xref: /openbmc/qemu/block/io.c (revision 47451466)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 
36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 
38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
40 
41 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
42     int64_t offset, int bytes, BdrvRequestFlags flags);
43 
44 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
45 {
46     BdrvChild *c, *next;
47 
48     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
49         if (c == ignore) {
50             continue;
51         }
52         if (c->role->drained_begin) {
53             c->role->drained_begin(c);
54         }
55     }
56 }
57 
58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
59 {
60     BdrvChild *c, *next;
61 
62     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
63         if (c == ignore) {
64             continue;
65         }
66         if (c->role->drained_end) {
67             c->role->drained_end(c);
68         }
69     }
70 }
71 
72 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
73 {
74     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
75     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
76     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
77                                  src->opt_mem_alignment);
78     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
79                                  src->min_mem_alignment);
80     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
81 }
82 
83 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
84 {
85     BlockDriver *drv = bs->drv;
86     Error *local_err = NULL;
87 
88     memset(&bs->bl, 0, sizeof(bs->bl));
89 
90     if (!drv) {
91         return;
92     }
93 
94     /* Default alignment based on whether driver has byte interface */
95     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
96                                 drv->bdrv_aio_preadv) ? 1 : 512;
97 
98     /* Take some limits from the children as a default */
99     if (bs->file) {
100         bdrv_refresh_limits(bs->file->bs, &local_err);
101         if (local_err) {
102             error_propagate(errp, local_err);
103             return;
104         }
105         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
106     } else {
107         bs->bl.min_mem_alignment = 512;
108         bs->bl.opt_mem_alignment = getpagesize();
109 
110         /* Safe default since most protocols use readv()/writev()/etc */
111         bs->bl.max_iov = IOV_MAX;
112     }
113 
114     if (bs->backing) {
115         bdrv_refresh_limits(bs->backing->bs, &local_err);
116         if (local_err) {
117             error_propagate(errp, local_err);
118             return;
119         }
120         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
121     }
122 
123     /* Then let the driver override it */
124     if (drv->bdrv_refresh_limits) {
125         drv->bdrv_refresh_limits(bs, errp);
126     }
127 }
128 
129 /**
130  * The copy-on-read flag is actually a reference count so multiple users may
131  * use the feature without worrying about clobbering its previous state.
132  * Copy-on-read stays enabled until all users have called to disable it.
133  */
134 void bdrv_enable_copy_on_read(BlockDriverState *bs)
135 {
136     atomic_inc(&bs->copy_on_read);
137 }
138 
139 void bdrv_disable_copy_on_read(BlockDriverState *bs)
140 {
141     int old = atomic_fetch_dec(&bs->copy_on_read);
142     assert(old >= 1);
143 }
144 
145 typedef struct {
146     Coroutine *co;
147     BlockDriverState *bs;
148     bool done;
149     bool begin;
150     bool recursive;
151     BdrvChild *parent;
152 } BdrvCoDrainData;
153 
154 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
155 {
156     BdrvCoDrainData *data = opaque;
157     BlockDriverState *bs = data->bs;
158 
159     if (data->begin) {
160         bs->drv->bdrv_co_drain_begin(bs);
161     } else {
162         bs->drv->bdrv_co_drain_end(bs);
163     }
164 
165     /* Set data->done before reading bs->wakeup.  */
166     atomic_mb_set(&data->done, true);
167     bdrv_wakeup(bs);
168 }
169 
170 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
171 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, bool recursive)
172 {
173     BdrvChild *child, *tmp;
174     BdrvCoDrainData data = { .bs = bs, .done = false, .begin = begin};
175 
176     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
177             (!begin && !bs->drv->bdrv_co_drain_end)) {
178         return;
179     }
180 
181     data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data);
182     bdrv_coroutine_enter(bs, data.co);
183     BDRV_POLL_WHILE(bs, !data.done);
184 
185     if (recursive) {
186         QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
187             bdrv_drain_invoke(child->bs, begin, true);
188         }
189     }
190 }
191 
192 static bool bdrv_drain_recurse(BlockDriverState *bs)
193 {
194     BdrvChild *child, *tmp;
195     bool waited;
196 
197     /* Wait for drained requests to finish */
198     waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
199 
200     QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
201         BlockDriverState *bs = child->bs;
202         bool in_main_loop =
203             qemu_get_current_aio_context() == qemu_get_aio_context();
204         assert(bs->refcnt > 0);
205         if (in_main_loop) {
206             /* In case the recursive bdrv_drain_recurse processes a
207              * block_job_defer_to_main_loop BH and modifies the graph,
208              * let's hold a reference to bs until we are done.
209              *
210              * IOThread doesn't have such a BH, and it is not safe to call
211              * bdrv_unref without BQL, so skip doing it there.
212              */
213             bdrv_ref(bs);
214         }
215         waited |= bdrv_drain_recurse(bs);
216         if (in_main_loop) {
217             bdrv_unref(bs);
218         }
219     }
220 
221     return waited;
222 }
223 
224 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
225                                   BdrvChild *parent);
226 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
227                                 BdrvChild *parent);
228 
229 static void bdrv_co_drain_bh_cb(void *opaque)
230 {
231     BdrvCoDrainData *data = opaque;
232     Coroutine *co = data->co;
233     BlockDriverState *bs = data->bs;
234 
235     bdrv_dec_in_flight(bs);
236     if (data->begin) {
237         bdrv_do_drained_begin(bs, data->recursive, data->parent);
238     } else {
239         bdrv_do_drained_end(bs, data->recursive, data->parent);
240     }
241 
242     data->done = true;
243     aio_co_wake(co);
244 }
245 
246 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
247                                                 bool begin, bool recursive,
248                                                 BdrvChild *parent)
249 {
250     BdrvCoDrainData data;
251 
252     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
253      * other coroutines run if they were queued by aio_co_enter(). */
254 
255     assert(qemu_in_coroutine());
256     data = (BdrvCoDrainData) {
257         .co = qemu_coroutine_self(),
258         .bs = bs,
259         .done = false,
260         .begin = begin,
261         .recursive = recursive,
262         .parent = parent,
263     };
264     bdrv_inc_in_flight(bs);
265     aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
266                             bdrv_co_drain_bh_cb, &data);
267 
268     qemu_coroutine_yield();
269     /* If we are resumed from some other event (such as an aio completion or a
270      * timer callback), it is a bug in the caller that should be fixed. */
271     assert(data.done);
272 }
273 
274 void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
275                            BdrvChild *parent)
276 {
277     BdrvChild *child, *next;
278 
279     if (qemu_in_coroutine()) {
280         bdrv_co_yield_to_drain(bs, true, recursive, parent);
281         return;
282     }
283 
284     /* Stop things in parent-to-child order */
285     if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
286         aio_disable_external(bdrv_get_aio_context(bs));
287     }
288 
289     bdrv_parent_drained_begin(bs, parent);
290     bdrv_drain_invoke(bs, true, false);
291     bdrv_drain_recurse(bs);
292 
293     if (recursive) {
294         bs->recursive_quiesce_counter++;
295         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
296             bdrv_do_drained_begin(child->bs, true, child);
297         }
298     }
299 }
300 
301 void bdrv_drained_begin(BlockDriverState *bs)
302 {
303     bdrv_do_drained_begin(bs, false, NULL);
304 }
305 
306 void bdrv_subtree_drained_begin(BlockDriverState *bs)
307 {
308     bdrv_do_drained_begin(bs, true, NULL);
309 }
310 
311 void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
312                          BdrvChild *parent)
313 {
314     BdrvChild *child, *next;
315     int old_quiesce_counter;
316 
317     if (qemu_in_coroutine()) {
318         bdrv_co_yield_to_drain(bs, false, recursive, parent);
319         return;
320     }
321     assert(bs->quiesce_counter > 0);
322     old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
323 
324     /* Re-enable things in child-to-parent order */
325     bdrv_drain_invoke(bs, false, false);
326     bdrv_parent_drained_end(bs, parent);
327     if (old_quiesce_counter == 1) {
328         aio_enable_external(bdrv_get_aio_context(bs));
329     }
330 
331     if (recursive) {
332         bs->recursive_quiesce_counter--;
333         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
334             bdrv_do_drained_end(child->bs, true, child);
335         }
336     }
337 }
338 
339 void bdrv_drained_end(BlockDriverState *bs)
340 {
341     bdrv_do_drained_end(bs, false, NULL);
342 }
343 
344 void bdrv_subtree_drained_end(BlockDriverState *bs)
345 {
346     bdrv_do_drained_end(bs, true, NULL);
347 }
348 
349 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
350 {
351     int i;
352 
353     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
354         bdrv_do_drained_begin(child->bs, true, child);
355     }
356 }
357 
358 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
359 {
360     int i;
361 
362     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
363         bdrv_do_drained_end(child->bs, true, child);
364     }
365 }
366 
367 /*
368  * Wait for pending requests to complete on a single BlockDriverState subtree,
369  * and suspend block driver's internal I/O until next request arrives.
370  *
371  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
372  * AioContext.
373  *
374  * Only this BlockDriverState's AioContext is run, so in-flight requests must
375  * not depend on events in other AioContexts.  In that case, use
376  * bdrv_drain_all() instead.
377  */
378 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
379 {
380     assert(qemu_in_coroutine());
381     bdrv_drained_begin(bs);
382     bdrv_drained_end(bs);
383 }
384 
385 void bdrv_drain(BlockDriverState *bs)
386 {
387     bdrv_drained_begin(bs);
388     bdrv_drained_end(bs);
389 }
390 
391 /*
392  * Wait for pending requests to complete across all BlockDriverStates
393  *
394  * This function does not flush data to disk, use bdrv_flush_all() for that
395  * after calling this function.
396  *
397  * This pauses all block jobs and disables external clients. It must
398  * be paired with bdrv_drain_all_end().
