(bs)) { 1711 return -EPERM; 1712 } 1713 1714 assert(is_power_of_2(align)); 1715 assert((offset & (align - 1)) == 0); 1716 assert((bytes & (align - 1)) == 0); 1717 assert(!qiov || bytes == qiov->size); 1718 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1719 align); 1720 1721 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1722 1723 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1724 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1725 qemu_iovec_is_zero(qiov)) { 1726 flags |= BDRV_REQ_ZERO_WRITE; 1727 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1728 flags |= BDRV_REQ_MAY_UNMAP; 1729 } 1730 } 1731 1732 if (ret < 0) { 1733 /* Do nothing, write notifier decided to fail this request */ 1734 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1735 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1736 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1737 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1738 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1739 } else if (bytes <= max_transfer) { 1740 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1741 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1742 } else { 1743 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1744 while (bytes_remaining) { 1745 int num = MIN(bytes_remaining, max_transfer); 1746 QEMUIOVector local_qiov; 1747 int local_flags = flags; 1748 1749 assert(num); 1750 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1751 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1752 /* If FUA is going to be emulated by flush, we only 1753 * need to flush on the last iteration */ 1754 local_flags &= ~BDRV_REQ_FUA; 1755 } 1756 qemu_iovec_init(&local_qiov, qiov->niov); 1757 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1758 1759 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1760 num, &local_qiov, local_flags); 1761 qemu_iovec_destroy(&local_qiov); 1762 if (ret < 0) { 1763 break; 1764 } 1765 bytes_remaining -= num; 1766 } 1767 } 1768 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1769 1770 if (ret >= 0) { 1771 ret = 0; 1772 } 1773 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 1774 1775 return ret; 1776 } 1777 1778 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1779 int64_t offset, 1780 unsigned int bytes, 1781 BdrvRequestFlags flags, 1782 BdrvTrackedRequest *req) 1783 { 1784 BlockDriverState *bs = child->bs; 1785 uint8_t *buf = NULL; 1786 QEMUIOVector local_qiov; 1787 uint64_t align = bs->bl.request_alignment; 1788 unsigned int head_padding_bytes, tail_padding_bytes; 1789 int ret = 0; 1790 1791 head_padding_bytes = offset & (align - 1); 1792 tail_padding_bytes = (align - (offset + bytes)) & (align - 1); 1793 1794 1795 assert(flags & BDRV_REQ_ZERO_WRITE); 1796 if (head_padding_bytes || tail_padding_bytes) { 1797 buf = qemu_blockalign(bs, align); 1798 qemu_iovec_init_buf(&local_qiov, buf, align); 1799 } 1800 if (head_padding_bytes) { 1801 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1802 1803 /* RMW the unaligned part before head. */ 1804 mark_request_serialising(req, align); 1805 wait_serialising_requests(req); 1806 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1807 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1808 align, &local_qiov, 0); 1809 if (ret < 0) { 1810 goto fail; 1811 } 1812 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1813 1814 memset(buf + head_padding_bytes, 0, zero_bytes); 1815 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1816 align, &local_qiov, 1817 flags & ~BDRV_REQ_ZERO_WRITE); 1818 if (ret < 0) { 1819 goto fail; 1820 } 1821 offset += zero_bytes; 1822 bytes -= zero_bytes; 1823 } 1824 1825 assert(!bytes || (offset & (align - 1)) == 0); 1826 if (bytes >= align) { 1827 /* Write the aligned part in the middle. */ 1828 uint64_t aligned_bytes = bytes & ~(align - 1); 1829 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1830 NULL, flags); 1831 if (ret < 0) { 1832 goto fail; 1833 } 1834 bytes -= aligned_bytes; 1835 offset += aligned_bytes; 1836 } 1837 1838 assert(!bytes || (offset & (align - 1)) == 0); 1839 if (bytes) { 1840 assert(align == tail_padding_bytes + bytes); 1841 /* RMW the unaligned part after tail. */ 1842 mark_request_serialising(req, align); 1843 wait_serialising_requests(req); 1844 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1845 ret = bdrv_aligned_preadv(child, req, offset, align, 1846 align, &local_qiov, 0); 1847 if (ret < 0) { 1848 goto fail; 1849 } 1850 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1851 1852 memset(buf, 0, bytes); 1853 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1854 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1855 } 1856 fail: 1857 qemu_vfree(buf); 1858 return ret; 1859 1860 } 1861 1862 /* 1863 * Handle a write request in coroutine context 1864 */ 1865 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1866 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1867 BdrvRequestFlags flags) 1868 { 1869 BlockDriverState *bs = child->bs; 1870 BdrvTrackedRequest req; 1871 uint64_t align = bs->bl.request_alignment; 1872 uint8_t *head_buf = NULL; 1873 uint8_t *tail_buf = NULL; 1874 QEMUIOVector local_qiov; 1875 bool use_local_qiov = false; 1876 int ret; 1877 1878 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 1879 1880 if (!bs->drv) { 1881 return -ENOMEDIUM; 1882 } 1883 1884 ret = bdrv_check_byte_request(bs, offset, bytes); 1885 if (ret < 0) { 1886 return ret; 1887 } 1888 1889 bdrv_inc_in_flight(bs); 1890 /* 1891 * Align write if necessary by performing a read-modify-write cycle. 