1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "qemu/cutils.h" 34 #include "qapi/error.h" 35 #include "qemu/error-report.h" 36 #include "qemu/main-loop.h" 37 #include "sysemu/replay.h" 38 39 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 40 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 41 42 static void bdrv_parent_cb_resize(BlockDriverState *bs); 43 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 44 int64_t offset, int bytes, BdrvRequestFlags flags); 45 46 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 47 bool ignore_bds_parents) 48 { 49 BdrvChild *c, *next; 50 51 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 52 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 53 continue; 54 } 55 bdrv_parent_drained_begin_single(c, false); 56 } 57 } 58 59 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 60 int *drained_end_counter) 61 { 62 assert(c->parent_quiesce_counter > 0); 63 c->parent_quiesce_counter--; 64 if (c->klass->drained_end) { 65 c->klass->drained_end(c, drained_end_counter); 66 } 67 } 68 69 void bdrv_parent_drained_end_single(BdrvChild *c) 70 { 71 int drained_end_counter = 0; 72 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 73 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0); 74 } 75 76 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 77 bool ignore_bds_parents, 78 int *drained_end_counter) 79 { 80 BdrvChild *c; 81 82 QLIST_FOREACH(c, &bs->parents, next_parent) { 83 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 84 continue; 85 } 86 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 87 } 88 } 89 90 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 91 { 92 if (c->klass->drained_poll) { 93 return c->klass->drained_poll(c); 94 } 95 return false; 96 } 97 98 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 99 bool ignore_bds_parents) 100 { 101 BdrvChild *c, *next; 102 bool busy = false; 103 104 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 105 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 106 continue; 107 } 108 busy |= bdrv_parent_drained_poll_single(c); 109 } 110 111 return busy; 112 } 113 114 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 115 { 116 c->parent_quiesce_counter++; 117 if (c->klass->drained_begin) { 118 c->klass->drained_begin(c); 119 } 120 if (poll) { 121 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 122 } 123 } 124 125 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 126 { 127 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 128 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 130 src->opt_mem_alignment); 131 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 132 src->min_mem_alignment); 133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 134 } 135 136 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 137 { 138 ERRP_GUARD(); 139 BlockDriver *drv = bs->drv; 140 BdrvChild *c; 141 bool have_limits; 142 143 memset(&bs->bl, 0, sizeof(bs->bl)); 144 145 if (!drv) { 146 return; 147 } 148 149 /* Default alignment based on whether driver has byte interface */ 150 bs->bl.request_alignment = (drv->bdrv_co_preadv || 151 drv->bdrv_aio_preadv || 152 drv->bdrv_co_preadv_part) ? 1 : 512; 153 154 /* Take some limits from the children as a default */ 155 have_limits = false; 156 QLIST_FOREACH(c, &bs->children, next) { 157 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 158 { 159 bdrv_refresh_limits(c->bs, errp); 160 if (*errp) { 161 return; 162 } 163 bdrv_merge_limits(&bs->bl, &c->bs->bl); 164 have_limits = true; 165 } 166 } 167 168 if (!have_limits) { 169 bs->bl.min_mem_alignment = 512; 170 bs->bl.opt_mem_alignment = qemu_real_host_page_size; 171 172 /* Safe default since most protocols use readv()/writev()/etc */ 173 bs->bl.max_iov = IOV_MAX; 174 } 175 176 /* Then let the driver override it */ 177 if (drv->bdrv_refresh_limits) { 178 drv->bdrv_refresh_limits(bs, errp); 179 if (*errp) { 180 return; 181 } 182 } 183 184 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 185 error_setg(errp, "Driver requires too large request alignment"); 186 } 187 } 188 189 /** 190 * The copy-on-read flag is actually a reference count so multiple users may 191 * use the feature without worrying about clobbering its previous state. 192 * Copy-on-read stays enabled until all users have called to disable it. 193 */ 194 void bdrv_enable_copy_on_read(BlockDriverState *bs) 195 { 196 qatomic_inc(&bs->copy_on_read); 197 } 198 199 void bdrv_disable_copy_on_read(BlockDriverState *bs) 200 { 201 int old = qatomic_fetch_dec(&bs->copy_on_read); 202 assert(old >= 1); 203 } 204 205 typedef struct { 206 Coroutine *co; 207 BlockDriverState *bs; 208 bool done; 209 bool begin; 210 bool recursive; 211 bool poll; 212 BdrvChild *parent; 213 bool ignore_bds_parents; 214 int *drained_end_counter; 215 } BdrvCoDrainData; 216 217 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 218 { 219 BdrvCoDrainData *data = opaque; 220 BlockDriverState *bs = data->bs; 221 222 if (data->begin) { 223 bs->drv->bdrv_co_drain_begin(bs); 224 } else { 225 bs->drv->bdrv_co_drain_end(bs); 226 } 227 228 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 229 qatomic_mb_set(&data->done, true); 230 if (!data->begin) { 231 qatomic_dec(data->drained_end_counter); 232 } 233 bdrv_dec_in_flight(bs); 234 235 g_free(data); 236 } 237 238 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 239 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 240 int *drained_end_counter) 