1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "qemu/cutils.h" 33 #include "qapi/error.h" 34 #include "qemu/error-report.h" 35 36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 37 38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 40 41 static void bdrv_parent_cb_resize(BlockDriverState *bs); 42 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 43 int64_t offset, int bytes, BdrvRequestFlags flags); 44 45 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 46 bool ignore_bds_parents) 47 { 48 BdrvChild *c, *next; 49 50 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 51 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 52 continue; 53 } 54 bdrv_parent_drained_begin_single(c, false); 55 } 56 } 57 58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 59 bool ignore_bds_parents) 60 { 61 BdrvChild *c, *next; 62 63 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 64 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 65 continue; 66 } 67 if (c->role->drained_end) { 68 c->role->drained_end(c); 69 } 70 } 71 } 72 73 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 74 { 75 if (c->role->drained_poll) { 76 return c->role->drained_poll(c); 77 } 78 return false; 79 } 80 81 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 82 bool ignore_bds_parents) 83 { 84 BdrvChild *c, *next; 85 bool busy = false; 86 87 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 88 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 89 continue; 90 } 91 busy |= bdrv_parent_drained_poll_single(c); 92 } 93 94 return busy; 95 } 96 97 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 98 { 99 if (c->role->drained_begin) { 100 c->role->drained_begin(c); 101 } 102 if (poll) { 103 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 104 } 105 } 106 107 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 108 { 109 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 110 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 111 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 112 src->opt_mem_alignment); 113 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 114 src->min_mem_alignment); 115 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 116 } 117 118 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 119 { 120 BlockDriver *drv = bs->drv; 121 Error *local_err = NULL; 122 123 memset(&bs->bl, 0, sizeof(bs->bl)); 124 125 if (!drv) { 126 return; 127 } 128 129 /* Default alignment based on whether driver has byte interface */ 130 bs->bl.request_alignment = (drv->bdrv_co_preadv || 131 drv->bdrv_aio_preadv) ? 1 : 512; 132 133 /* Take some limits from the children as a default */ 134 if (bs->file) { 135 bdrv_refresh_limits(bs->file->bs, &local_err); 136 if (local_err) { 137 error_propagate(errp, local_err); 138 return; 139 } 140 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 141 } else { 142 bs->bl.min_mem_alignment = 512; 143 bs->bl.opt_mem_alignment = getpagesize(); 144 145 /* Safe default since most protocols use readv()/writev()/etc */ 146 bs->bl.max_iov = IOV_MAX; 147 } 148 149 if (bs->backing) { 150 bdrv_refresh_limits(bs->backing->bs, &local_err); 151 if (local_err) { 152 error_propagate(errp, local_err); 153 return; 154 } 155 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 156 } 157 158 /* Then let the driver override it */ 159 if (drv->bdrv_refresh_limits) { 160 drv->bdrv_refresh_limits(bs, errp); 161 } 162 } 163 164 /** 165 * The copy-on-read flag is actually a reference count so multiple users may 166 * use the feature without worrying about clobbering its previous state. 167 * Copy-on-read stays enabled until all users have called to disable it. 168 */ 169 void bdrv_enable_copy_on_read(BlockDriverState *bs) 170 { 171 atomic_inc(&bs->copy_on_read); 172 } 173 174 void bdrv_disable_copy_on_read(BlockDriverState *bs) 175 { 176 int old = atomic_fetch_dec(&bs->copy_on_read); 177 assert(old >= 1); 178 } 179 180 typedef struct { 181 Coroutine *co; 182 BlockDriverState *bs; 183 bool done; 184 bool begin; 185 bool recursive; 186 bool poll; 187 BdrvChild *parent; 188 bool ignore_bds_parents; 189 } BdrvCoDrainData; 190 191 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 192 { 193 BdrvCoDrainData *data = opaque; 194 BlockDriverState *bs = data->bs; 195 196 if (data->begin) { 197 bs->drv->bdrv_co_drain_begin(bs); 198 } else { 199 bs->drv->bdrv_co_drain_end(bs); 200 } 201 202 /* Set data->done before reading bs->wakeup. */ 203 atomic_mb_set(&data->done, true); 204 bdrv_dec_in_flight(bs); 205 206 if (data->begin) { 207 g_free(data); 208 } 209 } 210 211 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 212 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin) 213 { 214 BdrvCoDrainData *data; 215 216 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 217 (!begin && !bs->drv->bdrv_co_drain_end)) { 218 return; 219 } 220 221 data = g_new(BdrvCoDrainData, 1); 222 *data = (BdrvCoDrainData) { 223 .bs = bs, 224 .done = false, 225 .begin = begin 226 }; 227 228 /* Make sure the driver callback completes during the polling phase for 229 * drain_begin. */ 230 bdrv_inc_in_flight(bs); 231 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 232 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 233 234 if (!begin) { 235 BDRV_POLL_WHILE(bs, !data->done); 236 g_free(data); 237 } 238 } 239 240 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 241 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 242 BdrvChild *ignore_parent, bool ignore_bds_parents) 243 { 244 BdrvChild *child, *next; 245 246 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 247 return true; 248 } 249 250 if (atomic_read(&bs->in_flight)) { 251 return true; 252 } 253 254 if (recursive) { 255 assert(!ignore_bds_parents); 256 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 257 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 258 return true; 259 } 260 } 261 } 262 263 return false; 264 } 265 266 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 267 BdrvChild *ignore_parent) 268 { 269 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 270 } 271 272 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 273 BdrvChild *parent, bool ignore_bds_parents, 274 bool poll); 275 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 276 BdrvChild *parent, bool ignore_bds_parents); 277 278 static void bdrv_co_drain_bh_cb(void *opaque) 279 { 280 BdrvCoDrainData *data = opaque; 281 Coroutine *co = data->co; 282 BlockDriverState *bs = data->bs; 283 284 if (bs) { 285 AioContext *ctx = bdrv_get_aio_context(bs); 286 AioContext *co_ctx = qemu_coroutine_get_aio_context(co); 287 288 /* 289 * When the coroutine yielded, the lock for its home context was 290 * released, so we need to re-acquire it here. If it explicitly 291 * acquired a different context, the lock is still held and we don't 292 * want to lock it a second time (or AIO_WAIT_WHILE() would hang). 293 */ 294 if (ctx == co_ctx) { 295 aio_context_acquire(ctx); 296 } 297 bdrv_dec_in_flight(bs); 298 if (data->begin) { 299 bdrv_do_drained_begin(bs, data->recursive, data->parent, 300 data->ignore_bds_parents, data->poll); 301 } else { 302 bdrv_do_drained_end(bs, data->recursive, data->parent, 303 data->ignore_bds_parents); 304 } 305 if (ctx == co_ctx) { 306 aio_context_release(ctx); 307 } 308 } else { 309 assert(data->begin); 310 bdrv_drain_all_begin(); 311 } 312 313 data->done = true; 314 aio_co_wake(co); 315 } 316 317 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 318 bool begin, bool recursive, 319 BdrvChild *parent, 320 bool ignore_bds_parents, 321 bool poll) 322 { 323 BdrvCoDrainData data; 324 325 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 326 * other coroutines run if they were queued by aio_co_enter(). */ 327 328 assert(qemu_in_coroutine()); 329 data = (BdrvCoDrainData) { 330 .co = qemu_coroutine_self(), 331 .bs = bs, 332 .done = false, 333 .begin = begin, 334 .recursive = recursive, 335 .parent = parent, 336 .ignore_bds_parents = ignore_bds_parents, 337 .poll = poll, 338 }; 339 if (bs) { 340 bdrv_inc_in_flight(bs); 341 } 342 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 343 bdrv_co_drain_bh_cb, &data); 344 345 qemu_coroutine_yield(); 346 /* If we are resumed from some other event (such as an aio completion or a 347 * timer callback), it is a bug in the caller that should be fixed. */ 348 assert(data.done); 349 } 350 351 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 352 BdrvChild *parent, bool ignore_bds_parents) 353 { 354 assert(!qemu_in_coroutine()); 355 356 /* Stop things in parent-to-child order */ 357 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 358 aio_disable_external(bdrv_get_aio_context(bs)); 359 } 360 361 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 362 bdrv_drain_invoke(bs, true); 363 } 364 365 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 366 BdrvChild *parent, bool ignore_bds_parents, 367 bool poll) 368 { 369 BdrvChild *child, *next; 370 371 if (qemu_in_coroutine()) { 372 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 373 poll); 374 return; 375 } 376 377 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 378 379 if (recursive) { 380 assert(!ignore_bds_parents); 381 bs->recursive_quiesce_counter++; 382 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 383 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 384 false); 385 } 386 } 387 388 /* 389 * Wait for drained requests to finish. 390 * 391 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 392 * call is needed so things in this AioContext can make progress even 393 * though we don't return to the main AioContext loop - this automatically 394 * includes other nodes in the same AioContext and therefore all child 395 * nodes. 396 */ 397 if (poll) { 398 assert(!ignore_bds_parents); 399 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 400 } 401 } 402 403 void bdrv_drained_begin(BlockDriverState *bs) 404 { 405 bdrv_do_drained_begin(bs, false, NULL, false, true); 406 } 407 408 void bdrv_subtree_drained_begin(BlockDriverState *bs) 409 { 410 bdrv_do_drained_begin(bs, true, NULL, false, true); 411 } 412 413 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 414 BdrvChild *parent, bool ignore_bds_parents) 415 { 416 BdrvChild *child, *next; 417 int old_quiesce_counter; 418 419 if (qemu_in_coroutine()) { 420 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 421 false); 422 return; 423 } 424 assert(bs->quiesce_counter > 0); 425 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter); 426 427 /* Re-enable things in child-to-parent order */ 428 bdrv_drain_invoke(bs, false); 429 bdrv_parent_drained_end(bs, parent, ignore_bds_parents); 430 if (old_quiesce_counter == 1) { 431 aio_enable_external(bdrv_get_aio_context(bs)); 432 } 433 434 if (recursive) { 435 assert(!ignore_bds_parents); 436 bs->recursive_quiesce_counter--; 437 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 438 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents); 439 } 440 } 441 } 442 443 void bdrv_drained_end(BlockDriverState *bs) 444 { 445 bdrv_do_drained_end(bs, false, NULL, false); 446 } 447 448 void bdrv_subtree_drained_end(BlockDriverState *bs) 449 { 450 bdrv_do_drained_end(bs, true, NULL, false); 451 } 452 453 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 454 { 455 int i; 456 457 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 458 bdrv_do_drained_begin(child->bs, true, child, false, true); 459 } 460 } 461 462 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 463 { 464 int i; 465 466 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 467 bdrv_do_drained_end(child->bs, true, child, false); 468 } 469 } 470 471 /* 472 * Wait for pending requests to complete on a single BlockDriverState subtree, 473 * and suspend block driver's internal I/O until next request arrives. 