1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/blockjob.h" 29 #include "block/block_int.h" 30 #include "qemu/cutils.h" 31 #include "qapi/error.h" 32 #include "qemu/error-report.h" 33 34 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 35 36 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child, 37 int64_t offset, 38 QEMUIOVector *qiov, 39 BdrvRequestFlags flags, 40 BlockCompletionFunc *cb, 41 void *opaque, 42 bool is_write); 43 static void coroutine_fn bdrv_co_do_rw(void *opaque); 44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 45 int64_t offset, int count, BdrvRequestFlags flags); 46 47 static void bdrv_parent_drained_begin(BlockDriverState *bs) 48 { 49 BdrvChild *c; 50 51 QLIST_FOREACH(c, &bs->parents, next_parent) { 52 if (c->role->drained_begin) { 53 c->role->drained_begin(c); 54 } 55 } 56 } 57 58 static void bdrv_parent_drained_end(BlockDriverState *bs) 59 { 60 BdrvChild *c; 61 62 QLIST_FOREACH(c, &bs->parents, next_parent) { 63 if (c->role->drained_end) { 64 c->role->drained_end(c); 65 } 66 } 67 } 68 69 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 70 { 71 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 72 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 73 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 74 src->opt_mem_alignment); 75 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 76 src->min_mem_alignment); 77 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 78 } 79 80 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 81 { 82 BlockDriver *drv = bs->drv; 83 Error *local_err = NULL; 84 85 memset(&bs->bl, 0, sizeof(bs->bl)); 86 87 if (!drv) { 88 return; 89 } 90 91 /* Default alignment based on whether driver has byte interface */ 92 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512; 93 94 /* Take some limits from the children as a default */ 95 if (bs->file) { 96 bdrv_refresh_limits(bs->file->bs, &local_err); 97 if (local_err) { 98 error_propagate(errp, local_err); 99 return; 100 } 101 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 102 } else { 103 bs->bl.min_mem_alignment = 512; 104 bs->bl.opt_mem_alignment = getpagesize(); 105 106 /* Safe default since most protocols use readv()/writev()/etc */ 107 bs->bl.max_iov = IOV_MAX; 108 } 109 110 if (bs->backing) { 111 bdrv_refresh_limits(bs->backing->bs, &local_err); 112 if (local_err) { 113 error_propagate(errp, local_err); 114 return; 115 } 116 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 117 } 118 119 /* Then let the driver override it */ 120 if (drv->bdrv_refresh_limits) { 121 drv->bdrv_refresh_limits(bs, errp); 122 } 123 } 124 125 /** 126 * The copy-on-read flag is actually a reference count so multiple users may 127 * use the feature without worrying about clobbering its previous state. 128 * Copy-on-read stays enabled until all users have called to disable it. 129 */ 130 void bdrv_enable_copy_on_read(BlockDriverState *bs) 131 { 132 bs->copy_on_read++; 133 } 134 135 void bdrv_disable_copy_on_read(BlockDriverState *bs) 136 { 137 assert(bs->copy_on_read > 0); 138 bs->copy_on_read--; 139 } 140 141 /* Check if any requests are in-flight (including throttled requests) */ 142 bool bdrv_requests_pending(BlockDriverState *bs) 143 { 144 BdrvChild *child; 145 146 if (atomic_read(&bs->in_flight)) { 147 return true; 148 } 149 150 QLIST_FOREACH(child, &bs->children, next) { 151 if (bdrv_requests_pending(child->bs)) { 152 return true; 153 } 154 } 155 156 return false; 157 } 158 159 static bool bdrv_drain_recurse(BlockDriverState *bs) 160 { 161 BdrvChild *child; 162 bool waited; 163 164 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0); 165 166 if (bs->drv && bs->drv->bdrv_drain) { 167 bs->drv->bdrv_drain(bs); 168 } 169 170 QLIST_FOREACH(child, &bs->children, next) { 171 waited |= bdrv_drain_recurse(child->bs); 172 } 173 174 return waited; 175 } 176 177 typedef struct { 178 Coroutine *co; 179 BlockDriverState *bs; 180 bool done; 181 } BdrvCoDrainData; 182 183 static void bdrv_co_drain_bh_cb(void *opaque) 184 { 185 BdrvCoDrainData *data = opaque; 186 Coroutine *co = data->co; 187 BlockDriverState *bs = data->bs; 188 189 bdrv_dec_in_flight(bs); 190 bdrv_drained_begin(bs); 191 data->done = true; 192 aio_co_wake(co); 193 } 194 195 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs) 196 { 197 BdrvCoDrainData data; 198 199 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 200 * other coroutines run if they were queued from 201 * qemu_co_queue_run_restart(). */ 202 203 assert(qemu_in_coroutine()); 204 data = (BdrvCoDrainData) { 205 .co = qemu_coroutine_self(), 206 .bs = bs, 207 .done = false, 208 }; 209 bdrv_inc_in_flight(bs); 210 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 211 bdrv_co_drain_bh_cb, &data); 212 213 qemu_coroutine_yield(); 214 /* If we are resumed from some other event (such as an aio completion or a 215 * timer callback), it is a bug in the caller that should be fixed. */ 216 assert(data.done); 217 } 218 219 void bdrv_drained_begin(BlockDriverState *bs) 220 { 221 if (qemu_in_coroutine()) { 222 bdrv_co_yield_to_drain(bs); 223 return; 224 } 225 226 if (!bs->quiesce_counter++) { 227 aio_disable_external(bdrv_get_aio_context(bs)); 228 bdrv_parent_drained_begin(bs); 229 } 230 231 bdrv_drain_recurse(bs); 232 } 233 234 void bdrv_drained_end(BlockDriverState *bs) 235 { 236 assert(bs->quiesce_counter > 0); 237 if (--bs->quiesce_counter > 0) { 238 return; 239 } 240 241 bdrv_parent_drained_end(bs); 242 aio_enable_external(bdrv_get_aio_context(bs)); 243 } 244 245 /* 246 * Wait for pending requests to complete on a single BlockDriverState subtree, 247 * and suspend block driver's internal I/O until next request arrives. 248 * 249 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 250 * AioContext. 251 * 252 * Only this BlockDriverState's AioContext is run, so in-flight requests must 253 * not depend on events in other AioContexts. In that case, use 254 * bdrv_drain_all() instead. 255 */ 256 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 257 { 258 assert(qemu_in_coroutine()); 259 bdrv_drained_begin(bs); 260 bdrv_drained_end(bs); 261 } 262 263 void bdrv_drain(BlockDriverState *bs) 264 { 265 bdrv_drained_begin(bs); 266 bdrv_drained_end(bs); 267 } 268 269 /* 270 * Wait for pending requests to complete across all BlockDriverStates 271 * 272 * This function does not flush data to disk, use bdrv_flush_all() for that 273 * after calling this function. 274 * 275 * This pauses all block jobs and disables external clients. It must 276 * be paired with bdrv_drain_all_end(). 277 * 278 * NOTE: no new block jobs or BlockDriverStates can be created between 279 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 280 */ 281 void bdrv_drain_all_begin(void) 282 { 283 /* Always run first iteration so any pending completion BHs run */ 284 bool waited = true; 285 BlockDriverState *bs; 286 BdrvNextIterator it; 287 BlockJob *job = NULL; 288 GSList *aio_ctxs = NULL, *ctx; 289 290 while ((job = block_job_next(job))) { 291 AioContext *aio_context = blk_get_aio_context(job->blk); 292 293 aio_context_acquire(aio_context); 294 block_job_pause(job); 295 aio_context_release(aio_context); 296 } 297 298 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 299 AioContext *aio_context = bdrv_get_aio_context(bs); 300 301 aio_context_acquire(aio_context); 302 bdrv_parent_drained_begin(bs); 303 aio_disable_external(aio_context); 304 aio_context_release(aio_context); 305 306 if (!g_slist_find(aio_ctxs, aio_context)) { 307 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context); 308 } 309 } 310 311 /* Note that completion of an asynchronous I/O operation can trigger any 312 * number of other I/O operations on other devices---for example a 313 * coroutine can submit an I/O request to another device in response to 314 * request completion. Therefore we must keep looping until there was no 315 * more activity rather than simply draining each device independently. 316 */ 317 while (waited) { 318 waited = false; 319 320 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) { 321 AioContext *aio_context = ctx->data; 322 323 aio_context_acquire(aio_context); 324 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 325 if (aio_context == bdrv_get_aio_context(bs)) { 326 waited |= bdrv_drain_recurse(bs); 327 } 328 } 329 aio_context_release(aio_context); 330 } 331 } 332 333 g_slist_free(aio_ctxs); 334 } 335 336 void bdrv_drain_all_end(void) 337 { 338 BlockDriverState *bs; 339 BdrvNextIterator it; 340 BlockJob *job = NULL; 341 342 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 343 AioContext *aio_context = bdrv_get_aio_context(bs); 344 345 aio_context_acquire(aio_context); 346 aio_enable_external(aio_context); 347 bdrv_parent_drained_end(bs); 348 aio_context_release(aio_context); 349 } 350 351 while ((job = block_job_next(job))) { 352 AioContext *aio_context = blk_get_aio_context(job->blk); 353 354 aio_context_acquire(aio_context); 355 block_job_resume(job); 356 aio_context_release(aio_context); 357 } 358 } 359 360 void bdrv_drain_all(void) 361 { 362 bdrv_drain_all_begin(); 363 bdrv_drain_all_end(); 364 } 365 366 /** 367 * Remove an active request from the tracked requests list 368 * 369 * This function should be called when a tracked request is completing. 