xref: /openbmc/qemu/block/io.c (revision 2b108085)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 
36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 
38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
40 
41 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
42     int64_t offset, int bytes, BdrvRequestFlags flags);
43 
44 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
45 {
46     BdrvChild *c, *next;
47 
48     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
49         if (c == ignore) {
50             continue;
51         }
52         if (c->role->drained_begin) {
53             c->role->drained_begin(c);
54         }
55     }
56 }
57 
58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
59 {
60     BdrvChild *c, *next;
61 
62     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
63         if (c == ignore) {
64             continue;
65         }
66         if (c->role->drained_end) {
67             c->role->drained_end(c);
68         }
69     }
70 }
71 
72 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
73 {
74     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
75     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
76     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
77                                  src->opt_mem_alignment);
78     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
79                                  src->min_mem_alignment);
80     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
81 }
82 
83 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
84 {
85     BlockDriver *drv = bs->drv;
86     Error *local_err = NULL;
87 
88     memset(&bs->bl, 0, sizeof(bs->bl));
89 
90     if (!drv) {
91         return;
92     }
93 
94     /* Default alignment based on whether driver has byte interface */
95     bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
96 
97     /* Take some limits from the children as a default */
98     if (bs->file) {
99         bdrv_refresh_limits(bs->file->bs, &local_err);
100         if (local_err) {
101             error_propagate(errp, local_err);
102             return;
103         }
104         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
105     } else {
106         bs->bl.min_mem_alignment = 512;
107         bs->bl.opt_mem_alignment = getpagesize();
108 
109         /* Safe default since most protocols use readv()/writev()/etc */
110         bs->bl.max_iov = IOV_MAX;
111     }
112 
113     if (bs->backing) {
114         bdrv_refresh_limits(bs->backing->bs, &local_err);
115         if (local_err) {
116             error_propagate(errp, local_err);
117             return;
118         }
119         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
120     }
121 
122     /* Then let the driver override it */
123     if (drv->bdrv_refresh_limits) {
124         drv->bdrv_refresh_limits(bs, errp);
125     }
126 }
127 
128 /**
129  * The copy-on-read flag is actually a reference count so multiple users may
130  * use the feature without worrying about clobbering its previous state.
131  * Copy-on-read stays enabled until all users have called to disable it.
132  */
133 void bdrv_enable_copy_on_read(BlockDriverState *bs)
134 {
135     atomic_inc(&bs->copy_on_read);
136 }
137 
138 void bdrv_disable_copy_on_read(BlockDriverState *bs)
139 {
140     int old = atomic_fetch_dec(&bs->copy_on_read);
141     assert(old >= 1);
142 }
143 
144 typedef struct {
145     Coroutine *co;
146     BlockDriverState *bs;
147     bool done;
148     bool begin;
149     bool recursive;
150     BdrvChild *parent;
151 } BdrvCoDrainData;
152 
153 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
154 {
155     BdrvCoDrainData *data = opaque;
156     BlockDriverState *bs = data->bs;
157 
158     if (data->begin) {
159         bs->drv->bdrv_co_drain_begin(bs);
160     } else {
161         bs->drv->bdrv_co_drain_end(bs);
162     }
163 
164     /* Set data->done before reading bs->wakeup.  */
165     atomic_mb_set(&data->done, true);
166     bdrv_wakeup(bs);
167 }
168 
169 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
170 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, bool recursive)
171 {
172     BdrvChild *child, *tmp;
173     BdrvCoDrainData data = { .bs = bs, .done = false, .begin = begin};
174 
175     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
176             (!begin && !bs->drv->bdrv_co_drain_end)) {
177         return;
178     }
179 
180     data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data);
181     bdrv_coroutine_enter(bs, data.co);
182     BDRV_POLL_WHILE(bs, !data.done);
183 
184     if (recursive) {
185         QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
186             bdrv_drain_invoke(child->bs, begin, true);
187         }
188     }
189 }
190 
191 static bool bdrv_drain_recurse(BlockDriverState *bs)
192 {
193     BdrvChild *child, *tmp;
194     bool waited;
195 
196     /* Wait for drained requests to finish */
197     waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
198 
199     QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
200         BlockDriverState *bs = child->bs;
201         bool in_main_loop =
202             qemu_get_current_aio_context() == qemu_get_aio_context();
203         assert(bs->refcnt > 0);
204         if (in_main_loop) {
205             /* In case the recursive bdrv_drain_recurse processes a
206              * block_job_defer_to_main_loop BH and modifies the graph,
207              * let's hold a reference to bs until we are done.
208              *
209              * IOThread doesn't have such a BH, and it is not safe to call
210              * bdrv_unref without BQL, so skip doing it there.
211              */
212             bdrv_ref(bs);
213         }
214         waited |= bdrv_drain_recurse(bs);
215         if (in_main_loop) {
216             bdrv_unref(bs);
217         }
218     }
219 
220     return waited;
221 }
222 
223 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
224                                   BdrvChild *parent);
225 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
226                                 BdrvChild *parent);
227 
228 static void bdrv_co_drain_bh_cb(void *opaque)
229 {
230     BdrvCoDrainData *data = opaque;
231     Coroutine *co = data->co;
232     BlockDriverState *bs = data->bs;
233 
234     bdrv_dec_in_flight(bs);
235     if (data->begin) {
236         bdrv_do_drained_begin(bs, data->recursive, data->parent);
237     } else {
238         bdrv_do_drained_end(bs, data->recursive, data->parent);
239     }
240 
241     data->done = true;
242     aio_co_wake(co);
243 }
244 
245 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
246                                                 bool begin, bool recursive,
247                                                 BdrvChild *parent)
248 {
249     BdrvCoDrainData data;
250 
251     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
252      * other coroutines run if they were queued by aio_co_enter(). */
253 
254     assert(qemu_in_coroutine());
255     data = (BdrvCoDrainData) {
256         .co = qemu_coroutine_self(),
257         .bs = bs,
258         .done = false,
259         .begin = begin,
260         .recursive = recursive,
261         .parent = parent,
262     };
263     bdrv_inc_in_flight(bs);
264     aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
265                             bdrv_co_drain_bh_cb, &data);
266 
267     qemu_coroutine_yield();
268     /* If we are resumed from some other event (such as an aio completion or a
269      * timer callback), it is a bug in the caller that should be fixed. */
270     assert(data.done);
271 }
272 
273 void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
274                            BdrvChild *parent)
275 {
276     BdrvChild *child, *next;
277 
278     if (qemu_in_coroutine()) {
279         bdrv_co_yield_to_drain(bs, true, recursive, parent);
280         return;
281     }
282 
283     /* Stop things in parent-to-child order */
284     if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
285         aio_disable_external(bdrv_get_aio_context(bs));
286     }
287 
288     bdrv_parent_drained_begin(bs, parent);
289     bdrv_drain_invoke(bs, true, false);
290     bdrv_drain_recurse(bs);
291 
292     if (recursive) {
293         bs->recursive_quiesce_counter++;
294         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
295             bdrv_do_drained_begin(child->bs, true, child);
296         }
297     }
298 }
299 
300 void bdrv_drained_begin(BlockDriverState *bs)
301 {
302     bdrv_do_drained_begin(bs, false, NULL);
303 }
304 
305 void bdrv_subtree_drained_begin(BlockDriverState *bs)
306 {
307     bdrv_do_drained_begin(bs, true, NULL);
308 }
309 
310 void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
311                          BdrvChild *parent)
312 {
313     BdrvChild *child, *next;
314     int old_quiesce_counter;
315 
316     if (qemu_in_coroutine()) {
317         bdrv_co_yield_to_drain(bs, false, recursive, parent);
318         return;
319     }
320     assert(bs->quiesce_counter > 0);
321     old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
322 
323     /* Re-enable things in child-to-parent order */
324     bdrv_drain_invoke(bs, false, false);
325     bdrv_parent_drained_end(bs, parent);
326     if (old_quiesce_counter == 1) {
327         aio_enable_external(bdrv_get_aio_context(bs));
328     }
329 
330     if (recursive) {
331         bs->recursive_quiesce_counter--;
332         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
333             bdrv_do_drained_end(child->bs, true, child);
334         }
335     }
336 }
337 
338 void bdrv_drained_end(BlockDriverState *bs)
339 {
340     bdrv_do_drained_end(bs, false, NULL);
341 }
342 
343 void bdrv_subtree_drained_end(BlockDriverState *bs)
344 {
345     bdrv_do_drained_end(bs, true, NULL);
346 }
347 
348 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
349 {
350     int i;
351 
352     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
353         bdrv_do_drained_begin(child->bs, true, child);
354     }
355 }
356 
357 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
358 {
359     int i;
360 
361     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
362         bdrv_do_drained_end(child->bs, true, child);
363     }
364 }
365 
366 /*
367  * Wait for pending requests to complete on a single BlockDriverState subtree,
368  * and suspend block driver's internal I/O until next request arrives.
369  *
370  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
371  * AioContext.
372  *
373  * Only this BlockDriverState's AioContext is run, so in-flight requests must
374  * not depend on events in other AioContexts.  In that case, use
375  * bdrv_drain_all() instead.
376  */
377 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
378 {
379     assert(qemu_in_coroutine());
380     bdrv_drained_begin(bs);
381     bdrv_drained_end(bs);
382 }
383 
384 void bdrv_drain(BlockDriverState *bs)
385 {
386     bdrv_drained_begin(bs);
387     bdrv_drained_end(bs);
388 }
389 
390 /*
391  * Wait for pending requests to complete across all BlockDriverStates
392  *
393  * This function does not flush data to disk, use bdrv_flush_all() for that
394  * after calling this function.
395  *
396  * This pauses all block jobs and disables external clients. It must
397  * be paired with bdrv_drain_all_end().
