1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/write-threshold.h" 34 #include "qemu/cutils.h" 35 #include "qapi/error.h" 36 #include "qemu/error-report.h" 37 #include "qemu/main-loop.h" 38 #include "sysemu/replay.h" 39 40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 42 43 static void bdrv_parent_cb_resize(BlockDriverState *bs); 44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 45 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 46 47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 48 bool ignore_bds_parents) 49 { 50 BdrvChild *c, *next; 51 52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 53 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 54 continue; 55 } 56 bdrv_parent_drained_begin_single(c, false); 57 } 58 } 59 60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 61 int *drained_end_counter) 62 { 63 assert(c->parent_quiesce_counter > 0); 64 c->parent_quiesce_counter--; 65 if (c->klass->drained_end) { 66 c->klass->drained_end(c, drained_end_counter); 67 } 68 } 69 70 void bdrv_parent_drained_end_single(BdrvChild *c) 71 { 72 int drained_end_counter = 0; 73 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 74 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0); 75 } 76 77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 78 bool ignore_bds_parents, 79 int *drained_end_counter) 80 { 81 BdrvChild *c; 82 83 QLIST_FOREACH(c, &bs->parents, next_parent) { 84 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 85 continue; 86 } 87 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 88 } 89 } 90 91 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 92 { 93 if (c->klass->drained_poll) { 94 return c->klass->drained_poll(c); 95 } 96 return false; 97 } 98 99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 100 bool ignore_bds_parents) 101 { 102 BdrvChild *c, *next; 103 bool busy = false; 104 105 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 106 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 107 continue; 108 } 109 busy |= bdrv_parent_drained_poll_single(c); 110 } 111 112 return busy; 113 } 114 115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 116 { 117 c->parent_quiesce_counter++; 118 if (c->klass->drained_begin) { 119 c->klass->drained_begin(c); 120 } 121 if (poll) { 122 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 123 } 124 } 125 126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 127 { 128 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 129 src->pdiscard_alignment); 130 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 131 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 132 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 133 src->max_hw_transfer); 134 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 135 src->opt_mem_alignment); 136 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 137 src->min_mem_alignment); 138 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 139 } 140 141 typedef struct BdrvRefreshLimitsState { 142 BlockDriverState *bs; 143 BlockLimits old_bl; 144 } BdrvRefreshLimitsState; 145 146 static void bdrv_refresh_limits_abort(void *opaque) 147 { 148 BdrvRefreshLimitsState *s = opaque; 149 150 s->bs->bl = s->old_bl; 151 } 152 153 static TransactionActionDrv bdrv_refresh_limits_drv = { 154 .abort = bdrv_refresh_limits_abort, 155 .clean = g_free, 156 }; 157 158 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 159 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 160 { 161 ERRP_GUARD(); 162 BlockDriver *drv = bs->drv; 163 BdrvChild *c; 164 bool have_limits; 165 166 if (tran) { 167 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 168 *s = (BdrvRefreshLimitsState) { 169 .bs = bs, 170 .old_bl = bs->bl, 171 }; 172 tran_add(tran, &bdrv_refresh_limits_drv, s); 173 } 174 175 memset(&bs->bl, 0, sizeof(bs->bl)); 176 177 if (!drv) { 178 return; 179 } 180 181 /* Default alignment based on whether driver has byte interface */ 182 bs->bl.request_alignment = (drv->bdrv_co_preadv || 183 drv->bdrv_aio_preadv || 184 drv->bdrv_co_preadv_part) ? 1 : 512; 185 186 /* Take some limits from the children as a default */ 187 have_limits = false; 188 QLIST_FOREACH(c, &bs->children, next) { 189 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 190 { 191 bdrv_refresh_limits(c->bs, tran, errp); 192 if (*errp) { 193 return; 194 } 195 bdrv_merge_limits(&bs->bl, &c->bs->bl); 196 have_limits = true; 197 } 198 } 199 200 if (!have_limits) { 201 bs->bl.min_mem_alignment = 512; 202 bs->bl.opt_mem_alignment = qemu_real_host_page_size; 203 204 /* Safe default since most protocols use readv()/writev()/etc */ 205 bs->bl.max_iov = IOV_MAX; 206 } 207 208 /* Then let the driver override it */ 209 if (drv->bdrv_refresh_limits) { 210 drv->bdrv_refresh_limits(bs, errp); 211 if (*errp) { 212 return; 213 } 214 } 215 216 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 217 error_setg(errp, "Driver requires too large request alignment"); 218 } 219 } 220 221 /** 222 * The copy-on-read flag is actually a reference count so multiple users may 223 * use the feature without worrying about clobbering its previous state. 224 * Copy-on-read stays enabled until all users have called to disable it. 225 */ 226 void bdrv_enable_copy_on_read(BlockDriverState *bs) 227 { 228 qatomic_inc(&bs->copy_on_read); 229 } 230 231 void bdrv_disable_copy_on_read(BlockDriverState *bs) 232 { 233 int old = qatomic_fetch_dec(&bs->copy_on_read); 234 assert(old >= 1); 235 } 236 237 typedef struct { 238 Coroutine *co; 239 BlockDriverState *bs; 240 bool done; 241 bool begin; 242 bool recursive; 243 bool poll; 244 BdrvChild *parent; 245 bool ignore_bds_parents; 246 int *drained_end_counter; 247 } BdrvCoDrainData; 248 249 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 250 { 251 BdrvCoDrainData *data = opaque; 252 BlockDriverState *bs = data->bs; 253 254 if (data->begin) { 255 bs->drv->bdrv_co_drain_begin(bs); 256 } else { 257 bs->drv->bdrv_co_drain_end(bs); 258 } 259 260 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 261 qatomic_mb_set(&data->done, true); 262 if (!data->begin) { 263 qatomic_dec(data->drained_end_counter); 264 } 265 bdrv_dec_in_flight(bs); 266 267 g_free(data); 268 } 269 270 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 271 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 272 int *drained_end_counter) 273 { 274 BdrvCoDrainData *data; 275 276 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 277 (!begin && !bs->drv->bdrv_co_drain_end)) { 278 return; 279 } 280 281 data = g_new(BdrvCoDrainData, 1); 282 *data = (BdrvCoDrainData) { 283 .bs = bs, 284 .done = false, 285 .begin = begin, 286 .drained_end_counter = drained_end_counter, 287 }; 288 289 if (!begin) { 290 qatomic_inc(drained_end_counter); 291 } 292 293 /* Make sure the driver callback completes during the polling phase for 294 * drain_begin. */ 295 bdrv_inc_in_flight(bs); 296 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 297 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 298 } 299 300 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 301 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 302 BdrvChild *ignore_parent, bool ignore_bds_parents) 303 { 304 BdrvChild *child, *next; 305 306 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 307 return true; 308 } 309 310 if (qatomic_read(&bs->in_flight)) { 311 return true; 312 } 313 314 if (recursive) { 315 assert(!ignore_bds_parents); 316 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 317 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 318 return true; 319 } 320 } 321 } 322 323 return false; 324 } 325 326 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 327 BdrvChild *ignore_parent) 328 { 329 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 330 } 331 332 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 333 BdrvChild *parent, bool ignore_bds_parents, 334 bool poll); 335 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 336 BdrvChild *parent, bool ignore_bds_parents, 337 int *drained_end_counter); 338 339 static void bdrv_co_drain_bh_cb(void *opaque) 340 { 341 BdrvCoDrainData *data = opaque; 342 Coroutine *co = data->co; 343 BlockDriverState *bs = data->bs; 344 345 if (bs) { 346 AioContext *ctx = bdrv_get_aio_context(bs); 347 aio_context_acquire(ctx); 348 bdrv_dec_in_flight(bs); 349 if (data->begin) { 350 assert(!data->drained_end_counter); 351 bdrv_do_drained_begin(bs, data->recursive, data->parent, 352 data->ignore_bds_parents, data->poll); 353 } else { 354 assert(!data->poll); 355 bdrv_do_drained_end(bs, data->recursive, data->parent, 356 data->ignore_bds_parents, 357 data->drained_end_counter); 358 } 359 aio_context_release(ctx); 360 } else { 361 assert(data->begin); 362 bdrv_drain_all_begin(); 363 } 364 365 data->done = true; 366 aio_co_wake(co); 367 } 368 369 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 370 bool begin, bool recursive, 371 BdrvChild *parent, 372 bool ignore_bds_parents, 373 bool poll, 374 int *drained_end_counter) 375 { 376 BdrvCoDrainData data; 377 Coroutine *self = qemu_coroutine_self(); 378 AioContext *ctx = bdrv_get_aio_context(bs); 379 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 380 381 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 382 * other coroutines run if they were queued by aio_co_enter(). */ 383 384 assert(qemu_in_coroutine()); 385 data = (BdrvCoDrainData) { 386 .co = self, 387 .bs = bs, 388 .done = false, 389 .begin = begin, 390 .recursive = recursive, 391 .parent = parent, 392 .ignore_bds_parents = ignore_bds_parents, 393 .poll = poll, 394 .drained_end_counter = drained_end_counter, 395 }; 396 397 if (bs) { 398 bdrv_inc_in_flight(bs); 399 } 400 401 /* 402 * Temporarily drop the lock across yield or we would get deadlocks. 403 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 404 * 405 * When we yield below, the lock for the current context will be 406 * released, so if this is actually the lock that protects bs, don't drop 407 * it a second time. 408 */ 409 if (ctx != co_ctx) { 410 aio_context_release(ctx); 411 } 412 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data); 413 414 qemu_coroutine_yield(); 415 /* If we are resumed from some other event (such as an aio completion or a 416 * timer callback), it is a bug in the caller that should be fixed. */ 417 assert(data.done); 418 419 /* Reaquire the AioContext of bs if we dropped it */ 420 if (ctx != co_ctx) { 421 aio_context_acquire(ctx); 422 } 423 } 424 425 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 426 BdrvChild *parent, bool ignore_bds_parents) 427 { 428 assert(!qemu_in_coroutine()); 429 430 /* Stop things in parent-to-child order */ 431 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 432 aio_disable_external(bdrv_get_aio_context(bs)); 433 } 434 435 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 436 bdrv_drain_invoke(bs, true, NULL); 437 } 438 439 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 440 BdrvChild *parent, bool ignore_bds_parents, 441 bool poll) 442 { 443 BdrvChild *child, *next; 444 445 if (qemu_in_coroutine()) { 446 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 447 poll, NULL); 448 return; 449 } 450 451 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 452 453 if (recursive) { 454 assert(!ignore_bds_parents); 455 bs->recursive_quiesce_counter++; 456 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 457 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 458 false); 459 } 460 } 461 462 /* 463 * Wait for drained requests to finish. 464 * 465 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 466 * call is needed so things in this AioContext can make progress even 467 * though we don't return to the main AioContext loop - this automatically 468 * includes other nodes in the same AioContext and therefore all child 469 * nodes. 470 */ 471 if (poll) { 472 assert(!ignore_bds_parents); 473 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 474 } 475 } 476 477 void bdrv_drained_begin(BlockDriverState *bs) 478 { 479 bdrv_do_drained_begin(bs, false, NULL, false, true); 480 } 481 482 void bdrv_subtree_drained_begin(BlockDriverState *bs) 483 { 484 bdrv_do_drained_begin(bs, true, NULL, false, true); 485 } 486 487 /** 488 * This function does not poll, nor must any of its recursively called 489 * functions. The *drained_end_counter pointee will be incremented 490 * once for every background operation scheduled, and decremented once 491 * the operation settles. Therefore, the pointer must remain valid 492 * until the pointee reaches 0. That implies that whoever sets up the 493 * pointee has to poll until it is 0. 