1892 * Pad qiov with the read parts and be sure to have a tracked request not 1893 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1894 */ 1895 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1896 1897 if (flags & BDRV_REQ_ZERO_WRITE) { 1898 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1899 goto out; 1900 } 1901 1902 if (offset & (align - 1)) { 1903 QEMUIOVector head_qiov; 1904 1905 mark_request_serialising(&req, align); 1906 wait_serialising_requests(&req); 1907 1908 head_buf = qemu_blockalign(bs, align); 1909 qemu_iovec_init_buf(&head_qiov, head_buf, align); 1910 1911 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1912 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1913 align, &head_qiov, 0); 1914 if (ret < 0) { 1915 goto fail; 1916 } 1917 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1918 1919 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1920 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1921 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1922 use_local_qiov = true; 1923 1924 bytes += offset & (align - 1); 1925 offset = offset & ~(align - 1); 1926 1927 /* We have read the tail already if the request is smaller 1928 * than one aligned block. 1929 */ 1930 if (bytes < align) { 1931 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1932 bytes = align; 1933 } 1934 } 1935 1936 if ((offset + bytes) & (align - 1)) { 1937 QEMUIOVector tail_qiov; 1938 size_t tail_bytes; 1939 bool waited; 1940 1941 mark_request_serialising(&req, align); 1942 waited = wait_serialising_requests(&req); 1943 assert(!waited || !use_local_qiov); 1944 1945 tail_buf = qemu_blockalign(bs, align); 1946 qemu_iovec_init_buf(&tail_qiov, tail_buf, align); 1947 1948 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1949 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1950 align, align, &tail_qiov, 0); 1951 if (ret < 0) { 1952 goto fail; 1953 } 1954 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1955 1956 if (!use_local_qiov) { 1957 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1958 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1959 use_local_qiov = true; 1960 } 1961 1962 tail_bytes = (offset + bytes) & (align - 1); 1963 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1964 1965 bytes = ROUND_UP(bytes, align); 1966 } 1967 1968 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1969 use_local_qiov ? &local_qiov : qiov, 1970 flags); 1971 1972 fail: 1973 1974 if (use_local_qiov) { 1975 qemu_iovec_destroy(&local_qiov); 1976 } 1977 qemu_vfree(head_buf); 1978 qemu_vfree(tail_buf); 1979 out: 1980 tracked_request_end(&req); 1981 bdrv_dec_in_flight(bs); 1982 return ret; 1983 } 1984 1985 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1986 int bytes, BdrvRequestFlags flags) 1987 { 1988 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 1989 1990 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1991 flags &= ~BDRV_REQ_MAY_UNMAP; 1992 } 1993 1994 return bdrv_co_pwritev(child, offset, bytes, NULL, 1995 BDRV_REQ_ZERO_WRITE | flags); 1996 } 1997 1998 /* 1999 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2000 */ 2001 int bdrv_flush_all(void) 2002 { 2003 BdrvNextIterator it; 2004 BlockDriverState *bs = NULL; 2005 int result = 0; 2006 2007 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2008 AioContext *aio_context = bdrv_get_aio_context(bs); 2009 int ret; 2010 2011 aio_context_acquire(aio_context); 2012 ret = bdrv_flush(bs); 2013 if (ret < 0 && !result) { 2014 result = ret; 2015 } 2016 aio_context_release(aio_context); 2017 } 2018 2019 return result; 2020 } 2021 2022 2023 typedef struct BdrvCoBlockStatusData { 2024 BlockDriverState *bs; 2025 BlockDriverState *base; 2026 bool want_zero; 2027 int64_t offset; 2028 int64_t bytes; 2029 int64_t *pnum; 2030 int64_t *map; 2031 BlockDriverState **file; 2032 int ret; 2033 bool done; 2034 } BdrvCoBlockStatusData; 2035 2036 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs, 2037 bool want_zero, 2038 int64_t offset, 2039 int64_t bytes, 2040 int64_t *pnum, 2041 int64_t *map, 2042 BlockDriverState **file) 2043 { 2044 assert(bs->file && bs->file->bs); 2045 *pnum = bytes; 2046 *map = offset; 2047 *file = bs->file->bs; 2048 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2049 } 2050 2051 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs, 2052 bool want_zero, 2053 int64_t offset, 2054 int64_t bytes, 2055 int64_t *pnum, 2056 int64_t *map, 2057 BlockDriverState **file) 2058 { 2059 assert(bs->backing && bs->backing->bs); 2060 *pnum = bytes; 2061 *map = offset; 2062 *file = bs->backing->bs; 2063 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2064 } 2065 2066 /* 2067 * Returns the allocation status of the specified sectors. 2068 * Drivers not implementing the functionality are assumed to not support 2069 * backing files, hence all their sectors are reported as allocated. 