241 { 242 BdrvCoDrainData *data; 243 244 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 245 (!begin && !bs->drv->bdrv_co_drain_end)) { 246 return; 247 } 248 249 data = g_new(BdrvCoDrainData, 1); 250 *data = (BdrvCoDrainData) { 251 .bs = bs, 252 .done = false, 253 .begin = begin, 254 .drained_end_counter = drained_end_counter, 255 }; 256 257 if (!begin) { 258 qatomic_inc(drained_end_counter); 259 } 260 261 /* Make sure the driver callback completes during the polling phase for 262 * drain_begin. */ 263 bdrv_inc_in_flight(bs); 264 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 265 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 266 } 267 268 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 269 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 270 BdrvChild *ignore_parent, bool ignore_bds_parents) 271 { 272 BdrvChild *child, *next; 273 274 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 275 return true; 276 } 277 278 if (qatomic_read(&bs->in_flight)) { 279 return true; 280 } 281 282 if (recursive) { 283 assert(!ignore_bds_parents); 284 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 285 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 286 return true; 287 } 288 } 289 } 290 291 return false; 292 } 293 294 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 295 BdrvChild *ignore_parent) 296 { 297 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 298 } 299 300 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 301 BdrvChild *parent, bool ignore_bds_parents, 302 bool poll); 303 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 304 BdrvChild *parent, bool ignore_bds_parents, 305 int *drained_end_counter); 306 307 static void bdrv_co_drain_bh_cb(void *opaque) 308 { 309 BdrvCoDrainData *data = opaque; 310 Coroutine *co = data->co; 311 BlockDriverState *bs = data->bs; 312 313 if (bs) { 314 AioContext *ctx = bdrv_get_aio_context(bs); 315 aio_context_acquire(ctx); 316 bdrv_dec_in_flight(bs); 317 if (data->begin) { 318 assert(!data->drained_end_counter); 319 bdrv_do_drained_begin(bs, data->recursive, data->parent, 320 data->ignore_bds_parents, data->poll); 321 } else { 322 assert(!data->poll); 323 bdrv_do_drained_end(bs, data->recursive, data->parent, 324 data->ignore_bds_parents, 325 data->drained_end_counter); 326 } 327 aio_context_release(ctx); 328 } else { 329 assert(data->begin); 330 bdrv_drain_all_begin(); 331 } 332 333 data->done = true; 334 aio_co_wake(co); 335 } 336 337 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 338 bool begin, bool recursive, 339 BdrvChild *parent, 340 bool ignore_bds_parents, 341 bool poll, 342 int *drained_end_counter) 343 { 344 BdrvCoDrainData data; 345 Coroutine *self = qemu_coroutine_self(); 346 AioContext *ctx = bdrv_get_aio_context(bs); 347 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 348 349 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 350 * other coroutines run if they were queued by aio_co_enter(). */ 351 352 assert(qemu_in_coroutine()); 353 data = (BdrvCoDrainData) { 354 .co = self, 355 .bs = bs, 356 .done = false, 357 .begin = begin, 358 .recursive = recursive, 359 .parent = parent, 360 .ignore_bds_parents = ignore_bds_parents, 361 .poll = poll, 362 .drained_end_counter = drained_end_counter, 363 }; 364 365 if (bs) { 366 bdrv_inc_in_flight(bs); 367 } 368 369 /* 370 * Temporarily drop the lock across yield or we would get deadlocks. 371 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 372 * 373 * When we yield below, the lock for the current context will be 374 * released, so if this is actually the lock that protects bs, don't drop 375 * it a second time. 376 */ 377 if (ctx != co_ctx) { 378 aio_context_release(ctx); 379 } 380 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data); 381 382 qemu_coroutine_yield(); 383 /* If we are resumed from some other event (such as an aio completion or a 384 * timer callback), it is a bug in the caller that should be fixed. */ 385 assert(data.done); 386 387 /* Reaquire the AioContext of bs if we dropped it */ 388 if (ctx != co_ctx) { 389 aio_context_acquire(ctx); 390 } 391 } 392 393 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 394 BdrvChild *parent, bool ignore_bds_parents) 395 { 396 assert(!qemu_in_coroutine()); 397 398 /* Stop things in parent-to-child order */ 399 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 400 aio_disable_external(bdrv_get_aio_context(bs)); 401 } 402 403 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 404 bdrv_drain_invoke(bs, true, NULL); 405 } 406 407 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 408 BdrvChild *parent, bool ignore_bds_parents, 409 bool poll) 410 { 411 BdrvChild *child, *next; 412 413 if (qemu_in_coroutine()) { 414 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 415 poll, NULL); 416 return; 417 } 418 419 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 420 421 if (recursive) { 422 assert(!ignore_bds_parents); 423 bs->recursive_quiesce_counter++; 424 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 425 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 426 false); 427 } 428 } 429 430 /* 431 * Wait for drained requests to finish. 432 * 433 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 434 * call is needed so things in this AioContext can make progress even 435 * though we don't return to the main AioContext loop - this automatically 436 * includes other nodes in the same AioContext and therefore all child 437 * nodes. 