xref: /openbmc/qemu/block/io.c (revision 397d30e9)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "qemu/cutils.h"
31 #include "qapi/error.h"
32 #include "qemu/error-report.h"
33 
34 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
35 
36 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
37                                           int64_t offset,
38                                           QEMUIOVector *qiov,
39                                           BdrvRequestFlags flags,
40                                           BlockCompletionFunc *cb,
41                                           void *opaque,
42                                           bool is_write);
43 static void coroutine_fn bdrv_co_do_rw(void *opaque);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45     int64_t offset, int count, BdrvRequestFlags flags);
46 
47 static void bdrv_parent_drained_begin(BlockDriverState *bs)
48 {
49     BdrvChild *c;
50 
51     QLIST_FOREACH(c, &bs->parents, next_parent) {
52         if (c->role->drained_begin) {
53             c->role->drained_begin(c);
54         }
55     }
56 }
57 
58 static void bdrv_parent_drained_end(BlockDriverState *bs)
59 {
60     BdrvChild *c;
61 
62     QLIST_FOREACH(c, &bs->parents, next_parent) {
63         if (c->role->drained_end) {
64             c->role->drained_end(c);
65         }
66     }
67 }
68 
69 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
70 {
71     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
72     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
73     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
74                                  src->opt_mem_alignment);
75     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
76                                  src->min_mem_alignment);
77     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
78 }
79 
80 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
81 {
82     BlockDriver *drv = bs->drv;
83     Error *local_err = NULL;
84 
85     memset(&bs->bl, 0, sizeof(bs->bl));
86 
87     if (!drv) {
88         return;
89     }
90 
91     /* Default alignment based on whether driver has byte interface */
92     bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
93 
94     /* Take some limits from the children as a default */
95     if (bs->file) {
96         bdrv_refresh_limits(bs->file->bs, &local_err);
97         if (local_err) {
98             error_propagate(errp, local_err);
99             return;
100         }
101         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
102     } else {
103         bs->bl.min_mem_alignment = 512;
104         bs->bl.opt_mem_alignment = getpagesize();
105 
106         /* Safe default since most protocols use readv()/writev()/etc */
107         bs->bl.max_iov = IOV_MAX;
108     }
109 
110     if (bs->backing) {
111         bdrv_refresh_limits(bs->backing->bs, &local_err);
112         if (local_err) {
113             error_propagate(errp, local_err);
114             return;
115         }
116         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
117     }
118 
119     /* Then let the driver override it */
120     if (drv->bdrv_refresh_limits) {
121         drv->bdrv_refresh_limits(bs, errp);
122     }
123 }
124 
125 /**
126  * The copy-on-read flag is actually a reference count so multiple users may
127  * use the feature without worrying about clobbering its previous state.
128  * Copy-on-read stays enabled until all users have called to disable it.
129  */
130 void bdrv_enable_copy_on_read(BlockDriverState *bs)
131 {
132     bs->copy_on_read++;
133 }
134 
135 void bdrv_disable_copy_on_read(BlockDriverState *bs)
136 {
137     assert(bs->copy_on_read > 0);
138     bs->copy_on_read--;
139 }
140 
141 /* Check if any requests are in-flight (including throttled requests) */
142 bool bdrv_requests_pending(BlockDriverState *bs)
143 {
144     BdrvChild *child;
145 
146     if (atomic_read(&bs->in_flight)) {
147         return true;
148     }
149 
150     QLIST_FOREACH(child, &bs->children, next) {
151         if (bdrv_requests_pending(child->bs)) {
152             return true;
153         }
154     }
155 
156     return false;
157 }
158 
159 static bool bdrv_drain_recurse(BlockDriverState *bs)
160 {
161     BdrvChild *child;
162     bool waited;
163 
164     waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
165 
166     if (bs->drv && bs->drv->bdrv_drain) {
167         bs->drv->bdrv_drain(bs);
168     }
169 
170     QLIST_FOREACH(child, &bs->children, next) {
171         waited |= bdrv_drain_recurse(child->bs);
172     }
173 
174     return waited;
175 }
176 
177 typedef struct {
178     Coroutine *co;
179     BlockDriverState *bs;
180     bool done;
181 } BdrvCoDrainData;
182 
183 static void bdrv_co_drain_bh_cb(void *opaque)
184 {
185     BdrvCoDrainData *data = opaque;
186     Coroutine *co = data->co;
187     BlockDriverState *bs = data->bs;
188 
189     bdrv_dec_in_flight(bs);
190     bdrv_drained_begin(bs);
191     data->done = true;
192     qemu_coroutine_enter(co);
193 }
194 
195 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
196 {
197     BdrvCoDrainData data;
198 
199     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
200      * other coroutines run if they were queued from
201      * qemu_co_queue_run_restart(). */
202 
203     assert(qemu_in_coroutine());
204     data = (BdrvCoDrainData) {
205         .co = qemu_coroutine_self(),
206         .bs = bs,
207         .done = false,
208     };
209     bdrv_inc_in_flight(bs);
210     aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
211                             bdrv_co_drain_bh_cb, &data);
212 
213     qemu_coroutine_yield();
214     /* If we are resumed from some other event (such as an aio completion or a
215      * timer callback), it is a bug in the caller that should be fixed. */
216     assert(data.done);
217 }
218 
219 void bdrv_drained_begin(BlockDriverState *bs)
220 {
221     if (qemu_in_coroutine()) {
222         bdrv_co_yield_to_drain(bs);
223         return;
224     }
225 
226     if (!bs->quiesce_counter++) {
227         aio_disable_external(bdrv_get_aio_context(bs));
228         bdrv_parent_drained_begin(bs);
229     }
230 
231     bdrv_io_unplugged_begin(bs);
232     bdrv_drain_recurse(bs);
233     bdrv_io_unplugged_end(bs);
234 }
235 
236 void bdrv_drained_end(BlockDriverState *bs)
237 {
238     assert(bs->quiesce_counter > 0);
239     if (--bs->quiesce_counter > 0) {
240         return;
241     }
242 
243     bdrv_parent_drained_end(bs);
244     aio_enable_external(bdrv_get_aio_context(bs));
245 }
246 
247 /*
248  * Wait for pending requests to complete on a single BlockDriverState subtree,
249  * and suspend block driver's internal I/O until next request arrives.
250  *
251  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
252  * AioContext.
253  *
254  * Only this BlockDriverState's AioContext is run, so in-flight requests must
255  * not depend on events in other AioContexts.  In that case, use
256  * bdrv_drain_all() instead.
257  */
258 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
259 {
260     assert(qemu_in_coroutine());
261     bdrv_drained_begin(bs);
262     bdrv_drained_end(bs);
263 }
264 
265 void bdrv_drain(BlockDriverState *bs)
266 {
267     bdrv_drained_begin(bs);
268     bdrv_drained_end(bs);
269 }
270 
271 /*
272  * Wait for pending requests to complete across all BlockDriverStates
273  *
274  * This function does not flush data to disk, use bdrv_flush_all() for that
275  * after calling this function.
276  *
277  * This pauses all block jobs and disables external clients. It must
278  * be paired with bdrv_drain_all_end().
279  *
280  * NOTE: no new block jobs or BlockDriverStates can be created between
281  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
282  */
283 void bdrv_drain_all_begin(void)
284 {
285     /* Always run first iteration so any pending completion BHs run */
286     bool waited = true;
287     BlockDriverState *bs;
288     BdrvNextIterator it;
289     BlockJob *job = NULL;
290     GSList *aio_ctxs = NULL, *ctx;
291 
292     while ((job = block_job_next(job))) {
293         AioContext *aio_context = blk_get_aio_context(job->blk);
294 
295         aio_context_acquire(aio_context);
296         block_job_pause(job);
297         aio_context_release(aio_context);
298     }
299 
300     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
301         AioContext *aio_context = bdrv_get_aio_context(bs);
302 
303         aio_context_acquire(aio_context);
304         bdrv_parent_drained_begin(bs);
305         bdrv_io_unplugged_begin(bs);
306         aio_disable_external(aio_context);
307         aio_context_release(aio_context);
308 
309         if (!g_slist_find(aio_ctxs, aio_context)) {
310             aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
311         }
312     }
313 
314     /* Note that completion of an asynchronous I/O operation can trigger any
315      * number of other I/O operations on other devices---for example a
316      * coroutine can submit an I/O request to another device in response to
317      * request completion.  Therefore we must keep looping until there was no
318      * more activity rather than simply draining each device independently.
319      */
320     while (waited) {
321         waited = false;
322 
323         for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
324             AioContext *aio_context = ctx->data;
325 
326             aio_context_acquire(aio_context);
327             for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
328                 if (aio_context == bdrv_get_aio_context(bs)) {
329                     waited |= bdrv_drain_recurse(bs);
330                 }
331             }
332             aio_context_release(aio_context);
333         }
334     }
335 
336     g_slist_free(aio_ctxs);
337 }
338 
339 void bdrv_drain_all_end(void)
340 {
341     BlockDriverState *bs;
342     BdrvNextIterator it;
343     BlockJob *job = NULL;
344 
345     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
346         AioContext *aio_context = bdrv_get_aio_context(bs);
347 
348         aio_context_acquire(aio_context);
349         aio_enable_external(aio_context);
350         bdrv_io_unplugged_end(bs);
351         bdrv_parent_drained_end(bs);
352         aio_context_release(aio_context);
353     }
354 
355     while ((job = block_job_next(job))) {
356         AioContext *aio_context = blk_get_aio_context(job->blk);
357 
358         aio_context_acquire(aio_context);
359         block_job_resume(job);
360         aio_context_release(aio_context);
361     }
362 }
363 
364 void bdrv_drain_all(void)
365 {
366     bdrv_drain_all_begin();
367     bdrv_drain_all_end();
368 }
369 
370 /**
371  * Remove an active request from the tracked requests list
372  *
373  * This function should be called when a tracked request is completing.