398  *
399  * NOTE: no new block jobs or BlockDriverStates can be created between
400  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
401  */
402 void bdrv_drain_all_begin(void)
403 {
404     /* Always run first iteration so any pending completion BHs run */
405     bool waited = true;
406     BlockDriverState *bs;
407     BdrvNextIterator it;
408     GSList *aio_ctxs = NULL, *ctx;
409 
410     /* BDRV_POLL_WHILE() for a node can only be called from its own I/O thread
411      * or the main loop AioContext. We potentially use BDRV_POLL_WHILE() on
412      * nodes in several different AioContexts, so make sure we're in the main
413      * context. */
414     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
415 
416     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
417         AioContext *aio_context = bdrv_get_aio_context(bs);
418 
419         /* Stop things in parent-to-child order */
420         aio_context_acquire(aio_context);
421         aio_disable_external(aio_context);
422         bdrv_parent_drained_begin(bs, NULL);
423         bdrv_drain_invoke(bs, true, true);
424         aio_context_release(aio_context);
425 
426         if (!g_slist_find(aio_ctxs, aio_context)) {
427             aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
428         }
429     }
430 
431     /* Note that completion of an asynchronous I/O operation can trigger any
432      * number of other I/O operations on other devices---for example a
433      * coroutine can submit an I/O request to another device in response to
434      * request completion.  Therefore we must keep looping until there was no
435      * more activity rather than simply draining each device independently.
436      */
437     while (waited) {
438         waited = false;
439 
440         for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
441             AioContext *aio_context = ctx->data;
442 
443             aio_context_acquire(aio_context);
444             for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
445                 if (aio_context == bdrv_get_aio_context(bs)) {
446                     waited |= bdrv_drain_recurse(bs);
447                 }
448             }
449             aio_context_release(aio_context);
450         }
451     }
452 
453     g_slist_free(aio_ctxs);
454 }
455 
456 void bdrv_drain_all_end(void)
457 {
458     BlockDriverState *bs;
459     BdrvNextIterator it;
460 
461     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
462         AioContext *aio_context = bdrv_get_aio_context(bs);
463 
464         /* Re-enable things in child-to-parent order */
465         aio_context_acquire(aio_context);
466         bdrv_drain_invoke(bs, false, true);
467         bdrv_parent_drained_end(bs, NULL);
468         aio_enable_external(aio_context);
469         aio_context_release(aio_context);
470     }
471 }
472 
473 void bdrv_drain_all(void)
474 {
475     bdrv_drain_all_begin();
476     bdrv_drain_all_end();
477 }
478 
479 /**
480  * Remove an active request from the tracked requests list
481  *
482  * This function should be called when a tracked request is completing.
483  */
484 static void tracked_request_end(BdrvTrackedRequest *req)
485 {
486     if (req->serialising) {
487         atomic_dec(&req->bs->serialising_in_flight);
488     }
489 
490     qemu_co_mutex_lock(&req->bs->reqs_lock);
491     QLIST_REMOVE(req, list);
492     qemu_co_queue_restart_all(&req->wait_queue);
493     qemu_co_mutex_unlock(&req->bs->reqs_lock);
494 }
495 
496 /**
497  * Add an active request to the tracked requests list
498  */
499 static void tracked_request_begin(BdrvTrackedRequest *req,
500                                   BlockDriverState *bs,
501                                   int64_t offset,
502                                   unsigned int bytes,
503                                   enum BdrvTrackedRequestType type)
504 {
505     *req = (BdrvTrackedRequest){
506         .bs = bs,
507         .offset         = offset,
508         .bytes          = bytes,
509         .type           = type,
510         .co             = qemu_coroutine_self(),
511         .serialising    = false,
512         .overlap_offset = offset,
513         .overlap_bytes  = bytes,
514     };
515 
516     qemu_co_queue_init(&req->wait_queue);
517 
518     qemu_co_mutex_lock(&bs->reqs_lock);
519     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
520     qemu_co_mutex_unlock(&bs->reqs_lock);
521 }
522 
523 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
524 {
525     int64_t overlap_offset = req->offset & ~(align - 1);
526     unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
527                                - overlap_offset;
528 
529     if (!req->serialising) {
530         atomic_inc(&req->bs->serialising_in_flight);
531         req->serialising = true;
532     }
533 
534     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
535     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
536 }
537 
538 /**
539  * Round a region to cluster boundaries
540  */
541 void bdrv_round_to_clusters(BlockDriverState *bs,
542                             int64_t offset, int64_t bytes,
543                             int64_t *cluster_offset,
544                             int64_t *cluster_bytes)
545 {
546     BlockDriverInfo bdi;
547 
548     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
549         *cluster_offset = offset;
550         *cluster_bytes = bytes;
551     } else {
552         int64_t c = bdi.cluster_size;
553         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
554         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
555     }
556 }
557 
558 static int bdrv_get_cluster_size(BlockDriverState *bs)
559 {
560     BlockDriverInfo bdi;
561     int ret;
562 
563     ret = bdrv_get_info(bs, &bdi);
564     if (ret < 0 || bdi.cluster_size == 0) {
565         return bs->bl.request_alignment;
566     } else {
567         return bdi.cluster_size;
568     }
569 }
570 
571 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
572                                      int64_t offset, unsigned int bytes)
573 {
574     /*        aaaa   bbbb */
575     if (offset >= req->overlap_offset + req->overlap_bytes) {
576         return false;
577     }
578     /* bbbb   aaaa        */
579     if (req->overlap_offset >= offset + bytes) {
580         return false;
581     }
582     return true;
583 }
584 
585 void bdrv_inc_in_flight(BlockDriverState *bs)
586 {
587     atomic_inc(&bs->in_flight);
588 }
589 
590 void bdrv_wakeup(BlockDriverState *bs)
591 {
592     aio_wait_kick(bdrv_get_aio_wait(bs));
593 }
594 
595 void bdrv_dec_in_flight(BlockDriverState *bs)
596 {
597     atomic_dec(&bs->in_flight);
598     bdrv_wakeup(bs);
599 }
600 
601 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
602 {
603     BlockDriverState *bs = self->bs;
604     BdrvTrackedRequest *req;
605     bool retry;
606     bool waited = false;
607 
608     if (!atomic_read(&bs->serialising_in_flight)) {
609         return false;
610     }
611 
612     do {
613         retry = false;
614         qemu_co_mutex_lock(&bs->reqs_lock);
615         QLIST_FOREACH(req, &bs->tracked_requests, list) {
616             if (req == self || (!req->serialising && !self->serialising)) {
617                 continue;
618             }
619             if (tracked_request_overlaps(req, self->overlap_offset,
620                                          self->overlap_bytes))
621             {
622                 /* Hitting this means there was a reentrant request, for
623                  * example, a block driver issuing nested requests.  This must
624                  * never happen since it means deadlock.
625                  */
626                 assert(qemu_coroutine_self() != req->co);
627 
628                 /* If the request is already (indirectly) waiting for us, or
629                  * will wait for us as soon as it wakes up, then just go on
630                  * (instead of producing a deadlock in the former case). */
631                 if (!req->waiting_for) {
632                     self->waiting_for = req;
633                     qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
634                     self->waiting_for = NULL;
635                     retry = true;
636                     waited = true;
637                     break;
638                 }
639             }
640         }
641         qemu_co_mutex_unlock(&bs->reqs_lock);
642     } while (retry);
643 
644     return waited;
645 }
646 
647 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
648                                    size_t size)
649 {
650     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
651         return -EIO;
652     }
653 
654     if (!bdrv_is_inserted(bs)) {
655         return -ENOMEDIUM;
656     }
657 
658     if (offset < 0) {
659         return -EIO;
660     }
661 
662     return 0;
663 }
664 
665 typedef struct RwCo {
666     BdrvChild *child;
667     int64_t offset;
668     QEMUIOVector *qiov;
669     bool is_write;
670     int ret;
671     BdrvRequestFlags flags;
672 } RwCo;
673 
674 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
675 {
676     RwCo *rwco = opaque;
677 
678     if (!rwco->is_write) {
679         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
680                                    rwco->qiov->size, rwco->qiov,
681                                    rwco->flags);
682     } else {
683         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
684                                     rwco->qiov->size, rwco->qiov,
685                                     rwco->flags);
686     }
687 }
688 
689 /*
690  * Process a vectored synchronous request using coroutines
691  */
692 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
693                         QEMUIOVector *qiov, bool is_write,
694                         BdrvRequestFlags flags)
695 {
696     Coroutine *co;
697     RwCo rwco = {
698         .child = child,
699         .offset = offset,
700         .qiov = qiov,
701         .is_write = is_write,
702         .ret = NOT_DONE,
703         .flags = flags,
704     };
705 
706     if (qemu_in_coroutine()) {
707         /* Fast-path if already in coroutine context */
708         bdrv_rw_co_entry(&rwco);
709     } else {
710         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
711         bdrv_coroutine_enter(child->bs, co);
712         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
713     }
714     return rwco.ret;
715 }
716 
717 /*
718  * Process a synchronous request using coroutines
719  */
720 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
721                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
722 {
723     QEMUIOVector qiov;
724     struct iovec iov = {
725         .iov_base = (void *)buf,
726         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
727     };
728 
729     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
730         return -EINVAL;
731     }
732 
733     qemu_iovec_init_external(&qiov, &iov, 1);
734     return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
735                         &qiov, is_write, flags);
736 }
737 
738 /* return < 0 if error. See bdrv_write() for the return codes */
739 int bdrv_read(BdrvChild *child, int64_t sector_num,
740               uint8_t *buf, int nb_sectors)
741 {
742     return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
743 }
744 
745 /* Return < 0 if error. Important errors are:
746   -EIO         generic I/O error (may happen for all errors)
747   -ENOMEDIUM   No media inserted.
