xref: /openbmc/qemu/block/io.c (revision 57b3a7d8)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "qemu/cutils.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "qemu/main-loop.h"
37 #include "sysemu/replay.h"
38 
39 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
40 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
41 
42 static void bdrv_parent_cb_resize(BlockDriverState *bs);
43 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
44     int64_t offset, int bytes, BdrvRequestFlags flags);
45 
46 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
47                                       bool ignore_bds_parents)
48 {
49     BdrvChild *c, *next;
50 
51     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
52         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
53             continue;
54         }
55         bdrv_parent_drained_begin_single(c, false);
56     }
57 }
58 
59 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
60                                                    int *drained_end_counter)
61 {
62     assert(c->parent_quiesce_counter > 0);
63     c->parent_quiesce_counter--;
64     if (c->klass->drained_end) {
65         c->klass->drained_end(c, drained_end_counter);
66     }
67 }
68 
69 void bdrv_parent_drained_end_single(BdrvChild *c)
70 {
71     int drained_end_counter = 0;
72     bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
73     BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
74 }
75 
76 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
77                                     bool ignore_bds_parents,
78                                     int *drained_end_counter)
79 {
80     BdrvChild *c;
81 
82     QLIST_FOREACH(c, &bs->parents, next_parent) {
83         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
84             continue;
85         }
86         bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
87     }
88 }
89 
90 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
91 {
92     if (c->klass->drained_poll) {
93         return c->klass->drained_poll(c);
94     }
95     return false;
96 }
97 
98 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
99                                      bool ignore_bds_parents)
100 {
101     BdrvChild *c, *next;
102     bool busy = false;
103 
104     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
105         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
106             continue;
107         }
108         busy |= bdrv_parent_drained_poll_single(c);
109     }
110 
111     return busy;
112 }
113 
114 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
115 {
116     c->parent_quiesce_counter++;
117     if (c->klass->drained_begin) {
118         c->klass->drained_begin(c);
119     }
120     if (poll) {
121         BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
122     }
123 }
124 
125 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
126 {
127     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
128     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
129     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130                                  src->opt_mem_alignment);
131     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132                                  src->min_mem_alignment);
133     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
134 }
135 
136 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
137 {
138     BlockDriver *drv = bs->drv;
139     BdrvChild *c;
140     bool have_limits;
141     Error *local_err = NULL;
142 
143     memset(&bs->bl, 0, sizeof(bs->bl));
144 
145     if (!drv) {
146         return;
147     }
148 
149     /* Default alignment based on whether driver has byte interface */
150     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
151                                 drv->bdrv_aio_preadv ||
152                                 drv->bdrv_co_preadv_part) ? 1 : 512;
153 
154     /* Take some limits from the children as a default */
155     have_limits = false;
156     QLIST_FOREACH(c, &bs->children, next) {
157         if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
158         {
159             bdrv_refresh_limits(c->bs, &local_err);
160             if (local_err) {
161                 error_propagate(errp, local_err);
162                 return;
163             }
164             bdrv_merge_limits(&bs->bl, &c->bs->bl);
165             have_limits = true;
166         }
167     }
168 
169     if (!have_limits) {
170         bs->bl.min_mem_alignment = 512;
171         bs->bl.opt_mem_alignment = qemu_real_host_page_size;
172 
173         /* Safe default since most protocols use readv()/writev()/etc */
174         bs->bl.max_iov = IOV_MAX;
175     }
176 
177     /* Then let the driver override it */
178     if (drv->bdrv_refresh_limits) {
179         drv->bdrv_refresh_limits(bs, errp);
180     }
181 }
182 
183 /**
184  * The copy-on-read flag is actually a reference count so multiple users may
185  * use the feature without worrying about clobbering its previous state.
186  * Copy-on-read stays enabled until all users have called to disable it.
187  */
188 void bdrv_enable_copy_on_read(BlockDriverState *bs)
189 {
190     qatomic_inc(&bs->copy_on_read);
191 }
192 
193 void bdrv_disable_copy_on_read(BlockDriverState *bs)
194 {
195     int old = qatomic_fetch_dec(&bs->copy_on_read);
196     assert(old >= 1);
197 }
198 
199 typedef struct {
200     Coroutine *co;
201     BlockDriverState *bs;
202     bool done;
203     bool begin;
204     bool recursive;
205     bool poll;
206     BdrvChild *parent;
207     bool ignore_bds_parents;
208     int *drained_end_counter;
209 } BdrvCoDrainData;
210 
211 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
212 {
213     BdrvCoDrainData *data = opaque;
214     BlockDriverState *bs = data->bs;
215 
216     if (data->begin) {
217         bs->drv->bdrv_co_drain_begin(bs);
218     } else {
219         bs->drv->bdrv_co_drain_end(bs);
220     }
221 
222     /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
223     qatomic_mb_set(&data->done, true);
224     if (!data->begin) {
225         qatomic_dec(data->drained_end_counter);
226     }
227     bdrv_dec_in_flight(bs);
228 
229     g_free(data);
230 }
231 
232 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
233 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
234                               int *drained_end_counter)
235 {
236     BdrvCoDrainData *data;
237 
238     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
239             (!begin && !bs->drv->bdrv_co_drain_end)) {
240         return;
241     }
242 
243     data = g_new(BdrvCoDrainData, 1);
244     *data = (BdrvCoDrainData) {
245         .bs = bs,
246         .done = false,
247         .begin = begin,
248         .drained_end_counter = drained_end_counter,
249     };
250 
251     if (!begin) {
252         qatomic_inc(drained_end_counter);
253     }
254 
255     /* Make sure the driver callback completes during the polling phase for
256      * drain_begin. */
257     bdrv_inc_in_flight(bs);
258     data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
259     aio_co_schedule(bdrv_get_aio_context(bs), data->co);
260 }
261 
262 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
263 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
264                      BdrvChild *ignore_parent, bool ignore_bds_parents)
265 {
266     BdrvChild *child, *next;
267 
268     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
269         return true;
270     }
271 
272     if (qatomic_read(&bs->in_flight)) {
273         return true;
274     }
275 
276     if (recursive) {
277         assert(!ignore_bds_parents);
278         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
279             if (bdrv_drain_poll(child->bs, recursive, child, false)) {
280                 return true;
281             }
282         }
283     }
284 
285     return false;
286 }
287 
288 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
289                                       BdrvChild *ignore_parent)
290 {
291     return bdrv_drain_poll(bs, recursive, ignore_parent, false);
292 }
293 
294 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
295                                   BdrvChild *parent, bool ignore_bds_parents,
296                                   bool poll);
297 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
298                                 BdrvChild *parent, bool ignore_bds_parents,
299                                 int *drained_end_counter);
300 
301 static void bdrv_co_drain_bh_cb(void *opaque)
302 {
303     BdrvCoDrainData *data = opaque;
304     Coroutine *co = data->co;
305     BlockDriverState *bs = data->bs;
306 
307     if (bs) {
308         AioContext *ctx = bdrv_get_aio_context(bs);
309         AioContext *co_ctx = qemu_coroutine_get_aio_context(co);
310 
311         /*
312          * When the coroutine yielded, the lock for its home context was
313          * released, so we need to re-acquire it here. If it explicitly
314          * acquired a different context, the lock is still held and we don't
315          * want to lock it a second time (or AIO_WAIT_WHILE() would hang).
316          */
317         if (ctx == co_ctx) {
318             aio_context_acquire(ctx);
319         }
320         bdrv_dec_in_flight(bs);
321         if (data->begin) {
322             assert(!data->drained_end_counter);
323             bdrv_do_drained_begin(bs, data->recursive, data->parent,
324                                   data->ignore_bds_parents, data->poll);
325         } else {
326             assert(!data->poll);
327             bdrv_do_drained_end(bs, data->recursive, data->parent,
328                                 data->ignore_bds_parents,
329                                 data->drained_end_counter);
330         }
331         if (ctx == co_ctx) {
332             aio_context_release(ctx);
333         }
334     } else {
335         assert(data->begin);
336         bdrv_drain_all_begin();
337     }
338 
339     data->done = true;
340     aio_co_wake(co);
341 }
342 
343 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
344                                                 bool begin, bool recursive,
345                                                 BdrvChild *parent,
346                                                 bool ignore_bds_parents,
347                                                 bool poll,
348                                                 int *drained_end_counter)
349 {
350     BdrvCoDrainData data;
351 
352     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
353      * other coroutines run if they were queued by aio_co_enter(). */
354 
355     assert(qemu_in_coroutine());
356     data = (BdrvCoDrainData) {
357         .co = qemu_coroutine_self(),
358         .bs = bs,
359         .done = false,
360         .begin = begin,
361         .recursive = recursive,
362         .parent = parent,
363         .ignore_bds_parents = ignore_bds_parents,
364         .poll = poll,
365         .drained_end_counter = drained_end_counter,
366     };
367 
368     if (bs) {
369         bdrv_inc_in_flight(bs);
370     }
371     replay_bh_schedule_oneshot_event(bdrv_get_aio_context(bs),
372                                      bdrv_co_drain_bh_cb, &data);
373 
374     qemu_coroutine_yield();
375     /* If we are resumed from some other event (such as an aio completion or a
376      * timer callback), it is a bug in the caller that should be fixed. */
377     assert(data.done);
378 }
379 
380 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
381                                    BdrvChild *parent, bool ignore_bds_parents)
382 {
383     assert(!qemu_in_coroutine());
384 
385     /* Stop things in parent-to-child order */
386     if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
387         aio_disable_external(bdrv_get_aio_context(bs));
388     }
389 
390     bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
391     bdrv_drain_invoke(bs, true, NULL);
392 }
393 
394 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
395                                   BdrvChild *parent, bool ignore_bds_parents,
396                                   bool poll)
397 {
398     BdrvChild *child, *next;
399 
400     if (qemu_in_coroutine()) {
401         bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
402                                poll, NULL);
403         return;
404     }
405 
406     bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
407 
408     if (recursive) {
409         assert(!ignore_bds_parents);
410         bs->recursive_quiesce_counter++;
411         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
412             bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
413                                   false);
414         }
415     }
416 
417     /*
418      * Wait for drained requests to finish.
419      *
420      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
421      * call is needed so things in this AioContext can make progress even
422      * though we don't return to the main AioContext loop - this automatically
423      * includes other nodes in the same AioContext and therefore all child
424      * nodes.
425      */
426     if (poll) {
427         assert(!ignore_bds_parents);
428         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
429     }
430 }
431 
432 void bdrv_drained_begin(BlockDriverState *bs)
433 {
434     bdrv_do_drained_begin(bs, false, NULL, false, true);
435 }
436 
437 void bdrv_subtree_drained_begin(BlockDriverState *bs)
438 {
439     bdrv_do_drained_begin(bs, true, NULL, false, true);
440 }
441 
442 /**
443  * This function does not poll, nor must any of its recursively called
444  * functions.  The *drained_end_counter pointee will be incremented
445  * once for every background operation scheduled, and decremented once
446  * the operation settles.  Therefore, the pointer must remain valid
447  * until the pointee reaches 0.  That implies that whoever sets up the
448  * pointee has to poll until it is 0.
449  *
450  * We use atomic operations to access *drained_end_counter, because
451  * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
452  *     @bs may contain nodes in different AioContexts,
453  * (2) bdrv_drain_all_end() uses the same counter for all nodes,
454  *     regardless of which AioContext they are in.