2070 * 2071 * If 'want_zero' is true, the caller is querying for mapping 2072 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2073 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2074 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2075 * 2076 * If 'offset' is beyond the end of the disk image the return value is 2077 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2078 * 2079 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2080 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2081 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2082 * 2083 * 'pnum' is set to the number of bytes (including and immediately 2084 * following the specified offset) that are easily known to be in the 2085 * same allocated/unallocated state. Note that a second call starting 2086 * at the original offset plus returned pnum may have the same status. 2087 * The returned value is non-zero on success except at end-of-file. 2088 * 2089 * Returns negative errno on failure. Otherwise, if the 2090 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2091 * set to the host mapping and BDS corresponding to the guest offset. 2092 */ 2093 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2094 bool want_zero, 2095 int64_t offset, int64_t bytes, 2096 int64_t *pnum, int64_t *map, 2097 BlockDriverState **file) 2098 { 2099 int64_t total_size; 2100 int64_t n; /* bytes */ 2101 int ret; 2102 int64_t local_map = 0; 2103 BlockDriverState *local_file = NULL; 2104 int64_t aligned_offset, aligned_bytes; 2105 uint32_t align; 2106 2107 assert(pnum); 2108 *pnum = 0; 2109 total_size = bdrv_getlength(bs); 2110 if (total_size < 0) { 2111 ret = total_size; 2112 goto early_out; 2113 } 2114 2115 if (offset >= total_size) { 2116 ret = BDRV_BLOCK_EOF; 2117 goto early_out; 2118 } 2119 if (!bytes) { 2120 ret = 0; 2121 goto early_out; 2122 } 2123 2124 n = total_size - offset; 2125 if (n < bytes) { 2126 bytes = n; 2127 } 2128 2129 /* Must be non-NULL or bdrv_getlength() would have failed */ 2130 assert(bs->drv); 2131 if (!bs->drv->bdrv_co_block_status) { 2132 *pnum = bytes; 2133 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2134 if (offset + bytes == total_size) { 2135 ret |= BDRV_BLOCK_EOF; 2136 } 2137 if (bs->drv->protocol_name) { 2138 ret |= BDRV_BLOCK_OFFSET_VALID; 2139 local_map = offset; 2140 local_file = bs; 2141 } 2142 goto early_out; 2143 } 2144 2145 bdrv_inc_in_flight(bs); 2146 2147 /* Round out to request_alignment boundaries */ 2148 align = bs->bl.request_alignment; 2149 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2150 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2151 2152 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2153 aligned_bytes, pnum, &local_map, 2154 &local_file); 2155 if (ret < 0) { 2156 *pnum = 0; 2157 goto out; 2158 } 2159 2160 /* 2161 * The driver's result must be a non-zero multiple of request_alignment. 2162 * Clamp pnum and adjust map to original request. 2163 */ 2164 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2165 align > offset - aligned_offset); 2166 if (ret & BDRV_BLOCK_RECURSE) { 2167 assert(ret & BDRV_BLOCK_DATA); 2168 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2169 assert(!(ret & BDRV_BLOCK_ZERO)); 2170 } 2171 2172 *pnum -= offset - aligned_offset; 2173 if (*pnum > bytes) { 2174 *pnum = bytes; 2175 } 2176 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2177 local_map += offset - aligned_offset; 2178 } 2179 2180 if (ret & BDRV_BLOCK_RAW) { 2181 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2182 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2183 *pnum, pnum, &local_map, &local_file); 2184 goto out; 2185 } 2186 2187 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2188 ret |= BDRV_BLOCK_ALLOCATED; 2189 } else if (want_zero) { 2190 if (bdrv_unallocated_blocks_are_zero(bs)) { 2191 ret |= BDRV_BLOCK_ZERO; 2192 } else if (bs->backing) { 2193 BlockDriverState *bs2 = bs->backing->bs; 2194 int64_t size2 = bdrv_getlength(bs2); 2195 2196 if (size2 >= 0 && offset >= size2) { 2197 ret |= BDRV_BLOCK_ZERO; 2198 } 2199 } 2200 } 2201 2202 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2203 local_file && local_file != bs && 2204 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2205 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2206 int64_t file_pnum; 2207 int ret2; 2208 2209 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2210 *pnum, &file_pnum, NULL, NULL); 2211 if (ret2 >= 0) { 2212 /* Ignore errors. This is just providing extra information, it 2213 * is useful but not necessary. 2214 */ 2215 if (ret2 & BDRV_BLOCK_EOF && 2216 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2217 /* 2218 * It is valid for the format block driver to read 2219 * beyond the end of the underlying file's current 2220 * size; such areas read as zero. 2221 */ 2222 ret |= BDRV_BLOCK_ZERO; 2223 } else { 2224 /* Limit request to the range reported by the protocol driver */ 2225 *pnum = file_pnum; 2226 ret |= (ret2 & BDRV_BLOCK_ZERO); 2227 } 2228 } 2229 } 2230 2231 out: 2232 bdrv_dec_in_flight(bs); 2233 if (ret >= 0 && offset + *pnum == total_size) { 2234 ret |= BDRV_BLOCK_EOF; 2235 } 2236 early_out: 2237 if (file) { 2238 *file = local_file; 2239 } 2240 if (map) { 2241 *map = local_map; 2242 } 2243 return ret; 2244 } 2245 2246 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2247 BlockDriverState *base, 2248 bool want_zero, 2249 int64_t offset, 2250 int64_t bytes, 2251 int64_t *pnum, 2252 int64_t *map, 2253 BlockDriverState **file) 2254 { 2255 BlockDriverState *p; 2256 int ret = 0; 2257 bool first = true; 2258 2259 assert(bs != base); 2260 for (p = bs; p != base; p = backing_bs(p)) { 2261 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2262 file); 2263 if (ret < 0) { 2264 break; 2265 } 2266 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 2267 /* 2268 * Reading beyond the end of the file continues to read 2269 * zeroes, but we can only widen the result to the 2270 * unallocated length we learned from an earlier 2271 * iteration. 