748   -EINVAL      Invalid sector number or nb_sectors
749   -EACCES      Trying to write a read-only device
750 */
751 int bdrv_write(BdrvChild *child, int64_t sector_num,
752                const uint8_t *buf, int nb_sectors)
753 {
754     return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
755 }
756 
757 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
758                        int bytes, BdrvRequestFlags flags)
759 {
760     QEMUIOVector qiov;
761     struct iovec iov = {
762         .iov_base = NULL,
763         .iov_len = bytes,
764     };
765 
766     qemu_iovec_init_external(&qiov, &iov, 1);
767     return bdrv_prwv_co(child, offset, &qiov, true,
768                         BDRV_REQ_ZERO_WRITE | flags);
769 }
770 
771 /*
772  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
773  * The operation is sped up by checking the block status and only writing
774  * zeroes to the device if they currently do not return zeroes. Optional
775  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
776  * BDRV_REQ_FUA).
777  *
778  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
779  */
780 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
781 {
782     int ret;
783     int64_t target_size, bytes, offset = 0;
784     BlockDriverState *bs = child->bs;
785 
786     target_size = bdrv_getlength(bs);
787     if (target_size < 0) {
788         return target_size;
789     }
790 
791     for (;;) {
792         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
793         if (bytes <= 0) {
794             return 0;
795         }
796         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
797         if (ret < 0) {
798             error_report("error getting block status at offset %" PRId64 ": %s",
799                          offset, strerror(-ret));
800             return ret;
801         }
802         if (ret & BDRV_BLOCK_ZERO) {
803             offset += bytes;
804             continue;
805         }
806         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
807         if (ret < 0) {
808             error_report("error writing zeroes at offset %" PRId64 ": %s",
809                          offset, strerror(-ret));
810             return ret;
811         }
812         offset += bytes;
813     }
814 }
815 
816 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
817 {
818     int ret;
819 
820     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
821     if (ret < 0) {
822         return ret;
823     }
824 
825     return qiov->size;
826 }
827 
828 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
829 {
830     QEMUIOVector qiov;
831     struct iovec iov = {
832         .iov_base = (void *)buf,
833         .iov_len = bytes,
834     };
835 
836     if (bytes < 0) {
837         return -EINVAL;
838     }
839 
840     qemu_iovec_init_external(&qiov, &iov, 1);
841     return bdrv_preadv(child, offset, &qiov);
842 }
843 
844 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
845 {
846     int ret;
847 
848     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
849     if (ret < 0) {
850         return ret;
851     }
852 
853     return qiov->size;
854 }
855 
856 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
857 {
858     QEMUIOVector qiov;
859     struct iovec iov = {
860         .iov_base   = (void *) buf,
861         .iov_len    = bytes,
862     };
863 
864     if (bytes < 0) {
865         return -EINVAL;
866     }
867 
868     qemu_iovec_init_external(&qiov, &iov, 1);
869     return bdrv_pwritev(child, offset, &qiov);
870 }
871 
872 /*
873  * Writes to the file and ensures that no writes are reordered across this
874  * request (acts as a barrier)
875  *
876  * Returns 0 on success, -errno in error cases.
877  */
878 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
879                      const void *buf, int count)
880 {
881     int ret;
882 
883     ret = bdrv_pwrite(child, offset, buf, count);
884     if (ret < 0) {
885         return ret;
886     }
887 
888     ret = bdrv_flush(child->bs);
889     if (ret < 0) {
890         return ret;
891     }
892 
893     return 0;
894 }
895 
896 typedef struct CoroutineIOCompletion {
897     Coroutine *coroutine;
898     int ret;
899 } CoroutineIOCompletion;
900 
901 static void bdrv_co_io_em_complete(void *opaque, int ret)
902 {
903     CoroutineIOCompletion *co = opaque;
904 
905     co->ret = ret;
906     aio_co_wake(co->coroutine);
907 }
908 
909 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
910                                            uint64_t offset, uint64_t bytes,
911                                            QEMUIOVector *qiov, int flags)
912 {
913     BlockDriver *drv = bs->drv;
914     int64_t sector_num;
915     unsigned int nb_sectors;
916 
917     assert(!(flags & ~BDRV_REQ_MASK));
918 
919     if (!drv) {
920         return -ENOMEDIUM;
921     }
922 
923     if (drv->bdrv_co_preadv) {
924         return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
925     }
926 
927     sector_num = offset >> BDRV_SECTOR_BITS;
928     nb_sectors = bytes >> BDRV_SECTOR_BITS;
929 
930     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
931     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
932     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
933 
934     if (drv->bdrv_co_readv) {
935         return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
936     } else {
937         BlockAIOCB *acb;
938         CoroutineIOCompletion co = {
939             .coroutine = qemu_coroutine_self(),
940         };
941 
942         acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
943                                       bdrv_co_io_em_complete, &co);
944         if (acb == NULL) {
945             return -EIO;
946         } else {
947             qemu_coroutine_yield();
948             return co.ret;
949         }
950     }
951 }
952 
953 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
954                                             uint64_t offset, uint64_t bytes,
955                                             QEMUIOVector *qiov, int flags)
956 {
957     BlockDriver *drv = bs->drv;
958     int64_t sector_num;
959     unsigned int nb_sectors;
960     int ret;
961 
962     assert(!(flags & ~BDRV_REQ_MASK));
963 
964     if (!drv) {
965         return -ENOMEDIUM;
966     }
967 
968     if (drv->bdrv_co_pwritev) {
969         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
970                                    flags & bs->supported_write_flags);
971         flags &= ~bs->supported_write_flags;
972         goto emulate_flags;
973     }
974 
975     sector_num = offset >> BDRV_SECTOR_BITS;
976     nb_sectors = bytes >> BDRV_SECTOR_BITS;
977 
978     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
979     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
980     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
981 
982     if (drv->bdrv_co_writev_flags) {
983         ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
984                                         flags & bs->supported_write_flags);
985         flags &= ~bs->supported_write_flags;
986     } else if (drv->bdrv_co_writev) {
987         assert(!bs->supported_write_flags);
988         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
989     } else {
990         BlockAIOCB *acb;
991         CoroutineIOCompletion co = {
992             .coroutine = qemu_coroutine_self(),
993         };
994 
995         acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
996                                        bdrv_co_io_em_complete, &co);
997         if (acb == NULL) {
998             ret = -EIO;
999         } else {
1000             qemu_coroutine_yield();
1001             ret = co.ret;
1002         }
1003     }
1004 
1005 emulate_flags:
1006     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1007         ret = bdrv_co_flush(bs);
1008     }
1009 
1010     return ret;
1011 }
1012 
1013 static int coroutine_fn
1014 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1015                                uint64_t bytes, QEMUIOVector *qiov)
1016 {
1017     BlockDriver *drv = bs->drv;
1018 
1019     if (!drv) {
1020         return -ENOMEDIUM;
1021     }
1022 
1023     if (!drv->bdrv_co_pwritev_compressed) {
1024         return -ENOTSUP;
1025     }
1026 
1027     return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1028 }
1029 
1030 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1031         int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
1032 {
1033     BlockDriverState *bs = child->bs;
1034 
1035     /* Perform I/O through a temporary buffer so that users who scribble over
1036      * their read buffer while the operation is in progress do not end up
1037      * modifying the image file.  This is critical for zero-copy guest I/O
1038      * where anything might happen inside guest memory.
1039      */
1040     void *bounce_buffer;
1041 
1042     BlockDriver *drv = bs->drv;
1043     struct iovec iov;
1044     QEMUIOVector local_qiov;
1045     int64_t cluster_offset;
1046     int64_t cluster_bytes;
1047     size_t skip_bytes;
1048     int ret;
1049     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1050                                     BDRV_REQUEST_MAX_BYTES);
1051     unsigned int progress = 0;
1052 
1053     if (!drv) {
1054         return -ENOMEDIUM;
1055     }
1056 
1057     /* FIXME We cannot require callers to have write permissions when all they
1058      * are doing is a read request. If we did things right, write permissions
1059      * would be obtained anyway, but internally by the copy-on-read code. As
1060      * long as it is implemented here rather than in a separate filter driver,
1061      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1062      * it could request permissions. Therefore we have to bypass the permission
1063      * system for the moment. */
1064     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1065 
1066     /* Cover entire cluster so no additional backing file I/O is required when
1067      * allocating cluster in the image file.  Note that this value may exceed
1068      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1069      * is one reason we loop rather than doing it all at once.
1070      */
1071     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1072     skip_bytes = offset - cluster_offset;
1073 
1074     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1075                                    cluster_offset, cluster_bytes);
1076 
1077     bounce_buffer = qemu_try_blockalign(bs,
1078                                         MIN(MIN(max_transfer, cluster_bytes),
1079                                             MAX_BOUNCE_BUFFER));
1080     if (bounce_buffer == NULL) {
1081         ret = -ENOMEM;
1082         goto err;
1083     }
1084 
1085     while (cluster_bytes) {
1086         int64_t pnum;
1087 
1088         ret = bdrv_is_allocated(bs, cluster_offset,
1089                                 MIN(cluster_bytes, max_transfer), &pnum);
1090         if (ret < 0) {
1091             /* Safe to treat errors in querying allocation as if
1092              * unallocated; we'll probably fail again soon on the
1093              * read, but at least that will set a decent errno.
1094              */
1095             pnum = MIN(cluster_bytes, max_transfer);
1096         }
1097 
1098         assert(skip_bytes < pnum);
1099 
1100         if (ret <= 0) {
1101             /* Must copy-on-read; use the bounce buffer */
1102             iov.iov_base = bounce_buffer;
1103             iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1104             qemu_iovec_init_external(&local_qiov, &iov, 1);
1105 
1106             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1107                                      &local_qiov, 0);
1108             if (ret < 0) {
1109                 goto err;
1110             }
1111 
1112             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1113             if (drv->bdrv_co_pwrite_zeroes &&
1114                 buffer_is_zero(bounce_buffer, pnum)) {
1115                 /* FIXME: Should we (perhaps conditionally) be setting
1116                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1117                  * that still correctly reads as zero? */
1118                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 0);
1119             } else {
1120                 /* This does not change the data on the disk, it is not
1121                  * necessary to flush even in cache=writethrough mode.
