1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "qemu/cutils.h" 33 #include "qapi/error.h" 34 #include "qemu/error-report.h" 35 36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 37 38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 40 41 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 42 int64_t offset, int bytes, BdrvRequestFlags flags); 43 44 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore) 45 { 46 BdrvChild *c, *next; 47 48 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 49 if (c == ignore) { 50 continue; 51 } 52 if (c->role->drained_begin) { 53 c->role->drained_begin(c); 54 } 55 } 56 } 57 58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore) 59 { 60 BdrvChild *c, *next; 61 62 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 63 if (c == ignore) { 64 continue; 65 } 66 if (c->role->drained_end) { 67 c->role->drained_end(c); 68 } 69 } 70 } 71 72 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 73 { 74 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 75 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 76 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 77 src->opt_mem_alignment); 78 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 79 src->min_mem_alignment); 80 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 81 } 82 83 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 84 { 85 BlockDriver *drv = bs->drv; 86 Error *local_err = NULL; 87 88 memset(&bs->bl, 0, sizeof(bs->bl)); 89 90 if (!drv) { 91 return; 92 } 93 94 /* Default alignment based on whether driver has byte interface */ 95 bs->bl.request_alignment = (drv->bdrv_co_preadv || 96 drv->bdrv_aio_preadv) ? 1 : 512; 97 98 /* Take some limits from the children as a default */ 99 if (bs->file) { 100 bdrv_refresh_limits(bs->file->bs, &local_err); 101 if (local_err) { 102 error_propagate(errp, local_err); 103 return; 104 } 105 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 106 } else { 107 bs->bl.min_mem_alignment = 512; 108 bs->bl.opt_mem_alignment = getpagesize(); 109 110 /* Safe default since most protocols use readv()/writev()/etc */ 111 bs->bl.max_iov = IOV_MAX; 112 } 113 114 if (bs->backing) { 115 bdrv_refresh_limits(bs->backing->bs, &local_err); 116 if (local_err) { 117 error_propagate(errp, local_err); 118 return; 119 } 120 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 121 } 122 123 /* Then let the driver override it */ 124 if (drv->bdrv_refresh_limits) { 125 drv->bdrv_refresh_limits(bs, errp); 126 } 127 } 128 129 /** 130 * The copy-on-read flag is actually a reference count so multiple users may 131 * use the feature without worrying about clobbering its previous state. 132 * Copy-on-read stays enabled until all users have called to disable it. 133 */ 134 void bdrv_enable_copy_on_read(BlockDriverState *bs) 135 { 136 atomic_inc(&bs->copy_on_read); 137 } 138 139 void bdrv_disable_copy_on_read(BlockDriverState *bs) 140 { 141 int old = atomic_fetch_dec(&bs->copy_on_read); 142 assert(old >= 1); 143 } 144 145 typedef struct { 146 Coroutine *co; 147 BlockDriverState *bs; 148 bool done; 149 bool begin; 150 bool recursive; 151 BdrvChild *parent; 152 } BdrvCoDrainData; 153 154 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 155 { 156 BdrvCoDrainData *data = opaque; 157 BlockDriverState *bs = data->bs; 158 159 if (data->begin) { 160 bs->drv->bdrv_co_drain_begin(bs); 161 } else { 162 bs->drv->bdrv_co_drain_end(bs); 163 } 164 165 /* Set data->done before reading bs->wakeup. */ 166 atomic_mb_set(&data->done, true); 167 bdrv_wakeup(bs); 168 } 169 170 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 171 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, bool recursive) 172 { 173 BdrvChild *child, *tmp; 174 BdrvCoDrainData data = { .bs = bs, .done = false, .begin = begin}; 175 176 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 177 (!begin && !bs->drv->bdrv_co_drain_end)) { 178 return; 179 } 180 181 data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data); 182 bdrv_coroutine_enter(bs, data.co); 183 BDRV_POLL_WHILE(bs, !data.done); 184 185 if (recursive) { 186 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) { 187 bdrv_drain_invoke(child->bs, begin, true); 188 } 189 } 190 } 191 192 static bool bdrv_drain_recurse(BlockDriverState *bs) 193 { 194 BdrvChild *child, *tmp; 195 bool waited; 196 197 /* Wait for drained requests to finish */ 198 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0); 199 200 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) { 201 BlockDriverState *bs = child->bs; 202 bool in_main_loop = 203 qemu_get_current_aio_context() == qemu_get_aio_context(); 204 assert(bs->refcnt > 0); 205 if (in_main_loop) { 206 /* In case the recursive bdrv_drain_recurse processes a 207 * block_job_defer_to_main_loop BH and modifies the graph, 208 * let's hold a reference to bs until we are done. 209 * 210 * IOThread doesn't have such a BH, and it is not safe to call 211 * bdrv_unref without BQL, so skip doing it there. 212 */ 213 bdrv_ref(bs); 214 } 215 waited |= bdrv_drain_recurse(bs); 216 if (in_main_loop) { 217 bdrv_unref(bs); 218 } 219 } 220 221 return waited; 222 } 223 224 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 225 BdrvChild *parent); 226 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 227 BdrvChild *parent); 228 229 static void bdrv_co_drain_bh_cb(void *opaque) 230 { 231 BdrvCoDrainData *data = opaque; 232 Coroutine *co = data->co; 233 BlockDriverState *bs = data->bs; 234 235 bdrv_dec_in_flight(bs); 236 if (data->begin) { 237 bdrv_do_drained_begin(bs, data->recursive, data->parent); 238 } else { 239 bdrv_do_drained_end(bs, data->recursive, data->parent); 240 } 241 242 data->done = true; 243 aio_co_wake(co); 244 } 245 246 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 247 bool begin, bool recursive, 248 BdrvChild *parent) 249 { 250 BdrvCoDrainData data; 251 252 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 253 * other coroutines run if they were queued by aio_co_enter(). */ 254 255 assert(qemu_in_coroutine()); 256 data = (BdrvCoDrainData) { 257 .co = qemu_coroutine_self(), 258 .bs = bs, 259 .done = false, 260 .begin = begin, 261 .recursive = recursive, 262 .parent = parent, 263 }; 264 bdrv_inc_in_flight(bs); 265 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 266 bdrv_co_drain_bh_cb, &data); 267 268 qemu_coroutine_yield(); 269 /* If we are resumed from some other event (such as an aio completion or a 270 * timer callback), it is a bug in the caller that should be fixed. */ 271 assert(data.done); 272 } 273 274 void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 275 BdrvChild *parent) 276 { 277 BdrvChild *child, *next; 278 279 if (qemu_in_coroutine()) { 280 bdrv_co_yield_to_drain(bs, true, recursive, parent); 281 return; 282 } 283 284 /* Stop things in parent-to-child order */ 285 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 286 aio_disable_external(bdrv_get_aio_context(bs)); 287 } 288 289 bdrv_parent_drained_begin(bs, parent); 290 bdrv_drain_invoke(bs, true, false); 291 bdrv_drain_recurse(bs); 292 293 if (recursive) { 294 bs->recursive_quiesce_counter++; 295 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 296 bdrv_do_drained_begin(child->bs, true, child); 297 } 298 } 299 } 300 301 void bdrv_drained_begin(BlockDriverState *bs) 302 { 303 bdrv_do_drained_begin(bs, false, NULL); 304 } 305 306 void bdrv_subtree_drained_begin(BlockDriverState *bs) 307 { 308 bdrv_do_drained_begin(bs, true, NULL); 309 } 310 311 void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 312 BdrvChild *parent) 313 { 314 BdrvChild *child, *next; 315 int old_quiesce_counter; 316 317 if (qemu_in_coroutine()) { 318 bdrv_co_yield_to_drain(bs, false, recursive, parent); 319 return; 320 } 321 assert(bs->quiesce_counter > 0); 322 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter); 323 324 /* Re-enable things in child-to-parent order */ 325 bdrv_drain_invoke(bs, false, false); 326 bdrv_parent_drained_end(bs, parent); 327 if (old_quiesce_counter == 1) { 328 aio_enable_external(bdrv_get_aio_context(bs)); 329 } 330 331 if (recursive) { 332 bs->recursive_quiesce_counter--; 333 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 334 bdrv_do_drained_end(child->bs, true, child); 335 } 336 } 337 } 338 339 void bdrv_drained_end(BlockDriverState *bs) 340 { 341 bdrv_do_drained_end(bs, false, NULL); 342 } 343 344 void bdrv_subtree_drained_end(BlockDriverState *bs) 345 { 346 bdrv_do_drained_end(bs, true, NULL); 347 } 348 349 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 350 { 351 int i; 352 353 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 354 bdrv_do_drained_begin(child->bs, true, child); 355 } 356 } 357 358 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 359 { 360 int i; 361 362 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 363 bdrv_do_drained_end(child->bs, true, child); 364 } 365 } 366 367 /* 368 * Wait for pending requests to complete on a single BlockDriverState subtree, 369 * and suspend block driver's internal I/O until next request arrives. 370 * 371 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 372 * AioContext. 373 * 374 * Only this BlockDriverState's AioContext is run, so in-flight requests must 375 * not depend on events in other AioContexts. In that case, use 376 * bdrv_drain_all() instead. 377 */ 378 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 379 { 380 assert(qemu_in_coroutine()); 381 bdrv_drained_begin(bs); 382 bdrv_drained_end(bs); 383 } 384 385 void bdrv_drain(BlockDriverState *bs) 386 { 387 bdrv_drained_begin(bs); 388 bdrv_drained_end(bs); 389 } 390 391 /* 392 * Wait for pending requests to complete across all BlockDriverStates 393 * 394 * This function does not flush data to disk, use bdrv_flush_all() for that 395 * after calling this function. 396 * 397 * This pauses all block jobs and disables external clients. It must 398 * be paired with bdrv_drain_all_end(). 