494 * 495 * We use atomic operations to access *drained_end_counter, because 496 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 497 * @bs may contain nodes in different AioContexts, 498 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 499 * regardless of which AioContext they are in. 500 */ 501 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 502 BdrvChild *parent, bool ignore_bds_parents, 503 int *drained_end_counter) 504 { 505 BdrvChild *child; 506 int old_quiesce_counter; 507 508 assert(drained_end_counter != NULL); 509 510 if (qemu_in_coroutine()) { 511 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 512 false, drained_end_counter); 513 return; 514 } 515 assert(bs->quiesce_counter > 0); 516 517 /* Re-enable things in child-to-parent order */ 518 bdrv_drain_invoke(bs, false, drained_end_counter); 519 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 520 drained_end_counter); 521 522 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 523 if (old_quiesce_counter == 1) { 524 aio_enable_external(bdrv_get_aio_context(bs)); 525 } 526 527 if (recursive) { 528 assert(!ignore_bds_parents); 529 bs->recursive_quiesce_counter--; 530 QLIST_FOREACH(child, &bs->children, next) { 531 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 532 drained_end_counter); 533 } 534 } 535 } 536 537 void bdrv_drained_end(BlockDriverState *bs) 538 { 539 int drained_end_counter = 0; 540 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 541 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 542 } 543 544 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 545 { 546 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 547 } 548 549 void bdrv_subtree_drained_end(BlockDriverState *bs) 550 { 551 int drained_end_counter = 0; 552 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 553 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 554 } 555 556 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 557 { 558 int i; 559 560 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 561 bdrv_do_drained_begin(child->bs, true, child, false, true); 562 } 563 } 564 565 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 566 { 567 int drained_end_counter = 0; 568 int i; 569 570 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 571 bdrv_do_drained_end(child->bs, true, child, false, 572 &drained_end_counter); 573 } 574 575 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0); 576 } 577 578 /* 579 * Wait for pending requests to complete on a single BlockDriverState subtree, 580 * and suspend block driver's internal I/O until next request arrives. 581 * 582 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 583 * AioContext. 584 */ 585 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 586 { 587 assert(qemu_in_coroutine()); 588 bdrv_drained_begin(bs); 589 bdrv_drained_end(bs); 590 } 591 592 void bdrv_drain(BlockDriverState *bs) 593 { 594 bdrv_drained_begin(bs); 595 bdrv_drained_end(bs); 596 } 597 598 static void bdrv_drain_assert_idle(BlockDriverState *bs) 599 { 600 BdrvChild *child, *next; 601 602 assert(qatomic_read(&bs->in_flight) == 0); 603 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 604 bdrv_drain_assert_idle(child->bs); 605 } 606 } 607 608 unsigned int bdrv_drain_all_count = 0; 609 610 static bool bdrv_drain_all_poll(void) 611 { 612 BlockDriverState *bs = NULL; 613 bool result = false; 614 615 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 616 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 617 while ((bs = bdrv_next_all_states(bs))) { 618 AioContext *aio_context = bdrv_get_aio_context(bs); 619 aio_context_acquire(aio_context); 620 result |= bdrv_drain_poll(bs, false, NULL, true); 621 aio_context_release(aio_context); 622 } 623 624 return result; 625 } 626 627 /* 628 * Wait for pending requests to complete across all BlockDriverStates 629 * 630 * This function does not flush data to disk, use bdrv_flush_all() for that 631 * after calling this function. 632 * 633 * This pauses all block jobs and disables external clients. It must 634 * be paired with bdrv_drain_all_end(). 635 * 636 * NOTE: no new block jobs or BlockDriverStates can be created between 637 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 638 */ 639 void bdrv_drain_all_begin(void) 640 { 641 BlockDriverState *bs = NULL; 642 643 if (qemu_in_coroutine()) { 644 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 645 return; 646 } 647 648 /* 649 * bdrv queue is managed by record/replay, 650 * waiting for finishing the I/O requests may 651 * be infinite 652 */ 653 if (replay_events_enabled()) { 654 return; 655 } 656 657 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 658 * loop AioContext, so make sure we're in the main context. */ 659 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 660 assert(bdrv_drain_all_count < INT_MAX); 661 bdrv_drain_all_count++; 662 663 /* Quiesce all nodes, without polling in-flight requests yet. The graph 664 * cannot change during this loop. */ 665 while ((bs = bdrv_next_all_states(bs))) { 666 AioContext *aio_context = bdrv_get_aio_context(bs); 667 668 aio_context_acquire(aio_context); 669 bdrv_do_drained_begin(bs, false, NULL, true, false); 670 aio_context_release(aio_context); 671 } 672 673 /* Now poll the in-flight requests */ 674 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 675 676 while ((bs = bdrv_next_all_states(bs))) { 677 bdrv_drain_assert_idle(bs); 678 } 679 } 680 681 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 682 { 683 int drained_end_counter = 0; 684 685 g_assert(bs->quiesce_counter > 0); 686 g_assert(!bs->refcnt); 687 688 while (bs->quiesce_counter) { 689 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 690 } 691 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 692 } 693 694 void bdrv_drain_all_end(void) 695 { 696 BlockDriverState *bs = NULL; 697 int drained_end_counter = 0; 698 699 /* 700 * bdrv queue is managed by record/replay, 701 * waiting for finishing the I/O requests may 702 * be endless 703 */ 704 if (replay_events_enabled()) { 705 return; 706 } 707 708 while ((bs = bdrv_next_all_states(bs))) { 709 AioContext *aio_context = bdrv_get_aio_context(bs); 710 711 aio_context_acquire(aio_context); 712 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 713 aio_context_release(aio_context); 714 } 715 716 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 717 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0); 718 719 assert(bdrv_drain_all_count > 0); 720 bdrv_drain_all_count--; 721 } 722 723 void bdrv_drain_all(void) 724 { 725 bdrv_drain_all_begin(); 726 bdrv_drain_all_end(); 727 } 728 729 /** 730 * Remove an active request from the tracked requests list 731 * 732 * This function should be called when a tracked request is completing. 733 */ 734 static void tracked_request_end(BdrvTrackedRequest *req) 735 { 736 if (req->serialising) { 737 qatomic_dec(&req->bs->serialising_in_flight); 738 } 739 740 qemu_co_mutex_lock(&req->bs->reqs_lock); 741 QLIST_REMOVE(req, list); 742 qemu_co_queue_restart_all(&req->wait_queue); 743 qemu_co_mutex_unlock(&req->bs->reqs_lock); 744 } 745 746 /** 747 * Add an active request to the tracked requests list 748 */ 749 static void tracked_request_begin(BdrvTrackedRequest *req, 750 BlockDriverState *bs, 751 int64_t offset, 752 int64_t bytes, 753 enum BdrvTrackedRequestType type) 754 { 755 bdrv_check_request(offset, bytes, &error_abort); 756 757 *req = (BdrvTrackedRequest){ 758 .bs = bs, 759 .offset = offset, 760 .bytes = bytes, 761 .type = type, 762 .co = qemu_coroutine_self(), 763 .serialising = false, 764 .overlap_offset = offset, 765 .overlap_bytes = bytes, 766 }; 767 768 qemu_co_queue_init(&req->wait_queue); 769 770 qemu_co_mutex_lock(&bs->reqs_lock); 771 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 772 qemu_co_mutex_unlock(&bs->reqs_lock); 773 } 774 775 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 776 int64_t offset, int64_t bytes) 777 { 778 bdrv_check_request(offset, bytes, &error_abort); 779 780 /* aaaa bbbb */ 781 if (offset >= req->overlap_offset + req->overlap_bytes) { 782 return false; 783 } 784 /* bbbb aaaa */ 785 if (req->overlap_offset >= offset + bytes) { 786 return false; 787 } 788 return true; 789 } 790 791 /* Called with self->bs->reqs_lock held */ 792 static BdrvTrackedRequest * 793 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 794 { 795 BdrvTrackedRequest *req; 796 797 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 798 if (req == self || (!req->serialising && !self->serialising)) { 799 continue; 800 } 801 if (tracked_request_overlaps(req, self->overlap_offset, 802 self->overlap_bytes)) 803 { 804 /* 805 * Hitting this means there was a reentrant request, for 806 * example, a block driver issuing nested requests. This must 807 * never happen since it means deadlock. 808 */ 809 assert(qemu_coroutine_self() != req->co); 810 811 /* 812 * If the request is already (indirectly) waiting for us, or 813 * will wait for us as soon as it wakes up, then just go on 814 * (instead of producing a deadlock in the former case). 815 */ 816 if (!req->waiting_for) { 817 return req; 818 } 819 } 820 } 821 822 return NULL; 823 } 824 825 /* Called with self->bs->reqs_lock held */ 826 static bool coroutine_fn 827 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 828 { 829 BdrvTrackedRequest *req; 830 bool waited = false; 831 832 while ((req = bdrv_find_conflicting_request(self))) { 833 self->waiting_for = req; 834 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 835 self->waiting_for = NULL; 836 waited = true; 837 } 838 839 return waited; 840 } 841 842 /* Called with req->bs->reqs_lock held */ 843 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 844 uint64_t align) 845 { 846 int64_t overlap_offset = req->offset & ~(align - 1); 847 int64_t overlap_bytes = 848 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 849 850 bdrv_check_request(req->offset, req->bytes, &error_abort); 851 852 if (!req->serialising) { 853 qatomic_inc(&req->bs->serialising_in_flight); 854 req->serialising = true; 855 } 856 857 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 858 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 859 } 860 861 /** 862 * Return the tracked request on @bs for the current coroutine, or 863 * NULL if there is none. 864 */ 865 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 866 { 867 BdrvTrackedRequest *req; 868 Coroutine *self = qemu_coroutine_self(); 869 870 QLIST_FOREACH(req, &bs->tracked_requests, list) { 871 if (req->co == self) { 872 return req; 873 } 874 } 875 876 return NULL; 877 } 878 879 /** 880 * Round a region to cluster boundaries 881 */ 882 void bdrv_round_to_clusters(BlockDriverState *bs, 883 int64_t offset, int64_t bytes, 884 int64_t *cluster_offset, 885 int64_t *cluster_bytes) 886 { 887 BlockDriverInfo bdi; 888 889 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 890 *cluster_offset = offset; 891 *cluster_bytes = bytes; 892 } else { 893 int64_t c = bdi.cluster_size; 894 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 895 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 896 } 897 } 898 899 static int bdrv_get_cluster_size(BlockDriverState *bs) 900 { 901 BlockDriverInfo bdi; 902 int ret; 903 904 ret = bdrv_get_info(bs, &bdi); 905 if (ret < 0 || bdi.cluster_size == 0) { 906 return bs->bl.request_alignment; 907 } else { 908 return bdi.cluster_size; 909 } 910 } 911 912 void bdrv_inc_in_flight(BlockDriverState *bs) 913 { 914 qatomic_inc(&bs->in_flight); 915 } 916 917 void bdrv_wakeup(BlockDriverState *bs) 918 { 919 aio_wait_kick(); 920 } 921 922 void bdrv_dec_in_flight(BlockDriverState *bs) 923 { 924 qatomic_dec(&bs->in_flight); 925 bdrv_wakeup(bs); 926 } 927 928 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 929 { 930 BlockDriverState *bs = self->bs; 931 bool waited = false; 932 933 if (!qatomic_read(&bs->serialising_in_flight)) { 934 return false; 935 } 936 937 qemu_co_mutex_lock(&bs->reqs_lock); 938 waited = bdrv_wait_serialising_requests_locked(self); 939 qemu_co_mutex_unlock(&bs->reqs_lock); 940 941 return waited; 942 } 943 944 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 945 uint64_t align) 946 { 947 bool waited; 948 949 qemu_co_mutex_lock(&req->bs->reqs_lock); 950 951 tracked_request_set_serialising(req, align); 952 waited = bdrv_wait_serialising_requests_locked(req); 953 954 qemu_co_mutex_unlock(&req->bs->reqs_lock); 955 956 return waited; 957 } 958 959 static int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 960 QEMUIOVector *qiov, size_t qiov_offset, 961 Error **errp) 962 { 963 /* 964 * Check generic offset/bytes correctness 965 */ 966 967 if (offset < 0) { 968 error_setg(errp, "offset is negative: %" PRIi64, offset); 969 return -EIO; 970 } 971 972 if (bytes < 0) { 973 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 974 return -EIO; 975 } 976 977 if (bytes > BDRV_MAX_LENGTH) { 978 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 979 bytes, BDRV_MAX_LENGTH); 980 return -EIO; 981 } 982 983 if (offset > BDRV_MAX_LENGTH) { 984 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 985 offset, BDRV_MAX_LENGTH); 986 return -EIO; 987 } 988 989 if (offset > BDRV_MAX_LENGTH - bytes) { 990 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 991 "exceeds maximum(%" PRIi64 ")", offset, bytes, 992 BDRV_MAX_LENGTH); 993 return -EIO; 994 } 995 996 if (!qiov) { 997 return 0; 998 } 999 1000 /* 1001 * Check qiov and qiov_offset 1002 */ 1003 1004 if (qiov_offset > qiov->size) { 1005 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 1006 qiov_offset, qiov->size); 1007 return -EIO; 1008 } 1009 1010 if (bytes > qiov->size - qiov_offset) { 1011 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 1012 "vector size(%zu)", bytes, qiov_offset, qiov->size); 1013 return -EIO; 1014 } 1015 1016 return 0; 1017 } 1018 1019 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 1020 { 1021 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 1022 } 1023 1024 static int bdrv_check_request32(int64_t offset, int64_t bytes, 1025 QEMUIOVector *qiov, size_t qiov_offset) 1026 { 1027 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 1028 if (ret < 0) { 1029 return ret; 1030 } 1031 1032 if (bytes > BDRV_REQUEST_MAX_BYTES) { 1033 return -EIO; 1034 } 1035 1036 return 0; 1037 } 1038 1039 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 1040 int64_t bytes, BdrvRequestFlags flags) 1041 { 1042 return bdrv_pwritev(child, offset, bytes, NULL, 1043 BDRV_REQ_ZERO_WRITE | flags); 1044 } 1045 1046 /* 1047 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 1048 * The operation is sped up by checking the block status and only writing 1049 * zeroes to the device if they currently do not return zeroes. Optional 1050 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 1051 * BDRV_REQ_FUA). 1052 * 1053 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 1054 */ 1055 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 1056 { 1057 int ret; 1058 int64_t target_size, bytes, offset = 0; 1059 BlockDriverState *bs = child->bs; 1060 1061 target_size = bdrv_getlength(bs); 1062 if (target_size < 0) { 1063 return target_size; 1064 } 1065 1066 for (;;) { 1067 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 1068 if (bytes <= 0) { 1069 return 0; 1070 } 1071 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 1072 if (ret < 0) { 1073 return ret; 1074 } 1075 if (ret & BDRV_BLOCK_ZERO) { 1076 offset += bytes; 1077 continue; 1078 } 1079 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 1080 if (ret < 0) { 1081 return ret; 1082 } 1083 offset += bytes; 1084 } 1085 } 1086 1087 /* See bdrv_pwrite() for the return codes */ 1088 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes) 1089 { 1090 int ret; 1091 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1092 1093 if (bytes < 0) { 1094 return -EINVAL; 1095 } 1096 1097 ret = bdrv_preadv(child, offset, bytes, &qiov, 0); 1098 1099 return ret < 0 ? ret : bytes; 1100 } 1101 1102 /* Return no. of bytes on success or < 0 on error. Important errors are: 1103 -EIO generic I/O error (may happen for all errors) 1104 -ENOMEDIUM No media inserted. 1105 -EINVAL Invalid offset or number of bytes 1106 -EACCES Trying to write a read-only device 1107 */ 1108 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, 1109 int64_t bytes) 1110 { 1111 int ret; 1112 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1113 1114 if (bytes < 0) { 1115 return -EINVAL; 1116 } 1117 1118 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0); 1119 1120 return ret < 0 ? ret : bytes; 1121 } 1122 1123 /* 1124 * Writes to the file and ensures that no writes are reordered across this 1125 * request (acts as a barrier) 1126 * 1127 * Returns 0 on success, -errno in error cases. 1128 */ 1129 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1130 const void *buf, int64_t count) 1131 { 1132 int ret; 1133 1134 ret = bdrv_pwrite(child, offset, buf, count); 1135 if (ret < 0) { 1136 return ret; 1137 } 1138 1139 ret = bdrv_flush(child->bs); 1140 if (ret < 0) { 1141 return ret; 1142 } 1143 1144 return 0; 1145 } 1146 1147 typedef struct CoroutineIOCompletion { 1148 Coroutine *coroutine; 1149 int ret; 1150 } CoroutineIOCompletion; 1151 1152 static void bdrv_co_io_em_complete(void *opaque, int ret) 1153 { 1154 CoroutineIOCompletion *co = opaque; 1155 1156 co->ret = ret; 1157 aio_co_wake(co->coroutine); 1158 } 1159 1160 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1161 int64_t offset, int64_t bytes, 1162 QEMUIOVector *qiov, 1163 size_t qiov_offset, int flags) 1164 { 1165 BlockDriver *drv = bs->drv; 1166 int64_t sector_num; 1167 unsigned int nb_sectors; 1168 QEMUIOVector local_qiov; 1169 int ret; 1170 1171 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1172 assert(!(flags & ~BDRV_REQ_MASK)); 1173 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1174 1175 if (!drv) { 1176 return -ENOMEDIUM; 1177 } 1178 1179 if (drv->bdrv_co_preadv_part) { 1180 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1181 flags); 1182 } 1183 1184 if (qiov_offset > 0 || bytes != qiov->size) { 1185 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1186 qiov = &local_qiov; 1187 } 1188 1189 if (drv->bdrv_co_preadv) { 1190 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1191 goto out; 1192 } 1193 1194 if (drv->bdrv_aio_preadv) { 1195 BlockAIOCB *acb; 1196 CoroutineIOCompletion co = { 1197 .coroutine = qemu_coroutine_self(), 1198 }; 1199 1200 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1201 bdrv_co_io_em_complete, &co); 1202 if (acb == NULL) { 1203 ret = -EIO; 1204 goto out; 1205 } else { 1206 qemu_coroutine_yield(); 1207 ret = co.ret; 1208 goto out; 1209 } 1210 } 1211 1212 sector_num = offset >> BDRV_SECTOR_BITS; 1213 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1214 1215 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1216 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1217 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1218 assert(drv->bdrv_co_readv); 1219 1220 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1221 1222 out: 1223 if (qiov == &local_qiov) { 1224 qemu_iovec_destroy(&local_qiov); 1225 } 1226 1227 return ret; 1228 } 1229 1230 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1231 int64_t offset, int64_t bytes, 1232 QEMUIOVector *qiov, 1233 size_t qiov_offset, int flags) 1234 { 1235 BlockDriver *drv = bs->drv; 1236 int64_t sector_num; 1237 unsigned int nb_sectors; 1238 QEMUIOVector local_qiov; 1239 int ret; 1240 1241 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1242 assert(!(flags & ~BDRV_REQ_MASK)); 1243 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1244 1245 if (!drv) { 1246 return -ENOMEDIUM; 1247 } 1248 1249 if (drv->bdrv_co_pwritev_part) { 1250 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1251 flags & bs->supported_write_flags); 1252 flags &= ~bs->supported_write_flags; 1253 goto emulate_flags; 1254 } 1255 1256 if (qiov_offset > 0 || bytes != qiov->size) { 1257 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1258 qiov = &local_qiov; 1259 } 1260 1261 if (drv->bdrv_co_pwritev) { 1262 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1263 flags & bs->supported_write_flags); 1264 flags &= ~bs->supported_write_flags; 1265 goto emulate_flags; 1266 } 1267 1268 if (drv->bdrv_aio_pwritev) { 1269 BlockAIOCB *acb; 1270 CoroutineIOCompletion co = { 1271 .coroutine = qemu_coroutine_self(), 1272 }; 1273 1274 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1275 flags & bs->supported_write_flags, 1276 bdrv_co_io_em_complete, &co); 1277 flags &= ~bs->supported_write_flags; 1278 if (acb == NULL) { 1279 ret = -EIO; 1280 } else { 1281 qemu_coroutine_yield(); 1282 ret = co.ret; 1283 } 1284 goto emulate_flags; 1285 } 1286 1287 sector_num = offset >> BDRV_SECTOR_BITS; 1288 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1289 1290 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1291 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1292 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1293 1294 assert(drv->bdrv_co_writev); 1295 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1296 flags & bs->supported_write_flags); 1297 flags &= ~bs->supported_write_flags; 1298 1299 emulate_flags: 1300 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1301 ret = bdrv_co_flush(bs); 1302 } 1303 1304 if (qiov == &local_qiov) { 1305 qemu_iovec_destroy(&local_qiov); 1306 } 1307 1308 return ret; 1309 } 1310 1311 static int coroutine_fn 1312 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1313 int64_t bytes, QEMUIOVector *qiov, 1314 size_t qiov_offset) 1315 { 1316 BlockDriver *drv = bs->drv; 1317 QEMUIOVector local_qiov; 1318 int ret; 1319 1320 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1321 1322 if (!drv) { 1323 return -ENOMEDIUM; 1324 } 1325 1326 if (!block_driver_can_compress(drv)) { 1327 return -ENOTSUP; 1328 } 1329 1330 if (drv->bdrv_co_pwritev_compressed_part) { 1331 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1332 qiov, qiov_offset); 1333 } 1334 1335 if (qiov_offset == 0) { 1336 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1337 } 1338 1339 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1340 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1341 qemu_iovec_destroy(&local_qiov); 1342 1343 return ret; 1344 } 1345 1346 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1347 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1348 size_t qiov_offset, int flags) 1349 { 1350 BlockDriverState *bs = child->bs; 1351 1352 /* Perform I/O through a temporary buffer so that users who scribble over 1353 * their read buffer while the operation is in progress do not end up 1354 * modifying the image file. This is critical for zero-copy guest I/O 1355 * where anything might happen inside guest memory. 1356 */ 1357 void *bounce_buffer = NULL; 1358 1359 BlockDriver *drv = bs->drv; 1360 int64_t cluster_offset; 1361 int64_t cluster_bytes; 1362 int64_t skip_bytes; 1363 int ret; 1364 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1365 BDRV_REQUEST_MAX_BYTES); 1366 int64_t progress = 0; 1367 bool skip_write; 1368 1369 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1370 1371 if (!drv) { 1372 return -ENOMEDIUM; 1373 } 1374 1375 /* 1376 * Do not write anything when the BDS is inactive. That is not 1377 * allowed, and it would not help. 1378 */ 1379 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1380 1381 /* FIXME We cannot require callers to have write permissions when all they 1382 * are doing is a read request. If we did things right, write permissions 1383 * would be obtained anyway, but internally by the copy-on-read code. As 1384 * long as it is implemented here rather than in a separate filter driver, 1385 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1386 * it could request permissions. Therefore we have to bypass the permission 1387 * system for the moment. */ 1388 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1389 1390 /* Cover entire cluster so no additional backing file I/O is required when 1391 * allocating cluster in the image file. Note that this value may exceed 1392 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1393 * is one reason we loop rather than doing it all at once. 1394 */ 1395 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1396 skip_bytes = offset - cluster_offset; 1397 1398 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1399 cluster_offset, cluster_bytes); 1400 1401 while (cluster_bytes) { 1402 int64_t pnum; 1403 1404 if (skip_write) { 1405 ret = 1; /* "already allocated", so nothing will be copied */ 1406 pnum = MIN(cluster_bytes, max_transfer); 1407 } else { 1408 ret = bdrv_is_allocated(bs, cluster_offset, 1409 MIN(cluster_bytes, max_transfer), &pnum); 1410 if (ret < 0) { 1411 /* 1412 * Safe to treat errors in querying allocation as if 1413 * unallocated; we'll probably fail again soon on the 1414 * read, but at least that will set a decent errno. 