399  *
400  * NOTE: no new block jobs or BlockDriverStates can be created between
401  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
402  */
403 void bdrv_drain_all_begin(void)
404 {
405     /* Always run first iteration so any pending completion BHs run */
406     bool waited = true;
407     BlockDriverState *bs;
408     BdrvNextIterator it;
409     GSList *aio_ctxs = NULL, *ctx;
410 
411     /* BDRV_POLL_WHILE() for a node can only be called from its own I/O thread
412      * or the main loop AioContext. We potentially use BDRV_POLL_WHILE() on
413      * nodes in several different AioContexts, so make sure we're in the main
414      * context. */
415     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
416 
417     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
418         AioContext *aio_context = bdrv_get_aio_context(bs);
419 
420         /* Stop things in parent-to-child order */
421         aio_context_acquire(aio_context);
422         aio_disable_external(aio_context);
423         bdrv_parent_drained_begin(bs, NULL);
424         bdrv_drain_invoke(bs, true, true);
425         aio_context_release(aio_context);
426 
427         if (!g_slist_find(aio_ctxs, aio_context)) {
428             aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
429         }
430     }
431 
432     /* Note that completion of an asynchronous I/O operation can trigger any
433      * number of other I/O operations on other devices---for example a
434      * coroutine can submit an I/O request to another device in response to
435      * request completion.  Therefore we must keep looping until there was no
436      * more activity rather than simply draining each device independently.
437      */
438     while (waited) {
439         waited = false;
440 
441         for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
442             AioContext *aio_context = ctx->data;
443 
444             aio_context_acquire(aio_context);
445             for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
446                 if (aio_context == bdrv_get_aio_context(bs)) {
447                     waited |= bdrv_drain_recurse(bs);
448                 }
449             }
450             aio_context_release(aio_context);
451         }
452     }
453 
454     g_slist_free(aio_ctxs);
455 }
456 
457 void bdrv_drain_all_end(void)
458 {
459     BlockDriverState *bs;
460     BdrvNextIterator it;
461 
462     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
463         AioContext *aio_context = bdrv_get_aio_context(bs);
464 
465         /* Re-enable things in child-to-parent order */
466         aio_context_acquire(aio_context);
467         bdrv_drain_invoke(bs, false, true);
468         bdrv_parent_drained_end(bs, NULL);
469         aio_enable_external(aio_context);
470         aio_context_release(aio_context);
471     }
472 }
473 
474 void bdrv_drain_all(void)
475 {
476     bdrv_drain_all_begin();
477     bdrv_drain_all_end();
478 }
479 
480 /**
481  * Remove an active request from the tracked requests list
482  *
483  * This function should be called when a tracked request is completing.
484  */
485 static void tracked_request_end(BdrvTrackedRequest *req)
486 {
487     if (req->serialising) {
488         atomic_dec(&req->bs->serialising_in_flight);
489     }
490 
491     qemu_co_mutex_lock(&req->bs->reqs_lock);
492     QLIST_REMOVE(req, list);
493     qemu_co_queue_restart_all(&req->wait_queue);
494     qemu_co_mutex_unlock(&req->bs->reqs_lock);
495 }
496 
497 /**
498  * Add an active request to the tracked requests list
499  */
500 static void tracked_request_begin(BdrvTrackedRequest *req,
501                                   BlockDriverState *bs,
502                                   int64_t offset,
503                                   unsigned int bytes,
504                                   enum BdrvTrackedRequestType type)
505 {
506     *req = (BdrvTrackedRequest){
507         .bs = bs,
508         .offset         = offset,
509         .bytes          = bytes,
510         .type           = type,
511         .co             = qemu_coroutine_self(),
512         .serialising    = false,
513         .overlap_offset = offset,
514         .overlap_bytes  = bytes,
515     };
516 
517     qemu_co_queue_init(&req->wait_queue);
518 
519     qemu_co_mutex_lock(&bs->reqs_lock);
520     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
521     qemu_co_mutex_unlock(&bs->reqs_lock);
522 }
523 
524 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
525 {
526     int64_t overlap_offset = req->offset & ~(align - 1);
527     unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
528                                - overlap_offset;
529 
530     if (!req->serialising) {
531         atomic_inc(&req->bs->serialising_in_flight);
532         req->serialising = true;
533     }
534 
535     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
536     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
537 }
538 
539 /**
540  * Round a region to cluster boundaries
541  */
542 void bdrv_round_to_clusters(BlockDriverState *bs,
543                             int64_t offset, int64_t bytes,
544                             int64_t *cluster_offset,
545                             int64_t *cluster_bytes)
546 {
547     BlockDriverInfo bdi;
548 
549     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
550         *cluster_offset = offset;
551         *cluster_bytes = bytes;
552     } else {
553         int64_t c = bdi.cluster_size;
554         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
555         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
556     }
557 }
558 
559 static int bdrv_get_cluster_size(BlockDriverState *bs)
560 {
561     BlockDriverInfo bdi;
562     int ret;
563 
564     ret = bdrv_get_info(bs, &bdi);
565     if (ret < 0 || bdi.cluster_size == 0) {
566         return bs->bl.request_alignment;
567     } else {
568         return bdi.cluster_size;
569     }
570 }
571 
572 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
573                                      int64_t offset, unsigned int bytes)
574 {
575     /*        aaaa   bbbb */
576     if (offset >= req->overlap_offset + req->overlap_bytes) {
577         return false;
578     }
579     /* bbbb   aaaa        */
580     if (req->overlap_offset >= offset + bytes) {
581         return false;
582     }
583     return true;
584 }
585 
586 void bdrv_inc_in_flight(BlockDriverState *bs)
587 {
588     atomic_inc(&bs->in_flight);
589 }
590 
591 void bdrv_wakeup(BlockDriverState *bs)
592 {
593     aio_wait_kick(bdrv_get_aio_wait(bs));
594 }
595 
596 void bdrv_dec_in_flight(BlockDriverState *bs)
597 {
598     atomic_dec(&bs->in_flight);
599     bdrv_wakeup(bs);
600 }
601 
602 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
603 {
604     BlockDriverState *bs = self->bs;
605     BdrvTrackedRequest *req;
606     bool retry;
607     bool waited = false;
608 
609     if (!atomic_read(&bs->serialising_in_flight)) {
610         return false;
611     }
612 
613     do {
614         retry = false;
615         qemu_co_mutex_lock(&bs->reqs_lock);
616         QLIST_FOREACH(req, &bs->tracked_requests, list) {
617             if (req == self || (!req->serialising && !self->serialising)) {
618                 continue;
619             }
620             if (tracked_request_overlaps(req, self->overlap_offset,
621                                          self->overlap_bytes))
622             {
623                 /* Hitting this means there was a reentrant request, for
624                  * example, a block driver issuing nested requests.  This must
625                  * never happen since it means deadlock.
626                  */
627                 assert(qemu_coroutine_self() != req->co);
628 
629                 /* If the request is already (indirectly) waiting for us, or
630                  * will wait for us as soon as it wakes up, then just go on
631                  * (instead of producing a deadlock in the former case). */
632                 if (!req->waiting_for) {
633                     self->waiting_for = req;
634                     qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
635                     self->waiting_for = NULL;
636                     retry = true;
637                     waited = true;
638                     break;
639                 }
640             }
641         }
642         qemu_co_mutex_unlock(&bs->reqs_lock);
643     } while (retry);
644 
645     return waited;
646 }
647 
648 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
649                                    size_t size)
650 {
651     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
652         return -EIO;
653     }
654 
655     if (!bdrv_is_inserted(bs)) {
656         return -ENOMEDIUM;
657     }
658 
659     if (offset < 0) {
660         return -EIO;
661     }
662 
663     return 0;
664 }
665 
666 typedef struct RwCo {
667     BdrvChild *child;
668     int64_t offset;
669     QEMUIOVector *qiov;
670     bool is_write;
671     int ret;
672     BdrvRequestFlags flags;
673 } RwCo;
674 
675 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
676 {
677     RwCo *rwco = opaque;
678 
679     if (!rwco->is_write) {
680         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
681                                    rwco->qiov->size, rwco->qiov,
682                                    rwco->flags);
683     } else {
684         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
685                                     rwco->qiov->size, rwco->qiov,
686                                     rwco->flags);
687     }
688 }
689 
690 /*
691  * Process a vectored synchronous request using coroutines
692  */
693 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
694                         QEMUIOVector *qiov, bool is_write,
695                         BdrvRequestFlags flags)
696 {
697     Coroutine *co;
698     RwCo rwco = {
699         .child = child,
700         .offset = offset,
701         .qiov = qiov,
702         .is_write = is_write,
703         .ret = NOT_DONE,
704         .flags = flags,
705     };
706 
707     if (qemu_in_coroutine()) {
708         /* Fast-path if already in coroutine context */
709         bdrv_rw_co_entry(&rwco);
710     } else {
711         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
712         bdrv_coroutine_enter(child->bs, co);
713         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
714     }
715     return rwco.ret;
716 }
717 
718 /*
719  * Process a synchronous request using coroutines
720  */
721 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
722                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
723 {
724     QEMUIOVector qiov;
725     struct iovec iov = {
726         .iov_base = (void *)buf,
727         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
728     };
729 
730     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
731         return -EINVAL;
732     }
733 
734     qemu_iovec_init_external(&qiov, &iov, 1);
735     return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
736                         &qiov, is_write, flags);
737 }
738 
739 /* return < 0 if error. See bdrv_write() for the return codes */
740 int bdrv_read(BdrvChild *child, int64_t sector_num,
741               uint8_t *buf, int nb_sectors)
742 {
743     return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
744 }
745 
746 /* Return < 0 if error. Important errors are:
747   -EIO         generic I/O error (may happen for all errors)
748   -ENOMEDIUM   No media inserted.
749   -EINVAL      Invalid sector number or nb_sectors
750   -EACCES      Trying to write a read-only device
751 */
752 int bdrv_write(BdrvChild *child, int64_t sector_num,
753                const uint8_t *buf, int nb_sectors)
754 {
755     return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
756 }
757 
758 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
759                        int bytes, BdrvRequestFlags flags)
760 {
761     QEMUIOVector qiov;
762     struct iovec iov = {
763         .iov_base = NULL,
764         .iov_len = bytes,
765     };
766 
767     qemu_iovec_init_external(&qiov, &iov, 1);
768     return bdrv_prwv_co(child, offset, &qiov, true,
769                         BDRV_REQ_ZERO_WRITE | flags);
770 }
771 
772 /*
773  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
774  * The operation is sped up by checking the block status and only writing
775  * zeroes to the device if they currently do not return zeroes. Optional
776  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
777  * BDRV_REQ_FUA).