370 */ 371 static void tracked_request_end(BdrvTrackedRequest *req) 372 { 373 if (req->serialising) { 374 req->bs->serialising_in_flight--; 375 } 376 377 QLIST_REMOVE(req, list); 378 qemu_co_queue_restart_all(&req->wait_queue); 379 } 380 381 /** 382 * Add an active request to the tracked requests list 383 */ 384 static void tracked_request_begin(BdrvTrackedRequest *req, 385 BlockDriverState *bs, 386 int64_t offset, 387 unsigned int bytes, 388 enum BdrvTrackedRequestType type) 389 { 390 *req = (BdrvTrackedRequest){ 391 .bs = bs, 392 .offset = offset, 393 .bytes = bytes, 394 .type = type, 395 .co = qemu_coroutine_self(), 396 .serialising = false, 397 .overlap_offset = offset, 398 .overlap_bytes = bytes, 399 }; 400 401 qemu_co_queue_init(&req->wait_queue); 402 403 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 404 } 405 406 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 407 { 408 int64_t overlap_offset = req->offset & ~(align - 1); 409 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 410 - overlap_offset; 411 412 if (!req->serialising) { 413 req->bs->serialising_in_flight++; 414 req->serialising = true; 415 } 416 417 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 418 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 419 } 420 421 /** 422 * Round a region to cluster boundaries (sector-based) 423 */ 424 void bdrv_round_sectors_to_clusters(BlockDriverState *bs, 425 int64_t sector_num, int nb_sectors, 426 int64_t *cluster_sector_num, 427 int *cluster_nb_sectors) 428 { 429 BlockDriverInfo bdi; 430 431 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 432 *cluster_sector_num = sector_num; 433 *cluster_nb_sectors = nb_sectors; 434 } else { 435 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 436 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 437 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 438 nb_sectors, c); 439 } 440 } 441 442 /** 443 * Round a region to cluster boundaries 444 */ 445 void bdrv_round_to_clusters(BlockDriverState *bs, 446 int64_t offset, unsigned int bytes, 447 int64_t *cluster_offset, 448 unsigned int *cluster_bytes) 449 { 450 BlockDriverInfo bdi; 451 452 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 453 *cluster_offset = offset; 454 *cluster_bytes = bytes; 455 } else { 456 int64_t c = bdi.cluster_size; 457 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 458 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 459 } 460 } 461 462 static int bdrv_get_cluster_size(BlockDriverState *bs) 463 { 464 BlockDriverInfo bdi; 465 int ret; 466 467 ret = bdrv_get_info(bs, &bdi); 468 if (ret < 0 || bdi.cluster_size == 0) { 469 return bs->bl.request_alignment; 470 } else { 471 return bdi.cluster_size; 472 } 473 } 474 475 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 476 int64_t offset, unsigned int bytes) 477 { 478 /* aaaa bbbb */ 479 if (offset >= req->overlap_offset + req->overlap_bytes) { 480 return false; 481 } 482 /* bbbb aaaa */ 483 if (req->overlap_offset >= offset + bytes) { 484 return false; 485 } 486 return true; 487 } 488 489 void bdrv_inc_in_flight(BlockDriverState *bs) 490 { 491 atomic_inc(&bs->in_flight); 492 } 493 494 static void dummy_bh_cb(void *opaque) 495 { 496 } 497 498 void bdrv_wakeup(BlockDriverState *bs) 499 { 500 if (bs->wakeup) { 501 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL); 502 } 503 } 504 505 void bdrv_dec_in_flight(BlockDriverState *bs) 506 { 507 atomic_dec(&bs->in_flight); 508 bdrv_wakeup(bs); 509 } 510 511 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 512 { 513 BlockDriverState *bs = self->bs; 514 BdrvTrackedRequest *req; 515 bool retry; 516 bool waited = false; 517 518 if (!bs->serialising_in_flight) { 519 return false; 520 } 521 522 do { 523 retry = false; 524 QLIST_FOREACH(req, &bs->tracked_requests, list) { 525 if (req == self || (!req->serialising && !self->serialising)) { 526 continue; 527 } 528 if (tracked_request_overlaps(req, self->overlap_offset, 529 self->overlap_bytes)) 530 { 531 /* Hitting this means there was a reentrant request, for 532 * example, a block driver issuing nested requests. This must 533 * never happen since it means deadlock. 534 */ 535 assert(qemu_coroutine_self() != req->co); 536 537 /* If the request is already (indirectly) waiting for us, or 538 * will wait for us as soon as it wakes up, then just go on 539 * (instead of producing a deadlock in the former case). */ 540 if (!req->waiting_for) { 541 self->waiting_for = req; 542 qemu_co_queue_wait(&req->wait_queue, NULL); 543 self->waiting_for = NULL; 544 retry = true; 545 waited = true; 546 break; 547 } 548 } 549 } 550 } while (retry); 551 552 return waited; 553 } 554 555 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 556 size_t size) 557 { 558 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 559 return -EIO; 560 } 561 562 if (!bdrv_is_inserted(bs)) { 563 return -ENOMEDIUM; 564 } 565 566 if (offset < 0) { 567 return -EIO; 568 } 569 570 return 0; 571 } 572 573 typedef struct RwCo { 574 BdrvChild *child; 575 int64_t offset; 576 QEMUIOVector *qiov; 577 bool is_write; 578 int ret; 579 BdrvRequestFlags flags; 580 } RwCo; 581 582 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 583 { 584 RwCo *rwco = opaque; 585 586 if (!rwco->is_write) { 587 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 588 rwco->qiov->size, rwco->qiov, 589 rwco->flags); 590 } else { 591 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 592 rwco->qiov->size, rwco->qiov, 593 rwco->flags); 594 } 595 } 596 597 /* 598 * Process a vectored synchronous request using coroutines 599 */ 600 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 601 QEMUIOVector *qiov, bool is_write, 602 BdrvRequestFlags flags) 603 { 604 Coroutine *co; 605 RwCo rwco = { 606 .child = child, 607 .offset = offset, 608 .qiov = qiov, 609 .is_write = is_write, 610 .ret = NOT_DONE, 611 .flags = flags, 612 }; 613 614 if (qemu_in_coroutine()) { 615 /* Fast-path if already in coroutine context */ 616 bdrv_rw_co_entry(&rwco); 617 } else { 618 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 619 qemu_coroutine_enter(co); 620 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 621 } 622 return rwco.ret; 623 } 624 625 /* 626 * Process a synchronous request using coroutines 627 */ 628 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, 629 int nb_sectors, bool is_write, BdrvRequestFlags flags) 630 { 631 QEMUIOVector qiov; 632 struct iovec iov = { 633 .iov_base = (void *)buf, 634 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 635 }; 636 637 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 638 return -EINVAL; 639 } 640 641 qemu_iovec_init_external(&qiov, &iov, 1); 642 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, 643 &qiov, is_write, flags); 644 } 645 646 /* return < 0 if error. See bdrv_write() for the return codes */ 647 int bdrv_read(BdrvChild *child, int64_t sector_num, 648 uint8_t *buf, int nb_sectors) 649 { 650 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); 651 } 652 653 /* Return < 0 if error. Important errors are: 654 -EIO generic I/O error (may happen for all errors) 655 -ENOMEDIUM No media inserted. 656 -EINVAL Invalid sector number or nb_sectors 657 -EACCES Trying to write a read-only device 658 */ 659 int bdrv_write(BdrvChild *child, int64_t sector_num, 660 const uint8_t *buf, int nb_sectors) 661 { 662 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 663 } 664 665 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 666 int count, BdrvRequestFlags flags) 667 { 668 QEMUIOVector qiov; 669 struct iovec iov = { 670 .iov_base = NULL, 671 .iov_len = count, 672 }; 673 674 qemu_iovec_init_external(&qiov, &iov, 1); 675 return bdrv_prwv_co(child, offset, &qiov, true, 676 BDRV_REQ_ZERO_WRITE | flags); 677 } 678 679 /* 680 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 681 * The operation is sped up by checking the block status and only writing 682 * zeroes to the device if they currently do not return zeroes. Optional 683 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 684 * BDRV_REQ_FUA). 