399 * 400 * NOTE: no new block jobs or BlockDriverStates can be created between 401 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 402 */ 403 void bdrv_drain_all_begin(void) 404 { 405 /* Always run first iteration so any pending completion BHs run */ 406 bool waited = true; 407 BlockDriverState *bs; 408 BdrvNextIterator it; 409 GSList *aio_ctxs = NULL, *ctx; 410 411 /* BDRV_POLL_WHILE() for a node can only be called from its own I/O thread 412 * or the main loop AioContext. We potentially use BDRV_POLL_WHILE() on 413 * nodes in several different AioContexts, so make sure we're in the main 414 * context. */ 415 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 416 417 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 418 AioContext *aio_context = bdrv_get_aio_context(bs); 419 420 /* Stop things in parent-to-child order */ 421 aio_context_acquire(aio_context); 422 aio_disable_external(aio_context); 423 bdrv_parent_drained_begin(bs, NULL); 424 bdrv_drain_invoke(bs, true, true); 425 aio_context_release(aio_context); 426 427 if (!g_slist_find(aio_ctxs, aio_context)) { 428 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context); 429 } 430 } 431 432 /* Note that completion of an asynchronous I/O operation can trigger any 433 * number of other I/O operations on other devices---for example a 434 * coroutine can submit an I/O request to another device in response to 435 * request completion. Therefore we must keep looping until there was no 436 * more activity rather than simply draining each device independently. 437 */ 438 while (waited) { 439 waited = false; 440 441 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) { 442 AioContext *aio_context = ctx->data; 443 444 aio_context_acquire(aio_context); 445 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 446 if (aio_context == bdrv_get_aio_context(bs)) { 447 waited |= bdrv_drain_recurse(bs); 448 } 449 } 450 aio_context_release(aio_context); 451 } 452 } 453 454 g_slist_free(aio_ctxs); 455 } 456 457 void bdrv_drain_all_end(void) 458 { 459 BlockDriverState *bs; 460 BdrvNextIterator it; 461 462 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 463 AioContext *aio_context = bdrv_get_aio_context(bs); 464 465 /* Re-enable things in child-to-parent order */ 466 aio_context_acquire(aio_context); 467 bdrv_drain_invoke(bs, false, true); 468 bdrv_parent_drained_end(bs, NULL); 469 aio_enable_external(aio_context); 470 aio_context_release(aio_context); 471 } 472 } 473 474 void bdrv_drain_all(void) 475 { 476 bdrv_drain_all_begin(); 477 bdrv_drain_all_end(); 478 } 479 480 /** 481 * Remove an active request from the tracked requests list 482 * 483 * This function should be called when a tracked request is completing. 484 */ 485 static void tracked_request_end(BdrvTrackedRequest *req) 486 { 487 if (req->serialising) { 488 atomic_dec(&req->bs->serialising_in_flight); 489 } 490 491 qemu_co_mutex_lock(&req->bs->reqs_lock); 492 QLIST_REMOVE(req, list); 493 qemu_co_queue_restart_all(&req->wait_queue); 494 qemu_co_mutex_unlock(&req->bs->reqs_lock); 495 } 496 497 /** 498 * Add an active request to the tracked requests list 499 */ 500 static void tracked_request_begin(BdrvTrackedRequest *req, 501 BlockDriverState *bs, 502 int64_t offset, 503 unsigned int bytes, 504 enum BdrvTrackedRequestType type) 505 { 506 *req = (BdrvTrackedRequest){ 507 .bs = bs, 508 .offset = offset, 509 .bytes = bytes, 510 .type = type, 511 .co = qemu_coroutine_self(), 512 .serialising = false, 513 .overlap_offset = offset, 514 .overlap_bytes = bytes, 515 }; 516 517 qemu_co_queue_init(&req->wait_queue); 518 519 qemu_co_mutex_lock(&bs->reqs_lock); 520 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 521 qemu_co_mutex_unlock(&bs->reqs_lock); 522 } 523 524 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 525 { 526 int64_t overlap_offset = req->offset & ~(align - 1); 527 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 528 - overlap_offset; 529 530 if (!req->serialising) { 531 atomic_inc(&req->bs->serialising_in_flight); 532 req->serialising = true; 533 } 534 535 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 536 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 537 } 538 539 /** 540 * Round a region to cluster boundaries 541 */ 542 void bdrv_round_to_clusters(BlockDriverState *bs, 543 int64_t offset, int64_t bytes, 544 int64_t *cluster_offset, 545 int64_t *cluster_bytes) 546 { 547 BlockDriverInfo bdi; 548 549 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 550 *cluster_offset = offset; 551 *cluster_bytes = bytes; 552 } else { 553 int64_t c = bdi.cluster_size; 554 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 555 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 556 } 557 } 558 559 static int bdrv_get_cluster_size(BlockDriverState *bs) 560 { 561 BlockDriverInfo bdi; 562 int ret; 563 564 ret = bdrv_get_info(bs, &bdi); 565 if (ret < 0 || bdi.cluster_size == 0) { 566 return bs->bl.request_alignment; 567 } else { 568 return bdi.cluster_size; 569 } 570 } 571 572 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 573 int64_t offset, unsigned int bytes) 574 { 575 /* aaaa bbbb */ 576 if (offset >= req->overlap_offset + req->overlap_bytes) { 577 return false; 578 } 579 /* bbbb aaaa */ 580 if (req->overlap_offset >= offset + bytes) { 581 return false; 582 } 583 return true; 584 } 585 586 void bdrv_inc_in_flight(BlockDriverState *bs) 587 { 588 atomic_inc(&bs->in_flight); 589 } 590 591 void bdrv_wakeup(BlockDriverState *bs) 592 { 593 aio_wait_kick(bdrv_get_aio_wait(bs)); 594 } 595 596 void bdrv_dec_in_flight(BlockDriverState *bs) 597 { 598 atomic_dec(&bs->in_flight); 599 bdrv_wakeup(bs); 600 } 601 602 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 603 { 604 BlockDriverState *bs = self->bs; 605 BdrvTrackedRequest *req; 606 bool retry; 607 bool waited = false; 608 609 if (!atomic_read(&bs->serialising_in_flight)) { 610 return false; 611 } 612 613 do { 614 retry = false; 615 qemu_co_mutex_lock(&bs->reqs_lock); 616 QLIST_FOREACH(req, &bs->tracked_requests, list) { 617 if (req == self || (!req->serialising && !self->serialising)) { 618 continue; 619 } 620 if (tracked_request_overlaps(req, self->overlap_offset, 621 self->overlap_bytes)) 622 { 623 /* Hitting this means there was a reentrant request, for 624 * example, a block driver issuing nested requests. This must 625 * never happen since it means deadlock. 626 */ 627 assert(qemu_coroutine_self() != req->co); 628 629 /* If the request is already (indirectly) waiting for us, or 630 * will wait for us as soon as it wakes up, then just go on 631 * (instead of producing a deadlock in the former case). */ 632 if (!req->waiting_for) { 633 self->waiting_for = req; 634 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 635 self->waiting_for = NULL; 636 retry = true; 637 waited = true; 638 break; 639 } 640 } 641 } 642 qemu_co_mutex_unlock(&bs->reqs_lock); 643 } while (retry); 644 645 return waited; 646 } 647 648 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 649 size_t size) 650 { 651 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 652 return -EIO; 653 } 654 655 if (!bdrv_is_inserted(bs)) { 656 return -ENOMEDIUM; 657 } 658 659 if (offset < 0) { 660 return -EIO; 661 } 662 663 return 0; 664 } 665 666 typedef struct RwCo { 667 BdrvChild *child; 668 int64_t offset; 669 QEMUIOVector *qiov; 670 bool is_write; 671 int ret; 672 BdrvRequestFlags flags; 673 } RwCo; 674 675 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 676 { 677 RwCo *rwco = opaque; 678 679 if (!rwco->is_write) { 680 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 681 rwco->qiov->size, rwco->qiov, 682 rwco->flags); 683 } else { 684 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 685 rwco->qiov->size, rwco->qiov, 686 rwco->flags); 687 } 688 } 689 690 /* 691 * Process a vectored synchronous request using coroutines 692 */ 693 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 694 QEMUIOVector *qiov, bool is_write, 695 BdrvRequestFlags flags) 696 { 697 Coroutine *co; 698 RwCo rwco = { 699 .child = child, 700 .offset = offset, 701 .qiov = qiov, 702 .is_write = is_write, 703 .ret = NOT_DONE, 704 .flags = flags, 705 }; 706 707 if (qemu_in_coroutine()) { 708 /* Fast-path if already in coroutine context */ 709 bdrv_rw_co_entry(&rwco); 710 } else { 711 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 712 bdrv_coroutine_enter(child->bs, co); 713 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 714 } 715 return rwco.ret; 716 } 717 718 /* 719 * Process a synchronous request using coroutines 720 */ 721 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, 722 int nb_sectors, bool is_write, BdrvRequestFlags flags) 723 { 724 QEMUIOVector qiov; 725 struct iovec iov = { 726 .iov_base = (void *)buf, 727 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 728 }; 729 730 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 731 return -EINVAL; 732 } 733 734 qemu_iovec_init_external(&qiov, &iov, 1); 735 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, 736 &qiov, is_write, flags); 737 } 738 739 /* return < 0 if error. See bdrv_write() for the return codes */ 740 int bdrv_read(BdrvChild *child, int64_t sector_num, 741 uint8_t *buf, int nb_sectors) 742 { 743 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); 744 } 745 746 /* Return < 0 if error. Important errors are: 747 -EIO generic I/O error (may happen for all errors) 748 -ENOMEDIUM No media inserted. 749 -EINVAL Invalid sector number or nb_sectors 750 -EACCES Trying to write a read-only device 751 */ 752 int bdrv_write(BdrvChild *child, int64_t sector_num, 753 const uint8_t *buf, int nb_sectors) 754 { 755 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 756 } 757 758 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 759 int bytes, BdrvRequestFlags flags) 760 { 761 QEMUIOVector qiov; 762 struct iovec iov = { 763 .iov_base = NULL, 764 .iov_len = bytes, 765 }; 766 767 qemu_iovec_init_external(&qiov, &iov, 1); 768 return bdrv_prwv_co(child, offset, &qiov, true, 769 BDRV_REQ_ZERO_WRITE | flags); 770 } 771 772 /* 773 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 774 * The operation is sped up by checking the block status and only writing 775 * zeroes to the device if they currently do not return zeroes. Optional 776 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 777 * BDRV_REQ_FUA). 