778  *
779  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
780  */
781 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
782 {
783     int ret;
784     int64_t target_size, bytes, offset = 0;
785     BlockDriverState *bs = child->bs;
786 
787     target_size = bdrv_getlength(bs);
788     if (target_size < 0) {
789         return target_size;
790     }
791 
792     for (;;) {
793         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
794         if (bytes <= 0) {
795             return 0;
796         }
797         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
798         if (ret < 0) {
799             error_report("error getting block status at offset %" PRId64 ": %s",
800                          offset, strerror(-ret));
801             return ret;
802         }
803         if (ret & BDRV_BLOCK_ZERO) {
804             offset += bytes;
805             continue;
806         }
807         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
808         if (ret < 0) {
809             error_report("error writing zeroes at offset %" PRId64 ": %s",
810                          offset, strerror(-ret));
811             return ret;
812         }
813         offset += bytes;
814     }
815 }
816 
817 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
818 {
819     int ret;
820 
821     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
822     if (ret < 0) {
823         return ret;
824     }
825 
826     return qiov->size;
827 }
828 
829 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
830 {
831     QEMUIOVector qiov;
832     struct iovec iov = {
833         .iov_base = (void *)buf,
834         .iov_len = bytes,
835     };
836 
837     if (bytes < 0) {
838         return -EINVAL;
839     }
840 
841     qemu_iovec_init_external(&qiov, &iov, 1);
842     return bdrv_preadv(child, offset, &qiov);
843 }
844 
845 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
846 {
847     int ret;
848 
849     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
850     if (ret < 0) {
851         return ret;
852     }
853 
854     return qiov->size;
855 }
856 
857 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
858 {
859     QEMUIOVector qiov;
860     struct iovec iov = {
861         .iov_base   = (void *) buf,
862         .iov_len    = bytes,
863     };
864 
865     if (bytes < 0) {
866         return -EINVAL;
867     }
868 
869     qemu_iovec_init_external(&qiov, &iov, 1);
870     return bdrv_pwritev(child, offset, &qiov);
871 }
872 
873 /*
874  * Writes to the file and ensures that no writes are reordered across this
875  * request (acts as a barrier)
876  *
877  * Returns 0 on success, -errno in error cases.
878  */
879 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
880                      const void *buf, int count)
881 {
882     int ret;
883 
884     ret = bdrv_pwrite(child, offset, buf, count);
885     if (ret < 0) {
886         return ret;
887     }
888 
889     ret = bdrv_flush(child->bs);
890     if (ret < 0) {
891         return ret;
892     }
893 
894     return 0;
895 }
896 
897 typedef struct CoroutineIOCompletion {
898     Coroutine *coroutine;
899     int ret;
900 } CoroutineIOCompletion;
901 
902 static void bdrv_co_io_em_complete(void *opaque, int ret)
903 {
904     CoroutineIOCompletion *co = opaque;
905 
906     co->ret = ret;
907     aio_co_wake(co->coroutine);
908 }
909 
910 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
911                                            uint64_t offset, uint64_t bytes,
912                                            QEMUIOVector *qiov, int flags)
913 {
914     BlockDriver *drv = bs->drv;
915     int64_t sector_num;
916     unsigned int nb_sectors;
917 
918     assert(!(flags & ~BDRV_REQ_MASK));
919 
920     if (!drv) {
921         return -ENOMEDIUM;
922     }
923 
924     if (drv->bdrv_co_preadv) {
925         return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
926     }
927 
928     if (drv->bdrv_aio_preadv) {
929         BlockAIOCB *acb;
930         CoroutineIOCompletion co = {
931             .coroutine = qemu_coroutine_self(),
932         };
933 
934         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
935                                    bdrv_co_io_em_complete, &co);
936         if (acb == NULL) {
937             return -EIO;
938         } else {
939             qemu_coroutine_yield();
940             return co.ret;
941         }
942     }
943 
944     sector_num = offset >> BDRV_SECTOR_BITS;
945     nb_sectors = bytes >> BDRV_SECTOR_BITS;
946 
947     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
948     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
949     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
950     assert(drv->bdrv_co_readv);
951 
952     return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
953 }
954 
955 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
956                                             uint64_t offset, uint64_t bytes,
957                                             QEMUIOVector *qiov, int flags)
958 {
959     BlockDriver *drv = bs->drv;
960     int64_t sector_num;
961     unsigned int nb_sectors;
962     int ret;
963 
964     assert(!(flags & ~BDRV_REQ_MASK));
965 
966     if (!drv) {
967         return -ENOMEDIUM;
968     }
969 
970     if (drv->bdrv_co_pwritev) {
971         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
972                                    flags & bs->supported_write_flags);
973         flags &= ~bs->supported_write_flags;
974         goto emulate_flags;
975     }
976 
977     if (drv->bdrv_aio_pwritev) {
978         BlockAIOCB *acb;
979         CoroutineIOCompletion co = {
980             .coroutine = qemu_coroutine_self(),
981         };
982 
983         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
984                                     flags & bs->supported_write_flags,
985                                     bdrv_co_io_em_complete, &co);
986         flags &= ~bs->supported_write_flags;
987         if (acb == NULL) {
988             ret = -EIO;
989         } else {
990             qemu_coroutine_yield();
991             ret = co.ret;
992         }
993         goto emulate_flags;
994     }
995 
996     sector_num = offset >> BDRV_SECTOR_BITS;
997     nb_sectors = bytes >> BDRV_SECTOR_BITS;
998 
999     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1000     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1001     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
1002 
1003     assert(drv->bdrv_co_writev);
1004     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1005                               flags & bs->supported_write_flags);
1006     flags &= ~bs->supported_write_flags;
1007 
1008 emulate_flags:
1009     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1010         ret = bdrv_co_flush(bs);
1011     }
1012 
1013     return ret;
1014 }
1015 
1016 static int coroutine_fn
1017 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1018                                uint64_t bytes, QEMUIOVector *qiov)
1019 {
1020     BlockDriver *drv = bs->drv;
1021 
1022     if (!drv) {
1023         return -ENOMEDIUM;
1024     }
1025 
1026     if (!drv->bdrv_co_pwritev_compressed) {
1027         return -ENOTSUP;
1028     }
1029 
1030     return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1031 }
1032 
1033 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1034         int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
1035 {
1036     BlockDriverState *bs = child->bs;
1037 
1038     /* Perform I/O through a temporary buffer so that users who scribble over
1039      * their read buffer while the operation is in progress do not end up
1040      * modifying the image file.  This is critical for zero-copy guest I/O
1041      * where anything might happen inside guest memory.
1042      */
1043     void *bounce_buffer;
1044 
1045     BlockDriver *drv = bs->drv;
1046     struct iovec iov;
1047     QEMUIOVector local_qiov;
1048     int64_t cluster_offset;
1049     int64_t cluster_bytes;
1050     size_t skip_bytes;
1051     int ret;
1052     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1053                                     BDRV_REQUEST_MAX_BYTES);
1054     unsigned int progress = 0;
1055 
1056     if (!drv) {
1057         return -ENOMEDIUM;
1058     }
1059 
1060     /* FIXME We cannot require callers to have write permissions when all they
1061      * are doing is a read request. If we did things right, write permissions
1062      * would be obtained anyway, but internally by the copy-on-read code. As
1063      * long as it is implemented here rather than in a separate filter driver,
1064      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1065      * it could request permissions. Therefore we have to bypass the permission
1066      * system for the moment. */
1067     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1068 
1069     /* Cover entire cluster so no additional backing file I/O is required when
1070      * allocating cluster in the image file.  Note that this value may exceed
1071      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1072      * is one reason we loop rather than doing it all at once.
1073      */
1074     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1075     skip_bytes = offset - cluster_offset;
1076 
1077     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1078                                    cluster_offset, cluster_bytes);
1079 
1080     bounce_buffer = qemu_try_blockalign(bs,
1081                                         MIN(MIN(max_transfer, cluster_bytes),
1082                                             MAX_BOUNCE_BUFFER));
1083     if (bounce_buffer == NULL) {
1084         ret = -ENOMEM;
1085         goto err;
1086     }
1087 
1088     while (cluster_bytes) {
1089         int64_t pnum;
1090 
1091         ret = bdrv_is_allocated(bs, cluster_offset,
1092                                 MIN(cluster_bytes, max_transfer), &pnum);
1093         if (ret < 0) {
1094             /* Safe to treat errors in querying allocation as if
1095              * unallocated; we'll probably fail again soon on the
1096              * read, but at least that will set a decent errno.
1097              */
1098             pnum = MIN(cluster_bytes, max_transfer);
1099         }
1100 
1101         assert(skip_bytes < pnum);
1102 
1103         if (ret <= 0) {
1104             /* Must copy-on-read; use the bounce buffer */
1105             iov.iov_base = bounce_buffer;
1106             iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1107             qemu_iovec_init_external(&local_qiov, &iov, 1);
1108 
1109             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1110                                      &local_qiov, 0);
1111             if (ret < 0) {
1112                 goto err;
1113             }
1114 
1115             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1116             if (drv->bdrv_co_pwrite_zeroes &&
1117                 buffer_is_zero(bounce_buffer, pnum)) {
1118                 /* FIXME: Should we (perhaps conditionally) be setting
1119                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1120                  * that still correctly reads as zero? */
1121                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1122                                                BDRV_REQ_WRITE_UNCHANGED);
1123             } else {
1124                 /* This does not change the data on the disk, it is not
1125                  * necessary to flush even in cache=writethrough mode.
1126                  */
1127                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1128                                           &local_qiov,
1129                                           BDRV_REQ_WRITE_UNCHANGED);
1130             }
1131 
1132             if (ret < 0) {
1133                 /* It might be okay to ignore write errors for guest
1134                  * requests.  If this is a deliberate copy-on-read
1135                  * then we don't want to ignore the error.  Simply
1136                  * report it in all cases.