685 * 686 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 687 */ 688 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 689 { 690 int64_t target_sectors, ret, nb_sectors, sector_num = 0; 691 BlockDriverState *bs = child->bs; 692 BlockDriverState *file; 693 int n; 694 695 target_sectors = bdrv_nb_sectors(bs); 696 if (target_sectors < 0) { 697 return target_sectors; 698 } 699 700 for (;;) { 701 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS); 702 if (nb_sectors <= 0) { 703 return 0; 704 } 705 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file); 706 if (ret < 0) { 707 error_report("error getting block status at sector %" PRId64 ": %s", 708 sector_num, strerror(-ret)); 709 return ret; 710 } 711 if (ret & BDRV_BLOCK_ZERO) { 712 sector_num += n; 713 continue; 714 } 715 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS, 716 n << BDRV_SECTOR_BITS, flags); 717 if (ret < 0) { 718 error_report("error writing zeroes at sector %" PRId64 ": %s", 719 sector_num, strerror(-ret)); 720 return ret; 721 } 722 sector_num += n; 723 } 724 } 725 726 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 727 { 728 int ret; 729 730 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 731 if (ret < 0) { 732 return ret; 733 } 734 735 return qiov->size; 736 } 737 738 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 739 { 740 QEMUIOVector qiov; 741 struct iovec iov = { 742 .iov_base = (void *)buf, 743 .iov_len = bytes, 744 }; 745 746 if (bytes < 0) { 747 return -EINVAL; 748 } 749 750 qemu_iovec_init_external(&qiov, &iov, 1); 751 return bdrv_preadv(child, offset, &qiov); 752 } 753 754 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 755 { 756 int ret; 757 758 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 759 if (ret < 0) { 760 return ret; 761 } 762 763 return qiov->size; 764 } 765 766 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 767 { 768 QEMUIOVector qiov; 769 struct iovec iov = { 770 .iov_base = (void *) buf, 771 .iov_len = bytes, 772 }; 773 774 if (bytes < 0) { 775 return -EINVAL; 776 } 777 778 qemu_iovec_init_external(&qiov, &iov, 1); 779 return bdrv_pwritev(child, offset, &qiov); 780 } 781 782 /* 783 * Writes to the file and ensures that no writes are reordered across this 784 * request (acts as a barrier) 785 * 786 * Returns 0 on success, -errno in error cases. 787 */ 788 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 789 const void *buf, int count) 790 { 791 int ret; 792 793 ret = bdrv_pwrite(child, offset, buf, count); 794 if (ret < 0) { 795 return ret; 796 } 797 798 ret = bdrv_flush(child->bs); 799 if (ret < 0) { 800 return ret; 801 } 802 803 return 0; 804 } 805 806 typedef struct CoroutineIOCompletion { 807 Coroutine *coroutine; 808 int ret; 809 } CoroutineIOCompletion; 810 811 static void bdrv_co_io_em_complete(void *opaque, int ret) 812 { 813 CoroutineIOCompletion *co = opaque; 814 815 co->ret = ret; 816 aio_co_wake(co->coroutine); 817 } 818 819 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 820 uint64_t offset, uint64_t bytes, 821 QEMUIOVector *qiov, int flags) 822 { 823 BlockDriver *drv = bs->drv; 824 int64_t sector_num; 825 unsigned int nb_sectors; 826 827 assert(!(flags & ~BDRV_REQ_MASK)); 828 829 if (drv->bdrv_co_preadv) { 830 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 831 } 832 833 sector_num = offset >> BDRV_SECTOR_BITS; 834 nb_sectors = bytes >> BDRV_SECTOR_BITS; 835 836 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 837 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 838 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 839 840 if (drv->bdrv_co_readv) { 841 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 842 } else { 843 BlockAIOCB *acb; 844 CoroutineIOCompletion co = { 845 .coroutine = qemu_coroutine_self(), 846 }; 847 848 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors, 849 bdrv_co_io_em_complete, &co); 850 if (acb == NULL) { 851 return -EIO; 852 } else { 853 qemu_coroutine_yield(); 854 return co.ret; 855 } 856 } 857 } 858 859 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 860 uint64_t offset, uint64_t bytes, 861 QEMUIOVector *qiov, int flags) 862 { 863 BlockDriver *drv = bs->drv; 864 int64_t sector_num; 865 unsigned int nb_sectors; 866 int ret; 867 868 assert(!(flags & ~BDRV_REQ_MASK)); 869 870 if (drv->bdrv_co_pwritev) { 871 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 872 flags & bs->supported_write_flags); 873 flags &= ~bs->supported_write_flags; 874 goto emulate_flags; 875 } 876 877 sector_num = offset >> BDRV_SECTOR_BITS; 878 nb_sectors = bytes >> BDRV_SECTOR_BITS; 879 880 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 881 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 882 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 883 884 if (drv->bdrv_co_writev_flags) { 885 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov, 886 flags & bs->supported_write_flags); 887 flags &= ~bs->supported_write_flags; 888 } else if (drv->bdrv_co_writev) { 889 assert(!bs->supported_write_flags); 890 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 891 } else { 892 BlockAIOCB *acb; 893 CoroutineIOCompletion co = { 894 .coroutine = qemu_coroutine_self(), 895 }; 896 897 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors, 898 bdrv_co_io_em_complete, &co); 899 if (acb == NULL) { 900 ret = -EIO; 901 } else { 902 qemu_coroutine_yield(); 903 ret = co.ret; 904 } 905 } 906 907 emulate_flags: 908 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 909 ret = bdrv_co_flush(bs); 910 } 911 912 return ret; 913 } 914 915 static int coroutine_fn 916 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 917 uint64_t bytes, QEMUIOVector *qiov) 918 { 919 BlockDriver *drv = bs->drv; 920 921 if (!drv->bdrv_co_pwritev_compressed) { 922 return -ENOTSUP; 923 } 924 925 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 926 } 927 928 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 929 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 930 { 931 BlockDriverState *bs = child->bs; 932 933 /* Perform I/O through a temporary buffer so that users who scribble over 934 * their read buffer while the operation is in progress do not end up 935 * modifying the image file. This is critical for zero-copy guest I/O 936 * where anything might happen inside guest memory. 937 */ 938 void *bounce_buffer; 939 940 BlockDriver *drv = bs->drv; 941 struct iovec iov; 942 QEMUIOVector bounce_qiov; 943 int64_t cluster_offset; 944 unsigned int cluster_bytes; 945 size_t skip_bytes; 946 int ret; 947 948 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 949 950 /* Cover entire cluster so no additional backing file I/O is required when 951 * allocating cluster in the image file. 952 */ 953 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 954 955 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 956 cluster_offset, cluster_bytes); 957 958 iov.iov_len = cluster_bytes; 959 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len); 960 if (bounce_buffer == NULL) { 961 ret = -ENOMEM; 962 goto err; 963 } 964 965 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 966 967 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes, 968 &bounce_qiov, 0); 969 if (ret < 0) { 970 goto err; 971 } 972 973 if (drv->bdrv_co_pwrite_zeroes && 974 buffer_is_zero(bounce_buffer, iov.iov_len)) { 975 /* FIXME: Should we (perhaps conditionally) be setting 976 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 977 * that still correctly reads as zero? */ 978 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0); 979 } else { 980 /* This does not change the data on the disk, it is not necessary 981 * to flush even in cache=writethrough mode. 982 */ 983 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes, 984 &bounce_qiov, 0); 985 } 986 987 if (ret < 0) { 988 /* It might be okay to ignore write errors for guest requests. If this 989 * is a deliberate copy-on-read then we don't want to ignore the error. 990 * Simply report it in all cases. 991 */ 992 goto err; 993 } 994 995 skip_bytes = offset - cluster_offset; 996 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes); 997 998 err: 999 qemu_vfree(bounce_buffer); 1000 return ret; 1001 } 1002 1003 /* 1004 * Forwards an already correctly aligned request to the BlockDriver. This 1005 * handles copy on read, zeroing after EOF, and fragmentation of large 1006 * reads; any other features must be implemented by the caller. 