374  */
375 static void tracked_request_end(BdrvTrackedRequest *req)
376 {
377     if (req->serialising) {
378         req->bs->serialising_in_flight--;
379     }
380 
381     QLIST_REMOVE(req, list);
382     qemu_co_queue_restart_all(&req->wait_queue);
383 }
384 
385 /**
386  * Add an active request to the tracked requests list
387  */
388 static void tracked_request_begin(BdrvTrackedRequest *req,
389                                   BlockDriverState *bs,
390                                   int64_t offset,
391                                   unsigned int bytes,
392                                   enum BdrvTrackedRequestType type)
393 {
394     *req = (BdrvTrackedRequest){
395         .bs = bs,
396         .offset         = offset,
397         .bytes          = bytes,
398         .type           = type,
399         .co             = qemu_coroutine_self(),
400         .serialising    = false,
401         .overlap_offset = offset,
402         .overlap_bytes  = bytes,
403     };
404 
405     qemu_co_queue_init(&req->wait_queue);
406 
407     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
408 }
409 
410 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
411 {
412     int64_t overlap_offset = req->offset & ~(align - 1);
413     unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
414                                - overlap_offset;
415 
416     if (!req->serialising) {
417         req->bs->serialising_in_flight++;
418         req->serialising = true;
419     }
420 
421     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
422     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
423 }
424 
425 /**
426  * Round a region to cluster boundaries (sector-based)
427  */
428 void bdrv_round_sectors_to_clusters(BlockDriverState *bs,
429                                     int64_t sector_num, int nb_sectors,
430                                     int64_t *cluster_sector_num,
431                                     int *cluster_nb_sectors)
432 {
433     BlockDriverInfo bdi;
434 
435     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
436         *cluster_sector_num = sector_num;
437         *cluster_nb_sectors = nb_sectors;
438     } else {
439         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
440         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
441         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
442                                             nb_sectors, c);
443     }
444 }
445 
446 /**
447  * Round a region to cluster boundaries
448  */
449 void bdrv_round_to_clusters(BlockDriverState *bs,
450                             int64_t offset, unsigned int bytes,
451                             int64_t *cluster_offset,
452                             unsigned int *cluster_bytes)
453 {
454     BlockDriverInfo bdi;
455 
456     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
457         *cluster_offset = offset;
458         *cluster_bytes = bytes;
459     } else {
460         int64_t c = bdi.cluster_size;
461         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
462         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
463     }
464 }
465 
466 static int bdrv_get_cluster_size(BlockDriverState *bs)
467 {
468     BlockDriverInfo bdi;
469     int ret;
470 
471     ret = bdrv_get_info(bs, &bdi);
472     if (ret < 0 || bdi.cluster_size == 0) {
473         return bs->bl.request_alignment;
474     } else {
475         return bdi.cluster_size;
476     }
477 }
478 
479 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
480                                      int64_t offset, unsigned int bytes)
481 {
482     /*        aaaa   bbbb */
483     if (offset >= req->overlap_offset + req->overlap_bytes) {
484         return false;
485     }
486     /* bbbb   aaaa        */
487     if (req->overlap_offset >= offset + bytes) {
488         return false;
489     }
490     return true;
491 }
492 
493 void bdrv_inc_in_flight(BlockDriverState *bs)
494 {
495     atomic_inc(&bs->in_flight);
496 }
497 
498 static void dummy_bh_cb(void *opaque)
499 {
500 }
501 
502 void bdrv_wakeup(BlockDriverState *bs)
503 {
504     if (bs->wakeup) {
505         aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
506     }
507 }
508 
509 void bdrv_dec_in_flight(BlockDriverState *bs)
510 {
511     atomic_dec(&bs->in_flight);
512     bdrv_wakeup(bs);
513 }
514 
515 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
516 {
517     BlockDriverState *bs = self->bs;
518     BdrvTrackedRequest *req;
519     bool retry;
520     bool waited = false;
521 
522     if (!bs->serialising_in_flight) {
523         return false;
524     }
525 
526     do {
527         retry = false;
528         QLIST_FOREACH(req, &bs->tracked_requests, list) {
529             if (req == self || (!req->serialising && !self->serialising)) {
530                 continue;
531             }
532             if (tracked_request_overlaps(req, self->overlap_offset,
533                                          self->overlap_bytes))
534             {
535                 /* Hitting this means there was a reentrant request, for
536                  * example, a block driver issuing nested requests.  This must
537                  * never happen since it means deadlock.
538                  */
539                 assert(qemu_coroutine_self() != req->co);
540 
541                 /* If the request is already (indirectly) waiting for us, or
542                  * will wait for us as soon as it wakes up, then just go on
543                  * (instead of producing a deadlock in the former case). */
544                 if (!req->waiting_for) {
545                     self->waiting_for = req;
546                     qemu_co_queue_wait(&req->wait_queue);
547                     self->waiting_for = NULL;
548                     retry = true;
549                     waited = true;
550                     break;
551                 }
552             }
553         }
554     } while (retry);
555 
556     return waited;
557 }
558 
559 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
560                                    size_t size)
561 {
562     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
563         return -EIO;
564     }
565 
566     if (!bdrv_is_inserted(bs)) {
567         return -ENOMEDIUM;
568     }
569 
570     if (offset < 0) {
571         return -EIO;
572     }
573 
574     return 0;
575 }
576 
577 typedef struct RwCo {
578     BdrvChild *child;
579     int64_t offset;
580     QEMUIOVector *qiov;
581     bool is_write;
582     int ret;
583     BdrvRequestFlags flags;
584 } RwCo;
585 
586 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
587 {
588     RwCo *rwco = opaque;
589 
590     if (!rwco->is_write) {
591         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
592                                    rwco->qiov->size, rwco->qiov,
593                                    rwco->flags);
594     } else {
595         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
596                                     rwco->qiov->size, rwco->qiov,
597                                     rwco->flags);
598     }
599 }
600 
601 /*
602  * Process a vectored synchronous request using coroutines
603  */
604 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
605                         QEMUIOVector *qiov, bool is_write,
606                         BdrvRequestFlags flags)
607 {
608     Coroutine *co;
609     RwCo rwco = {
610         .child = child,
611         .offset = offset,
612         .qiov = qiov,
613         .is_write = is_write,
614         .ret = NOT_DONE,
615         .flags = flags,
616     };
617 
618     if (qemu_in_coroutine()) {
619         /* Fast-path if already in coroutine context */
620         bdrv_rw_co_entry(&rwco);
621     } else {
622         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
623         qemu_coroutine_enter(co);
624         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
625     }
626     return rwco.ret;
627 }
628 
629 /*
630  * Process a synchronous request using coroutines
631  */
632 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
633                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
634 {
635     QEMUIOVector qiov;
636     struct iovec iov = {
637         .iov_base = (void *)buf,
638         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
639     };
640 
641     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
642         return -EINVAL;
643     }
644 
645     qemu_iovec_init_external(&qiov, &iov, 1);
646     return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
647                         &qiov, is_write, flags);
648 }
649 
650 /* return < 0 if error. See bdrv_write() for the return codes */
651 int bdrv_read(BdrvChild *child, int64_t sector_num,
652               uint8_t *buf, int nb_sectors)
653 {
654     return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
655 }
656 
657 /* Return < 0 if error. Important errors are:
658   -EIO         generic I/O error (may happen for all errors)
659   -ENOMEDIUM   No media inserted.
660   -EINVAL      Invalid sector number or nb_sectors
661   -EACCES      Trying to write a read-only device
662 */
663 int bdrv_write(BdrvChild *child, int64_t sector_num,
664                const uint8_t *buf, int nb_sectors)
665 {
666     return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
667 }
668 
669 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
670                        int count, BdrvRequestFlags flags)
671 {
672     QEMUIOVector qiov;
673     struct iovec iov = {
674         .iov_base = NULL,
675         .iov_len = count,
676     };
677 
678     qemu_iovec_init_external(&qiov, &iov, 1);
679     return bdrv_prwv_co(child, offset, &qiov, true,
680                         BDRV_REQ_ZERO_WRITE | flags);
681 }
682 
683 /*
684  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
685  * The operation is sped up by checking the block status and only writing
686  * zeroes to the device if they currently do not return zeroes. Optional
687  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
688  * BDRV_REQ_FUA).