1122                  */
1123                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1124                                           &local_qiov, 0);
1125             }
1126 
1127             if (ret < 0) {
1128                 /* It might be okay to ignore write errors for guest
1129                  * requests.  If this is a deliberate copy-on-read
1130                  * then we don't want to ignore the error.  Simply
1131                  * report it in all cases.
1132                  */
1133                 goto err;
1134             }
1135 
1136             qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1137                                 pnum - skip_bytes);
1138         } else {
1139             /* Read directly into the destination */
1140             qemu_iovec_init(&local_qiov, qiov->niov);
1141             qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1142             ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1143                                      &local_qiov, 0);
1144             qemu_iovec_destroy(&local_qiov);
1145             if (ret < 0) {
1146                 goto err;
1147             }
1148         }
1149 
1150         cluster_offset += pnum;
1151         cluster_bytes -= pnum;
1152         progress += pnum - skip_bytes;
1153         skip_bytes = 0;
1154     }
1155     ret = 0;
1156 
1157 err:
1158     qemu_vfree(bounce_buffer);
1159     return ret;
1160 }
1161 
1162 /*
1163  * Forwards an already correctly aligned request to the BlockDriver. This
1164  * handles copy on read, zeroing after EOF, and fragmentation of large
1165  * reads; any other features must be implemented by the caller.
1166  */
1167 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1168     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1169     int64_t align, QEMUIOVector *qiov, int flags)
1170 {
1171     BlockDriverState *bs = child->bs;
1172     int64_t total_bytes, max_bytes;
1173     int ret = 0;
1174     uint64_t bytes_remaining = bytes;
1175     int max_transfer;
1176 
1177     assert(is_power_of_2(align));
1178     assert((offset & (align - 1)) == 0);
1179     assert((bytes & (align - 1)) == 0);
1180     assert(!qiov || bytes == qiov->size);
1181     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1182     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1183                                    align);
1184 
1185     /* TODO: We would need a per-BDS .supported_read_flags and
1186      * potential fallback support, if we ever implement any read flags
1187      * to pass through to drivers.  For now, there aren't any
1188      * passthrough flags.  */
1189     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1190 
1191     /* Handle Copy on Read and associated serialisation */
1192     if (flags & BDRV_REQ_COPY_ON_READ) {
1193         /* If we touch the same cluster it counts as an overlap.  This
1194          * guarantees that allocating writes will be serialized and not race
1195          * with each other for the same cluster.  For example, in copy-on-read
1196          * it ensures that the CoR read and write operations are atomic and
1197          * guest writes cannot interleave between them. */
1198         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1199     }
1200 
1201     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1202         wait_serialising_requests(req);
1203     }
1204 
1205     if (flags & BDRV_REQ_COPY_ON_READ) {
1206         int64_t pnum;
1207 
1208         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1209         if (ret < 0) {
1210             goto out;
1211         }
1212 
1213         if (!ret || pnum != bytes) {
1214             ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1215             goto out;
1216         }
1217     }
1218 
1219     /* Forward the request to the BlockDriver, possibly fragmenting it */
1220     total_bytes = bdrv_getlength(bs);
1221     if (total_bytes < 0) {
1222         ret = total_bytes;
1223         goto out;
1224     }
1225 
1226     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1227     if (bytes <= max_bytes && bytes <= max_transfer) {
1228         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1229         goto out;
1230     }
1231 
1232     while (bytes_remaining) {
1233         int num;
1234 
1235         if (max_bytes) {
1236             QEMUIOVector local_qiov;
1237 
1238             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1239             assert(num);
1240             qemu_iovec_init(&local_qiov, qiov->niov);
1241             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1242 
1243             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1244                                      num, &local_qiov, 0);
1245             max_bytes -= num;
1246             qemu_iovec_destroy(&local_qiov);
1247         } else {
1248             num = bytes_remaining;
1249             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1250                                     bytes_remaining);
1251         }
1252         if (ret < 0) {
1253             goto out;
1254         }
1255         bytes_remaining -= num;
1256     }
1257 
1258 out:
1259     return ret < 0 ? ret : 0;
1260 }
1261 
1262 /*
1263  * Handle a read request in coroutine context
1264  */
1265 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1266     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1267     BdrvRequestFlags flags)
1268 {
1269     BlockDriverState *bs = child->bs;
1270     BlockDriver *drv = bs->drv;
1271     BdrvTrackedRequest req;
1272 
1273     uint64_t align = bs->bl.request_alignment;
1274     uint8_t *head_buf = NULL;
1275     uint8_t *tail_buf = NULL;
1276     QEMUIOVector local_qiov;
1277     bool use_local_qiov = false;
1278     int ret;
1279 
1280     trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1281 
1282     if (!drv) {
1283         return -ENOMEDIUM;
1284     }
1285 
1286     ret = bdrv_check_byte_request(bs, offset, bytes);
1287     if (ret < 0) {
1288         return ret;
1289     }
1290 
1291     bdrv_inc_in_flight(bs);
1292 
1293     /* Don't do copy-on-read if we read data before write operation */
1294     if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1295         flags |= BDRV_REQ_COPY_ON_READ;
1296     }
1297 
1298     /* Align read if necessary by padding qiov */
1299     if (offset & (align - 1)) {
1300         head_buf = qemu_blockalign(bs, align);
1301         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1302         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1303         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1304         use_local_qiov = true;
1305 
1306         bytes += offset & (align - 1);
1307         offset = offset & ~(align - 1);
1308     }
1309 
1310     if ((offset + bytes) & (align - 1)) {
1311         if (!use_local_qiov) {
1312             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1313             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1314             use_local_qiov = true;
1315         }
1316         tail_buf = qemu_blockalign(bs, align);
1317         qemu_iovec_add(&local_qiov, tail_buf,
1318                        align - ((offset + bytes) & (align - 1)));
1319 
1320         bytes = ROUND_UP(bytes, align);
1321     }
1322 
1323     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1324     ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1325                               use_local_qiov ? &local_qiov : qiov,
1326                               flags);
1327     tracked_request_end(&req);
1328     bdrv_dec_in_flight(bs);
1329 
1330     if (use_local_qiov) {
1331         qemu_iovec_destroy(&local_qiov);
1332         qemu_vfree(head_buf);
1333         qemu_vfree(tail_buf);
1334     }
1335 
1336     return ret;
1337 }
1338 
1339 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1340     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1341     BdrvRequestFlags flags)
1342 {
1343     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1344         return -EINVAL;
1345     }
1346 
1347     return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1348                           nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1349 }
1350 
1351 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1352                                int nb_sectors, QEMUIOVector *qiov)
1353 {
1354     return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1355 }
1356 
1357 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1358     int64_t offset, int bytes, BdrvRequestFlags flags)
1359 {
1360     BlockDriver *drv = bs->drv;
1361     QEMUIOVector qiov;
1362     struct iovec iov = {0};
1363     int ret = 0;
1364     bool need_flush = false;
1365     int head = 0;
1366     int tail = 0;
1367 
1368     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1369     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1370                         bs->bl.request_alignment);
1371     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1372 
1373     if (!drv) {
1374         return -ENOMEDIUM;
1375     }
1376 
1377     assert(alignment % bs->bl.request_alignment == 0);
1378     head = offset % alignment;
1379     tail = (offset + bytes) % alignment;
1380     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1381     assert(max_write_zeroes >= bs->bl.request_alignment);
1382 
1383     while (bytes > 0 && !ret) {
1384         int num = bytes;
1385 
1386         /* Align request.  Block drivers can expect the "bulk" of the request
1387          * to be aligned, and that unaligned requests do not cross cluster
1388          * boundaries.
1389          */
1390         if (head) {
1391             /* Make a small request up to the first aligned sector. For
1392              * convenience, limit this request to max_transfer even if
1393              * we don't need to fall back to writes.  */
1394             num = MIN(MIN(bytes, max_transfer), alignment - head);
1395             head = (head + num) % alignment;
1396             assert(num < max_write_zeroes);
1397         } else if (tail && num > alignment) {
1398             /* Shorten the request to the last aligned sector.  */
1399             num -= tail;
1400         }
1401 
1402         /* limit request size */
1403         if (num > max_write_zeroes) {
1404             num = max_write_zeroes;
1405         }
1406 
1407         ret = -ENOTSUP;
1408         /* First try the efficient write zeroes operation */
1409         if (drv->bdrv_co_pwrite_zeroes) {
1410             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1411                                              flags & bs->supported_zero_flags);
1412             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1413                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1414                 need_flush = true;
1415             }
1416         } else {
1417             assert(!bs->supported_zero_flags);
1418         }
1419 
1420         if (ret == -ENOTSUP) {
1421             /* Fall back to bounce buffer if write zeroes is unsupported */
1422             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1423 
1424             if ((flags & BDRV_REQ_FUA) &&
1425                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1426                 /* No need for bdrv_driver_pwrite() to do a fallback
1427                  * flush on each chunk; use just one at the end */
1428                 write_flags &= ~BDRV_REQ_FUA;
1429                 need_flush = true;
1430             }
1431             num = MIN(num, max_transfer);
1432             iov.iov_len = num;
1433             if (iov.iov_base == NULL) {
1434                 iov.iov_base = qemu_try_blockalign(bs, num);
1435                 if (iov.iov_base == NULL) {
1436                     ret = -ENOMEM;
1437                     goto fail;
1438                 }
1439                 memset(iov.iov_base, 0, num);
1440             }
1441             qemu_iovec_init_external(&qiov, &iov, 1);
1442 
1443             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1444 
1445             /* Keep bounce buffer around if it is big enough for all
1446              * all future requests.