2272 */ 2273 *pnum = bytes; 2274 } 2275 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 2276 break; 2277 } 2278 /* [offset, pnum] unallocated on this layer, which could be only 2279 * the first part of [offset, bytes]. */ 2280 bytes = MIN(bytes, *pnum); 2281 first = false; 2282 } 2283 return ret; 2284 } 2285 2286 /* Coroutine wrapper for bdrv_block_status_above() */ 2287 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque) 2288 { 2289 BdrvCoBlockStatusData *data = opaque; 2290 2291 data->ret = bdrv_co_block_status_above(data->bs, data->base, 2292 data->want_zero, 2293 data->offset, data->bytes, 2294 data->pnum, data->map, data->file); 2295 data->done = true; 2296 aio_wait_kick(); 2297 } 2298 2299 /* 2300 * Synchronous wrapper around bdrv_co_block_status_above(). 2301 * 2302 * See bdrv_co_block_status_above() for details. 2303 */ 2304 static int bdrv_common_block_status_above(BlockDriverState *bs, 2305 BlockDriverState *base, 2306 bool want_zero, int64_t offset, 2307 int64_t bytes, int64_t *pnum, 2308 int64_t *map, 2309 BlockDriverState **file) 2310 { 2311 Coroutine *co; 2312 BdrvCoBlockStatusData data = { 2313 .bs = bs, 2314 .base = base, 2315 .want_zero = want_zero, 2316 .offset = offset, 2317 .bytes = bytes, 2318 .pnum = pnum, 2319 .map = map, 2320 .file = file, 2321 .done = false, 2322 }; 2323 2324 if (qemu_in_coroutine()) { 2325 /* Fast-path if already in coroutine context */ 2326 bdrv_block_status_above_co_entry(&data); 2327 } else { 2328 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data); 2329 bdrv_coroutine_enter(bs, co); 2330 BDRV_POLL_WHILE(bs, !data.done); 2331 } 2332 return data.ret; 2333 } 2334 2335 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2336 int64_t offset, int64_t bytes, int64_t *pnum, 2337 int64_t *map, BlockDriverState **file) 2338 { 2339 return bdrv_common_block_status_above(bs, base, true, offset, bytes, 2340 pnum, map, file); 2341 } 2342 2343 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2344 int64_t *pnum, int64_t *map, BlockDriverState **file) 2345 { 2346 return bdrv_block_status_above(bs, backing_bs(bs), 2347 offset, bytes, pnum, map, file); 2348 } 2349 2350 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2351 int64_t bytes, int64_t *pnum) 2352 { 2353 int ret; 2354 int64_t dummy; 2355 2356 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset, 2357 bytes, pnum ? pnum : &dummy, NULL, 2358 NULL); 2359 if (ret < 0) { 2360 return ret; 2361 } 2362 return !!(ret & BDRV_BLOCK_ALLOCATED); 2363 } 2364 2365 /* 2366 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2367 * 2368 * Return 1 if (a prefix of) the given range is allocated in any image 2369 * between BASE and TOP (BASE is only included if include_base is set). 2370 * BASE can be NULL to check if the given offset is allocated in any 2371 * image of the chain. Return 0 otherwise, or negative errno on 2372 * failure. 2373 * 2374 * 'pnum' is set to the number of bytes (including and immediately 2375 * following the specified offset) that are known to be in the same 2376 * allocated/unallocated state. Note that a subsequent call starting 2377 * at 'offset + *pnum' may return the same allocation status (in other 2378 * words, the result is not necessarily the maximum possible range); 2379 * but 'pnum' will only be 0 when end of file is reached. 2380 * 2381 */ 2382 int bdrv_is_allocated_above(BlockDriverState *top, 2383 BlockDriverState *base, 2384 bool include_base, int64_t offset, 2385 int64_t bytes, int64_t *pnum) 2386 { 2387 BlockDriverState *intermediate; 2388 int ret; 2389 int64_t n = bytes; 2390 2391 assert(base || !include_base); 2392 2393 intermediate = top; 2394 while (include_base || intermediate != base) { 2395 int64_t pnum_inter; 2396 int64_t size_inter; 2397 2398 assert(intermediate); 2399 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2400 if (ret < 0) { 2401 return ret; 2402 } 2403 if (ret) { 2404 *pnum = pnum_inter; 2405 return 1; 2406 } 2407 2408 size_inter = bdrv_getlength(intermediate); 2409 if (size_inter < 0) { 2410 return size_inter; 2411 } 2412 if (n > pnum_inter && 2413 (intermediate == top || offset + pnum_inter < size_inter)) { 2414 n = pnum_inter; 2415 } 2416 2417 if (intermediate == base) { 2418 break; 2419 } 2420 2421 intermediate = backing_bs(intermediate); 2422 } 2423 2424 *pnum = n; 2425 return 0; 2426 } 2427 2428 typedef struct BdrvVmstateCo { 2429 BlockDriverState *bs; 2430 QEMUIOVector *qiov; 2431 int64_t pos; 2432 bool is_read; 2433 int ret; 2434 } BdrvVmstateCo; 2435 2436 static int coroutine_fn 2437 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2438 bool is_read) 2439 { 2440 BlockDriver *drv = bs->drv; 2441 int ret = -ENOTSUP; 2442 2443 bdrv_inc_in_flight(bs); 2444 2445 if (!drv) { 2446 ret = -ENOMEDIUM; 2447 } else if (drv->bdrv_load_vmstate) { 2448 if (is_read) { 2449 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2450 } else { 2451 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2452 } 2453 } else if (bs->file) { 2454 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2455 } 2456 2457 bdrv_dec_in_flight(bs); 2458 return ret; 2459 } 2460 2461 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2462 { 2463 BdrvVmstateCo *co = opaque; 2464 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2465 aio_wait_kick(); 2466 } 2467 2468 static inline int 2469 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2470 bool is_read) 2471 { 2472 if (qemu_in_coroutine()) { 2473 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2474 } else { 2475 BdrvVmstateCo data = { 2476 .bs = bs, 2477 .qiov = qiov, 2478 .pos = pos, 2479 .is_read = is_read, 2480 .ret = -EINPROGRESS, 2481 }; 2482 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2483 2484 bdrv_coroutine_enter(bs, co); 2485 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2486 return data.ret; 2487 } 2488 } 2489 2490 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2491 int64_t pos, int size) 2492 { 2493 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2494 int ret; 2495 2496 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2497 if (ret < 0) { 2498 return ret; 2499 } 2500 2501 return size; 2502 } 2503 2504 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2505 { 2506 return bdrv_rw_vmstate(bs, qiov, pos, false); 2507 } 2508 2509 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2510 int64_t pos, int size) 2511 { 2512 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2513 int ret; 2514 2515 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2516 if (ret < 0) { 2517 return ret; 2518 } 2519 2520 return size; 2521 } 2522 2523 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2524 { 2525 return bdrv_rw_vmstate(bs, qiov, pos, true); 2526 } 2527 2528 /**************************************************************/ 2529 /* async I/Os */ 2530 2531 void bdrv_aio_cancel(BlockAIOCB *acb) 2532 { 2533 qemu_aio_ref(acb); 2534 bdrv_aio_cancel_async(acb); 2535 while (acb->refcnt > 1) { 2536 if (acb->aiocb_info->get_aio_context) { 2537 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2538 } else if (acb->bs) { 2539 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2540 * assert that we're not using an I/O thread. Thread-safe 2541 * code should use bdrv_aio_cancel_async exclusively. 2542 */ 2543 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2544 aio_poll(bdrv_get_aio_context(acb->bs), true); 2545 } else { 2546 abort(); 2547 } 2548 } 2549 qemu_aio_unref(acb); 2550 } 2551 2552 /* Async version of aio cancel. The caller is not blocked if the acb implements 2553 * cancel_async, otherwise we do nothing and let the request normally complete. 2554 * In either case the completion callback must be called. */ 2555 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2556 { 2557 if (acb->aiocb_info->cancel_async) { 2558 acb->aiocb_info->cancel_async(acb); 2559 } 2560 } 2561 2562 /**************************************************************/ 2563 /* Coroutine block device emulation */ 2564 2565 typedef struct FlushCo { 2566 BlockDriverState *bs; 2567 int ret; 2568 } FlushCo; 2569 2570 2571 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2572 { 2573 FlushCo *rwco = opaque; 2574 2575 rwco->ret = bdrv_co_flush(rwco->bs); 2576 aio_wait_kick(); 2577 } 2578 2579 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2580 { 2581 int current_gen; 2582 int ret = 0; 2583 2584 bdrv_inc_in_flight(bs); 2585 2586 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2587 bdrv_is_sg(bs)) { 2588 goto early_exit; 2589 } 2590 2591 qemu_co_mutex_lock(&bs->reqs_lock); 2592 current_gen = atomic_read(&bs->write_gen); 2593 2594 /* Wait until any previous flushes are completed */ 2595 while (bs->active_flush_req) { 2596 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2597 } 2598 2599 /* Flushes reach this point in nondecreasing current_gen order. */ 2600 bs->active_flush_req = true; 2601 qemu_co_mutex_unlock(&bs->reqs_lock); 2602 2603 /* Write back all layers by calling one driver function */ 2604 if (bs->drv->bdrv_co_flush) { 2605 ret = bs->drv->bdrv_co_flush(bs); 2606 goto out; 2607 } 2608 2609 /* Write back cached data to the OS even with cache=unsafe */ 2610 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2611 if (bs->drv->bdrv_co_flush_to_os) { 2612 ret = bs->drv->bdrv_co_flush_to_os(bs); 2613 if (ret < 0) { 2614 goto out; 2615 } 2616 } 2617 2618 /* But don't actually force it to the disk with cache=unsafe */ 2619 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2620 goto flush_parent; 2621 } 2622 2623 /* Check if we really need to flush anything */ 2624 if (bs->flushed_gen == current_gen) { 2625 goto flush_parent; 2626 } 2627 2628 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2629 if (!bs->drv) { 2630 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2631 * (even in case of apparent success) */ 2632 ret = -ENOMEDIUM; 2633 goto out; 2634 } 2635 if (bs->drv->bdrv_co_flush_to_disk) { 2636 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2637 } else if (bs->drv->bdrv_aio_flush) { 2638 BlockAIOCB *acb; 2639 CoroutineIOCompletion co = { 2640 .coroutine = qemu_coroutine_self(), 2641 }; 2642 2643 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2644 if (acb == NULL) { 2645 ret = -EIO; 2646 } else { 2647 qemu_coroutine_yield(); 2648 ret = co.ret; 2649 } 2650 } else { 2651 /* 2652 * Some block drivers always operate in either writethrough or unsafe 2653 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2654 * know how the server works (because the behaviour is hardcoded or 2655 * depends on server-side configuration), so we can't ensure that 2656 * everything is safe on disk. Returning an error doesn't work because 2657 * that would break guests even if the server operates in writethrough 2658 * mode. 2659 * 2660 * Let's hope the user knows what he's doing. 