689  *
690  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
691  */
692 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
693 {
694     int64_t target_sectors, ret, nb_sectors, sector_num = 0;
695     BlockDriverState *bs = child->bs;
696     BlockDriverState *file;
697     int n;
698 
699     target_sectors = bdrv_nb_sectors(bs);
700     if (target_sectors < 0) {
701         return target_sectors;
702     }
703 
704     for (;;) {
705         nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
706         if (nb_sectors <= 0) {
707             return 0;
708         }
709         ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
710         if (ret < 0) {
711             error_report("error getting block status at sector %" PRId64 ": %s",
712                          sector_num, strerror(-ret));
713             return ret;
714         }
715         if (ret & BDRV_BLOCK_ZERO) {
716             sector_num += n;
717             continue;
718         }
719         ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
720                                  n << BDRV_SECTOR_BITS, flags);
721         if (ret < 0) {
722             error_report("error writing zeroes at sector %" PRId64 ": %s",
723                          sector_num, strerror(-ret));
724             return ret;
725         }
726         sector_num += n;
727     }
728 }
729 
730 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
731 {
732     int ret;
733 
734     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
735     if (ret < 0) {
736         return ret;
737     }
738 
739     return qiov->size;
740 }
741 
742 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
743 {
744     QEMUIOVector qiov;
745     struct iovec iov = {
746         .iov_base = (void *)buf,
747         .iov_len = bytes,
748     };
749 
750     if (bytes < 0) {
751         return -EINVAL;
752     }
753 
754     qemu_iovec_init_external(&qiov, &iov, 1);
755     return bdrv_preadv(child, offset, &qiov);
756 }
757 
758 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
759 {
760     int ret;
761 
762     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
763     if (ret < 0) {
764         return ret;
765     }
766 
767     return qiov->size;
768 }
769 
770 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
771 {
772     QEMUIOVector qiov;
773     struct iovec iov = {
774         .iov_base   = (void *) buf,
775         .iov_len    = bytes,
776     };
777 
778     if (bytes < 0) {
779         return -EINVAL;
780     }
781 
782     qemu_iovec_init_external(&qiov, &iov, 1);
783     return bdrv_pwritev(child, offset, &qiov);
784 }
785 
786 /*
787  * Writes to the file and ensures that no writes are reordered across this
788  * request (acts as a barrier)
789  *
790  * Returns 0 on success, -errno in error cases.
791  */
792 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
793                      const void *buf, int count)
794 {
795     int ret;
796 
797     ret = bdrv_pwrite(child, offset, buf, count);
798     if (ret < 0) {
799         return ret;
800     }
801 
802     ret = bdrv_flush(child->bs);
803     if (ret < 0) {
804         return ret;
805     }
806 
807     return 0;
808 }
809 
810 typedef struct CoroutineIOCompletion {
811     Coroutine *coroutine;
812     int ret;
813 } CoroutineIOCompletion;
814 
815 static void bdrv_co_io_em_complete(void *opaque, int ret)
816 {
817     CoroutineIOCompletion *co = opaque;
818 
819     co->ret = ret;
820     qemu_coroutine_enter(co->coroutine);
821 }
822 
823 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
824                                            uint64_t offset, uint64_t bytes,
825                                            QEMUIOVector *qiov, int flags)
826 {
827     BlockDriver *drv = bs->drv;
828     int64_t sector_num;
829     unsigned int nb_sectors;
830 
831     assert(!(flags & ~BDRV_REQ_MASK));
832 
833     if (drv->bdrv_co_preadv) {
834         return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
835     }
836 
837     sector_num = offset >> BDRV_SECTOR_BITS;
838     nb_sectors = bytes >> BDRV_SECTOR_BITS;
839 
840     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
841     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
842     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
843 
844     if (drv->bdrv_co_readv) {
845         return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
846     } else {
847         BlockAIOCB *acb;
848         CoroutineIOCompletion co = {
849             .coroutine = qemu_coroutine_self(),
850         };
851 
852         acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
853                                       bdrv_co_io_em_complete, &co);
854         if (acb == NULL) {
855             return -EIO;
856         } else {
857             qemu_coroutine_yield();
858             return co.ret;
859         }
860     }
861 }
862 
863 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
864                                             uint64_t offset, uint64_t bytes,
865                                             QEMUIOVector *qiov, int flags)
866 {
867     BlockDriver *drv = bs->drv;
868     int64_t sector_num;
869     unsigned int nb_sectors;
870     int ret;
871 
872     assert(!(flags & ~BDRV_REQ_MASK));
873 
874     if (drv->bdrv_co_pwritev) {
875         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
876                                    flags & bs->supported_write_flags);
877         flags &= ~bs->supported_write_flags;
878         goto emulate_flags;
879     }
880 
881     sector_num = offset >> BDRV_SECTOR_BITS;
882     nb_sectors = bytes >> BDRV_SECTOR_BITS;
883 
884     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
885     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
886     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
887 
888     if (drv->bdrv_co_writev_flags) {
889         ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
890                                         flags & bs->supported_write_flags);
891         flags &= ~bs->supported_write_flags;
892     } else if (drv->bdrv_co_writev) {
893         assert(!bs->supported_write_flags);
894         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
895     } else {
896         BlockAIOCB *acb;
897         CoroutineIOCompletion co = {
898             .coroutine = qemu_coroutine_self(),
899         };
900 
901         acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
902                                        bdrv_co_io_em_complete, &co);
903         if (acb == NULL) {
904             ret = -EIO;
905         } else {
906             qemu_coroutine_yield();
907             ret = co.ret;
908         }
909     }
910 
911 emulate_flags:
912     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
913         ret = bdrv_co_flush(bs);
914     }
915 
916     return ret;
917 }
918 
919 static int coroutine_fn
920 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
921                                uint64_t bytes, QEMUIOVector *qiov)
922 {
923     BlockDriver *drv = bs->drv;
924 
925     if (!drv->bdrv_co_pwritev_compressed) {
926         return -ENOTSUP;
927     }
928 
929     return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
930 }
931 
932 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
933         int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
934 {
935     /* Perform I/O through a temporary buffer so that users who scribble over
936      * their read buffer while the operation is in progress do not end up
937      * modifying the image file.  This is critical for zero-copy guest I/O
938      * where anything might happen inside guest memory.
939      */
940     void *bounce_buffer;
941 
942     BlockDriver *drv = bs->drv;
943     struct iovec iov;
944     QEMUIOVector bounce_qiov;
945     int64_t cluster_offset;
946     unsigned int cluster_bytes;
947     size_t skip_bytes;
948     int ret;
949 
950     /* Cover entire cluster so no additional backing file I/O is required when
951      * allocating cluster in the image file.
952      */
953     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
954 
955     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
956                                    cluster_offset, cluster_bytes);
957 
958     iov.iov_len = cluster_bytes;
959     iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
960     if (bounce_buffer == NULL) {
961         ret = -ENOMEM;
962         goto err;
963     }
964 
965     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
966 
967     ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
968                              &bounce_qiov, 0);
969     if (ret < 0) {
970         goto err;
971     }
972 
973     if (drv->bdrv_co_pwrite_zeroes &&
974         buffer_is_zero(bounce_buffer, iov.iov_len)) {
975         /* FIXME: Should we (perhaps conditionally) be setting
976          * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
977          * that still correctly reads as zero? */
978         ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
979     } else {
980         /* This does not change the data on the disk, it is not necessary
981          * to flush even in cache=writethrough mode.
982          */
983         ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
984                                   &bounce_qiov, 0);
985     }
986 
987     if (ret < 0) {
988         /* It might be okay to ignore write errors for guest requests.  If this
989          * is a deliberate copy-on-read then we don't want to ignore the error.
990          * Simply report it in all cases.
991          */
992         goto err;
993     }
994 
995     skip_bytes = offset - cluster_offset;
996     qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
997 
998 err:
999     qemu_vfree(bounce_buffer);
1000     return ret;
1001 }
1002 
1003 /*
1004  * Forwards an already correctly aligned request to the BlockDriver. This
1005  * handles copy on read, zeroing after EOF, and fragmentation of large
1006  * reads; any other features must be implemented by the caller.