1447              */
1448             if (num < max_transfer) {
1449                 qemu_vfree(iov.iov_base);
1450                 iov.iov_base = NULL;
1451             }
1452         }
1453 
1454         offset += num;
1455         bytes -= num;
1456     }
1457 
1458 fail:
1459     if (ret == 0 && need_flush) {
1460         ret = bdrv_co_flush(bs);
1461     }
1462     qemu_vfree(iov.iov_base);
1463     return ret;
1464 }
1465 
1466 /*
1467  * Forwards an already correctly aligned write request to the BlockDriver,
1468  * after possibly fragmenting it.
1469  */
1470 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1471     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1472     int64_t align, QEMUIOVector *qiov, int flags)
1473 {
1474     BlockDriverState *bs = child->bs;
1475     BlockDriver *drv = bs->drv;
1476     bool waited;
1477     int ret;
1478 
1479     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1480     uint64_t bytes_remaining = bytes;
1481     int max_transfer;
1482 
1483     if (!drv) {
1484         return -ENOMEDIUM;
1485     }
1486 
1487     if (bdrv_has_readonly_bitmaps(bs)) {
1488         return -EPERM;
1489     }
1490 
1491     assert(is_power_of_2(align));
1492     assert((offset & (align - 1)) == 0);
1493     assert((bytes & (align - 1)) == 0);
1494     assert(!qiov || bytes == qiov->size);
1495     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1496     assert(!(flags & ~BDRV_REQ_MASK));
1497     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1498                                    align);
1499 
1500     waited = wait_serialising_requests(req);
1501     assert(!waited || !req->serialising);
1502     assert(req->overlap_offset <= offset);
1503     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1504     assert(child->perm & BLK_PERM_WRITE);
1505     assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1506 
1507     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1508 
1509     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1510         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1511         qemu_iovec_is_zero(qiov)) {
1512         flags |= BDRV_REQ_ZERO_WRITE;
1513         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1514             flags |= BDRV_REQ_MAY_UNMAP;
1515         }
1516     }
1517 
1518     if (ret < 0) {
1519         /* Do nothing, write notifier decided to fail this request */
1520     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1521         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1522         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1523     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1524         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1525     } else if (bytes <= max_transfer) {
1526         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1527         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1528     } else {
1529         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1530         while (bytes_remaining) {
1531             int num = MIN(bytes_remaining, max_transfer);
1532             QEMUIOVector local_qiov;
1533             int local_flags = flags;
1534 
1535             assert(num);
1536             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1537                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1538                 /* If FUA is going to be emulated by flush, we only
1539                  * need to flush on the last iteration */
1540                 local_flags &= ~BDRV_REQ_FUA;
1541             }
1542             qemu_iovec_init(&local_qiov, qiov->niov);
1543             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1544 
1545             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1546                                       num, &local_qiov, local_flags);
1547             qemu_iovec_destroy(&local_qiov);
1548             if (ret < 0) {
1549                 break;
1550             }
1551             bytes_remaining -= num;
1552         }
1553     }
1554     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1555 
1556     atomic_inc(&bs->write_gen);
1557     bdrv_set_dirty(bs, offset, bytes);
1558 
1559     stat64_max(&bs->wr_highest_offset, offset + bytes);
1560 
1561     if (ret >= 0) {
1562         bs->total_sectors = MAX(bs->total_sectors, end_sector);
1563         ret = 0;
1564     }
1565 
1566     return ret;
1567 }
1568 
1569 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1570                                                 int64_t offset,
1571                                                 unsigned int bytes,
1572                                                 BdrvRequestFlags flags,
1573                                                 BdrvTrackedRequest *req)
1574 {
1575     BlockDriverState *bs = child->bs;
1576     uint8_t *buf = NULL;
1577     QEMUIOVector local_qiov;
1578     struct iovec iov;
1579     uint64_t align = bs->bl.request_alignment;
1580     unsigned int head_padding_bytes, tail_padding_bytes;
1581     int ret = 0;
1582 
1583     head_padding_bytes = offset & (align - 1);
1584     tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1585 
1586 
1587     assert(flags & BDRV_REQ_ZERO_WRITE);
1588     if (head_padding_bytes || tail_padding_bytes) {
1589         buf = qemu_blockalign(bs, align);
1590         iov = (struct iovec) {
1591             .iov_base   = buf,
1592             .iov_len    = align,
1593         };
1594         qemu_iovec_init_external(&local_qiov, &iov, 1);
1595     }
1596     if (head_padding_bytes) {
1597         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1598 
1599         /* RMW the unaligned part before head. */
1600         mark_request_serialising(req, align);
1601         wait_serialising_requests(req);
1602         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1603         ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1604                                   align, &local_qiov, 0);
1605         if (ret < 0) {
1606             goto fail;
1607         }
1608         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1609 
1610         memset(buf + head_padding_bytes, 0, zero_bytes);
1611         ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1612                                    align, &local_qiov,
1613                                    flags & ~BDRV_REQ_ZERO_WRITE);
1614         if (ret < 0) {
1615             goto fail;
1616         }
1617         offset += zero_bytes;
1618         bytes -= zero_bytes;
1619     }
1620 
1621     assert(!bytes || (offset & (align - 1)) == 0);
1622     if (bytes >= align) {
1623         /* Write the aligned part in the middle. */
1624         uint64_t aligned_bytes = bytes & ~(align - 1);
1625         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1626                                    NULL, flags);
1627         if (ret < 0) {
1628             goto fail;
1629         }
1630         bytes -= aligned_bytes;
1631         offset += aligned_bytes;
1632     }
1633 
1634     assert(!bytes || (offset & (align - 1)) == 0);
1635     if (bytes) {
1636         assert(align == tail_padding_bytes + bytes);
1637         /* RMW the unaligned part after tail. */
1638         mark_request_serialising(req, align);
1639         wait_serialising_requests(req);
1640         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1641         ret = bdrv_aligned_preadv(child, req, offset, align,
1642                                   align, &local_qiov, 0);
1643         if (ret < 0) {
1644             goto fail;
1645         }
1646         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1647 
1648         memset(buf, 0, bytes);
1649         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1650                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1651     }
1652 fail:
1653     qemu_vfree(buf);
1654     return ret;
1655 
1656 }
1657 
1658 /*
1659  * Handle a write request in coroutine context
1660  */
1661 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1662     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1663     BdrvRequestFlags flags)
1664 {
1665     BlockDriverState *bs = child->bs;
1666     BdrvTrackedRequest req;
1667     uint64_t align = bs->bl.request_alignment;
1668     uint8_t *head_buf = NULL;
1669     uint8_t *tail_buf = NULL;
1670     QEMUIOVector local_qiov;
1671     bool use_local_qiov = false;
1672     int ret;
1673 
1674     trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1675 
1676     if (!bs->drv) {
1677         return -ENOMEDIUM;
1678     }
1679     if (bs->read_only) {
1680         return -EPERM;
1681     }
1682     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1683 
1684     ret = bdrv_check_byte_request(bs, offset, bytes);
1685     if (ret < 0) {
1686         return ret;
1687     }
1688 
1689     bdrv_inc_in_flight(bs);
1690     /*
1691      * Align write if necessary by performing a read-modify-write cycle.
1692      * Pad qiov with the read parts and be sure to have a tracked request not
1693      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1694      */
1695     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1696 
1697     if (flags & BDRV_REQ_ZERO_WRITE) {
1698         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1699         goto out;
1700     }
1701 
1702     if (offset & (align - 1)) {
1703         QEMUIOVector head_qiov;
1704         struct iovec head_iov;
1705 
1706         mark_request_serialising(&req, align);
1707         wait_serialising_requests(&req);
1708 
1709         head_buf = qemu_blockalign(bs, align);
1710         head_iov = (struct iovec) {
1711             .iov_base   = head_buf,
1712             .iov_len    = align,
1713         };
1714         qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1715 
1716         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1717         ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1718                                   align, &head_qiov, 0);
1719         if (ret < 0) {
1720             goto fail;
1721         }
1722         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1723 
1724         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1725         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1726         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1727         use_local_qiov = true;
1728 
1729         bytes += offset & (align - 1);
1730         offset = offset & ~(align - 1);
1731 
1732         /* We have read the tail already if the request is smaller
1733          * than one aligned block.