1415 */ 1416 pnum = MIN(cluster_bytes, max_transfer); 1417 } 1418 1419 /* Stop at EOF if the image ends in the middle of the cluster */ 1420 if (ret == 0 && pnum == 0) { 1421 assert(progress >= bytes); 1422 break; 1423 } 1424 1425 assert(skip_bytes < pnum); 1426 } 1427 1428 if (ret <= 0) { 1429 QEMUIOVector local_qiov; 1430 1431 /* Must copy-on-read; use the bounce buffer */ 1432 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1433 if (!bounce_buffer) { 1434 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1435 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1436 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1437 1438 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1439 if (!bounce_buffer) { 1440 ret = -ENOMEM; 1441 goto err; 1442 } 1443 } 1444 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1445 1446 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1447 &local_qiov, 0, 0); 1448 if (ret < 0) { 1449 goto err; 1450 } 1451 1452 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1453 if (drv->bdrv_co_pwrite_zeroes && 1454 buffer_is_zero(bounce_buffer, pnum)) { 1455 /* FIXME: Should we (perhaps conditionally) be setting 1456 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1457 * that still correctly reads as zero? */ 1458 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1459 BDRV_REQ_WRITE_UNCHANGED); 1460 } else { 1461 /* This does not change the data on the disk, it is not 1462 * necessary to flush even in cache=writethrough mode. 1463 */ 1464 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1465 &local_qiov, 0, 1466 BDRV_REQ_WRITE_UNCHANGED); 1467 } 1468 1469 if (ret < 0) { 1470 /* It might be okay to ignore write errors for guest 1471 * requests. If this is a deliberate copy-on-read 1472 * then we don't want to ignore the error. Simply 1473 * report it in all cases. 1474 */ 1475 goto err; 1476 } 1477 1478 if (!(flags & BDRV_REQ_PREFETCH)) { 1479 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1480 bounce_buffer + skip_bytes, 1481 MIN(pnum - skip_bytes, bytes - progress)); 1482 } 1483 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1484 /* Read directly into the destination */ 1485 ret = bdrv_driver_preadv(bs, offset + progress, 1486 MIN(pnum - skip_bytes, bytes - progress), 1487 qiov, qiov_offset + progress, 0); 1488 if (ret < 0) { 1489 goto err; 1490 } 1491 } 1492 1493 cluster_offset += pnum; 1494 cluster_bytes -= pnum; 1495 progress += pnum - skip_bytes; 1496 skip_bytes = 0; 1497 } 1498 ret = 0; 1499 1500 err: 1501 qemu_vfree(bounce_buffer); 1502 return ret; 1503 } 1504 1505 /* 1506 * Forwards an already correctly aligned request to the BlockDriver. This 1507 * handles copy on read, zeroing after EOF, and fragmentation of large 1508 * reads; any other features must be implemented by the caller. 1509 */ 1510 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1511 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1512 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1513 { 1514 BlockDriverState *bs = child->bs; 1515 int64_t total_bytes, max_bytes; 1516 int ret = 0; 1517 int64_t bytes_remaining = bytes; 1518 int max_transfer; 1519 1520 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1521 assert(is_power_of_2(align)); 1522 assert((offset & (align - 1)) == 0); 1523 assert((bytes & (align - 1)) == 0); 1524 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1525 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1526 align); 1527 1528 /* TODO: We would need a per-BDS .supported_read_flags and 1529 * potential fallback support, if we ever implement any read flags 1530 * to pass through to drivers. For now, there aren't any 1531 * passthrough flags. */ 1532 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH))); 1533 1534 /* Handle Copy on Read and associated serialisation */ 1535 if (flags & BDRV_REQ_COPY_ON_READ) { 1536 /* If we touch the same cluster it counts as an overlap. This 1537 * guarantees that allocating writes will be serialized and not race 1538 * with each other for the same cluster. For example, in copy-on-read 1539 * it ensures that the CoR read and write operations are atomic and 1540 * guest writes cannot interleave between them. */ 1541 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1542 } else { 1543 bdrv_wait_serialising_requests(req); 1544 } 1545 1546 if (flags & BDRV_REQ_COPY_ON_READ) { 1547 int64_t pnum; 1548 1549 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1550 flags &= ~BDRV_REQ_COPY_ON_READ; 1551 1552 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1553 if (ret < 0) { 1554 goto out; 1555 } 1556 1557 if (!ret || pnum != bytes) { 1558 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1559 qiov, qiov_offset, flags); 1560 goto out; 1561 } else if (flags & BDRV_REQ_PREFETCH) { 1562 goto out; 1563 } 1564 } 1565 1566 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1567 total_bytes = bdrv_getlength(bs); 1568 if (total_bytes < 0) { 1569 ret = total_bytes; 1570 goto out; 1571 } 1572 1573 assert(!(flags & ~bs->supported_read_flags)); 1574 1575 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1576 if (bytes <= max_bytes && bytes <= max_transfer) { 1577 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1578 goto out; 1579 } 1580 1581 while (bytes_remaining) { 1582 int64_t num; 1583 1584 if (max_bytes) { 1585 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1586 assert(num); 1587 1588 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1589 num, qiov, 1590 qiov_offset + bytes - bytes_remaining, 1591 flags); 1592 max_bytes -= num; 1593 } else { 1594 num = bytes_remaining; 1595 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1596 0, bytes_remaining); 1597 } 1598 if (ret < 0) { 1599 goto out; 1600 } 1601 bytes_remaining -= num; 1602 } 1603 1604 out: 1605 return ret < 0 ? ret : 0; 1606 } 1607 1608 /* 1609 * Request padding 1610 * 1611 * |<---- align ----->| |<----- align ---->| 1612 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1613 * | | | | | | 1614 * -*----------$-------*-------- ... --------*-----$------------*--- 1615 * | | | | | | 1616 * | offset | | end | 1617 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1618 * [buf ... ) [tail_buf ) 1619 * 1620 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1621 * is placed at the beginning of @buf and @tail at the @end. 1622 * 1623 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1624 * around tail, if tail exists. 1625 * 1626 * @merge_reads is true for small requests, 1627 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1628 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1629 */ 1630 typedef struct BdrvRequestPadding { 1631 uint8_t *buf; 1632 size_t buf_len; 1633 uint8_t *tail_buf; 1634 size_t head; 1635 size_t tail; 1636 bool merge_reads; 1637 QEMUIOVector local_qiov; 1638 } BdrvRequestPadding; 1639 1640 static bool bdrv_init_padding(BlockDriverState *bs, 1641 int64_t offset, int64_t bytes, 1642 BdrvRequestPadding *pad) 1643 { 1644 int64_t align = bs->bl.request_alignment; 1645 int64_t sum; 1646 1647 bdrv_check_request(offset, bytes, &error_abort); 1648 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1649 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1650 1651 memset(pad, 0, sizeof(*pad)); 1652 1653 pad->head = offset & (align - 1); 1654 pad->tail = ((offset + bytes) & (align - 1)); 1655 if (pad->tail) { 1656 pad->tail = align - pad->tail; 1657 } 1658 1659 if (!pad->head && !pad->tail) { 1660 return false; 1661 } 1662 1663 assert(bytes); /* Nothing good in aligning zero-length requests */ 1664 1665 sum = pad->head + bytes + pad->tail; 1666 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1667 pad->buf = qemu_blockalign(bs, pad->buf_len); 1668 pad->merge_reads = sum == pad->buf_len; 1669 if (pad->tail) { 1670 pad->tail_buf = pad->buf + pad->buf_len - align; 1671 } 1672 1673 return true; 1674 } 1675 1676 static int bdrv_padding_rmw_read(BdrvChild *child, 1677 BdrvTrackedRequest *req, 1678 BdrvRequestPadding *pad, 1679 bool zero_middle) 1680 { 1681 QEMUIOVector local_qiov; 1682 BlockDriverState *bs = child->bs; 1683 uint64_t align = bs->bl.request_alignment; 1684 int ret; 1685 1686 assert(req->serialising && pad->buf); 1687 1688 if (pad->head || pad->merge_reads) { 1689 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1690 1691 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1692 1693 if (pad->head) { 1694 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1695 } 1696 if (pad->merge_reads && pad->tail) { 1697 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1698 } 1699 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1700 align, &local_qiov, 0, 0); 1701 if (ret < 0) { 1702 return ret; 1703 } 1704 if (pad->head) { 1705 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1706 } 1707 if (pad->merge_reads && pad->tail) { 1708 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1709 } 1710 1711 if (pad->merge_reads) { 1712 goto zero_mem; 1713 } 1714 } 1715 1716 if (pad->tail) { 1717 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1718 1719 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1720 ret = bdrv_aligned_preadv( 1721 child, req, 1722 req->overlap_offset + req->overlap_bytes - align, 1723 align, align, &local_qiov, 0, 0); 1724 if (ret < 0) { 1725 return ret; 1726 } 1727 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1728 } 1729 1730 zero_mem: 1731 if (zero_middle) { 1732 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1733 } 1734 1735 return 0; 1736 } 1737 1738 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1739 { 1740 if (pad->buf) { 1741 qemu_vfree(pad->buf); 1742 qemu_iovec_destroy(&pad->local_qiov); 1743 } 1744 memset(pad, 0, sizeof(*pad)); 1745 } 1746 1747 /* 1748 * bdrv_pad_request 1749 * 1750 * Exchange request parameters with padded request if needed. Don't include RMW 1751 * read of padding, bdrv_padding_rmw_read() should be called separately if 1752 * needed. 1753 * 1754 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1755 * - on function start they represent original request 1756 * - on failure or when padding is not needed they are unchanged 1757 * - on success when padding is needed they represent padded request 1758 */ 1759 static int bdrv_pad_request(BlockDriverState *bs, 1760 QEMUIOVector **qiov, size_t *qiov_offset, 1761 int64_t *offset, int64_t *bytes, 1762 BdrvRequestPadding *pad, bool *padded) 1763 { 1764 int ret; 1765 1766 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1767 1768 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1769 if (padded) { 1770 *padded = false; 1771 } 1772 return 0; 1773 } 1774 1775 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1776 *qiov, *qiov_offset, *bytes, 1777 pad->buf + pad->buf_len - pad->tail, 1778 pad->tail); 1779 if (ret < 0) { 1780 bdrv_padding_destroy(pad); 1781 return ret; 1782 } 1783 *bytes += pad->head + pad->tail; 1784 *offset -= pad->head; 1785 *qiov = &pad->local_qiov; 1786 *qiov_offset = 0; 1787 if (padded) { 1788 *padded = true; 1789 } 1790 1791 return 0; 1792 } 1793 1794 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1795 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1796 BdrvRequestFlags flags) 1797 { 1798 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1799 } 1800 1801 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1802 int64_t offset, int64_t bytes, 1803 QEMUIOVector *qiov, size_t qiov_offset, 1804 BdrvRequestFlags flags) 1805 { 1806 BlockDriverState *bs = child->bs; 1807 BdrvTrackedRequest req; 1808 BdrvRequestPadding pad; 1809 int ret; 1810 1811 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1812 1813 if (!bdrv_is_inserted(bs)) { 1814 return -ENOMEDIUM; 1815 } 1816 1817 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1818 if (ret < 0) { 1819 return ret; 1820 } 1821 1822 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1823 /* 1824 * Aligning zero request is nonsense. Even if driver has special meaning 1825 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1826 * it to driver due to request_alignment. 1827 * 1828 * Still, no reason to return an error if someone do unaligned 1829 * zero-length read occasionally. 