2661 */ 2662 ret = 0; 2663 } 2664 2665 if (ret < 0) { 2666 goto out; 2667 } 2668 2669 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2670 * in the case of cache=unsafe, so there are no useless flushes. 2671 */ 2672 flush_parent: 2673 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2674 out: 2675 /* Notify any pending flushes that we have completed */ 2676 if (ret == 0) { 2677 bs->flushed_gen = current_gen; 2678 } 2679 2680 qemu_co_mutex_lock(&bs->reqs_lock); 2681 bs->active_flush_req = false; 2682 /* Return value is ignored - it's ok if wait queue is empty */ 2683 qemu_co_queue_next(&bs->flush_queue); 2684 qemu_co_mutex_unlock(&bs->reqs_lock); 2685 2686 early_exit: 2687 bdrv_dec_in_flight(bs); 2688 return ret; 2689 } 2690 2691 int bdrv_flush(BlockDriverState *bs) 2692 { 2693 Coroutine *co; 2694 FlushCo flush_co = { 2695 .bs = bs, 2696 .ret = NOT_DONE, 2697 }; 2698 2699 if (qemu_in_coroutine()) { 2700 /* Fast-path if already in coroutine context */ 2701 bdrv_flush_co_entry(&flush_co); 2702 } else { 2703 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2704 bdrv_coroutine_enter(bs, co); 2705 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2706 } 2707 2708 return flush_co.ret; 2709 } 2710 2711 typedef struct DiscardCo { 2712 BdrvChild *child; 2713 int64_t offset; 2714 int64_t bytes; 2715 int ret; 2716 } DiscardCo; 2717 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2718 { 2719 DiscardCo *rwco = opaque; 2720 2721 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes); 2722 aio_wait_kick(); 2723 } 2724 2725 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 2726 int64_t bytes) 2727 { 2728 BdrvTrackedRequest req; 2729 int max_pdiscard, ret; 2730 int head, tail, align; 2731 BlockDriverState *bs = child->bs; 2732 2733 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 2734 return -ENOMEDIUM; 2735 } 2736 2737 if (bdrv_has_readonly_bitmaps(bs)) { 2738 return -EPERM; 2739 } 2740 2741 if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) { 2742 return -EIO; 2743 } 2744 2745 /* Do nothing if disabled. */ 2746 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2747 return 0; 2748 } 2749 2750 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2751 return 0; 2752 } 2753 2754 /* Discard is advisory, but some devices track and coalesce 2755 * unaligned requests, so we must pass everything down rather than 2756 * round here. Still, most devices will just silently ignore 2757 * unaligned requests (by returning -ENOTSUP), so we must fragment 2758 * the request accordingly. */ 2759 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2760 assert(align % bs->bl.request_alignment == 0); 2761 head = offset % align; 2762 tail = (offset + bytes) % align; 2763 2764 bdrv_inc_in_flight(bs); 2765 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2766 2767 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 2768 if (ret < 0) { 2769 goto out; 2770 } 2771 2772 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2773 align); 2774 assert(max_pdiscard >= bs->bl.request_alignment); 2775 2776 while (bytes > 0) { 2777 int64_t num = bytes; 2778 2779 if (head) { 2780 /* Make small requests to get to alignment boundaries. */ 2781 num = MIN(bytes, align - head); 2782 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2783 num %= bs->bl.request_alignment; 2784 } 2785 head = (head + num) % align; 2786 assert(num < max_pdiscard); 2787 } else if (tail) { 2788 if (num > align) { 2789 /* Shorten the request to the last aligned cluster. */ 2790 num -= tail; 2791 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2792 tail > bs->bl.request_alignment) { 2793 tail %= bs->bl.request_alignment; 2794 num -= tail; 2795 } 2796 } 2797 /* limit request size */ 2798 if (num > max_pdiscard) { 2799 num = max_pdiscard; 2800 } 2801 2802 if (!bs->drv) { 2803 ret = -ENOMEDIUM; 2804 goto out; 2805 } 2806 if (bs->drv->bdrv_co_pdiscard) { 2807 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2808 } else { 2809 BlockAIOCB *acb; 2810 CoroutineIOCompletion co = { 2811 .coroutine = qemu_coroutine_self(), 2812 }; 2813 2814 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2815 bdrv_co_io_em_complete, &co); 2816 if (acb == NULL) { 2817 ret = -EIO; 2818 goto out; 2819 } else { 2820 qemu_coroutine_yield(); 2821 ret = co.ret; 2822 } 2823 } 2824 if (ret && ret != -ENOTSUP) { 2825 goto out; 2826 } 2827 2828 offset += num; 2829 bytes -= num; 2830 } 2831 ret = 0; 2832 out: 2833 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 2834 tracked_request_end(&req); 2835 bdrv_dec_in_flight(bs); 2836 return ret; 2837 } 2838 2839 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes) 2840 { 2841 Coroutine *co; 2842 DiscardCo rwco = { 2843 .child = child, 2844 .offset = offset, 2845 .bytes = bytes, 2846 .ret = NOT_DONE, 2847 }; 2848 2849 if (qemu_in_coroutine()) { 2850 /* Fast-path if already in coroutine context */ 2851 bdrv_pdiscard_co_entry(&rwco); 2852 } else { 2853 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2854 bdrv_coroutine_enter(child->bs, co); 2855 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 2856 } 2857 2858 return rwco.ret; 2859 } 2860 2861 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2862 { 2863 