438 */ 439 if (poll) { 440 assert(!ignore_bds_parents); 441 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 442 } 443 } 444 445 void bdrv_drained_begin(BlockDriverState *bs) 446 { 447 bdrv_do_drained_begin(bs, false, NULL, false, true); 448 } 449 450 void bdrv_subtree_drained_begin(BlockDriverState *bs) 451 { 452 bdrv_do_drained_begin(bs, true, NULL, false, true); 453 } 454 455 /** 456 * This function does not poll, nor must any of its recursively called 457 * functions. The *drained_end_counter pointee will be incremented 458 * once for every background operation scheduled, and decremented once 459 * the operation settles. Therefore, the pointer must remain valid 460 * until the pointee reaches 0. That implies that whoever sets up the 461 * pointee has to poll until it is 0. 462 * 463 * We use atomic operations to access *drained_end_counter, because 464 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 465 * @bs may contain nodes in different AioContexts, 466 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 467 * regardless of which AioContext they are in. 468 */ 469 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 470 BdrvChild *parent, bool ignore_bds_parents, 471 int *drained_end_counter) 472 { 473 BdrvChild *child; 474 int old_quiesce_counter; 475 476 assert(drained_end_counter != NULL); 477 478 if (qemu_in_coroutine()) { 479 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 480 false, drained_end_counter); 481 return; 482 } 483 assert(bs->quiesce_counter > 0); 484 485 /* Re-enable things in child-to-parent order */ 486 bdrv_drain_invoke(bs, false, drained_end_counter); 487 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 488 drained_end_counter); 489 490 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 491 if (old_quiesce_counter == 1) { 492 aio_enable_external(bdrv_get_aio_context(bs)); 493 } 494 495 if (recursive) { 496 assert(!ignore_bds_parents); 497 bs->recursive_quiesce_counter--; 498 QLIST_FOREACH(child, &bs->children, next) { 499 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 500 drained_end_counter); 501 } 502 } 503 } 504 505 void bdrv_drained_end(BlockDriverState *bs) 506 { 507 int drained_end_counter = 0; 508 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 509 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 510 } 511 512 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 513 { 514 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 515 } 516 517 void bdrv_subtree_drained_end(BlockDriverState *bs) 518 { 519 int drained_end_counter = 0; 520 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 521 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 522 } 523 524 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 525 { 526 int i; 527 528 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 529 bdrv_do_drained_begin(child->bs, true, child, false, true); 530 } 531 } 532 533 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 534 { 535 int drained_end_counter = 0; 536 int i; 537 538 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 539 bdrv_do_drained_end(child->bs, true, child, false, 540 &drained_end_counter); 541 } 542 543 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0); 544 } 545 546 /* 547 * Wait for pending requests to complete on a single BlockDriverState subtree, 548 * and suspend block driver's internal I/O until next request arrives. 549 * 550 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 551 * AioContext. 552 */ 553 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 554 { 555 assert(qemu_in_coroutine()); 556 bdrv_drained_begin(bs); 557 bdrv_drained_end(bs); 558 } 559 560 void bdrv_drain(BlockDriverState *bs) 561 { 562 bdrv_drained_begin(bs); 563 bdrv_drained_end(bs); 564 } 565 566 static void bdrv_drain_assert_idle(BlockDriverState *bs) 567 { 568 BdrvChild *child, *next; 569 570 assert(qatomic_read(&bs->in_flight) == 0); 571 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 572 bdrv_drain_assert_idle(child->bs); 573 } 574 } 575 576 unsigned int bdrv_drain_all_count = 0; 577 578 static bool bdrv_drain_all_poll(void) 579 { 580 BlockDriverState *bs = NULL; 581 bool result = false; 582 583 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 584 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 585 while ((bs = bdrv_next_all_states(bs))) { 586 AioContext *aio_context = bdrv_get_aio_context(bs); 587 aio_context_acquire(aio_context); 588 result |= bdrv_drain_poll(bs, false, NULL, true); 589 aio_context_release(aio_context); 590 } 591 592 return result; 593 } 594 595 /* 596 * Wait for pending requests to complete across all BlockDriverStates 597 * 598 * This function does not flush data to disk, use bdrv_flush_all() for that 599 * after calling this function. 600 * 601 * This pauses all block jobs and disables external clients. It must 602 * be paired with bdrv_drain_all_end(). 