1734          */
1735         if (bytes < align) {
1736             qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1737             bytes = align;
1738         }
1739     }
1740 
1741     if ((offset + bytes) & (align - 1)) {
1742         QEMUIOVector tail_qiov;
1743         struct iovec tail_iov;
1744         size_t tail_bytes;
1745         bool waited;
1746 
1747         mark_request_serialising(&req, align);
1748         waited = wait_serialising_requests(&req);
1749         assert(!waited || !use_local_qiov);
1750 
1751         tail_buf = qemu_blockalign(bs, align);
1752         tail_iov = (struct iovec) {
1753             .iov_base   = tail_buf,
1754             .iov_len    = align,
1755         };
1756         qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1757 
1758         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1759         ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1760                                   align, align, &tail_qiov, 0);
1761         if (ret < 0) {
1762             goto fail;
1763         }
1764         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1765 
1766         if (!use_local_qiov) {
1767             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1768             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1769             use_local_qiov = true;
1770         }
1771 
1772         tail_bytes = (offset + bytes) & (align - 1);
1773         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1774 
1775         bytes = ROUND_UP(bytes, align);
1776     }
1777 
1778     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1779                                use_local_qiov ? &local_qiov : qiov,
1780                                flags);
1781 
1782 fail:
1783 
1784     if (use_local_qiov) {
1785         qemu_iovec_destroy(&local_qiov);
1786     }
1787     qemu_vfree(head_buf);
1788     qemu_vfree(tail_buf);
1789 out:
1790     tracked_request_end(&req);
1791     bdrv_dec_in_flight(bs);
1792     return ret;
1793 }
1794 
1795 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1796     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1797     BdrvRequestFlags flags)
1798 {
1799     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1800         return -EINVAL;
1801     }
1802 
1803     return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1804                            nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1805 }
1806 
1807 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1808     int nb_sectors, QEMUIOVector *qiov)
1809 {
1810     return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1811 }
1812 
1813 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1814                                        int bytes, BdrvRequestFlags flags)
1815 {
1816     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1817 
1818     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1819         flags &= ~BDRV_REQ_MAY_UNMAP;
1820     }
1821 
1822     return bdrv_co_pwritev(child, offset, bytes, NULL,
1823                            BDRV_REQ_ZERO_WRITE | flags);
1824 }
1825 
1826 /*
1827  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1828  */
1829 int bdrv_flush_all(void)
1830 {
1831     BdrvNextIterator it;
1832     BlockDriverState *bs = NULL;
1833     int result = 0;
1834 
1835     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1836         AioContext *aio_context = bdrv_get_aio_context(bs);
1837         int ret;
1838 
1839         aio_context_acquire(aio_context);
1840         ret = bdrv_flush(bs);
1841         if (ret < 0 && !result) {
1842             result = ret;
1843         }
1844         aio_context_release(aio_context);
1845     }
1846 
1847     return result;
1848 }
1849 
1850 
1851 typedef struct BdrvCoBlockStatusData {
1852     BlockDriverState *bs;
1853     BlockDriverState *base;
1854     bool want_zero;
1855     int64_t offset;
1856     int64_t bytes;
1857     int64_t *pnum;
1858     int64_t *map;
1859     BlockDriverState **file;
1860     int ret;
1861     bool done;
1862 } BdrvCoBlockStatusData;
1863 
1864 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
1865                                                 bool want_zero,
1866                                                 int64_t offset,
1867                                                 int64_t bytes,
1868                                                 int64_t *pnum,
1869                                                 int64_t *map,
1870                                                 BlockDriverState **file)
1871 {
1872     assert(bs->file && bs->file->bs);
1873     *pnum = bytes;
1874     *map = offset;
1875     *file = bs->file->bs;
1876     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1877 }
1878 
1879 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
1880                                                    bool want_zero,
1881                                                    int64_t offset,
1882                                                    int64_t bytes,
1883                                                    int64_t *pnum,
1884                                                    int64_t *map,
1885                                                    BlockDriverState **file)
1886 {
1887     assert(bs->backing && bs->backing->bs);
1888     *pnum = bytes;
1889     *map = offset;
1890     *file = bs->backing->bs;
1891     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1892 }
1893 
1894 /*
1895  * Returns the allocation status of the specified sectors.
1896  * Drivers not implementing the functionality are assumed to not support
1897  * backing files, hence all their sectors are reported as allocated.
1898  *
1899  * If 'want_zero' is true, the caller is querying for mapping
1900  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
1901  * _ZERO where possible; otherwise, the result favors larger 'pnum',
1902  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
1903  *
1904  * If 'offset' is beyond the end of the disk image the return value is
1905  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1906  *
1907  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
1908  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1909  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1910  *
1911  * 'pnum' is set to the number of bytes (including and immediately
1912  * following the specified offset) that are easily known to be in the
1913  * same allocated/unallocated state.  Note that a second call starting
1914  * at the original offset plus returned pnum may have the same status.
1915  * The returned value is non-zero on success except at end-of-file.
1916  *
1917  * Returns negative errno on failure.  Otherwise, if the
1918  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
1919  * set to the host mapping and BDS corresponding to the guest offset.
1920  */
1921 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
1922                                              bool want_zero,
1923                                              int64_t offset, int64_t bytes,
1924                                              int64_t *pnum, int64_t *map,
1925                                              BlockDriverState **file)
1926 {
1927     int64_t total_size;
1928     int64_t n; /* bytes */
1929     int ret;
1930     int64_t local_map = 0;
1931     BlockDriverState *local_file = NULL;
1932     int64_t aligned_offset, aligned_bytes;
1933     uint32_t align;
1934 
1935     assert(pnum);
1936     *pnum = 0;
1937     total_size = bdrv_getlength(bs);
1938     if (total_size < 0) {
1939         ret = total_size;
1940         goto early_out;
1941     }
1942 
1943     if (offset >= total_size) {
1944         ret = BDRV_BLOCK_EOF;
1945         goto early_out;
1946     }
1947     if (!bytes) {
1948         ret = 0;
1949         goto early_out;
1950     }
1951 
1952     n = total_size - offset;
1953     if (n < bytes) {
1954         bytes = n;
1955     }
1956 
1957     /* Must be non-NULL or bdrv_getlength() would have failed */
1958     assert(bs->drv);
1959     if (!bs->drv->bdrv_co_block_status) {
1960         *pnum = bytes;
1961         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1962         if (offset + bytes == total_size) {
1963             ret |= BDRV_BLOCK_EOF;
1964         }
1965         if (bs->drv->protocol_name) {
1966             ret |= BDRV_BLOCK_OFFSET_VALID;
1967             local_map = offset;
1968             local_file = bs;
1969         }
1970         goto early_out;
1971     }
1972 
1973     bdrv_inc_in_flight(bs);
1974 
1975     /* Round out to request_alignment boundaries */
1976     align = bs->bl.request_alignment;
1977     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
1978     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
1979 
1980     ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
1981                                         aligned_bytes, pnum, &local_map,
1982                                         &local_file);
1983     if (ret < 0) {
1984         *pnum = 0;
1985         goto out;
1986     }
1987 
1988     /*
1989      * The driver's result must be a non-zero multiple of request_alignment.
1990      * Clamp pnum and adjust map to original request.
1991      */
1992     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
1993            align > offset - aligned_offset);
1994     *pnum -= offset - aligned_offset;
1995     if (*pnum > bytes) {
1996         *pnum = bytes;
1997     }
1998     if (ret & BDRV_BLOCK_OFFSET_VALID) {
1999         local_map += offset - aligned_offset;
2000     }
2001 
2002     if (ret & BDRV_BLOCK_RAW) {
2003         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2004         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2005                                    *pnum, pnum, &local_map, &local_file);
2006         goto out;
2007     }
2008 
2009     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2010         ret |= BDRV_BLOCK_ALLOCATED;
2011     } else if (want_zero) {
2012         if (bdrv_unallocated_blocks_are_zero(bs)) {
2013             ret |= BDRV_BLOCK_ZERO;
2014         } else if (bs->backing) {
2015             BlockDriverState *bs2 = bs->backing->bs;
2016             int64_t size2 = bdrv_getlength(bs2);
2017 
2018             if (size2 >= 0 && offset >= size2) {
2019                 ret |= BDRV_BLOCK_ZERO;
2020             }
2021         }
2022     }
2023 
2024     if (want_zero && local_file && local_file != bs &&
2025         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2026         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2027         int64_t file_pnum;
2028         int ret2;
2029 
2030         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2031                                     *pnum, &file_pnum, NULL, NULL);
2032         if (ret2 >= 0) {
2033             /* Ignore errors.  This is just providing extra information, it
2034              * is useful but not necessary.
2035              */
2036             if (ret2 & BDRV_BLOCK_EOF &&
2037                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2038                 /*
2039                  * It is valid for the format block driver to read
2040                  * beyond the end of the underlying file's current
2041                  * size; such areas read as zero.
2042                  */
2043                 ret |= BDRV_BLOCK_ZERO;
2044             } else {
2045                 /* Limit request to the range reported by the protocol driver */
2046                 *pnum = file_pnum;
2047                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2048             }
2049         }
2050     }
2051 
2052 out:
2053     bdrv_dec_in_flight(bs);
2054     if (ret >= 0 && offset + *pnum == total_size) {
2055         ret |= BDRV_BLOCK_EOF;
2056     }
2057 early_out:
2058     if (file) {
2059         *file = local_file;
2060     }
2061     if (map) {
2062         *map = local_map;
2063     }
2064     return ret;
2065 }
2066 
2067 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2068                                                    BlockDriverState *base,
2069                                                    bool want_zero,
2070                                                    int64_t offset,
2071                                                    int64_t bytes,
2072                                                    int64_t *pnum,
2073                                                    int64_t *map,
2074                                                    BlockDriverState **file)
2075 {
2076     BlockDriverState *p;
2077     int ret = 0;
2078     bool first = true;
2079 
2080     assert(bs != base);
2081     for (p = bs; p != base; p = backing_bs(p)) {
2082         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2083                                    file);
2084         if (ret < 0) {
2085             break;
2086         }
2087         if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2088             /*
2089              * Reading beyond the end of the file continues to read
2090              * zeroes, but we can only widen the result to the
2091              * unallocated length we learned from an earlier
2092              * iteration.
2093              */
2094             *pnum = bytes;
2095         }
2096         if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2097             break;
2098         }
2099         /* [offset, pnum] unallocated on this layer, which could be only
2100          * the first part of [offset, bytes].  */
2101         bytes = MIN(bytes, *pnum);
2102         first = false;
2103     }
2104     return ret;
2105 }
2106 
2107 /* Coroutine wrapper for bdrv_block_status_above() */
2108 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2109 {
2110     BdrvCoBlockStatusData *data = opaque;
2111 
2112     data->ret = bdrv_co_block_status_above(data->bs, data->base,
2113                                            data->want_zero,
2114                                            data->offset, data->bytes,
2115                                            data->pnum, data->map, data->file);
2116     data->done = true;
2117 }
2118 
2119 /*
2120  * Synchronous wrapper around bdrv_co_block_status_above().
2121  *
2122  * See bdrv_co_block_status_above() for details.