1137                  */
1138                 goto err;
1139             }
1140 
1141             qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1142                                 pnum - skip_bytes);
1143         } else {
1144             /* Read directly into the destination */
1145             qemu_iovec_init(&local_qiov, qiov->niov);
1146             qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1147             ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1148                                      &local_qiov, 0);
1149             qemu_iovec_destroy(&local_qiov);
1150             if (ret < 0) {
1151                 goto err;
1152             }
1153         }
1154 
1155         cluster_offset += pnum;
1156         cluster_bytes -= pnum;
1157         progress += pnum - skip_bytes;
1158         skip_bytes = 0;
1159     }
1160     ret = 0;
1161 
1162 err:
1163     qemu_vfree(bounce_buffer);
1164     return ret;
1165 }
1166 
1167 /*
1168  * Forwards an already correctly aligned request to the BlockDriver. This
1169  * handles copy on read, zeroing after EOF, and fragmentation of large
1170  * reads; any other features must be implemented by the caller.
1171  */
1172 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1173     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1174     int64_t align, QEMUIOVector *qiov, int flags)
1175 {
1176     BlockDriverState *bs = child->bs;
1177     int64_t total_bytes, max_bytes;
1178     int ret = 0;
1179     uint64_t bytes_remaining = bytes;
1180     int max_transfer;
1181 
1182     assert(is_power_of_2(align));
1183     assert((offset & (align - 1)) == 0);
1184     assert((bytes & (align - 1)) == 0);
1185     assert(!qiov || bytes == qiov->size);
1186     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1187     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1188                                    align);
1189 
1190     /* TODO: We would need a per-BDS .supported_read_flags and
1191      * potential fallback support, if we ever implement any read flags
1192      * to pass through to drivers.  For now, there aren't any
1193      * passthrough flags.  */
1194     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1195 
1196     /* Handle Copy on Read and associated serialisation */
1197     if (flags & BDRV_REQ_COPY_ON_READ) {
1198         /* If we touch the same cluster it counts as an overlap.  This
1199          * guarantees that allocating writes will be serialized and not race
1200          * with each other for the same cluster.  For example, in copy-on-read
1201          * it ensures that the CoR read and write operations are atomic and
1202          * guest writes cannot interleave between them. */
1203         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1204     }
1205 
1206     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1207         wait_serialising_requests(req);
1208     }
1209 
1210     if (flags & BDRV_REQ_COPY_ON_READ) {
1211         int64_t pnum;
1212 
1213         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1214         if (ret < 0) {
1215             goto out;
1216         }
1217 
1218         if (!ret || pnum != bytes) {
1219             ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1220             goto out;
1221         }
1222     }
1223 
1224     /* Forward the request to the BlockDriver, possibly fragmenting it */
1225     total_bytes = bdrv_getlength(bs);
1226     if (total_bytes < 0) {
1227         ret = total_bytes;
1228         goto out;
1229     }
1230 
1231     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1232     if (bytes <= max_bytes && bytes <= max_transfer) {
1233         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1234         goto out;
1235     }
1236 
1237     while (bytes_remaining) {
1238         int num;
1239 
1240         if (max_bytes) {
1241             QEMUIOVector local_qiov;
1242 
1243             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1244             assert(num);
1245             qemu_iovec_init(&local_qiov, qiov->niov);
1246             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1247 
1248             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1249                                      num, &local_qiov, 0);
1250             max_bytes -= num;
1251             qemu_iovec_destroy(&local_qiov);
1252         } else {
1253             num = bytes_remaining;
1254             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1255                                     bytes_remaining);
1256         }
1257         if (ret < 0) {
1258             goto out;
1259         }
1260         bytes_remaining -= num;
1261     }
1262 
1263 out:
1264     return ret < 0 ? ret : 0;
1265 }
1266 
1267 /*
1268  * Handle a read request in coroutine context
1269  */
1270 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1271     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1272     BdrvRequestFlags flags)
1273 {
1274     BlockDriverState *bs = child->bs;
1275     BlockDriver *drv = bs->drv;
1276     BdrvTrackedRequest req;
1277 
1278     uint64_t align = bs->bl.request_alignment;
1279     uint8_t *head_buf = NULL;
1280     uint8_t *tail_buf = NULL;
1281     QEMUIOVector local_qiov;
1282     bool use_local_qiov = false;
1283     int ret;
1284 
1285     trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1286 
1287     if (!drv) {
1288         return -ENOMEDIUM;
1289     }
1290 
1291     ret = bdrv_check_byte_request(bs, offset, bytes);
1292     if (ret < 0) {
1293         return ret;
1294     }
1295 
1296     bdrv_inc_in_flight(bs);
1297 
1298     /* Don't do copy-on-read if we read data before write operation */
1299     if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1300         flags |= BDRV_REQ_COPY_ON_READ;
1301     }
1302 
1303     /* Align read if necessary by padding qiov */
1304     if (offset & (align - 1)) {
1305         head_buf = qemu_blockalign(bs, align);
1306         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1307         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1308         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1309         use_local_qiov = true;
1310 
1311         bytes += offset & (align - 1);
1312         offset = offset & ~(align - 1);
1313     }
1314 
1315     if ((offset + bytes) & (align - 1)) {
1316         if (!use_local_qiov) {
1317             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1318             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1319             use_local_qiov = true;
1320         }
1321         tail_buf = qemu_blockalign(bs, align);
1322         qemu_iovec_add(&local_qiov, tail_buf,
1323                        align - ((offset + bytes) & (align - 1)));
1324 
1325         bytes = ROUND_UP(bytes, align);
1326     }
1327 
1328     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1329     ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1330                               use_local_qiov ? &local_qiov : qiov,
1331                               flags);
1332     tracked_request_end(&req);
1333     bdrv_dec_in_flight(bs);
1334 
1335     if (use_local_qiov) {
1336         qemu_iovec_destroy(&local_qiov);
1337         qemu_vfree(head_buf);
1338         qemu_vfree(tail_buf);
1339     }
1340 
1341     return ret;
1342 }
1343 
1344 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1345     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1346     BdrvRequestFlags flags)
1347 {
1348     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1349         return -EINVAL;
1350     }
1351 
1352     return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1353                           nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1354 }
1355 
1356 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1357                                int nb_sectors, QEMUIOVector *qiov)
1358 {
1359     return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1360 }
1361 
1362 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1363     int64_t offset, int bytes, BdrvRequestFlags flags)
1364 {
1365     BlockDriver *drv = bs->drv;
1366     QEMUIOVector qiov;
1367     struct iovec iov = {0};
1368     int ret = 0;
1369     bool need_flush = false;
1370     int head = 0;
1371     int tail = 0;
1372 
1373     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1374     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1375                         bs->bl.request_alignment);
1376     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1377 
1378     if (!drv) {
1379         return -ENOMEDIUM;
1380     }
1381 
1382     assert(alignment % bs->bl.request_alignment == 0);
1383     head = offset % alignment;
1384     tail = (offset + bytes) % alignment;
1385     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1386     assert(max_write_zeroes >= bs->bl.request_alignment);
1387 
1388     while (bytes > 0 && !ret) {
1389         int num = bytes;
1390 
1391         /* Align request.  Block drivers can expect the "bulk" of the request
1392          * to be aligned, and that unaligned requests do not cross cluster
1393          * boundaries.
1394          */
1395         if (head) {
1396             /* Make a small request up to the first aligned sector. For
1397              * convenience, limit this request to max_transfer even if
1398              * we don't need to fall back to writes.  */
1399             num = MIN(MIN(bytes, max_transfer), alignment - head);
1400             head = (head + num) % alignment;
1401             assert(num < max_write_zeroes);
1402         } else if (tail && num > alignment) {
1403             /* Shorten the request to the last aligned sector.  */
1404             num -= tail;
1405         }
1406 
1407         /* limit request size */
1408         if (num > max_write_zeroes) {
1409             num = max_write_zeroes;
1410         }
1411 
1412         ret = -ENOTSUP;
1413         /* First try the efficient write zeroes operation */
1414         if (drv->bdrv_co_pwrite_zeroes) {
1415             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1416                                              flags & bs->supported_zero_flags);
1417             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1418                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1419                 need_flush = true;
1420             }
1421         } else {
1422             assert(!bs->supported_zero_flags);
1423         }
1424 
1425         if (ret == -ENOTSUP) {
1426             /* Fall back to bounce buffer if write zeroes is unsupported */
1427             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1428 
1429             if ((flags & BDRV_REQ_FUA) &&
1430                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1431                 /* No need for bdrv_driver_pwrite() to do a fallback
1432                  * flush on each chunk; use just one at the end */
1433                 write_flags &= ~BDRV_REQ_FUA;
1434                 need_flush = true;
1435             }
1436             num = MIN(num, max_transfer);
1437             iov.iov_len = num;
1438             if (iov.iov_base == NULL) {
1439                 iov.iov_base = qemu_try_blockalign(bs, num);
1440                 if (iov.iov_base == NULL) {
1441                     ret = -ENOMEM;
1442                     goto fail;
1443                 }
1444                 memset(iov.iov_base, 0, num);
1445             }
1446             qemu_iovec_init_external(&qiov, &iov, 1);
1447 
1448             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1449 
1450             /* Keep bounce buffer around if it is big enough for all
1451              * all future requests.
1452              */
1453             if (num < max_transfer) {
1454                 qemu_vfree(iov.iov_base);
1455                 iov.iov_base = NULL;
1456             }
1457         }
1458 
1459         offset += num;
1460         bytes -= num;
1461     }
1462 
1463 fail:
1464     if (ret == 0 && need_flush) {
1465         ret = bdrv_co_flush(bs);
1466     }
1467     qemu_vfree(iov.iov_base);
1468     return ret;
1469 }
1470 
1471 /*
1472  * Forwards an already correctly aligned write request to the BlockDriver,
1473  * after possibly fragmenting it.