1007  */
1008 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
1009     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1010     int64_t align, QEMUIOVector *qiov, int flags)
1011 {
1012     int64_t total_bytes, max_bytes;
1013     int ret = 0;
1014     uint64_t bytes_remaining = bytes;
1015     int max_transfer;
1016 
1017     assert(is_power_of_2(align));
1018     assert((offset & (align - 1)) == 0);
1019     assert((bytes & (align - 1)) == 0);
1020     assert(!qiov || bytes == qiov->size);
1021     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1022     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1023                                    align);
1024 
1025     /* TODO: We would need a per-BDS .supported_read_flags and
1026      * potential fallback support, if we ever implement any read flags
1027      * to pass through to drivers.  For now, there aren't any
1028      * passthrough flags.  */
1029     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1030 
1031     /* Handle Copy on Read and associated serialisation */
1032     if (flags & BDRV_REQ_COPY_ON_READ) {
1033         /* If we touch the same cluster it counts as an overlap.  This
1034          * guarantees that allocating writes will be serialized and not race
1035          * with each other for the same cluster.  For example, in copy-on-read
1036          * it ensures that the CoR read and write operations are atomic and
1037          * guest writes cannot interleave between them. */
1038         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1039     }
1040 
1041     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1042         wait_serialising_requests(req);
1043     }
1044 
1045     if (flags & BDRV_REQ_COPY_ON_READ) {
1046         int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1047         int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1048         unsigned int nb_sectors = end_sector - start_sector;
1049         int pnum;
1050 
1051         ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum);
1052         if (ret < 0) {
1053             goto out;
1054         }
1055 
1056         if (!ret || pnum != nb_sectors) {
1057             ret = bdrv_co_do_copy_on_readv(bs, offset, bytes, qiov);
1058             goto out;
1059         }
1060     }
1061 
1062     /* Forward the request to the BlockDriver, possibly fragmenting it */
1063     total_bytes = bdrv_getlength(bs);
1064     if (total_bytes < 0) {
1065         ret = total_bytes;
1066         goto out;
1067     }
1068 
1069     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1070     if (bytes <= max_bytes && bytes <= max_transfer) {
1071         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1072         goto out;
1073     }
1074 
1075     while (bytes_remaining) {
1076         int num;
1077 
1078         if (max_bytes) {
1079             QEMUIOVector local_qiov;
1080 
1081             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1082             assert(num);
1083             qemu_iovec_init(&local_qiov, qiov->niov);
1084             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1085 
1086             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1087                                      num, &local_qiov, 0);
1088             max_bytes -= num;
1089             qemu_iovec_destroy(&local_qiov);
1090         } else {
1091             num = bytes_remaining;
1092             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1093                                     bytes_remaining);
1094         }
1095         if (ret < 0) {
1096             goto out;
1097         }
1098         bytes_remaining -= num;
1099     }
1100 
1101 out:
1102     return ret < 0 ? ret : 0;
1103 }
1104 
1105 /*
1106  * Handle a read request in coroutine context
1107  */
1108 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1109     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1110     BdrvRequestFlags flags)
1111 {
1112     BlockDriverState *bs = child->bs;
1113     BlockDriver *drv = bs->drv;
1114     BdrvTrackedRequest req;
1115 
1116     uint64_t align = bs->bl.request_alignment;
1117     uint8_t *head_buf = NULL;
1118     uint8_t *tail_buf = NULL;
1119     QEMUIOVector local_qiov;
1120     bool use_local_qiov = false;
1121     int ret;
1122 
1123     if (!drv) {
1124         return -ENOMEDIUM;
1125     }
1126 
1127     ret = bdrv_check_byte_request(bs, offset, bytes);
1128     if (ret < 0) {
1129         return ret;
1130     }
1131 
1132     bdrv_inc_in_flight(bs);
1133 
1134     /* Don't do copy-on-read if we read data before write operation */
1135     if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
1136         flags |= BDRV_REQ_COPY_ON_READ;
1137     }
1138 
1139     /* Align read if necessary by padding qiov */
1140     if (offset & (align - 1)) {
1141         head_buf = qemu_blockalign(bs, align);
1142         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1143         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1144         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1145         use_local_qiov = true;
1146 
1147         bytes += offset & (align - 1);
1148         offset = offset & ~(align - 1);
1149     }
1150 
1151     if ((offset + bytes) & (align - 1)) {
1152         if (!use_local_qiov) {
1153             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1154             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1155             use_local_qiov = true;
1156         }
1157         tail_buf = qemu_blockalign(bs, align);
1158         qemu_iovec_add(&local_qiov, tail_buf,
1159                        align - ((offset + bytes) & (align - 1)));
1160 
1161         bytes = ROUND_UP(bytes, align);
1162     }
1163 
1164     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1165     ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
1166                               use_local_qiov ? &local_qiov : qiov,
1167                               flags);
1168     tracked_request_end(&req);
1169     bdrv_dec_in_flight(bs);
1170 
1171     if (use_local_qiov) {
1172         qemu_iovec_destroy(&local_qiov);
1173         qemu_vfree(head_buf);
1174         qemu_vfree(tail_buf);
1175     }
1176 
1177     return ret;
1178 }
1179 
1180 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1181     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1182     BdrvRequestFlags flags)
1183 {
1184     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1185         return -EINVAL;
1186     }
1187 
1188     return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1189                           nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1190 }
1191 
1192 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1193                                int nb_sectors, QEMUIOVector *qiov)
1194 {
1195     trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1196 
1197     return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1198 }
1199 
1200 /* Maximum buffer for write zeroes fallback, in bytes */
1201 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1202 
1203 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1204     int64_t offset, int count, BdrvRequestFlags flags)
1205 {
1206     BlockDriver *drv = bs->drv;
1207     QEMUIOVector qiov;
1208     struct iovec iov = {0};
1209     int ret = 0;
1210     bool need_flush = false;
1211     int head = 0;
1212     int tail = 0;
1213 
1214     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1215     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1216                         bs->bl.request_alignment);
1217 
1218     assert(alignment % bs->bl.request_alignment == 0);
1219     head = offset % alignment;
1220     tail = (offset + count) % alignment;
1221     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1222     assert(max_write_zeroes >= bs->bl.request_alignment);
1223 
1224     while (count > 0 && !ret) {
1225         int num = count;
1226 
1227         /* Align request.  Block drivers can expect the "bulk" of the request
1228          * to be aligned, and that unaligned requests do not cross cluster
1229          * boundaries.
1230          */
1231         if (head) {
1232             /* Make a small request up to the first aligned sector.  */
1233             num = MIN(count, alignment - head);
1234             head = 0;
1235         } else if (tail && num > alignment) {
1236             /* Shorten the request to the last aligned sector.  */
1237             num -= tail;
1238         }
1239 
1240         /* limit request size */
1241         if (num > max_write_zeroes) {
1242             num = max_write_zeroes;
1243         }
1244 
1245         ret = -ENOTSUP;
1246         /* First try the efficient write zeroes operation */
1247         if (drv->bdrv_co_pwrite_zeroes) {
1248             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1249                                              flags & bs->supported_zero_flags);
1250             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1251                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1252                 need_flush = true;
1253             }
1254         } else {
1255             assert(!bs->supported_zero_flags);
1256         }
1257 
1258         if (ret == -ENOTSUP) {
1259             /* Fall back to bounce buffer if write zeroes is unsupported */
1260             int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1261                                             MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1262             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1263 
1264             if ((flags & BDRV_REQ_FUA) &&
1265                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1266                 /* No need for bdrv_driver_pwrite() to do a fallback
1267                  * flush on each chunk; use just one at the end */
1268                 write_flags &= ~BDRV_REQ_FUA;
1269                 need_flush = true;
1270             }
1271             num = MIN(num, max_transfer);
1272             iov.iov_len = num;
1273             if (iov.iov_base == NULL) {
1274                 iov.iov_base = qemu_try_blockalign(bs, num);
1275                 if (iov.iov_base == NULL) {
1276                     ret = -ENOMEM;
1277                     goto fail;
1278                 }
1279                 memset(iov.iov_base, 0, num);
1280             }
1281             qemu_iovec_init_external(&qiov, &iov, 1);
1282 
1283             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1284 
1285             /* Keep bounce buffer around if it is big enough for all
1286              * all future requests.
1287              */
1288             if (num < max_transfer) {
1289                 qemu_vfree(iov.iov_base);
1290                 iov.iov_base = NULL;
1291             }
1292         }
1293 
1294         offset += num;
1295         count -= num;
1296     }
1297 
1298 fail:
1299     if (ret == 0 && need_flush) {
1300         ret = bdrv_co_flush(bs);
1301     }
1302     qemu_vfree(iov.iov_base);
1303     return ret;
1304 }
1305 
1306 /*
1307  * Forwards an already correctly aligned write request to the BlockDriver,
1308  * after possibly fragmenting it.