1007 */ 1008 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1009 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1010 int64_t align, QEMUIOVector *qiov, int flags) 1011 { 1012 BlockDriverState *bs = child->bs; 1013 int64_t total_bytes, max_bytes; 1014 int ret = 0; 1015 uint64_t bytes_remaining = bytes; 1016 int max_transfer; 1017 1018 assert(is_power_of_2(align)); 1019 assert((offset & (align - 1)) == 0); 1020 assert((bytes & (align - 1)) == 0); 1021 assert(!qiov || bytes == qiov->size); 1022 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1023 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1024 align); 1025 1026 /* TODO: We would need a per-BDS .supported_read_flags and 1027 * potential fallback support, if we ever implement any read flags 1028 * to pass through to drivers. For now, there aren't any 1029 * passthrough flags. */ 1030 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 1031 1032 /* Handle Copy on Read and associated serialisation */ 1033 if (flags & BDRV_REQ_COPY_ON_READ) { 1034 /* If we touch the same cluster it counts as an overlap. This 1035 * guarantees that allocating writes will be serialized and not race 1036 * with each other for the same cluster. For example, in copy-on-read 1037 * it ensures that the CoR read and write operations are atomic and 1038 * guest writes cannot interleave between them. */ 1039 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1040 } 1041 1042 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1043 wait_serialising_requests(req); 1044 } 1045 1046 if (flags & BDRV_REQ_COPY_ON_READ) { 1047 int64_t start_sector = offset >> BDRV_SECTOR_BITS; 1048 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1049 unsigned int nb_sectors = end_sector - start_sector; 1050 int pnum; 1051 1052 ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum); 1053 if (ret < 0) { 1054 goto out; 1055 } 1056 1057 if (!ret || pnum != nb_sectors) { 1058 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); 1059 goto out; 1060 } 1061 } 1062 1063 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1064 total_bytes = bdrv_getlength(bs); 1065 if (total_bytes < 0) { 1066 ret = total_bytes; 1067 goto out; 1068 } 1069 1070 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1071 if (bytes <= max_bytes && bytes <= max_transfer) { 1072 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1073 goto out; 1074 } 1075 1076 while (bytes_remaining) { 1077 int num; 1078 1079 if (max_bytes) { 1080 QEMUIOVector local_qiov; 1081 1082 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1083 assert(num); 1084 qemu_iovec_init(&local_qiov, qiov->niov); 1085 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1086 1087 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1088 num, &local_qiov, 0); 1089 max_bytes -= num; 1090 qemu_iovec_destroy(&local_qiov); 1091 } else { 1092 num = bytes_remaining; 1093 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1094 bytes_remaining); 1095 } 1096 if (ret < 0) { 1097 goto out; 1098 } 1099 bytes_remaining -= num; 1100 } 1101 1102 out: 1103 return ret < 0 ? ret : 0; 1104 } 1105 1106 /* 1107 * Handle a read request in coroutine context 1108 */ 1109 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1110 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1111 BdrvRequestFlags flags) 1112 { 1113 BlockDriverState *bs = child->bs; 1114 BlockDriver *drv = bs->drv; 1115 BdrvTrackedRequest req; 1116 1117 uint64_t align = bs->bl.request_alignment; 1118 uint8_t *head_buf = NULL; 1119 uint8_t *tail_buf = NULL; 1120 QEMUIOVector local_qiov; 1121 bool use_local_qiov = false; 1122 int ret; 1123 1124 if (!drv) { 1125 return -ENOMEDIUM; 1126 } 1127 1128 ret = bdrv_check_byte_request(bs, offset, bytes); 1129 if (ret < 0) { 1130 return ret; 1131 } 1132 1133 bdrv_inc_in_flight(bs); 1134 1135 /* Don't do copy-on-read if we read data before write operation */ 1136 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) { 1137 flags |= BDRV_REQ_COPY_ON_READ; 1138 } 1139 1140 /* Align read if necessary by padding qiov */ 1141 if (offset & (align - 1)) { 1142 head_buf = qemu_blockalign(bs, align); 1143 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1144 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1145 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1146 use_local_qiov = true; 1147 1148 bytes += offset & (align - 1); 1149 offset = offset & ~(align - 1); 1150 } 1151 1152 if ((offset + bytes) & (align - 1)) { 1153 if (!use_local_qiov) { 1154 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1155 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1156 use_local_qiov = true; 1157 } 1158 tail_buf = qemu_blockalign(bs, align); 1159 qemu_iovec_add(&local_qiov, tail_buf, 1160 align - ((offset + bytes) & (align - 1))); 1161 1162 bytes = ROUND_UP(bytes, align); 1163 } 1164 1165 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1166 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1167 use_local_qiov ? &local_qiov : qiov, 1168 flags); 1169 tracked_request_end(&req); 1170 bdrv_dec_in_flight(bs); 1171 1172 if (use_local_qiov) { 1173 qemu_iovec_destroy(&local_qiov); 1174 qemu_vfree(head_buf); 1175 qemu_vfree(tail_buf); 1176 } 1177 1178 return ret; 1179 } 1180 1181 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child, 1182 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1183 BdrvRequestFlags flags) 1184 { 1185 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1186 return -EINVAL; 1187 } 1188 1189 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS, 1190 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1191 } 1192 1193 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num, 1194 int nb_sectors, QEMUIOVector *qiov) 1195 { 1196 trace_bdrv_co_readv(child->bs, sector_num, nb_sectors); 1197 1198 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0); 1199 } 1200 1201 /* Maximum buffer for write zeroes fallback, in bytes */ 1202 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 1203 1204 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1205 int64_t offset, int count, BdrvRequestFlags flags) 1206 { 1207 BlockDriver *drv = bs->drv; 1208 QEMUIOVector qiov; 1209 struct iovec iov = {0}; 1210 int ret = 0; 1211 bool need_flush = false; 1212 int head = 0; 1213 int tail = 0; 1214 1215 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1216 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1217 bs->bl.request_alignment); 1218 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1219 MAX_WRITE_ZEROES_BOUNCE_BUFFER); 1220 1221 assert(alignment % bs->bl.request_alignment == 0); 1222 head = offset % alignment; 1223 tail = (offset + count) % alignment; 1224 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1225 assert(max_write_zeroes >= bs->bl.request_alignment); 1226 1227 while (count > 0 && !ret) { 1228 int num = count; 1229 1230 /* Align request. Block drivers can expect the "bulk" of the request 1231 * to be aligned, and that unaligned requests do not cross cluster 1232 * boundaries. 1233 */ 1234 if (head) { 1235 /* Make a small request up to the first aligned sector. For 1236 * convenience, limit this request to max_transfer even if 1237 * we don't need to fall back to writes. */ 1238 num = MIN(MIN(count, max_transfer), alignment - head); 1239 head = (head + num) % alignment; 1240 assert(num < max_write_zeroes); 1241 } else if (tail && num > alignment) { 1242 /* Shorten the request to the last aligned sector. */ 1243 num -= tail; 1244 } 1245 1246 /* limit request size */ 1247 if (num > max_write_zeroes) { 1248 num = max_write_zeroes; 1249 } 1250 1251 ret = -ENOTSUP; 1252 /* First try the efficient write zeroes operation */ 1253 if (drv->bdrv_co_pwrite_zeroes) { 1254 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1255 flags & bs->supported_zero_flags); 1256 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1257 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1258 need_flush = true; 1259 } 1260 } else { 1261 assert(!bs->supported_zero_flags); 1262 } 1263 1264 if (ret == -ENOTSUP) { 1265 /* Fall back to bounce buffer if write zeroes is unsupported */ 1266 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1267 1268 if ((flags & BDRV_REQ_FUA) && 1269 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1270 /* No need for bdrv_driver_pwrite() to do a fallback 1271 * flush on each chunk; use just one at the end */ 1272 write_flags &= ~BDRV_REQ_FUA; 1273 need_flush = true; 1274 } 1275 num = MIN(num, max_transfer); 1276 iov.iov_len = num; 1277 if (iov.iov_base == NULL) { 1278 iov.iov_base = qemu_try_blockalign(bs, num); 1279 if (iov.iov_base == NULL) { 1280 ret = -ENOMEM; 1281 goto fail; 1282 } 1283 memset(iov.iov_base, 0, num); 1284 } 1285 qemu_iovec_init_external(&qiov, &iov, 1); 1286 1287 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1288 1289 /* Keep bounce buffer around if it is big enough for all 1290 * all future requests. 1291 */ 1292 if (num < max_transfer) { 1293 qemu_vfree(iov.iov_base); 1294 iov.iov_base = NULL; 1295 } 1296 } 1297 1298 offset += num; 1299 count -= num; 1300 } 1301 1302 fail: 1303 if (ret == 0 && need_flush) { 1304 ret = bdrv_co_flush(bs); 1305 } 1306 qemu_vfree(iov.iov_base); 1307 return ret; 1308 } 1309 1310 /* 1311 * Forwards an already correctly aligned write request to the BlockDriver, 1312 * after possibly fragmenting it. 1313 */ 1314 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1315 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1316 int64_t align, QEMUIOVector *qiov, int flags) 1317 { 1318 BlockDriverState *bs = child->bs; 1319 BlockDriver *drv = bs->drv; 1320 bool waited; 1321 int ret; 1322 1323 int64_t start_sector = offset >> BDRV_SECTOR_BITS; 1324 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1325 uint64_t bytes_remaining = bytes; 1326 int max_transfer; 1327 1328 assert(is_power_of_2(align)); 1329 assert((offset & (align - 1)) == 0); 1330 assert((bytes & (align - 1)) == 0); 1331 assert(!qiov || bytes == qiov->size); 1332 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1333 assert(!