474 * 475 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 476 * AioContext. 477 */ 478 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 479 { 480 assert(qemu_in_coroutine()); 481 bdrv_drained_begin(bs); 482 bdrv_drained_end(bs); 483 } 484 485 void bdrv_drain(BlockDriverState *bs) 486 { 487 bdrv_drained_begin(bs); 488 bdrv_drained_end(bs); 489 } 490 491 static void bdrv_drain_assert_idle(BlockDriverState *bs) 492 { 493 BdrvChild *child, *next; 494 495 assert(atomic_read(&bs->in_flight) == 0); 496 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 497 bdrv_drain_assert_idle(child->bs); 498 } 499 } 500 501 unsigned int bdrv_drain_all_count = 0; 502 503 static bool bdrv_drain_all_poll(void) 504 { 505 BlockDriverState *bs = NULL; 506 bool result = false; 507 508 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 509 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 510 while ((bs = bdrv_next_all_states(bs))) { 511 AioContext *aio_context = bdrv_get_aio_context(bs); 512 aio_context_acquire(aio_context); 513 result |= bdrv_drain_poll(bs, false, NULL, true); 514 aio_context_release(aio_context); 515 } 516 517 return result; 518 } 519 520 /* 521 * Wait for pending requests to complete across all BlockDriverStates 522 * 523 * This function does not flush data to disk, use bdrv_flush_all() for that 524 * after calling this function. 525 * 526 * This pauses all block jobs and disables external clients. It must 527 * be paired with bdrv_drain_all_end(). 528 * 529 * NOTE: no new block jobs or BlockDriverStates can be created between 530 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 531 */ 532 void bdrv_drain_all_begin(void) 533 { 534 BlockDriverState *bs = NULL; 535 536 if (qemu_in_coroutine()) { 537 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true); 538 return; 539 } 540 541 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 542 * loop AioContext, so make sure we're in the main context. */ 543 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 544 assert(bdrv_drain_all_count < INT_MAX); 545 bdrv_drain_all_count++; 546 547 /* Quiesce all nodes, without polling in-flight requests yet. The graph 548 * cannot change during this loop. */ 549 while ((bs = bdrv_next_all_states(bs))) { 550 AioContext *aio_context = bdrv_get_aio_context(bs); 551 552 aio_context_acquire(aio_context); 553 bdrv_do_drained_begin(bs, false, NULL, true, false); 554 aio_context_release(aio_context); 555 } 556 557 /* Now poll the in-flight requests */ 558 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 559 560 while ((bs = bdrv_next_all_states(bs))) { 561 bdrv_drain_assert_idle(bs); 562 } 563 } 564 565 void bdrv_drain_all_end(void) 566 { 567 BlockDriverState *bs = NULL; 568 569 while ((bs = bdrv_next_all_states(bs))) { 570 AioContext *aio_context = bdrv_get_aio_context(bs); 571 572 aio_context_acquire(aio_context); 573 bdrv_do_drained_end(bs, false, NULL, true); 574 aio_context_release(aio_context); 575 } 576 577 assert(bdrv_drain_all_count > 0); 578 bdrv_drain_all_count--; 579 } 580 581 void bdrv_drain_all(void) 582 { 583 bdrv_drain_all_begin(); 584 bdrv_drain_all_end(); 585 } 586 587 /** 588 * Remove an active request from the tracked requests list 589 * 590 * This function should be called when a tracked request is completing. 591 */ 592 static void tracked_request_end(BdrvTrackedRequest *req) 593 { 594 if (req->serialising) { 595 atomic_dec(&req->bs->serialising_in_flight); 596 } 597 598 qemu_co_mutex_lock(&req->bs->reqs_lock); 599 QLIST_REMOVE(req, list); 600 qemu_co_queue_restart_all(&req->wait_queue); 601 qemu_co_mutex_unlock(&req->bs->reqs_lock); 602 } 603 604 /** 605 * Add an active request to the tracked requests list 606 */ 607 static void tracked_request_begin(BdrvTrackedRequest *req, 608 BlockDriverState *bs, 609 int64_t offset, 610 uint64_t bytes, 611 enum BdrvTrackedRequestType type) 612 { 613 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes); 614 615 *req = (BdrvTrackedRequest){ 616 .bs = bs, 617 .offset = offset, 618 .bytes = bytes, 619 .type = type, 620 .co = qemu_coroutine_self(), 621 .serialising = false, 622 .overlap_offset = offset, 623 .overlap_bytes = bytes, 624 }; 625 626 qemu_co_queue_init(&req->wait_queue); 627 628 qemu_co_mutex_lock(&bs->reqs_lock); 629 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 630 qemu_co_mutex_unlock(&bs->reqs_lock); 631 } 632 633 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 634 { 635 int64_t overlap_offset = req->offset & ~(align - 1); 636 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 637 - overlap_offset; 638 639 if (!req->serialising) { 640 atomic_inc(&req->bs->serialising_in_flight); 641 req->serialising = true; 642 } 643 644 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 645 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 646 } 647 648 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req) 649 { 650 /* 651 * If the request is serialising, overlap_offset and overlap_bytes are set, 652 * so we can check if the request is aligned. Otherwise, don't care and 653 * return false. 654 */ 655 656 return req->serialising && (req->offset == req->overlap_offset) && 657 (req->bytes == req->overlap_bytes); 658 } 659 660 /** 661 * Round a region to cluster boundaries 662 */ 663 void bdrv_round_to_clusters(BlockDriverState *bs, 664 int64_t offset, int64_t bytes, 665 int64_t *cluster_offset, 666 int64_t *cluster_bytes) 667 { 668 BlockDriverInfo bdi; 669 670 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 671 *cluster_offset = offset; 672 *cluster_bytes = bytes; 673 } else { 674 int64_t c = bdi.cluster_size; 675 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 676 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 677 } 678 } 679 680 static int bdrv_get_cluster_size(BlockDriverState *bs) 681 { 682 BlockDriverInfo bdi; 683 int ret; 684 685 ret = bdrv_get_info(bs, &bdi); 686 if (ret < 0 || bdi.cluster_size == 0) { 687 return bs->bl.request_alignment; 688 } else { 689 return bdi.cluster_size; 690 } 691 } 692 693 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 694 int64_t offset, uint64_t bytes) 695 { 696 /* aaaa bbbb */ 697 if (offset >= req->overlap_offset + req->overlap_bytes) { 698 return false; 699 } 700 /* bbbb aaaa */ 701 if (req->overlap_offset >= offset + bytes) { 702 return false; 703 } 704 return true; 705 } 706 707 void bdrv_inc_in_flight(BlockDriverState *bs) 708 { 709 atomic_inc(&bs->in_flight); 710 } 711 712 void bdrv_wakeup(BlockDriverState *bs) 713 { 714 aio_wait_kick(); 715 } 716 717 void bdrv_dec_in_flight(BlockDriverState *bs) 718 { 719 atomic_dec(&bs->in_flight); 720 bdrv_wakeup(bs); 721 } 722 723 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 724 { 725 BlockDriverState *bs = self->bs; 726 BdrvTrackedRequest *req; 727 bool retry; 728 bool waited = false; 729 730 if (!atomic_read(&bs->serialising_in_flight)) { 731 return false; 732 } 733 734 do { 735 retry = false; 736 qemu_co_mutex_lock(&bs->reqs_lock); 737 QLIST_FOREACH(req, &bs->tracked_requests, list) { 738 if (req == self || (!req->serialising && !self->serialising)) { 739 continue; 740 } 741 if (tracked_request_overlaps(req, self->overlap_offset, 742 self->overlap_bytes)) 743 { 744 /* Hitting this means there was a reentrant request, for 745 * example, a block driver issuing nested requests. This must 746 * never happen since it means deadlock. 747 */ 748 assert(qemu_coroutine_self() != req->co); 749 750 /* If the request is already (indirectly) waiting for us, or 751 * will wait for us as soon as it wakes up, then just go on 752 * (instead of producing a deadlock in the former case). */ 753 if (!req->waiting_for) { 754 self->waiting_for = req; 755 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 756 self->waiting_for = NULL; 757 retry = true; 758 waited = true; 759 break; 760 } 761 } 762 } 763 qemu_co_mutex_unlock(&bs->reqs_lock); 764 } while (retry); 765 766 return waited; 767 } 768 769 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 770 size_t size) 771 { 772 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 773 return -EIO; 774 } 775 776 if (!bdrv_is_inserted(bs)) { 777 return -ENOMEDIUM; 778 } 779 780 if (offset < 0) { 781 return -EIO; 782 } 783 784 return 0; 785 } 786 787 typedef struct RwCo { 788 BdrvChild *child; 789 int64_t offset; 790 QEMUIOVector *qiov; 791 bool is_write; 792 int ret; 793 BdrvRequestFlags flags; 794 } RwCo; 795 796 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 797 { 798 RwCo *rwco = opaque; 799 800 if (!rwco->is_write) { 801 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 802 rwco->qiov->size, rwco->qiov, 803 rwco->flags); 804 } else { 805 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 806 rwco->qiov->size, rwco->qiov, 807 rwco->flags); 808 } 809 aio_wait_kick(); 810 } 811 812 /* 813 * Process a vectored synchronous request using coroutines 814 */ 815 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 816 QEMUIOVector *qiov, bool is_write, 817 BdrvRequestFlags flags) 818 { 819 Coroutine *co; 820 RwCo rwco = { 821 .child = child, 822 .offset = offset, 823 .qiov = qiov, 824 .is_write = is_write, 825 .ret = NOT_DONE, 826 .flags = flags, 827 }; 828 829 if (qemu_in_coroutine()) { 830 /* Fast-path if already in coroutine context */ 831 bdrv_rw_co_entry(&rwco); 832 } else { 833 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 834 bdrv_coroutine_enter(child->bs, co); 835 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 836 } 837 return rwco.ret; 838 } 839 840 /* 841 * Process a synchronous request using coroutines 842 */ 843 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, 844 int nb_sectors, bool is_write, BdrvRequestFlags flags) 845 { 846 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, 847 nb_sectors * BDRV_SECTOR_SIZE); 848 849 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 850 return -EINVAL; 851 } 852 853 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, 854 &qiov, is_write, flags); 855 } 856 857 /* return < 0 if error. See bdrv_write() for the return codes */ 858 int bdrv_read(BdrvChild *child, int64_t sector_num, 859 uint8_t *buf, int nb_sectors) 860 { 861 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); 862 } 863 864 /* Return < 0 if error. Important errors are: 865 -EIO generic I/O error (may happen for all errors) 866 -ENOMEDIUM No media inserted. 