455  */
456 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
457                                 BdrvChild *parent, bool ignore_bds_parents,
458                                 int *drained_end_counter)
459 {
460     BdrvChild *child;
461     int old_quiesce_counter;
462 
463     assert(drained_end_counter != NULL);
464 
465     if (qemu_in_coroutine()) {
466         bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
467                                false, drained_end_counter);
468         return;
469     }
470     assert(bs->quiesce_counter > 0);
471 
472     /* Re-enable things in child-to-parent order */
473     bdrv_drain_invoke(bs, false, drained_end_counter);
474     bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
475                             drained_end_counter);
476 
477     old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
478     if (old_quiesce_counter == 1) {
479         aio_enable_external(bdrv_get_aio_context(bs));
480     }
481 
482     if (recursive) {
483         assert(!ignore_bds_parents);
484         bs->recursive_quiesce_counter--;
485         QLIST_FOREACH(child, &bs->children, next) {
486             bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
487                                 drained_end_counter);
488         }
489     }
490 }
491 
492 void bdrv_drained_end(BlockDriverState *bs)
493 {
494     int drained_end_counter = 0;
495     bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
496     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
497 }
498 
499 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
500 {
501     bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
502 }
503 
504 void bdrv_subtree_drained_end(BlockDriverState *bs)
505 {
506     int drained_end_counter = 0;
507     bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
508     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
509 }
510 
511 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
512 {
513     int i;
514 
515     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
516         bdrv_do_drained_begin(child->bs, true, child, false, true);
517     }
518 }
519 
520 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
521 {
522     int drained_end_counter = 0;
523     int i;
524 
525     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
526         bdrv_do_drained_end(child->bs, true, child, false,
527                             &drained_end_counter);
528     }
529 
530     BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
531 }
532 
533 /*
534  * Wait for pending requests to complete on a single BlockDriverState subtree,
535  * and suspend block driver's internal I/O until next request arrives.
536  *
537  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
538  * AioContext.
539  */
540 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
541 {
542     assert(qemu_in_coroutine());
543     bdrv_drained_begin(bs);
544     bdrv_drained_end(bs);
545 }
546 
547 void bdrv_drain(BlockDriverState *bs)
548 {
549     bdrv_drained_begin(bs);
550     bdrv_drained_end(bs);
551 }
552 
553 static void bdrv_drain_assert_idle(BlockDriverState *bs)
554 {
555     BdrvChild *child, *next;
556 
557     assert(qatomic_read(&bs->in_flight) == 0);
558     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
559         bdrv_drain_assert_idle(child->bs);
560     }
561 }
562 
563 unsigned int bdrv_drain_all_count = 0;
564 
565 static bool bdrv_drain_all_poll(void)
566 {
567     BlockDriverState *bs = NULL;
568     bool result = false;
569 
570     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
571      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
572     while ((bs = bdrv_next_all_states(bs))) {
573         AioContext *aio_context = bdrv_get_aio_context(bs);
574         aio_context_acquire(aio_context);
575         result |= bdrv_drain_poll(bs, false, NULL, true);
576         aio_context_release(aio_context);
577     }
578 
579     return result;
580 }
581 
582 /*
583  * Wait for pending requests to complete across all BlockDriverStates
584  *
585  * This function does not flush data to disk, use bdrv_flush_all() for that
586  * after calling this function.
587  *
588  * This pauses all block jobs and disables external clients. It must
589  * be paired with bdrv_drain_all_end().
590  *
591  * NOTE: no new block jobs or BlockDriverStates can be created between
592  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
593  */
594 void bdrv_drain_all_begin(void)
595 {
596     BlockDriverState *bs = NULL;
597 
598     if (qemu_in_coroutine()) {
599         bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
600         return;
601     }
602 
603     /*
604      * bdrv queue is managed by record/replay,
605      * waiting for finishing the I/O requests may
606      * be infinite
607      */
608     if (replay_events_enabled()) {
609         return;
610     }
611 
612     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
613      * loop AioContext, so make sure we're in the main context. */
614     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
615     assert(bdrv_drain_all_count < INT_MAX);
616     bdrv_drain_all_count++;
617 
618     /* Quiesce all nodes, without polling in-flight requests yet. The graph
619      * cannot change during this loop. */
620     while ((bs = bdrv_next_all_states(bs))) {
621         AioContext *aio_context = bdrv_get_aio_context(bs);
622 
623         aio_context_acquire(aio_context);
624         bdrv_do_drained_begin(bs, false, NULL, true, false);
625         aio_context_release(aio_context);
626     }
627 
628     /* Now poll the in-flight requests */
629     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
630 
631     while ((bs = bdrv_next_all_states(bs))) {
632         bdrv_drain_assert_idle(bs);
633     }
634 }
635 
636 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
637 {
638     int drained_end_counter = 0;
639 
640     g_assert(bs->quiesce_counter > 0);
641     g_assert(!bs->refcnt);
642 
643     while (bs->quiesce_counter) {
644         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
645     }
646     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
647 }
648 
649 void bdrv_drain_all_end(void)
650 {
651     BlockDriverState *bs = NULL;
652     int drained_end_counter = 0;
653 
654     /*
655      * bdrv queue is managed by record/replay,
656      * waiting for finishing the I/O requests may
657      * be endless
658      */
659     if (replay_events_enabled()) {
660         return;
661     }
662 
663     while ((bs = bdrv_next_all_states(bs))) {
664         AioContext *aio_context = bdrv_get_aio_context(bs);
665 
666         aio_context_acquire(aio_context);
667         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
668         aio_context_release(aio_context);
669     }
670 
671     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
672     AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
673 
674     assert(bdrv_drain_all_count > 0);
675     bdrv_drain_all_count--;
676 }
677 
678 void bdrv_drain_all(void)
679 {
680     bdrv_drain_all_begin();
681     bdrv_drain_all_end();
682 }
683 
684 /**
685  * Remove an active request from the tracked requests list
686  *
687  * This function should be called when a tracked request is completing.
688  */
689 static void tracked_request_end(BdrvTrackedRequest *req)
690 {
691     if (req->serialising) {
692         qatomic_dec(&req->bs->serialising_in_flight);
693     }
694 
695     qemu_co_mutex_lock(&req->bs->reqs_lock);
696     QLIST_REMOVE(req, list);
697     qemu_co_queue_restart_all(&req->wait_queue);
698     qemu_co_mutex_unlock(&req->bs->reqs_lock);
699 }
700 
701 /**
702  * Add an active request to the tracked requests list
703  */
704 static void tracked_request_begin(BdrvTrackedRequest *req,
705                                   BlockDriverState *bs,
706                                   int64_t offset,
707                                   uint64_t bytes,
708                                   enum BdrvTrackedRequestType type)
709 {
710     assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
711 
712     *req = (BdrvTrackedRequest){
713         .bs = bs,
714         .offset         = offset,
715         .bytes          = bytes,
716         .type           = type,
717         .co             = qemu_coroutine_self(),
718         .serialising    = false,
719         .overlap_offset = offset,
720         .overlap_bytes  = bytes,
721     };
722 
723     qemu_co_queue_init(&req->wait_queue);
724 
725     qemu_co_mutex_lock(&bs->reqs_lock);
726     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
727     qemu_co_mutex_unlock(&bs->reqs_lock);
728 }
729 
730 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
731                                      int64_t offset, uint64_t bytes)
732 {
733     /*        aaaa   bbbb */
734     if (offset >= req->overlap_offset + req->overlap_bytes) {
735         return false;
736     }
737     /* bbbb   aaaa        */
738     if (req->overlap_offset >= offset + bytes) {
739         return false;
740     }
741     return true;
742 }
743 
744 static bool coroutine_fn
745 bdrv_wait_serialising_requests_locked(BlockDriverState *bs,
746                                       BdrvTrackedRequest *self)
747 {
748     BdrvTrackedRequest *req;
749     bool retry;
750     bool waited = false;
751 
752     do {
753         retry = false;
754         QLIST_FOREACH(req, &bs->tracked_requests, list) {
755             if (req == self || (!req->serialising && !self->serialising)) {
756                 continue;
757             }
758             if (tracked_request_overlaps(req, self->overlap_offset,
759                                          self->overlap_bytes))
760             {
761                 /* Hitting this means there was a reentrant request, for
762                  * example, a block driver issuing nested requests.  This must
763                  * never happen since it means deadlock.
764                  */
765                 assert(qemu_coroutine_self() != req->co);
766 
767                 /* If the request is already (indirectly) waiting for us, or
768                  * will wait for us as soon as it wakes up, then just go on
769                  * (instead of producing a deadlock in the former case). */
770                 if (!req->waiting_for) {
771                     self->waiting_for = req;
772                     qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
773                     self->waiting_for = NULL;
774                     retry = true;
775                     waited = true;
776                     break;
777                 }
778             }
779         }
780     } while (retry);
781     return waited;
782 }
783 
784 bool bdrv_mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
785 {
786     BlockDriverState *bs = req->bs;
787     int64_t overlap_offset = req->offset & ~(align - 1);
788     uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
789                                - overlap_offset;
790     bool waited;
791 
792     qemu_co_mutex_lock(&bs->reqs_lock);
793     if (!req->serialising) {
794         qatomic_inc(&req->bs->serialising_in_flight);
795         req->serialising = true;
796     }
797 
798     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
799     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
800     waited = bdrv_wait_serialising_requests_locked(bs, req);
801     qemu_co_mutex_unlock(&bs->reqs_lock);
802     return waited;
803 }
804 
805 /**
806  * Return the tracked request on @bs for the current coroutine, or
807  * NULL if there is none.
808  */
809 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
810 {
811     BdrvTrackedRequest *req;
812     Coroutine *self = qemu_coroutine_self();
813 
814     QLIST_FOREACH(req, &bs->tracked_requests, list) {
815         if (req->co == self) {
816             return req;
817         }
818     }
819 
820     return NULL;
821 }
822 
823 /**
824  * Round a region to cluster boundaries
825  */
826 void bdrv_round_to_clusters(BlockDriverState *bs,
827                             int64_t offset, int64_t bytes,
828                             int64_t *cluster_offset,
829                             int64_t *cluster_bytes)
830 {
831     BlockDriverInfo bdi;
832 
833     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
834         *cluster_offset = offset;
835         *cluster_bytes = bytes;
836     } else {
837         int64_t c = bdi.cluster_size;
838         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
839         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
840     }
841 }
842 
843 static int bdrv_get_cluster_size(BlockDriverState *bs)
844 {
845     BlockDriverInfo bdi;
846     int ret;
847 
848     ret = bdrv_get_info(bs, &bdi);
849     if (ret < 0 || bdi.cluster_size == 0) {
850         return bs->bl.request_alignment;
851     } else {
852         return bdi.cluster_size;
853     }
854 }
855 
856 void bdrv_inc_in_flight(BlockDriverState *bs)
857 {
858     qatomic_inc(&bs->in_flight);
859 }
860 
861 void bdrv_wakeup(BlockDriverState *bs)
862 {
863     aio_wait_kick();
864 }
865 
866 void bdrv_dec_in_flight(BlockDriverState *bs)
867 {
868     qatomic_dec(&bs->in_flight);
869     bdrv_wakeup(bs);
870 }
871 
872 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
873 {
874     BlockDriverState *bs = self->bs;
875     bool waited = false;
876 
877     if (!qatomic_read(&bs->serialising_in_flight)) {
878         return false;
879     }
880 
881     qemu_co_mutex_lock(&bs->reqs_lock);
882     waited = bdrv_wait_serialising_requests_locked(bs, self);
883     qemu_co_mutex_unlock(&bs->reqs_lock);
884 
885     return waited;
886 }
887 
888 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
889                                    size_t size)
890 {
891     if (size > BDRV_REQUEST_MAX_BYTES) {
892         return -EIO;
893     }
894 
895     if (!bdrv_is_inserted(bs)) {
896         return -ENOMEDIUM;
897     }
898 
899     if (offset < 0) {
900         return -EIO;
901     }
902 
903     return 0;
904 }
905 
906 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
907                        int bytes, BdrvRequestFlags flags)
908 {
909     return bdrv_pwritev(child, offset, bytes, NULL,
910                         BDRV_REQ_ZERO_WRITE | flags);
911 }
912 
913 /*
914  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
915  * The operation is sped up by checking the block status and only writing
916  * zeroes to the device if they currently do not return zeroes. Optional
917  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
918  * BDRV_REQ_FUA).