2123  */
2124 static int bdrv_common_block_status_above(BlockDriverState *bs,
2125                                           BlockDriverState *base,
2126                                           bool want_zero, int64_t offset,
2127                                           int64_t bytes, int64_t *pnum,
2128                                           int64_t *map,
2129                                           BlockDriverState **file)
2130 {
2131     Coroutine *co;
2132     BdrvCoBlockStatusData data = {
2133         .bs = bs,
2134         .base = base,
2135         .want_zero = want_zero,
2136         .offset = offset,
2137         .bytes = bytes,
2138         .pnum = pnum,
2139         .map = map,
2140         .file = file,
2141         .done = false,
2142     };
2143 
2144     if (qemu_in_coroutine()) {
2145         /* Fast-path if already in coroutine context */
2146         bdrv_block_status_above_co_entry(&data);
2147     } else {
2148         co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2149         bdrv_coroutine_enter(bs, co);
2150         BDRV_POLL_WHILE(bs, !data.done);
2151     }
2152     return data.ret;
2153 }
2154 
2155 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2156                             int64_t offset, int64_t bytes, int64_t *pnum,
2157                             int64_t *map, BlockDriverState **file)
2158 {
2159     return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2160                                           pnum, map, file);
2161 }
2162 
2163 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2164                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2165 {
2166     return bdrv_block_status_above(bs, backing_bs(bs),
2167                                    offset, bytes, pnum, map, file);
2168 }
2169 
2170 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2171                                    int64_t bytes, int64_t *pnum)
2172 {
2173     int ret;
2174     int64_t dummy;
2175 
2176     ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2177                                          bytes, pnum ? pnum : &dummy, NULL,
2178                                          NULL);
2179     if (ret < 0) {
2180         return ret;
2181     }
2182     return !!(ret & BDRV_BLOCK_ALLOCATED);
2183 }
2184 
2185 /*
2186  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2187  *
2188  * Return true if (a prefix of) the given range is allocated in any image
2189  * between BASE and TOP (inclusive).  BASE can be NULL to check if the given
2190  * offset is allocated in any image of the chain.  Return false otherwise,
2191  * or negative errno on failure.
2192  *
2193  * 'pnum' is set to the number of bytes (including and immediately
2194  * following the specified offset) that are known to be in the same
2195  * allocated/unallocated state.  Note that a subsequent call starting
2196  * at 'offset + *pnum' may return the same allocation status (in other
2197  * words, the result is not necessarily the maximum possible range);
2198  * but 'pnum' will only be 0 when end of file is reached.
2199  *
2200  */
2201 int bdrv_is_allocated_above(BlockDriverState *top,
2202                             BlockDriverState *base,
2203                             int64_t offset, int64_t bytes, int64_t *pnum)
2204 {
2205     BlockDriverState *intermediate;
2206     int ret;
2207     int64_t n = bytes;
2208 
2209     intermediate = top;
2210     while (intermediate && intermediate != base) {
2211         int64_t pnum_inter;
2212         int64_t size_inter;
2213 
2214         ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2215         if (ret < 0) {
2216             return ret;
2217         }
2218         if (ret) {
2219             *pnum = pnum_inter;
2220             return 1;
2221         }
2222 
2223         size_inter = bdrv_getlength(intermediate);
2224         if (size_inter < 0) {
2225             return size_inter;
2226         }
2227         if (n > pnum_inter &&
2228             (intermediate == top || offset + pnum_inter < size_inter)) {
2229             n = pnum_inter;
2230         }
2231 
2232         intermediate = backing_bs(intermediate);
2233     }
2234 
2235     *pnum = n;
2236     return 0;
2237 }
2238 
2239 typedef struct BdrvVmstateCo {
2240     BlockDriverState    *bs;
2241     QEMUIOVector        *qiov;
2242     int64_t             pos;
2243     bool                is_read;
2244     int                 ret;
2245 } BdrvVmstateCo;
2246 
2247 static int coroutine_fn
2248 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2249                    bool is_read)
2250 {
2251     BlockDriver *drv = bs->drv;
2252     int ret = -ENOTSUP;
2253 
2254     bdrv_inc_in_flight(bs);
2255 
2256     if (!drv) {
2257         ret = -ENOMEDIUM;
2258     } else if (drv->bdrv_load_vmstate) {
2259         if (is_read) {
2260             ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2261         } else {
2262             ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2263         }
2264     } else if (bs->file) {
2265         ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2266     }
2267 
2268     bdrv_dec_in_flight(bs);
2269     return ret;
2270 }
2271 
2272 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2273 {
2274     BdrvVmstateCo *co = opaque;
2275     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2276 }
2277 
2278 static inline int
2279 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2280                 bool is_read)
2281 {
2282     if (qemu_in_coroutine()) {
2283         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2284     } else {
2285         BdrvVmstateCo data = {
2286             .bs         = bs,
2287             .qiov       = qiov,
2288             .pos        = pos,
2289             .is_read    = is_read,
2290             .ret        = -EINPROGRESS,
2291         };
2292         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2293 
2294         bdrv_coroutine_enter(bs, co);
2295         BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2296         return data.ret;
2297     }
2298 }
2299 
2300 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2301                       int64_t pos, int size)
2302 {
2303     QEMUIOVector qiov;
2304     struct iovec iov = {
2305         .iov_base   = (void *) buf,
2306         .iov_len    = size,
2307     };
2308     int ret;
2309 
2310     qemu_iovec_init_external(&qiov, &iov, 1);
2311 
2312     ret = bdrv_writev_vmstate(bs, &qiov, pos);
2313     if (ret < 0) {
2314         return ret;
2315     }
2316 
2317     return size;
2318 }
2319 
2320 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2321 {
2322     return bdrv_rw_vmstate(bs, qiov, pos, false);
2323 }
2324 
2325 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2326                       int64_t pos, int size)
2327 {
2328     QEMUIOVector qiov;
2329     struct iovec iov = {
2330         .iov_base   = buf,
2331         .iov_len    = size,
2332     };
2333     int ret;
2334 
2335     qemu_iovec_init_external(&qiov, &iov, 1);
2336     ret = bdrv_readv_vmstate(bs, &qiov, pos);
2337     if (ret < 0) {
2338         return ret;
2339     }
2340 
2341     return size;
2342 }
2343 
2344 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2345 {
2346     return bdrv_rw_vmstate(bs, qiov, pos, true);
2347 }
2348 
2349 /**************************************************************/
2350 /* async I/Os */
2351 
2352 void bdrv_aio_cancel(BlockAIOCB *acb)
2353 {
2354     qemu_aio_ref(acb);
2355     bdrv_aio_cancel_async(acb);
2356     while (acb->refcnt > 1) {
2357         if (acb->aiocb_info->get_aio_context) {
2358             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2359         } else if (acb->bs) {
2360             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2361              * assert that we're not using an I/O thread.  Thread-safe
2362              * code should use bdrv_aio_cancel_async exclusively.
2363              */
2364             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2365             aio_poll(bdrv_get_aio_context(acb->bs), true);
2366         } else {
2367             abort();
2368         }
2369     }
2370     qemu_aio_unref(acb);
2371 }
2372 
2373 /* Async version of aio cancel. The caller is not blocked if the acb implements
2374  * cancel_async, otherwise we do nothing and let the request normally complete.
2375  * In either case the completion callback must be called. */
2376 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2377 {
2378     if (acb->aiocb_info->cancel_async) {
2379         acb->aiocb_info->cancel_async(acb);
2380     }
2381 }
2382 
2383 /**************************************************************/
2384 /* Coroutine block device emulation */
2385 
2386 typedef struct FlushCo {
2387     BlockDriverState *bs;
2388     int ret;
2389 } FlushCo;
2390 
2391 
2392 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2393 {
2394     FlushCo *rwco = opaque;
2395 
2396     rwco->ret = bdrv_co_flush(rwco->bs);
2397 }
2398 
2399 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2400 {
2401     int current_gen;
2402     int ret = 0;
2403 
2404     bdrv_inc_in_flight(bs);
2405 
2406     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2407         bdrv_is_sg(bs)) {
2408         goto early_exit;
2409     }
2410 
2411     qemu_co_mutex_lock(&bs->reqs_lock);
2412     current_gen = atomic_read(&bs->write_gen);
2413 
2414     /* Wait until any previous flushes are completed */
2415     while (bs->active_flush_req) {
2416         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2417     }
2418 
2419     /* Flushes reach this point in nondecreasing current_gen order.  */
2420     bs->active_flush_req = true;
2421     qemu_co_mutex_unlock(&bs->reqs_lock);
2422 
2423     /* Write back all layers by calling one driver function */
2424     if (bs->drv->bdrv_co_flush) {
2425         ret = bs->drv->bdrv_co_flush(bs);
2426         goto out;
2427     }
2428 
2429     /* Write back cached data to the OS even with cache=unsafe */
2430     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2431     if (bs->drv->bdrv_co_flush_to_os) {
2432         ret = bs->drv->bdrv_co_flush_to_os(bs);
2433         if (ret < 0) {
2434             goto out;
2435         }
2436     }
2437 
2438     /* But don't actually force it to the disk with cache=unsafe */
2439     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2440         goto flush_parent;
2441     }
2442 
2443     /* Check if we really need to flush anything */
2444     if (bs->flushed_gen == current_gen) {
2445         goto flush_parent;
2446     }
2447 
2448     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2449     if (!bs->drv) {
2450         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2451          * (even in case of apparent success) */
2452         ret = -ENOMEDIUM;
2453         goto out;
2454     }
2455     if (bs->drv->bdrv_co_flush_to_disk) {
2456         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2457     } else if (bs->drv->bdrv_aio_flush) {
2458         BlockAIOCB *acb;
2459         CoroutineIOCompletion co = {
2460             .coroutine = qemu_coroutine_self(),
2461         };
2462 
2463         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2464         if (acb == NULL) {
2465             ret = -EIO;
2466         } else {
2467             qemu_coroutine_yield();
2468             ret = co.ret;
2469         }
2470     } else {
2471         /*
2472          * Some block drivers always operate in either writethrough or unsafe
2473          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2474          * know how the server works (because the behaviour is hardcoded or
2475          * depends on server-side configuration), so we can't ensure that
2476          * everything is safe on disk. Returning an error doesn't work because
2477          * that would break guests even if the server operates in writethrough
2478          * mode.