867 -EINVAL Invalid sector number or nb_sectors 868 -EACCES Trying to write a read-only device 869 */ 870 int bdrv_write(BdrvChild *child, int64_t sector_num, 871 const uint8_t *buf, int nb_sectors) 872 { 873 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 874 } 875 876 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 877 int bytes, BdrvRequestFlags flags) 878 { 879 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes); 880 881 return bdrv_prwv_co(child, offset, &qiov, true, 882 BDRV_REQ_ZERO_WRITE | flags); 883 } 884 885 /* 886 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 887 * The operation is sped up by checking the block status and only writing 888 * zeroes to the device if they currently do not return zeroes. Optional 889 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 890 * BDRV_REQ_FUA). 891 * 892 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 893 */ 894 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 895 { 896 int ret; 897 int64_t target_size, bytes, offset = 0; 898 BlockDriverState *bs = child->bs; 899 900 target_size = bdrv_getlength(bs); 901 if (target_size < 0) { 902 return target_size; 903 } 904 905 for (;;) { 906 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 907 if (bytes <= 0) { 908 return 0; 909 } 910 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 911 if (ret < 0) { 912 error_report("error getting block status at offset %" PRId64 ": %s", 913 offset, strerror(-ret)); 914 return ret; 915 } 916 if (ret & BDRV_BLOCK_ZERO) { 917 offset += bytes; 918 continue; 919 } 920 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 921 if (ret < 0) { 922 error_report("error writing zeroes at offset %" PRId64 ": %s", 923 offset, strerror(-ret)); 924 return ret; 925 } 926 offset += bytes; 927 } 928 } 929 930 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 931 { 932 int ret; 933 934 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 935 if (ret < 0) { 936 return ret; 937 } 938 939 return qiov->size; 940 } 941 942 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 943 { 944 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 945 946 if (bytes < 0) { 947 return -EINVAL; 948 } 949 950 return bdrv_preadv(child, offset, &qiov); 951 } 952 953 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 954 { 955 int ret; 956 957 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 958 if (ret < 0) { 959 return ret; 960 } 961 962 return qiov->size; 963 } 964 965 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 966 { 967 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 968 969 if (bytes < 0) { 970 return -EINVAL; 971 } 972 973 return bdrv_pwritev(child, offset, &qiov); 974 } 975 976 /* 977 * Writes to the file and ensures that no writes are reordered across this 978 * request (acts as a barrier) 979 * 980 * Returns 0 on success, -errno in error cases. 981 */ 982 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 983 const void *buf, int count) 984 { 985 int ret; 986 987 ret = bdrv_pwrite(child, offset, buf, count); 988 if (ret < 0) { 989 return ret; 990 } 991 992 ret = bdrv_flush(child->bs); 993 if (ret < 0) { 994 return ret; 995 } 996 997 return 0; 998 } 999 1000 typedef struct CoroutineIOCompletion { 1001 Coroutine *coroutine; 1002 int ret; 1003 } CoroutineIOCompletion; 1004 1005 static void bdrv_co_io_em_complete(void *opaque, int ret) 1006 { 1007 CoroutineIOCompletion *co = opaque; 1008 1009 co->ret = ret; 1010 aio_co_wake(co->coroutine); 1011 } 1012 1013 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1014 uint64_t offset, uint64_t bytes, 1015 QEMUIOVector *qiov, int flags) 1016 { 1017 BlockDriver *drv = bs->drv; 1018 int64_t sector_num; 1019 unsigned int nb_sectors; 1020 1021 assert(!(flags & ~BDRV_REQ_MASK)); 1022 1023 if (!drv) { 1024 return -ENOMEDIUM; 1025 } 1026 1027 if (drv->bdrv_co_preadv) { 1028 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1029 } 1030 1031 if (drv->bdrv_aio_preadv) { 1032 BlockAIOCB *acb; 1033 CoroutineIOCompletion co = { 1034 .coroutine = qemu_coroutine_self(), 1035 }; 1036 1037 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1038 bdrv_co_io_em_complete, &co); 1039 if (acb == NULL) { 1040 return -EIO; 1041 } else { 1042 qemu_coroutine_yield(); 1043 return co.ret; 1044 } 1045 } 1046 1047 sector_num = offset >> BDRV_SECTOR_BITS; 1048 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1049 1050 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1051 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1052 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 1053 assert(drv->bdrv_co_readv); 1054 1055 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1056 } 1057 1058 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1059 uint64_t offset, uint64_t bytes, 1060 QEMUIOVector *qiov, int flags) 1061 { 1062 BlockDriver *drv = bs->drv; 1063 int64_t sector_num; 1064 unsigned int nb_sectors; 1065 int ret; 1066 1067 assert(!(flags & ~BDRV_REQ_MASK)); 1068 1069 if (!drv) { 1070 return -ENOMEDIUM; 1071 } 1072 1073 if (drv->bdrv_co_pwritev) { 1074 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1075 flags & bs->supported_write_flags); 1076 flags &= ~bs->supported_write_flags; 1077 goto emulate_flags; 1078 } 1079 1080 if (drv->bdrv_aio_pwritev) { 1081 BlockAIOCB *acb; 1082 CoroutineIOCompletion co = { 1083 .coroutine = qemu_coroutine_self(), 1084 }; 1085 1086 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1087 flags & bs->supported_write_flags, 1088 bdrv_co_io_em_complete, &co); 1089 flags &= ~bs->supported_write_flags; 1090 if (acb == NULL) { 1091 ret = -EIO; 1092 } else { 1093 qemu_coroutine_yield(); 1094 ret = co.ret; 1095 } 1096 goto emulate_flags; 1097 } 1098 1099 sector_num = offset >> BDRV_SECTOR_BITS; 1100 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1101 1102 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1103 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1104 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 1105 1106 assert(drv->bdrv_co_writev); 1107 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1108 flags & bs->supported_write_flags); 1109 flags &= ~bs->supported_write_flags; 1110 1111 emulate_flags: 1112 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1113 ret = bdrv_co_flush(bs); 1114 } 1115 1116 return ret; 1117 } 1118 1119 static int coroutine_fn 1120 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 1121 uint64_t bytes, QEMUIOVector *qiov) 1122 { 1123 BlockDriver *drv = bs->drv; 1124 1125 if (!drv) { 1126 return -ENOMEDIUM; 1127 } 1128 1129 if (!drv->bdrv_co_pwritev_compressed) { 1130 return -ENOTSUP; 1131 } 1132 1133 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1134 } 1135 1136 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1137 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 1138 { 1139 BlockDriverState *bs = child->bs; 1140 1141 /* Perform I/O through a temporary buffer so that users who scribble over 1142 * their read buffer while the operation is in progress do not end up 1143 * modifying the image file. This is critical for zero-copy guest I/O 1144 * where anything might happen inside guest memory. 1145 */ 1146 void *bounce_buffer; 1147 1148 BlockDriver *drv = bs->drv; 1149 QEMUIOVector local_qiov; 1150 int64_t cluster_offset; 1151 int64_t cluster_bytes; 1152 size_t skip_bytes; 1153 int ret; 1154 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1155 BDRV_REQUEST_MAX_BYTES); 1156 unsigned int progress = 0; 1157 1158 if (!drv) { 1159 return -ENOMEDIUM; 1160 } 1161 1162 /* FIXME We cannot require callers to have write permissions when all they 1163 * are doing is a read request. If we did things right, write permissions 1164 * would be obtained anyway, but internally by the copy-on-read code. As 1165 * long as it is implemented here rather than in a separate filter driver, 1166 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1167 * it could request permissions. Therefore we have to bypass the permission 1168 * system for the moment. */ 1169 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1170 1171 /* Cover entire cluster so no additional backing file I/O is required when 1172 * allocating cluster in the image file. Note that this value may exceed 1173 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1174 * is one reason we loop rather than doing it all at once. 1175 */ 1176 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1177 skip_bytes = offset - cluster_offset; 1178 1179 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1180 cluster_offset, cluster_bytes); 1181 1182 bounce_buffer = qemu_try_blockalign(bs, 1183 MIN(MIN(max_transfer, cluster_bytes), 1184 MAX_BOUNCE_BUFFER)); 1185 if (bounce_buffer == NULL) { 1186 ret = -ENOMEM; 1187 goto err; 1188 } 1189 1190 while (cluster_bytes) { 1191 int64_t pnum; 1192 1193 ret = bdrv_is_allocated(bs, cluster_offset, 1194 MIN(cluster_bytes, max_transfer), &pnum); 1195 if (ret < 0) { 1196 /* Safe to treat errors in querying allocation as if 1197 * unallocated; we'll probably fail again soon on the 1198 * read, but at least that will set a decent errno. 1199 */ 1200 pnum = MIN(cluster_bytes, max_transfer); 1201 } 1202 1203 /* Stop at EOF if the image ends in the middle of the cluster */ 1204 if (ret == 0 && pnum == 0) { 1205 assert(progress >= bytes); 1206 break; 1207 } 1208 1209 assert(skip_bytes < pnum); 1210 1211 if (ret <= 0) { 1212 /* Must copy-on-read; use the bounce buffer */ 1213 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1214 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1215 1216 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1217 &local_qiov, 0); 1218 if (ret < 0) { 1219 goto err; 1220 } 1221 1222 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1223 if (drv->bdrv_co_pwrite_zeroes && 1224 buffer_is_zero(bounce_buffer, pnum)) { 1225 /* FIXME: Should we (perhaps conditionally) be setting 1226 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1227 * that still correctly reads as zero? */ 1228 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1229 BDRV_REQ_WRITE_UNCHANGED); 1230 } else { 1231 /* This does not change the data on the disk, it is not 1232 * necessary to flush even in cache=writethrough mode. 1233 */ 1234 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1235 &local_qiov, 1236 BDRV_REQ_WRITE_UNCHANGED); 1237 } 1238 1239 if (ret < 0) { 1240 /* It might be okay to ignore write errors for guest 1241 * requests. If this is a deliberate copy-on-read 1242 * then we don't want to ignore the error. Simply 1243 * report it in all cases. 