1474  */
1475 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1476     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1477     int64_t align, QEMUIOVector *qiov, int flags)
1478 {
1479     BlockDriverState *bs = child->bs;
1480     BlockDriver *drv = bs->drv;
1481     bool waited;
1482     int ret;
1483 
1484     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1485     uint64_t bytes_remaining = bytes;
1486     int max_transfer;
1487 
1488     if (!drv) {
1489         return -ENOMEDIUM;
1490     }
1491 
1492     if (bdrv_has_readonly_bitmaps(bs)) {
1493         return -EPERM;
1494     }
1495 
1496     assert(is_power_of_2(align));
1497     assert((offset & (align - 1)) == 0);
1498     assert((bytes & (align - 1)) == 0);
1499     assert(!qiov || bytes == qiov->size);
1500     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1501     assert(!(flags & ~BDRV_REQ_MASK));
1502     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1503                                    align);
1504 
1505     waited = wait_serialising_requests(req);
1506     assert(!waited || !req->serialising);
1507     assert(req->overlap_offset <= offset);
1508     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1509     if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1510         assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1511     } else {
1512         assert(child->perm & BLK_PERM_WRITE);
1513     }
1514     assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1515 
1516     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1517 
1518     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1519         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1520         qemu_iovec_is_zero(qiov)) {
1521         flags |= BDRV_REQ_ZERO_WRITE;
1522         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1523             flags |= BDRV_REQ_MAY_UNMAP;
1524         }
1525     }
1526 
1527     if (ret < 0) {
1528         /* Do nothing, write notifier decided to fail this request */
1529     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1530         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1531         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1532     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1533         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1534     } else if (bytes <= max_transfer) {
1535         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1536         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1537     } else {
1538         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1539         while (bytes_remaining) {
1540             int num = MIN(bytes_remaining, max_transfer);
1541             QEMUIOVector local_qiov;
1542             int local_flags = flags;
1543 
1544             assert(num);
1545             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1546                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1547                 /* If FUA is going to be emulated by flush, we only
1548                  * need to flush on the last iteration */
1549                 local_flags &= ~BDRV_REQ_FUA;
1550             }
1551             qemu_iovec_init(&local_qiov, qiov->niov);
1552             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1553 
1554             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1555                                       num, &local_qiov, local_flags);
1556             qemu_iovec_destroy(&local_qiov);
1557             if (ret < 0) {
1558                 break;
1559             }
1560             bytes_remaining -= num;
1561         }
1562     }
1563     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1564 
1565     atomic_inc(&bs->write_gen);
1566     bdrv_set_dirty(bs, offset, bytes);
1567 
1568     stat64_max(&bs->wr_highest_offset, offset + bytes);
1569 
1570     if (ret >= 0) {
1571         bs->total_sectors = MAX(bs->total_sectors, end_sector);
1572         ret = 0;
1573     }
1574 
1575     return ret;
1576 }
1577 
1578 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1579                                                 int64_t offset,
1580                                                 unsigned int bytes,
1581                                                 BdrvRequestFlags flags,
1582                                                 BdrvTrackedRequest *req)
1583 {
1584     BlockDriverState *bs = child->bs;
1585     uint8_t *buf = NULL;
1586     QEMUIOVector local_qiov;
1587     struct iovec iov;
1588     uint64_t align = bs->bl.request_alignment;
1589     unsigned int head_padding_bytes, tail_padding_bytes;
1590     int ret = 0;
1591 
1592     head_padding_bytes = offset & (align - 1);
1593     tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1594 
1595 
1596     assert(flags & BDRV_REQ_ZERO_WRITE);
1597     if (head_padding_bytes || tail_padding_bytes) {
1598         buf = qemu_blockalign(bs, align);
1599         iov = (struct iovec) {
1600             .iov_base   = buf,
1601             .iov_len    = align,
1602         };
1603         qemu_iovec_init_external(&local_qiov, &iov, 1);
1604     }
1605     if (head_padding_bytes) {
1606         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1607 
1608         /* RMW the unaligned part before head. */
1609         mark_request_serialising(req, align);
1610         wait_serialising_requests(req);
1611         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1612         ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1613                                   align, &local_qiov, 0);
1614         if (ret < 0) {
1615             goto fail;
1616         }
1617         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1618 
1619         memset(buf + head_padding_bytes, 0, zero_bytes);
1620         ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1621                                    align, &local_qiov,
1622                                    flags & ~BDRV_REQ_ZERO_WRITE);
1623         if (ret < 0) {
1624             goto fail;
1625         }
1626         offset += zero_bytes;
1627         bytes -= zero_bytes;
1628     }
1629 
1630     assert(!bytes || (offset & (align - 1)) == 0);
1631     if (bytes >= align) {
1632         /* Write the aligned part in the middle. */
1633         uint64_t aligned_bytes = bytes & ~(align - 1);
1634         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1635                                    NULL, flags);
1636         if (ret < 0) {
1637             goto fail;
1638         }
1639         bytes -= aligned_bytes;
1640         offset += aligned_bytes;
1641     }
1642 
1643     assert(!bytes || (offset & (align - 1)) == 0);
1644     if (bytes) {
1645         assert(align == tail_padding_bytes + bytes);
1646         /* RMW the unaligned part after tail. */
1647         mark_request_serialising(req, align);
1648         wait_serialising_requests(req);
1649         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1650         ret = bdrv_aligned_preadv(child, req, offset, align,
1651                                   align, &local_qiov, 0);
1652         if (ret < 0) {
1653             goto fail;
1654         }
1655         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1656 
1657         memset(buf, 0, bytes);
1658         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1659                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1660     }
1661 fail:
1662     qemu_vfree(buf);
1663     return ret;
1664 
1665 }
1666 
1667 /*
1668  * Handle a write request in coroutine context
1669  */
1670 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1671     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1672     BdrvRequestFlags flags)
1673 {
1674     BlockDriverState *bs = child->bs;
1675     BdrvTrackedRequest req;
1676     uint64_t align = bs->bl.request_alignment;
1677     uint8_t *head_buf = NULL;
1678     uint8_t *tail_buf = NULL;
1679     QEMUIOVector local_qiov;
1680     bool use_local_qiov = false;
1681     int ret;
1682 
1683     trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1684 
1685     if (!bs->drv) {
1686         return -ENOMEDIUM;
1687     }
1688     if (bs->read_only) {
1689         return -EPERM;
1690     }
1691     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1692 
1693     ret = bdrv_check_byte_request(bs, offset, bytes);
1694     if (ret < 0) {
1695         return ret;
1696     }
1697 
1698     bdrv_inc_in_flight(bs);
1699     /*
1700      * Align write if necessary by performing a read-modify-write cycle.
1701      * Pad qiov with the read parts and be sure to have a tracked request not
1702      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1703      */
1704     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1705 
1706     if (flags & BDRV_REQ_ZERO_WRITE) {
1707         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1708         goto out;
1709     }
1710 
1711     if (offset & (align - 1)) {
1712         QEMUIOVector head_qiov;
1713         struct iovec head_iov;
1714 
1715         mark_request_serialising(&req, align);
1716         wait_serialising_requests(&req);
1717 
1718         head_buf = qemu_blockalign(bs, align);
1719         head_iov = (struct iovec) {
1720             .iov_base   = head_buf,
1721             .iov_len    = align,
1722         };
1723         qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1724 
1725         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1726         ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1727                                   align, &head_qiov, 0);
1728         if (ret < 0) {
1729             goto fail;
1730         }
1731         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1732 
1733         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1734         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1735         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1736         use_local_qiov = true;
1737 
1738         bytes += offset & (align - 1);
1739         offset = offset & ~(align - 1);
1740 
1741         /* We have read the tail already if the request is smaller
1742          * than one aligned block.
1743          */
1744         if (bytes < align) {
1745             qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1746             bytes = align;
1747         }
1748     }
1749 
1750     if ((offset + bytes) & (align - 1)) {
1751         QEMUIOVector tail_qiov;
1752         struct iovec tail_iov;
1753         size_t tail_bytes;
1754         bool waited;
1755 
1756         mark_request_serialising(&req, align);
1757         waited = wait_serialising_requests(&req);
1758         assert(!waited || !use_local_qiov);
1759 
1760         tail_buf = qemu_blockalign(bs, align);
1761         tail_iov = (struct iovec) {
1762             .iov_base   = tail_buf,
1763             .iov_len    = align,
1764         };
1765         qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1766 
1767         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1768         ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1769                                   align, align, &tail_qiov, 0);
1770         if (ret < 0) {
1771             goto fail;
1772         }
1773         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1774 
1775         if (!use_local_qiov) {
1776             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1777             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1778             use_local_qiov = true;
1779         }
1780 
1781         tail_bytes = (offset + bytes) & (align - 1);
1782         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1783 
1784         bytes = ROUND_UP(bytes, align);
1785     }
1786 
1787     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1788                                use_local_qiov ? &local_qiov : qiov,
1789                                flags);
1790 
1791 fail:
1792 
1793     if (use_local_qiov) {
1794         qemu_iovec_destroy(&local_qiov);
1795     }
1796     qemu_vfree(head_buf);
1797     qemu_vfree(tail_buf);
1798 out:
1799     tracked_request_end(&req);
1800     bdrv_dec_in_flight(bs);
1801     return ret;
1802 }
1803 
1804 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1805     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1806     BdrvRequestFlags flags)
1807 {
1808     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1809         return -EINVAL;
1810     }
1811 
1812     return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1813                            nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1814 }
1815 
1816 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1817     int nb_sectors, QEMUIOVector *qiov)
1818 {
1819     return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1820 }
1821 
1822 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1823                                        int bytes, BdrvRequestFlags flags)
1824 {
1825     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1826 
1827     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1828         flags &= ~BDRV_REQ_MAY_UNMAP;
1829     }
1830 
1831     return bdrv_co_pwritev(child, offset, bytes, NULL,
1832                            BDRV_REQ_ZERO_WRITE | flags);
1833 }
1834 
1835 /*
1836  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1837  */
1838 int bdrv_flush_all(void)
1839 {
1840     BdrvNextIterator it;
1841     BlockDriverState *bs = NULL;
1842     int result = 0;
1843 
1844     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1845         AioContext *aio_context = bdrv_get_aio_context(bs);
1846         int ret;
1847 
1848         aio_context_acquire(aio_context);
1849         ret = bdrv_flush(bs);
1850         if (ret < 0 && !result) {
1851             result = ret;
1852         }
1853         aio_context_release(aio_context);
1854     }
1855 
1856     return result;
1857 }
1858 
1859 
1860 typedef struct BdrvCoBlockStatusData {
1861     BlockDriverState *bs;
1862     BlockDriverState *base;
1863     bool want_zero;
1864     int64_t offset;
1865     int64_t bytes;
1866     int64_t *pnum;
1867     int64_t *map;
1868     BlockDriverState **file;
1869     int ret;
1870     bool done;
1871 } BdrvCoBlockStatusData;
1872 
1873 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
1874                                                 bool want_zero,
1875                                                 int64_t offset,
1876                                                 int64_t bytes,
1877                                                 int64_t *pnum,
1878                                                 int64_t *map,
1879                                                 BlockDriverState **file)
1880 {
1881     assert(bs->file && bs->file->bs);
1882     *pnum = bytes;
1883     *map = offset;
1884     *file = bs->file->bs;
1885     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1886 }
1887 
1888 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
1889                                                    bool want_zero,
1890                                                    int64_t offset,
1891                                                    int64_t bytes,
1892                                                    int64_t *pnum,
1893                                                    int64_t *map,
1894                                                    BlockDriverState **file)
1895 {
1896     assert(bs->backing && bs->backing->bs);
1897     *pnum = bytes;
1898     *map = offset;
1899     *file = bs->backing->bs;
1900     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1901 }
1902 
1903 /*
1904  * Returns the allocation status of the specified sectors.