1309  */
1310 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1311     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1312     int64_t align, QEMUIOVector *qiov, int flags)
1313 {
1314     BlockDriver *drv = bs->drv;
1315     bool waited;
1316     int ret;
1317 
1318     int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1319     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1320     uint64_t bytes_remaining = bytes;
1321     int max_transfer;
1322 
1323     assert(is_power_of_2(align));
1324     assert((offset & (align - 1)) == 0);
1325     assert((bytes & (align - 1)) == 0);
1326     assert(!qiov || bytes == qiov->size);
1327     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1328     assert(!(flags & ~BDRV_REQ_MASK));
1329     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1330                                    align);
1331 
1332     waited = wait_serialising_requests(req);
1333     assert(!waited || !req->serialising);
1334     assert(req->overlap_offset <= offset);
1335     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1336 
1337     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1338 
1339     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1340         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1341         qemu_iovec_is_zero(qiov)) {
1342         flags |= BDRV_REQ_ZERO_WRITE;
1343         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1344             flags |= BDRV_REQ_MAY_UNMAP;
1345         }
1346     }
1347 
1348     if (ret < 0) {
1349         /* Do nothing, write notifier decided to fail this request */
1350     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1351         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1352         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1353     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1354         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1355     } else if (bytes <= max_transfer) {
1356         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1357         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1358     } else {
1359         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1360         while (bytes_remaining) {
1361             int num = MIN(bytes_remaining, max_transfer);
1362             QEMUIOVector local_qiov;
1363             int local_flags = flags;
1364 
1365             assert(num);
1366             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1367                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1368                 /* If FUA is going to be emulated by flush, we only
1369                  * need to flush on the last iteration */
1370                 local_flags &= ~BDRV_REQ_FUA;
1371             }
1372             qemu_iovec_init(&local_qiov, qiov->niov);
1373             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1374 
1375             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1376                                       num, &local_qiov, local_flags);
1377             qemu_iovec_destroy(&local_qiov);
1378             if (ret < 0) {
1379                 break;
1380             }
1381             bytes_remaining -= num;
1382         }
1383     }
1384     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1385 
1386     ++bs->write_gen;
1387     bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1388 
1389     if (bs->wr_highest_offset < offset + bytes) {
1390         bs->wr_highest_offset = offset + bytes;
1391     }
1392 
1393     if (ret >= 0) {
1394         bs->total_sectors = MAX(bs->total_sectors, end_sector);
1395         ret = 0;
1396     }
1397 
1398     return ret;
1399 }
1400 
1401 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1402                                                 int64_t offset,
1403                                                 unsigned int bytes,
1404                                                 BdrvRequestFlags flags,
1405                                                 BdrvTrackedRequest *req)
1406 {
1407     uint8_t *buf = NULL;
1408     QEMUIOVector local_qiov;
1409     struct iovec iov;
1410     uint64_t align = bs->bl.request_alignment;
1411     unsigned int head_padding_bytes, tail_padding_bytes;
1412     int ret = 0;
1413 
1414     head_padding_bytes = offset & (align - 1);
1415     tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1416 
1417 
1418     assert(flags & BDRV_REQ_ZERO_WRITE);
1419     if (head_padding_bytes || tail_padding_bytes) {
1420         buf = qemu_blockalign(bs, align);
1421         iov = (struct iovec) {
1422             .iov_base   = buf,
1423             .iov_len    = align,
1424         };
1425         qemu_iovec_init_external(&local_qiov, &iov, 1);
1426     }
1427     if (head_padding_bytes) {
1428         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1429 
1430         /* RMW the unaligned part before head. */
1431         mark_request_serialising(req, align);
1432         wait_serialising_requests(req);
1433         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1434         ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1435                                   align, &local_qiov, 0);
1436         if (ret < 0) {
1437             goto fail;
1438         }
1439         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1440 
1441         memset(buf + head_padding_bytes, 0, zero_bytes);
1442         ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1443                                    align, &local_qiov,
1444                                    flags & ~BDRV_REQ_ZERO_WRITE);
1445         if (ret < 0) {
1446             goto fail;
1447         }
1448         offset += zero_bytes;
1449         bytes -= zero_bytes;
1450     }
1451 
1452     assert(!bytes || (offset & (align - 1)) == 0);
1453     if (bytes >= align) {
1454         /* Write the aligned part in the middle. */
1455         uint64_t aligned_bytes = bytes & ~(align - 1);
1456         ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes, align,
1457                                    NULL, flags);
1458         if (ret < 0) {
1459             goto fail;
1460         }
1461         bytes -= aligned_bytes;
1462         offset += aligned_bytes;
1463     }
1464 
1465     assert(!bytes || (offset & (align - 1)) == 0);
1466     if (bytes) {
1467         assert(align == tail_padding_bytes + bytes);
1468         /* RMW the unaligned part after tail. */
1469         mark_request_serialising(req, align);
1470         wait_serialising_requests(req);
1471         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1472         ret = bdrv_aligned_preadv(bs, req, offset, align,
1473                                   align, &local_qiov, 0);
1474         if (ret < 0) {
1475             goto fail;
1476         }
1477         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1478 
1479         memset(buf, 0, bytes);
1480         ret = bdrv_aligned_pwritev(bs, req, offset, align, align,
1481                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1482     }
1483 fail:
1484     qemu_vfree(buf);
1485     return ret;
1486 
1487 }
1488 
1489 /*
1490  * Handle a write request in coroutine context
1491  */
1492 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1493     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1494     BdrvRequestFlags flags)
1495 {
1496     BlockDriverState *bs = child->bs;
1497     BdrvTrackedRequest req;
1498     uint64_t align = bs->bl.request_alignment;
1499     uint8_t *head_buf = NULL;
1500     uint8_t *tail_buf = NULL;
1501     QEMUIOVector local_qiov;
1502     bool use_local_qiov = false;
1503     int ret;
1504 
1505     if (!bs->drv) {
1506         return -ENOMEDIUM;
1507     }
1508     if (bs->read_only) {
1509         return -EPERM;
1510     }
1511     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1512 
1513     ret = bdrv_check_byte_request(bs, offset, bytes);
1514     if (ret < 0) {
1515         return ret;
1516     }
1517 
1518     bdrv_inc_in_flight(bs);
1519     /*
1520      * Align write if necessary by performing a read-modify-write cycle.
1521      * Pad qiov with the read parts and be sure to have a tracked request not
1522      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1523      */
1524     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1525 
1526     if (!qiov) {
1527         ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1528         goto out;
1529     }
1530 
1531     if (offset & (align - 1)) {
1532         QEMUIOVector head_qiov;
1533         struct iovec head_iov;
1534 
1535         mark_request_serialising(&req, align);
1536         wait_serialising_requests(&req);
1537 
1538         head_buf = qemu_blockalign(bs, align);
1539         head_iov = (struct iovec) {
1540             .iov_base   = head_buf,
1541             .iov_len    = align,
1542         };
1543         qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1544 
1545         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1546         ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1547                                   align, &head_qiov, 0);
1548         if (ret < 0) {
1549             goto fail;
1550         }
1551         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1552 
1553         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1554         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1555         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1556         use_local_qiov = true;
1557 
1558         bytes += offset & (align - 1);
1559         offset = offset & ~(align - 1);
1560 
1561         /* We have read the tail already if the request is smaller
1562          * than one aligned block.
1563          */
1564         if (bytes < align) {
1565             qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1566             bytes = align;
1567         }
1568     }
1569 
1570     if ((offset + bytes) & (align - 1)) {
1571         QEMUIOVector tail_qiov;
1572         struct iovec tail_iov;
1573         size_t tail_bytes;
1574         bool waited;
1575 
1576         mark_request_serialising(&req, align);
1577         waited = wait_serialising_requests(&req);
1578         assert(!waited || !use_local_qiov);
1579 
1580         tail_buf = qemu_blockalign(bs, align);
1581         tail_iov = (struct iovec) {
1582             .iov_base   = tail_buf,
1583             .iov_len    = align,
1584         };
1585         qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1586 
1587         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1588         ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1589                                   align, &tail_qiov, 0);
1590         if (ret < 0) {
1591             goto fail;
1592         }
1593         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1594 
1595         if (!use_local_qiov) {
1596             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1597             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1598             use_local_qiov = true;
1599         }
1600 
1601         tail_bytes = (offset + bytes) & (align - 1);
1602         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1603 
1604         bytes = ROUND_UP(bytes, align);
1605     }
1606 
1607     ret = bdrv_aligned_pwritev(bs, &req, offset, bytes, align,
1608                                use_local_qiov ? &local_qiov : qiov,
1609                                flags);
1610 
1611 fail:
1612 
1613     if (use_local_qiov) {
1614         qemu_iovec_destroy(&local_qiov);
1615     }
1616     qemu_vfree(head_buf);
1617     qemu_vfree(tail_buf);
1618 out:
1619     tracked_request_end(&req);
1620     bdrv_dec_in_flight(bs);
1621     return ret;
1622 }
1623 
1624 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1625     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1626     BdrvRequestFlags flags)
1627 {
1628     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1629         return -EINVAL;
1630     }
1631 
1632     return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1633                            nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1634 }
1635 
1636 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1637     int nb_sectors, QEMUIOVector *qiov)
1638 {
1639     trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1640 
1641     return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1642 }
1643 
1644 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1645                                        int count, BdrvRequestFlags flags)
1646 {
1647     trace_bdrv_co_pwrite_zeroes(child->bs, offset, count, flags);
1648 
1649     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1650         flags &= ~BDRV_REQ_MAY_UNMAP;
1651     }
1652 
1653     return bdrv_co_pwritev(child, offset, count, NULL,
1654                            BDRV_REQ_ZERO_WRITE | flags);
1655 }
1656 
1657 /*
1658  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1659  */
1660 int bdrv_flush_all(void)
1661 {
1662     BdrvNextIterator it;
1663     BlockDriverState *bs = NULL;
1664     int result = 0;
1665 
1666     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1667         AioContext *aio_context = bdrv_get_aio_context(bs);
1668         int ret;
1669 
1670         aio_context_acquire(aio_context);
1671         ret = bdrv_flush(bs);
1672         if (ret < 0 && !result) {
1673             result = ret;
1674         }
1675         aio_context_release(aio_context);
1676     }
1677 
1678     return result;
1679 }
1680 
1681 
1682 typedef struct BdrvCoGetBlockStatusData {
1683     BlockDriverState *bs;
1684     BlockDriverState *base;
1685     BlockDriverState **file;
1686     int64_t sector_num;
1687     int nb_sectors;
1688     int *pnum;
1689     int64_t ret;
1690     bool done;
1691 } BdrvCoGetBlockStatusData;
1692 
1693 /*
1694  * Returns the allocation status of the specified sectors.
1695  * Drivers not implementing the functionality are assumed to not support
1696  * backing files, hence all their sectors are reported as allocated.
1697  *
1698  * If 'sector_num' is beyond the end of the disk image the return value is 0
1699  * and 'pnum' is set to 0.
1700  *
1701  * 'pnum' is set to the number of sectors (including and immediately following
1702  * the specified sector) that are known to be in the same
1703  * allocated/unallocated state.
1704  *
1705  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
1706  * beyond the end of the disk image it will be clamped.
1707  *
1708  * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1709  * points to the BDS which the sector range is allocated in.