603 * 604 * NOTE: no new block jobs or BlockDriverStates can be created between 605 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 606 */ 607 void bdrv_drain_all_begin(void) 608 { 609 BlockDriverState *bs = NULL; 610 611 if (qemu_in_coroutine()) { 612 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 613 return; 614 } 615 616 /* 617 * bdrv queue is managed by record/replay, 618 * waiting for finishing the I/O requests may 619 * be infinite 620 */ 621 if (replay_events_enabled()) { 622 return; 623 } 624 625 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 626 * loop AioContext, so make sure we're in the main context. */ 627 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 628 assert(bdrv_drain_all_count < INT_MAX); 629 bdrv_drain_all_count++; 630 631 /* Quiesce all nodes, without polling in-flight requests yet. The graph 632 * cannot change during this loop. */ 633 while ((bs = bdrv_next_all_states(bs))) { 634 AioContext *aio_context = bdrv_get_aio_context(bs); 635 636 aio_context_acquire(aio_context); 637 bdrv_do_drained_begin(bs, false, NULL, true, false); 638 aio_context_release(aio_context); 639 } 640 641 /* Now poll the in-flight requests */ 642 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 643 644 while ((bs = bdrv_next_all_states(bs))) { 645 bdrv_drain_assert_idle(bs); 646 } 647 } 648 649 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 650 { 651 int drained_end_counter = 0; 652 653 g_assert(bs->quiesce_counter > 0); 654 g_assert(!bs->refcnt); 655 656 while (bs->quiesce_counter) { 657 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 658 } 659 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 660 } 661 662 void bdrv_drain_all_end(void) 663 { 664 BlockDriverState *bs = NULL; 665 int drained_end_counter = 0; 666 667 /* 668 * bdrv queue is managed by record/replay, 669 * waiting for finishing the I/O requests may 670 * be endless 671 */ 672 if (replay_events_enabled()) { 673 return; 674 } 675 676 while ((bs = bdrv_next_all_states(bs))) { 677 AioContext *aio_context = bdrv_get_aio_context(bs); 678 679 aio_context_acquire(aio_context); 680 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 681 aio_context_release(aio_context); 682 } 683 684 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 685 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0); 686 687 assert(bdrv_drain_all_count > 0); 688 bdrv_drain_all_count--; 689 } 690 691 void bdrv_drain_all(void) 692 { 693 bdrv_drain_all_begin(); 694 bdrv_drain_all_end(); 695 } 696 697 /** 698 * Remove an active request from the tracked requests list 699 * 700 * This function should be called when a tracked request is completing. 701 */ 702 static void tracked_request_end(BdrvTrackedRequest *req) 703 { 704 if (req->serialising) { 705 qatomic_dec(&req->bs->serialising_in_flight); 706 } 707 708 qemu_co_mutex_lock(&req->bs->reqs_lock); 709 QLIST_REMOVE(req, list); 710 qemu_co_queue_restart_all(&req->wait_queue); 711 qemu_co_mutex_unlock(&req->bs->reqs_lock); 712 } 713 714 /** 715 * Add an active request to the tracked requests list 716 */ 717 static void tracked_request_begin(BdrvTrackedRequest *req, 718 BlockDriverState *bs, 719 int64_t offset, 720 uint64_t bytes, 721 enum BdrvTrackedRequestType type) 722 { 723 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes); 724 725 *req = (BdrvTrackedRequest){ 726 .bs = bs, 727 .offset = offset, 728 .bytes = bytes, 729 .type = type, 730 .co = qemu_coroutine_self(), 731 .serialising = false, 732 .overlap_offset = offset, 733 .overlap_bytes = bytes, 734 }; 735 736 qemu_co_queue_init(&req->wait_queue); 737 738 qemu_co_mutex_lock(&bs->reqs_lock); 739 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 740 qemu_co_mutex_unlock(&bs->reqs_lock); 741 } 742 743 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 744 int64_t offset, uint64_t bytes) 745 { 746 /* aaaa bbbb */ 747 if (offset >= req->overlap_offset + req->overlap_bytes) { 748 return false; 749 } 750 /* bbbb aaaa */ 751 if (req->overlap_offset >= offset + bytes) { 752 return false; 753 } 754 return true; 755 } 756 757 /* Called with self->bs->reqs_lock held */ 758 static BdrvTrackedRequest * 759 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 760 { 761 BdrvTrackedRequest *req; 762 763 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 764 if (req == self || (!req->serialising && !self->serialising)) { 765 continue; 766 } 767 if (tracked_request_overlaps(req, self->overlap_offset, 768 self->overlap_bytes)) 769 { 770 /* 771 * Hitting this means there was a reentrant request, for 772 * example, a block driver issuing nested requests. This must 773 * never happen since it means deadlock. 774 */ 775 assert(qemu_coroutine_self() != req->co); 776 777 /* 778 * If the request is already (indirectly) waiting for us, or 779 * will wait for us as soon as it wakes up, then just go on 780 * (instead of producing a deadlock in the former case). 781 */ 782 if (!req->waiting_for) { 783 return req; 784 } 785 } 786 } 787 788 return NULL; 789 } 790 791 /* Called with self->bs->reqs_lock held */ 792 static bool coroutine_fn 793 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 794 { 795 BdrvTrackedRequest *req; 796 bool waited = false; 797 798 while ((req = bdrv_find_conflicting_request(self))) { 799 self->waiting_for = req; 800 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 801 self->waiting_for = NULL; 802 waited = true; 803 } 804 805 return waited; 806 } 807 808 /* Called with req->bs->reqs_lock held */ 809 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 810 uint64_t align) 811 { 812 int64_t overlap_offset = req->offset & ~(align - 1); 813 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 814 - overlap_offset; 815 816 if (!req->serialising) { 817 qatomic_inc(&req->bs->serialising_in_flight); 818 req->serialising = true; 819 } 820 821 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 822 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 823 } 824 825 /** 826 * Return