778 * 779 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 780 */ 781 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 782 { 783 int ret; 784 int64_t target_size, bytes, offset = 0; 785 BlockDriverState *bs = child->bs; 786 787 target_size = bdrv_getlength(bs); 788 if (target_size < 0) { 789 return target_size; 790 } 791 792 for (;;) { 793 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 794 if (bytes <= 0) { 795 return 0; 796 } 797 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 798 if (ret < 0) { 799 error_report("error getting block status at offset %" PRId64 ": %s", 800 offset, strerror(-ret)); 801 return ret; 802 } 803 if (ret & BDRV_BLOCK_ZERO) { 804 offset += bytes; 805 continue; 806 } 807 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 808 if (ret < 0) { 809 error_report("error writing zeroes at offset %" PRId64 ": %s", 810 offset, strerror(-ret)); 811 return ret; 812 } 813 offset += bytes; 814 } 815 } 816 817 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 818 { 819 int ret; 820 821 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 822 if (ret < 0) { 823 return ret; 824 } 825 826 return qiov->size; 827 } 828 829 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 830 { 831 QEMUIOVector qiov; 832 struct iovec iov = { 833 .iov_base = (void *)buf, 834 .iov_len = bytes, 835 }; 836 837 if (bytes < 0) { 838 return -EINVAL; 839 } 840 841 qemu_iovec_init_external(&qiov, &iov, 1); 842 return bdrv_preadv(child, offset, &qiov); 843 } 844 845 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 846 { 847 int ret; 848 849 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 850 if (ret < 0) { 851 return ret; 852 } 853 854 return qiov->size; 855 } 856 857 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 858 { 859 QEMUIOVector qiov; 860 struct iovec iov = { 861 .iov_base = (void *) buf, 862 .iov_len = bytes, 863 }; 864 865 if (bytes < 0) { 866 return -EINVAL; 867 } 868 869 qemu_iovec_init_external(&qiov, &iov, 1); 870 return bdrv_pwritev(child, offset, &qiov); 871 } 872 873 /* 874 * Writes to the file and ensures that no writes are reordered across this 875 * request (acts as a barrier) 876 * 877 * Returns 0 on success, -errno in error cases. 878 */ 879 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 880 const void *buf, int count) 881 { 882 int ret; 883 884 ret = bdrv_pwrite(child, offset, buf, count); 885 if (ret < 0) { 886 return ret; 887 } 888 889 ret = bdrv_flush(child->bs); 890 if (ret < 0) { 891 return ret; 892 } 893 894 return 0; 895 } 896 897 typedef struct CoroutineIOCompletion { 898 Coroutine *coroutine; 899 int ret; 900 } CoroutineIOCompletion; 901 902 static void bdrv_co_io_em_complete(void *opaque, int ret) 903 { 904 CoroutineIOCompletion *co = opaque; 905 906 co->ret = ret; 907 aio_co_wake(co->coroutine); 908 } 909 910 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 911 uint64_t offset, uint64_t bytes, 912 QEMUIOVector *qiov, int flags) 913 { 914 BlockDriver *drv = bs->drv; 915 int64_t sector_num; 916 unsigned int nb_sectors; 917 918 assert(!(flags & ~BDRV_REQ_MASK)); 919 920 if (!drv) { 921 return -ENOMEDIUM; 922 } 923 924 if (drv->bdrv_co_preadv) { 925 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 926 } 927 928 if (drv->bdrv_aio_preadv) { 929 BlockAIOCB *acb; 930 CoroutineIOCompletion co = { 931 .coroutine = qemu_coroutine_self(), 932 }; 933 934 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 935 bdrv_co_io_em_complete, &co); 936 if (acb == NULL) { 937 return -EIO; 938 } else { 939 qemu_coroutine_yield(); 940 return co.ret; 941 } 942 } 943 944 sector_num = offset >> BDRV_SECTOR_BITS; 945 nb_sectors = bytes >> BDRV_SECTOR_BITS; 946 947 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 948 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 949 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 950 assert(drv->bdrv_co_readv); 951 952 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 953 } 954 955 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 956 uint64_t offset, uint64_t bytes, 957 QEMUIOVector *qiov, int flags) 958 { 959 BlockDriver *drv = bs->drv; 960 int64_t sector_num; 961 unsigned int nb_sectors; 962 int ret; 963 964 assert(!(flags & ~BDRV_REQ_MASK)); 965 966 if (!drv) { 967 return -ENOMEDIUM; 968 } 969 970 if (drv->bdrv_co_pwritev) { 971 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 972 flags & bs->supported_write_flags); 973 flags &= ~bs->supported_write_flags; 974 goto emulate_flags; 975 } 976 977 if (drv->bdrv_aio_pwritev) { 978 BlockAIOCB *acb; 979 CoroutineIOCompletion co = { 980 .coroutine = qemu_coroutine_self(), 981 }; 982 983 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 984 flags & bs->supported_write_flags, 985 bdrv_co_io_em_complete, &co); 986 flags &= ~bs->supported_write_flags; 987 if (acb == NULL) { 988 ret = -EIO; 989 } else { 990 qemu_coroutine_yield(); 991 ret = co.ret; 992 } 993 goto emulate_flags; 994 } 995 996 sector_num = offset >> BDRV_SECTOR_BITS; 997 nb_sectors = bytes >> BDRV_SECTOR_BITS; 998 999 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1000 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1001 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 1002 1003 assert(drv->bdrv_co_writev); 1004 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1005 flags & bs->supported_write_flags); 1006 flags &= ~bs->supported_write_flags; 1007 1008 emulate_flags: 1009 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1010 ret = bdrv_co_flush(bs); 1011 } 1012 1013 return ret; 1014 } 1015 1016 static int coroutine_fn 1017 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 1018 uint64_t bytes, QEMUIOVector *qiov) 1019 { 1020 BlockDriver *drv = bs->drv; 1021 1022 if (!drv) { 1023 return -ENOMEDIUM; 1024 } 1025 1026 if (!drv->bdrv_co_pwritev_compressed) { 1027 return -ENOTSUP; 1028 } 1029 1030 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1031 } 1032 1033 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1034 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 1035 { 1036 BlockDriverState *bs = child->bs; 1037 1038 /* Perform I/O through a temporary buffer so that users who scribble over 1039 * their read buffer while the operation is in progress do not end up 1040 * modifying the image file. This is critical for zero-copy guest I/O 1041 * where anything might happen inside guest memory. 1042 */ 1043 void *bounce_buffer; 1044 1045 BlockDriver *drv = bs->drv; 1046 struct iovec iov; 1047 QEMUIOVector local_qiov; 1048 int64_t cluster_offset; 1049 int64_t cluster_bytes; 1050 size_t skip_bytes; 1051 int ret; 1052 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1053 BDRV_REQUEST_MAX_BYTES); 1054 unsigned int progress = 0; 1055 1056 if (!drv) { 1057 return -ENOMEDIUM; 1058 } 1059 1060 /* FIXME We cannot require callers to have write permissions when all they 1061 * are doing is a read request. If we did things right, write permissions 1062 * would be obtained anyway, but internally by the copy-on-read code. As 1063 * long as it is implemented here rather than in a separate filter driver, 1064 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1065 * it could request permissions. Therefore we have to bypass the permission 1066 * system for the moment. */ 1067 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1068 1069 /* Cover entire cluster so no additional backing file I/O is required when 1070 * allocating cluster in the image file. Note that this value may exceed 1071 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1072 * is one reason we loop rather than doing it all at once. 1073 */ 1074 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1075 skip_bytes = offset - cluster_offset; 1076 1077 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1078 cluster_offset, cluster_bytes); 1079 1080 bounce_buffer = qemu_try_blockalign(bs, 1081 MIN(MIN(max_transfer, cluster_bytes), 1082 MAX_BOUNCE_BUFFER)); 1083 if (bounce_buffer == NULL) { 1084 ret = -ENOMEM; 1085 goto err; 1086 } 1087 1088 while (cluster_bytes) { 1089 int64_t pnum; 1090 1091 ret = bdrv_is_allocated(bs, cluster_offset, 1092 MIN(cluster_bytes, max_transfer), &pnum); 1093 if (ret < 0) { 1094 /* Safe to treat errors in querying allocation as if 1095 * unallocated; we'll probably fail again soon on the 1096 * read, but at least that will set a decent errno. 1097 */ 1098 pnum = MIN(cluster_bytes, max_transfer); 1099 } 1100 1101 assert(skip_bytes < pnum); 1102 1103 if (ret <= 0) { 1104 /* Must copy-on-read; use the bounce buffer */ 1105 iov.iov_base = bounce_buffer; 1106 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1107 qemu_iovec_init_external(&local_qiov, &iov, 1); 1108 1109 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1110 &local_qiov, 0); 1111 if (ret < 0) { 1112 goto err; 1113 } 1114 1115 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1116 if (drv->bdrv_co_pwrite_zeroes && 1117 buffer_is_zero(bounce_buffer, pnum)) { 1118 /* FIXME: Should we (perhaps conditionally) be setting 1119 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1120 * that still correctly reads as zero? */ 1121 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1122 BDRV_REQ_WRITE_UNCHANGED); 1123 } else { 1124 /* This does not change the data on the disk, it is not 1125 * necessary to flush even in cache=writethrough mode. 1126 */ 1127 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1128 &local_qiov, 1129 BDRV_REQ_WRITE_UNCHANGED); 1130 } 1131 1132 if (ret < 0) { 1133 /* It might be okay to ignore write errors for guest 1134 * requests. If this is a deliberate copy-on-read 1135 * then we don't want to ignore the error. Simply 1136 * report it in all cases. 