919  *
920  * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
921  */
922 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
923 {
924     int ret;
925     int64_t target_size, bytes, offset = 0;
926     BlockDriverState *bs = child->bs;
927 
928     target_size = bdrv_getlength(bs);
929     if (target_size < 0) {
930         return target_size;
931     }
932 
933     for (;;) {
934         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
935         if (bytes <= 0) {
936             return 0;
937         }
938         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
939         if (ret < 0) {
940             return ret;
941         }
942         if (ret & BDRV_BLOCK_ZERO) {
943             offset += bytes;
944             continue;
945         }
946         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
947         if (ret < 0) {
948             return ret;
949         }
950         offset += bytes;
951     }
952 }
953 
954 /* See bdrv_pwrite() for the return codes */
955 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
956 {
957     int ret;
958     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
959 
960     if (bytes < 0) {
961         return -EINVAL;
962     }
963 
964     ret = bdrv_preadv(child, offset, bytes, &qiov,  0);
965 
966     return ret < 0 ? ret : bytes;
967 }
968 
969 /* Return no. of bytes on success or < 0 on error. Important errors are:
970   -EIO         generic I/O error (may happen for all errors)
971   -ENOMEDIUM   No media inserted.
972   -EINVAL      Invalid offset or number of bytes
973   -EACCES      Trying to write a read-only device
974 */
975 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
976 {
977     int ret;
978     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
979 
980     if (bytes < 0) {
981         return -EINVAL;
982     }
983 
984     ret = bdrv_pwritev(child, offset, bytes, &qiov, 0);
985 
986     return ret < 0 ? ret : bytes;
987 }
988 
989 /*
990  * Writes to the file and ensures that no writes are reordered across this
991  * request (acts as a barrier)
992  *
993  * Returns 0 on success, -errno in error cases.
994  */
995 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
996                      const void *buf, int count)
997 {
998     int ret;
999 
1000     ret = bdrv_pwrite(child, offset, buf, count);
1001     if (ret < 0) {
1002         return ret;
1003     }
1004 
1005     ret = bdrv_flush(child->bs);
1006     if (ret < 0) {
1007         return ret;
1008     }
1009 
1010     return 0;
1011 }
1012 
1013 typedef struct CoroutineIOCompletion {
1014     Coroutine *coroutine;
1015     int ret;
1016 } CoroutineIOCompletion;
1017 
1018 static void bdrv_co_io_em_complete(void *opaque, int ret)
1019 {
1020     CoroutineIOCompletion *co = opaque;
1021 
1022     co->ret = ret;
1023     aio_co_wake(co->coroutine);
1024 }
1025 
1026 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1027                                            uint64_t offset, uint64_t bytes,
1028                                            QEMUIOVector *qiov,
1029                                            size_t qiov_offset, int flags)
1030 {
1031     BlockDriver *drv = bs->drv;
1032     int64_t sector_num;
1033     unsigned int nb_sectors;
1034     QEMUIOVector local_qiov;
1035     int ret;
1036 
1037     assert(!(flags & ~BDRV_REQ_MASK));
1038     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1039 
1040     if (!drv) {
1041         return -ENOMEDIUM;
1042     }
1043 
1044     if (drv->bdrv_co_preadv_part) {
1045         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1046                                         flags);
1047     }
1048 
1049     if (qiov_offset > 0 || bytes != qiov->size) {
1050         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1051         qiov = &local_qiov;
1052     }
1053 
1054     if (drv->bdrv_co_preadv) {
1055         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1056         goto out;
1057     }
1058 
1059     if (drv->bdrv_aio_preadv) {
1060         BlockAIOCB *acb;
1061         CoroutineIOCompletion co = {
1062             .coroutine = qemu_coroutine_self(),
1063         };
1064 
1065         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1066                                    bdrv_co_io_em_complete, &co);
1067         if (acb == NULL) {
1068             ret = -EIO;
1069             goto out;
1070         } else {
1071             qemu_coroutine_yield();
1072             ret = co.ret;
1073             goto out;
1074         }
1075     }
1076 
1077     sector_num = offset >> BDRV_SECTOR_BITS;
1078     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1079 
1080     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1081     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1082     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1083     assert(drv->bdrv_co_readv);
1084 
1085     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1086 
1087 out:
1088     if (qiov == &local_qiov) {
1089         qemu_iovec_destroy(&local_qiov);
1090     }
1091 
1092     return ret;
1093 }
1094 
1095 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1096                                             uint64_t offset, uint64_t bytes,
1097                                             QEMUIOVector *qiov,
1098                                             size_t qiov_offset, int flags)
1099 {
1100     BlockDriver *drv = bs->drv;
1101     int64_t sector_num;
1102     unsigned int nb_sectors;
1103     QEMUIOVector local_qiov;
1104     int ret;
1105 
1106     assert(!(flags & ~BDRV_REQ_MASK));
1107     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1108 
1109     if (!drv) {
1110         return -ENOMEDIUM;
1111     }
1112 
1113     if (drv->bdrv_co_pwritev_part) {
1114         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1115                                         flags & bs->supported_write_flags);
1116         flags &= ~bs->supported_write_flags;
1117         goto emulate_flags;
1118     }
1119 
1120     if (qiov_offset > 0 || bytes != qiov->size) {
1121         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1122         qiov = &local_qiov;
1123     }
1124 
1125     if (drv->bdrv_co_pwritev) {
1126         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1127                                    flags & bs->supported_write_flags);
1128         flags &= ~bs->supported_write_flags;
1129         goto emulate_flags;
1130     }
1131 
1132     if (drv->bdrv_aio_pwritev) {
1133         BlockAIOCB *acb;
1134         CoroutineIOCompletion co = {
1135             .coroutine = qemu_coroutine_self(),
1136         };
1137 
1138         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1139                                     flags & bs->supported_write_flags,
1140                                     bdrv_co_io_em_complete, &co);
1141         flags &= ~bs->supported_write_flags;
1142         if (acb == NULL) {
1143             ret = -EIO;
1144         } else {
1145             qemu_coroutine_yield();
1146             ret = co.ret;
1147         }
1148         goto emulate_flags;
1149     }
1150 
1151     sector_num = offset >> BDRV_SECTOR_BITS;
1152     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1153 
1154     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1155     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1156     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1157 
1158     assert(drv->bdrv_co_writev);
1159     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1160                               flags & bs->supported_write_flags);
1161     flags &= ~bs->supported_write_flags;
1162 
1163 emulate_flags:
1164     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1165         ret = bdrv_co_flush(bs);
1166     }
1167 
1168     if (qiov == &local_qiov) {
1169         qemu_iovec_destroy(&local_qiov);
1170     }
1171 
1172     return ret;
1173 }
1174 
1175 static int coroutine_fn
1176 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1177                                uint64_t bytes, QEMUIOVector *qiov,
1178                                size_t qiov_offset)
1179 {
1180     BlockDriver *drv = bs->drv;
1181     QEMUIOVector local_qiov;
1182     int ret;
1183 
1184     if (!drv) {
1185         return -ENOMEDIUM;
1186     }
1187 
1188     if (!block_driver_can_compress(drv)) {
1189         return -ENOTSUP;
1190     }
1191 
1192     if (drv->bdrv_co_pwritev_compressed_part) {
1193         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1194                                                     qiov, qiov_offset);
1195     }
1196 
1197     if (qiov_offset == 0) {
1198         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1199     }
1200 
1201     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1202     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1203     qemu_iovec_destroy(&local_qiov);
1204 
1205     return ret;
1206 }
1207 
1208 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1209         int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1210         size_t qiov_offset, int flags)
1211 {
1212     BlockDriverState *bs = child->bs;
1213 
1214     /* Perform I/O through a temporary buffer so that users who scribble over
1215      * their read buffer while the operation is in progress do not end up
1216      * modifying the image file.  This is critical for zero-copy guest I/O
1217      * where anything might happen inside guest memory.
1218      */
1219     void *bounce_buffer = NULL;
1220 
1221     BlockDriver *drv = bs->drv;
1222     int64_t cluster_offset;
1223     int64_t cluster_bytes;
1224     size_t skip_bytes;
1225     int ret;
1226     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1227                                     BDRV_REQUEST_MAX_BYTES);
1228     unsigned int progress = 0;
1229     bool skip_write;
1230 
1231     if (!drv) {
1232         return -ENOMEDIUM;
1233     }
1234 
1235     /*
1236      * Do not write anything when the BDS is inactive.  That is not
1237      * allowed, and it would not help.
1238      */
1239     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1240 
1241     /* FIXME We cannot require callers to have write permissions when all they
1242      * are doing is a read request. If we did things right, write permissions
1243      * would be obtained anyway, but internally by the copy-on-read code. As
1244      * long as it is implemented here rather than in a separate filter driver,
1245      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1246      * it could request permissions. Therefore we have to bypass the permission
1247      * system for the moment. */
1248     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1249 
1250     /* Cover entire cluster so no additional backing file I/O is required when
1251      * allocating cluster in the image file.  Note that this value may exceed
1252      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1253      * is one reason we loop rather than doing it all at once.
1254      */
1255     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1256     skip_bytes = offset - cluster_offset;
1257 
1258     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1259                                    cluster_offset, cluster_bytes);
1260 
1261     while (cluster_bytes) {
1262         int64_t pnum;
1263 
1264         if (skip_write) {
1265             ret = 1; /* "already allocated", so nothing will be copied */
1266             pnum = MIN(cluster_bytes, max_transfer);
1267         } else {
1268             ret = bdrv_is_allocated(bs, cluster_offset,
1269                                     MIN(cluster_bytes, max_transfer), &pnum);
1270             if (ret < 0) {
1271                 /*
1272                  * Safe to treat errors in querying allocation as if
1273                  * unallocated; we'll probably fail again soon on the
1274                  * read, but at least that will set a decent errno.