2479          *
2480          * Let's hope the user knows what he's doing.
2481          */
2482         ret = 0;
2483     }
2484 
2485     if (ret < 0) {
2486         goto out;
2487     }
2488 
2489     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2490      * in the case of cache=unsafe, so there are no useless flushes.
2491      */
2492 flush_parent:
2493     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2494 out:
2495     /* Notify any pending flushes that we have completed */
2496     if (ret == 0) {
2497         bs->flushed_gen = current_gen;
2498     }
2499 
2500     qemu_co_mutex_lock(&bs->reqs_lock);
2501     bs->active_flush_req = false;
2502     /* Return value is ignored - it's ok if wait queue is empty */
2503     qemu_co_queue_next(&bs->flush_queue);
2504     qemu_co_mutex_unlock(&bs->reqs_lock);
2505 
2506 early_exit:
2507     bdrv_dec_in_flight(bs);
2508     return ret;
2509 }
2510 
2511 int bdrv_flush(BlockDriverState *bs)
2512 {
2513     Coroutine *co;
2514     FlushCo flush_co = {
2515         .bs = bs,
2516         .ret = NOT_DONE,
2517     };
2518 
2519     if (qemu_in_coroutine()) {
2520         /* Fast-path if already in coroutine context */
2521         bdrv_flush_co_entry(&flush_co);
2522     } else {
2523         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2524         bdrv_coroutine_enter(bs, co);
2525         BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2526     }
2527 
2528     return flush_co.ret;
2529 }
2530 
2531 typedef struct DiscardCo {
2532     BlockDriverState *bs;
2533     int64_t offset;
2534     int bytes;
2535     int ret;
2536 } DiscardCo;
2537 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2538 {
2539     DiscardCo *rwco = opaque;
2540 
2541     rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2542 }
2543 
2544 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2545                                   int bytes)
2546 {
2547     BdrvTrackedRequest req;
2548     int max_pdiscard, ret;
2549     int head, tail, align;
2550 
2551     if (!bs->drv) {
2552         return -ENOMEDIUM;
2553     }
2554 
2555     if (bdrv_has_readonly_bitmaps(bs)) {
2556         return -EPERM;
2557     }
2558 
2559     ret = bdrv_check_byte_request(bs, offset, bytes);
2560     if (ret < 0) {
2561         return ret;
2562     } else if (bs->read_only) {
2563         return -EPERM;
2564     }
2565     assert(!(bs->open_flags & BDRV_O_INACTIVE));
2566 
2567     /* Do nothing if disabled.  */
2568     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2569         return 0;
2570     }
2571 
2572     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2573         return 0;
2574     }
2575 
2576     /* Discard is advisory, but some devices track and coalesce
2577      * unaligned requests, so we must pass everything down rather than
2578      * round here.  Still, most devices will just silently ignore
2579      * unaligned requests (by returning -ENOTSUP), so we must fragment
2580      * the request accordingly.  */
2581     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2582     assert(align % bs->bl.request_alignment == 0);
2583     head = offset % align;
2584     tail = (offset + bytes) % align;
2585 
2586     bdrv_inc_in_flight(bs);
2587     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2588 
2589     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2590     if (ret < 0) {
2591         goto out;
2592     }
2593 
2594     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2595                                    align);
2596     assert(max_pdiscard >= bs->bl.request_alignment);
2597 
2598     while (bytes > 0) {
2599         int num = bytes;
2600 
2601         if (head) {
2602             /* Make small requests to get to alignment boundaries. */
2603             num = MIN(bytes, align - head);
2604             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2605                 num %= bs->bl.request_alignment;
2606             }
2607             head = (head + num) % align;
2608             assert(num < max_pdiscard);
2609         } else if (tail) {
2610             if (num > align) {
2611                 /* Shorten the request to the last aligned cluster.  */
2612                 num -= tail;
2613             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2614                        tail > bs->bl.request_alignment) {
2615                 tail %= bs->bl.request_alignment;
2616                 num -= tail;
2617             }
2618         }
2619         /* limit request size */
2620         if (num > max_pdiscard) {
2621             num = max_pdiscard;
2622         }
2623 
2624         if (!bs->drv) {
2625             ret = -ENOMEDIUM;
2626             goto out;
2627         }
2628         if (bs->drv->bdrv_co_pdiscard) {
2629             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2630         } else {
2631             BlockAIOCB *acb;
2632             CoroutineIOCompletion co = {
2633                 .coroutine = qemu_coroutine_self(),
2634             };
2635 
2636             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2637                                              bdrv_co_io_em_complete, &co);
2638             if (acb == NULL) {
2639                 ret = -EIO;
2640                 goto out;
2641             } else {
2642                 qemu_coroutine_yield();
2643                 ret = co.ret;
2644             }
2645         }
2646         if (ret && ret != -ENOTSUP) {
2647             goto out;
2648         }
2649 
2650         offset += num;
2651         bytes -= num;
2652     }
2653     ret = 0;
2654 out:
2655     atomic_inc(&bs->write_gen);
2656     bdrv_set_dirty(bs, req.offset, req.bytes);
2657     tracked_request_end(&req);
2658     bdrv_dec_in_flight(bs);
2659     return ret;
2660 }
2661 
2662 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2663 {
2664     Coroutine *co;
2665     DiscardCo rwco = {
2666         .bs = bs,
2667         .offset = offset,
2668         .bytes = bytes,
2669         .ret = NOT_DONE,
2670     };
2671 
2672     if (qemu_in_coroutine()) {
2673         /* Fast-path if already in coroutine context */
2674         bdrv_pdiscard_co_entry(&rwco);
2675     } else {
2676         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2677         bdrv_coroutine_enter(bs, co);
2678         BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2679     }
2680 
2681     return rwco.ret;
2682 }
2683 
2684 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2685 {
2686     BlockDriver *drv = bs->drv;
2687     CoroutineIOCompletion co = {
2688         .coroutine = qemu_coroutine_self(),
2689     };
2690     BlockAIOCB *acb;
2691 
2692     bdrv_inc_in_flight(bs);
2693     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2694         co.ret = -ENOTSUP;
2695         goto out;
2696     }
2697 
2698     if (drv->bdrv_co_ioctl) {
2699         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2700     } else {
2701         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2702         if (!acb) {
2703             co.ret = -ENOTSUP;
2704             goto out;
2705         }
2706         qemu_coroutine_yield();
2707     }
2708 out:
2709     bdrv_dec_in_flight(bs);
2710     return co.ret;
2711 }
2712 
2713 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2714 {
2715     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2716 }
2717 
2718 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2719 {
2720     return memset(qemu_blockalign(bs, size), 0, size);
2721 }
2722 
2723 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2724 {
2725     size_t align = bdrv_opt_mem_align(bs);
2726 
2727     /* Ensure that NULL is never returned on success */
2728     assert(align > 0);
2729     if (size == 0) {
2730         size = align;
2731     }
2732 
2733     return qemu_try_memalign(align, size);
2734 }
2735 
2736 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2737 {
2738     void *mem = qemu_try_blockalign(bs, size);
2739 
2740     if (mem) {
2741         memset(mem, 0, size);
2742     }
2743 
2744     return mem;
2745 }
2746 
2747 /*
2748  * Check if all memory in this vector is sector aligned.
2749  */
2750 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2751 {
2752     int i;
2753     size_t alignment = bdrv_min_mem_align(bs);
2754 
2755     for (i = 0; i < qiov->niov; i++) {
2756         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2757             return false;
2758         }
2759         if (qiov->iov[i].iov_len % alignment) {
2760             return false;
2761         }
2762     }
2763 
2764     return true;
2765 }
2766 
2767 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2768                                     NotifierWithReturn *notifier)
2769 {
2770     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2771 }
2772 
2773 void bdrv_io_plug(BlockDriverState *bs)
2774 {
2775     BdrvChild *child;
2776 
2777     QLIST_FOREACH(child, &bs->children, next) {
2778         bdrv_io_plug(child->bs);
2779     }
2780 
2781     if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2782         BlockDriver *drv = bs->drv;
2783         if (drv && drv->bdrv_io_plug) {
2784             drv->bdrv_io_plug(bs);
2785         }
2786     }
2787 }
2788 
2789 void bdrv_io_unplug(BlockDriverState *bs)
2790 {
2791     BdrvChild *child;
2792 
2793     assert(bs->io_plugged);
2794     if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2795         BlockDriver *drv = bs->drv;
2796         if (drv && drv->bdrv_io_unplug) {
2797             drv->bdrv_io_unplug(bs);
2798         }
2799     }
2800 
2801     QLIST_FOREACH(child, &bs->children, next) {
2802         bdrv_io_unplug(child->bs);
2803     }
2804 }
2805 
2806 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2807 {
2808     BdrvChild *child;
2809 
2810     if (bs->drv && bs->drv->bdrv_register_buf) {
2811         bs->drv->bdrv_register_buf(bs, host, size);
2812     }
2813     QLIST_FOREACH(child, &bs->children, next) {
2814         bdrv_register_buf(child->bs, host, size);
2815     }
2816 }
2817 
2818 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2819 {
2820     BdrvChild *child;
2821 
2822     if (bs->drv && bs->drv->bdrv_unregister_buf) {
2823         bs->drv->bdrv_unregister_buf(bs, host);
2824     }
2825     QLIST_FOREACH(child, &bs->children, next) {
2826         bdrv_unregister_buf(child->bs, host);
2827     }
2828 }
2829