1244 */ 1245 goto err; 1246 } 1247 1248 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes, 1249 pnum - skip_bytes); 1250 } else { 1251 /* Read directly into the destination */ 1252 qemu_iovec_init(&local_qiov, qiov->niov); 1253 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes); 1254 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size, 1255 &local_qiov, 0); 1256 qemu_iovec_destroy(&local_qiov); 1257 if (ret < 0) { 1258 goto err; 1259 } 1260 } 1261 1262 cluster_offset += pnum; 1263 cluster_bytes -= pnum; 1264 progress += pnum - skip_bytes; 1265 skip_bytes = 0; 1266 } 1267 ret = 0; 1268 1269 err: 1270 qemu_vfree(bounce_buffer); 1271 return ret; 1272 } 1273 1274 /* 1275 * Forwards an already correctly aligned request to the BlockDriver. This 1276 * handles copy on read, zeroing after EOF, and fragmentation of large 1277 * reads; any other features must be implemented by the caller. 1278 */ 1279 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1280 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1281 int64_t align, QEMUIOVector *qiov, int flags) 1282 { 1283 BlockDriverState *bs = child->bs; 1284 int64_t total_bytes, max_bytes; 1285 int ret = 0; 1286 uint64_t bytes_remaining = bytes; 1287 int max_transfer; 1288 1289 assert(is_power_of_2(align)); 1290 assert((offset & (align - 1)) == 0); 1291 assert((bytes & (align - 1)) == 0); 1292 assert(!qiov || bytes == qiov->size); 1293 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1294 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1295 align); 1296 1297 /* TODO: We would need a per-BDS .supported_read_flags and 1298 * potential fallback support, if we ever implement any read flags 1299 * to pass through to drivers. For now, there aren't any 1300 * passthrough flags. */ 1301 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 1302 1303 /* Handle Copy on Read and associated serialisation */ 1304 if (flags & BDRV_REQ_COPY_ON_READ) { 1305 /* If we touch the same cluster it counts as an overlap. This 1306 * guarantees that allocating writes will be serialized and not race 1307 * with each other for the same cluster. For example, in copy-on-read 1308 * it ensures that the CoR read and write operations are atomic and 1309 * guest writes cannot interleave between them. */ 1310 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1311 } 1312 1313 /* BDRV_REQ_SERIALISING is only for write operation */ 1314 assert(!(flags & BDRV_REQ_SERIALISING)); 1315 1316 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1317 wait_serialising_requests(req); 1318 } 1319 1320 if (flags & BDRV_REQ_COPY_ON_READ) { 1321 int64_t pnum; 1322 1323 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1324 if (ret < 0) { 1325 goto out; 1326 } 1327 1328 if (!ret || pnum != bytes) { 1329 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); 1330 goto out; 1331 } 1332 } 1333 1334 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1335 total_bytes = bdrv_getlength(bs); 1336 if (total_bytes < 0) { 1337 ret = total_bytes; 1338 goto out; 1339 } 1340 1341 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1342 if (bytes <= max_bytes && bytes <= max_transfer) { 1343 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1344 goto out; 1345 } 1346 1347 while (bytes_remaining) { 1348 int num; 1349 1350 if (max_bytes) { 1351 QEMUIOVector local_qiov; 1352 1353 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1354 assert(num); 1355 qemu_iovec_init(&local_qiov, qiov->niov); 1356 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1357 1358 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1359 num, &local_qiov, 0); 1360 max_bytes -= num; 1361 qemu_iovec_destroy(&local_qiov); 1362 } else { 1363 num = bytes_remaining; 1364 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1365 bytes_remaining); 1366 } 1367 if (ret < 0) { 1368 goto out; 1369 } 1370 bytes_remaining -= num; 1371 } 1372 1373 out: 1374 return ret < 0 ? ret : 0; 1375 } 1376 1377 /* 1378 * Handle a read request in coroutine context 1379 */ 1380 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1381 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1382 BdrvRequestFlags flags) 1383 { 1384 BlockDriverState *bs = child->bs; 1385 BlockDriver *drv = bs->drv; 1386 BdrvTrackedRequest req; 1387 1388 uint64_t align = bs->bl.request_alignment; 1389 uint8_t *head_buf = NULL; 1390 uint8_t *tail_buf = NULL; 1391 QEMUIOVector local_qiov; 1392 bool use_local_qiov = false; 1393 int ret; 1394 1395 trace_bdrv_co_preadv(child->bs, offset, bytes, flags); 1396 1397 if (!drv) { 1398 return -ENOMEDIUM; 1399 } 1400 1401 ret = bdrv_check_byte_request(bs, offset, bytes); 1402 if (ret < 0) { 1403 return ret; 1404 } 1405 1406 bdrv_inc_in_flight(bs); 1407 1408 /* Don't do copy-on-read if we read data before write operation */ 1409 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1410 flags |= BDRV_REQ_COPY_ON_READ; 1411 } 1412 1413 /* Align read if necessary by padding qiov */ 1414 if (offset & (align - 1)) { 1415 head_buf = qemu_blockalign(bs, align); 1416 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1417 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1418 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1419 use_local_qiov = true; 1420 1421 bytes += offset & (align - 1); 1422 offset = offset & ~(align - 1); 1423 } 1424 1425 if ((offset + bytes) & (align - 1)) { 1426 if (!use_local_qiov) { 1427 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1428 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1429 use_local_qiov = true; 1430 } 1431 tail_buf = qemu_blockalign(bs, align); 1432 qemu_iovec_add(&local_qiov, tail_buf, 1433 align - ((offset + bytes) & (align - 1))); 1434 1435 bytes = ROUND_UP(bytes, align); 1436 } 1437 1438 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1439 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1440 use_local_qiov ? &local_qiov : qiov, 1441 flags); 1442 tracked_request_end(&req); 1443 bdrv_dec_in_flight(bs); 1444 1445 if (use_local_qiov) { 1446 qemu_iovec_destroy(&local_qiov); 1447 qemu_vfree(head_buf); 1448 qemu_vfree(tail_buf); 1449 } 1450 1451 return ret; 1452 } 1453 1454 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1455 int64_t offset, int bytes, BdrvRequestFlags flags) 1456 { 1457 BlockDriver *drv = bs->drv; 1458 QEMUIOVector qiov; 1459 void *buf = NULL; 1460 int ret = 0; 1461 bool need_flush = false; 1462 int head = 0; 1463 int tail = 0; 1464 1465 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1466 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1467 bs->bl.request_alignment); 1468 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1469 1470 if (!drv) { 1471 return -ENOMEDIUM; 1472 } 1473 1474 assert(alignment % bs->bl.request_alignment == 0); 1475 head = offset % alignment; 1476 tail = (offset + bytes) % alignment; 1477 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1478 assert(max_write_zeroes >= bs->bl.request_alignment); 1479 1480 while (bytes > 0 && !ret) { 1481 int num = bytes; 1482 1483 /* Align request. Block drivers can expect the "bulk" of the request 1484 * to be aligned, and that unaligned requests do not cross cluster 1485 * boundaries. 1486 */ 1487 if (head) { 1488 /* Make a small request up to the first aligned sector. For 1489 * convenience, limit this request to max_transfer even if 1490 * we don't need to fall back to writes. */ 1491 num = MIN(MIN(bytes, max_transfer), alignment - head); 1492 head = (head + num) % alignment; 1493 assert(num < max_write_zeroes); 1494 } else if (tail && num > alignment) { 1495 /* Shorten the request to the last aligned sector. */ 1496 num -= tail; 1497 } 1498 1499 /* limit request size */ 1500 if (num > max_write_zeroes) { 1501 num = max_write_zeroes; 1502 } 1503 1504 ret = -ENOTSUP; 1505 /* First try the efficient write zeroes operation */ 1506 if (drv->bdrv_co_pwrite_zeroes) { 1507 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1508 flags & bs->supported_zero_flags); 1509 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1510 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1511 need_flush = true; 1512 } 1513 } else { 1514 assert(!bs->supported_zero_flags); 1515 } 1516 1517 if (ret == -ENOTSUP) { 1518 /* Fall back to bounce buffer if write zeroes is unsupported */ 1519 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1520 1521 if ((flags & BDRV_REQ_FUA) && 1522 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1523 /* No need for bdrv_driver_pwrite() to do a fallback 1524 * flush on each chunk; use just one at the end */ 1525 write_flags &= ~BDRV_REQ_FUA; 1526 need_flush = true; 1527 } 1528 num = MIN(num, max_transfer); 1529 if (buf == NULL) { 1530 buf = qemu_try_blockalign0(bs, num); 1531 if (buf == NULL) { 1532 ret = -ENOMEM; 1533 goto fail; 1534 } 1535 } 1536 qemu_iovec_init_buf(&qiov, buf, num); 1537 1538 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1539 1540 /* Keep bounce buffer around if it is big enough for all 1541 * all future requests. 1542 */ 1543 if (num < max_transfer) { 1544 qemu_vfree(buf); 1545 buf = NULL; 1546 } 1547 } 1548 1549 offset += num; 1550 bytes -= num; 1551 } 1552 1553 fail: 1554 if (ret == 0 && need_flush) { 1555 ret = bdrv_co_flush(bs); 1556 } 1557 qemu_vfree(buf); 1558 return ret; 1559 } 1560 1561 static inline int coroutine_fn 1562 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes, 1563 BdrvTrackedRequest *req, int flags) 1564 { 1565 BlockDriverState *bs = child->bs; 1566 bool waited; 1567 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1568 1569 if (bs->read_only) { 1570 return -EPERM; 1571 } 1572 1573 /* BDRV_REQ_NO_SERIALISING is only for read operation */ 1574 assert(!(flags & BDRV_REQ_NO_SERIALISING)); 1575 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1576 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1577 assert(!(flags & ~BDRV_REQ_MASK)); 1578 1579 if (flags & BDRV_REQ_SERIALISING) { 1580 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1581 } 1582 1583 waited = wait_serialising_requests(req); 1584 1585 assert(!waited || !req->serialising || 1586 is_request_serialising_and_aligned(req)); 1587 assert(req->overlap_offset <= offset); 1588 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1589 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1590 1591 switch (req->type) { 1592 case BDRV_TRACKED_WRITE: 1593 case BDRV_TRACKED_DISCARD: 1594 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1595 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1596 } else { 1597 assert(child->perm & BLK_PERM_WRITE); 1598 } 1599 return notifier_with_return_list_notify(&bs->before_write_notifiers, 1600 req); 1601 case BDRV_TRACKED_TRUNCATE: 1602 assert(child->perm & BLK_PERM_RESIZE); 1603 return 0; 1604 default: 1605 abort(); 1606 } 1607 } 1608 1609 static inline void coroutine_fn 1610 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes, 1611 BdrvTrackedRequest *req, int ret) 1612 { 1613 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1614 BlockDriverState *bs = child->bs; 1615 1616 atomic_inc(&bs->write_gen); 1617 1618 /* 1619 * Discard cannot extend the image, but in error handling cases, such as 1620 * when reverting a qcow2 cluster allocation, the discarded range can pass 1621 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1622 * here. Instead, just skip it, since semantically a discard request 1623 * beyond EOF cannot expand the image anyway. 