(flags & ~BDRV_REQ_MASK)); 1334 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1335 align); 1336 1337 waited = wait_serialising_requests(req); 1338 assert(!waited || !req->serialising); 1339 assert(req->overlap_offset <= offset); 1340 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1341 assert(child->perm & BLK_PERM_WRITE); 1342 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1343 1344 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); 1345 1346 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1347 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1348 qemu_iovec_is_zero(qiov)) { 1349 flags |= BDRV_REQ_ZERO_WRITE; 1350 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1351 flags |= BDRV_REQ_MAY_UNMAP; 1352 } 1353 } 1354 1355 if (ret < 0) { 1356 /* Do nothing, write notifier decided to fail this request */ 1357 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1358 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1359 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1360 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1361 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1362 } else if (bytes <= max_transfer) { 1363 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1364 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1365 } else { 1366 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1367 while (bytes_remaining) { 1368 int num = MIN(bytes_remaining, max_transfer); 1369 QEMUIOVector local_qiov; 1370 int local_flags = flags; 1371 1372 assert(num); 1373 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1374 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1375 /* If FUA is going to be emulated by flush, we only 1376 * need to flush on the last iteration */ 1377 local_flags &= ~BDRV_REQ_FUA; 1378 } 1379 qemu_iovec_init(&local_qiov, qiov->niov); 1380 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1381 1382 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1383 num, &local_qiov, local_flags); 1384 qemu_iovec_destroy(&local_qiov); 1385 if (ret < 0) { 1386 break; 1387 } 1388 bytes_remaining -= num; 1389 } 1390 } 1391 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1392 1393 ++bs->write_gen; 1394 bdrv_set_dirty(bs, start_sector, end_sector - start_sector); 1395 1396 if (bs->wr_highest_offset < offset + bytes) { 1397 bs->wr_highest_offset = offset + bytes; 1398 } 1399 1400 if (ret >= 0) { 1401 bs->total_sectors = MAX(bs->total_sectors, end_sector); 1402 ret = 0; 1403 } 1404 1405 return ret; 1406 } 1407 1408 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1409 int64_t offset, 1410 unsigned int bytes, 1411 BdrvRequestFlags flags, 1412 BdrvTrackedRequest *req) 1413 { 1414 BlockDriverState *bs = child->bs; 1415 uint8_t *buf = NULL; 1416 QEMUIOVector local_qiov; 1417 struct iovec iov; 1418 uint64_t align = bs->bl.request_alignment; 1419 unsigned int head_padding_bytes, tail_padding_bytes; 1420 int ret = 0; 1421 1422 head_padding_bytes = offset & (align - 1); 1423 tail_padding_bytes = align - ((offset + bytes) & (align - 1)); 1424 1425 1426 assert(flags & BDRV_REQ_ZERO_WRITE); 1427 if (head_padding_bytes || tail_padding_bytes) { 1428 buf = qemu_blockalign(bs, align); 1429 iov = (struct iovec) { 1430 .iov_base = buf, 1431 .iov_len = align, 1432 }; 1433 qemu_iovec_init_external(&local_qiov, &iov, 1); 1434 } 1435 if (head_padding_bytes) { 1436 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1437 1438 /* RMW the unaligned part before head. */ 1439 mark_request_serialising(req, align); 1440 wait_serialising_requests(req); 1441 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1442 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1443 align, &local_qiov, 0); 1444 if (ret < 0) { 1445 goto fail; 1446 } 1447 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1448 1449 memset(buf + head_padding_bytes, 0, zero_bytes); 1450 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1451 align, &local_qiov, 1452 flags & ~BDRV_REQ_ZERO_WRITE); 1453 if (ret < 0) { 1454 goto fail; 1455 } 1456 offset += zero_bytes; 1457 bytes -= zero_bytes; 1458 } 1459 1460 assert(!bytes || (offset & (align - 1)) == 0); 1461 if (bytes >= align) { 1462 /* Write the aligned part in the middle. */ 1463 uint64_t aligned_bytes = bytes & ~(align - 1); 1464 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1465 NULL, flags); 1466 if (ret < 0) { 1467 goto fail; 1468 } 1469 bytes -= aligned_bytes; 1470 offset += aligned_bytes; 1471 } 1472 1473 assert(!bytes || (offset & (align - 1)) == 0); 1474 if (bytes) { 1475 assert(align == tail_padding_bytes + bytes); 1476 /* RMW the unaligned part after tail. */ 1477 mark_request_serialising(req, align); 1478 wait_serialising_requests(req); 1479 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1480 ret = bdrv_aligned_preadv(child, req, offset, align, 1481 align, &local_qiov, 0); 1482 if (ret < 0) { 1483 goto fail; 1484 } 1485 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1486 1487 memset(buf, 0, bytes); 1488 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1489 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1490 } 1491 fail: 1492 qemu_vfree(buf); 1493 return ret; 1494 1495 } 1496 1497 /* 1498 * Handle a write request in coroutine context 1499 */ 1500 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1501 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1502 BdrvRequestFlags flags) 1503 { 1504 BlockDriverState *bs = child->bs; 1505 BdrvTrackedRequest req; 1506 uint64_t align = bs->bl.request_alignment; 1507 uint8_t *head_buf = NULL; 1508 uint8_t *tail_buf = NULL; 1509 QEMUIOVector local_qiov; 1510 bool use_local_qiov = false; 1511 int ret; 1512 1513 if (!bs->drv) { 1514 return -ENOMEDIUM; 1515 } 1516 if (bs->read_only) { 1517 return -EPERM; 1518 } 1519 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1520 1521 ret = bdrv_check_byte_request(bs, offset, bytes); 1522 if (ret < 0) { 1523 return ret; 1524 } 1525 1526 bdrv_inc_in_flight(bs); 1527 /* 1528 * Align write if necessary by performing a read-modify-write cycle. 1529 * Pad qiov with the read parts and be sure to have a tracked request not 1530 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1531 */ 1532 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1533 1534 if (!qiov) { 1535 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1536 goto out; 1537 } 1538 1539 if (offset & (align - 1)) { 1540 QEMUIOVector head_qiov; 1541 struct iovec head_iov; 1542 1543 mark_request_serialising(&req, align); 1544 wait_serialising_requests(&req); 1545 1546 head_buf = qemu_blockalign(bs, align); 1547 head_iov = (struct iovec) { 1548 .iov_base = head_buf, 1549 .iov_len = align, 1550 }; 1551 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1552 1553 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1554 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1555 align, &head_qiov, 0); 1556 if (ret < 0) { 1557 goto fail; 1558 } 1559 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1560 1561 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1562 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1563 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1564 use_local_qiov = true; 1565 1566 bytes += offset & (align - 1); 1567 offset = offset & ~(align - 1); 1568 1569 /* We have read the tail already if the request is smaller 1570 * than one aligned block. 1571 */ 1572 if (bytes < align) { 1573 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1574 bytes = align; 1575 } 1576 } 1577 1578 if ((offset + bytes) & (align - 1)) { 1579 QEMUIOVector tail_qiov; 1580 struct iovec tail_iov; 1581 size_t tail_bytes; 1582 bool waited; 1583 1584 mark_request_serialising(&req, align); 1585 waited = wait_serialising_requests(&req); 1586 assert(!waited || !use_local_qiov); 1587 1588 tail_buf = qemu_blockalign(bs, align); 1589 tail_iov = (struct iovec) { 1590 .iov_base = tail_buf, 1591 .iov_len = align, 1592 }; 1593 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1594 1595 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1596 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1597 align, align, &tail_qiov, 0); 1598 if (ret < 0) { 1599 goto fail; 1600 } 1601 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1602 1603 if (!use_local_qiov) { 1604 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1605 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1606 use_local_qiov = true; 1607 } 1608 1609 tail_bytes = (offset + bytes) & (align - 1); 1610 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1611 1612 bytes = ROUND_UP(bytes, align); 1613 } 1614 1615 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1616 use_local_qiov ? &local_qiov : qiov, 1617 flags); 1618 1619 fail: 1620 1621 if (use_local_qiov) { 1622 qemu_iovec_destroy(&local_qiov); 1623 } 1624 qemu_vfree(head_buf); 1625 qemu_vfree(tail_buf); 1626 out: 1627 tracked_request_end(&req); 1628 bdrv_dec_in_flight(bs); 1629 return ret; 1630 } 1631 1632 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child, 1633 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1634 BdrvRequestFlags flags) 1635 { 1636 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1637 return -EINVAL; 1638 } 1639 1640 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS, 1641 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1642 } 