1710  */
1711 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1712                                                      int64_t sector_num,
1713                                                      int nb_sectors, int *pnum,
1714                                                      BlockDriverState **file)
1715 {
1716     int64_t total_sectors;
1717     int64_t n;
1718     int64_t ret, ret2;
1719 
1720     total_sectors = bdrv_nb_sectors(bs);
1721     if (total_sectors < 0) {
1722         return total_sectors;
1723     }
1724 
1725     if (sector_num >= total_sectors) {
1726         *pnum = 0;
1727         return 0;
1728     }
1729 
1730     n = total_sectors - sector_num;
1731     if (n < nb_sectors) {
1732         nb_sectors = n;
1733     }
1734 
1735     if (!bs->drv->bdrv_co_get_block_status) {
1736         *pnum = nb_sectors;
1737         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1738         if (bs->drv->protocol_name) {
1739             ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1740         }
1741         return ret;
1742     }
1743 
1744     *file = NULL;
1745     bdrv_inc_in_flight(bs);
1746     ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1747                                             file);
1748     if (ret < 0) {
1749         *pnum = 0;
1750         goto out;
1751     }
1752 
1753     if (ret & BDRV_BLOCK_RAW) {
1754         assert(ret & BDRV_BLOCK_OFFSET_VALID);
1755         ret = bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1756                                     *pnum, pnum, file);
1757         goto out;
1758     }
1759 
1760     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1761         ret |= BDRV_BLOCK_ALLOCATED;
1762     } else {
1763         if (bdrv_unallocated_blocks_are_zero(bs)) {
1764             ret |= BDRV_BLOCK_ZERO;
1765         } else if (bs->backing) {
1766             BlockDriverState *bs2 = bs->backing->bs;
1767             int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1768             if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1769                 ret |= BDRV_BLOCK_ZERO;
1770             }
1771         }
1772     }
1773 
1774     if (*file && *file != bs &&
1775         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1776         (ret & BDRV_BLOCK_OFFSET_VALID)) {
1777         BlockDriverState *file2;
1778         int file_pnum;
1779 
1780         ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1781                                         *pnum, &file_pnum, &file2);
1782         if (ret2 >= 0) {
1783             /* Ignore errors.  This is just providing extra information, it
1784              * is useful but not necessary.
1785              */
1786             if (!file_pnum) {
1787                 /* !file_pnum indicates an offset at or beyond the EOF; it is
1788                  * perfectly valid for the format block driver to point to such
1789                  * offsets, so catch it and mark everything as zero */
1790                 ret |= BDRV_BLOCK_ZERO;
1791             } else {
1792                 /* Limit request to the range reported by the protocol driver */
1793                 *pnum = file_pnum;
1794                 ret |= (ret2 & BDRV_BLOCK_ZERO);
1795             }
1796         }
1797     }
1798 
1799 out:
1800     bdrv_dec_in_flight(bs);
1801     return ret;
1802 }
1803 
1804 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1805         BlockDriverState *base,
1806         int64_t sector_num,
1807         int nb_sectors,
1808         int *pnum,
1809         BlockDriverState **file)
1810 {
1811     BlockDriverState *p;
1812     int64_t ret = 0;
1813 
1814     assert(bs != base);
1815     for (p = bs; p != base; p = backing_bs(p)) {
1816         ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1817         if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1818             break;
1819         }
1820         /* [sector_num, pnum] unallocated on this layer, which could be only
1821          * the first part of [sector_num, nb_sectors].  */
1822         nb_sectors = MIN(nb_sectors, *pnum);
1823     }
1824     return ret;
1825 }
1826 
1827 /* Coroutine wrapper for bdrv_get_block_status_above() */
1828 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1829 {
1830     BdrvCoGetBlockStatusData *data = opaque;
1831 
1832     data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1833                                                data->sector_num,
1834                                                data->nb_sectors,
1835                                                data->pnum,
1836                                                data->file);
1837     data->done = true;
1838 }
1839 
1840 /*
1841  * Synchronous wrapper around bdrv_co_get_block_status_above().
1842  *
1843  * See bdrv_co_get_block_status_above() for details.
1844  */
1845 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1846                                     BlockDriverState *base,
1847                                     int64_t sector_num,
1848                                     int nb_sectors, int *pnum,
1849                                     BlockDriverState **file)
1850 {
1851     Coroutine *co;
1852     BdrvCoGetBlockStatusData data = {
1853         .bs = bs,
1854         .base = base,
1855         .file = file,
1856         .sector_num = sector_num,
1857         .nb_sectors = nb_sectors,
1858         .pnum = pnum,
1859         .done = false,
1860     };
1861 
1862     if (qemu_in_coroutine()) {
1863         /* Fast-path if already in coroutine context */
1864         bdrv_get_block_status_above_co_entry(&data);
1865     } else {
1866         co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1867                                    &data);
1868         qemu_coroutine_enter(co);
1869         BDRV_POLL_WHILE(bs, !data.done);
1870     }
1871     return data.ret;
1872 }
1873 
1874 int64_t bdrv_get_block_status(BlockDriverState *bs,
1875                               int64_t sector_num,
1876                               int nb_sectors, int *pnum,
1877                               BlockDriverState **file)
1878 {
1879     return bdrv_get_block_status_above(bs, backing_bs(bs),
1880                                        sector_num, nb_sectors, pnum, file);
1881 }
1882 
1883 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1884                                    int nb_sectors, int *pnum)
1885 {
1886     BlockDriverState *file;
1887     int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1888                                         &file);
1889     if (ret < 0) {
1890         return ret;
1891     }
1892     return !!(ret & BDRV_BLOCK_ALLOCATED);
1893 }
1894 
1895 /*
1896  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1897  *
1898  * Return true if the given sector is allocated in any image between
1899  * BASE and TOP (inclusive).  BASE can be NULL to check if the given
1900  * sector is allocated in any image of the chain.  Return false otherwise.
1901  *
1902  * 'pnum' is set to the number of sectors (including and immediately following
1903  *  the specified sector) that are known to be in the same
1904  *  allocated/unallocated state.
1905  *
1906  */
1907 int bdrv_is_allocated_above(BlockDriverState *top,
1908                             BlockDriverState *base,
1909                             int64_t sector_num,
1910                             int nb_sectors, int *pnum)
1911 {
1912     BlockDriverState *intermediate;
1913     int ret, n = nb_sectors;
1914 
1915     intermediate = top;
1916     while (intermediate && intermediate != base) {
1917         int pnum_inter;
1918         ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1919                                 &pnum_inter);
1920         if (ret < 0) {
1921             return ret;
1922         } else if (ret) {
1923             *pnum = pnum_inter;
1924             return 1;
1925         }
1926 
1927         /*
1928          * [sector_num, nb_sectors] is unallocated on top but intermediate
1929          * might have
1930          *
1931          * [sector_num+x, nr_sectors] allocated.
1932          */
1933         if (n > pnum_inter &&
1934             (intermediate == top ||
1935              sector_num + pnum_inter < intermediate->total_sectors)) {
1936             n = pnum_inter;
1937         }
1938 
1939         intermediate = backing_bs(intermediate);
1940     }
1941 
1942     *pnum = n;
1943     return 0;
1944 }
1945 
1946 typedef struct BdrvVmstateCo {
1947     BlockDriverState    *bs;
1948     QEMUIOVector        *qiov;
1949     int64_t             pos;
1950     bool                is_read;
1951     int                 ret;
1952 } BdrvVmstateCo;
1953 
1954 static int coroutine_fn
1955 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1956                    bool is_read)
1957 {
1958     BlockDriver *drv = bs->drv;
1959 
1960     if (!drv) {
1961         return -ENOMEDIUM;
1962     } else if (drv->bdrv_load_vmstate) {
1963         return is_read ? drv->bdrv_load_vmstate(bs, qiov, pos)
1964                        : drv->bdrv_save_vmstate(bs, qiov, pos);
1965     } else if (bs->file) {
1966         return bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
1967     }
1968 
1969     return -ENOTSUP;
1970 }
1971 
1972 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
1973 {
1974     BdrvVmstateCo *co = opaque;
1975     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
1976 }
1977 
1978 static inline int
1979 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1980                 bool is_read)
1981 {
1982     if (qemu_in_coroutine()) {
1983         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
1984     } else {
1985         BdrvVmstateCo data = {
1986             .bs         = bs,
1987             .qiov       = qiov,
1988             .pos        = pos,
1989             .is_read    = is_read,
1990             .ret        = -EINPROGRESS,
1991         };
1992         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
1993 
1994         qemu_coroutine_enter(co);
1995         while (data.ret == -EINPROGRESS) {
1996             aio_poll(bdrv_get_aio_context(bs), true);
1997         }
1998         return data.ret;
1999     }
2000 }
2001 
2002 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2003                       int64_t pos, int size)
2004 {
2005     QEMUIOVector qiov;
2006     struct iovec iov = {
2007         .iov_base   = (void *) buf,
2008         .iov_len    = size,
2009     };
2010     int ret;
2011 
2012     qemu_iovec_init_external(&qiov, &iov, 1);
2013 
2014     ret = bdrv_writev_vmstate(bs, &qiov, pos);
2015     if (ret < 0) {
2016         return ret;
2017     }
2018 
2019     return size;
2020 }
2021 
2022 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2023 {
2024     return bdrv_rw_vmstate(bs, qiov, pos, false);
2025 }
2026 
2027 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2028                       int64_t pos, int size)
2029 {
2030     QEMUIOVector qiov;
2031     struct iovec iov = {
2032         .iov_base   = buf,
2033         .iov_len    = size,
2034     };
2035     int ret;
2036 
2037     qemu_iovec_init_external(&qiov, &iov, 1);
2038     ret = bdrv_readv_vmstate(bs, &qiov, pos);
2039     if (ret < 0) {
2040         return ret;
2041     }
2042 
2043     return size;
2044 }
2045 
2046 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2047 {
2048     return bdrv_rw_vmstate(bs, qiov, pos, true);
2049 }
2050 
2051 /**************************************************************/
2052 /* async I/Os */
2053 
2054 BlockAIOCB *bdrv_aio_readv(BdrvChild *child, int64_t sector_num,
2055                            QEMUIOVector *qiov, int nb_sectors,
2056                            BlockCompletionFunc *cb, void *opaque)
2057 {
2058     trace_bdrv_aio_readv(child->bs, sector_num, nb_sectors, opaque);
2059 
2060     assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2061     return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2062                                   0, cb, opaque, false);
2063 }
2064 
2065 BlockAIOCB *bdrv_aio_writev(BdrvChild *child, int64_t sector_num,
2066                             QEMUIOVector *qiov, int nb_sectors,
2067                             BlockCompletionFunc *cb, void *opaque)
2068 {
2069     trace_bdrv_aio_writev(child->bs, sector_num, nb_sectors, opaque);
2070 
2071     assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2072     return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2073                                   0, cb, opaque, true);
2074 }
2075 
2076 void bdrv_aio_cancel(BlockAIOCB *acb)
2077 {
2078     qemu_aio_ref(acb);
2079     bdrv_aio_cancel_async(acb);
2080     while (acb->refcnt > 1) {
2081         if (acb->aiocb_info->get_aio_context) {
2082             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2083         } else if (acb->bs) {
2084             aio_poll(bdrv_get_aio_context(acb->bs), true);
2085         } else {
2086             abort();
2087         }
2088     }
2089     qemu_aio_unref(acb);
2090 }
2091 
2092 /* Async version of aio cancel. The caller is not blocked if the acb implements
2093  * cancel_async, otherwise we do nothing and let the request normally complete.