1624 */ 1625 if (ret == 0 && 1626 (req->type == BDRV_TRACKED_TRUNCATE || 1627 end_sector > bs->total_sectors) && 1628 req->type != BDRV_TRACKED_DISCARD) { 1629 bs->total_sectors = end_sector; 1630 bdrv_parent_cb_resize(bs); 1631 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1632 } 1633 if (req->bytes) { 1634 switch (req->type) { 1635 case BDRV_TRACKED_WRITE: 1636 stat64_max(&bs->wr_highest_offset, offset + bytes); 1637 /* fall through, to set dirty bits */ 1638 case BDRV_TRACKED_DISCARD: 1639 bdrv_set_dirty(bs, offset, bytes); 1640 break; 1641 default: 1642 break; 1643 } 1644 } 1645 } 1646 1647 /* 1648 * Forwards an already correctly aligned write request to the BlockDriver, 1649 * after possibly fragmenting it. 1650 */ 1651 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1652 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1653 int64_t align, QEMUIOVector *qiov, int flags) 1654 { 1655 BlockDriverState *bs = child->bs; 1656 BlockDriver *drv = bs->drv; 1657 int ret; 1658 1659 uint64_t bytes_remaining = bytes; 1660 int max_transfer; 1661 1662 if (!drv) { 1663 return -ENOMEDIUM; 1664 } 1665 1666 if (bdrv_has_readonly_bitmaps(bs)) { 1667 return -EPERM; 1668 } 1669 1670 assert(is_power_of_2(align)); 1671 assert((offset & (align - 1)) == 0); 1672 assert((bytes & (align - 1)) == 0); 1673 assert(!qiov || bytes == qiov->size); 1674 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1675 align); 1676 1677 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1678 1679 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1680 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1681 qemu_iovec_is_zero(qiov)) { 1682 flags |= BDRV_REQ_ZERO_WRITE; 1683 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1684 flags |= BDRV_REQ_MAY_UNMAP; 1685 } 1686 } 1687 1688 if (ret < 0) { 1689 /* Do nothing, write notifier decided to fail this request */ 1690 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1691 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1692 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1693 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1694 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1695 } else if (bytes <= max_transfer) { 1696 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1697 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1698 } else { 1699 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1700 while (bytes_remaining) { 1701 int num = MIN(bytes_remaining, max_transfer); 1702 QEMUIOVector local_qiov; 1703 int local_flags = flags; 1704 1705 assert(num); 1706 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1707 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1708 /* If FUA is going to be emulated by flush, we only 1709 * need to flush on the last iteration */ 1710 local_flags &= ~BDRV_REQ_FUA; 1711 } 1712 qemu_iovec_init(&local_qiov, qiov->niov); 1713 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1714 1715 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1716 num, &local_qiov, local_flags); 1717 qemu_iovec_destroy(&local_qiov); 1718 if (ret < 0) { 1719 break; 1720 } 1721 bytes_remaining -= num; 1722 } 1723 } 1724 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1725 1726 if (ret >= 0) { 1727 ret = 0; 1728 } 1729 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 1730 1731 return ret; 1732 } 1733 1734 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1735 int64_t offset, 1736 unsigned int bytes, 1737 BdrvRequestFlags flags, 1738 BdrvTrackedRequest *req) 1739 { 1740 BlockDriverState *bs = child->bs; 1741 uint8_t *buf = NULL; 1742 QEMUIOVector local_qiov; 1743 uint64_t align = bs->bl.request_alignment; 1744 unsigned int head_padding_bytes, tail_padding_bytes; 1745 int ret = 0; 1746 1747 head_padding_bytes = offset & (align - 1); 1748 tail_padding_bytes = (align - (offset + bytes)) & (align - 1); 1749 1750 1751 assert(flags & BDRV_REQ_ZERO_WRITE); 1752 if (head_padding_bytes || tail_padding_bytes) { 1753 buf = qemu_blockalign(bs, align); 1754 qemu_iovec_init_buf(&local_qiov, buf, align); 1755 } 1756 if (head_padding_bytes) { 1757 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1758 1759 /* RMW the unaligned part before head. */ 1760 mark_request_serialising(req, align); 1761 wait_serialising_requests(req); 1762 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1763 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1764 align, &local_qiov, 0); 1765 if (ret < 0) { 1766 goto fail; 1767 } 1768 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1769 1770 memset(buf + head_padding_bytes, 0, zero_bytes); 1771 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1772 align, &local_qiov, 1773 flags & ~BDRV_REQ_ZERO_WRITE); 1774 if (ret < 0) { 1775 goto fail; 1776 } 1777 offset += zero_bytes; 1778 bytes -= zero_bytes; 1779 } 1780 1781 assert(!bytes || (offset & (align - 1)) == 0); 1782 if (bytes >= align) { 1783 /* Write the aligned part in the middle. */ 1784 uint64_t aligned_bytes = bytes & ~(align - 1); 1785 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1786 NULL, flags); 1787 if (ret < 0) { 1788 goto fail; 1789 } 1790 bytes -= aligned_bytes; 1791 offset += aligned_bytes; 1792 } 1793 1794 assert(!bytes || (offset & (align - 1)) == 0); 1795 if (bytes) { 1796 assert(align == tail_padding_bytes + bytes); 1797 /* RMW the unaligned part after tail. */ 1798 mark_request_serialising(req, align); 1799 wait_serialising_requests(req); 1800 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1801 ret = bdrv_aligned_preadv(child, req, offset, align, 1802 align, &local_qiov, 0); 1803 if (ret < 0) { 1804 goto fail; 1805 } 1806 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1807 1808 memset(buf, 0, bytes); 1809 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1810 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1811 } 1812 fail: 1813 qemu_vfree(buf); 1814 return ret; 1815 1816 } 1817 1818 /* 1819 * Handle a write request in coroutine context 1820 */ 1821 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1822 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1823 BdrvRequestFlags flags) 1824 { 1825 BlockDriverState *bs = child->bs; 1826 BdrvTrackedRequest req; 1827 uint64_t align = bs->bl.request_alignment; 1828 uint8_t *head_buf = NULL; 1829 uint8_t *tail_buf = NULL; 1830 QEMUIOVector local_qiov; 1831 bool use_local_qiov = false; 1832 int ret; 1833 1834 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 1835 1836 if (!bs->drv) { 1837 return -ENOMEDIUM; 1838 } 1839 1840 ret = bdrv_check_byte_request(bs, offset, bytes); 1841 if (ret < 0) { 1842 return ret; 1843 } 1844 1845 bdrv_inc_in_flight(bs); 1846 /* 1847 * Align write if necessary by performing a read-modify-write cycle. 1848 * Pad qiov with the read parts and be sure to have a tracked request not 1849 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1850 */ 1851 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1852 1853 if (flags & BDRV_REQ_ZERO_WRITE) { 1854 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1855 goto out; 1856 } 1857 1858 if (offset & (align - 1)) { 1859 QEMUIOVector head_qiov; 1860 1861 mark_request_serialising(&req, align); 1862 wait_serialising_requests(&req); 1863 1864 head_buf = qemu_blockalign(bs, align); 1865 qemu_iovec_init_buf(&head_qiov, head_buf, align); 1866 1867 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1868 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1869 align, &head_qiov, 0); 1870 if (ret < 0) { 1871 goto fail; 1872 } 1873 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1874 1875 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1876 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1877 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1878 use_local_qiov = true; 1879 1880 bytes += offset & (align - 1); 1881 offset = offset & ~(align - 1); 1882 1883 /* We have read the tail already if the request is smaller 1884 * than one aligned block. 1885 */ 1886 if (bytes < align) { 1887 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1888 bytes = align; 1889 } 1890 } 1891 1892 if ((offset + bytes) & (align - 1)) { 1893 QEMUIOVector tail_qiov; 1894 size_t tail_bytes; 1895 bool waited; 1896 1897 mark_request_serialising(&req, align); 1898 waited = wait_serialising_requests(&req); 1899 assert(!waited || !use_local_qiov); 1900 1901 tail_buf = qemu_blockalign(bs, align); 1902 qemu_iovec_init_buf(&tail_qiov, tail_buf, align); 1903 1904 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1905 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1906 align, align, &tail_qiov, 0); 1907 if (ret < 0) { 1908 goto fail; 1909 } 1910 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1911 1912 if (!use_local_qiov) { 1913 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1914 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1915 use_local_qiov = true; 1916 } 1917 1918 tail_bytes = (offset + bytes) & (align - 1); 1919 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1920 1921 bytes = ROUND_UP(bytes, align); 1922 } 1923 1924 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1925 use_local_qiov ? &local_qiov : qiov, 1926 flags); 1927 1928 fail: 1929 1930 if (use_local_qiov) { 1931 qemu_iovec_destroy(&local_qiov); 1932 } 1933 qemu_vfree(head_buf); 1934 qemu_vfree(tail_buf); 1935 out: 1936 tracked_request_end(&req); 1937 bdrv_dec_in_flight(bs); 1938 return ret; 1939 } 1940 1941 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1942 int bytes, BdrvRequestFlags flags) 1943 { 1944 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 1945 1946 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1947 flags &= ~BDRV_REQ_MAY_UNMAP; 1948 } 1949 1950 return bdrv_co_pwritev(child, offset, bytes, NULL, 1951 BDRV_REQ_ZERO_WRITE | flags); 1952 } 1953 1954 /* 1955 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1956 */ 1957 int bdrv_flush_all(void) 1958 { 1959 BdrvNextIterator it; 1960 BlockDriverState *bs = NULL; 1961 int result = 0; 1962 1963 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 1964 AioContext *aio_context = bdrv_get_aio_context(bs); 1965 int ret; 1966 1967 aio_context_acquire(aio_context); 1968 ret = bdrv_flush(bs); 1969 if (ret < 0 && !result) { 1970 result = ret; 1971 } 1972 aio_context_release(aio_context); 1973 } 1974 1975 return result; 1976 } 1977 1978 1979 typedef struct BdrvCoBlockStatusData { 1980 BlockDriverState *bs; 1981 BlockDriverState *base; 1982 bool want_zero; 1983 int64_t offset; 1984 int64_t bytes; 1985 int64_t *pnum; 1986 int64_t *map; 1987 BlockDriverState **file; 1988 int ret; 1989 bool done; 1990 } BdrvCoBlockStatusData; 1991 1992 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs, 1993 bool want_zero, 1994 int64_t offset, 1995 int64_t bytes, 1996 int64_t *pnum, 1997 int64_t *map, 1998 BlockDriverState **file) 1999 { 2000 assert(bs->file && bs->file->bs); 2001 *pnum = bytes; 2002 *map = offset; 2003 *file = bs->file->bs; 2004 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2005 } 2006 2007 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs, 2008 bool want_zero, 2009 int64_t offset, 2010 int64_t bytes, 2011 int64_t *pnum, 2012 int64_t *map, 2013 BlockDriverState **file) 2014 { 2015 assert(bs->backing && bs->backing->bs); 2016 *pnum = bytes; 2017 *map = offset; 2018 *file = bs->backing->bs; 2019 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2020 } 2021 2022 /* 2023 * Returns the allocation status of the specified sectors. 