the tracked request on @bs for the current coroutine, or 827 * NULL if there is none. 828 */ 829 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 830 { 831 BdrvTrackedRequest *req; 832 Coroutine *self = qemu_coroutine_self(); 833 834 QLIST_FOREACH(req, &bs->tracked_requests, list) { 835 if (req->co == self) { 836 return req; 837 } 838 } 839 840 return NULL; 841 } 842 843 /** 844 * Round a region to cluster boundaries 845 */ 846 void bdrv_round_to_clusters(BlockDriverState *bs, 847 int64_t offset, int64_t bytes, 848 int64_t *cluster_offset, 849 int64_t *cluster_bytes) 850 { 851 BlockDriverInfo bdi; 852 853 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 854 *cluster_offset = offset; 855 *cluster_bytes = bytes; 856 } else { 857 int64_t c = bdi.cluster_size; 858 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 859 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 860 } 861 } 862 863 static int bdrv_get_cluster_size(BlockDriverState *bs) 864 { 865 BlockDriverInfo bdi; 866 int ret; 867 868 ret = bdrv_get_info(bs, &bdi); 869 if (ret < 0 || bdi.cluster_size == 0) { 870 return bs->bl.request_alignment; 871 } else { 872 return bdi.cluster_size; 873 } 874 } 875 876 void bdrv_inc_in_flight(BlockDriverState *bs) 877 { 878 qatomic_inc(&bs->in_flight); 879 } 880 881 void bdrv_wakeup(BlockDriverState *bs) 882 { 883 aio_wait_kick(); 884 } 885 886 void bdrv_dec_in_flight(BlockDriverState *bs) 887 { 888 qatomic_dec(&bs->in_flight); 889 bdrv_wakeup(bs); 890 } 891 892 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 893 { 894 BlockDriverState *bs = self->bs; 895 bool waited = false; 896 897 if (!qatomic_read(&bs->serialising_in_flight)) { 898 return false; 899 } 900 901 qemu_co_mutex_lock(&bs->reqs_lock); 902 waited = bdrv_wait_serialising_requests_locked(self); 903 qemu_co_mutex_unlock(&bs->reqs_lock); 904 905 return waited; 906 } 907 908 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 909 uint64_t align) 910 { 911 bool waited; 912 913 qemu_co_mutex_lock(&req->bs->reqs_lock); 914 915 tracked_request_set_serialising(req, align); 916 waited = bdrv_wait_serialising_requests_locked(req); 917 918 qemu_co_mutex_unlock(&req->bs->reqs_lock); 919 920 return waited; 921 } 922 923 int bdrv_check_request(int64_t offset, int64_t bytes) 924 { 925 if (offset < 0 || bytes < 0) { 926 return -EIO; 927 } 928 929 if (bytes > BDRV_MAX_LENGTH) { 930 return -EIO; 931 } 932 933 if (offset > BDRV_MAX_LENGTH - bytes) { 934 return -EIO; 935 } 936 937 return 0; 938 } 939 940 static int bdrv_check_request32(int64_t offset, int64_t bytes) 941 { 942 int ret = bdrv_check_request(offset, bytes); 943 if (ret < 0) { 944 return ret; 945 } 946 947 if (bytes > BDRV_REQUEST_MAX_BYTES) { 948 return -EIO; 949 } 950 951 return 0; 952 } 953 954 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 955 int bytes, BdrvRequestFlags flags) 956 { 957 return bdrv_pwritev(child, offset, bytes, NULL, 958 BDRV_REQ_ZERO_WRITE | flags); 959 } 960 961 /* 962 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 963 * The operation is sped up by checking the block status and only writing 964 * zeroes to the device if they currently do not return zeroes. Optional 965 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 966 * BDRV_REQ_FUA). 967 * 968 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 969 */ 970 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 971 { 972 int ret; 973 int64_t target_size, bytes, offset = 0; 974 BlockDriverState *bs = child->bs; 975 976 target_size = bdrv_getlength(bs); 977 if (target_size < 0) { 978 return target_size; 979 } 980 981 for (;;) { 982 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 983 if (bytes <= 0) { 984 return 0; 985 } 986 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 987 if (ret < 0) { 988 return ret; 989 } 990 if (ret & BDRV_BLOCK_ZERO) { 991 offset += bytes; 992 continue; 993 } 994 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 995 if (ret < 0) { 996 return ret; 997 } 998 offset += bytes; 999 } 1000 } 1001 1002 /* See bdrv_pwrite() for the return codes */ 1003 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 1004 { 1005 int ret; 1006 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1007 1008 if (bytes < 0) { 1009 return -EINVAL; 1010 } 1011 1012 ret = bdrv_preadv(child, offset, bytes, &qiov, 0); 1013 1014 return ret < 0 ? ret : bytes; 1015 } 1016 1017 /* Return no. of bytes on success or < 0 on error. Important errors are: 1018 -EIO generic I/O error (may happen for all errors) 1019 -ENOMEDIUM No media inserted. 1020 -EINVAL Invalid offset or number of bytes 1021 -EACCES Trying to write a read-only device 1022 */ 1023 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 1024 { 1025 int ret; 1026 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1027 1028 if (bytes < 0) { 1029 return -EINVAL; 1030 } 1031 1032 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0); 1033 1034 return ret < 0 ? ret : bytes; 1035 } 1036 1037 /* 1038 * Writes to the file and ensures that no writes are reordered across this 1039 * request (acts as a barrier) 1040 * 1041 * Returns 0 on success, -errno in error cases. 