1275                  */
1276                 pnum = MIN(cluster_bytes, max_transfer);
1277             }
1278 
1279             /* Stop at EOF if the image ends in the middle of the cluster */
1280             if (ret == 0 && pnum == 0) {
1281                 assert(progress >= bytes);
1282                 break;
1283             }
1284 
1285             assert(skip_bytes < pnum);
1286         }
1287 
1288         if (ret <= 0) {
1289             QEMUIOVector local_qiov;
1290 
1291             /* Must copy-on-read; use the bounce buffer */
1292             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1293             if (!bounce_buffer) {
1294                 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1295                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1296                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1297 
1298                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1299                 if (!bounce_buffer) {
1300                     ret = -ENOMEM;
1301                     goto err;
1302                 }
1303             }
1304             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1305 
1306             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1307                                      &local_qiov, 0, 0);
1308             if (ret < 0) {
1309                 goto err;
1310             }
1311 
1312             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1313             if (drv->bdrv_co_pwrite_zeroes &&
1314                 buffer_is_zero(bounce_buffer, pnum)) {
1315                 /* FIXME: Should we (perhaps conditionally) be setting
1316                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1317                  * that still correctly reads as zero? */
1318                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1319                                                BDRV_REQ_WRITE_UNCHANGED);
1320             } else {
1321                 /* This does not change the data on the disk, it is not
1322                  * necessary to flush even in cache=writethrough mode.
1323                  */
1324                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1325                                           &local_qiov, 0,
1326                                           BDRV_REQ_WRITE_UNCHANGED);
1327             }
1328 
1329             if (ret < 0) {
1330                 /* It might be okay to ignore write errors for guest
1331                  * requests.  If this is a deliberate copy-on-read
1332                  * then we don't want to ignore the error.  Simply
1333                  * report it in all cases.
1334                  */
1335                 goto err;
1336             }
1337 
1338             if (!(flags & BDRV_REQ_PREFETCH)) {
1339                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1340                                     bounce_buffer + skip_bytes,
1341                                     MIN(pnum - skip_bytes, bytes - progress));
1342             }
1343         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1344             /* Read directly into the destination */
1345             ret = bdrv_driver_preadv(bs, offset + progress,
1346                                      MIN(pnum - skip_bytes, bytes - progress),
1347                                      qiov, qiov_offset + progress, 0);
1348             if (ret < 0) {
1349                 goto err;
1350             }
1351         }
1352 
1353         cluster_offset += pnum;
1354         cluster_bytes -= pnum;
1355         progress += pnum - skip_bytes;
1356         skip_bytes = 0;
1357     }
1358     ret = 0;
1359 
1360 err:
1361     qemu_vfree(bounce_buffer);
1362     return ret;
1363 }
1364 
1365 /*
1366  * Forwards an already correctly aligned request to the BlockDriver. This
1367  * handles copy on read, zeroing after EOF, and fragmentation of large
1368  * reads; any other features must be implemented by the caller.
1369  */
1370 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1371     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1372     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1373 {
1374     BlockDriverState *bs = child->bs;
1375     int64_t total_bytes, max_bytes;
1376     int ret = 0;
1377     uint64_t bytes_remaining = bytes;
1378     int max_transfer;
1379 
1380     assert(is_power_of_2(align));
1381     assert((offset & (align - 1)) == 0);
1382     assert((bytes & (align - 1)) == 0);
1383     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1384     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1385                                    align);
1386 
1387     /* TODO: We would need a per-BDS .supported_read_flags and
1388      * potential fallback support, if we ever implement any read flags
1389      * to pass through to drivers.  For now, there aren't any
1390      * passthrough flags.  */
1391     assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1392 
1393     /* Handle Copy on Read and associated serialisation */
1394     if (flags & BDRV_REQ_COPY_ON_READ) {
1395         /* If we touch the same cluster it counts as an overlap.  This
1396          * guarantees that allocating writes will be serialized and not race
1397          * with each other for the same cluster.  For example, in copy-on-read
1398          * it ensures that the CoR read and write operations are atomic and
1399          * guest writes cannot interleave between them. */
1400         bdrv_mark_request_serialising(req, bdrv_get_cluster_size(bs));
1401     } else {
1402         bdrv_wait_serialising_requests(req);
1403     }
1404 
1405     if (flags & BDRV_REQ_COPY_ON_READ) {
1406         int64_t pnum;
1407 
1408         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1409         if (ret < 0) {
1410             goto out;
1411         }
1412 
1413         if (!ret || pnum != bytes) {
1414             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1415                                            qiov, qiov_offset, flags);
1416             goto out;
1417         } else if (flags & BDRV_REQ_PREFETCH) {
1418             goto out;
1419         }
1420     }
1421 
1422     /* Forward the request to the BlockDriver, possibly fragmenting it */
1423     total_bytes = bdrv_getlength(bs);
1424     if (total_bytes < 0) {
1425         ret = total_bytes;
1426         goto out;
1427     }
1428 
1429     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1430     if (bytes <= max_bytes && bytes <= max_transfer) {
1431         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, 0);
1432         goto out;
1433     }
1434 
1435     while (bytes_remaining) {
1436         int num;
1437 
1438         if (max_bytes) {
1439             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1440             assert(num);
1441 
1442             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1443                                      num, qiov,
1444                                      qiov_offset + bytes - bytes_remaining, 0);
1445             max_bytes -= num;
1446         } else {
1447             num = bytes_remaining;
1448             ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1449                                     0, bytes_remaining);
1450         }
1451         if (ret < 0) {
1452             goto out;
1453         }
1454         bytes_remaining -= num;
1455     }
1456 
1457 out:
1458     return ret < 0 ? ret : 0;
1459 }
1460 
1461 /*
1462  * Request padding
1463  *
1464  *  |<---- align ----->|                     |<----- align ---->|
1465  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1466  *  |          |       |                     |     |            |
1467  * -*----------$-------*-------- ... --------*-----$------------*---
1468  *  |          |       |                     |     |            |
1469  *  |          offset  |                     |     end          |
1470  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1471  *  [buf   ... )                             [tail_buf          )
1472  *
1473  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1474  * is placed at the beginning of @buf and @tail at the @end.
1475  *
1476  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1477  * around tail, if tail exists.
1478  *
1479  * @merge_reads is true for small requests,
1480  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1481  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1482  */
1483 typedef struct BdrvRequestPadding {
1484     uint8_t *buf;
1485     size_t buf_len;
1486     uint8_t *tail_buf;
1487     size_t head;
1488     size_t tail;
1489     bool merge_reads;
1490     QEMUIOVector local_qiov;
1491 } BdrvRequestPadding;
1492 
1493 static bool bdrv_init_padding(BlockDriverState *bs,
1494                               int64_t offset, int64_t bytes,
1495                               BdrvRequestPadding *pad)
1496 {
1497     uint64_t align = bs->bl.request_alignment;
1498     size_t sum;
1499 
1500     memset(pad, 0, sizeof(*pad));
1501 
1502     pad->head = offset & (align - 1);
1503     pad->tail = ((offset + bytes) & (align - 1));
1504     if (pad->tail) {
1505         pad->tail = align - pad->tail;
1506     }
1507 
1508     if (!pad->head && !pad->tail) {
1509         return false;
1510     }
1511 
1512     assert(bytes); /* Nothing good in aligning zero-length requests */
1513 
1514     sum = pad->head + bytes + pad->tail;
1515     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1516     pad->buf = qemu_blockalign(bs, pad->buf_len);
1517     pad->merge_reads = sum == pad->buf_len;
1518     if (pad->tail) {
1519         pad->tail_buf = pad->buf + pad->buf_len - align;
1520     }
1521 
1522     return true;
1523 }
1524 
1525 static int bdrv_padding_rmw_read(BdrvChild *child,
1526                                  BdrvTrackedRequest *req,
1527                                  BdrvRequestPadding *pad,
1528                                  bool zero_middle)
1529 {
1530     QEMUIOVector local_qiov;
1531     BlockDriverState *bs = child->bs;
1532     uint64_t align = bs->bl.request_alignment;
1533     int ret;
1534 
1535     assert(req->serialising && pad->buf);
1536 
1537     if (pad->head || pad->merge_reads) {
1538         uint64_t bytes = pad->merge_reads ? pad->buf_len : align;
1539 
1540         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1541 
1542         if (pad->head) {
1543             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1544         }
1545         if (pad->merge_reads && pad->tail) {
1546             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1547         }
1548         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1549                                   align, &local_qiov, 0, 0);
1550         if (ret < 0) {
1551             return ret;
1552         }
1553         if (pad->head) {
1554             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1555         }
1556         if (pad->merge_reads && pad->tail) {
1557             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1558         }
1559 
1560         if (pad->merge_reads) {
1561             goto zero_mem;
1562         }
1563     }
1564 
1565     if (pad->tail) {
1566         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1567 
1568         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1569         ret = bdrv_aligned_preadv(
1570                 child, req,
1571                 req->overlap_offset + req->overlap_bytes - align,
1572                 align, align, &local_qiov, 0, 0);
1573         if (ret < 0) {
1574             return ret;
1575         }
1576         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1577     }
1578 
1579 zero_mem:
1580     if (zero_middle) {
1581         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1582     }
1583 
1584     return 0;
1585 }
1586 
1587 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1588 {
1589     if (pad->buf) {
1590         qemu_vfree(pad->buf);
1591         qemu_iovec_destroy(&pad->local_qiov);
1592     }
1593 }
1594 
1595 /*
1596  * bdrv_pad_request
1597  *
1598  * Exchange request parameters with padded request if needed. Don't include RMW
1599  * read of padding, bdrv_padding_rmw_read() should be called separately if
1600  * needed.
1601  *
1602  * All parameters except @bs are in-out: they represent original request at
1603  * function call and padded (if padding needed) at function finish.
1604  *
1605  * Function always succeeds.
1606  */
1607 static bool bdrv_pad_request(BlockDriverState *bs,
1608                              QEMUIOVector **qiov, size_t *qiov_offset,
1609                              int64_t *offset, unsigned int *bytes,
1610                              BdrvRequestPadding *pad)
1611 {
1612     if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1613         return false;
1614     }
1615 
1616     qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1617                              *qiov, *qiov_offset, *bytes,
1618                              pad->buf + pad->buf_len - pad->tail, pad->tail);
1619     *bytes += pad->head + pad->tail;
1620     *offset -= pad->head;
1621     *qiov = &pad->local_qiov;
1622     *qiov_offset = 0;
1623 
1624     return true;
1625 }
1626 
1627 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1628     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1629     BdrvRequestFlags flags)
1630 {
1631     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1632 }
1633 
1634 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1635     int64_t offset, unsigned int bytes,
1636     QEMUIOVector *qiov, size_t qiov_offset,
1637     BdrvRequestFlags flags)
1638 {
1639     BlockDriverState *bs = child->bs;
1640     BdrvTrackedRequest req;
1641     BdrvRequestPadding pad;
1642     int ret;
1643 
1644     trace_bdrv_co_preadv(bs, offset, bytes, flags);
1645 
1646     ret = bdrv_check_byte_request(bs, offset, bytes);
1647     if (ret < 0) {
1648         return ret;
1649     }
1650 
1651     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1652         /*
1653          * Aligning zero request is nonsense. Even if driver has special meaning
1654          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1655          * it to driver due to request_alignment.
1656          *
1657          * Still, no reason to return an error if someone do unaligned
1658          * zero-length read occasionally.