1830 */ 1831 return 0; 1832 } 1833 1834 bdrv_inc_in_flight(bs); 1835 1836 /* Don't do copy-on-read if we read data before write operation */ 1837 if (qatomic_read(&bs->copy_on_read)) { 1838 flags |= BDRV_REQ_COPY_ON_READ; 1839 } 1840 1841 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 1842 NULL); 1843 if (ret < 0) { 1844 goto fail; 1845 } 1846 1847 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1848 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1849 bs->bl.request_alignment, 1850 qiov, qiov_offset, flags); 1851 tracked_request_end(&req); 1852 bdrv_padding_destroy(&pad); 1853 1854 fail: 1855 bdrv_dec_in_flight(bs); 1856 1857 return ret; 1858 } 1859 1860 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1861 int64_t offset, int64_t bytes, BdrvRequestFlags flags) 1862 { 1863 BlockDriver *drv = bs->drv; 1864 QEMUIOVector qiov; 1865 void *buf = NULL; 1866 int ret = 0; 1867 bool need_flush = false; 1868 int head = 0; 1869 int tail = 0; 1870 1871 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1872 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1873 bs->bl.request_alignment); 1874 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1875 1876 bdrv_check_request(offset, bytes, &error_abort); 1877 1878 if (!drv) { 1879 return -ENOMEDIUM; 1880 } 1881 1882 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1883 return -ENOTSUP; 1884 } 1885 1886 /* Invalidate the cached block-status data range if this write overlaps */ 1887 bdrv_bsc_invalidate_range(bs, offset, bytes); 1888 1889 assert(alignment % bs->bl.request_alignment == 0); 1890 head = offset % alignment; 1891 tail = (offset + bytes) % alignment; 1892 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1893 assert(max_write_zeroes >= bs->bl.request_alignment); 1894 1895 while (bytes > 0 && !ret) { 1896 int64_t num = bytes; 1897 1898 /* Align request. Block drivers can expect the "bulk" of the request 1899 * to be aligned, and that unaligned requests do not cross cluster 1900 * boundaries. 1901 */ 1902 if (head) { 1903 /* Make a small request up to the first aligned sector. For 1904 * convenience, limit this request to max_transfer even if 1905 * we don't need to fall back to writes. */ 1906 num = MIN(MIN(bytes, max_transfer), alignment - head); 1907 head = (head + num) % alignment; 1908 assert(num < max_write_zeroes); 1909 } else if (tail && num > alignment) { 1910 /* Shorten the request to the last aligned sector. */ 1911 num -= tail; 1912 } 1913 1914 /* limit request size */ 1915 if (num > max_write_zeroes) { 1916 num = max_write_zeroes; 1917 } 1918 1919 ret = -ENOTSUP; 1920 /* First try the efficient write zeroes operation */ 1921 if (drv->bdrv_co_pwrite_zeroes) { 1922 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1923 flags & bs->supported_zero_flags); 1924 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1925 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1926 need_flush = true; 1927 } 1928 } else { 1929 assert(!bs->supported_zero_flags); 1930 } 1931 1932 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1933 /* Fall back to bounce buffer if write zeroes is unsupported */ 1934 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1935 1936 if ((flags & BDRV_REQ_FUA) && 1937 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1938 /* No need for bdrv_driver_pwrite() to do a fallback 1939 * flush on each chunk; use just one at the end */ 1940 write_flags &= ~BDRV_REQ_FUA; 1941 need_flush = true; 1942 } 1943 num = MIN(num, max_transfer); 1944 if (buf == NULL) { 1945 buf = qemu_try_blockalign0(bs, num); 1946 if (buf == NULL) { 1947 ret = -ENOMEM; 1948 goto fail; 1949 } 1950 } 1951 qemu_iovec_init_buf(&qiov, buf, num); 1952 1953 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1954 1955 /* Keep bounce buffer around if it is big enough for all 1956 * all future requests. 1957 */ 1958 if (num < max_transfer) { 1959 qemu_vfree(buf); 1960 buf = NULL; 1961 } 1962 } 1963 1964 offset += num; 1965 bytes -= num; 1966 } 1967 1968 fail: 1969 if (ret == 0 && need_flush) { 1970 ret = bdrv_co_flush(bs); 1971 } 1972 qemu_vfree(buf); 1973 return ret; 1974 } 1975 1976 static inline int coroutine_fn 1977 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1978 BdrvTrackedRequest *req, int flags) 1979 { 1980 BlockDriverState *bs = child->bs; 1981 1982 bdrv_check_request(offset, bytes, &error_abort); 1983 1984 if (bdrv_is_read_only(bs)) { 1985 return -EPERM; 1986 } 1987 1988 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1989 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1990 assert(!(flags & ~BDRV_REQ_MASK)); 1991 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1992 1993 if (flags & BDRV_REQ_SERIALISING) { 1994 QEMU_LOCK_GUARD(&bs->reqs_lock); 1995 1996 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1997 1998 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1999 return -EBUSY; 2000 } 2001 2002 bdrv_wait_serialising_requests_locked(req); 2003 } else { 2004 bdrv_wait_serialising_requests(req); 2005 } 2006 2007 assert(req->overlap_offset <= offset); 2008 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 2009 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 2010 child->perm & BLK_PERM_RESIZE); 2011 2012 switch (req->type) { 2013 case BDRV_TRACKED_WRITE: 2014 case BDRV_TRACKED_DISCARD: 2015 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 2016 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 2017 } else { 2018 assert(child->perm & BLK_PERM_WRITE); 2019 } 2020 bdrv_write_threshold_check_write(bs, offset, bytes); 2021 return 0; 2022 case BDRV_TRACKED_TRUNCATE: 2023 assert(child->perm & BLK_PERM_RESIZE); 2024 return 0; 2025 default: 2026 abort(); 2027 } 2028 } 2029 2030 static inline void coroutine_fn 2031 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2032 BdrvTrackedRequest *req, int ret) 2033 { 2034 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2035 BlockDriverState *bs = child->bs; 2036 2037 bdrv_check_request(offset, bytes, &error_abort); 2038 2039 qatomic_inc(&bs->write_gen); 2040 2041 /* 2042 * Discard cannot extend the image, but in error handling cases, such as 2043 * when reverting a qcow2 cluster allocation, the discarded range can pass 2044 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2045 * here. Instead, just skip it, since semantically a discard request 2046 * beyond EOF cannot expand the image anyway. 2047 */ 2048 if (ret == 0 && 2049 (req->type == BDRV_TRACKED_TRUNCATE || 2050 end_sector > bs->total_sectors) && 2051 req->type != BDRV_TRACKED_DISCARD) { 2052 bs->total_sectors = end_sector; 2053 bdrv_parent_cb_resize(bs); 2054 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2055 } 2056 if (req->bytes) { 2057 switch (req->type) { 2058 case BDRV_TRACKED_WRITE: 2059 stat64_max(&bs->wr_highest_offset, offset + bytes); 2060 /* fall through, to set dirty bits */ 2061 case BDRV_TRACKED_DISCARD: 2062 bdrv_set_dirty(bs, offset, bytes); 2063 break; 2064 default: 2065 break; 2066 } 2067 } 2068 } 2069 2070 /* 2071 * Forwards an already correctly aligned write request to the BlockDriver, 2072 * after possibly fragmenting it. 2073 */ 2074 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 2075 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 2076 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 2077 { 2078 BlockDriverState *bs = child->bs; 2079 BlockDriver *drv = bs->drv; 2080 int ret; 2081 2082 int64_t bytes_remaining = bytes; 2083 int max_transfer; 2084 2085 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2086 2087 if (!drv) { 2088 return -ENOMEDIUM; 2089 } 2090 2091 if (bdrv_has_readonly_bitmaps(bs)) { 2092 return -EPERM; 2093 } 2094 2095 assert(is_power_of_2(align)); 2096 assert((offset & (align - 1)) == 0); 2097 assert((bytes & (align - 1)) == 0); 2098 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2099 align); 2100 2101 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2102 2103 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2104 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2105 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2106 flags |= BDRV_REQ_ZERO_WRITE; 2107 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2108 flags |= BDRV_REQ_MAY_UNMAP; 2109 } 2110 } 2111 2112 if (ret < 0) { 2113 /* Do nothing, write notifier decided to fail this request */ 2114 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2115 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2116 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2117 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2118 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2119 qiov, qiov_offset); 2120 } else if (bytes <= max_transfer) { 2121 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2122 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2123 } else { 2124 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2125 while (bytes_remaining) { 2126 int num = MIN(bytes_remaining, max_transfer); 2127 int local_flags = flags; 2128 2129 assert(num); 2130 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2131 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2132 /* If FUA is going to be emulated by flush, we only 2133 * need to flush on the last iteration */ 2134 local_flags &= ~BDRV_REQ_FUA; 2135 } 2136 2137 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2138 num, qiov, 2139 qiov_offset + bytes - bytes_remaining, 2140 local_flags); 2141 if (ret < 0) { 2142 break; 2143 } 2144 bytes_remaining -= num; 2145 } 2146 } 2147 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 2148 2149 if (ret >= 0) { 2150 ret = 0; 2151 } 2152 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2153 2154 return ret; 2155 } 2156 2157 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 2158 int64_t offset, 2159 int64_t bytes, 2160 BdrvRequestFlags flags, 2161 BdrvTrackedRequest *req) 2162 { 2163 BlockDriverState *bs = child->bs; 2164 QEMUIOVector local_qiov; 2165 uint64_t align = bs->bl.request_alignment; 2166 int ret = 0; 2167 bool padding; 2168 BdrvRequestPadding pad; 2169 2170 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2171 if (padding) { 2172 bdrv_make_request_serialising(req, align); 2173 2174 bdrv_padding_rmw_read(child, req, &pad, true); 2175 2176 if (pad.head || pad.merge_reads) { 2177 int64_t aligned_offset = offset & ~(align - 1); 2178 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2179 2180 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2181 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2182 align, &local_qiov, 0, 2183 flags & ~BDRV_REQ_ZERO_WRITE); 2184 if (ret < 0 || pad.merge_reads) { 2185 /* Error or all work is done */ 2186 goto out; 2187 } 2188 offset += write_bytes - pad.head; 2189 bytes -= write_bytes - pad.head; 2190 } 2191 } 2192 2193 assert(!bytes || (offset & (align - 1)) == 0); 2194 if (bytes >= align) { 2195 /* Write the aligned part in the middle. */ 2196 int64_t aligned_bytes = bytes & ~(align - 1); 2197 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2198 NULL, 0, flags); 2199 if (ret < 0) { 2200 goto out; 2201 } 2202 bytes -= aligned_bytes; 2203 offset += aligned_bytes; 2204 } 2205 2206 assert(!bytes || (offset & (align - 1)) == 0); 2207 if (bytes) { 2208 assert(align == pad.tail + bytes); 2209 2210 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2211 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2212 &local_qiov, 0, 2213 flags & ~BDRV_REQ_ZERO_WRITE); 2214 } 2215 2216 out: 2217 bdrv_padding_destroy(&pad); 2218 2219 return ret; 2220 } 2221 2222 /* 2223 * Handle a write request in coroutine context 2224 */ 2225 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2226 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2227 BdrvRequestFlags flags) 2228 { 2229 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2230 } 2231 2232 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2233 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2234 BdrvRequestFlags flags) 2235 { 2236 BlockDriverState *bs = child->bs; 2237 BdrvTrackedRequest req; 2238 uint64_t align = bs->bl.request_alignment; 2239 BdrvRequestPadding pad; 2240 int ret; 2241 bool padded = false; 2242 2243 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2244 2245 if (!bdrv_is_inserted(bs)) { 2246 return -ENOMEDIUM; 2247 } 2248 2249 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2250 if (ret < 0) { 2251 return ret; 2252 } 2253 2254 /* If the request is misaligned then we can't make it efficient */ 2255 if ((flags & BDRV_REQ_NO_FALLBACK) && 2256 !QEMU_IS_ALIGNED(offset | bytes, align)) 2257 { 2258 return -ENOTSUP; 2259 } 2260 2261 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2262 /* 2263 * Aligning zero request is nonsense. Even if driver has special meaning 2264 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2265 * it to driver due to request_alignment. 