1137 */ 1138 goto err; 1139 } 1140 1141 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes, 1142 pnum - skip_bytes); 1143 } else { 1144 /* Read directly into the destination */ 1145 qemu_iovec_init(&local_qiov, qiov->niov); 1146 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes); 1147 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size, 1148 &local_qiov, 0); 1149 qemu_iovec_destroy(&local_qiov); 1150 if (ret < 0) { 1151 goto err; 1152 } 1153 } 1154 1155 cluster_offset += pnum; 1156 cluster_bytes -= pnum; 1157 progress += pnum - skip_bytes; 1158 skip_bytes = 0; 1159 } 1160 ret = 0; 1161 1162 err: 1163 qemu_vfree(bounce_buffer); 1164 return ret; 1165 } 1166 1167 /* 1168 * Forwards an already correctly aligned request to the BlockDriver. This 1169 * handles copy on read, zeroing after EOF, and fragmentation of large 1170 * reads; any other features must be implemented by the caller. 1171 */ 1172 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1173 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1174 int64_t align, QEMUIOVector *qiov, int flags) 1175 { 1176 BlockDriverState *bs = child->bs; 1177 int64_t total_bytes, max_bytes; 1178 int ret = 0; 1179 uint64_t bytes_remaining = bytes; 1180 int max_transfer; 1181 1182 assert(is_power_of_2(align)); 1183 assert((offset & (align - 1)) == 0); 1184 assert((bytes & (align - 1)) == 0); 1185 assert(!qiov || bytes == qiov->size); 1186 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1187 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1188 align); 1189 1190 /* TODO: We would need a per-BDS .supported_read_flags and 1191 * potential fallback support, if we ever implement any read flags 1192 * to pass through to drivers. For now, there aren't any 1193 * passthrough flags. */ 1194 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 1195 1196 /* Handle Copy on Read and associated serialisation */ 1197 if (flags & BDRV_REQ_COPY_ON_READ) { 1198 /* If we touch the same cluster it counts as an overlap. This 1199 * guarantees that allocating writes will be serialized and not race 1200 * with each other for the same cluster. For example, in copy-on-read 1201 * it ensures that the CoR read and write operations are atomic and 1202 * guest writes cannot interleave between them. */ 1203 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1204 } 1205 1206 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1207 wait_serialising_requests(req); 1208 } 1209 1210 if (flags & BDRV_REQ_COPY_ON_READ) { 1211 int64_t pnum; 1212 1213 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1214 if (ret < 0) { 1215 goto out; 1216 } 1217 1218 if (!ret || pnum != bytes) { 1219 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); 1220 goto out; 1221 } 1222 } 1223 1224 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1225 total_bytes = bdrv_getlength(bs); 1226 if (total_bytes < 0) { 1227 ret = total_bytes; 1228 goto out; 1229 } 1230 1231 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1232 if (bytes <= max_bytes && bytes <= max_transfer) { 1233 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1234 goto out; 1235 } 1236 1237 while (bytes_remaining) { 1238 int num; 1239 1240 if (max_bytes) { 1241 QEMUIOVector local_qiov; 1242 1243 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1244 assert(num); 1245 qemu_iovec_init(&local_qiov, qiov->niov); 1246 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1247 1248 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1249 num, &local_qiov, 0); 1250 max_bytes -= num; 1251 qemu_iovec_destroy(&local_qiov); 1252 } else { 1253 num = bytes_remaining; 1254 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1255 bytes_remaining); 1256 } 1257 if (ret < 0) { 1258 goto out; 1259 } 1260 bytes_remaining -= num; 1261 } 1262 1263 out: 1264 return ret < 0 ? ret : 0; 1265 } 1266 1267 /* 1268 * Handle a read request in coroutine context 1269 */ 1270 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1271 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1272 BdrvRequestFlags flags) 1273 { 1274 BlockDriverState *bs = child->bs; 1275 BlockDriver *drv = bs->drv; 1276 BdrvTrackedRequest req; 1277 1278 uint64_t align = bs->bl.request_alignment; 1279 uint8_t *head_buf = NULL; 1280 uint8_t *tail_buf = NULL; 1281 QEMUIOVector local_qiov; 1282 bool use_local_qiov = false; 1283 int ret; 1284 1285 trace_bdrv_co_preadv(child->bs, offset, bytes, flags); 1286 1287 if (!drv) { 1288 return -ENOMEDIUM; 1289 } 1290 1291 ret = bdrv_check_byte_request(bs, offset, bytes); 1292 if (ret < 0) { 1293 return ret; 1294 } 1295 1296 bdrv_inc_in_flight(bs); 1297 1298 /* Don't do copy-on-read if we read data before write operation */ 1299 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1300 flags |= BDRV_REQ_COPY_ON_READ; 1301 } 1302 1303 /* Align read if necessary by padding qiov */ 1304 if (offset & (align - 1)) { 1305 head_buf = qemu_blockalign(bs, align); 1306 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1307 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1308 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1309 use_local_qiov = true; 1310 1311 bytes += offset & (align - 1); 1312 offset = offset & ~(align - 1); 1313 } 1314 1315 if ((offset + bytes) & (align - 1)) { 1316 if (!use_local_qiov) { 1317 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1318 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1319 use_local_qiov = true; 1320 } 1321 tail_buf = qemu_blockalign(bs, align); 1322 qemu_iovec_add(&local_qiov, tail_buf, 1323 align - ((offset + bytes) & (align - 1))); 1324 1325 bytes = ROUND_UP(bytes, align); 1326 } 1327 1328 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1329 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1330 use_local_qiov ? &local_qiov : qiov, 1331 flags); 1332 tracked_request_end(&req); 1333 bdrv_dec_in_flight(bs); 1334 1335 if (use_local_qiov) { 1336 qemu_iovec_destroy(&local_qiov); 1337 qemu_vfree(head_buf); 1338 qemu_vfree(tail_buf); 1339 } 1340 1341 return ret; 1342 } 1343 1344 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child, 1345 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1346 BdrvRequestFlags flags) 1347 { 1348 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1349 return -EINVAL; 1350 } 1351 1352 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS, 1353 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1354 } 1355 1356 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num, 1357 int nb_sectors, QEMUIOVector *qiov) 1358 { 1359 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0); 1360 } 1361 1362 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1363 int64_t offset, int bytes, BdrvRequestFlags flags) 1364 { 1365 BlockDriver *drv = bs->drv; 1366 QEMUIOVector qiov; 1367 struct iovec iov = {0}; 1368 int ret = 0; 1369 bool need_flush = false; 1370 int head = 0; 1371 int tail = 0; 1372 1373 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1374 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1375 bs->bl.request_alignment); 1376 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1377 1378 if (!drv) { 1379 return -ENOMEDIUM; 1380 } 1381 1382 assert(alignment % bs->bl.request_alignment == 0); 1383 head = offset % alignment; 1384 tail = (offset + bytes) % alignment; 1385 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1386 assert(max_write_zeroes >= bs->bl.request_alignment); 1387 1388 while (bytes > 0 && !ret) { 1389 int num = bytes; 1390 1391 /* Align request. Block drivers can expect the "bulk" of the request 1392 * to be aligned, and that unaligned requests do not cross cluster 1393 * boundaries. 1394 */ 1395 if (head) { 1396 /* Make a small request up to the first aligned sector. For 1397 * convenience, limit this request to max_transfer even if 1398 * we don't need to fall back to writes. */ 1399 num = MIN(MIN(bytes, max_transfer), alignment - head); 1400 head = (head + num) % alignment; 1401 assert(num < max_write_zeroes); 1402 } else if (tail && num > alignment) { 1403 /* Shorten the request to the last aligned sector. */ 1404 num -= tail; 1405 } 1406 1407 /* limit request size */ 1408 if (num > max_write_zeroes) { 1409 num = max_write_zeroes; 1410 } 1411 1412 ret = -ENOTSUP; 1413 /* First try the efficient write zeroes operation */ 1414 if (drv->bdrv_co_pwrite_zeroes) { 1415 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1416 flags & bs->supported_zero_flags); 1417 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1418 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1419 need_flush = true; 1420 } 1421 } else { 1422 assert(!bs->supported_zero_flags); 1423 } 1424 1425 if (ret == -ENOTSUP) { 1426 /* Fall back to bounce buffer if write zeroes is unsupported */ 1427 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1428 1429 if ((flags & BDRV_REQ_FUA) && 1430 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1431 /* No need for bdrv_driver_pwrite() to do a fallback 1432 * flush on each chunk; use just one at the end */ 1433 write_flags &= ~BDRV_REQ_FUA; 1434 need_flush = true; 1435 } 1436 num = MIN(num, max_transfer); 1437 iov.iov_len = num; 1438 if (iov.iov_base == NULL) { 1439 iov.iov_base = qemu_try_blockalign(bs, num); 1440 if (iov.iov_base == NULL) { 1441 ret = -ENOMEM; 1442 goto fail; 1443 } 1444 memset(iov.iov_base, 0, num); 1445 } 1446 qemu_iovec_init_external(&qiov, &iov, 1); 1447 1448 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1449 1450 /* Keep bounce buffer around if it is big enough for all 1451 * all future requests. 1452 */ 1453 if (num < max_transfer) { 1454 qemu_vfree(iov.iov_base); 1455 iov.iov_base = NULL; 1456 } 1457 } 1458 1459 offset += num; 1460 bytes -= num; 1461 } 1462 1463 fail: 1464 if (ret == 0 && need_flush) { 1465 ret = bdrv_co_flush(bs); 1466 } 1467 qemu_vfree(iov.iov_base); 1468 return ret; 1469 } 1470 1471 /* 1472 * Forwards an already correctly aligned write request to the BlockDriver, 1473 * after possibly fragmenting it. 1474 */ 1475 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1476 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1477 int64_t align, QEMUIOVector *qiov, int flags) 1478 { 1479 BlockDriverState *bs = child->bs; 1480 BlockDriver *drv = bs->drv; 1481 bool waited; 1482 int ret; 1483 1484 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1485 uint64_t bytes_remaining = bytes; 1486 int max_transfer; 1487 1488 if (!drv) { 1489 return -ENOMEDIUM; 1490 } 1491 1492 if (bdrv_has_readonly_bitmaps(bs)) { 1493 return -EPERM; 1494 } 1495 1496 assert(is_power_of_2(align)); 1497 assert((offset & (align - 1)) == 0); 1498 assert((bytes & (align - 1)) == 0); 1499 assert(!qiov || bytes == qiov->size); 1500 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1501 assert(!