1042 */ 1043 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1044 const void *buf, int count) 1045 { 1046 int ret; 1047 1048 ret = bdrv_pwrite(child, offset, buf, count); 1049 if (ret < 0) { 1050 return ret; 1051 } 1052 1053 ret = bdrv_flush(child->bs); 1054 if (ret < 0) { 1055 return ret; 1056 } 1057 1058 return 0; 1059 } 1060 1061 typedef struct CoroutineIOCompletion { 1062 Coroutine *coroutine; 1063 int ret; 1064 } CoroutineIOCompletion; 1065 1066 static void bdrv_co_io_em_complete(void *opaque, int ret) 1067 { 1068 CoroutineIOCompletion *co = opaque; 1069 1070 co->ret = ret; 1071 aio_co_wake(co->coroutine); 1072 } 1073 1074 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1075 uint64_t offset, uint64_t bytes, 1076 QEMUIOVector *qiov, 1077 size_t qiov_offset, int flags) 1078 { 1079 BlockDriver *drv = bs->drv; 1080 int64_t sector_num; 1081 unsigned int nb_sectors; 1082 QEMUIOVector local_qiov; 1083 int ret; 1084 1085 assert(!(flags & ~BDRV_REQ_MASK)); 1086 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1087 1088 if (!drv) { 1089 return -ENOMEDIUM; 1090 } 1091 1092 if (drv->bdrv_co_preadv_part) { 1093 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1094 flags); 1095 } 1096 1097 if (qiov_offset > 0 || bytes != qiov->size) { 1098 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1099 qiov = &local_qiov; 1100 } 1101 1102 if (drv->bdrv_co_preadv) { 1103 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1104 goto out; 1105 } 1106 1107 if (drv->bdrv_aio_preadv) { 1108 BlockAIOCB *acb; 1109 CoroutineIOCompletion co = { 1110 .coroutine = qemu_coroutine_self(), 1111 }; 1112 1113 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1114 bdrv_co_io_em_complete, &co); 1115 if (acb == NULL) { 1116 ret = -EIO; 1117 goto out; 1118 } else { 1119 qemu_coroutine_yield(); 1120 ret = co.ret; 1121 goto out; 1122 } 1123 } 1124 1125 sector_num = offset >> BDRV_SECTOR_BITS; 1126 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1127 1128 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1129 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1130 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1131 assert(drv->bdrv_co_readv); 1132 1133 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1134 1135 out: 1136 if (qiov == &local_qiov) { 1137 qemu_iovec_destroy(&local_qiov); 1138 } 1139 1140 return ret; 1141 } 1142 1143 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1144 uint64_t offset, uint64_t bytes, 1145 QEMUIOVector *qiov, 1146 size_t qiov_offset, int flags) 1147 { 1148 BlockDriver *drv = bs->drv; 1149 int64_t sector_num; 1150 unsigned int nb_sectors; 1151 QEMUIOVector local_qiov; 1152 int ret; 1153 1154 assert(!(flags & ~BDRV_REQ_MASK)); 1155 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1156 1157 if (!drv) { 1158 return -ENOMEDIUM; 1159 } 1160 1161 if (drv->bdrv_co_pwritev_part) { 1162 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1163 flags & bs->supported_write_flags); 1164 flags &= ~bs->supported_write_flags; 1165 goto emulate_flags; 1166 } 1167 1168 if (qiov_offset > 0 || bytes != qiov->size) { 1169 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1170 qiov = &local_qiov; 1171 } 1172 1173 if (drv->bdrv_co_pwritev) { 1174 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1175 flags & bs->supported_write_flags); 1176 flags &= ~bs->supported_write_flags; 1177 goto emulate_flags; 1178 } 1179 1180 if (drv->bdrv_aio_pwritev) { 1181 BlockAIOCB *acb; 1182 CoroutineIOCompletion co = { 1183 .coroutine = qemu_coroutine_self(), 1184 }; 1185 1186 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1187 flags & bs->supported_write_flags, 1188 bdrv_co_io_em_complete, &co); 1189 flags &= ~bs->supported_write_flags; 1190 if (acb == NULL) { 1191 ret = -EIO; 1192 } else { 1193 qemu_coroutine_yield(); 1194 ret = co.ret; 1195 } 1196 goto emulate_flags; 1197 } 1198 1199 sector_num = offset >> BDRV_SECTOR_BITS; 1200 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1201 1202 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1203 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1204 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1205 1206 assert(drv->bdrv_co_writev); 1207 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1208 flags & bs->supported_write_flags); 1209 flags &= ~bs->supported_write_flags; 1210 1211 emulate_flags: 1212 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1213 ret = bdrv_co_flush(bs); 1214 } 1215 1216 if (qiov == &local_qiov) { 1217 qemu_iovec_destroy(&local_qiov); 1218 } 1219 1220 return ret; 1221 } 1222 1223 static int coroutine_fn 1224 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 1225 uint64_t bytes, QEMUIOVector *qiov, 1226 size_t qiov_offset) 1227 { 1228 BlockDriver *drv = bs->drv; 1229 QEMUIOVector local_qiov; 1230 int ret; 1231 1232 if (!drv) { 1233 return -ENOMEDIUM; 1234 } 1235 1236 if (!block_driver_can_compress(drv)) { 1237 return -ENOTSUP; 1238 } 1239 1240 if (drv->bdrv_co_pwritev_compressed_part) { 1241 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1242 qiov, qiov_offset); 1243 } 1244 1245 if (qiov_offset == 0) { 1246 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1247 } 1248 1249 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1250 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1251 qemu_iovec_destroy(&local_qiov); 1252 1253 return ret; 1254 } 1255 1256 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1257 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1258 size_t qiov_offset, int flags) 1259 { 1260 BlockDriverState *bs = child->bs; 1261 1262 /* Perform I/O through a temporary buffer so that users who scribble over 1263 * their read buffer while the operation is in progress do not end up 1264 * modifying the image file. This is critical for zero-copy guest I/O 1265 * where anything might happen inside guest memory. 