1643 1644 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num, 1645 int nb_sectors, QEMUIOVector *qiov) 1646 { 1647 trace_bdrv_co_writev(child->bs, sector_num, nb_sectors); 1648 1649 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0); 1650 } 1651 1652 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1653 int count, BdrvRequestFlags flags) 1654 { 1655 trace_bdrv_co_pwrite_zeroes(child->bs, offset, count, flags); 1656 1657 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1658 flags &= ~BDRV_REQ_MAY_UNMAP; 1659 } 1660 1661 return bdrv_co_pwritev(child, offset, count, NULL, 1662 BDRV_REQ_ZERO_WRITE | flags); 1663 } 1664 1665 /* 1666 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1667 */ 1668 int bdrv_flush_all(void) 1669 { 1670 BdrvNextIterator it; 1671 BlockDriverState *bs = NULL; 1672 int result = 0; 1673 1674 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 1675 AioContext *aio_context = bdrv_get_aio_context(bs); 1676 int ret; 1677 1678 aio_context_acquire(aio_context); 1679 ret = bdrv_flush(bs); 1680 if (ret < 0 && !result) { 1681 result = ret; 1682 } 1683 aio_context_release(aio_context); 1684 } 1685 1686 return result; 1687 } 1688 1689 1690 typedef struct BdrvCoGetBlockStatusData { 1691 BlockDriverState *bs; 1692 BlockDriverState *base; 1693 BlockDriverState **file; 1694 int64_t sector_num; 1695 int nb_sectors; 1696 int *pnum; 1697 int64_t ret; 1698 bool done; 1699 } BdrvCoGetBlockStatusData; 1700 1701 /* 1702 * Returns the allocation status of the specified sectors. 1703 * Drivers not implementing the functionality are assumed to not support 1704 * backing files, hence all their sectors are reported as allocated. 1705 * 1706 * If 'sector_num' is beyond the end of the disk image the return value is 0 1707 * and 'pnum' is set to 0. 1708 * 1709 * 'pnum' is set to the number of sectors (including and immediately following 1710 * the specified sector) that are known to be in the same 1711 * allocated/unallocated state. 1712 * 1713 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 1714 * beyond the end of the disk image it will be clamped. 1715 * 1716 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file' 1717 * points to the BDS which the sector range is allocated in. 1718 */ 1719 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs, 1720 int64_t sector_num, 1721 int nb_sectors, int *pnum, 1722 BlockDriverState **file) 1723 { 1724 int64_t total_sectors; 1725 int64_t n; 1726 int64_t ret, ret2; 1727 1728 total_sectors = bdrv_nb_sectors(bs); 1729 if (total_sectors < 0) { 1730 return total_sectors; 1731 } 1732 1733 if (sector_num >= total_sectors) { 1734 *pnum = 0; 1735 return 0; 1736 } 1737 1738 n = total_sectors - sector_num; 1739 if (n < nb_sectors) { 1740 nb_sectors = n; 1741 } 1742 1743 if (!bs->drv->bdrv_co_get_block_status) { 1744 *pnum = nb_sectors; 1745 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 1746 if (bs->drv->protocol_name) { 1747 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE); 1748 } 1749 return ret; 1750 } 1751 1752 *file = NULL; 1753 bdrv_inc_in_flight(bs); 1754 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum, 1755 file); 1756 if (ret < 0) { 1757 *pnum = 0; 1758 goto out; 1759 } 1760 1761 if (ret & BDRV_BLOCK_RAW) { 1762 assert(ret & BDRV_BLOCK_OFFSET_VALID); 1763 ret = bdrv_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1764 *pnum, pnum, file); 1765 goto out; 1766 } 1767 1768 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 1769 ret |= BDRV_BLOCK_ALLOCATED; 1770 } else { 1771 if (bdrv_unallocated_blocks_are_zero(bs)) { 1772 ret |= BDRV_BLOCK_ZERO; 1773 } else if (bs->backing) { 1774 BlockDriverState *bs2 = bs->backing->bs; 1775 int64_t nb_sectors2 = bdrv_nb_sectors(bs2); 1776 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) { 1777 ret |= BDRV_BLOCK_ZERO; 1778 } 1779 } 1780 } 1781 1782 if (*file && *file != bs && 1783 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 1784 (ret & BDRV_BLOCK_OFFSET_VALID)) { 1785 BlockDriverState *file2; 1786 int file_pnum; 1787 1788 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1789 *pnum, &file_pnum, &file2); 1790 if (ret2 >= 0) { 1791 /* Ignore errors. This is just providing extra information, it 1792 * is useful but not necessary. 1793 */ 1794 if (!file_pnum) { 1795 /* !file_pnum indicates an offset at or beyond the EOF; it is 1796 * perfectly valid for the format block driver to point to such 1797 * offsets, so catch it and mark everything as zero */ 1798 ret |= BDRV_BLOCK_ZERO; 1799 } else { 1800 /* Limit request to the range reported by the protocol driver */ 1801 *pnum = file_pnum; 1802 ret |= (ret2 & BDRV_BLOCK_ZERO); 1803 } 1804 } 1805 } 1806 1807 out: 1808 bdrv_dec_in_flight(bs); 1809 return ret; 1810 } 1811 1812 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs, 1813 BlockDriverState *base, 1814 int64_t sector_num, 1815 int nb_sectors, 1816 int *pnum, 1817 BlockDriverState **file) 1818 { 1819 BlockDriverState *p; 1820 int64_t ret = 0; 1821 1822 assert(bs != base); 1823 for (p = bs; p != base; p = backing_bs(p)) { 1824 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file); 1825 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) { 1826 break; 1827 } 1828 /* [sector_num, pnum] unallocated on this layer, which could be only 1829 * the first part of [sector_num, nb_sectors]. */ 1830 nb_sectors = MIN(nb_sectors, *pnum); 1831 } 1832 return ret; 1833 } 1834 1835 /* Coroutine wrapper for bdrv_get_block_status_above() */ 1836 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque) 1837 { 1838 BdrvCoGetBlockStatusData *data = opaque; 1839 1840 data->ret = bdrv_co_get_block_status_above(data->bs, data->base, 1841 data->sector_num, 1842 data->nb_sectors, 1843 data->pnum, 1844 data->file); 1845 data->done = true; 1846 } 1847 1848 /* 1849 * Synchronous wrapper around bdrv_co_get_block_status_above(). 1850 * 1851 * See bdrv_co_get_block_status_above() for details. 1852 */ 1853 int64_t bdrv_get_block_status_above(BlockDriverState *bs, 1854 BlockDriverState *base, 1855 int64_t sector_num, 1856 int nb_sectors, int *pnum, 1857 BlockDriverState **file) 1858 { 1859 Coroutine *co; 1860 BdrvCoGetBlockStatusData data = { 1861 .bs = bs, 1862 .base = base, 1863 .file = file, 1864 .sector_num = sector_num, 1865 .nb_sectors = nb_sectors, 1866 .pnum = pnum, 1867 .done = false, 1868 }; 1869 1870 if (qemu_in_coroutine()) { 1871 /* Fast-path if already in coroutine context */ 1872 bdrv_get_block_status_above_co_entry(&data); 1873 } else { 1874 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry, 1875 &data); 1876 qemu_coroutine_enter(co); 1877 BDRV_POLL_WHILE(bs, !data.done); 1878 } 1879 return data.ret; 1880 } 1881 1882 int64_t bdrv_get_block_status(BlockDriverState *bs, 1883 int64_t sector_num, 1884 int nb_sectors, int *pnum, 1885 BlockDriverState **file) 1886 { 1887 return bdrv_get_block_status_above(bs, backing_bs(bs), 1888 sector_num, nb_sectors, pnum, file); 1889 } 1890 1891 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, 1892 int nb_sectors, int *pnum) 1893 { 1894 BlockDriverState *file; 1895 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum, 1896 &file); 1897 if (ret < 0) { 1898 return ret; 1899 } 1900 return !!(ret & BDRV_BLOCK_ALLOCATED); 1901 } 1902 1903 /* 1904 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 1905 * 1906 * Return true if the given sector is allocated in any image between 1907 * BASE and TOP (inclusive). BASE can be NULL to check if the given 1908 * sector is allocated in any image of the chain. Return false otherwise. 1909 * 1910 * 'pnum' is set to the number of sectors (including and immediately following 1911 * the specified sector) that are known to be in the same 1912 * allocated/unallocated state. 1913 * 1914 */ 1915 int bdrv_is_allocated_above(BlockDriverState *top, 1916 BlockDriverState *base, 1917 int64_t sector_num, 1918 int nb_sectors, int *pnum) 1919 { 1920 BlockDriverState *intermediate; 1921 int ret, n = nb_sectors; 1922 1923 intermediate = top; 1924 while (intermediate && intermediate != base) { 1925 int pnum_inter; 1926 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors, 1927 &pnum_inter); 1928 if (ret < 0) { 1929 return ret; 1930 } else if (ret) { 1931 *pnum = pnum_inter; 1932 return 1; 1933 } 1934 1935 /* 1936 * [sector_num, nb_sectors] is unallocated on top but intermediate 1937 * might have 1938 * 1939 * [sector_num+x, nr_sectors] allocated. 