1659          */
1660         return 0;
1661     }
1662 
1663     bdrv_inc_in_flight(bs);
1664 
1665     /* Don't do copy-on-read if we read data before write operation */
1666     if (qatomic_read(&bs->copy_on_read)) {
1667         flags |= BDRV_REQ_COPY_ON_READ;
1668     }
1669 
1670     bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad);
1671 
1672     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1673     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1674                               bs->bl.request_alignment,
1675                               qiov, qiov_offset, flags);
1676     tracked_request_end(&req);
1677     bdrv_dec_in_flight(bs);
1678 
1679     bdrv_padding_destroy(&pad);
1680 
1681     return ret;
1682 }
1683 
1684 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1685     int64_t offset, int bytes, BdrvRequestFlags flags)
1686 {
1687     BlockDriver *drv = bs->drv;
1688     QEMUIOVector qiov;
1689     void *buf = NULL;
1690     int ret = 0;
1691     bool need_flush = false;
1692     int head = 0;
1693     int tail = 0;
1694 
1695     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1696     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1697                         bs->bl.request_alignment);
1698     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1699 
1700     if (!drv) {
1701         return -ENOMEDIUM;
1702     }
1703 
1704     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1705         return -ENOTSUP;
1706     }
1707 
1708     assert(alignment % bs->bl.request_alignment == 0);
1709     head = offset % alignment;
1710     tail = (offset + bytes) % alignment;
1711     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1712     assert(max_write_zeroes >= bs->bl.request_alignment);
1713 
1714     while (bytes > 0 && !ret) {
1715         int num = bytes;
1716 
1717         /* Align request.  Block drivers can expect the "bulk" of the request
1718          * to be aligned, and that unaligned requests do not cross cluster
1719          * boundaries.
1720          */
1721         if (head) {
1722             /* Make a small request up to the first aligned sector. For
1723              * convenience, limit this request to max_transfer even if
1724              * we don't need to fall back to writes.  */
1725             num = MIN(MIN(bytes, max_transfer), alignment - head);
1726             head = (head + num) % alignment;
1727             assert(num < max_write_zeroes);
1728         } else if (tail && num > alignment) {
1729             /* Shorten the request to the last aligned sector.  */
1730             num -= tail;
1731         }
1732 
1733         /* limit request size */
1734         if (num > max_write_zeroes) {
1735             num = max_write_zeroes;
1736         }
1737 
1738         ret = -ENOTSUP;
1739         /* First try the efficient write zeroes operation */
1740         if (drv->bdrv_co_pwrite_zeroes) {
1741             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1742                                              flags & bs->supported_zero_flags);
1743             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1744                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1745                 need_flush = true;
1746             }
1747         } else {
1748             assert(!bs->supported_zero_flags);
1749         }
1750 
1751         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1752             /* Fall back to bounce buffer if write zeroes is unsupported */
1753             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1754 
1755             if ((flags & BDRV_REQ_FUA) &&
1756                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1757                 /* No need for bdrv_driver_pwrite() to do a fallback
1758                  * flush on each chunk; use just one at the end */
1759                 write_flags &= ~BDRV_REQ_FUA;
1760                 need_flush = true;
1761             }
1762             num = MIN(num, max_transfer);
1763             if (buf == NULL) {
1764                 buf = qemu_try_blockalign0(bs, num);
1765                 if (buf == NULL) {
1766                     ret = -ENOMEM;
1767                     goto fail;
1768                 }
1769             }
1770             qemu_iovec_init_buf(&qiov, buf, num);
1771 
1772             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1773 
1774             /* Keep bounce buffer around if it is big enough for all
1775              * all future requests.
1776              */
1777             if (num < max_transfer) {
1778                 qemu_vfree(buf);
1779                 buf = NULL;
1780             }
1781         }
1782 
1783         offset += num;
1784         bytes -= num;
1785     }
1786 
1787 fail:
1788     if (ret == 0 && need_flush) {
1789         ret = bdrv_co_flush(bs);
1790     }
1791     qemu_vfree(buf);
1792     return ret;
1793 }
1794 
1795 static inline int coroutine_fn
1796 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1797                           BdrvTrackedRequest *req, int flags)
1798 {
1799     BlockDriverState *bs = child->bs;
1800     bool waited;
1801     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1802 
1803     if (bs->read_only) {
1804         return -EPERM;
1805     }
1806 
1807     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1808     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1809     assert(!(flags & ~BDRV_REQ_MASK));
1810 
1811     if (flags & BDRV_REQ_SERIALISING) {
1812         waited = bdrv_mark_request_serialising(req, bdrv_get_cluster_size(bs));
1813         /*
1814          * For a misaligned request we should have already waited earlier,
1815          * because we come after bdrv_padding_rmw_read which must be called
1816          * with the request already marked as serialising.
1817          */
1818         assert(!waited ||
1819                (req->offset == req->overlap_offset &&
1820                 req->bytes == req->overlap_bytes));
1821     } else {
1822         bdrv_wait_serialising_requests(req);
1823     }
1824 
1825     assert(req->overlap_offset <= offset);
1826     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1827     assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1828 
1829     switch (req->type) {
1830     case BDRV_TRACKED_WRITE:
1831     case BDRV_TRACKED_DISCARD:
1832         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1833             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1834         } else {
1835             assert(child->perm & BLK_PERM_WRITE);
1836         }
1837         return notifier_with_return_list_notify(&bs->before_write_notifiers,
1838                                                 req);
1839     case BDRV_TRACKED_TRUNCATE:
1840         assert(child->perm & BLK_PERM_RESIZE);
1841         return 0;
1842     default:
1843         abort();
1844     }
1845 }
1846 
1847 static inline void coroutine_fn
1848 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1849                          BdrvTrackedRequest *req, int ret)
1850 {
1851     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1852     BlockDriverState *bs = child->bs;
1853 
1854     qatomic_inc(&bs->write_gen);
1855 
1856     /*
1857      * Discard cannot extend the image, but in error handling cases, such as
1858      * when reverting a qcow2 cluster allocation, the discarded range can pass
1859      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1860      * here. Instead, just skip it, since semantically a discard request
1861      * beyond EOF cannot expand the image anyway.
1862      */
1863     if (ret == 0 &&
1864         (req->type == BDRV_TRACKED_TRUNCATE ||
1865          end_sector > bs->total_sectors) &&
1866         req->type != BDRV_TRACKED_DISCARD) {
1867         bs->total_sectors = end_sector;
1868         bdrv_parent_cb_resize(bs);
1869         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1870     }
1871     if (req->bytes) {
1872         switch (req->type) {
1873         case BDRV_TRACKED_WRITE:
1874             stat64_max(&bs->wr_highest_offset, offset + bytes);
1875             /* fall through, to set dirty bits */
1876         case BDRV_TRACKED_DISCARD:
1877             bdrv_set_dirty(bs, offset, bytes);
1878             break;
1879         default:
1880             break;
1881         }
1882     }
1883 }
1884 
1885 /*
1886  * Forwards an already correctly aligned write request to the BlockDriver,
1887  * after possibly fragmenting it.
1888  */
1889 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1890     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1891     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1892 {
1893     BlockDriverState *bs = child->bs;
1894     BlockDriver *drv = bs->drv;
1895     int ret;
1896 
1897     uint64_t bytes_remaining = bytes;
1898     int max_transfer;
1899 
1900     if (!drv) {
1901         return -ENOMEDIUM;
1902     }
1903 
1904     if (bdrv_has_readonly_bitmaps(bs)) {
1905         return -EPERM;
1906     }
1907 
1908     assert(is_power_of_2(align));
1909     assert((offset & (align - 1)) == 0);
1910     assert((bytes & (align - 1)) == 0);
1911     assert(!qiov || qiov_offset + bytes <= qiov->size);
1912     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1913                                    align);
1914 
1915     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1916 
1917     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1918         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1919         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1920         flags |= BDRV_REQ_ZERO_WRITE;
1921         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1922             flags |= BDRV_REQ_MAY_UNMAP;
1923         }
1924     }
1925 
1926     if (ret < 0) {
1927         /* Do nothing, write notifier decided to fail this request */
1928     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1929         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1930         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1931     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1932         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1933                                              qiov, qiov_offset);
1934     } else if (bytes <= max_transfer) {
1935         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1936         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1937     } else {
1938         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1939         while (bytes_remaining) {
1940             int num = MIN(bytes_remaining, max_transfer);
1941             int local_flags = flags;
1942 
1943             assert(num);
1944             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1945                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1946                 /* If FUA is going to be emulated by flush, we only
1947                  * need to flush on the last iteration */
1948                 local_flags &= ~BDRV_REQ_FUA;
1949             }
1950 
1951             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1952                                       num, qiov,
1953                                       qiov_offset + bytes - bytes_remaining,
1954                                       local_flags);
1955             if (ret < 0) {
1956                 break;
1957             }
1958             bytes_remaining -= num;
1959         }
1960     }
1961     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1962 
1963     if (ret >= 0) {
1964         ret = 0;
1965     }
1966     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1967 
1968     return ret;
1969 }
1970 
1971 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1972                                                 int64_t offset,
1973                                                 unsigned int bytes,
1974                                                 BdrvRequestFlags flags,
1975                                                 BdrvTrackedRequest *req)
1976 {
1977     BlockDriverState *bs = child->bs;
1978     QEMUIOVector local_qiov;
1979     uint64_t align = bs->bl.request_alignment;
1980     int ret = 0;
1981     bool padding;
1982     BdrvRequestPadding pad;
1983 
1984     padding = bdrv_init_padding(bs, offset, bytes, &pad);
1985     if (padding) {
1986         bdrv_mark_request_serialising(req, align);
1987 
1988         bdrv_padding_rmw_read(child, req, &pad, true);
1989 
1990         if (pad.head || pad.merge_reads) {
1991             int64_t aligned_offset = offset & ~(align - 1);
1992             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
1993 
1994             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
1995             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
1996                                        align, &local_qiov, 0,
1997                                        flags & ~BDRV_REQ_ZERO_WRITE);
1998             if (ret < 0 || pad.merge_reads) {
1999                 /* Error or all work is done */
2000                 goto out;
2001             }
2002             offset += write_bytes - pad.head;
2003             bytes -= write_bytes - pad.head;
2004         }
2005     }
2006 
2007     assert(!bytes || (offset & (align - 1)) == 0);
2008     if (bytes >= align) {
2009         /* Write the aligned part in the middle. */
2010         uint64_t aligned_bytes = bytes & ~(align - 1);
2011         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2012                                    NULL, 0, flags);
2013         if (ret < 0) {
2014             goto out;
2015         }
2016         bytes -= aligned_bytes;
2017         offset += aligned_bytes;
2018     }
2019 
2020     assert(!bytes || (offset & (align - 1)) == 0);
2021     if (bytes) {
2022         assert(align == pad.tail + bytes);
2023 
2024         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2025         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2026                                    &local_qiov, 0,
2027                                    flags & ~BDRV_REQ_ZERO_WRITE);
2028     }
2029 
2030 out:
2031     bdrv_padding_destroy(&pad);
2032 
2033     return ret;
2034 }
2035 
2036 /*
2037  * Handle a write request in coroutine context
2038  */
2039 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2040     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
2041     BdrvRequestFlags flags)
2042 {
2043     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2044 }
2045 
2046 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2047     int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset,
2048     BdrvRequestFlags flags)
2049 {
2050     BlockDriverState *bs = child->bs;
2051     BdrvTrackedRequest req;
2052     uint64_t align = bs->bl.request_alignment;
2053     BdrvRequestPadding pad;
2054     int ret;
2055 
2056     trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
2057 
2058     if (!bs->drv) {
2059         return -ENOMEDIUM;
2060     }
2061 
2062     ret = bdrv_check_byte_request(bs, offset, bytes);
2063     if (ret < 0) {
2064         return ret;
2065     }
2066 
2067     /* If the request is misaligned then we can't make it efficient */
2068     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2069         !QEMU_IS_ALIGNED(offset | bytes, align))
2070     {
2071         return -ENOTSUP;
2072     }
2073 
2074     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2075         /*
2076          * Aligning zero request is nonsense. Even if driver has special meaning
2077          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2078          * it to driver due to request_alignment.