BlockDriver *drv = bs->drv; 2864 CoroutineIOCompletion co = { 2865 .coroutine = qemu_coroutine_self(), 2866 }; 2867 BlockAIOCB *acb; 2868 2869 bdrv_inc_in_flight(bs); 2870 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2871 co.ret = -ENOTSUP; 2872 goto out; 2873 } 2874 2875 if (drv->bdrv_co_ioctl) { 2876 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2877 } else { 2878 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2879 if (!acb) { 2880 co.ret = -ENOTSUP; 2881 goto out; 2882 } 2883 qemu_coroutine_yield(); 2884 } 2885 out: 2886 bdrv_dec_in_flight(bs); 2887 return co.ret; 2888 } 2889 2890 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2891 { 2892 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2893 } 2894 2895 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2896 { 2897 return memset(qemu_blockalign(bs, size), 0, size); 2898 } 2899 2900 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2901 { 2902 size_t align = bdrv_opt_mem_align(bs); 2903 2904 /* Ensure that NULL is never returned on success */ 2905 assert(align > 0); 2906 if (size == 0) { 2907 size = align; 2908 } 2909 2910 return qemu_try_memalign(align, size); 2911 } 2912 2913 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2914 { 2915 void *mem = qemu_try_blockalign(bs, size); 2916 2917 if (mem) { 2918 memset(mem, 0, size); 2919 } 2920 2921 return mem; 2922 } 2923 2924 /* 2925 * Check if all memory in this vector is sector aligned. 2926 */ 2927 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2928 { 2929 int i; 2930 size_t alignment = bdrv_min_mem_align(bs); 2931 2932 for (i = 0; i < qiov->niov; i++) { 2933 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2934 return false; 2935 } 2936 if (qiov->iov[i].iov_len % alignment) { 2937 return false; 2938 } 2939 } 2940 2941 return true; 2942 } 2943 2944 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2945 NotifierWithReturn *notifier) 2946 { 2947 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2948 } 2949 2950 void bdrv_io_plug(BlockDriverState *bs) 2951 { 2952 BdrvChild *child; 2953 2954 QLIST_FOREACH(child, &bs->children, next) { 2955 bdrv_io_plug(child->bs); 2956 } 2957 2958 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 2959 BlockDriver *drv = bs->drv; 2960 if (drv && drv->bdrv_io_plug) { 2961 drv->bdrv_io_plug(bs); 2962 } 2963 } 2964 } 2965 2966 void bdrv_io_unplug(BlockDriverState *bs) 2967 { 2968 BdrvChild *child; 2969 2970 assert(bs->io_plugged); 2971 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 2972 BlockDriver *drv = bs->drv; 2973 if (drv && drv->bdrv_io_unplug) { 2974 drv->bdrv_io_unplug(bs); 2975 } 2976 } 2977 2978 QLIST_FOREACH(child, &bs->children, next) { 2979 bdrv_io_unplug(child->bs); 2980 } 2981 } 2982 2983 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 2984 { 2985 BdrvChild *child; 2986 2987 if (bs->drv && bs->drv->bdrv_register_buf) { 2988 bs->drv->bdrv_register_buf(bs, host, size); 2989 } 2990 QLIST_FOREACH(child, &bs->children, next) { 2991 bdrv_register_buf(child->bs, host, size); 2992 } 2993 } 2994 2995 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 2996 { 2997 BdrvChild *child; 2998 2999 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3000 bs->drv->bdrv_unregister_buf(bs, host); 3001 } 3002 QLIST_FOREACH(child, &bs->children, next) { 3003 bdrv_unregister_buf(child->bs, host); 3004 } 3005 } 3006 3007 static int coroutine_fn bdrv_co_copy_range_internal( 3008 BdrvChild *src, uint64_t src_offset, BdrvChild *dst, 3009 uint64_t dst_offset, uint64_t bytes, 3010 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3011 bool recurse_src) 3012 { 3013 BdrvTrackedRequest req; 3014 int ret; 3015 3016 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3017 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3018 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3019 3020 if (!dst || !dst->bs) { 3021 return -ENOMEDIUM; 3022 } 3023 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes); 3024 if (ret) { 3025 return ret; 3026 } 3027 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3028 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3029 } 3030 3031 if (!src || !src->bs) { 3032 return -ENOMEDIUM; 3033 } 3034 ret = bdrv_check_byte_request(src->bs, src_offset, bytes); 3035 if (ret) { 3036 return ret; 3037 } 3038 3039 if (!src->bs->drv->bdrv_co_copy_range_from 3040 || !dst->bs->drv->bdrv_co_copy_range_to 3041 || src->bs->encrypted || dst->bs->encrypted) { 3042 return -ENOTSUP; 3043 } 3044 3045 if (recurse_src) { 3046 bdrv_inc_in_flight(src->bs); 3047 tracked_request_begin(&req, src->bs, src_offset, bytes, 3048 BDRV_TRACKED_READ); 3049 3050 /* BDRV_REQ_SERIALISING is only for write operation */ 3051 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3052 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) { 3053 wait_serialising_requests(&req); 3054 } 3055 3056 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3057 src, src_offset, 3058 dst, dst_offset, 3059 bytes, 3060 read_flags, write_flags); 3061 3062 tracked_request_end(&req); 3063 bdrv_dec_in_flight(src->bs); 3064 } else { 3065 bdrv_inc_in_flight(dst->bs); 3066 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3067 BDRV_TRACKED_WRITE); 3068 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3069 write_flags); 3070 if (!ret) { 3071 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3072 src, src_offset, 3073 dst, dst_offset, 3074 bytes, 