2094  * In either case the completion callback must be called. */
2095 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2096 {
2097     if (acb->aiocb_info->cancel_async) {
2098         acb->aiocb_info->cancel_async(acb);
2099     }
2100 }
2101 
2102 /**************************************************************/
2103 /* async block device emulation */
2104 
2105 typedef struct BlockRequest {
2106     union {
2107         /* Used during read, write, trim */
2108         struct {
2109             int64_t offset;
2110             int bytes;
2111             int flags;
2112             QEMUIOVector *qiov;
2113         };
2114         /* Used during ioctl */
2115         struct {
2116             int req;
2117             void *buf;
2118         };
2119     };
2120     BlockCompletionFunc *cb;
2121     void *opaque;
2122 
2123     int error;
2124 } BlockRequest;
2125 
2126 typedef struct BlockAIOCBCoroutine {
2127     BlockAIOCB common;
2128     BdrvChild *child;
2129     BlockRequest req;
2130     bool is_write;
2131     bool need_bh;
2132     bool *done;
2133 } BlockAIOCBCoroutine;
2134 
2135 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2136     .aiocb_size         = sizeof(BlockAIOCBCoroutine),
2137 };
2138 
2139 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2140 {
2141     if (!acb->need_bh) {
2142         bdrv_dec_in_flight(acb->common.bs);
2143         acb->common.cb(acb->common.opaque, acb->req.error);
2144         qemu_aio_unref(acb);
2145     }
2146 }
2147 
2148 static void bdrv_co_em_bh(void *opaque)
2149 {
2150     BlockAIOCBCoroutine *acb = opaque;
2151 
2152     assert(!acb->need_bh);
2153     bdrv_co_complete(acb);
2154 }
2155 
2156 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2157 {
2158     acb->need_bh = false;
2159     if (acb->req.error != -EINPROGRESS) {
2160         BlockDriverState *bs = acb->common.bs;
2161 
2162         aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2163     }
2164 }
2165 
2166 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2167 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2168 {
2169     BlockAIOCBCoroutine *acb = opaque;
2170 
2171     if (!acb->is_write) {
2172         acb->req.error = bdrv_co_preadv(acb->child, acb->req.offset,
2173             acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2174     } else {
2175         acb->req.error = bdrv_co_pwritev(acb->child, acb->req.offset,
2176             acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2177     }
2178 
2179     bdrv_co_complete(acb);
2180 }
2181 
2182 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
2183                                           int64_t offset,
2184                                           QEMUIOVector *qiov,
2185                                           BdrvRequestFlags flags,
2186                                           BlockCompletionFunc *cb,
2187                                           void *opaque,
2188                                           bool is_write)
2189 {
2190     Coroutine *co;
2191     BlockAIOCBCoroutine *acb;
2192 
2193     /* Matched by bdrv_co_complete's bdrv_dec_in_flight.  */
2194     bdrv_inc_in_flight(child->bs);
2195 
2196     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, child->bs, cb, opaque);
2197     acb->child = child;
2198     acb->need_bh = true;
2199     acb->req.error = -EINPROGRESS;
2200     acb->req.offset = offset;
2201     acb->req.qiov = qiov;
2202     acb->req.flags = flags;
2203     acb->is_write = is_write;
2204 
2205     co = qemu_coroutine_create(bdrv_co_do_rw, acb);
2206     qemu_coroutine_enter(co);
2207 
2208     bdrv_co_maybe_schedule_bh(acb);
2209     return &acb->common;
2210 }
2211 
2212 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2213 {
2214     BlockAIOCBCoroutine *acb = opaque;
2215     BlockDriverState *bs = acb->common.bs;
2216 
2217     acb->req.error = bdrv_co_flush(bs);
2218     bdrv_co_complete(acb);
2219 }
2220 
2221 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2222         BlockCompletionFunc *cb, void *opaque)
2223 {
2224     trace_bdrv_aio_flush(bs, opaque);
2225 
2226     Coroutine *co;
2227     BlockAIOCBCoroutine *acb;
2228 
2229     /* Matched by bdrv_co_complete's bdrv_dec_in_flight.  */
2230     bdrv_inc_in_flight(bs);
2231 
2232     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2233     acb->need_bh = true;
2234     acb->req.error = -EINPROGRESS;
2235 
2236     co = qemu_coroutine_create(bdrv_aio_flush_co_entry, acb);
2237     qemu_coroutine_enter(co);
2238 
2239     bdrv_co_maybe_schedule_bh(acb);
2240     return &acb->common;
2241 }
2242 
2243 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2244                    BlockCompletionFunc *cb, void *opaque)
2245 {
2246     BlockAIOCB *acb;
2247 
2248     acb = g_malloc(aiocb_info->aiocb_size);
2249     acb->aiocb_info = aiocb_info;
2250     acb->bs = bs;
2251     acb->cb = cb;
2252     acb->opaque = opaque;
2253     acb->refcnt = 1;
2254     return acb;
2255 }
2256 
2257 void qemu_aio_ref(void *p)
2258 {
2259     BlockAIOCB *acb = p;
2260     acb->refcnt++;
2261 }
2262 
2263 void qemu_aio_unref(void *p)
2264 {
2265     BlockAIOCB *acb = p;
2266     assert(acb->refcnt > 0);
2267     if (--acb->refcnt == 0) {
2268         g_free(acb);
2269     }
2270 }
2271 
2272 /**************************************************************/
2273 /* Coroutine block device emulation */
2274 
2275 typedef struct FlushCo {
2276     BlockDriverState *bs;
2277     int ret;
2278 } FlushCo;
2279 
2280 
2281 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2282 {
2283     FlushCo *rwco = opaque;
2284 
2285     rwco->ret = bdrv_co_flush(rwco->bs);
2286 }
2287 
2288 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2289 {
2290     int ret;
2291 
2292     if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2293         bdrv_is_sg(bs)) {
2294         return 0;
2295     }
2296 
2297     bdrv_inc_in_flight(bs);
2298 
2299     int current_gen = bs->write_gen;
2300 
2301     /* Wait until any previous flushes are completed */
2302     while (bs->active_flush_req) {
2303         qemu_co_queue_wait(&bs->flush_queue);
2304     }
2305 
2306     bs->active_flush_req = true;
2307 
2308     /* Write back all layers by calling one driver function */
2309     if (bs->drv->bdrv_co_flush) {
2310         ret = bs->drv->bdrv_co_flush(bs);
2311         goto out;
2312     }
2313 
2314     /* Write back cached data to the OS even with cache=unsafe */
2315     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2316     if (bs->drv->bdrv_co_flush_to_os) {
2317         ret = bs->drv->bdrv_co_flush_to_os(bs);
2318         if (ret < 0) {
2319             goto out;
2320         }
2321     }
2322 
2323     /* But don't actually force it to the disk with cache=unsafe */
2324     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2325         goto flush_parent;
2326     }
2327 
2328     /* Check if we really need to flush anything */
2329     if (bs->flushed_gen == current_gen) {
2330         goto flush_parent;
2331     }
2332 
2333     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2334     if (bs->drv->bdrv_co_flush_to_disk) {
2335         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2336     } else if (bs->drv->bdrv_aio_flush) {
2337         BlockAIOCB *acb;
2338         CoroutineIOCompletion co = {
2339             .coroutine = qemu_coroutine_self(),
2340         };
2341 
2342         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2343         if (acb == NULL) {
2344             ret = -EIO;
2345         } else {
2346             qemu_coroutine_yield();
2347             ret = co.ret;
2348         }
2349     } else {
2350         /*
2351          * Some block drivers always operate in either writethrough or unsafe
2352          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2353          * know how the server works (because the behaviour is hardcoded or
2354          * depends on server-side configuration), so we can't ensure that
2355          * everything is safe on disk. Returning an error doesn't work because
2356          * that would break guests even if the server operates in writethrough
2357          * mode.