2079          *
2080          * Still, no reason to return an error if someone do unaligned
2081          * zero-length write occasionally.
2082          */
2083         return 0;
2084     }
2085 
2086     bdrv_inc_in_flight(bs);
2087     /*
2088      * Align write if necessary by performing a read-modify-write cycle.
2089      * Pad qiov with the read parts and be sure to have a tracked request not
2090      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
2091      */
2092     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2093 
2094     if (flags & BDRV_REQ_ZERO_WRITE) {
2095         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2096         goto out;
2097     }
2098 
2099     if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) {
2100         bdrv_mark_request_serialising(&req, align);
2101         bdrv_padding_rmw_read(child, &req, &pad, false);
2102     }
2103 
2104     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2105                                qiov, qiov_offset, flags);
2106 
2107     bdrv_padding_destroy(&pad);
2108 
2109 out:
2110     tracked_request_end(&req);
2111     bdrv_dec_in_flight(bs);
2112 
2113     return ret;
2114 }
2115 
2116 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2117                                        int bytes, BdrvRequestFlags flags)
2118 {
2119     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2120 
2121     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2122         flags &= ~BDRV_REQ_MAY_UNMAP;
2123     }
2124 
2125     return bdrv_co_pwritev(child, offset, bytes, NULL,
2126                            BDRV_REQ_ZERO_WRITE | flags);
2127 }
2128 
2129 /*
2130  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2131  */
2132 int bdrv_flush_all(void)
2133 {
2134     BdrvNextIterator it;
2135     BlockDriverState *bs = NULL;
2136     int result = 0;
2137 
2138     /*
2139      * bdrv queue is managed by record/replay,
2140      * creating new flush request for stopping
2141      * the VM may break the determinism
2142      */
2143     if (replay_events_enabled()) {
2144         return result;
2145     }
2146 
2147     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2148         AioContext *aio_context = bdrv_get_aio_context(bs);
2149         int ret;
2150 
2151         aio_context_acquire(aio_context);
2152         ret = bdrv_flush(bs);
2153         if (ret < 0 && !result) {
2154             result = ret;
2155         }
2156         aio_context_release(aio_context);
2157     }
2158 
2159     return result;
2160 }
2161 
2162 /*
2163  * Returns the allocation status of the specified sectors.
2164  * Drivers not implementing the functionality are assumed to not support
2165  * backing files, hence all their sectors are reported as allocated.
2166  *
2167  * If 'want_zero' is true, the caller is querying for mapping
2168  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2169  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2170  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2171  *
2172  * If 'offset' is beyond the end of the disk image the return value is
2173  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2174  *
2175  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2176  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2177  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2178  *
2179  * 'pnum' is set to the number of bytes (including and immediately
2180  * following the specified offset) that are easily known to be in the
2181  * same allocated/unallocated state.  Note that a second call starting
2182  * at the original offset plus returned pnum may have the same status.
2183  * The returned value is non-zero on success except at end-of-file.
2184  *
2185  * Returns negative errno on failure.  Otherwise, if the
2186  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2187  * set to the host mapping and BDS corresponding to the guest offset.
2188  */
2189 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2190                                              bool want_zero,
2191                                              int64_t offset, int64_t bytes,
2192                                              int64_t *pnum, int64_t *map,
2193                                              BlockDriverState **file)
2194 {
2195     int64_t total_size;
2196     int64_t n; /* bytes */
2197     int ret;
2198     int64_t local_map = 0;
2199     BlockDriverState *local_file = NULL;
2200     int64_t aligned_offset, aligned_bytes;
2201     uint32_t align;
2202     bool has_filtered_child;
2203 
2204     assert(pnum);
2205     *pnum = 0;
2206     total_size = bdrv_getlength(bs);
2207     if (total_size < 0) {
2208         ret = total_size;
2209         goto early_out;
2210     }
2211 
2212     if (offset >= total_size) {
2213         ret = BDRV_BLOCK_EOF;
2214         goto early_out;
2215     }
2216     if (!bytes) {
2217         ret = 0;
2218         goto early_out;
2219     }
2220 
2221     n = total_size - offset;
2222     if (n < bytes) {
2223         bytes = n;
2224     }
2225 
2226     /* Must be non-NULL or bdrv_getlength() would have failed */
2227     assert(bs->drv);
2228     has_filtered_child = bdrv_filter_child(bs);
2229     if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2230         *pnum = bytes;
2231         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2232         if (offset + bytes == total_size) {
2233             ret |= BDRV_BLOCK_EOF;
2234         }
2235         if (bs->drv->protocol_name) {
2236             ret |= BDRV_BLOCK_OFFSET_VALID;
2237             local_map = offset;
2238             local_file = bs;
2239         }
2240         goto early_out;
2241     }
2242 
2243     bdrv_inc_in_flight(bs);
2244 
2245     /* Round out to request_alignment boundaries */
2246     align = bs->bl.request_alignment;
2247     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2248     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2249 
2250     if (bs->drv->bdrv_co_block_status) {
2251         ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2252                                             aligned_bytes, pnum, &local_map,
2253                                             &local_file);
2254     } else {
2255         /* Default code for filters */
2256 
2257         local_file = bdrv_filter_bs(bs);
2258         assert(local_file);
2259 
2260         *pnum = aligned_bytes;
2261         local_map = aligned_offset;
2262         ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2263     }
2264     if (ret < 0) {
2265         *pnum = 0;
2266         goto out;
2267     }
2268 
2269     /*
2270      * The driver's result must be a non-zero multiple of request_alignment.
2271      * Clamp pnum and adjust map to original request.
2272      */
2273     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2274            align > offset - aligned_offset);
2275     if (ret & BDRV_BLOCK_RECURSE) {
2276         assert(ret & BDRV_BLOCK_DATA);
2277         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2278         assert(!(ret & BDRV_BLOCK_ZERO));
2279     }
2280 
2281     *pnum -= offset - aligned_offset;
2282     if (*pnum > bytes) {
2283         *pnum = bytes;
2284     }
2285     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2286         local_map += offset - aligned_offset;
2287     }
2288 
2289     if (ret & BDRV_BLOCK_RAW) {
2290         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2291         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2292                                    *pnum, pnum, &local_map, &local_file);
2293         goto out;
2294     }
2295 
2296     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2297         ret |= BDRV_BLOCK_ALLOCATED;
2298     } else if (bs->drv->supports_backing) {
2299         BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2300 
2301         if (!cow_bs) {
2302             ret |= BDRV_BLOCK_ZERO;
2303         } else if (want_zero) {
2304             int64_t size2 = bdrv_getlength(cow_bs);
2305 
2306             if (size2 >= 0 && offset >= size2) {
2307                 ret |= BDRV_BLOCK_ZERO;
2308             }
2309         }
2310     }
2311 
2312     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2313         local_file && local_file != bs &&
2314         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2315         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2316         int64_t file_pnum;
2317         int ret2;
2318 
2319         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2320                                     *pnum, &file_pnum, NULL, NULL);
2321         if (ret2 >= 0) {
2322             /* Ignore errors.  This is just providing extra information, it
2323              * is useful but not necessary.
2324              */
2325             if (ret2 & BDRV_BLOCK_EOF &&
2326                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2327                 /*
2328                  * It is valid for the format block driver to read
2329                  * beyond the end of the underlying file's current
2330                  * size; such areas read as zero.
2331                  */
2332                 ret |= BDRV_BLOCK_ZERO;
2333             } else {
2334                 /* Limit request to the range reported by the protocol driver */
2335                 *pnum = file_pnum;
2336                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2337             }
2338         }
2339     }
2340 
2341 out:
2342     bdrv_dec_in_flight(bs);
2343     if (ret >= 0 && offset + *pnum == total_size) {
2344         ret |= BDRV_BLOCK_EOF;
2345     }
2346 early_out:
2347     if (file) {
2348         *file = local_file;
2349     }
2350     if (map) {
2351         *map = local_map;
2352     }
2353     return ret;
2354 }
2355 
2356 int coroutine_fn
2357 bdrv_co_common_block_status_above(BlockDriverState *bs,
2358                                   BlockDriverState *base,
2359                                   bool include_base,
2360                                   bool want_zero,
2361                                   int64_t offset,
2362                                   int64_t bytes,
2363                                   int64_t *pnum,
2364                                   int64_t *map,
2365                                   BlockDriverState **file,
2366                                   int *depth)
2367 {
2368     int ret;
2369     BlockDriverState *p;
2370     int64_t eof = 0;
2371     int dummy;
2372 
2373     assert(!include_base || base); /* Can't include NULL base */
2374 
2375     if (!depth) {
2376         depth = &dummy;
2377     }
2378     *depth = 0;
2379 
2380     if (!include_base && bs == base) {
2381         *pnum = bytes;
2382         return 0;
2383     }
2384 
2385     ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2386     ++*depth;
2387     if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2388         return ret;
2389     }
2390 
2391     if (ret & BDRV_BLOCK_EOF) {
2392         eof = offset + *pnum;
2393     }
2394 
2395     assert(*pnum <= bytes);
2396     bytes = *pnum;
2397 
2398     for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2399          p = bdrv_filter_or_cow_bs(p))
2400     {
2401         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2402                                    file);
2403         ++*depth;
2404         if (ret < 0) {
2405             return ret;
2406         }
2407         if (*pnum == 0) {
2408             /*
2409              * The top layer deferred to this layer, and because this layer is
2410              * short, any zeroes that we synthesize beyond EOF behave as if they
2411              * were allocated at this layer.
2412              *
2413              * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2414              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2415              * below.
2416              */
2417             assert(ret & BDRV_BLOCK_EOF);
2418             *pnum = bytes;
2419             if (file) {
2420                 *file = p;
2421             }
2422             ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2423             break;
2424         }
2425         if (ret & BDRV_BLOCK_ALLOCATED) {
2426             /*
2427              * We've found the node and the status, we must break.
2428              *
2429              * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2430              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2431              * below.
2432              */
2433             ret &= ~BDRV_BLOCK_EOF;
2434             break;
2435         }
2436 
2437         if (p == base) {
2438             assert(include_base);
2439             break;
2440         }
2441 
2442         /*
2443          * OK, [offset, offset + *pnum) region is unallocated on this layer,
2444          * let's continue the diving.
2445          */
2446         assert(*pnum <= bytes);
2447         bytes = *pnum;
2448     }
2449 
2450     if (offset + *pnum == eof) {
2451         ret |= BDRV_BLOCK_EOF;
2452     }
2453 
2454     return ret;
2455 }
2456 
2457 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2458                             int64_t offset, int64_t bytes, int64_t *pnum,
2459                             int64_t *map, BlockDriverState **file)
2460 {
2461     return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2462                                           pnum, map, file, NULL);
2463 }
2464 
2465 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2466                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2467 {
2468     return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2469                                    offset, bytes, pnum, map, file);
2470 }
2471 
2472 /*
2473  * Check @bs (and its backing chain) to see if the range defined
2474  * by @offset and @bytes is known to read as zeroes.
2475  * Return 1 if that is the case, 0 otherwise and -errno on error.
2476  * This test is meant to be fast rather than accurate so returning 0
2477  * does not guarantee non-zero data.