2024 * Drivers not implementing the functionality are assumed to not support 2025 * backing files, hence all their sectors are reported as allocated. 2026 * 2027 * If 'want_zero' is true, the caller is querying for mapping 2028 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2029 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2030 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2031 * 2032 * If 'offset' is beyond the end of the disk image the return value is 2033 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2034 * 2035 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2036 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2037 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2038 * 2039 * 'pnum' is set to the number of bytes (including and immediately 2040 * following the specified offset) that are easily known to be in the 2041 * same allocated/unallocated state. Note that a second call starting 2042 * at the original offset plus returned pnum may have the same status. 2043 * The returned value is non-zero on success except at end-of-file. 2044 * 2045 * Returns negative errno on failure. Otherwise, if the 2046 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2047 * set to the host mapping and BDS corresponding to the guest offset. 2048 */ 2049 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2050 bool want_zero, 2051 int64_t offset, int64_t bytes, 2052 int64_t *pnum, int64_t *map, 2053 BlockDriverState **file) 2054 { 2055 int64_t total_size; 2056 int64_t n; /* bytes */ 2057 int ret; 2058 int64_t local_map = 0; 2059 BlockDriverState *local_file = NULL; 2060 int64_t aligned_offset, aligned_bytes; 2061 uint32_t align; 2062 2063 assert(pnum); 2064 *pnum = 0; 2065 total_size = bdrv_getlength(bs); 2066 if (total_size < 0) { 2067 ret = total_size; 2068 goto early_out; 2069 } 2070 2071 if (offset >= total_size) { 2072 ret = BDRV_BLOCK_EOF; 2073 goto early_out; 2074 } 2075 if (!bytes) { 2076 ret = 0; 2077 goto early_out; 2078 } 2079 2080 n = total_size - offset; 2081 if (n < bytes) { 2082 bytes = n; 2083 } 2084 2085 /* Must be non-NULL or bdrv_getlength() would have failed */ 2086 assert(bs->drv); 2087 if (!bs->drv->bdrv_co_block_status) { 2088 *pnum = bytes; 2089 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2090 if (offset + bytes == total_size) { 2091 ret |= BDRV_BLOCK_EOF; 2092 } 2093 if (bs->drv->protocol_name) { 2094 ret |= BDRV_BLOCK_OFFSET_VALID; 2095 local_map = offset; 2096 local_file = bs; 2097 } 2098 goto early_out; 2099 } 2100 2101 bdrv_inc_in_flight(bs); 2102 2103 /* Round out to request_alignment boundaries */ 2104 align = bs->bl.request_alignment; 2105 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2106 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2107 2108 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2109 aligned_bytes, pnum, &local_map, 2110 &local_file); 2111 if (ret < 0) { 2112 *pnum = 0; 2113 goto out; 2114 } 2115 2116 /* 2117 * The driver's result must be a non-zero multiple of request_alignment. 2118 * Clamp pnum and adjust map to original request. 2119 */ 2120 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2121 align > offset - aligned_offset); 2122 *pnum -= offset - aligned_offset; 2123 if (*pnum > bytes) { 2124 *pnum = bytes; 2125 } 2126 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2127 local_map += offset - aligned_offset; 2128 } 2129 2130 if (ret & BDRV_BLOCK_RAW) { 2131 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2132 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2133 *pnum, pnum, &local_map, &local_file); 2134 goto out; 2135 } 2136 2137 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2138 ret |= BDRV_BLOCK_ALLOCATED; 2139 } else if (want_zero) { 2140 if (bdrv_unallocated_blocks_are_zero(bs)) { 2141 ret |= BDRV_BLOCK_ZERO; 2142 } else if (bs->backing) { 2143 BlockDriverState *bs2 = bs->backing->bs; 2144 int64_t size2 = bdrv_getlength(bs2); 2145 2146 if (size2 >= 0 && offset >= size2) { 2147 ret |= BDRV_BLOCK_ZERO; 2148 } 2149 } 2150 } 2151 2152 if (want_zero && local_file && local_file != bs && 2153 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2154 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2155 int64_t file_pnum; 2156 int ret2; 2157 2158 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2159 *pnum, &file_pnum, NULL, NULL); 2160 if (ret2 >= 0) { 2161 /* Ignore errors. This is just providing extra information, it 2162 * is useful but not necessary. 2163 */ 2164 if (ret2 & BDRV_BLOCK_EOF && 2165 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2166 /* 2167 * It is valid for the format block driver to read 2168 * beyond the end of the underlying file's current 2169 * size; such areas read as zero. 2170 */ 2171 ret |= BDRV_BLOCK_ZERO; 2172 } else { 2173 /* Limit request to the range reported by the protocol driver */ 2174 *pnum = file_pnum; 2175 ret |= (ret2 & BDRV_BLOCK_ZERO); 2176 } 2177 } 2178 } 2179 2180 out: 2181 bdrv_dec_in_flight(bs); 2182 if (ret >= 0 && offset + *pnum == total_size) { 2183 ret |= BDRV_BLOCK_EOF; 2184 } 2185 early_out: 2186 if (file) { 2187 *file = local_file; 2188 } 2189 if (map) { 2190 *map = local_map; 2191 } 2192 return ret; 2193 } 2194 2195 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2196 BlockDriverState *base, 2197 bool want_zero, 2198 int64_t offset, 2199 int64_t bytes, 2200 int64_t *pnum, 2201 int64_t *map, 2202 BlockDriverState **file) 2203 { 2204 BlockDriverState *p; 2205 int ret = 0; 2206 bool first = true; 2207 2208 assert(bs != base); 2209 for (p = bs; p != base; p = backing_bs(p)) { 2210 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2211 file); 2212 if (ret < 0) { 2213 break; 2214 } 2215 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 2216 /* 2217 * Reading beyond the end of the file continues to read 2218 * zeroes, but we can only widen the result to the 2219 * unallocated length we learned from an earlier 2220 * iteration. 2221 */ 2222 *pnum = bytes; 2223 } 2224 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 2225 break; 2226 } 2227 /* [offset, pnum] unallocated on this layer, which could be only 2228 * the first part of [offset, bytes]. */ 2229 bytes = MIN(bytes, *pnum); 2230 first = false; 2231 } 2232 return ret; 2233 } 2234 2235 /* Coroutine wrapper for bdrv_block_status_above() */ 2236 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque) 2237 { 2238 BdrvCoBlockStatusData *data = opaque; 2239 2240 data->ret = bdrv_co_block_status_above(data->bs, data->base, 2241 data->want_zero, 2242 data->offset, data->bytes, 2243 data->pnum, data->map, data->file); 2244 data->done = true; 2245 aio_wait_kick(); 2246 } 2247 2248 /* 2249 * Synchronous wrapper around bdrv_co_block_status_above(). 2250 * 2251 * See bdrv_co_block_status_above() for details. 2252 */ 2253 static int bdrv_common_block_status_above(BlockDriverState *bs, 2254 BlockDriverState *base, 2255 bool want_zero, int64_t offset, 2256 int64_t bytes, int64_t *pnum, 2257 int64_t *map, 2258 BlockDriverState **file) 2259 { 2260 Coroutine *co; 2261 BdrvCoBlockStatusData data = { 2262 .bs = bs, 2263 .base = base, 2264 .want_zero = want_zero, 2265 .offset = offset, 2266 .bytes = bytes, 2267 .pnum = pnum, 2268 .map = map, 2269 .file = file, 2270 .done = false, 2271 }; 2272 2273 if (qemu_in_coroutine()) { 2274 /* Fast-path if already in coroutine context */ 2275 bdrv_block_status_above_co_entry(&data); 2276 } else { 2277 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data); 2278 bdrv_coroutine_enter(bs, co); 2279 BDRV_POLL_WHILE(bs, !data.done); 2280 } 2281 return data.ret; 2282 } 2283 2284 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2285 int64_t offset, int64_t bytes, int64_t *pnum, 2286 int64_t *map, BlockDriverState **file) 2287 { 2288 return bdrv_common_block_status_above(bs, base, true, offset, bytes, 2289 pnum, map, file); 2290 } 2291 2292 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2293 int64_t *pnum, int64_t *map, BlockDriverState **file) 2294 { 2295 return bdrv_block_status_above(bs, backing_bs(bs), 2296 offset, bytes, pnum, map, file); 2297 } 2298 2299 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2300 int64_t bytes, int64_t *pnum) 2301 { 2302 int ret; 2303 int64_t dummy; 2304 2305 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset, 2306 bytes, pnum ? pnum : &dummy, NULL, 2307 NULL); 2308 if (ret < 0) { 2309 return ret; 2310 } 2311 return !!(ret & BDRV_BLOCK_ALLOCATED); 2312 } 2313 2314 /* 2315 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2316 * 2317 * Return true if (a prefix of) the given range is allocated in any image 2318 * between BASE and TOP (inclusive). BASE can be NULL to check if the given 2319 * offset is allocated in any image of the chain. Return false otherwise, 2320 * or negative errno on failure. 2321 * 2322 * 'pnum' is set to the number of bytes (including and immediately 2323 * following the specified offset) that are known to be in the same 2324 * allocated/unallocated state. Note that a subsequent call starting 2325 * at 'offset + *pnum' may return the same allocation status (in other 2326 * words, the result is not necessarily the maximum possible range); 2327 * but 'pnum' will only be 0 when end of file is reached. 