1940 */ 1941 if (n > pnum_inter && 1942 (intermediate == top || 1943 sector_num + pnum_inter < intermediate->total_sectors)) { 1944 n = pnum_inter; 1945 } 1946 1947 intermediate = backing_bs(intermediate); 1948 } 1949 1950 *pnum = n; 1951 return 0; 1952 } 1953 1954 typedef struct BdrvVmstateCo { 1955 BlockDriverState *bs; 1956 QEMUIOVector *qiov; 1957 int64_t pos; 1958 bool is_read; 1959 int ret; 1960 } BdrvVmstateCo; 1961 1962 static int coroutine_fn 1963 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 1964 bool is_read) 1965 { 1966 BlockDriver *drv = bs->drv; 1967 1968 if (!drv) { 1969 return -ENOMEDIUM; 1970 } else if (drv->bdrv_load_vmstate) { 1971 return is_read ? drv->bdrv_load_vmstate(bs, qiov, pos) 1972 : drv->bdrv_save_vmstate(bs, qiov, pos); 1973 } else if (bs->file) { 1974 return bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 1975 } 1976 1977 return -ENOTSUP; 1978 } 1979 1980 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 1981 { 1982 BdrvVmstateCo *co = opaque; 1983 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 1984 } 1985 1986 static inline int 1987 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 1988 bool is_read) 1989 { 1990 if (qemu_in_coroutine()) { 1991 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 1992 } else { 1993 BdrvVmstateCo data = { 1994 .bs = bs, 1995 .qiov = qiov, 1996 .pos = pos, 1997 .is_read = is_read, 1998 .ret = -EINPROGRESS, 1999 }; 2000 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2001 2002 qemu_coroutine_enter(co); 2003 while (data.ret == -EINPROGRESS) { 2004 aio_poll(bdrv_get_aio_context(bs), true); 2005 } 2006 return data.ret; 2007 } 2008 } 2009 2010 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2011 int64_t pos, int size) 2012 { 2013 QEMUIOVector qiov; 2014 struct iovec iov = { 2015 .iov_base = (void *) buf, 2016 .iov_len = size, 2017 }; 2018 int ret; 2019 2020 qemu_iovec_init_external(&qiov, &iov, 1); 2021 2022 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2023 if (ret < 0) { 2024 return ret; 2025 } 2026 2027 return size; 2028 } 2029 2030 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2031 { 2032 return bdrv_rw_vmstate(bs, qiov, pos, false); 2033 } 2034 2035 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2036 int64_t pos, int size) 2037 { 2038 QEMUIOVector qiov; 2039 struct iovec iov = { 2040 .iov_base = buf, 2041 .iov_len = size, 2042 }; 2043 int ret; 2044 2045 qemu_iovec_init_external(&qiov, &iov, 1); 2046 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2047 if (ret < 0) { 2048 return ret; 2049 } 2050 2051 return size; 2052 } 2053 2054 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2055 { 2056 return bdrv_rw_vmstate(bs, qiov, pos, true); 2057 } 2058 2059 /**************************************************************/ 2060 /* async I/Os */ 2061 2062 BlockAIOCB *bdrv_aio_readv(BdrvChild *child, int64_t sector_num, 2063 QEMUIOVector *qiov, int nb_sectors, 2064 BlockCompletionFunc *cb, void *opaque) 2065 { 2066 trace_bdrv_aio_readv(child->bs, sector_num, nb_sectors, opaque); 2067 2068 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size); 2069 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov, 2070 0, cb, opaque, false); 2071 } 2072 2073 BlockAIOCB *bdrv_aio_writev(BdrvChild *child, int64_t sector_num, 2074 QEMUIOVector *qiov, int nb_sectors, 2075 BlockCompletionFunc *cb, void *opaque) 2076 { 2077 trace_bdrv_aio_writev(child->bs, sector_num, nb_sectors, opaque); 2078 2079 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size); 2080 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov, 2081 0, cb, opaque, true); 2082 } 2083 2084 void bdrv_aio_cancel(BlockAIOCB *acb) 2085 { 2086 qemu_aio_ref(acb); 2087 bdrv_aio_cancel_async(acb); 2088 while (acb->refcnt > 1) { 2089 if (acb->aiocb_info->get_aio_context) { 2090 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2091 } else if (acb->bs) { 2092 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2093 * assert that we're not using an I/O thread. Thread-safe 2094 * code should use bdrv_aio_cancel_async exclusively. 2095 */ 2096 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2097 aio_poll(bdrv_get_aio_context(acb->bs), true); 2098 } else { 2099 abort(); 2100 } 2101 } 2102 qemu_aio_unref(acb); 2103 } 2104 2105 /* Async version of aio cancel. The caller is not blocked if the acb implements 2106 * cancel_async, otherwise we do nothing and let the request normally complete. 2107 * In either case the completion callback must be called. */ 2108 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2109 { 2110 if (acb->aiocb_info->cancel_async) { 2111 acb->aiocb_info->cancel_async(acb); 2112 } 2113 } 2114 2115 /**************************************************************/ 2116 /* async block device emulation */ 2117 2118 typedef struct BlockRequest { 2119 union { 2120 /* Used during read, write, trim */ 2121 struct { 2122 int64_t offset; 2123 int bytes; 2124 int flags; 2125 QEMUIOVector *qiov; 2126 }; 2127 /* Used during ioctl */ 2128 struct { 2129 int req; 2130 void *buf; 2131 }; 2132 }; 2133 BlockCompletionFunc *cb; 2134 void *opaque; 2135 2136 int error; 2137 } BlockRequest; 2138 2139 typedef struct BlockAIOCBCoroutine { 2140 BlockAIOCB common; 2141 BdrvChild *child; 2142 BlockRequest req; 2143 bool is_write; 2144 bool need_bh; 2145 bool *done; 2146 } BlockAIOCBCoroutine; 2147 2148 static const AIOCBInfo bdrv_em_co_aiocb_info = { 2149 .aiocb_size = sizeof(BlockAIOCBCoroutine), 2150 }; 2151 2152 static void bdrv_co_complete(BlockAIOCBCoroutine *acb) 2153 { 2154 if (!acb->need_bh) { 2155 bdrv_dec_in_flight(acb->common.bs); 2156 acb->common.cb(acb->common.opaque, acb->req.error); 2157 qemu_aio_unref(acb); 2158 } 2159 } 2160 2161 static void bdrv_co_em_bh(void *opaque) 2162 { 2163 BlockAIOCBCoroutine *acb = opaque; 2164 2165 assert(!acb->need_bh); 2166 bdrv_co_complete(acb); 2167 } 2168 2169 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb) 2170 { 2171 acb->need_bh = false; 2172 if (acb->req.error != -EINPROGRESS) { 2173 BlockDriverState *bs = acb->common.bs; 2174 2175 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb); 2176 } 2177 } 2178 2179 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 2180 static void coroutine_fn bdrv_co_do_rw(void *opaque) 2181 { 2182 BlockAIOCBCoroutine *acb = opaque; 2183 2184 if (!acb->is_write) { 2185 acb->req.error = bdrv_co_preadv(acb->child, acb->req.offset, 2186 acb->req.qiov->size, acb->req.qiov, acb->req.flags); 2187 } else { 2188 acb->req.error = bdrv_co_pwritev(acb->child, acb->req.offset, 2189 acb->req.qiov->size, acb->req.qiov, acb->req.flags); 2190 } 2191 2192 bdrv_co_complete(acb); 2193 } 2194 2195 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child, 2196 int64_t offset, 2197 QEMUIOVector *qiov, 2198 BdrvRequestFlags flags, 2199 BlockCompletionFunc *cb, 2200 void *opaque, 2201 bool is_write) 2202 { 2203 Coroutine *co; 2204 BlockAIOCBCoroutine *acb; 2205 2206 /* Matched by bdrv_co_complete's bdrv_dec_in_flight. */ 2207 bdrv_inc_in_flight(child->bs); 2208 2209 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, child->bs, cb, opaque); 2210 acb->child = child; 2211 acb->need_bh = true; 2212 acb->req.error = -EINPROGRESS; 2213 acb->req.offset = offset; 2214 acb->req.qiov = qiov; 2215 acb->req.flags = flags; 2216 acb->is_write = is_write; 2217 2218 co = qemu_coroutine_create(bdrv_co_do_rw, acb); 2219 qemu_coroutine_enter(co); 2220 2221 bdrv_co_maybe_schedule_bh(acb); 2222 return &acb->common; 2223 } 2224 2225 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 2226 { 2227 BlockAIOCBCoroutine *acb = opaque; 2228 BlockDriverState *bs = acb->common.bs; 2229 2230 acb->req.error = bdrv_co_flush(bs); 2231 bdrv_co_complete(acb); 2232 } 2233 2234 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs, 2235 BlockCompletionFunc *cb, void *opaque) 2236 { 2237 trace_bdrv_aio_flush(bs, opaque); 2238 2239 Coroutine *co; 2240 BlockAIOCBCoroutine *acb; 2241 2242 /* Matched by bdrv_co_complete's bdrv_dec_in_flight. */ 2243 bdrv_inc_in_flight(bs); 2244 2245 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2246 acb->need_bh = true; 2247 acb->req.error = -EINPROGRESS; 2248 2249 co = qemu_coroutine_create(bdrv_aio_flush_co_entry, acb); 2250 qemu_coroutine_enter(co); 2251 2252 bdrv_co_maybe_schedule_bh(acb); 2253 return &acb->common; 2254 } 2255 2256 /**************************************************************/ 2257 /* Coroutine block device emulation */ 2258 2259 typedef struct FlushCo { 2260 BlockDriverState *bs; 2261 int ret; 2262 } FlushCo; 2263 2264 2265 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2266 { 2267 FlushCo *rwco = opaque; 2268 2269 rwco->ret = bdrv_co_flush(rwco->bs); 2270 } 2271 2272 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2273 { 2274 int ret; 2275 2276 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2277 bdrv_is_sg(bs)) { 2278 return 0; 2279 } 2280 2281 bdrv_inc_in_flight(bs); 2282 2283 int current_gen = bs->write_gen; 2284 2285 /* Wait until any previous flushes are completed */ 2286 while (bs->active_flush_req) { 2287 qemu_co_queue_wait(&bs->flush_queue, NULL); 2288 } 2289 2290 bs->active_flush_req = true; 2291 2292 /* Write back all layers by calling one driver function */ 2293 if (bs->drv->bdrv_co_flush) { 2294 ret = bs->drv->bdrv_co_flush(bs); 2295 goto out; 2296 } 2297 2298 /* Write back cached data to the OS even with cache=unsafe */ 2299 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2300 if (bs->drv->bdrv_co_flush_to_os) { 2301 ret = bs->drv->bdrv_co_flush_to_os(bs); 2302 if (ret < 0) { 2303 goto out; 2304 } 2305 } 2306 2307 /* But don't actually force it to the disk with cache=unsafe */ 2308 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2309 goto flush_parent; 2310 } 2311 2312 /* Check if we really need to flush anything */ 2313 if (bs->flushed_gen == current_gen) { 2314 goto flush_parent; 2315 } 2316 2317 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2318 if (bs->drv->bdrv_co_flush_to_disk) { 2319 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2320 } else if (bs->drv->bdrv_aio_flush) { 2321 BlockAIOCB *acb; 2322 CoroutineIOCompletion co = { 2323 .coroutine = qemu_coroutine_self(), 2324 }; 2325 2326 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2327 if (acb == NULL) { 2328 ret = -EIO; 2329 } else { 2330 qemu_coroutine_yield(); 2331 ret = co.ret; 2332 } 2333 } else { 2334 /* 2335 * Some block drivers always operate in either writethrough or unsafe 2336 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2337 * know how the server works (because the behaviour is hardcoded or 2338 * depends on server-side configuration), so we can't ensure that 2339 * everything is safe on disk. Returning an error doesn't work because 2340 * that would break guests even if the server operates in writethrough 2341 * mode. 2342 * 2343 * Let's hope the user knows what he's doing. 