(flags & ~BDRV_REQ_MASK)); 1502 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1503 align); 1504 1505 waited = wait_serialising_requests(req); 1506 assert(!waited || !req->serialising); 1507 assert(req->overlap_offset <= offset); 1508 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1509 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1510 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1511 } else { 1512 assert(child->perm & BLK_PERM_WRITE); 1513 } 1514 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1515 1516 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); 1517 1518 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1519 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1520 qemu_iovec_is_zero(qiov)) { 1521 flags |= BDRV_REQ_ZERO_WRITE; 1522 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1523 flags |= BDRV_REQ_MAY_UNMAP; 1524 } 1525 } 1526 1527 if (ret < 0) { 1528 /* Do nothing, write notifier decided to fail this request */ 1529 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1530 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1531 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1532 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1533 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1534 } else if (bytes <= max_transfer) { 1535 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1536 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1537 } else { 1538 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1539 while (bytes_remaining) { 1540 int num = MIN(bytes_remaining, max_transfer); 1541 QEMUIOVector local_qiov; 1542 int local_flags = flags; 1543 1544 assert(num); 1545 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1546 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1547 /* If FUA is going to be emulated by flush, we only 1548 * need to flush on the last iteration */ 1549 local_flags &= ~BDRV_REQ_FUA; 1550 } 1551 qemu_iovec_init(&local_qiov, qiov->niov); 1552 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1553 1554 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1555 num, &local_qiov, local_flags); 1556 qemu_iovec_destroy(&local_qiov); 1557 if (ret < 0) { 1558 break; 1559 } 1560 bytes_remaining -= num; 1561 } 1562 } 1563 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1564 1565 atomic_inc(&bs->write_gen); 1566 bdrv_set_dirty(bs, offset, bytes); 1567 1568 stat64_max(&bs->wr_highest_offset, offset + bytes); 1569 1570 if (ret >= 0) { 1571 bs->total_sectors = MAX(bs->total_sectors, end_sector); 1572 ret = 0; 1573 } 1574 1575 return ret; 1576 } 1577 1578 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1579 int64_t offset, 1580 unsigned int bytes, 1581 BdrvRequestFlags flags, 1582 BdrvTrackedRequest *req) 1583 { 1584 BlockDriverState *bs = child->bs; 1585 uint8_t *buf = NULL; 1586 QEMUIOVector local_qiov; 1587 struct iovec iov; 1588 uint64_t align = bs->bl.request_alignment; 1589 unsigned int head_padding_bytes, tail_padding_bytes; 1590 int ret = 0; 1591 1592 head_padding_bytes = offset & (align - 1); 1593 tail_padding_bytes = (align - (offset + bytes)) & (align - 1); 1594 1595 1596 assert(flags & BDRV_REQ_ZERO_WRITE); 1597 if (head_padding_bytes || tail_padding_bytes) { 1598 buf = qemu_blockalign(bs, align); 1599 iov = (struct iovec) { 1600 .iov_base = buf, 1601 .iov_len = align, 1602 }; 1603 qemu_iovec_init_external(&local_qiov, &iov, 1); 1604 } 1605 if (head_padding_bytes) { 1606 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1607 1608 /* RMW the unaligned part before head. */ 1609 mark_request_serialising(req, align); 1610 wait_serialising_requests(req); 1611 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1612 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1613 align, &local_qiov, 0); 1614 if (ret < 0) { 1615 goto fail; 1616 } 1617 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1618 1619 memset(buf + head_padding_bytes, 0, zero_bytes); 1620 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1621 align, &local_qiov, 1622 flags & ~BDRV_REQ_ZERO_WRITE); 1623 if (ret < 0) { 1624 goto fail; 1625 } 1626 offset += zero_bytes; 1627 bytes -= zero_bytes; 1628 } 1629 1630 assert(!bytes || (offset & (align - 1)) == 0); 1631 if (bytes >= align) { 1632 /* Write the aligned part in the middle. */ 1633 uint64_t aligned_bytes = bytes & ~(align - 1); 1634 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1635 NULL, flags); 1636 if (ret < 0) { 1637 goto fail; 1638 } 1639 bytes -= aligned_bytes; 1640 offset += aligned_bytes; 1641 } 1642 1643 assert(!bytes || (offset & (align - 1)) == 0); 1644 if (bytes) { 1645 assert(align == tail_padding_bytes + bytes); 1646 /* RMW the unaligned part after tail. */ 1647 mark_request_serialising(req, align); 1648 wait_serialising_requests(req); 1649 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1650 ret = bdrv_aligned_preadv(child, req, offset, align, 1651 align, &local_qiov, 0); 1652 if (ret < 0) { 1653 goto fail; 1654 } 1655 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1656 1657 memset(buf, 0, bytes); 1658 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1659 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1660 } 1661 fail: 1662 qemu_vfree(buf); 1663 return ret; 1664 1665 } 1666 1667 /* 1668 * Handle a write request in coroutine context 1669 */ 1670 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1671 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1672 BdrvRequestFlags flags) 1673 { 1674 BlockDriverState *bs = child->bs; 1675 BdrvTrackedRequest req; 1676 uint64_t align = bs->bl.request_alignment; 1677 uint8_t *head_buf = NULL; 1678 uint8_t *tail_buf = NULL; 1679 QEMUIOVector local_qiov; 1680 bool use_local_qiov = false; 1681 int ret; 1682 1683 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 1684 1685 if (!bs->drv) { 1686 return -ENOMEDIUM; 1687 } 1688 if (bs->read_only) { 1689 return -EPERM; 1690 } 1691 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1692 1693 ret = bdrv_check_byte_request(bs, offset, bytes); 1694 if (ret < 0) { 1695 return ret; 1696 } 1697 1698 bdrv_inc_in_flight(bs); 1699 /* 1700 * Align write if necessary by performing a read-modify-write cycle. 1701 * Pad qiov with the read parts and be sure to have a tracked request not 1702 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1703 */ 1704 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1705 1706 if (flags & BDRV_REQ_ZERO_WRITE) { 1707 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1708 goto out; 1709 } 1710 1711 if (offset & (align - 1)) { 1712 QEMUIOVector head_qiov; 1713 struct iovec head_iov; 1714 1715 mark_request_serialising(&req, align); 1716 wait_serialising_requests(&req); 1717 1718 head_buf = qemu_blockalign(bs, align); 1719 head_iov = (struct iovec) { 1720 .iov_base = head_buf, 1721 .iov_len = align, 1722 }; 1723 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1724 1725 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1726 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1727 align, &head_qiov, 0); 1728 if (ret < 0) { 1729 goto fail; 1730 } 1731 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1732 1733 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1734 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1735 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1736 use_local_qiov = true; 1737 1738 bytes += offset & (align - 1); 1739 offset = offset & ~(align - 1); 1740 1741 /* We have read the tail already if the request is smaller 1742 * than one aligned block. 1743 */ 1744 if (bytes < align) { 1745 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1746 bytes = align; 1747 } 1748 } 1749 1750 if ((offset + bytes) & (align - 1)) { 1751 QEMUIOVector tail_qiov; 1752 struct iovec tail_iov; 1753 size_t tail_bytes; 1754 bool waited; 1755 1756 mark_request_serialising(&req, align); 1757 waited = wait_serialising_requests(&req); 1758 assert(!waited || !use_local_qiov); 1759 1760 tail_buf = qemu_blockalign(bs, align); 1761 tail_iov = (struct iovec) { 1762 .iov_base = tail_buf, 1763 .iov_len = align, 1764 }; 1765 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1766 1767 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1768 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1769 align, align, &tail_qiov, 0); 1770 if (ret < 0) { 1771 goto fail; 1772 } 1773 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1774 1775 if (!use_local_qiov) { 1776 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1777 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1778 use_local_qiov = true; 1779 } 1780 1781 tail_bytes = (offset + bytes) & (align - 1); 1782 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1783 1784 bytes = ROUND_UP(bytes, align); 1785 } 1786 1787 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1788 use_local_qiov ? &local_qiov : qiov, 1789 flags); 1790 1791 fail: 1792 1793 if (use_local_qiov) { 1794 qemu_iovec_destroy(&local_qiov); 1795 } 1796 qemu_vfree(head_buf); 1797 qemu_vfree(tail_buf); 1798 out: 1799 tracked_request_end(&req); 1800 bdrv_dec_in_flight(bs); 1801 return ret; 1802 } 1803 1804 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child, 1805 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1806 BdrvRequestFlags flags) 1807 { 1808 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1809 return -EINVAL; 1810 } 1811 1812 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS, 1813 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1814 } 1815 1816 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num, 1817 int nb_sectors, QEMUIOVector *qiov) 1818 { 1819 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0); 1820 } 1821 1822 