1266 */ 1267 void *bounce_buffer = NULL; 1268 1269 BlockDriver *drv = bs->drv; 1270 int64_t cluster_offset; 1271 int64_t cluster_bytes; 1272 size_t skip_bytes; 1273 int ret; 1274 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1275 BDRV_REQUEST_MAX_BYTES); 1276 unsigned int progress = 0; 1277 bool skip_write; 1278 1279 if (!drv) { 1280 return -ENOMEDIUM; 1281 } 1282 1283 /* 1284 * Do not write anything when the BDS is inactive. That is not 1285 * allowed, and it would not help. 1286 */ 1287 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1288 1289 /* FIXME We cannot require callers to have write permissions when all they 1290 * are doing is a read request. If we did things right, write permissions 1291 * would be obtained anyway, but internally by the copy-on-read code. As 1292 * long as it is implemented here rather than in a separate filter driver, 1293 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1294 * it could request permissions. Therefore we have to bypass the permission 1295 * system for the moment. */ 1296 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1297 1298 /* Cover entire cluster so no additional backing file I/O is required when 1299 * allocating cluster in the image file. Note that this value may exceed 1300 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1301 * is one reason we loop rather than doing it all at once. 1302 */ 1303 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1304 skip_bytes = offset - cluster_offset; 1305 1306 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1307 cluster_offset, cluster_bytes); 1308 1309 while (cluster_bytes) { 1310 int64_t pnum; 1311 1312 if (skip_write) { 1313 ret = 1; /* "already allocated", so nothing will be copied */ 1314 pnum = MIN(cluster_bytes, max_transfer); 1315 } else { 1316 ret = bdrv_is_allocated(bs, cluster_offset, 1317 MIN(cluster_bytes, max_transfer), &pnum); 1318 if (ret < 0) { 1319 /* 1320 * Safe to treat errors in querying allocation as if 1321 * unallocated; we'll probably fail again soon on the 1322 * read, but at least that will set a decent errno. 1323 */ 1324 pnum = MIN(cluster_bytes, max_transfer); 1325 } 1326 1327 /* Stop at EOF if the image ends in the middle of the cluster */ 1328 if (ret == 0 && pnum == 0) { 1329 assert(progress >= bytes); 1330 break; 1331 } 1332 1333 assert(skip_bytes < pnum); 1334 } 1335 1336 if (ret <= 0) { 1337 QEMUIOVector local_qiov; 1338 1339 /* Must copy-on-read; use the bounce buffer */ 1340 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1341 if (!bounce_buffer) { 1342 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1343 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1344 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1345 1346 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1347 if (!bounce_buffer) { 1348 ret = -ENOMEM; 1349 goto err; 1350 } 1351 } 1352 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1353 1354 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1355 &local_qiov, 0, 0); 1356 if (ret < 0) { 1357 goto err; 1358 } 1359 1360 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1361 if (drv->bdrv_co_pwrite_zeroes && 1362 buffer_is_zero(bounce_buffer, pnum)) { 1363 /* FIXME: Should we (perhaps conditionally) be setting 1364 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1365 * that still correctly reads as zero? */ 1366 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1367 BDRV_REQ_WRITE_UNCHANGED); 1368 } else { 1369 /* This does not change the data on the disk, it is not 1370 * necessary to flush even in cache=writethrough mode. 1371 */ 1372 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1373 &local_qiov, 0, 1374 BDRV_REQ_WRITE_UNCHANGED); 1375 } 1376 1377 if (ret < 0) { 1378 /* It might be okay to ignore write errors for guest 1379 * requests. If this is a deliberate copy-on-read 1380 * then we don't want to ignore the error. Simply 1381 * report it in all cases. 1382 */ 1383 goto err; 1384 } 1385 1386 if (!(flags & BDRV_REQ_PREFETCH)) { 1387 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1388 bounce_buffer + skip_bytes, 1389 MIN(pnum - skip_bytes, bytes - progress)); 1390 } 1391 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1392 /* Read directly into the destination */ 1393 ret = bdrv_driver_preadv(bs, offset + progress, 1394 MIN(pnum - skip_bytes, bytes - progress), 1395 qiov, qiov_offset + progress, 0); 1396 if (ret < 0) { 1397 goto err; 1398 } 1399 } 1400 1401 cluster_offset += pnum; 1402 cluster_bytes -= pnum; 1403 progress += pnum - skip_bytes; 1404 skip_bytes = 0; 1405 } 1406 ret = 0; 1407 1408 err: 1409 qemu_vfree(bounce_buffer); 1410 return ret; 1411 } 1412 1413 /* 1414 * Forwards an already correctly aligned request to the BlockDriver. This 1415 * handles copy on read, zeroing after EOF, and fragmentation of large 1416 * reads; any other features must be implemented by the caller. 