2358          *
2359          * Let's hope the user knows what he's doing.
2360          */
2361         ret = 0;
2362     }
2363 
2364     if (ret < 0) {
2365         goto out;
2366     }
2367 
2368     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2369      * in the case of cache=unsafe, so there are no useless flushes.
2370      */
2371 flush_parent:
2372     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2373 out:
2374     /* Notify any pending flushes that we have completed */
2375     bs->flushed_gen = current_gen;
2376     bs->active_flush_req = false;
2377     /* Return value is ignored - it's ok if wait queue is empty */
2378     qemu_co_queue_next(&bs->flush_queue);
2379 
2380     bdrv_dec_in_flight(bs);
2381     return ret;
2382 }
2383 
2384 int bdrv_flush(BlockDriverState *bs)
2385 {
2386     Coroutine *co;
2387     FlushCo flush_co = {
2388         .bs = bs,
2389         .ret = NOT_DONE,
2390     };
2391 
2392     if (qemu_in_coroutine()) {
2393         /* Fast-path if already in coroutine context */
2394         bdrv_flush_co_entry(&flush_co);
2395     } else {
2396         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2397         qemu_coroutine_enter(co);
2398         BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2399     }
2400 
2401     return flush_co.ret;
2402 }
2403 
2404 typedef struct DiscardCo {
2405     BlockDriverState *bs;
2406     int64_t offset;
2407     int count;
2408     int ret;
2409 } DiscardCo;
2410 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2411 {
2412     DiscardCo *rwco = opaque;
2413 
2414     rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->count);
2415 }
2416 
2417 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2418                                   int count)
2419 {
2420     BdrvTrackedRequest req;
2421     int max_pdiscard, ret;
2422     int head, align;
2423 
2424     if (!bs->drv) {
2425         return -ENOMEDIUM;
2426     }
2427 
2428     ret = bdrv_check_byte_request(bs, offset, count);
2429     if (ret < 0) {
2430         return ret;
2431     } else if (bs->read_only) {
2432         return -EPERM;
2433     }
2434     assert(!(bs->open_flags & BDRV_O_INACTIVE));
2435 
2436     /* Do nothing if disabled.  */
2437     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2438         return 0;
2439     }
2440 
2441     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2442         return 0;
2443     }
2444 
2445     /* Discard is advisory, so ignore any unaligned head or tail */
2446     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2447     assert(align % bs->bl.request_alignment == 0);
2448     head = offset % align;
2449     if (head) {
2450         head = MIN(count, align - head);
2451         count -= head;
2452         offset += head;
2453     }
2454     count = QEMU_ALIGN_DOWN(count, align);
2455     if (!count) {
2456         return 0;
2457     }
2458 
2459     bdrv_inc_in_flight(bs);
2460     tracked_request_begin(&req, bs, offset, count, BDRV_TRACKED_DISCARD);
2461 
2462     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2463     if (ret < 0) {
2464         goto out;
2465     }
2466 
2467     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2468                                    align);
2469     assert(max_pdiscard);
2470 
2471     while (count > 0) {
2472         int ret;
2473         int num = MIN(count, max_pdiscard);
2474 
2475         if (bs->drv->bdrv_co_pdiscard) {
2476             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2477         } else {
2478             BlockAIOCB *acb;
2479             CoroutineIOCompletion co = {
2480                 .coroutine = qemu_coroutine_self(),
2481             };
2482 
2483             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2484                                              bdrv_co_io_em_complete, &co);
2485             if (acb == NULL) {
2486                 ret = -EIO;
2487                 goto out;
2488             } else {
2489                 qemu_coroutine_yield();
2490                 ret = co.ret;
2491             }
2492         }
2493         if (ret && ret != -ENOTSUP) {
2494             goto out;
2495         }
2496 
2497         offset += num;
2498         count -= num;
2499     }
2500     ret = 0;
2501 out:
2502     ++bs->write_gen;
2503     bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2504                    req.bytes >> BDRV_SECTOR_BITS);
2505     tracked_request_end(&req);
2506     bdrv_dec_in_flight(bs);
2507     return ret;
2508 }
2509 
2510 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int count)
2511 {
2512     Coroutine *co;
2513     DiscardCo rwco = {
2514         .bs = bs,
2515         .offset = offset,
2516         .count = count,
2517         .ret = NOT_DONE,
2518     };
2519 
2520     if (qemu_in_coroutine()) {
2521         /* Fast-path if already in coroutine context */
2522         bdrv_pdiscard_co_entry(&rwco);
2523     } else {
2524         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2525         qemu_coroutine_enter(co);
2526         BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2527     }
2528 
2529     return rwco.ret;
2530 }
2531 
2532 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2533 {
2534     BlockDriver *drv = bs->drv;
2535     CoroutineIOCompletion co = {
2536         .coroutine = qemu_coroutine_self(),
2537     };
2538     BlockAIOCB *acb;
2539 
2540     bdrv_inc_in_flight(bs);
2541     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2542         co.ret = -ENOTSUP;
2543         goto out;
2544     }
2545 
2546     if (drv->bdrv_co_ioctl) {
2547         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2548     } else {
2549         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2550         if (!acb) {
2551             co.ret = -ENOTSUP;
2552             goto out;
2553         }
2554         qemu_coroutine_yield();
2555     }
2556 out:
2557     bdrv_dec_in_flight(bs);
2558     return co.ret;
2559 }
2560 
2561 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2562 {
2563     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2564 }
2565 
2566 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2567 {
2568     return memset(qemu_blockalign(bs, size), 0, size);
2569 }
2570 
2571 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2572 {
2573     size_t align = bdrv_opt_mem_align(bs);
2574 
2575     /* Ensure that NULL is never returned on success */
2576     assert(align > 0);
2577     if (size == 0) {
2578         size = align;
2579     }
2580 
2581     return qemu_try_memalign(align, size);
2582 }
2583 
2584 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2585 {
2586     void *mem = qemu_try_blockalign(bs, size);
2587 
2588     if (mem) {
2589         memset(mem, 0, size);
2590     }
2591 
2592     return mem;
2593 }
2594 
2595 /*
2596  * Check if all memory in this vector is sector aligned.
2597  */
2598 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2599 {
2600     int i;
2601     size_t alignment = bdrv_min_mem_align(bs);
2602 
2603     for (i = 0; i < qiov->niov; i++) {
2604         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2605             return false;
2606         }
2607         if (qiov->iov[i].iov_len % alignment) {
2608             return false;
2609         }
2610     }
2611 
2612     return true;
2613 }
2614 
2615 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2616                                     NotifierWithReturn *notifier)
2617 {
2618     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2619 }
2620 
2621 void bdrv_io_plug(BlockDriverState *bs)
2622 {
2623     BdrvChild *child;
2624 
2625     QLIST_FOREACH(child, &bs->children, next) {
2626         bdrv_io_plug(child->bs);
2627     }
2628 
2629     if (bs->io_plugged++ == 0 && bs->io_plug_disabled == 0) {
2630         BlockDriver *drv = bs->drv;
2631         if (drv && drv->bdrv_io_plug) {
2632             drv->bdrv_io_plug(bs);
2633         }
2634     }
2635 }
2636 
2637 void bdrv_io_unplug(BlockDriverState *bs)
2638 {
2639     BdrvChild *child;
2640 
2641     assert(bs->io_plugged);
2642     if (--bs->io_plugged == 0 && bs->io_plug_disabled == 0) {
2643         BlockDriver *drv = bs->drv;
2644         if (drv && drv->bdrv_io_unplug) {
2645             drv->bdrv_io_unplug(bs);
2646         }
2647     }
2648 
2649     QLIST_FOREACH(child, &bs->children, next) {
2650         bdrv_io_unplug(child->bs);
2651     }
2652 }
2653 
2654 void bdrv_io_unplugged_begin(BlockDriverState *bs)
2655 {
2656     BdrvChild *child;
2657 
2658     if (bs->io_plug_disabled++ == 0 && bs->io_plugged > 0) {
2659         BlockDriver *drv = bs->drv;
2660         if (drv && drv->bdrv_io_unplug) {
2661             drv->bdrv_io_unplug(bs);
2662         }
2663     }
2664 
2665     QLIST_FOREACH(child, &bs->children, next) {
2666         bdrv_io_unplugged_begin(child->bs);
2667     }
2668 }
2669 
2670 void bdrv_io_unplugged_end(BlockDriverState *bs)
2671 {
2672     BdrvChild *child;
2673 
2674     assert(bs->io_plug_disabled);
2675     QLIST_FOREACH(child, &bs->children, next) {
2676         bdrv_io_unplugged_end(child->bs);
2677     }
2678 
2679     if (--bs->io_plug_disabled == 0 && bs->io_plugged > 0) {
2680         BlockDriver *drv = bs->drv;
2681         if (drv && drv->bdrv_io_plug) {
2682             drv->bdrv_io_plug(bs);
2683         }
2684     }
2685 }
2686