2344 */ 2345 ret = 0; 2346 } 2347 2348 if (ret < 0) { 2349 goto out; 2350 } 2351 2352 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2353 * in the case of cache=unsafe, so there are no useless flushes. 2354 */ 2355 flush_parent: 2356 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2357 out: 2358 /* Notify any pending flushes that we have completed */ 2359 if (ret == 0) { 2360 bs->flushed_gen = current_gen; 2361 } 2362 bs->active_flush_req = false; 2363 /* Return value is ignored - it's ok if wait queue is empty */ 2364 qemu_co_queue_next(&bs->flush_queue); 2365 2366 bdrv_dec_in_flight(bs); 2367 return ret; 2368 } 2369 2370 int bdrv_flush(BlockDriverState *bs) 2371 { 2372 Coroutine *co; 2373 FlushCo flush_co = { 2374 .bs = bs, 2375 .ret = NOT_DONE, 2376 }; 2377 2378 if (qemu_in_coroutine()) { 2379 /* Fast-path if already in coroutine context */ 2380 bdrv_flush_co_entry(&flush_co); 2381 } else { 2382 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2383 qemu_coroutine_enter(co); 2384 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2385 } 2386 2387 return flush_co.ret; 2388 } 2389 2390 typedef struct DiscardCo { 2391 BlockDriverState *bs; 2392 int64_t offset; 2393 int count; 2394 int ret; 2395 } DiscardCo; 2396 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2397 { 2398 DiscardCo *rwco = opaque; 2399 2400 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->count); 2401 } 2402 2403 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset, 2404 int count) 2405 { 2406 BdrvTrackedRequest req; 2407 int max_pdiscard, ret; 2408 int head, tail, align; 2409 2410 if (!bs->drv) { 2411 return -ENOMEDIUM; 2412 } 2413 2414 ret = bdrv_check_byte_request(bs, offset, count); 2415 if (ret < 0) { 2416 return ret; 2417 } else if (bs->read_only) { 2418 return -EPERM; 2419 } 2420 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2421 2422 /* Do nothing if disabled. */ 2423 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2424 return 0; 2425 } 2426 2427 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2428 return 0; 2429 } 2430 2431 /* Discard is advisory, but some devices track and coalesce 2432 * unaligned requests, so we must pass everything down rather than 2433 * round here. Still, most devices will just silently ignore 2434 * unaligned requests (by returning -ENOTSUP), so we must fragment 2435 * the request accordingly. */ 2436 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2437 assert(align % bs->bl.request_alignment == 0); 2438 head = offset % align; 2439 tail = (offset + count) % align; 2440 2441 bdrv_inc_in_flight(bs); 2442 tracked_request_begin(&req, bs, offset, count, BDRV_TRACKED_DISCARD); 2443 2444 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req); 2445 if (ret < 0) { 2446 goto out; 2447 } 2448 2449 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2450 align); 2451 assert(max_pdiscard >= bs->bl.request_alignment); 2452 2453 while (count > 0) { 2454 int ret; 2455 int num = count; 2456 2457 if (head) { 2458 /* Make small requests to get to alignment boundaries. */ 2459 num = MIN(count, align - head); 2460 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2461 num %= bs->bl.request_alignment; 2462 } 2463 head = (head + num) % align; 2464 assert(num < max_pdiscard); 2465 } else if (tail) { 2466 if (num > align) { 2467 /* Shorten the request to the last aligned cluster. */ 2468 num -= tail; 2469 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2470 tail > bs->bl.request_alignment) { 2471 tail %= bs->bl.request_alignment; 2472 num -= tail; 2473 } 2474 } 2475 /* limit request size */ 2476 if (num > max_pdiscard) { 2477 num = max_pdiscard; 2478 } 2479 2480 if (bs->drv->bdrv_co_pdiscard) { 2481 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2482 } else { 2483 BlockAIOCB *acb; 2484 CoroutineIOCompletion co = { 2485 .coroutine = qemu_coroutine_self(), 2486 }; 2487 2488 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2489 bdrv_co_io_em_complete, &co); 2490 if (acb == NULL) { 2491 ret = -EIO; 2492 goto out; 2493 } else { 2494 qemu_coroutine_yield(); 2495 ret = co.ret; 2496 } 2497 } 2498 if (ret && ret != -ENOTSUP) { 2499 goto out; 2500 } 2501 2502 offset += num; 2503 count -= num; 2504 } 2505 ret = 0; 2506 out: 2507 ++bs->write_gen; 2508 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS, 2509 req.bytes >> BDRV_SECTOR_BITS); 2510 tracked_request_end(&req); 2511 bdrv_dec_in_flight(bs); 2512 return ret; 2513 } 2514 2515 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int count) 2516 { 2517 Coroutine *co; 2518 DiscardCo rwco = { 2519 .bs = bs, 2520 .offset = offset, 2521 .count = count, 2522 .ret = NOT_DONE, 2523 }; 2524 2525 if (qemu_in_coroutine()) { 2526 /* Fast-path if already in coroutine context */ 2527 bdrv_pdiscard_co_entry(&rwco); 2528 } else { 2529 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2530 qemu_coroutine_enter(co); 2531 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE); 2532 } 2533 2534 return rwco.ret; 2535 } 2536 2537 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2538 { 2539 BlockDriver *drv = bs->drv; 2540 CoroutineIOCompletion co = { 2541 .coroutine = qemu_coroutine_self(), 2542 }; 2543 BlockAIOCB *acb; 2544 2545 bdrv_inc_in_flight(bs); 2546 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2547 co.ret = -ENOTSUP; 2548 goto out; 2549 } 2550 2551 if (drv->bdrv_co_ioctl) { 2552 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2553 } else { 2554 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2555 if (!acb) { 2556 co.ret = -ENOTSUP; 2557 goto out; 2558 } 2559 qemu_coroutine_yield(); 2560 } 2561 out: 2562 bdrv_dec_in_flight(bs); 2563 return co.ret; 2564 } 2565 2566 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2567 { 2568 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2569 } 2570 2571 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2572 { 2573 return memset(qemu_blockalign(bs, size), 0, size); 2574 } 2575 2576 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2577 { 2578 size_t align = bdrv_opt_mem_align(bs); 2579 2580 /* Ensure that NULL is never returned on success */ 2581 assert(align > 0); 2582 if (size == 0) { 2583 size = align; 2584 } 2585 2586 return qemu_try_memalign(align, size); 2587 } 2588 2589 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2590 { 2591 void *mem = qemu_try_blockalign(bs, size); 2592 2593 if (mem) { 2594 memset(mem, 0, size); 2595 } 2596 2597 return mem; 2598 } 2599 2600 /* 2601 * Check if all memory in this vector is sector aligned. 2602 */ 2603 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2604 { 2605 int i; 2606 size_t alignment = bdrv_min_mem_align(bs); 2607 2608 for (i = 0; i < qiov->niov; i++) { 2609 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2610 return false; 2611 } 2612 if (qiov->iov[i].iov_len % alignment) { 2613 return false; 2614 } 2615 } 2616 2617 return true; 2618 } 2619 2620 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2621 NotifierWithReturn *notifier) 2622 { 2623 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2624 } 2625 2626 void bdrv_io_plug(BlockDriverState *bs) 2627 { 2628 BdrvChild *child; 2629 2630 QLIST_FOREACH(child, &bs->children, next) { 2631 bdrv_io_plug(child->bs); 2632 } 2633 2634 if (bs->io_plugged++ == 0) { 2635 BlockDriver *drv = bs->drv; 2636 if (drv && drv->bdrv_io_plug) { 2637 drv->bdrv_io_plug(bs); 2638 } 2639 } 2640 } 2641 2642 void bdrv_io_unplug(BlockDriverState *bs) 2643 { 2644 BdrvChild *child; 2645 2646 assert(bs->io_plugged); 2647 if (--bs->io_plugged == 0) { 2648 BlockDriver *drv = bs->drv; 2649 if (drv && drv->bdrv_io_unplug) { 2650 drv->bdrv_io_unplug(bs); 2651 } 2652 } 2653 2654 QLIST_FOREACH(child, &bs->children, next) { 2655 bdrv_io_unplug(child->bs); 2656 } 2657 } 2658