2266 * 2267 * Still, no reason to return an error if someone do unaligned 2268 * zero-length write occasionally. 2269 */ 2270 return 0; 2271 } 2272 2273 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2274 /* 2275 * Pad request for following read-modify-write cycle. 2276 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2277 * alignment only if there is no ZERO flag. 2278 */ 2279 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 2280 &padded); 2281 if (ret < 0) { 2282 return ret; 2283 } 2284 } 2285 2286 bdrv_inc_in_flight(bs); 2287 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2288 2289 if (flags & BDRV_REQ_ZERO_WRITE) { 2290 assert(!padded); 2291 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2292 goto out; 2293 } 2294 2295 if (padded) { 2296 /* 2297 * Request was unaligned to request_alignment and therefore 2298 * padded. We are going to do read-modify-write, and must 2299 * serialize the request to prevent interactions of the 2300 * widened region with other transactions. 2301 */ 2302 bdrv_make_request_serialising(&req, align); 2303 bdrv_padding_rmw_read(child, &req, &pad, false); 2304 } 2305 2306 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2307 qiov, qiov_offset, flags); 2308 2309 bdrv_padding_destroy(&pad); 2310 2311 out: 2312 tracked_request_end(&req); 2313 bdrv_dec_in_flight(bs); 2314 2315 return ret; 2316 } 2317 2318 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2319 int64_t bytes, BdrvRequestFlags flags) 2320 { 2321 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2322 2323 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2324 flags &= ~BDRV_REQ_MAY_UNMAP; 2325 } 2326 2327 return bdrv_co_pwritev(child, offset, bytes, NULL, 2328 BDRV_REQ_ZERO_WRITE | flags); 2329 } 2330 2331 /* 2332 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2333 */ 2334 int bdrv_flush_all(void) 2335 { 2336 BdrvNextIterator it; 2337 BlockDriverState *bs = NULL; 2338 int result = 0; 2339 2340 /* 2341 * bdrv queue is managed by record/replay, 2342 * creating new flush request for stopping 2343 * the VM may break the determinism 2344 */ 2345 if (replay_events_enabled()) { 2346 return result; 2347 } 2348 2349 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2350 AioContext *aio_context = bdrv_get_aio_context(bs); 2351 int ret; 2352 2353 aio_context_acquire(aio_context); 2354 ret = bdrv_flush(bs); 2355 if (ret < 0 && !result) { 2356 result = ret; 2357 } 2358 aio_context_release(aio_context); 2359 } 2360 2361 return result; 2362 } 2363 2364 /* 2365 * Returns the allocation status of the specified sectors. 2366 * Drivers not implementing the functionality are assumed to not support 2367 * backing files, hence all their sectors are reported as allocated. 2368 * 2369 * If 'want_zero' is true, the caller is querying for mapping 2370 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2371 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2372 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2373 * 2374 * If 'offset' is beyond the end of the disk image the return value is 2375 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2376 * 2377 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2378 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2379 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2380 * 2381 * 'pnum' is set to the number of bytes (including and immediately 2382 * following the specified offset) that are easily known to be in the 2383 * same allocated/unallocated state. Note that a second call starting 2384 * at the original offset plus returned pnum may have the same status. 2385 * The returned value is non-zero on success except at end-of-file. 2386 * 2387 * Returns negative errno on failure. Otherwise, if the 2388 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2389 * set to the host mapping and BDS corresponding to the guest offset. 2390 */ 2391 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2392 bool want_zero, 2393 int64_t offset, int64_t bytes, 2394 int64_t *pnum, int64_t *map, 2395 BlockDriverState **file) 2396 { 2397 int64_t total_size; 2398 int64_t n; /* bytes */ 2399 int ret; 2400 int64_t local_map = 0; 2401 BlockDriverState *local_file = NULL; 2402 int64_t aligned_offset, aligned_bytes; 2403 uint32_t align; 2404 bool has_filtered_child; 2405 2406 assert(pnum); 2407 *pnum = 0; 2408 total_size = bdrv_getlength(bs); 2409 if (total_size < 0) { 2410 ret = total_size; 2411 goto early_out; 2412 } 2413 2414 if (offset >= total_size) { 2415 ret = BDRV_BLOCK_EOF; 2416 goto early_out; 2417 } 2418 if (!bytes) { 2419 ret = 0; 2420 goto early_out; 2421 } 2422 2423 n = total_size - offset; 2424 if (n < bytes) { 2425 bytes = n; 2426 } 2427 2428 /* Must be non-NULL or bdrv_getlength() would have failed */ 2429 assert(bs->drv); 2430 has_filtered_child = bdrv_filter_child(bs); 2431 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2432 *pnum = bytes; 2433 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2434 if (offset + bytes == total_size) { 2435 ret |= BDRV_BLOCK_EOF; 2436 } 2437 if (bs->drv->protocol_name) { 2438 ret |= BDRV_BLOCK_OFFSET_VALID; 2439 local_map = offset; 2440 local_file = bs; 2441 } 2442 goto early_out; 2443 } 2444 2445 bdrv_inc_in_flight(bs); 2446 2447 /* Round out to request_alignment boundaries */ 2448 align = bs->bl.request_alignment; 2449 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2450 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2451 2452 if (bs->drv->bdrv_co_block_status) { 2453 /* 2454 * Use the block-status cache only for protocol nodes: Format 2455 * drivers are generally quick to inquire the status, but protocol 2456 * drivers often need to get information from outside of qemu, so 2457 * we do not have control over the actual implementation. There 2458 * have been cases where inquiring the status took an unreasonably 2459 * long time, and we can do nothing in qemu to fix it. 2460 * This is especially problematic for images with large data areas, 2461 * because finding the few holes in them and giving them special 2462 * treatment does not gain much performance. Therefore, we try to 2463 * cache the last-identified data region. 2464 * 2465 * Second, limiting ourselves to protocol nodes allows us to assume 2466 * the block status for data regions to be DATA | OFFSET_VALID, and 2467 * that the host offset is the same as the guest offset. 2468 * 2469 * Note that it is possible that external writers zero parts of 2470 * the cached regions without the cache being invalidated, and so 2471 * we may report zeroes as data. This is not catastrophic, 2472 * however, because reporting zeroes as data is fine. 2473 */ 2474 if (QLIST_EMPTY(&bs->children) && 2475 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2476 { 2477 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2478 local_file = bs; 2479 local_map = aligned_offset; 2480 } else { 2481 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2482 aligned_bytes, pnum, &local_map, 2483 &local_file); 2484 2485 /* 2486 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2487 * the cache is queried above. Technically, we do not need to check 2488 * it here; the worst that can happen is that we fill the cache for 2489 * non-protocol nodes, and then it is never used. However, filling 2490 * the cache requires an RCU update, so double check here to avoid 2491 * such an update if possible. 2492 */ 2493 if (ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2494 QLIST_EMPTY(&bs->children)) 2495 { 2496 /* 2497 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2498 * returned local_map value must be the same as the offset we 2499 * have passed (aligned_offset), and local_bs must be the node 2500 * itself. 2501 * Assert this, because we follow this rule when reading from 2502 * the cache (see the `local_file = bs` and 2503 * `local_map = aligned_offset` assignments above), and the 2504 * result the cache delivers must be the same as the driver 2505 * would deliver. 2506 */ 2507 assert(local_file == bs); 2508 assert(local_map == aligned_offset); 2509 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2510 } 2511 } 2512 } else { 2513 /* Default code for filters */ 2514 2515 local_file = bdrv_filter_bs(bs); 2516 assert(local_file); 2517 2518 *pnum = aligned_bytes; 2519 local_map = aligned_offset; 2520 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2521 } 2522 if (ret < 0) { 2523 *pnum = 0; 2524 goto out; 2525 } 2526 2527 /* 2528 * The driver's result must be a non-zero multiple of request_alignment. 2529 * Clamp pnum and adjust map to original request. 2530 */ 2531 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2532 align > offset - aligned_offset); 2533 if (ret & BDRV_BLOCK_RECURSE) { 2534 assert(ret & BDRV_BLOCK_DATA); 2535 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2536 assert(!(ret & BDRV_BLOCK_ZERO)); 2537 } 2538 2539 *pnum -= offset - aligned_offset; 2540 if (*pnum > bytes) { 2541 *pnum = bytes; 2542 } 2543 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2544 local_map += offset - aligned_offset; 2545 } 2546 2547 if (ret & BDRV_BLOCK_RAW) { 2548 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2549 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2550 *pnum, pnum, &local_map, &local_file); 2551 goto out; 2552 } 2553 2554 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2555 ret |= BDRV_BLOCK_ALLOCATED; 2556 } else if (bs->drv->supports_backing) { 2557 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2558 2559 if (!cow_bs) { 2560 ret |= BDRV_BLOCK_ZERO; 2561 } else if (want_zero) { 2562 int64_t size2 = bdrv_getlength(cow_bs); 2563 2564 if (size2 >= 0 && offset >= size2) { 2565 ret |= BDRV_BLOCK_ZERO; 2566 } 2567 } 2568 } 2569 2570 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2571 local_file && local_file != bs && 2572 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2573 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2574 int64_t file_pnum; 2575 int ret2; 2576 2577 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2578 *pnum, &file_pnum, NULL, NULL); 2579 if (ret2 >= 0) { 2580 /* Ignore errors. This is just providing extra information, it 2581 * is useful but not necessary. 2582 */ 2583 if (ret2 & BDRV_BLOCK_EOF && 2584 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2585 /* 2586 * It is valid for the format block driver to read 2587 * beyond the end of the underlying file's current 2588 * size; such areas read as zero. 2589 */ 2590 ret |= BDRV_BLOCK_ZERO; 2591 } else { 2592 /* Limit request to the range reported by the protocol driver */ 2593 *pnum = file_pnum; 2594 ret |= (ret2 & BDRV_BLOCK_ZERO); 2595 } 2596 } 2597 } 2598 2599 out: 2600 bdrv_dec_in_flight(bs); 2601 if (ret >= 0 && offset + *pnum == total_size) { 2602 ret |= BDRV_BLOCK_EOF; 2603 } 2604 early_out: 2605 if (file) { 2606 *file = local_file; 2607 } 2608 if (map) { 2609 *map = local_map; 2610 } 2611 return ret; 2612 } 2613 2614 int coroutine_fn 2615 bdrv_co_common_block_status_above(BlockDriverState *bs, 2616 BlockDriverState *base, 2617 bool include_base, 2618 bool want_zero, 2619 int64_t offset, 2620 int64_t bytes, 2621 int64_t *pnum, 2622 int64_t *map, 2623 BlockDriverState **file, 2624 int *depth) 2625 { 2626 int ret; 2627 BlockDriverState *p; 2628 int64_t eof = 0; 2629 int dummy; 2630 2631 assert(!include_base || base); /* Can't include NULL base */ 2632 2633 if (!depth) { 2634 depth = &dummy; 2635 } 2636 *depth = 0; 2637 2638 if (!include_base && bs == base) { 2639 *pnum = bytes; 2640 return 0; 2641 } 2642 2643 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2644 ++*depth; 2645 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2646 return ret; 2647 } 2648 2649 if (ret & BDRV_BLOCK_EOF) { 2650 eof = offset + *pnum; 2651 } 2652 2653 assert(*pnum <= bytes); 2654 bytes = *pnum; 2655 2656 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2657 p = bdrv_filter_or_cow_bs(p)) 2658 { 2659 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2660 file); 2661 ++*depth; 2662 if (ret < 0) { 2663 return ret; 2664 } 2665 if (*pnum == 0) { 2666 /* 2667 * The top layer deferred to this layer, and because this layer is 2668 * short, any zeroes that we synthesize beyond EOF behave as if they 2669 * were allocated at this layer. 