2478  */
2479 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2480                                       int64_t bytes)
2481 {
2482     int ret;
2483     int64_t pnum = bytes;
2484 
2485     if (!bytes) {
2486         return 1;
2487     }
2488 
2489     ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2490                                          bytes, &pnum, NULL, NULL, NULL);
2491 
2492     if (ret < 0) {
2493         return ret;
2494     }
2495 
2496     return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2497 }
2498 
2499 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2500                                    int64_t bytes, int64_t *pnum)
2501 {
2502     int ret;
2503     int64_t dummy;
2504 
2505     ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2506                                          bytes, pnum ? pnum : &dummy, NULL,
2507                                          NULL, NULL);
2508     if (ret < 0) {
2509         return ret;
2510     }
2511     return !!(ret & BDRV_BLOCK_ALLOCATED);
2512 }
2513 
2514 /*
2515  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2516  *
2517  * Return a positive depth if (a prefix of) the given range is allocated
2518  * in any image between BASE and TOP (BASE is only included if include_base
2519  * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2520  * BASE can be NULL to check if the given offset is allocated in any
2521  * image of the chain.  Return 0 otherwise, or negative errno on
2522  * failure.
2523  *
2524  * 'pnum' is set to the number of bytes (including and immediately
2525  * following the specified offset) that are known to be in the same
2526  * allocated/unallocated state.  Note that a subsequent call starting
2527  * at 'offset + *pnum' may return the same allocation status (in other
2528  * words, the result is not necessarily the maximum possible range);
2529  * but 'pnum' will only be 0 when end of file is reached.
2530  */
2531 int bdrv_is_allocated_above(BlockDriverState *top,
2532                             BlockDriverState *base,
2533                             bool include_base, int64_t offset,
2534                             int64_t bytes, int64_t *pnum)
2535 {
2536     int depth;
2537     int ret = bdrv_common_block_status_above(top, base, include_base, false,
2538                                              offset, bytes, pnum, NULL, NULL,
2539                                              &depth);
2540     if (ret < 0) {
2541         return ret;
2542     }
2543 
2544     if (ret & BDRV_BLOCK_ALLOCATED) {
2545         return depth;
2546     }
2547     return 0;
2548 }
2549 
2550 int coroutine_fn
2551 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2552 {
2553     BlockDriver *drv = bs->drv;
2554     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2555     int ret = -ENOTSUP;
2556 
2557     if (!drv) {
2558         return -ENOMEDIUM;
2559     }
2560 
2561     bdrv_inc_in_flight(bs);
2562 
2563     if (drv->bdrv_load_vmstate) {
2564         ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2565     } else if (child_bs) {
2566         ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2567     }
2568 
2569     bdrv_dec_in_flight(bs);
2570 
2571     return ret;
2572 }
2573 
2574 int coroutine_fn
2575 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2576 {
2577     BlockDriver *drv = bs->drv;
2578     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2579     int ret = -ENOTSUP;
2580 
2581     if (!drv) {
2582         return -ENOMEDIUM;
2583     }
2584 
2585     bdrv_inc_in_flight(bs);
2586 
2587     if (drv->bdrv_save_vmstate) {
2588         ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2589     } else if (child_bs) {
2590         ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2591     }
2592 
2593     bdrv_dec_in_flight(bs);
2594 
2595     return ret;
2596 }
2597 
2598 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2599                       int64_t pos, int size)
2600 {
2601     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2602     int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2603 
2604     return ret < 0 ? ret : size;
2605 }
2606 
2607 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2608                       int64_t pos, int size)
2609 {
2610     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2611     int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2612 
2613     return ret < 0 ? ret : size;
2614 }
2615 
2616 /**************************************************************/
2617 /* async I/Os */
2618 
2619 void bdrv_aio_cancel(BlockAIOCB *acb)
2620 {
2621     qemu_aio_ref(acb);
2622     bdrv_aio_cancel_async(acb);
2623     while (acb->refcnt > 1) {
2624         if (acb->aiocb_info->get_aio_context) {
2625             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2626         } else if (acb->bs) {
2627             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2628              * assert that we're not using an I/O thread.  Thread-safe
2629              * code should use bdrv_aio_cancel_async exclusively.
2630              */
2631             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2632             aio_poll(bdrv_get_aio_context(acb->bs), true);
2633         } else {
2634             abort();
2635         }
2636     }
2637     qemu_aio_unref(acb);
2638 }
2639 
2640 /* Async version of aio cancel. The caller is not blocked if the acb implements
2641  * cancel_async, otherwise we do nothing and let the request normally complete.
2642  * In either case the completion callback must be called. */
2643 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2644 {
2645     if (acb->aiocb_info->cancel_async) {
2646         acb->aiocb_info->cancel_async(acb);
2647     }
2648 }
2649 
2650 /**************************************************************/
2651 /* Coroutine block device emulation */
2652 
2653 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2654 {
2655     BdrvChild *primary_child = bdrv_primary_child(bs);
2656     BdrvChild *child;
2657     int current_gen;
2658     int ret = 0;
2659 
2660     bdrv_inc_in_flight(bs);
2661 
2662     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2663         bdrv_is_sg(bs)) {
2664         goto early_exit;
2665     }
2666 
2667     qemu_co_mutex_lock(&bs->reqs_lock);
2668     current_gen = qatomic_read(&bs->write_gen);
2669 
2670     /* Wait until any previous flushes are completed */
2671     while (bs->active_flush_req) {
2672         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2673     }
2674 
2675     /* Flushes reach this point in nondecreasing current_gen order.  */
2676     bs->active_flush_req = true;
2677     qemu_co_mutex_unlock(&bs->reqs_lock);
2678 
2679     /* Write back all layers by calling one driver function */
2680     if (bs->drv->bdrv_co_flush) {
2681         ret = bs->drv->bdrv_co_flush(bs);
2682         goto out;
2683     }
2684 
2685     /* Write back cached data to the OS even with cache=unsafe */
2686     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2687     if (bs->drv->bdrv_co_flush_to_os) {
2688         ret = bs->drv->bdrv_co_flush_to_os(bs);
2689         if (ret < 0) {
2690             goto out;
2691         }
2692     }
2693 
2694     /* But don't actually force it to the disk with cache=unsafe */
2695     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2696         goto flush_children;
2697     }
2698 
2699     /* Check if we really need to flush anything */
2700     if (bs->flushed_gen == current_gen) {
2701         goto flush_children;
2702     }
2703 
2704     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2705     if (!bs->drv) {
2706         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2707          * (even in case of apparent success) */
2708         ret = -ENOMEDIUM;
2709         goto out;
2710     }
2711     if (bs->drv->bdrv_co_flush_to_disk) {
2712         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2713     } else if (bs->drv->bdrv_aio_flush) {
2714         BlockAIOCB *acb;
2715         CoroutineIOCompletion co = {
2716             .coroutine = qemu_coroutine_self(),
2717         };
2718 
2719         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2720         if (acb == NULL) {
2721             ret = -EIO;
2722         } else {
2723             qemu_coroutine_yield();
2724             ret = co.ret;
2725         }
2726     } else {
2727         /*
2728          * Some block drivers always operate in either writethrough or unsafe
2729          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2730          * know how the server works (because the behaviour is hardcoded or
2731          * depends on server-side configuration), so we can't ensure that
2732          * everything is safe on disk. Returning an error doesn't work because
2733          * that would break guests even if the server operates in writethrough
2734          * mode.
2735          *
2736          * Let's hope the user knows what he's doing.
2737          */
2738         ret = 0;
2739     }
2740 
2741     if (ret < 0) {
2742         goto out;
2743     }
2744 
2745     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2746      * in the case of cache=unsafe, so there are no useless flushes.
2747      */
2748 flush_children:
2749     ret = 0;
2750     QLIST_FOREACH(child, &bs->children, next) {
2751         if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2752             int this_child_ret = bdrv_co_flush(child->bs);
2753             if (!ret) {
2754                 ret = this_child_ret;
2755             }
2756         }
2757     }
2758 
2759 out:
2760     /* Notify any pending flushes that we have completed */
2761     if (ret == 0) {
2762         bs->flushed_gen = current_gen;
2763     }
2764 
2765     qemu_co_mutex_lock(&bs->reqs_lock);
2766     bs->active_flush_req = false;
2767     /* Return value is ignored - it's ok if wait queue is empty */
2768     qemu_co_queue_next(&bs->flush_queue);
2769     qemu_co_mutex_unlock(&bs->reqs_lock);
2770 
2771 early_exit:
2772     bdrv_dec_in_flight(bs);
2773     return ret;
2774 }
2775 
2776 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2777                                   int64_t bytes)
2778 {
2779     BdrvTrackedRequest req;
2780     int max_pdiscard, ret;
2781     int head, tail, align;
2782     BlockDriverState *bs = child->bs;
2783 
2784     if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2785         return -ENOMEDIUM;
2786     }
2787 
2788     if (bdrv_has_readonly_bitmaps(bs)) {
2789         return -EPERM;
2790     }
2791 
2792     if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) {
2793         return -EIO;
2794     }
2795 
2796     /* Do nothing if disabled.  */
2797     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2798         return 0;
2799     }
2800 
2801     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2802         return 0;
2803     }
2804 
2805     /* Discard is advisory, but some devices track and coalesce
2806      * unaligned requests, so we must pass everything down rather than
2807      * round here.  Still, most devices will just silently ignore
2808      * unaligned requests (by returning -ENOTSUP), so we must fragment
2809      * the request accordingly.  */
2810     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2811     assert(align % bs->bl.request_alignment == 0);
2812     head = offset % align;
2813     tail = (offset + bytes) % align;
2814 
2815     bdrv_inc_in_flight(bs);
2816     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2817 
2818     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2819     if (ret < 0) {
2820         goto out;
2821     }
2822 
2823     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2824                                    align);
2825     assert(max_pdiscard >= bs->bl.request_alignment);
2826 
2827     while (bytes > 0) {
2828         int64_t num = bytes;
2829 
2830         if (head) {
2831             /* Make small requests to get to alignment boundaries. */
2832             num = MIN(bytes, align - head);
2833             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2834                 num %= bs->bl.request_alignment;
2835             }
2836             head = (head + num) % align;
2837             assert(num < max_pdiscard);
2838         } else if (tail) {
2839             if (num > align) {
2840                 /* Shorten the request to the last aligned cluster.  */
2841                 num -= tail;
2842             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2843                        tail > bs->bl.request_alignment) {
2844                 tail %= bs->bl.request_alignment;
2845                 num -= tail;
2846             }
2847         }
2848         /* limit request size */
2849         if (num > max_pdiscard) {
2850             num = max_pdiscard;
2851         }
2852 
2853         if (!bs->drv) {
2854             ret = -ENOMEDIUM;
2855             goto out;
2856         }
2857         if (bs->drv->bdrv_co_pdiscard) {
2858             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2859         } else {
2860             BlockAIOCB *acb;
2861             CoroutineIOCompletion co = {
2862                 .coroutine = qemu_coroutine_self(),
2863             };
2864 
2865             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2866                                              bdrv_co_io_em_complete, &co);
2867             if (acb == NULL) {
2868                 ret = -EIO;
2869                 goto out;
2870             } else {
2871                 qemu_coroutine_yield();
2872                 ret = co.ret;
2873             }
2874         }
2875         if (ret && ret != -ENOTSUP) {
2876             goto out;
2877         }
2878 
2879         offset += num;
2880         bytes -= num;
2881     }
2882     ret = 0;
2883 out:
2884     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
2885     tracked_request_end(&req);
2886     bdrv_dec_in_flight(bs);
2887     return ret;
2888 }
2889 
2890 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2891 {
2892     BlockDriver *drv = bs->drv;
2893     CoroutineIOCompletion co = {
2894         .coroutine = qemu_coroutine_self(),
2895     };
2896     BlockAIOCB *acb;
2897 
2898     bdrv_inc_in_flight(bs);
2899     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2900         co.ret = -ENOTSUP;
2901         goto out;
2902     }
2903 
2904     if (drv->bdrv_co_ioctl) {
2905         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2906     } else {
2907         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2908         if (!acb) {
2909             co.ret = -ENOTSUP;
2910             goto out;
2911         }
2912         qemu_coroutine_yield();
2913     }
2914 out:
2915     bdrv_dec_in_flight(bs);
2916     return co.ret;
2917 }
2918 
2919 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2920 {
2921     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2922 }
2923 
2924 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2925 {
2926     return memset(qemu_blockalign(bs, size), 0, size);
2927 }
2928 
2929 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2930 {
2931     size_t align = bdrv_opt_mem_align(bs);
2932 
2933     /* Ensure that NULL is never returned on success */
2934     assert(align > 0);
2935     if (size == 0) {
2936         size = align;
2937     }
2938 
2939     return qemu_try_memalign(align, size);
2940 }
2941 
2942 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2943 {
2944     void *mem = qemu_try_blockalign(bs, size);
2945 
2946     if (mem) {
2947         memset(mem, 0, size);
2948     }
2949 
2950     return mem;
2951 }
2952 
2953 /*
2954  * Check if all memory in this vector is sector aligned.