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1823 int bytes, BdrvRequestFlags flags) 1824 { 1825 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 1826 1827 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1828 flags &= ~BDRV_REQ_MAY_UNMAP; 1829 } 1830 1831 return bdrv_co_pwritev(child, offset, bytes, NULL, 1832 BDRV_REQ_ZERO_WRITE | flags); 1833 } 1834 1835 /* 1836 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1837 */ 1838 int bdrv_flush_all(void) 1839 { 1840 BdrvNextIterator it; 1841 BlockDriverState *bs = NULL; 1842 int result = 0; 1843 1844 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 1845 AioContext *aio_context = bdrv_get_aio_context(bs); 1846 int ret; 1847 1848 aio_context_acquire(aio_context); 1849 ret = bdrv_flush(bs); 1850 if (ret < 0 && !result) { 1851 result = ret; 1852 } 1853 aio_context_release(aio_context); 1854 } 1855 1856 return result; 1857 } 1858 1859 1860 typedef struct BdrvCoBlockStatusData { 1861 BlockDriverState *bs; 1862 BlockDriverState *base; 1863 bool want_zero; 1864 int64_t offset; 1865 int64_t bytes; 1866 int64_t *pnum; 1867 int64_t *map; 1868 BlockDriverState **file; 1869 int ret; 1870 bool done; 1871 } BdrvCoBlockStatusData; 1872 1873 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs, 1874 bool want_zero, 1875 int64_t offset, 1876 int64_t bytes, 1877 int64_t *pnum, 1878 int64_t *map, 1879 BlockDriverState **file) 1880 { 1881 assert(bs->file && bs->file->bs); 1882 *pnum = bytes; 1883 *map = offset; 1884 *file = bs->file->bs; 1885 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 1886 } 1887 1888 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs, 1889 bool want_zero, 1890 int64_t offset, 1891 int64_t bytes, 1892 int64_t *pnum, 1893 int64_t *map, 1894 BlockDriverState **file) 1895 { 1896 assert(bs->backing && bs->backing->bs); 1897 *pnum = bytes; 1898 *map = offset; 1899 *file = bs->backing->bs; 1900 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 1901 } 1902 1903 /* 1904 * Returns the allocation status of the specified sectors. 1905 * Drivers not implementing the functionality are assumed to not support 1906 * backing files, hence all their sectors are reported as allocated. 1907 * 1908 * If 'want_zero' is true, the caller is querying for mapping 1909 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 1910 * _ZERO where possible; otherwise, the result favors larger 'pnum', 1911 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 1912 * 1913 * If 'offset' is beyond the end of the disk image the return value is 1914 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 1915 * 1916 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 1917 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 1918 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 1919 * 1920 * 'pnum' is set to the number of bytes (including and immediately 1921 * following the specified offset) that are easily known to be in the 1922 * same allocated/unallocated state. Note that a second call starting 1923 * at the original offset plus returned pnum may have the same status. 1924 * The returned value is non-zero on success except at end-of-file. 1925 * 1926 * Returns negative errno on failure. Otherwise, if the 1927 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 1928 * set to the host mapping and BDS corresponding to the guest offset. 1929 */ 1930 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 1931 bool want_zero, 1932 int64_t offset, int64_t bytes, 1933 int64_t *pnum, int64_t *map, 1934 BlockDriverState **file) 1935 { 1936 int64_t total_size; 1937 int64_t n; /* bytes */ 1938 int ret; 1939 int64_t local_map = 0; 1940 BlockDriverState *local_file = NULL; 1941 int64_t aligned_offset, aligned_bytes; 1942 uint32_t align; 1943 1944 assert(pnum); 1945 *pnum = 0; 1946 total_size = bdrv_getlength(bs); 1947 if (total_size < 0) { 1948 ret = total_size; 1949 goto early_out; 1950 } 1951 1952 if (offset >= total_size) { 1953 ret = BDRV_BLOCK_EOF; 1954 goto early_out; 1955 } 1956 if (!bytes) { 1957 ret = 0; 1958 goto early_out; 1959 } 1960 1961 n = total_size - offset; 1962 if (n < bytes) { 1963 bytes = n; 1964 } 1965 1966 /* Must be non-NULL or bdrv_getlength() would have failed */ 1967 assert(bs->drv); 1968 if (!bs->drv->bdrv_co_block_status) { 1969 *pnum = bytes; 1970 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 1971 if (offset + bytes == total_size) { 1972 ret |= BDRV_BLOCK_EOF; 1973 } 1974 if (bs->drv->protocol_name) { 1975 ret |= BDRV_BLOCK_OFFSET_VALID; 1976 local_map = offset; 1977 local_file = bs; 1978 } 1979 goto early_out; 1980 } 1981 1982 bdrv_inc_in_flight(bs); 1983 1984 /* Round out to request_alignment boundaries */ 1985 align = bs->bl.request_alignment; 1986 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 1987 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 1988 1989 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 1990 aligned_bytes, pnum, &local_map, 1991 &local_file); 1992 if (ret < 0) { 1993 *pnum = 0; 1994 goto out; 1995 } 1996 1997 /* 1998 * The driver's result must be a non-zero multiple of request_alignment. 1999 * Clamp pnum and adjust map to original request. 2000 */ 2001 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2002 align > offset - aligned_offset); 2003 *pnum -= offset - aligned_offset; 2004 if (*pnum > bytes) { 2005 *pnum = bytes; 2006 } 2007 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2008 local_map += offset - aligned_offset; 2009 } 2010 2011 if (ret & BDRV_BLOCK_RAW) { 2012 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2013 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2014 *pnum, pnum, &local_map, &local_file); 2015 goto out; 2016 } 2017 2018 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2019 ret |= BDRV_BLOCK_ALLOCATED; 2020 } else if (want_zero) { 2021 if (bdrv_unallocated_blocks_are_zero(bs)) { 2022 ret |= BDRV_BLOCK_ZERO; 2023 } else if (bs->backing) { 2024 BlockDriverState *bs2 = bs->backing->bs; 2025 int64_t size2 = bdrv_getlength(bs2); 2026 2027 if (size2 >= 0 && offset >= size2) { 2028 ret |= BDRV_BLOCK_ZERO; 2029 } 2030 } 2031 } 2032 2033 if (want_zero && local_file && local_file != bs && 2034 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2035 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2036 int64_t file_pnum; 2037 int ret2; 2038 2039 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2040 *pnum, &file_pnum, NULL, NULL); 2041 if (ret2 >= 0) { 2042 /* Ignore errors. This is just providing extra information, it 2043 * is useful but not necessary. 2044 */ 2045 if (ret2 & BDRV_BLOCK_EOF && 2046 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2047 /* 2048 * It is valid for the format block driver to read 2049 * beyond the end of the underlying file's current 2050 * size; such areas read as zero. 2051 */ 2052 ret |= BDRV_BLOCK_ZERO; 2053 } else { 2054 /* Limit request to the range reported by the protocol driver */ 2055 *pnum = file_pnum; 2056 ret |= (ret2 & BDRV_BLOCK_ZERO); 2057 } 2058 } 2059 } 2060 2061 out: 2062 bdrv_dec_in_flight(bs); 2063 if (ret >= 0 && offset + *pnum == total_size) { 2064 ret |= BDRV_BLOCK_EOF; 2065 } 2066 early_out: 2067 if (file) { 2068 *file = local_file; 2069 } 2070 if (map) { 2071 *map = local_map; 2072 } 2073 return ret; 2074 } 2075 2076 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2077 BlockDriverState *base, 2078 bool want_zero, 2079 int64_t offset, 2080 int64_t bytes, 2081 int64_t *pnum, 2082 int64_t *map, 2083 BlockDriverState **file) 2084 { 2085 BlockDriverState *p; 2086 int ret = 0; 2087 bool first = true; 2088 2089 assert(bs != base); 2090 for (p = bs; p != base; p = backing_bs(p)) { 2091 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2092 file); 2093 if (ret < 0) { 2094 break; 2095 } 2096 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 2097 /* 2098 * Reading beyond the end of the file continues to read 2099 * zeroes, but we can only widen the result to the 2100 * unallocated length we learned from an earlier 2101 * iteration. 2102 */ 2103 *pnum = bytes; 2104 } 2105 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 2106 break; 2107 } 2108 /* [offset, pnum] unallocated on this layer, which could be only 2109 * the first part of [offset, bytes]. */ 2110 bytes = MIN(bytes, *pnum); 2111 first = false; 2112 } 2113 return ret; 2114 } 2115 2116 /* Coroutine wrapper for bdrv_block_status_above() */ 2117 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque) 2118 { 2119 BdrvCoBlockStatusData *data = opaque; 2120 2121 data->ret = bdrv_co_block_status_above(data->bs, data->base, 2122 data->want_zero, 2123 data->offset, data->bytes, 2124 data->pnum, data->map, data->file); 2125 data->done = true; 2126 } 2127 2128 /* 2129 * Synchronous wrapper around bdrv_co_block_status_above(). 2130 * 2131 * See bdrv_co_block_status_above() for details. 2132 */ 2133 static int bdrv_common_block_status_above(BlockDriverState *bs, 2134 BlockDriverState *base, 2135 bool want_zero, int64_t offset, 2136 int64_t bytes, int64_t *pnum, 2137 int64_t *map, 2138 BlockDriverState **file) 2139 { 2140 Coroutine *co; 2141 BdrvCoBlockStatusData data = { 2142 .bs = bs, 2143 .base = base, 2144 .want_zero = want_zero, 2145 .offset = offset, 2146 .bytes = bytes, 2147 .pnum = pnum, 2148 .map = map, 2149 .file = file, 2150 .done = false, 2151 }; 2152 2153 if (qemu_in_coroutine()) { 2154 /* Fast-path if already in coroutine context */ 2155 bdrv_block_status_above_co_entry(&data); 2156 } else { 2157 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data); 2158 bdrv_coroutine_enter(bs, co); 2159 BDRV_POLL_WHILE(bs, !data.done); 2160 } 2161 return data.ret; 2162 } 2163 2164 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2165 int64_t offset, int64_t bytes, int64_t *pnum, 2166 int64_t *map, BlockDriverState **file) 2167 { 2168 return bdrv_common_block_status_above(bs, base, true, offset, bytes, 2169 pnum, map, file); 2170 } 2171 2172 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2173 int64_t *pnum, int64_t *map, BlockDriverState **file) 2174 { 2175 return bdrv_block_status_above(bs, backing_bs(bs), 2176 offset, bytes, pnum, map, file); 2177 } 2178 2179 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2180 int64_t bytes, int64_t *pnum) 2181 { 2182 int ret; 2183 int64_t dummy; 2184 2185 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset, 2186 bytes, pnum ? pnum : &dummy, NULL, 2187 NULL); 2188 if (ret < 0) { 2189 return ret; 2190 } 2191 return !!