3075 read_flags, write_flags); 3076 } 3077 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3078 tracked_request_end(&req); 3079 bdrv_dec_in_flight(dst->bs); 3080 } 3081 3082 return ret; 3083 } 3084 3085 /* Copy range from @src to @dst. 3086 * 3087 * See the comment of bdrv_co_copy_range for the parameter and return value 3088 * semantics. */ 3089 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset, 3090 BdrvChild *dst, uint64_t dst_offset, 3091 uint64_t bytes, 3092 BdrvRequestFlags read_flags, 3093 BdrvRequestFlags write_flags) 3094 { 3095 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3096 read_flags, write_flags); 3097 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3098 bytes, read_flags, write_flags, true); 3099 } 3100 3101 /* Copy range from @src to @dst. 3102 * 3103 * See the comment of bdrv_co_copy_range for the parameter and return value 3104 * semantics. */ 3105 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset, 3106 BdrvChild *dst, uint64_t dst_offset, 3107 uint64_t bytes, 3108 BdrvRequestFlags read_flags, 3109 BdrvRequestFlags write_flags) 3110 { 3111 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3112 read_flags, write_flags); 3113 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3114 bytes, read_flags, write_flags, false); 3115 } 3116 3117 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset, 3118 BdrvChild *dst, uint64_t dst_offset, 3119 uint64_t bytes, BdrvRequestFlags read_flags, 3120 BdrvRequestFlags write_flags) 3121 { 3122 return bdrv_co_copy_range_from(src, src_offset, 3123 dst, dst_offset, 3124 bytes, read_flags, write_flags); 3125 } 3126 3127 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3128 { 3129 BdrvChild *c; 3130 QLIST_FOREACH(c, &bs->parents, next_parent) { 3131 if (c->role->resize) { 3132 c->role->resize(c); 3133 } 3134 } 3135 } 3136 3137 /** 3138 * Truncate file to 'offset' bytes (needed only for file protocols) 3139 */ 3140 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, 3141 PreallocMode prealloc, Error **errp) 3142 { 3143 BlockDriverState *bs = child->bs; 3144 BlockDriver *drv = bs->drv; 3145 BdrvTrackedRequest req; 3146 int64_t old_size, new_bytes; 3147 int ret; 3148 3149 3150 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3151 if (!drv) { 3152 error_setg(errp, "No medium inserted"); 3153 return -ENOMEDIUM; 3154 } 3155 if (offset < 0) { 3156 error_setg(errp, "Image size cannot be negative"); 3157 return -EINVAL; 3158 } 3159 3160 old_size = bdrv_getlength(bs); 3161 if (old_size < 0) { 3162 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3163 return old_size; 3164 } 3165 3166 if (offset > old_size) { 3167 new_bytes = offset - old_size; 3168 } else { 3169 new_bytes = 0; 3170 } 3171 3172 bdrv_inc_in_flight(bs); 3173 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3174 BDRV_TRACKED_TRUNCATE); 3175 3176 /* If we are growing the image and potentially using preallocation for the 3177 * new area, we need to make sure that no write requests are made to it 3178 * concurrently or they might be overwritten by preallocation. */ 3179 if (new_bytes) { 3180 mark_request_serialising(&req, 1); 3181 } 3182 if (bs->read_only) { 3183 error_setg(errp, "Image is read-only"); 3184 ret = -EACCES; 3185 goto out; 3186 } 3187 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3188 0); 3189 if (ret < 0) { 3190 error_setg_errno(errp, -ret, 3191 "Failed to prepare request for truncation"); 3192 goto out; 3193 } 3194 3195 if (!drv->bdrv_co_truncate) { 3196 if (bs->file && drv->is_filter) { 3197 ret = bdrv_co_truncate(bs->file, offset, prealloc, errp); 3198 goto out; 3199 } 3200 error_setg(errp, "Image format driver does not support resize"); 3201 ret = -ENOTSUP; 3202 goto out; 3203 } 3204 3205 ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp); 3206 if (ret < 0) { 3207 goto out; 3208 } 3209 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3210 if (ret < 0) { 3211 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3212 } else { 3213 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3214 } 3215 /* It's possible that truncation succeeded but refresh_total_sectors 3216 * failed, but the latter doesn't affect how we should finish the request. 3217 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3218 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3219 3220 out: 3221 tracked_request_end(&req); 3222 bdrv_dec_in_flight(bs); 3223 3224 return ret; 3225 } 3226 3227 typedef struct TruncateCo { 3228 BdrvChild *child; 3229 int64_t offset; 3230 PreallocMode prealloc; 3231 Error **errp; 3232 int ret; 3233 } TruncateCo; 3234 3235 static void coroutine_fn bdrv_truncate_co_entry(void *opaque) 3236 { 3237 TruncateCo *tco = opaque; 3238 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc, 3239 tco->errp); 3240 aio_wait_kick(); 3241 } 3242 3243 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc, 3244 Error **errp) 3245 { 3246 Coroutine *co; 3247 TruncateCo tco = { 3248 .child = child, 3249 .offset = offset, 3250 .prealloc = prealloc, 3251 .errp = errp, 3252 .ret = NOT_DONE, 3253 }; 3254 3255 if (qemu_in_coroutine()) { 3256 /* Fast-path if already in coroutine context */ 3257 bdrv_truncate_co_entry(&tco); 3258 } else { 3259 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco); 3260 bdrv_coroutine_enter(child->bs, co); 3261 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE); 3262 } 3263 3264 return tco.ret; 3265 } 3266