2670 * 2671 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2672 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2673 * below. 2674 */ 2675 assert(ret & BDRV_BLOCK_EOF); 2676 *pnum = bytes; 2677 if (file) { 2678 *file = p; 2679 } 2680 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2681 break; 2682 } 2683 if (ret & BDRV_BLOCK_ALLOCATED) { 2684 /* 2685 * We've found the node and the status, we must break. 2686 * 2687 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2688 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2689 * below. 2690 */ 2691 ret &= ~BDRV_BLOCK_EOF; 2692 break; 2693 } 2694 2695 if (p == base) { 2696 assert(include_base); 2697 break; 2698 } 2699 2700 /* 2701 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2702 * let's continue the diving. 2703 */ 2704 assert(*pnum <= bytes); 2705 bytes = *pnum; 2706 } 2707 2708 if (offset + *pnum == eof) { 2709 ret |= BDRV_BLOCK_EOF; 2710 } 2711 2712 return ret; 2713 } 2714 2715 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2716 int64_t offset, int64_t bytes, int64_t *pnum, 2717 int64_t *map, BlockDriverState **file) 2718 { 2719 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2720 pnum, map, file, NULL); 2721 } 2722 2723 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2724 int64_t *pnum, int64_t *map, BlockDriverState **file) 2725 { 2726 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2727 offset, bytes, pnum, map, file); 2728 } 2729 2730 /* 2731 * Check @bs (and its backing chain) to see if the range defined 2732 * by @offset and @bytes is known to read as zeroes. 2733 * Return 1 if that is the case, 0 otherwise and -errno on error. 2734 * This test is meant to be fast rather than accurate so returning 0 2735 * does not guarantee non-zero data. 2736 */ 2737 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2738 int64_t bytes) 2739 { 2740 int ret; 2741 int64_t pnum = bytes; 2742 2743 if (!bytes) { 2744 return 1; 2745 } 2746 2747 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset, 2748 bytes, &pnum, NULL, NULL, NULL); 2749 2750 if (ret < 0) { 2751 return ret; 2752 } 2753 2754 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2755 } 2756 2757 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2758 int64_t bytes, int64_t *pnum) 2759 { 2760 int ret; 2761 int64_t dummy; 2762 2763 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2764 bytes, pnum ? pnum : &dummy, NULL, 2765 NULL, NULL); 2766 if (ret < 0) { 2767 return ret; 2768 } 2769 return !!(ret & BDRV_BLOCK_ALLOCATED); 2770 } 2771 2772 /* 2773 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2774 * 2775 * Return a positive depth if (a prefix of) the given range is allocated 2776 * in any image between BASE and TOP (BASE is only included if include_base 2777 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2778 * BASE can be NULL to check if the given offset is allocated in any 2779 * image of the chain. Return 0 otherwise, or negative errno on 2780 * failure. 2781 * 2782 * 'pnum' is set to the number of bytes (including and immediately 2783 * following the specified offset) that are known to be in the same 2784 * allocated/unallocated state. Note that a subsequent call starting 2785 * at 'offset + *pnum' may return the same allocation status (in other 2786 * words, the result is not necessarily the maximum possible range); 2787 * but 'pnum' will only be 0 when end of file is reached. 2788 */ 2789 int bdrv_is_allocated_above(BlockDriverState *top, 2790 BlockDriverState *base, 2791 bool include_base, int64_t offset, 2792 int64_t bytes, int64_t *pnum) 2793 { 2794 int depth; 2795 int ret = bdrv_common_block_status_above(top, base, include_base, false, 2796 offset, bytes, pnum, NULL, NULL, 2797 &depth); 2798 if (ret < 0) { 2799 return ret; 2800 } 2801 2802 if (ret & BDRV_BLOCK_ALLOCATED) { 2803 return depth; 2804 } 2805 return 0; 2806 } 2807 2808 int coroutine_fn 2809 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2810 { 2811 BlockDriver *drv = bs->drv; 2812 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2813 int ret = -ENOTSUP; 2814 2815 if (!drv) { 2816 return -ENOMEDIUM; 2817 } 2818 2819 bdrv_inc_in_flight(bs); 2820 2821 if (drv->bdrv_load_vmstate) { 2822 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2823 } else if (child_bs) { 2824 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2825 } 2826 2827 bdrv_dec_in_flight(bs); 2828 2829 return ret; 2830 } 2831 2832 int coroutine_fn 2833 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2834 { 2835 BlockDriver *drv = bs->drv; 2836 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2837 int ret = -ENOTSUP; 2838 2839 if (!drv) { 2840 return -ENOMEDIUM; 2841 } 2842 2843 bdrv_inc_in_flight(bs); 2844 2845 if (drv->bdrv_save_vmstate) { 2846 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2847 } else if (child_bs) { 2848 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2849 } 2850 2851 bdrv_dec_in_flight(bs); 2852 2853 return ret; 2854 } 2855 2856 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2857 int64_t pos, int size) 2858 { 2859 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2860 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2861 2862 return ret < 0 ? ret : size; 2863 } 2864 2865 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2866 int64_t pos, int size) 2867 { 2868 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2869 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2870 2871 return ret < 0 ? ret : size; 2872 } 2873 2874 /**************************************************************/ 2875 /* async I/Os */ 2876 2877 void bdrv_aio_cancel(BlockAIOCB *acb) 2878 { 2879 qemu_aio_ref(acb); 2880 bdrv_aio_cancel_async(acb); 2881 while (acb->refcnt > 1) { 2882 if (acb->aiocb_info->get_aio_context) { 2883 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2884 } else if (acb->bs) { 2885 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2886 * assert that we're not using an I/O thread. Thread-safe 2887 * code should use bdrv_aio_cancel_async exclusively. 2888 */ 2889 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2890 aio_poll(bdrv_get_aio_context(acb->bs), true); 2891 } else { 2892 abort(); 2893 } 2894 } 2895 qemu_aio_unref(acb); 2896 } 2897 2898 /* Async version of aio cancel. The caller is not blocked if the acb implements 2899 * cancel_async, otherwise we do nothing and let the request normally complete. 2900 * In either case the completion callback must be called. */ 2901 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2902 { 2903 if (acb->aiocb_info->cancel_async) { 2904 acb->aiocb_info->cancel_async(acb); 2905 } 2906 } 2907 2908 /**************************************************************/ 2909 /* Coroutine block device emulation */ 2910 2911 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2912 { 2913 BdrvChild *primary_child = bdrv_primary_child(bs); 2914 BdrvChild *child; 2915 int current_gen; 2916 int ret = 0; 2917 2918 bdrv_inc_in_flight(bs); 2919 2920 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2921 bdrv_is_sg(bs)) { 2922 goto early_exit; 2923 } 2924 2925 qemu_co_mutex_lock(&bs->reqs_lock); 2926 current_gen = qatomic_read(&bs->write_gen); 2927 2928 /* Wait until any previous flushes are completed */ 2929 while (bs->active_flush_req) { 2930 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2931 } 2932 2933 /* Flushes reach this point in nondecreasing current_gen order. */ 2934 bs->active_flush_req = true; 2935 qemu_co_mutex_unlock(&bs->reqs_lock); 2936 2937 /* Write back all layers by calling one driver function */ 2938 if (bs->drv->bdrv_co_flush) { 2939 ret = bs->drv->bdrv_co_flush(bs); 2940 goto out; 2941 } 2942 2943 /* Write back cached data to the OS even with cache=unsafe */ 2944 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 2945 if (bs->drv->bdrv_co_flush_to_os) { 2946 ret = bs->drv->bdrv_co_flush_to_os(bs); 2947 if (ret < 0) { 2948 goto out; 2949 } 2950 } 2951 2952 /* But don't actually force it to the disk with cache=unsafe */ 2953 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2954 goto flush_children; 2955 } 2956 2957 /* Check if we really need to flush anything */ 2958 if (bs->flushed_gen == current_gen) { 2959 goto flush_children; 2960 } 2961 2962 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 2963 if (!bs->drv) { 2964 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2965 * (even in case of apparent success) */ 2966 ret = -ENOMEDIUM; 2967 goto out; 2968 } 2969 if (bs->drv->bdrv_co_flush_to_disk) { 2970 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2971 } else if (bs->drv->bdrv_aio_flush) { 2972 BlockAIOCB *acb; 2973 CoroutineIOCompletion co = { 2974 .coroutine = qemu_coroutine_self(), 2975 }; 2976 2977 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2978 if (acb == NULL) { 2979 ret = -EIO; 2980 } else { 2981 qemu_coroutine_yield(); 2982 ret = co.ret; 2983 } 2984 } else { 2985 /* 2986 * Some block drivers always operate in either writethrough or unsafe 2987 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2988 * know how the server works (because the behaviour is hardcoded or 2989 * depends on server-side configuration), so we can't ensure that 2990 * everything is safe on disk. Returning an error doesn't work because 2991 * that would break guests even if the server operates in writethrough 2992 * mode. 2993 * 2994 * Let's hope the user knows what he's doing. 2995 */ 2996 ret = 0; 2997 } 2998 2999 if (ret < 0) { 3000 goto out; 3001 } 3002 3003 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3004 * in the case of cache=unsafe, so there are no useless flushes. 3005 */ 3006 flush_children: 3007 ret = 0; 3008 QLIST_FOREACH(child, &bs->children, next) { 3009 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3010 int this_child_ret = bdrv_co_flush(child->bs); 3011 if (!ret) { 3012 ret = this_child_ret; 3013 } 3014 } 3015 } 3016 3017 out: 3018 /* Notify any pending flushes that we have completed */ 3019 if (ret == 0) { 3020 bs->flushed_gen = current_gen; 3021 } 3022 3023 qemu_co_mutex_lock(&bs->reqs_lock); 3024 bs->active_flush_req = false; 3025 /* Return value is ignored - it's ok if wait queue is empty */ 3026 qemu_co_queue_next(&bs->flush_queue); 3027 qemu_co_mutex_unlock(&bs->reqs_lock); 3028 3029 early_exit: 3030 bdrv_dec_in_flight(bs); 3031 return ret; 3032 } 3033 3034 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3035 int64_t bytes) 3036 { 3037 BdrvTrackedRequest req; 3038 int max_pdiscard, ret; 3039 int head, tail, align; 3040 BlockDriverState *bs = child->bs; 3041 3042 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 3043 return -ENOMEDIUM; 3044 } 3045 3046 if (bdrv_has_readonly_bitmaps(bs)) { 3047 return -EPERM; 3048 } 3049 3050 ret = bdrv_check_request(offset, bytes, NULL); 3051 if (ret < 0) { 3052 return ret; 3053 } 3054 3055 /* Do nothing if disabled. */ 3056 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3057 return 0; 3058 } 3059 3060 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 3061 return 0; 3062 } 3063 3064 /* Invalidate the cached block-status data range if this discard overlaps */ 3065 bdrv_bsc_invalidate_range(bs, offset, bytes); 3066 3067 /* Discard is advisory, but some devices track and coalesce 3068 * unaligned requests, so we must pass everything down rather than 3069 * round here. Still, most devices will just silently ignore 3070 * unaligned requests (by returning -ENOTSUP), so we must fragment 3071 * the request accordingly. */ 3072 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3073 assert(align % bs->bl.request_alignment == 0); 3074 head = offset % align; 3075 tail = (offset + bytes) % align; 3076 3077 bdrv_inc_in_flight(bs); 3078 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3079 3080 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3081 if (ret < 0) { 3082 goto out; 3083 } 3084 3085 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 3086 align); 3087 assert(max_pdiscard >= bs->bl.request_alignment); 3088 3089 while (bytes > 0) { 3090 int64_t num = bytes; 3091 3092 if (head) { 3093 /* Make small requests to get to alignment boundaries. */ 3094 num = MIN(bytes, align - head); 3095 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3096 num %= bs->bl.request_alignment; 3097 } 3098 head = (head + num) % align; 3099 assert(num < max_pdiscard); 3100 } else if (tail) { 3101 if (num > align) { 3102 /* Shorten