(ret & BDRV_BLOCK_ALLOCATED); 2192 } 2193 2194 /* 2195 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2196 * 2197 * Return true if (a prefix of) the given range is allocated in any image 2198 * between BASE and TOP (inclusive). BASE can be NULL to check if the given 2199 * offset is allocated in any image of the chain. Return false otherwise, 2200 * or negative errno on failure. 2201 * 2202 * 'pnum' is set to the number of bytes (including and immediately 2203 * following the specified offset) that are known to be in the same 2204 * allocated/unallocated state. Note that a subsequent call starting 2205 * at 'offset + *pnum' may return the same allocation status (in other 2206 * words, the result is not necessarily the maximum possible range); 2207 * but 'pnum' will only be 0 when end of file is reached. 2208 * 2209 */ 2210 int bdrv_is_allocated_above(BlockDriverState *top, 2211 BlockDriverState *base, 2212 int64_t offset, int64_t bytes, int64_t *pnum) 2213 { 2214 BlockDriverState *intermediate; 2215 int ret; 2216 int64_t n = bytes; 2217 2218 intermediate = top; 2219 while (intermediate && intermediate != base) { 2220 int64_t pnum_inter; 2221 int64_t size_inter; 2222 2223 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2224 if (ret < 0) { 2225 return ret; 2226 } 2227 if (ret) { 2228 *pnum = pnum_inter; 2229 return 1; 2230 } 2231 2232 size_inter = bdrv_getlength(intermediate); 2233 if (size_inter < 0) { 2234 return size_inter; 2235 } 2236 if (n > pnum_inter && 2237 (intermediate == top || offset + pnum_inter < size_inter)) { 2238 n = pnum_inter; 2239 } 2240 2241 intermediate = backing_bs(intermediate); 2242 } 2243 2244 *pnum = n; 2245 return 0; 2246 } 2247 2248 typedef struct BdrvVmstateCo { 2249 BlockDriverState *bs; 2250 QEMUIOVector *qiov; 2251 int64_t pos; 2252 bool is_read; 2253 int ret; 2254 } BdrvVmstateCo; 2255 2256 static int coroutine_fn 2257 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2258 bool is_read) 2259 { 2260 BlockDriver *drv = bs->drv; 2261 int ret = -ENOTSUP; 2262 2263 bdrv_inc_in_flight(bs); 2264 2265 if (!drv) { 2266 ret = -ENOMEDIUM; 2267 } else if (drv->bdrv_load_vmstate) { 2268 if (is_read) { 2269 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2270 } else { 2271 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2272 } 2273 } else if (bs->file) { 2274 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2275 } 2276 2277 bdrv_dec_in_flight(bs); 2278 return ret; 2279 } 2280 2281 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2282 { 2283 BdrvVmstateCo *co = opaque; 2284 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2285 } 2286 2287 static inline int 2288 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2289 bool is_read) 2290 { 2291 if (qemu_in_coroutine()) { 2292 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2293 } else { 2294 BdrvVmstateCo data = { 2295 .bs = bs, 2296 .qiov = qiov, 2297 .pos = pos, 2298 .is_read = is_read, 2299 .ret = -EINPROGRESS, 2300 }; 2301 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2302 2303 bdrv_coroutine_enter(bs, co); 2304 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2305 return data.ret; 2306 } 2307 } 2308 2309 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2310 int64_t pos, int size) 2311 { 2312 QEMUIOVector qiov; 2313 struct iovec iov = { 2314 .iov_base = (void *) buf, 2315 .iov_len = size, 2316 }; 2317 int ret; 2318 2319 qemu_iovec_init_external(&qiov, &iov, 1); 2320 2321 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2322 if (ret < 0) { 2323 return ret; 2324 } 2325 2326 return size; 2327 } 2328 2329 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2330 { 2331 return bdrv_rw_vmstate(bs, qiov, pos, false); 2332 } 2333 2334 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2335 int64_t pos, int size) 2336 { 2337 QEMUIOVector qiov; 2338 struct iovec iov = { 2339 .iov_base = buf, 2340 .iov_len = size, 2341 }; 2342 int ret; 2343 2344 qemu_iovec_init_external(&qiov, &iov, 1); 2345 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2346 if (ret < 0) { 2347 return ret; 2348 } 2349 2350 return size; 2351 } 2352 2353 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2354 { 2355 return bdrv_rw_vmstate(bs, qiov, pos, true); 2356 } 2357 2358 /**************************************************************/ 2359 /* async I/Os */ 2360 2361 void bdrv_aio_cancel(BlockAIOCB *acb) 2362 { 2363 qemu_aio_ref(acb); 2364 bdrv_aio_cancel_async(acb); 2365 while (acb->refcnt > 1) { 2366 if (acb->aiocb_info->get_aio_context) { 2367 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2368 } else if (acb->bs) { 2369 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2370 * assert that we're not using an I/O thread. Thread-safe 2371 * code should use bdrv_aio_cancel_async exclusively. 2372 */ 2373 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2374 aio_poll(bdrv_get_aio_context(acb->bs), true); 2375 } else { 2376 abort(); 2377 } 2378 } 2379 qemu_aio_unref(acb); 2380 } 2381 2382 /* Async version of aio cancel. The caller is not blocked if the acb implements 2383 * cancel_async, otherwise we do nothing and let the request normally complete. 2384 * In either case the completion callback must be called. */ 2385 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2386 { 2387 if (acb->aiocb_info->cancel_async) { 2388 acb->aiocb_info->cancel_async(acb); 2389 } 2390 } 2391 2392 /**************************************************************/ 2393 /* Coroutine block device emulation */ 2394 2395 typedef struct FlushCo { 2396 BlockDriverState *bs; 2397 int ret; 2398 } FlushCo; 2399 2400 2401 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2402 { 2403 FlushCo *rwco = opaque; 2404 2405 rwco->ret = bdrv_co_flush(rwco->bs); 2406 } 2407 2408 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2409 { 2410 int current_gen; 2411 int ret = 0; 2412 2413 bdrv_inc_in_flight(bs); 2414 2415 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2416 bdrv_is_sg(bs)) { 2417 goto early_exit; 2418 } 2419 2420 qemu_co_mutex_lock(&bs->reqs_lock); 2421 current_gen = atomic_read(&bs->write_gen); 2422 2423 /* Wait until any previous flushes are completed */ 2424 while (bs->active_flush_req) { 2425 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2426 } 2427 2428 /* Flushes reach this point in nondecreasing current_gen order. */ 2429 bs->active_flush_req = true; 2430 qemu_co_mutex_unlock(&bs->reqs_lock); 2431 2432 /* Write back all layers by calling one driver function */ 2433 if (bs->drv->bdrv_co_flush) { 2434 ret = bs->drv->bdrv_co_flush(bs); 2435 goto out; 2436 } 2437 2438 /* Write back cached data to the OS even with cache=unsafe */ 2439 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2440 if (bs->drv->bdrv_co_flush_to_os) { 2441 ret = bs->drv->bdrv_co_flush_to_os(bs); 2442 if (ret < 0) { 2443 goto out; 2444 } 2445 } 2446 2447 /* But don't actually force it to the disk with cache=unsafe */ 2448 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2449 goto flush_parent; 2450 } 2451 2452 /* Check if we really need to flush anything */ 2453 if (bs->flushed_gen == current_gen) { 2454 goto flush_parent; 2455 } 2456 2457 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2458 if (!bs->drv) { 2459 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2460 * (even in case of apparent success) */ 2461 ret = -ENOMEDIUM; 2462 goto out; 2463 } 2464 if (bs->drv->bdrv_co_flush_to_disk) { 2465 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2466 } else if (bs->drv->bdrv_aio_flush) { 2467 BlockAIOCB *acb; 2468 CoroutineIOCompletion co = { 2469 .coroutine = qemu_coroutine_self(), 2470 }; 2471 2472 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2473 if (acb == NULL) { 2474 ret = -EIO; 2475 } else { 2476 qemu_coroutine_yield(); 2477 ret = co.ret; 2478 } 2479 } else { 2480 /* 2481 * Some block drivers always operate in either writethrough or unsafe 2482 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2483 * know how the server works (because the behaviour is hardcoded or 2484 * depends on server-side configuration), so we can't ensure that 2485 * everything is safe on disk. Returning an error doesn't work because 2486 * that would break guests even if the server operates in writethrough 2487 * mode. 2488 * 2489 * Let's hope the user knows what he's doing. 2490 */ 2491 ret = 0; 2492 } 2493 2494 if (ret < 0) { 2495 goto out; 2496 } 2497 2498 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2499 * in the case of cache=unsafe, so there are no useless flushes. 