1905  * Drivers not implementing the functionality are assumed to not support
1906  * backing files, hence all their sectors are reported as allocated.
1907  *
1908  * If 'want_zero' is true, the caller is querying for mapping
1909  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
1910  * _ZERO where possible; otherwise, the result favors larger 'pnum',
1911  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
1912  *
1913  * If 'offset' is beyond the end of the disk image the return value is
1914  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1915  *
1916  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
1917  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1918  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1919  *
1920  * 'pnum' is set to the number of bytes (including and immediately
1921  * following the specified offset) that are easily known to be in the
1922  * same allocated/unallocated state.  Note that a second call starting
1923  * at the original offset plus returned pnum may have the same status.
1924  * The returned value is non-zero on success except at end-of-file.
1925  *
1926  * Returns negative errno on failure.  Otherwise, if the
1927  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
1928  * set to the host mapping and BDS corresponding to the guest offset.
1929  */
1930 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
1931                                              bool want_zero,
1932                                              int64_t offset, int64_t bytes,
1933                                              int64_t *pnum, int64_t *map,
1934                                              BlockDriverState **file)
1935 {
1936     int64_t total_size;
1937     int64_t n; /* bytes */
1938     int ret;
1939     int64_t local_map = 0;
1940     BlockDriverState *local_file = NULL;
1941     int64_t aligned_offset, aligned_bytes;
1942     uint32_t align;
1943 
1944     assert(pnum);
1945     *pnum = 0;
1946     total_size = bdrv_getlength(bs);
1947     if (total_size < 0) {
1948         ret = total_size;
1949         goto early_out;
1950     }
1951 
1952     if (offset >= total_size) {
1953         ret = BDRV_BLOCK_EOF;
1954         goto early_out;
1955     }
1956     if (!bytes) {
1957         ret = 0;
1958         goto early_out;
1959     }
1960 
1961     n = total_size - offset;
1962     if (n < bytes) {
1963         bytes = n;
1964     }
1965 
1966     /* Must be non-NULL or bdrv_getlength() would have failed */
1967     assert(bs->drv);
1968     if (!bs->drv->bdrv_co_block_status) {
1969         *pnum = bytes;
1970         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1971         if (offset + bytes == total_size) {
1972             ret |= BDRV_BLOCK_EOF;
1973         }
1974         if (bs->drv->protocol_name) {
1975             ret |= BDRV_BLOCK_OFFSET_VALID;
1976             local_map = offset;
1977             local_file = bs;
1978         }
1979         goto early_out;
1980     }
1981 
1982     bdrv_inc_in_flight(bs);
1983 
1984     /* Round out to request_alignment boundaries */
1985     align = bs->bl.request_alignment;
1986     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
1987     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
1988 
1989     ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
1990                                         aligned_bytes, pnum, &local_map,
1991                                         &local_file);
1992     if (ret < 0) {
1993         *pnum = 0;
1994         goto out;
1995     }
1996 
1997     /*
1998      * The driver's result must be a non-zero multiple of request_alignment.
1999      * Clamp pnum and adjust map to original request.
2000      */
2001     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2002            align > offset - aligned_offset);
2003     *pnum -= offset - aligned_offset;
2004     if (*pnum > bytes) {
2005         *pnum = bytes;
2006     }
2007     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2008         local_map += offset - aligned_offset;
2009     }
2010 
2011     if (ret & BDRV_BLOCK_RAW) {
2012         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2013         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2014                                    *pnum, pnum, &local_map, &local_file);
2015         goto out;
2016     }
2017 
2018     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2019         ret |= BDRV_BLOCK_ALLOCATED;
2020     } else if (want_zero) {
2021         if (bdrv_unallocated_blocks_are_zero(bs)) {
2022             ret |= BDRV_BLOCK_ZERO;
2023         } else if (bs->backing) {
2024             BlockDriverState *bs2 = bs->backing->bs;
2025             int64_t size2 = bdrv_getlength(bs2);
2026 
2027             if (size2 >= 0 && offset >= size2) {
2028                 ret |= BDRV_BLOCK_ZERO;
2029             }
2030         }
2031     }
2032 
2033     if (want_zero && local_file && local_file != bs &&
2034         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2035         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2036         int64_t file_pnum;
2037         int ret2;
2038 
2039         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2040                                     *pnum, &file_pnum, NULL, NULL);
2041         if (ret2 >= 0) {
2042             /* Ignore errors.  This is just providing extra information, it
2043              * is useful but not necessary.
2044              */
2045             if (ret2 & BDRV_BLOCK_EOF &&
2046                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2047                 /*
2048                  * It is valid for the format block driver to read
2049                  * beyond the end of the underlying file's current
2050                  * size; such areas read as zero.
2051                  */
2052                 ret |= BDRV_BLOCK_ZERO;
2053             } else {
2054                 /* Limit request to the range reported by the protocol driver */
2055                 *pnum = file_pnum;
2056                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2057             }
2058         }
2059     }
2060 
2061 out:
2062     bdrv_dec_in_flight(bs);
2063     if (ret >= 0 && offset + *pnum == total_size) {
2064         ret |= BDRV_BLOCK_EOF;
2065     }
2066 early_out:
2067     if (file) {
2068         *file = local_file;
2069     }
2070     if (map) {
2071         *map = local_map;
2072     }
2073     return ret;
2074 }
2075 
2076 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2077                                                    BlockDriverState *base,
2078                                                    bool want_zero,
2079                                                    int64_t offset,
2080                                                    int64_t bytes,
2081                                                    int64_t *pnum,
2082                                                    int64_t *map,
2083                                                    BlockDriverState **file)
2084 {
2085     BlockDriverState *p;
2086     int ret = 0;
2087     bool first = true;
2088 
2089     assert(bs != base);
2090     for (p = bs; p != base; p = backing_bs(p)) {
2091         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2092                                    file);
2093         if (ret < 0) {
2094             break;
2095         }
2096         if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2097             /*
2098              * Reading beyond the end of the file continues to read
2099              * zeroes, but we can only widen the result to the
2100              * unallocated length we learned from an earlier
2101              * iteration.
2102              */
2103             *pnum = bytes;
2104         }
2105         if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2106             break;
2107         }
2108         /* [offset, pnum] unallocated on this layer, which could be only
2109          * the first part of [offset, bytes].  */
2110         bytes = MIN(bytes, *pnum);
2111         first = false;
2112     }
2113     return ret;
2114 }
2115 
2116 /* Coroutine wrapper for bdrv_block_status_above() */
2117 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2118 {
2119     BdrvCoBlockStatusData *data = opaque;
2120 
2121     data->ret = bdrv_co_block_status_above(data->bs, data->base,
2122                                            data->want_zero,
2123                                            data->offset, data->bytes,
2124                                            data->pnum, data->map, data->file);
2125     data->done = true;
2126 }
2127 
2128 /*
2129  * Synchronous wrapper around bdrv_co_block_status_above().
2130  *
2131  * See bdrv_co_block_status_above() for details.
2132  */
2133 static int bdrv_common_block_status_above(BlockDriverState *bs,
2134                                           BlockDriverState *base,
2135                                           bool want_zero, int64_t offset,
2136                                           int64_t bytes, int64_t *pnum,
2137                                           int64_t *map,
2138                                           BlockDriverState **file)
2139 {
2140     Coroutine *co;
2141     BdrvCoBlockStatusData data = {
2142         .bs = bs,
2143         .base = base,
2144         .want_zero = want_zero,
2145         .offset = offset,
2146         .bytes = bytes,
2147         .pnum = pnum,
2148         .map = map,
2149         .file = file,
2150         .done = false,
2151     };
2152 
2153     if (qemu_in_coroutine()) {
2154         /* Fast-path if already in coroutine context */
2155         bdrv_block_status_above_co_entry(&data);
2156     } else {
2157         co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2158         bdrv_coroutine_enter(bs, co);
2159         BDRV_POLL_WHILE(bs, !data.done);
2160     }
2161     return data.ret;
2162 }
2163 
2164 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2165                             int64_t offset, int64_t bytes, int64_t *pnum,
2166                             int64_t *map, BlockDriverState **file)
2167 {
2168     return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2169                                           pnum, map, file);
2170 }
2171 
2172 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2173                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2174 {
2175     return bdrv_block_status_above(bs, backing_bs(bs),
2176                                    offset, bytes, pnum, map, file);
2177 }
2178 
2179 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2180                                    int64_t bytes, int64_t *pnum)
2181 {
2182     int ret;
2183     int64_t dummy;
2184 
2185     ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2186                                          bytes, pnum ? pnum : &dummy, NULL,
2187                                          NULL);
2188     if (ret < 0) {
2189         return ret;
2190     }
2191     return !!(ret & BDRV_BLOCK_ALLOCATED);
2192 }
2193 
2194 /*
2195  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2196  *
2197  * Return true if (a prefix of) the given range is allocated in any image
2198  * between BASE and TOP (inclusive).  BASE can be NULL to check if the given
2199  * offset is allocated in any image of the chain.  Return false otherwise,
2200  * or negative errno on failure.
2201  *
2202  * 'pnum' is set to the number of bytes (including and immediately
2203  * following the specified offset) that are known to be in the same
2204  * allocated/unallocated state.  Note that a subsequent call starting
2205  * at 'offset + *pnum' may return the same allocation status (in other
2206  * words, the result is not necessarily the maximum possible range);
2207  * but 'pnum' will only be 0 when end of file is reached.