the request to the last aligned cluster. */ 3103 num -= tail; 3104 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3105 tail > bs->bl.request_alignment) { 3106 tail %= bs->bl.request_alignment; 3107 num -= tail; 3108 } 3109 } 3110 /* limit request size */ 3111 if (num > max_pdiscard) { 3112 num = max_pdiscard; 3113 } 3114 3115 if (!bs->drv) { 3116 ret = -ENOMEDIUM; 3117 goto out; 3118 } 3119 if (bs->drv->bdrv_co_pdiscard) { 3120 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3121 } else { 3122 BlockAIOCB *acb; 3123 CoroutineIOCompletion co = { 3124 .coroutine = qemu_coroutine_self(), 3125 }; 3126 3127 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3128 bdrv_co_io_em_complete, &co); 3129 if (acb == NULL) { 3130 ret = -EIO; 3131 goto out; 3132 } else { 3133 qemu_coroutine_yield(); 3134 ret = co.ret; 3135 } 3136 } 3137 if (ret && ret != -ENOTSUP) { 3138 goto out; 3139 } 3140 3141 offset += num; 3142 bytes -= num; 3143 } 3144 ret = 0; 3145 out: 3146 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3147 tracked_request_end(&req); 3148 bdrv_dec_in_flight(bs); 3149 return ret; 3150 } 3151 3152 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3153 { 3154 BlockDriver *drv = bs->drv; 3155 CoroutineIOCompletion co = { 3156 .coroutine = qemu_coroutine_self(), 3157 }; 3158 BlockAIOCB *acb; 3159 3160 bdrv_inc_in_flight(bs); 3161 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3162 co.ret = -ENOTSUP; 3163 goto out; 3164 } 3165 3166 if (drv->bdrv_co_ioctl) { 3167 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3168 } else { 3169 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3170 if (!acb) { 3171 co.ret = -ENOTSUP; 3172 goto out; 3173 } 3174 qemu_coroutine_yield(); 3175 } 3176 out: 3177 bdrv_dec_in_flight(bs); 3178 return co.ret; 3179 } 3180 3181 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3182 { 3183 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3184 } 3185 3186 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3187 { 3188 return memset(qemu_blockalign(bs, size), 0, size); 3189 } 3190 3191 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3192 { 3193 size_t align = bdrv_opt_mem_align(bs); 3194 3195 /* Ensure that NULL is never returned on success */ 3196 assert(align > 0); 3197 if (size == 0) { 3198 size = align; 3199 } 3200 3201 return qemu_try_memalign(align, size); 3202 } 3203 3204 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3205 { 3206 void *mem = qemu_try_blockalign(bs, size); 3207 3208 if (mem) { 3209 memset(mem, 0, size); 3210 } 3211 3212 return mem; 3213 } 3214 3215 /* 3216 * Check if all memory in this vector is sector aligned. 3217 */ 3218 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 3219 { 3220 int i; 3221 size_t alignment = bdrv_min_mem_align(bs); 3222 3223 for (i = 0; i < qiov->niov; i++) { 3224 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 3225 return false; 3226 } 3227 if (qiov->iov[i].iov_len % alignment) { 3228 return false; 3229 } 3230 } 3231 3232 return true; 3233 } 3234 3235 void bdrv_io_plug(BlockDriverState *bs) 3236 { 3237 BdrvChild *child; 3238 3239 QLIST_FOREACH(child, &bs->children, next) { 3240 bdrv_io_plug(child->bs); 3241 } 3242 3243 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3244 BlockDriver *drv = bs->drv; 3245 if (drv && drv->bdrv_io_plug) { 3246 drv->bdrv_io_plug(bs); 3247 } 3248 } 3249 } 3250 3251 void bdrv_io_unplug(BlockDriverState *bs) 3252 { 3253 BdrvChild *child; 3254 3255 assert(bs->io_plugged); 3256 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3257 BlockDriver *drv = bs->drv; 3258 if (drv && drv->bdrv_io_unplug) { 3259 drv->bdrv_io_unplug(bs); 3260 } 3261 } 3262 3263 QLIST_FOREACH(child, &bs->children, next) { 3264 bdrv_io_unplug(child->bs); 3265 } 3266 } 3267 3268 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 3269 { 3270 BdrvChild *child; 3271 3272 if (bs->drv && bs->drv->bdrv_register_buf) { 3273 bs->drv->bdrv_register_buf(bs, host, size); 3274 } 3275 QLIST_FOREACH(child, &bs->children, next) { 3276 bdrv_register_buf(child->bs, host, size); 3277 } 3278 } 3279 3280 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 3281 { 3282 BdrvChild *child; 3283 3284 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3285 bs->drv->bdrv_unregister_buf(bs, host); 3286 } 3287 QLIST_FOREACH(child, &bs->children, next) { 3288 bdrv_unregister_buf(child->bs, host); 3289 } 3290 } 3291 3292 static int coroutine_fn bdrv_co_copy_range_internal( 3293 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3294 int64_t dst_offset, int64_t bytes, 3295 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3296 bool recurse_src) 3297 { 3298 BdrvTrackedRequest req; 3299 int ret; 3300 3301 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3302 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3303 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3304 3305 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) { 3306 return -ENOMEDIUM; 3307 } 3308 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3309 if (ret) { 3310 return ret; 3311 } 3312 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3313 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3314 } 3315 3316 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) { 3317 return -ENOMEDIUM; 3318 } 3319 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3320 if (ret) { 3321 return ret; 3322 } 3323 3324 if (!src->bs->drv->bdrv_co_copy_range_from 3325 || !dst->bs->drv->bdrv_co_copy_range_to 3326 || src->bs->encrypted || dst->bs->encrypted) { 3327 return -ENOTSUP; 3328 } 3329 3330 if (recurse_src) { 3331 bdrv_inc_in_flight(src->bs); 3332 tracked_request_begin(&req, src->bs, src_offset, bytes, 3333 BDRV_TRACKED_READ); 3334 3335 /* BDRV_REQ_SERIALISING is only for write operation */ 3336 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3337 bdrv_wait_serialising_requests(&req); 3338 3339 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3340 src, src_offset, 3341 dst, dst_offset, 3342 bytes, 3343 read_flags, write_flags); 3344 3345 tracked_request_end(&req); 3346 bdrv_dec_in_flight(src->bs); 3347 } else { 3348 bdrv_inc_in_flight(dst->bs); 3349 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3350 BDRV_TRACKED_WRITE); 3351 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3352 write_flags); 3353 if (!ret) { 3354 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3355 src, src_offset, 3356 dst, dst_offset, 3357 bytes, 3358 read_flags, write_flags); 3359 } 3360 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3361 tracked_request_end(&req); 3362 bdrv_dec_in_flight(dst->bs); 3363 } 3364 3365 return ret; 3366 } 3367 3368 /* Copy range from @src to @dst. 3369 * 3370 * See the comment of bdrv_co_copy_range for the parameter and return value 3371 * semantics. */ 3372 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3373 BdrvChild *dst, int64_t dst_offset, 3374 int64_t bytes, 3375 BdrvRequestFlags read_flags, 3376 BdrvRequestFlags write_flags) 3377 { 3378 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3379 read_flags, write_flags); 3380 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3381 bytes, read_flags, write_flags, true); 3382 } 3383 3384 /* Copy range from @src to @dst. 3385 * 3386 * See the comment of bdrv_co_copy_range for the parameter and return value 3387 * semantics. */ 3388 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3389 BdrvChild *dst, int64_t dst_offset, 3390 int64_t bytes, 3391 BdrvRequestFlags read_flags, 3392 BdrvRequestFlags write_flags) 3393 { 3394 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3395 read_flags, write_flags); 3396 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3397 bytes, read_flags, write_flags, false); 3398 } 3399 3400 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3401 BdrvChild *dst, int64_t dst_offset, 3402 int64_t bytes, BdrvRequestFlags read_flags, 3403 BdrvRequestFlags write_flags) 3404 { 3405 return bdrv_co_copy_range_from(src, src_offset, 3406 dst, dst_offset, 3407 bytes, read_flags, write_flags); 3408 } 3409 3410 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3411 { 3412 BdrvChild *c; 3413 QLIST_FOREACH(c, &bs->parents, next_parent) { 3414 if (c->klass->resize) { 3415 c->klass->resize(c); 3416 } 3417 } 3418 } 3419 3420 /** 3421 * Truncate file to 'offset' bytes (needed only for file protocols) 3422 * 3423 * If 'exact' is true, the file must be resized to exactly the given 3424 * 'offset'. Otherwise, it is sufficient for the node to be at least 3425 * 'offset' bytes in length. 3426 */ 3427 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3428 PreallocMode prealloc, BdrvRequestFlags flags, 3429 Error **errp) 3430 { 3431 BlockDriverState *bs = child->bs; 3432 BdrvChild *filtered, *backing; 3433 BlockDriver *drv = bs->drv; 3434 BdrvTrackedRequest req; 3435 int64_t old_size, new_bytes; 3436 int ret; 3437 3438 3439 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3440 if (!drv) { 3441 error_setg(errp, "No medium inserted"); 3442 return -ENOMEDIUM; 3443 } 3444 if (offset < 0) { 3445 error_setg(errp, "Image size cannot be negative"); 3446 return -EINVAL; 3447 } 3448 3449 ret = bdrv_check_request(offset, 0, errp); 3450 if (ret < 0) { 3451 return ret; 3452 } 3453 3454 old_size = bdrv_getlength(bs); 3455 if (old_size < 0) { 3456 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3457 return old_size; 3458 } 3459 3460 if (bdrv_is_read_only(bs)) { 3461 error_setg(errp, "Image is read-only"); 3462 return -EACCES; 3463 } 3464 3465 if (offset > old_size) { 3466 new_bytes = offset - old_size; 3467 } else { 3468 new_bytes = 0; 3469 } 3470 3471 bdrv_inc_in_flight(bs); 3472 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3473 BDRV_TRACKED_TRUNCATE); 3474 3475 /* If we are growing the image and potentially using preallocation for the 3476 * new area, we need to make sure that no write requests are made to it 3477 * concurrently or they might be overwritten by preallocation. */ 3478 if (new_bytes) { 3479 bdrv_make_request_serialising(&req, 1); 3480 } 3481 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3482 0); 3483 if (ret < 0) { 3484 error_setg_errno(errp, -ret, 3485 "Failed to prepare request for truncation"); 3486 goto out; 3487 } 3488 3489 filtered = bdrv_filter_child(bs); 3490 backing = bdrv_cow_child(bs); 3491 3492 /* 3493 * If the image has a backing file that is large enough that it would 3494 * provide data for the new area, we cannot leave it unallocated because 3495 * then the backing file content would become visible. Instead, zero-fill 3496 * the new area. 3497 * 3498 * Note that if the image has a backing file, but was opened without the 3499 * backing file, taking care of keeping things consistent with that backing 3500 * file is the user's responsibility. 3501 */ 3502 if (new_bytes && backing) { 3503 int64_t backing_len; 3504 3505 backing_len = bdrv_getlength(backing->bs); 3506 if (backing_len < 0) { 3507 ret = backing_len; 3508 error_setg_errno(errp, -ret, "Could not get backing file size"); 3509 goto out; 3510 } 3511 3512 if (backing_len > old_size) { 3513 flags |= BDRV_REQ_ZERO_WRITE; 3514 } 3515 } 3516 3517 if (drv->bdrv_co_truncate) { 3518 if (flags & ~bs->supported_truncate_flags) { 3519 error_setg(errp, "Block driver does not support requested flags"); 3520 ret = -ENOTSUP; 3521 goto out; 3522 } 3523 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3524 } else if (filtered) { 3525 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3526 } else { 3527 error_setg(errp, "Image format driver does not support resize"); 3528 ret = -ENOTSUP; 3529 goto out; 3530 } 3531 if (ret < 0) { 3532 goto out; 3533 } 3534 3535 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3536 if (ret < 0) { 3537 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3538 } else { 3539 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3540 } 3541 /* It's possible that truncation succeeded but refresh_total_sectors 3542 * failed, but the latter doesn't affect how we should finish the request. 3543 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3544 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3545 3546 out: 3547 tracked_request_end(&req); 3548 bdrv_dec_in_flight(bs); 3549 3550 return ret; 3551 } 3552 3553 void bdrv_cancel_in_flight(BlockDriverState *bs) 3554 { 3555 if (!bs || !bs->drv) { 3556 return; 3557 } 3558 3559 if (bs->drv->bdrv_cancel_in_flight) { 3560 bs->drv->bdrv_cancel_in_flight(bs); 3561 } 3562 } 3563