2500 */ 2501 flush_parent: 2502 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2503 out: 2504 /* Notify any pending flushes that we have completed */ 2505 if (ret == 0) { 2506 bs->flushed_gen = current_gen; 2507 } 2508 2509 qemu_co_mutex_lock(&bs->reqs_lock); 2510 bs->active_flush_req = false; 2511 /* Return value is ignored - it's ok if wait queue is empty */ 2512 qemu_co_queue_next(&bs->flush_queue); 2513 qemu_co_mutex_unlock(&bs->reqs_lock); 2514 2515 early_exit: 2516 bdrv_dec_in_flight(bs); 2517 return ret; 2518 } 2519 2520 int bdrv_flush(BlockDriverState *bs) 2521 { 2522 Coroutine *co; 2523 FlushCo flush_co = { 2524 .bs = bs, 2525 .ret = NOT_DONE, 2526 }; 2527 2528 if (qemu_in_coroutine()) { 2529 /* Fast-path if already in coroutine context */ 2530 bdrv_flush_co_entry(&flush_co); 2531 } else { 2532 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2533 bdrv_coroutine_enter(bs, co); 2534 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2535 } 2536 2537 return flush_co.ret; 2538 } 2539 2540 typedef struct DiscardCo { 2541 BlockDriverState *bs; 2542 int64_t offset; 2543 int bytes; 2544 int ret; 2545 } DiscardCo; 2546 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2547 { 2548 DiscardCo *rwco = opaque; 2549 2550 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes); 2551 } 2552 2553 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset, 2554 int bytes) 2555 { 2556 BdrvTrackedRequest req; 2557 int max_pdiscard, ret; 2558 int head, tail, align; 2559 2560 if (!bs->drv) { 2561 return -ENOMEDIUM; 2562 } 2563 2564 if (bdrv_has_readonly_bitmaps(bs)) { 2565 return -EPERM; 2566 } 2567 2568 ret = bdrv_check_byte_request(bs, offset, bytes); 2569 if (ret < 0) { 2570 return ret; 2571 } else if (bs->read_only) { 2572 return -EPERM; 2573 } 2574 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2575 2576 /* Do nothing if disabled. */ 2577 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2578 return 0; 2579 } 2580 2581 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2582 return 0; 2583 } 2584 2585 /* Discard is advisory, but some devices track and coalesce 2586 * unaligned requests, so we must pass everything down rather than 2587 * round here. Still, most devices will just silently ignore 2588 * unaligned requests (by returning -ENOTSUP), so we must fragment 2589 * the request accordingly. */ 2590 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2591 assert(align % bs->bl.request_alignment == 0); 2592 head = offset % align; 2593 tail = (offset + bytes) % align; 2594 2595 bdrv_inc_in_flight(bs); 2596 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2597 2598 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req); 2599 if (ret < 0) { 2600 goto out; 2601 } 2602 2603 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2604 align); 2605 assert(max_pdiscard >= bs->bl.request_alignment); 2606 2607 while (bytes > 0) { 2608 int num = bytes; 2609 2610 if (head) { 2611 /* Make small requests to get to alignment boundaries. */ 2612 num = MIN(bytes, align - head); 2613 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2614 num %= bs->bl.request_alignment; 2615 } 2616 head = (head + num) % align; 2617 assert(num < max_pdiscard); 2618 } else if (tail) { 2619 if (num > align) { 2620 /* Shorten the request to the last aligned cluster. */ 2621 num -= tail; 2622 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2623 tail > bs->bl.request_alignment) { 2624 tail %= bs->bl.request_alignment; 2625 num -= tail; 2626 } 2627 } 2628 /* limit request size */ 2629 if (num > max_pdiscard) { 2630 num = max_pdiscard; 2631 } 2632 2633 if (!bs->drv) { 2634 ret = -ENOMEDIUM; 2635 goto out; 2636 } 2637 if (bs->drv->bdrv_co_pdiscard) { 2638 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2639 } else { 2640 BlockAIOCB *acb; 2641 CoroutineIOCompletion co = { 2642 .coroutine = qemu_coroutine_self(), 2643 }; 2644 2645 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2646 bdrv_co_io_em_complete, &co); 2647 if (acb == NULL) { 2648 ret = -EIO; 2649 goto out; 2650 } else { 2651 qemu_coroutine_yield(); 2652 ret = co.ret; 2653 } 2654 } 2655 if (ret && ret != -ENOTSUP) { 2656 goto out; 2657 } 2658 2659 offset += num; 2660 bytes -= num; 2661 } 2662 ret = 0; 2663 out: 2664 atomic_inc(&bs->write_gen); 2665 bdrv_set_dirty(bs, req.offset, req.bytes); 2666 tracked_request_end(&req); 2667 bdrv_dec_in_flight(bs); 2668 return ret; 2669 } 2670 2671 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes) 2672 { 2673 Coroutine *co; 2674 DiscardCo rwco = { 2675 .bs = bs, 2676 .offset = offset, 2677 .bytes = bytes, 2678 .ret = NOT_DONE, 2679 }; 2680 2681 if (qemu_in_coroutine()) { 2682 /* Fast-path if already in coroutine context */ 2683 bdrv_pdiscard_co_entry(&rwco); 2684 } else { 2685 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2686 bdrv_coroutine_enter(bs, co); 2687 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE); 2688 } 2689 2690 return rwco.ret; 2691 } 2692 2693 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2694 { 2695 BlockDriver *drv = bs->drv; 2696 CoroutineIOCompletion co = { 2697 .coroutine = qemu_coroutine_self(), 2698 }; 2699 BlockAIOCB *acb; 2700 2701 bdrv_inc_in_flight(bs); 2702 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2703 co.ret = -ENOTSUP; 2704 goto out; 2705 } 2706 2707 if (drv->bdrv_co_ioctl) { 2708 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2709 } else { 2710 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2711 if (!acb) { 2712 co.ret = -ENOTSUP; 2713 goto out; 2714 } 2715 qemu_coroutine_yield(); 2716 } 2717 out: 2718 bdrv_dec_in_flight(bs); 2719 return co.ret; 2720 } 2721 2722 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2723 { 2724 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2725 } 2726 2727 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2728 { 2729 return memset(qemu_blockalign(bs, size), 0, size); 2730 } 2731 2732 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2733 { 2734 size_t align = bdrv_opt_mem_align(bs); 2735 2736 /* Ensure that NULL is never returned on success */ 2737 assert(align > 0); 2738 if (size == 0) { 2739 size = align; 2740 } 2741 2742 return qemu_try_memalign(align, size); 2743 } 2744 2745 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2746 { 2747 void *mem = qemu_try_blockalign(bs, size); 2748 2749 if (mem) { 2750 memset(mem, 0, size); 2751 } 2752 2753 return mem; 2754 } 2755 2756 /* 2757 * Check if all memory in this vector is sector aligned. 2758 */ 2759 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2760 { 2761 int i; 2762 size_t alignment = bdrv_min_mem_align(bs); 2763 2764 for (i = 0; i < qiov->niov; i++) { 2765 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2766 return false; 2767 } 2768 if (qiov->iov[i].iov_len % alignment) { 2769 return false; 2770 } 2771 } 2772 2773 return true; 2774 } 2775 2776 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2777 NotifierWithReturn *notifier) 2778 { 2779 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2780 } 2781 2782 void bdrv_io_plug(BlockDriverState *bs) 2783 { 2784 BdrvChild *child; 2785 2786 QLIST_FOREACH(child, &bs->children, next) { 2787 bdrv_io_plug(child->bs); 2788 } 2789 2790 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 2791 BlockDriver *drv = bs->drv; 2792 if (drv && drv->bdrv_io_plug) { 2793 drv->bdrv_io_plug(bs); 2794 } 2795 } 2796 } 2797 2798 void bdrv_io_unplug(BlockDriverState *bs) 2799 { 2800 BdrvChild *child; 2801 2802 assert(bs->io_plugged); 2803 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 2804 BlockDriver *drv = bs->drv; 2805 if (drv && drv->bdrv_io_unplug) { 2806 drv->bdrv_io_unplug(bs); 2807 } 2808 } 2809 2810 QLIST_FOREACH(child, &bs->children, next) { 2811 bdrv_io_unplug(child->bs); 2812 } 2813 } 2814 2815 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 2816 { 2817 BdrvChild *child; 2818 2819 if (bs->drv && bs->drv->bdrv_register_buf) { 2820 bs->drv->bdrv_register_buf(bs, host, size); 2821 } 2822 QLIST_FOREACH(child, &bs->children, next) { 2823 bdrv_register_buf(child->bs, host, size); 2824 } 2825 } 2826 2827 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 2828 { 2829 BdrvChild *child; 2830 2831 if (bs->drv && bs->drv->bdrv_unregister_buf) { 2832 bs->drv->bdrv_unregister_buf(bs, host); 2833 } 2834 QLIST_FOREACH(child, &bs->children, next) { 2835 bdrv_unregister_buf(child->bs, host); 2836 } 2837 } 2838 2839 static int coroutine_fn bdrv_co_copy_range_internal(BdrvChild *src, 2840 uint64_t src_offset, 2841 BdrvChild *dst, 2842 uint64_t dst_offset, 2843 uint64_t bytes, 2844 BdrvRequestFlags flags, 2845 bool recurse_src) 2846 { 2847 int ret; 2848 2849 if (!src || !dst || !src->bs || !dst->bs) { 2850 return -ENOMEDIUM; 2851 } 2852 ret = bdrv_check_byte_request(src->bs, src_offset, bytes); 2853 if (ret) { 2854 return ret; 2855 } 2856 2857 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes); 2858 if (ret) { 2859 return ret; 2860 } 2861 if (flags & BDRV_REQ_ZERO_WRITE) { 2862 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, flags); 2863 } 2864 2865 if (!src->bs->drv->bdrv_co_copy_range_from 2866 || !dst->bs->drv->bdrv_co_copy_range_to 2867 || src->bs->encrypted || dst->bs->encrypted) { 2868 return -ENOTSUP; 2869 } 2870 if (recurse_src) { 2871 return src->bs->drv->bdrv_co_copy_range_from(src->bs, 2872 src, src_offset, 2873 dst, dst_offset, 2874 bytes, flags); 2875 } else { 2876 return dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 2877 src, src_offset, 2878 dst, dst_offset, 2879 bytes, flags); 2880 } 2881 } 2882 2883 /* Copy range from @src to @dst. 2884 * 2885 * See the comment of bdrv_co_copy_range for the parameter and return value 2886 * semantics. */ 2887 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset, 2888 BdrvChild *dst, uint64_t dst_offset, 2889 uint64_t bytes, BdrvRequestFlags flags) 2890 { 2891 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 2892 bytes, flags, true); 2893 } 2894 2895 /* Copy range from @src to @dst. 2896 * 2897 * See the comment of bdrv_co_copy_range for the parameter and return value 2898 * semantics. */ 2899 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset, 2900 BdrvChild *dst, uint64_t dst_offset, 2901 uint64_t bytes, BdrvRequestFlags flags) 2902 { 2903 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 2904 bytes, flags, false); 2905 } 2906 2907 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset, 2908 BdrvChild *dst, uint64_t dst_offset, 2909 uint64_t bytes, BdrvRequestFlags flags) 2910 { 2911 BdrvTrackedRequest src_req, dst_req; 2912 BlockDriverState *src_bs = src->bs; 2913 BlockDriverState *dst_bs = dst->bs; 2914 int ret; 2915 2916 bdrv_inc_in_flight(src_bs); 2917 bdrv_inc_in_flight(dst_bs); 2918 tracked_request_begin(&src_req, src_bs, src_offset, 2919 bytes, BDRV_TRACKED_READ); 2920 tracked_request_begin(&dst_req, dst_bs, dst_offset, 2921 bytes, BDRV_TRACKED_WRITE); 2922 2923 wait_serialising_requests(&src_req); 2924 wait_serialising_requests(&dst_req); 2925 ret = bdrv_co_copy_range_from(src, src_offset, 2926 dst, dst_offset, 2927 bytes, flags); 2928 2929 tracked_request_end(&src_req); 2930 tracked_request_end(&dst_req); 2931 bdrv_dec_in_flight(src_bs); 2932 bdrv_dec_in_flight(dst_bs); 2933 return ret; 2934 } 2935