2208  *
2209  */
2210 int bdrv_is_allocated_above(BlockDriverState *top,
2211                             BlockDriverState *base,
2212                             int64_t offset, int64_t bytes, int64_t *pnum)
2213 {
2214     BlockDriverState *intermediate;
2215     int ret;
2216     int64_t n = bytes;
2217 
2218     intermediate = top;
2219     while (intermediate && intermediate != base) {
2220         int64_t pnum_inter;
2221         int64_t size_inter;
2222 
2223         ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2224         if (ret < 0) {
2225             return ret;
2226         }
2227         if (ret) {
2228             *pnum = pnum_inter;
2229             return 1;
2230         }
2231 
2232         size_inter = bdrv_getlength(intermediate);
2233         if (size_inter < 0) {
2234             return size_inter;
2235         }
2236         if (n > pnum_inter &&
2237             (intermediate == top || offset + pnum_inter < size_inter)) {
2238             n = pnum_inter;
2239         }
2240 
2241         intermediate = backing_bs(intermediate);
2242     }
2243 
2244     *pnum = n;
2245     return 0;
2246 }
2247 
2248 typedef struct BdrvVmstateCo {
2249     BlockDriverState    *bs;
2250     QEMUIOVector        *qiov;
2251     int64_t             pos;
2252     bool                is_read;
2253     int                 ret;
2254 } BdrvVmstateCo;
2255 
2256 static int coroutine_fn
2257 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2258                    bool is_read)
2259 {
2260     BlockDriver *drv = bs->drv;
2261     int ret = -ENOTSUP;
2262 
2263     bdrv_inc_in_flight(bs);
2264 
2265     if (!drv) {
2266         ret = -ENOMEDIUM;
2267     } else if (drv->bdrv_load_vmstate) {
2268         if (is_read) {
2269             ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2270         } else {
2271             ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2272         }
2273     } else if (bs->file) {
2274         ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2275     }
2276 
2277     bdrv_dec_in_flight(bs);
2278     return ret;
2279 }
2280 
2281 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2282 {
2283     BdrvVmstateCo *co = opaque;
2284     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2285 }
2286 
2287 static inline int
2288 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2289                 bool is_read)
2290 {
2291     if (qemu_in_coroutine()) {
2292         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2293     } else {
2294         BdrvVmstateCo data = {
2295             .bs         = bs,
2296             .qiov       = qiov,
2297             .pos        = pos,
2298             .is_read    = is_read,
2299             .ret        = -EINPROGRESS,
2300         };
2301         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2302 
2303         bdrv_coroutine_enter(bs, co);
2304         BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2305         return data.ret;
2306     }
2307 }
2308 
2309 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2310                       int64_t pos, int size)
2311 {
2312     QEMUIOVector qiov;
2313     struct iovec iov = {
2314         .iov_base   = (void *) buf,
2315         .iov_len    = size,
2316     };
2317     int ret;
2318 
2319     qemu_iovec_init_external(&qiov, &iov, 1);
2320 
2321     ret = bdrv_writev_vmstate(bs, &qiov, pos);
2322     if (ret < 0) {
2323         return ret;
2324     }
2325 
2326     return size;
2327 }
2328 
2329 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2330 {
2331     return bdrv_rw_vmstate(bs, qiov, pos, false);
2332 }
2333 
2334 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2335                       int64_t pos, int size)
2336 {
2337     QEMUIOVector qiov;
2338     struct iovec iov = {
2339         .iov_base   = buf,
2340         .iov_len    = size,
2341     };
2342     int ret;
2343 
2344     qemu_iovec_init_external(&qiov, &iov, 1);
2345     ret = bdrv_readv_vmstate(bs, &qiov, pos);
2346     if (ret < 0) {
2347         return ret;
2348     }
2349 
2350     return size;
2351 }
2352 
2353 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2354 {
2355     return bdrv_rw_vmstate(bs, qiov, pos, true);
2356 }
2357 
2358 /**************************************************************/
2359 /* async I/Os */
2360 
2361 void bdrv_aio_cancel(BlockAIOCB *acb)
2362 {
2363     qemu_aio_ref(acb);
2364     bdrv_aio_cancel_async(acb);
2365     while (acb->refcnt > 1) {
2366         if (acb->aiocb_info->get_aio_context) {
2367             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2368         } else if (acb->bs) {
2369             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2370              * assert that we're not using an I/O thread.  Thread-safe
2371              * code should use bdrv_aio_cancel_async exclusively.
2372              */
2373             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2374             aio_poll(bdrv_get_aio_context(acb->bs), true);
2375         } else {
2376             abort();
2377         }
2378     }
2379     qemu_aio_unref(acb);
2380 }
2381 
2382 /* Async version of aio cancel. The caller is not blocked if the acb implements
2383  * cancel_async, otherwise we do nothing and let the request normally complete.
2384  * In either case the completion callback must be called. */
2385 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2386 {
2387     if (acb->aiocb_info->cancel_async) {
2388         acb->aiocb_info->cancel_async(acb);
2389     }
2390 }
2391 
2392 /**************************************************************/
2393 /* Coroutine block device emulation */
2394 
2395 typedef struct FlushCo {
2396     BlockDriverState *bs;
2397     int ret;
2398 } FlushCo;
2399 
2400 
2401 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2402 {
2403     FlushCo *rwco = opaque;
2404 
2405     rwco->ret = bdrv_co_flush(rwco->bs);
2406 }
2407 
2408 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2409 {
2410     int current_gen;
2411     int ret = 0;
2412 
2413     bdrv_inc_in_flight(bs);
2414 
2415     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2416         bdrv_is_sg(bs)) {
2417         goto early_exit;
2418     }
2419 
2420     qemu_co_mutex_lock(&bs->reqs_lock);
2421     current_gen = atomic_read(&bs->write_gen);
2422 
2423     /* Wait until any previous flushes are completed */
2424     while (bs->active_flush_req) {
2425         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2426     }
2427 
2428     /* Flushes reach this point in nondecreasing current_gen order.  */
2429     bs->active_flush_req = true;
2430     qemu_co_mutex_unlock(&bs->reqs_lock);
2431 
2432     /* Write back all layers by calling one driver function */
2433     if (bs->drv->bdrv_co_flush) {
2434         ret = bs->drv->bdrv_co_flush(bs);
2435         goto out;
2436     }
2437 
2438     /* Write back cached data to the OS even with cache=unsafe */
2439     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2440     if (bs->drv->bdrv_co_flush_to_os) {
2441         ret = bs->drv->bdrv_co_flush_to_os(bs);
2442         if (ret < 0) {
2443             goto out;
2444         }
2445     }
2446 
2447     /* But don't actually force it to the disk with cache=unsafe */
2448     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2449         goto flush_parent;
2450     }
2451 
2452     /* Check if we really need to flush anything */
2453     if (bs->flushed_gen == current_gen) {
2454         goto flush_parent;
2455     }
2456 
2457     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2458     if (!bs->drv) {
2459         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2460          * (even in case of apparent success) */
2461         ret = -ENOMEDIUM;
2462         goto out;
2463     }
2464     if (bs->drv->bdrv_co_flush_to_disk) {
2465         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2466     } else if (bs->drv->bdrv_aio_flush) {
2467         BlockAIOCB *acb;
2468         CoroutineIOCompletion co = {
2469             .coroutine = qemu_coroutine_self(),
2470         };
2471 
2472         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2473         if (acb == NULL) {
2474             ret = -EIO;
2475         } else {
2476             qemu_coroutine_yield();
2477             ret = co.ret;
2478         }
2479     } else {
2480         /*
2481          * Some block drivers always operate in either writethrough or unsafe
2482          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2483          * know how the server works (because the behaviour is hardcoded or
2484          * depends on server-side configuration), so we can't ensure that
2485          * everything is safe on disk. Returning an error doesn't work because
2486          * that would break guests even if the server operates in writethrough
2487          * mode.
2488          *
2489          * Let's hope the user knows what he's doing.
2490          */
2491         ret = 0;
2492     }
2493 
2494     if (ret < 0) {
2495         goto out;
2496     }
2497 
2498     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2499      * in the case of cache=unsafe, so there are no useless flushes.