2955  */
2956 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2957 {
2958     int i;
2959     size_t alignment = bdrv_min_mem_align(bs);
2960 
2961     for (i = 0; i < qiov->niov; i++) {
2962         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2963             return false;
2964         }
2965         if (qiov->iov[i].iov_len % alignment) {
2966             return false;
2967         }
2968     }
2969 
2970     return true;
2971 }
2972 
2973 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2974                                     NotifierWithReturn *notifier)
2975 {
2976     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2977 }
2978 
2979 void bdrv_io_plug(BlockDriverState *bs)
2980 {
2981     BdrvChild *child;
2982 
2983     QLIST_FOREACH(child, &bs->children, next) {
2984         bdrv_io_plug(child->bs);
2985     }
2986 
2987     if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
2988         BlockDriver *drv = bs->drv;
2989         if (drv && drv->bdrv_io_plug) {
2990             drv->bdrv_io_plug(bs);
2991         }
2992     }
2993 }
2994 
2995 void bdrv_io_unplug(BlockDriverState *bs)
2996 {
2997     BdrvChild *child;
2998 
2999     assert(bs->io_plugged);
3000     if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3001         BlockDriver *drv = bs->drv;
3002         if (drv && drv->bdrv_io_unplug) {
3003             drv->bdrv_io_unplug(bs);
3004         }
3005     }
3006 
3007     QLIST_FOREACH(child, &bs->children, next) {
3008         bdrv_io_unplug(child->bs);
3009     }
3010 }
3011 
3012 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3013 {
3014     BdrvChild *child;
3015 
3016     if (bs->drv && bs->drv->bdrv_register_buf) {
3017         bs->drv->bdrv_register_buf(bs, host, size);
3018     }
3019     QLIST_FOREACH(child, &bs->children, next) {
3020         bdrv_register_buf(child->bs, host, size);
3021     }
3022 }
3023 
3024 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3025 {
3026     BdrvChild *child;
3027 
3028     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3029         bs->drv->bdrv_unregister_buf(bs, host);
3030     }
3031     QLIST_FOREACH(child, &bs->children, next) {
3032         bdrv_unregister_buf(child->bs, host);
3033     }
3034 }
3035 
3036 static int coroutine_fn bdrv_co_copy_range_internal(
3037         BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
3038         uint64_t dst_offset, uint64_t bytes,
3039         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3040         bool recurse_src)
3041 {
3042     BdrvTrackedRequest req;
3043     int ret;
3044 
3045     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3046     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3047     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3048 
3049     if (!dst || !dst->bs) {
3050         return -ENOMEDIUM;
3051     }
3052     ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
3053     if (ret) {
3054         return ret;
3055     }
3056     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3057         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3058     }
3059 
3060     if (!src || !src->bs) {
3061         return -ENOMEDIUM;
3062     }
3063     ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
3064     if (ret) {
3065         return ret;
3066     }
3067 
3068     if (!src->bs->drv->bdrv_co_copy_range_from
3069         || !dst->bs->drv->bdrv_co_copy_range_to
3070         || src->bs->encrypted || dst->bs->encrypted) {
3071         return -ENOTSUP;
3072     }
3073 
3074     if (recurse_src) {
3075         bdrv_inc_in_flight(src->bs);
3076         tracked_request_begin(&req, src->bs, src_offset, bytes,
3077                               BDRV_TRACKED_READ);
3078 
3079         /* BDRV_REQ_SERIALISING is only for write operation */
3080         assert(!(read_flags & BDRV_REQ_SERIALISING));
3081         bdrv_wait_serialising_requests(&req);
3082 
3083         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3084                                                     src, src_offset,
3085                                                     dst, dst_offset,
3086                                                     bytes,
3087                                                     read_flags, write_flags);
3088 
3089         tracked_request_end(&req);
3090         bdrv_dec_in_flight(src->bs);
3091     } else {
3092         bdrv_inc_in_flight(dst->bs);
3093         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3094                               BDRV_TRACKED_WRITE);
3095         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3096                                         write_flags);
3097         if (!ret) {
3098             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3099                                                       src, src_offset,
3100                                                       dst, dst_offset,
3101                                                       bytes,
3102                                                       read_flags, write_flags);
3103         }
3104         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3105         tracked_request_end(&req);
3106         bdrv_dec_in_flight(dst->bs);
3107     }
3108 
3109     return ret;
3110 }
3111 
3112 /* Copy range from @src to @dst.
3113  *
3114  * See the comment of bdrv_co_copy_range for the parameter and return value
3115  * semantics. */
3116 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3117                                          BdrvChild *dst, uint64_t dst_offset,
3118                                          uint64_t bytes,
3119                                          BdrvRequestFlags read_flags,
3120                                          BdrvRequestFlags write_flags)
3121 {
3122     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3123                                   read_flags, write_flags);
3124     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3125                                        bytes, read_flags, write_flags, true);
3126 }
3127 
3128 /* Copy range from @src to @dst.
3129  *
3130  * See the comment of bdrv_co_copy_range for the parameter and return value
3131  * semantics. */
3132 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3133                                        BdrvChild *dst, uint64_t dst_offset,
3134                                        uint64_t bytes,
3135                                        BdrvRequestFlags read_flags,
3136                                        BdrvRequestFlags write_flags)
3137 {
3138     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3139                                 read_flags, write_flags);
3140     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3141                                        bytes, read_flags, write_flags, false);
3142 }
3143 
3144 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3145                                     BdrvChild *dst, uint64_t dst_offset,
3146                                     uint64_t bytes, BdrvRequestFlags read_flags,
3147                                     BdrvRequestFlags write_flags)
3148 {
3149     return bdrv_co_copy_range_from(src, src_offset,
3150                                    dst, dst_offset,
3151                                    bytes, read_flags, write_flags);
3152 }
3153 
3154 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3155 {
3156     BdrvChild *c;
3157     QLIST_FOREACH(c, &bs->parents, next_parent) {
3158         if (c->klass->resize) {
3159             c->klass->resize(c);
3160         }
3161     }
3162 }
3163 
3164 /**
3165  * Truncate file to 'offset' bytes (needed only for file protocols)
3166  *
3167  * If 'exact' is true, the file must be resized to exactly the given
3168  * 'offset'.  Otherwise, it is sufficient for the node to be at least
3169  * 'offset' bytes in length.
3170  */
3171 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3172                                   PreallocMode prealloc, BdrvRequestFlags flags,
3173                                   Error **errp)
3174 {
3175     BlockDriverState *bs = child->bs;
3176     BdrvChild *filtered, *backing;
3177     BlockDriver *drv = bs->drv;
3178     BdrvTrackedRequest req;
3179     int64_t old_size, new_bytes;
3180     int ret;
3181 
3182 
3183     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3184     if (!drv) {
3185         error_setg(errp, "No medium inserted");
3186         return -ENOMEDIUM;
3187     }
3188     if (offset < 0) {
3189         error_setg(errp, "Image size cannot be negative");
3190         return -EINVAL;
3191     }
3192 
3193     old_size = bdrv_getlength(bs);
3194     if (old_size < 0) {
3195         error_setg_errno(errp, -old_size, "Failed to get old image size");
3196         return old_size;
3197     }
3198 
3199     if (offset > old_size) {
3200         new_bytes = offset - old_size;
3201     } else {
3202         new_bytes = 0;
3203     }
3204 
3205     bdrv_inc_in_flight(bs);
3206     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3207                           BDRV_TRACKED_TRUNCATE);
3208 
3209     /* If we are growing the image and potentially using preallocation for the
3210      * new area, we need to make sure that no write requests are made to it
3211      * concurrently or they might be overwritten by preallocation. */
3212     if (new_bytes) {
3213         bdrv_mark_request_serialising(&req, 1);
3214     }
3215     if (bs->read_only) {
3216         error_setg(errp, "Image is read-only");
3217         ret = -EACCES;
3218         goto out;
3219     }
3220     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3221                                     0);
3222     if (ret < 0) {
3223         error_setg_errno(errp, -ret,
3224                          "Failed to prepare request for truncation");
3225         goto out;
3226     }
3227 
3228     filtered = bdrv_filter_child(bs);
3229     backing = bdrv_cow_child(bs);
3230 
3231     /*
3232      * If the image has a backing file that is large enough that it would
3233      * provide data for the new area, we cannot leave it unallocated because
3234      * then the backing file content would become visible. Instead, zero-fill
3235      * the new area.
3236      *
3237      * Note that if the image has a backing file, but was opened without the
3238      * backing file, taking care of keeping things consistent with that backing
3239      * file is the user's responsibility.
3240      */
3241     if (new_bytes && backing) {
3242         int64_t backing_len;
3243 
3244         backing_len = bdrv_getlength(backing->bs);
3245         if (backing_len < 0) {
3246             ret = backing_len;
3247             error_setg_errno(errp, -ret, "Could not get backing file size");
3248             goto out;
3249         }
3250 
3251         if (backing_len > old_size) {
3252             flags |= BDRV_REQ_ZERO_WRITE;
3253         }
3254     }
3255 
3256     if (drv->bdrv_co_truncate) {
3257         if (flags & ~bs->supported_truncate_flags) {
3258             error_setg(errp, "Block driver does not support requested flags");
3259             ret = -ENOTSUP;
3260             goto out;
3261         }
3262         ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3263     } else if (filtered) {
3264         ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3265     } else {
3266         error_setg(errp, "Image format driver does not support resize");
3267         ret = -ENOTSUP;
3268         goto out;
3269     }
3270     if (ret < 0) {
3271         goto out;
3272     }
3273 
3274     ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3275     if (ret < 0) {
3276         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3277     } else {
3278         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3279     }
3280     /* It's possible that truncation succeeded but refresh_total_sectors
3281      * failed, but the latter doesn't affect how we should finish the request.
3282      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3283     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3284 
3285 out:
3286     tracked_request_end(&req);
3287     bdrv_dec_in_flight(bs);
3288 
3289     return ret;
3290 }
3291