2328 * 2329 */ 2330 int bdrv_is_allocated_above(BlockDriverState *top, 2331 BlockDriverState *base, 2332 int64_t offset, int64_t bytes, int64_t *pnum) 2333 { 2334 BlockDriverState *intermediate; 2335 int ret; 2336 int64_t n = bytes; 2337 2338 intermediate = top; 2339 while (intermediate && intermediate != base) { 2340 int64_t pnum_inter; 2341 int64_t size_inter; 2342 2343 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2344 if (ret < 0) { 2345 return ret; 2346 } 2347 if (ret) { 2348 *pnum = pnum_inter; 2349 return 1; 2350 } 2351 2352 size_inter = bdrv_getlength(intermediate); 2353 if (size_inter < 0) { 2354 return size_inter; 2355 } 2356 if (n > pnum_inter && 2357 (intermediate == top || offset + pnum_inter < size_inter)) { 2358 n = pnum_inter; 2359 } 2360 2361 intermediate = backing_bs(intermediate); 2362 } 2363 2364 *pnum = n; 2365 return 0; 2366 } 2367 2368 typedef struct BdrvVmstateCo { 2369 BlockDriverState *bs; 2370 QEMUIOVector *qiov; 2371 int64_t pos; 2372 bool is_read; 2373 int ret; 2374 } BdrvVmstateCo; 2375 2376 static int coroutine_fn 2377 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2378 bool is_read) 2379 { 2380 BlockDriver *drv = bs->drv; 2381 int ret = -ENOTSUP; 2382 2383 bdrv_inc_in_flight(bs); 2384 2385 if (!drv) { 2386 ret = -ENOMEDIUM; 2387 } else if (drv->bdrv_load_vmstate) { 2388 if (is_read) { 2389 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2390 } else { 2391 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2392 } 2393 } else if (bs->file) { 2394 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2395 } 2396 2397 bdrv_dec_in_flight(bs); 2398 return ret; 2399 } 2400 2401 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2402 { 2403 BdrvVmstateCo *co = opaque; 2404 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2405 aio_wait_kick(); 2406 } 2407 2408 static inline int 2409 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2410 bool is_read) 2411 { 2412 if (qemu_in_coroutine()) { 2413 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2414 } else { 2415 BdrvVmstateCo data = { 2416 .bs = bs, 2417 .qiov = qiov, 2418 .pos = pos, 2419 .is_read = is_read, 2420 .ret = -EINPROGRESS, 2421 }; 2422 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2423 2424 bdrv_coroutine_enter(bs, co); 2425 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2426 return data.ret; 2427 } 2428 } 2429 2430 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2431 int64_t pos, int size) 2432 { 2433 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2434 int ret; 2435 2436 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2437 if (ret < 0) { 2438 return ret; 2439 } 2440 2441 return size; 2442 } 2443 2444 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2445 { 2446 return bdrv_rw_vmstate(bs, qiov, pos, false); 2447 } 2448 2449 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2450 int64_t pos, int size) 2451 { 2452 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2453 int ret; 2454 2455 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2456 if (ret < 0) { 2457 return ret; 2458 } 2459 2460 return size; 2461 } 2462 2463 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2464 { 2465 return bdrv_rw_vmstate(bs, qiov, pos, true); 2466 } 2467 2468 /**************************************************************/ 2469 /* async I/Os */ 2470 2471 void bdrv_aio_cancel(BlockAIOCB *acb) 2472 { 2473 qemu_aio_ref(acb); 2474 bdrv_aio_cancel_async(acb); 2475 while (acb->refcnt > 1) { 2476 if (acb->aiocb_info->get_aio_context) { 2477 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2478 } else if (acb->bs) { 2479 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2480 * assert that we're not using an I/O thread. Thread-safe 2481 * code should use bdrv_aio_cancel_async exclusively. 2482 */ 2483 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2484 aio_poll(bdrv_get_aio_context(acb->bs), true); 2485 } else { 2486 abort(); 2487 } 2488 } 2489 qemu_aio_unref(acb); 2490 } 2491 2492 /* Async version of aio cancel. The caller is not blocked if the acb implements 2493 * cancel_async, otherwise we do nothing and let the request normally complete. 2494 * In either case the completion callback must be called. */ 2495 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2496 { 2497 if (acb->aiocb_info->cancel_async) { 2498 acb->aiocb_info->cancel_async(acb); 2499 } 2500 } 2501 2502 /**************************************************************/ 2503 /* Coroutine block device emulation */ 2504 2505 typedef struct FlushCo { 2506 BlockDriverState *bs; 2507 int ret; 2508 } FlushCo; 2509 2510 2511 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2512 { 2513 FlushCo *rwco = opaque; 2514 2515 rwco->ret = bdrv_co_flush(rwco->bs); 2516 aio_wait_kick(); 2517 } 2518 2519 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2520 { 2521 int current_gen; 2522 int ret = 0; 2523 2524 bdrv_inc_in_flight(bs); 2525 2526 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2527 bdrv_is_sg(bs)) { 2528 goto early_exit; 2529 } 2530 2531 qemu_co_mutex_lock(&bs->reqs_lock); 2532 current_gen = atomic_read(&bs->write_gen); 2533 2534 /* Wait until any previous flushes are completed */ 2535 while (bs->active_flush_req) { 2536 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2537 } 2538 2539 /* Flushes reach this point in nondecreasing current_gen order. */ 2540 bs->active_flush_req = true; 2541 qemu_co_mutex_unlock(&bs->reqs_lock); 2542 2543 /* Write back all layers by calling one driver function */ 2544 if (bs->drv->bdrv_co_flush) { 2545 ret = bs->drv->bdrv_co_flush(bs); 2546 goto out; 2547 } 2548 2549 /* Write back cached data to the OS even with cache=unsafe */ 2550 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2551 if (bs->drv->bdrv_co_flush_to_os) { 2552 ret = bs->drv->bdrv_co_flush_to_os(bs); 2553 if (ret < 0) { 2554 goto out; 2555 } 2556 } 2557 2558 /* But don't actually force it to the disk with cache=unsafe */ 2559 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2560 goto flush_parent; 2561 } 2562 2563 /* Check if we really need to flush anything */ 2564 if (bs->flushed_gen == current_gen) { 2565 goto flush_parent; 2566 } 2567 2568 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2569 if (!bs->drv) { 2570 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2571 * (even in case of apparent success) */ 2572 ret = -ENOMEDIUM; 2573 goto out; 2574 } 2575 if (bs->drv->bdrv_co_flush_to_disk) { 2576 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2577 } else if (bs->drv->bdrv_aio_flush) { 2578 BlockAIOCB *acb; 2579 CoroutineIOCompletion co = { 2580 .coroutine = qemu_coroutine_self(), 2581 }; 2582 2583 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2584 if (acb == NULL) { 2585 ret = -EIO; 2586 } else { 2587 qemu_coroutine_yield(); 2588 ret = co.ret; 2589 } 2590 } else { 2591 /* 2592 * Some block drivers always operate in either writethrough or unsafe 2593 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2594 * know how the server works (because the behaviour is hardcoded or 2595 * depends on server-side configuration), so we can't ensure that 2596 * everything is safe on disk. Returning an error doesn't work because 2597 * that would break guests even if the server operates in writethrough 2598 * mode. 2599 * 2600 * Let's hope the user knows what he's doing. 2601 */ 2602 ret = 0; 2603 } 2604 2605 if (ret < 0) { 2606 goto out; 2607 } 2608 2609 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2610 * in the case of cache=unsafe, so there are no useless flushes. 2611 */ 2612 flush_parent: 2613 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2614 out: 2615 /* Notify any pending flushes that we have completed */ 2616 if (ret == 0) { 2617 bs->flushed_gen = current_gen; 2618 } 2619 2620 qemu_co_mutex_lock(&bs->reqs_lock); 2621 bs->active_flush_req = false; 2622 /* Return value is ignored - it's ok if wait queue is empty */ 2623 qemu_co_queue_next(&bs->flush_queue); 2624 qemu_co_mutex_unlock(&bs->reqs_lock); 2625 2626 early_exit: 2627 bdrv_dec_in_flight(bs); 2628 return ret; 2629 } 2630 2631 int bdrv_flush(BlockDriverState *bs) 2632 { 2633 Coroutine *co; 2634 FlushCo flush_co = { 2635 .bs = bs, 2636 .ret = NOT_DONE, 2637 }; 2638 2639 if (qemu_in_coroutine()) { 2640 /* Fast-path if already in coroutine context */ 2641 bdrv_flush_co_entry(&flush_co); 2642 } else { 2643 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2644 bdrv_coroutine_enter(bs, co); 2645 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2646 } 2647 2648 return flush_co.ret; 2649 } 2650 2651 typedef struct DiscardCo { 2652 BdrvChild *child; 2653 int64_t offset; 2654 int bytes; 2655 int ret; 2656 } DiscardCo; 2657 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2658 { 2659 DiscardCo *rwco = opaque; 2660 2661 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes); 2662 aio_wait_kick(); 2663 } 2664 2665 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, int bytes) 2666 { 2667 BdrvTrackedRequest req; 2668 int max_pdiscard, ret; 2669 int head, tail, align; 2670 BlockDriverState *bs = child->bs; 2671 2672 if (!bs || !bs->drv) { 2673 return -ENOMEDIUM; 2674 } 2675 2676 if (bdrv_has_readonly_bitmaps(bs)) { 2677 return -EPERM; 2678 } 2679 2680 ret = bdrv_check_byte_request(bs, offset, bytes); 2681 if (ret < 0) { 2682 return ret; 2683 } 2684 2685 /* Do nothing if disabled. */ 2686 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2687 return 0; 2688 } 2689 2690 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2691 return 0; 2692 } 2693 2694 /* Discard is advisory, but some devices track and coalesce 2695 * unaligned requests, so we must pass everything down rather than 2696 * round here. Still, most devices will just silently ignore 2697 * unaligned requests (by returning -ENOTSUP), so we must fragment 2698 * the request accordingly. */ 2699 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2700 assert(align % bs->bl.request_alignment == 0); 2701 head = offset % align; 2702 tail = (offset + bytes) % align; 2703 2704 bdrv_inc_in_flight(bs); 2705 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2706 2707 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 2708 if (ret < 0) { 2709 goto out; 2710 } 2711 2712 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2713 align); 2714 assert(max_pdiscard >= bs->bl.request_alignment); 2715 2716 while (bytes > 0) { 2717 int num = bytes; 2718 2719 if (head) { 2720 /* Make small requests to get to alignment boundaries. */ 2721 num = MIN(bytes, align - head); 2722 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2723 num %= bs->bl.request_alignment; 2724 } 2725 head = (head + num) % align; 2726 assert(num < max_pdiscard); 2727 } else if (tail) { 2728 if (num > align) { 2729 /* Shorten the request to the last aligned cluster. */ 2730 num -= tail; 2731 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2732 tail > bs->bl.request_alignment) { 2733 tail %= bs->bl.request_alignment; 2734 num -= tail; 2735 } 2736 } 2737 /* limit request size */ 2738 if (num > max_pdiscard) { 2739 num = max_pdiscard; 2740 } 2741 2742 if (!bs->drv) { 2743 ret = -ENOMEDIUM; 2744 goto out; 2745 } 2746 if (bs->drv->bdrv_co_pdiscard) { 2747 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2748 } else { 2749 BlockAIOCB *acb; 2750 CoroutineIOCompletion co = { 2751 .coroutine = qemu_coroutine_self(), 2752 }; 2753 2754 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2755 bdrv_co_io_em_complete, &co); 2756 if (acb == NULL) { 2757 ret = -EIO; 2758 goto out; 2759 } else { 2760 qemu_coroutine_yield(); 2761 ret = co.ret; 2762 } 2763 } 2764 if (ret && ret != -ENOTSUP) { 2765 goto out; 2766 } 2767 2768 offset += num; 2769 bytes -= num; 2770 } 2771 ret = 0; 2772 out: 2773 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 2774 tracked_request_end(&req); 2775 bdrv_dec_in_flight(bs); 2776 return ret; 2777 } 2778 2779 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int bytes) 2780 { 2781 Coroutine *co; 2782 DiscardCo rwco = { 2783 .child = child, 2784 .offset = offset, 2785 .bytes = bytes, 2786 .ret = NOT_DONE, 2787 }; 2788 2789 if (qemu_in_coroutine()) { 2790 /* Fast-path