2500      */
2501 flush_parent:
2502     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2503 out:
2504     /* Notify any pending flushes that we have completed */
2505     if (ret == 0) {
2506         bs->flushed_gen = current_gen;
2507     }
2508 
2509     qemu_co_mutex_lock(&bs->reqs_lock);
2510     bs->active_flush_req = false;
2511     /* Return value is ignored - it's ok if wait queue is empty */
2512     qemu_co_queue_next(&bs->flush_queue);
2513     qemu_co_mutex_unlock(&bs->reqs_lock);
2514 
2515 early_exit:
2516     bdrv_dec_in_flight(bs);
2517     return ret;
2518 }
2519 
2520 int bdrv_flush(BlockDriverState *bs)
2521 {
2522     Coroutine *co;
2523     FlushCo flush_co = {
2524         .bs = bs,
2525         .ret = NOT_DONE,
2526     };
2527 
2528     if (qemu_in_coroutine()) {
2529         /* Fast-path if already in coroutine context */
2530         bdrv_flush_co_entry(&flush_co);
2531     } else {
2532         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2533         bdrv_coroutine_enter(bs, co);
2534         BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2535     }
2536 
2537     return flush_co.ret;
2538 }
2539 
2540 typedef struct DiscardCo {
2541     BlockDriverState *bs;
2542     int64_t offset;
2543     int bytes;
2544     int ret;
2545 } DiscardCo;
2546 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2547 {
2548     DiscardCo *rwco = opaque;
2549 
2550     rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2551 }
2552 
2553 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2554                                   int bytes)
2555 {
2556     BdrvTrackedRequest req;
2557     int max_pdiscard, ret;
2558     int head, tail, align;
2559 
2560     if (!bs->drv) {
2561         return -ENOMEDIUM;
2562     }
2563 
2564     if (bdrv_has_readonly_bitmaps(bs)) {
2565         return -EPERM;
2566     }
2567 
2568     ret = bdrv_check_byte_request(bs, offset, bytes);
2569     if (ret < 0) {
2570         return ret;
2571     } else if (bs->read_only) {
2572         return -EPERM;
2573     }
2574     assert(!(bs->open_flags & BDRV_O_INACTIVE));
2575 
2576     /* Do nothing if disabled.  */
2577     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2578         return 0;
2579     }
2580 
2581     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2582         return 0;
2583     }
2584 
2585     /* Discard is advisory, but some devices track and coalesce
2586      * unaligned requests, so we must pass everything down rather than
2587      * round here.  Still, most devices will just silently ignore
2588      * unaligned requests (by returning -ENOTSUP), so we must fragment
2589      * the request accordingly.  */
2590     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2591     assert(align % bs->bl.request_alignment == 0);
2592     head = offset % align;
2593     tail = (offset + bytes) % align;
2594 
2595     bdrv_inc_in_flight(bs);
2596     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2597 
2598     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2599     if (ret < 0) {
2600         goto out;
2601     }
2602 
2603     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2604                                    align);
2605     assert(max_pdiscard >= bs->bl.request_alignment);
2606 
2607     while (bytes > 0) {
2608         int num = bytes;
2609 
2610         if (head) {
2611             /* Make small requests to get to alignment boundaries. */
2612             num = MIN(bytes, align - head);
2613             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2614                 num %= bs->bl.request_alignment;
2615             }
2616             head = (head + num) % align;
2617             assert(num < max_pdiscard);
2618         } else if (tail) {
2619             if (num > align) {
2620                 /* Shorten the request to the last aligned cluster.  */
2621                 num -= tail;
2622             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2623                        tail > bs->bl.request_alignment) {
2624                 tail %= bs->bl.request_alignment;
2625                 num -= tail;
2626             }
2627         }
2628         /* limit request size */
2629         if (num > max_pdiscard) {
2630             num = max_pdiscard;
2631         }
2632 
2633         if (!bs->drv) {
2634             ret = -ENOMEDIUM;
2635             goto out;
2636         }
2637         if (bs->drv->bdrv_co_pdiscard) {
2638             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2639         } else {
2640             BlockAIOCB *acb;
2641             CoroutineIOCompletion co = {
2642                 .coroutine = qemu_coroutine_self(),
2643             };
2644 
2645             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2646                                              bdrv_co_io_em_complete, &co);
2647             if (acb == NULL) {
2648                 ret = -EIO;
2649                 goto out;
2650             } else {
2651                 qemu_coroutine_yield();
2652                 ret = co.ret;
2653             }
2654         }
2655         if (ret && ret != -ENOTSUP) {
2656             goto out;
2657         }
2658 
2659         offset += num;
2660         bytes -= num;
2661     }
2662     ret = 0;
2663 out:
2664     atomic_inc(&bs->write_gen);
2665     bdrv_set_dirty(bs, req.offset, req.bytes);
2666     tracked_request_end(&req);
2667     bdrv_dec_in_flight(bs);
2668     return ret;
2669 }
2670 
2671 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2672 {
2673     Coroutine *co;
2674     DiscardCo rwco = {
2675         .bs = bs,
2676         .offset = offset,
2677         .bytes = bytes,
2678         .ret = NOT_DONE,
2679     };
2680 
2681     if (qemu_in_coroutine()) {
2682         /* Fast-path if already in coroutine context */
2683         bdrv_pdiscard_co_entry(&rwco);
2684     } else {
2685         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2686         bdrv_coroutine_enter(bs, co);
2687         BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2688     }
2689 
2690     return rwco.ret;
2691 }
2692 
2693 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2694 {
2695     BlockDriver *drv = bs->drv;
2696     CoroutineIOCompletion co = {
2697         .coroutine = qemu_coroutine_self(),
2698     };
2699     BlockAIOCB *acb;
2700 
2701     bdrv_inc_in_flight(bs);
2702     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2703         co.ret = -ENOTSUP;
2704         goto out;
2705     }
2706 
2707     if (drv->bdrv_co_ioctl) {
2708         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2709     } else {
2710         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2711         if (!acb) {
2712             co.ret = -ENOTSUP;
2713             goto out;
2714         }
2715         qemu_coroutine_yield();
2716     }
2717 out:
2718     bdrv_dec_in_flight(bs);
2719     return co.ret;
2720 }
2721 
2722 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2723 {
2724     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2725 }
2726 
2727 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2728 {
2729     return memset(qemu_blockalign(bs, size), 0, size);
2730 }
2731 
2732 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2733 {
2734     size_t align = bdrv_opt_mem_align(bs);
2735 
2736     /* Ensure that NULL is never returned on success */
2737     assert(align > 0);
2738     if (size == 0) {
2739         size = align;
2740     }
2741 
2742     return qemu_try_memalign(align, size);
2743 }
2744 
2745 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2746 {
2747     void *mem = qemu_try_blockalign(bs, size);
2748 
2749     if (mem) {
2750         memset(mem, 0, size);
2751     }
2752 
2753     return mem;
2754 }
2755 
2756 /*
2757  * Check if all memory in this vector is sector aligned.
2758  */
2759 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2760 {
2761     int i;
2762     size_t alignment = bdrv_min_mem_align(bs);
2763 
2764     for (i = 0; i < qiov->niov; i++) {
2765         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2766             return false;
2767         }
2768         if (qiov->iov[i].iov_len % alignment) {
2769             return false;
2770         }
2771     }
2772 
2773     return true;
2774 }
2775 
2776 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2777                                     NotifierWithReturn *notifier)
2778 {
2779     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2780 }
2781 
2782 void bdrv_io_plug(BlockDriverState *bs)
2783 {
2784     BdrvChild *child;
2785 
2786     QLIST_FOREACH(child, &bs->children, next) {
2787         bdrv_io_plug(child->bs);
2788     }
2789 
2790     if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2791         BlockDriver *drv = bs->drv;
2792         if (drv && drv->bdrv_io_plug) {
2793             drv->bdrv_io_plug(bs);
2794         }
2795     }
2796 }
2797 
2798 void bdrv_io_unplug(BlockDriverState *bs)
2799 {
2800     BdrvChild *child;
2801 
2802     assert(bs->io_plugged);
2803     if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2804         BlockDriver *drv = bs->drv;
2805         if (drv && drv->bdrv_io_unplug) {
2806             drv->bdrv_io_unplug(bs);
2807         }
2808     }
2809 
2810     QLIST_FOREACH(child, &bs->children, next) {
2811         bdrv_io_unplug(child->bs);
2812     }
2813 }
2814 
2815 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2816 {
2817     BdrvChild *child;
2818 
2819     if (bs->drv && bs->drv->bdrv_register_buf) {
2820         bs->drv->bdrv_register_buf(bs, host, size);
2821     }
2822     QLIST_FOREACH(child, &bs->children, next) {
2823         bdrv_register_buf(child->bs, host, size);
2824     }
2825 }
2826 
2827 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2828 {
2829     BdrvChild *child;
2830 
2831     if (bs->drv && bs->drv->bdrv_unregister_buf) {
2832         bs->drv->bdrv_unregister_buf(bs, host);
2833     }
2834     QLIST_FOREACH(child, &bs->children, next) {
2835         bdrv_unregister_buf(child->bs, host);
2836     }
2837 }
2838 
2839 static int coroutine_fn bdrv_co_copy_range_internal(BdrvChild *src,
2840                                                     uint64_t src_offset,
2841                                                     BdrvChild *dst,
2842                                                     uint64_t dst_offset,
2843                                                     uint64_t bytes,
2844                                                     BdrvRequestFlags flags,
2845                                                     bool recurse_src)
2846 {
2847     int ret;
2848 
2849     if (!src || !dst || !src->bs || !dst->bs) {
2850         return -ENOMEDIUM;
2851     }
2852     ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
2853     if (ret) {
2854         return ret;
2855     }
2856 
2857     ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
2858     if (ret) {
2859         return ret;
2860     }
2861     if (flags & BDRV_REQ_ZERO_WRITE) {
2862         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, flags);
2863     }
2864 
2865     if (!src->bs->drv->bdrv_co_copy_range_from
2866         || !dst->bs->drv->bdrv_co_copy_range_to
2867         || src->bs->encrypted || dst->bs->encrypted) {
2868         return -ENOTSUP;
2869     }
2870     if (recurse_src) {
2871         return src->bs->drv->bdrv_co_copy_range_from(src->bs,
2872                                                      src, src_offset,
2873                                                      dst, dst_offset,
2874                                                      bytes, flags);
2875     } else {
2876         return dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
2877                                                    src, src_offset,
2878                                                    dst, dst_offset,
2879                                                    bytes, flags);
2880     }
2881 }
2882 
2883 /* Copy range from @src to @dst.
2884  *
2885  * See the comment of bdrv_co_copy_range for the parameter and return value
2886  * semantics. */
2887 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
2888                                          BdrvChild *dst, uint64_t dst_offset,
2889                                          uint64_t bytes, BdrvRequestFlags flags)
2890 {
2891     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
2892                                        bytes, flags, true);
2893 }
2894 
2895 /* Copy range from @src to @dst.
2896  *
2897  * See the comment of bdrv_co_copy_range for the parameter and return value
2898  * semantics. */
2899 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
2900                                        BdrvChild *dst, uint64_t dst_offset,
2901                                        uint64_t bytes, BdrvRequestFlags flags)
2902 {
2903     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
2904                                        bytes, flags, false);
2905 }
2906 
2907 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
2908                                     BdrvChild *dst, uint64_t dst_offset,
2909                                     uint64_t bytes, BdrvRequestFlags flags)
2910 {
2911     BdrvTrackedRequest src_req, dst_req;
2912     BlockDriverState *src_bs = src->bs;
2913     BlockDriverState *dst_bs = dst->bs;
2914     int ret;
2915 
2916     bdrv_inc_in_flight(src_bs);
2917     bdrv_inc_in_flight(dst_bs);
2918     tracked_request_begin(&src_req, src_bs, src_offset,
2919                           bytes, BDRV_TRACKED_READ);
2920     tracked_request_begin(&dst_req, dst_bs, dst_offset,
2921                           bytes, BDRV_TRACKED_WRITE);
2922 
2923     wait_serialising_requests(&src_req);
2924     wait_serialising_requests(&dst_req);
2925     ret = bdrv_co_copy_range_from(src, src_offset,
2926                                   dst, dst_offset,
2927                                   bytes, flags);
2928 
2929     tracked_request_end(&src_req);
2930     tracked_request_end(&dst_req);
2931     bdrv_dec_in_flight(src_bs);
2932     bdrv_dec_in_flight(dst_bs);
2933     return ret;
2934 }
2935