if already in coroutine context */ 2791 bdrv_pdiscard_co_entry(&rwco); 2792 } else { 2793 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2794 bdrv_coroutine_enter(child->bs, co); 2795 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 2796 } 2797 2798 return rwco.ret; 2799 } 2800 2801 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2802 { 2803 BlockDriver *drv = bs->drv; 2804 CoroutineIOCompletion co = { 2805 .coroutine = qemu_coroutine_self(), 2806 }; 2807 BlockAIOCB *acb; 2808 2809 bdrv_inc_in_flight(bs); 2810 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2811 co.ret = -ENOTSUP; 2812 goto out; 2813 } 2814 2815 if (drv->bdrv_co_ioctl) { 2816 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2817 } else { 2818 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2819 if (!acb) { 2820 co.ret = -ENOTSUP; 2821 goto out; 2822 } 2823 qemu_coroutine_yield(); 2824 } 2825 out: 2826 bdrv_dec_in_flight(bs); 2827 return co.ret; 2828 } 2829 2830 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2831 { 2832 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2833 } 2834 2835 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2836 { 2837 return memset(qemu_blockalign(bs, size), 0, size); 2838 } 2839 2840 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2841 { 2842 size_t align = bdrv_opt_mem_align(bs); 2843 2844 /* Ensure that NULL is never returned on success */ 2845 assert(align > 0); 2846 if (size == 0) { 2847 size = align; 2848 } 2849 2850 return qemu_try_memalign(align, size); 2851 } 2852 2853 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2854 { 2855 void *mem = qemu_try_blockalign(bs, size); 2856 2857 if (mem) { 2858 memset(mem, 0, size); 2859 } 2860 2861 return mem; 2862 } 2863 2864 /* 2865 * Check if all memory in this vector is sector aligned. 2866 */ 2867 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2868 { 2869 int i; 2870 size_t alignment = bdrv_min_mem_align(bs); 2871 2872 for (i = 0; i < qiov->niov; i++) { 2873 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2874 return false; 2875 } 2876 if (qiov->iov[i].iov_len % alignment) { 2877 return false; 2878 } 2879 } 2880 2881 return true; 2882 } 2883 2884 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2885 NotifierWithReturn *notifier) 2886 { 2887 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2888 } 2889 2890 void bdrv_io_plug(BlockDriverState *bs) 2891 { 2892 BdrvChild *child; 2893 2894 QLIST_FOREACH(child, &bs->children, next) { 2895 bdrv_io_plug(child->bs); 2896 } 2897 2898 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 2899 BlockDriver *drv = bs->drv; 2900 if (drv && drv->bdrv_io_plug) { 2901 drv->bdrv_io_plug(bs); 2902 } 2903 } 2904 } 2905 2906 void bdrv_io_unplug(BlockDriverState *bs) 2907 { 2908 BdrvChild *child; 2909 2910 assert(bs->io_plugged); 2911 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 2912 BlockDriver *drv = bs->drv; 2913 if (drv && drv->bdrv_io_unplug) { 2914 drv->bdrv_io_unplug(bs); 2915 } 2916 } 2917 2918 QLIST_FOREACH(child, &bs->children, next) { 2919 bdrv_io_unplug(child->bs); 2920 } 2921 } 2922 2923 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 2924 { 2925 BdrvChild *child; 2926 2927 if (bs->drv && bs->drv->bdrv_register_buf) { 2928 bs->drv->bdrv_register_buf(bs, host, size); 2929 } 2930 QLIST_FOREACH(child, &bs->children, next) { 2931 bdrv_register_buf(child->bs, host, size); 2932 } 2933 } 2934 2935 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 2936 { 2937 BdrvChild *child; 2938 2939 if (bs->drv && bs->drv->bdrv_unregister_buf) { 2940 bs->drv->bdrv_unregister_buf(bs, host); 2941 } 2942 QLIST_FOREACH(child, &bs->children, next) { 2943 bdrv_unregister_buf(child->bs, host); 2944 } 2945 } 2946 2947 static int coroutine_fn bdrv_co_copy_range_internal( 2948 BdrvChild *src, uint64_t src_offset, BdrvChild *dst, 2949 uint64_t dst_offset, uint64_t bytes, 2950 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 2951 bool recurse_src) 2952 { 2953 BdrvTrackedRequest req; 2954 int ret; 2955 2956 if (!dst || !dst->bs) { 2957 return -ENOMEDIUM; 2958 } 2959 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes); 2960 if (ret) { 2961 return ret; 2962 } 2963 if (write_flags & BDRV_REQ_ZERO_WRITE) { 2964 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 2965 } 2966 2967 if (!src || !src->bs) { 2968 return -ENOMEDIUM; 2969 } 2970 ret = bdrv_check_byte_request(src->bs, src_offset, bytes); 2971 if (ret) { 2972 return ret; 2973 } 2974 2975 if (!src->bs->drv->bdrv_co_copy_range_from 2976 || !dst->bs->drv->bdrv_co_copy_range_to 2977 || src->bs->encrypted || dst->bs->encrypted) { 2978 return -ENOTSUP; 2979 } 2980 2981 if (recurse_src) { 2982 bdrv_inc_in_flight(src->bs); 2983 tracked_request_begin(&req, src->bs, src_offset, bytes, 2984 BDRV_TRACKED_READ); 2985 2986 /* BDRV_REQ_SERIALISING is only for write operation */ 2987 assert(!(read_flags & BDRV_REQ_SERIALISING)); 2988 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) { 2989 wait_serialising_requests(&req); 2990 } 2991 2992 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 2993 src, src_offset, 2994 dst, dst_offset, 2995 bytes, 2996 read_flags, write_flags); 2997 2998 tracked_request_end(&req); 2999 bdrv_dec_in_flight(src->bs); 3000 } else { 3001 bdrv_inc_in_flight(dst->bs); 3002 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3003 BDRV_TRACKED_WRITE); 3004 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3005 write_flags); 3006 if (!ret) { 3007 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3008 src, src_offset, 3009 dst, dst_offset, 3010 bytes, 3011 read_flags, write_flags); 3012 } 3013 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3014 tracked_request_end(&req); 3015 bdrv_dec_in_flight(dst->bs); 3016 } 3017 3018 return ret; 3019 } 3020 3021 /* Copy range from @src to @dst. 3022 * 3023 * See the comment of bdrv_co_copy_range for the parameter and return value 3024 * semantics. */ 3025 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset, 3026 BdrvChild *dst, uint64_t dst_offset, 3027 uint64_t bytes, 3028 BdrvRequestFlags read_flags, 3029 BdrvRequestFlags write_flags) 3030 { 3031 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3032 read_flags, write_flags); 3033 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3034 bytes, read_flags, write_flags, true); 3035 } 3036 3037 /* Copy range from @src to @dst. 3038 * 3039 * See the comment of bdrv_co_copy_range for the parameter and return value 3040 * semantics. */ 3041 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset, 3042 BdrvChild *dst, uint64_t dst_offset, 3043 uint64_t bytes, 3044 BdrvRequestFlags read_flags, 3045 BdrvRequestFlags write_flags) 3046 { 3047 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3048 read_flags, write_flags); 3049 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3050 bytes, read_flags, write_flags, false); 3051 } 3052 3053 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset, 3054 BdrvChild *dst, uint64_t dst_offset, 3055 uint64_t bytes, BdrvRequestFlags read_flags, 3056 BdrvRequestFlags write_flags) 3057 { 3058 return bdrv_co_copy_range_from(src, src_offset, 3059 dst, dst_offset, 3060 bytes, read_flags, write_flags); 3061 } 3062 3063 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3064 { 3065 BdrvChild *c; 3066 QLIST_FOREACH(c, &bs->parents, next_parent) { 3067 if (c->role->resize) { 3068 c->role->resize(c); 3069 } 3070 } 3071 } 3072 3073 /** 3074 * Truncate file to 'offset' bytes (needed only for file protocols) 3075 */ 3076 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, 3077 PreallocMode prealloc, Error **errp) 3078 { 3079 BlockDriverState *bs = child->bs; 3080 BlockDriver *drv = bs->drv; 3081 BdrvTrackedRequest req; 3082 int64_t old_size, new_bytes; 3083 int ret; 3084 3085 3086 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3087 if (!drv) { 3088 error_setg(errp, "No medium inserted"); 3089 return -ENOMEDIUM; 3090 } 3091 if (offset < 0) { 3092 error_setg(errp, "Image size cannot be negative"); 3093 return -EINVAL; 3094 } 3095 3096 old_size = bdrv_getlength(bs); 3097 if (old_size < 0) { 3098 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3099 return old_size; 3100 } 3101 3102 if (offset > old_size) { 3103 new_bytes = offset - old_size; 3104 } else { 3105 new_bytes = 0; 3106 } 3107 3108 bdrv_inc_in_flight(bs); 3109 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3110 BDRV_TRACKED_TRUNCATE); 3111 3112 /* If we are growing the image and potentially using preallocation for the 3113 * new area, we need to make sure that no write requests are made to it 3114 * concurrently or they might be overwritten by preallocation. */ 3115 if (new_bytes) { 3116 mark_request_serialising(&req, 1); 3117 } 3118 if (bs->read_only) { 3119 error_setg(errp, "Image is read-only"); 3120 ret = -EACCES; 3121 goto out; 3122 } 3123 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3124 0); 3125 if (ret < 0) { 3126 error_setg_errno(errp, -ret, 3127 "Failed to prepare request for truncation"); 3128 goto out; 3129 } 3130 3131 if (!drv->bdrv_co_truncate) { 3132 if (bs->file && drv->is_filter) { 3133 ret = bdrv_co_truncate(bs->file, offset, prealloc, errp); 3134 goto out; 3135 } 3136 error_setg(errp, "Image format driver does not support resize"); 3137 ret = -ENOTSUP; 3138 goto out; 3139 } 3140 3141 ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp); 3142 if (ret < 0) { 3143 goto out; 3144 } 3145 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3146 if (ret < 0) { 3147 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3148 } else { 3149 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3150 } 3151 /* It's possible that truncation succeeded but refresh_total_sectors 3152 * failed, but the latter doesn't affect how we should finish the request. 3153 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3154 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3155 3156 out: 3157 tracked_request_end(&req); 3158 bdrv_dec_in_flight(bs); 3159 3160 return ret; 3161 } 3162 3163 typedef struct TruncateCo { 3164 BdrvChild *child; 3165 int64_t offset; 3166 PreallocMode prealloc; 3167 Error **errp; 3168 int ret; 3169 } TruncateCo; 3170 3171 static void coroutine_fn bdrv_truncate_co_entry(void *opaque) 3172 { 3173 TruncateCo *tco = opaque; 3174 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc, 3175 tco->errp); 3176 aio_wait_kick(); 3177 } 3178 3179 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc, 3180 Error **errp) 3181 { 3182 Coroutine *co; 3183 TruncateCo tco = { 3184 .child = child, 3185 .offset = offset, 3186 .prealloc = prealloc, 3187 .errp = errp, 3188 .ret = NOT_DONE, 3189 }; 3190 3191 if (qemu_in_coroutine()) { 3192 /* Fast-path if already in coroutine context */ 3193 bdrv_truncate_co_entry(&tco); 3194 } else { 3195 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco); 3196 bdrv_coroutine_enter(child->bs, co); 3197 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE); 3198 } 3199 3200 return tco.ret; 3201 } 3202