1417 */ 1418 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1419 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1420 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1421 { 1422 BlockDriverState *bs = child->bs; 1423 int64_t total_bytes, max_bytes; 1424 int ret = 0; 1425 uint64_t bytes_remaining = bytes; 1426 int max_transfer; 1427 1428 assert(is_power_of_2(align)); 1429 assert((offset & (align - 1)) == 0); 1430 assert((bytes & (align - 1)) == 0); 1431 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1432 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1433 align); 1434 1435 /* TODO: We would need a per-BDS .supported_read_flags and 1436 * potential fallback support, if we ever implement any read flags 1437 * to pass through to drivers. For now, there aren't any 1438 * passthrough flags. */ 1439 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH))); 1440 1441 /* Handle Copy on Read and associated serialisation */ 1442 if (flags & BDRV_REQ_COPY_ON_READ) { 1443 /* If we touch the same cluster it counts as an overlap. This 1444 * guarantees that allocating writes will be serialized and not race 1445 * with each other for the same cluster. For example, in copy-on-read 1446 * it ensures that the CoR read and write operations are atomic and 1447 * guest writes cannot interleave between them. */ 1448 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1449 } else { 1450 bdrv_wait_serialising_requests(req); 1451 } 1452 1453 if (flags & BDRV_REQ_COPY_ON_READ) { 1454 int64_t pnum; 1455 1456 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1457 flags &= ~BDRV_REQ_COPY_ON_READ; 1458 1459 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1460 if (ret < 0) { 1461 goto out; 1462 } 1463 1464 if (!ret || pnum != bytes) { 1465 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1466 qiov, qiov_offset, flags); 1467 goto out; 1468 } else if (flags & BDRV_REQ_PREFETCH) { 1469 goto out; 1470 } 1471 } 1472 1473 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1474 total_bytes = bdrv_getlength(bs); 1475 if (total_bytes < 0) { 1476 ret = total_bytes; 1477 goto out; 1478 } 1479 1480 assert(!(flags & ~bs->supported_read_flags)); 1481 1482 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1483 if (bytes <= max_bytes && bytes <= max_transfer) { 1484 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1485 goto out; 1486 } 1487 1488 while (bytes_remaining) { 1489 int num; 1490 1491 if (max_bytes) { 1492 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1493 assert(num); 1494 1495 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1496 num, qiov, 1497 qiov_offset + bytes - bytes_remaining, 1498 flags); 1499 max_bytes -= num; 1500 } else { 1501 num = bytes_remaining; 1502 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1503 0, bytes_remaining); 1504 } 1505 if (ret < 0) { 1506 goto out; 1507 } 1508 bytes_remaining -= num; 1509 } 1510 1511 out: 1512 return ret < 0 ? ret : 0; 1513 } 1514 1515 /* 1516 * Request padding 1517 * 1518 * |<---- align ----->| |<----- align ---->| 1519 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1520 * | | | | | | 1521 * -*----------$-------*-------- ... --------*-----$------------*--- 1522 * | | | | | | 1523 * | offset | | end | 1524 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1525 * [buf ... ) [tail_buf ) 1526 * 1527 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1528 * is placed at the beginning of @buf and @tail at the @end. 1529 * 1530 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1531 * around tail, if tail exists. 1532 * 1533 * @merge_reads is true for small requests, 1534 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1535 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1536 */ 1537 typedef struct BdrvRequestPadding { 1538 uint8_t *buf; 1539 size_t buf_len; 1540 uint8_t *tail_buf; 1541 size_t head; 1542 size_t tail; 1543 bool merge_reads; 1544 QEMUIOVector local_qiov; 1545 } BdrvRequestPadding; 1546 1547 static bool bdrv_init_padding(BlockDriverState *bs, 1548 int64_t offset, int64_t bytes, 1549 BdrvRequestPadding *pad) 1550 { 1551 uint64_t align = bs->bl.request_alignment; 1552 size_t sum; 1553 1554 memset(pad, 0, sizeof(*pad)); 1555 1556 pad->head = offset & (align - 1); 1557 pad->tail = ((offset + bytes) & (align - 1)); 1558 if (pad->tail) { 1559 pad->tail = align - pad->tail; 1560 } 1561 1562 if (!pad->head && !pad->tail) { 1563 return false; 1564 } 1565 1566 assert(bytes); /* Nothing good in aligning zero-length requests */ 1567 1568 sum = pad->head + bytes + pad->tail; 1569 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1570 pad->buf = qemu_blockalign(bs, pad->buf_len); 1571 pad->merge_reads = sum == pad->buf_len; 1572 if (pad->tail) { 1573 pad->tail_buf = pad->buf + pad->buf_len - align; 1574 } 1575 1576 return true; 1577 } 1578 1579 static int bdrv_padding_rmw_read(BdrvChild *child, 1580 BdrvTrackedRequest *req, 1581 BdrvRequestPadding *pad, 1582 bool zero_middle) 1583 { 1584 QEMUIOVector local_qiov; 1585 BlockDriverState *bs = child->bs; 1586 uint64_t align = bs->bl.request_alignment; 1587 int ret; 1588 1589 assert(req->serialising && pad->buf); 1590 1591 if (pad->head || pad->merge_reads) { 1592 uint64_t bytes = pad->merge_reads ? pad->buf_len : align; 1593 1594 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1595 1596 if (pad->head) { 1597 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1598 } 1599 if (pad->merge_reads && pad->tail) { 1600 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1601 } 1602 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1603 align, &local_qiov, 0, 0); 1604 if (ret < 0) { 1605 return ret; 1606 } 1607 if (pad->head) { 1608 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1609 } 1610 if (pad->merge_reads && pad->tail) { 1611 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1612 } 1613 1614 if (pad->merge_reads) { 1615 goto zero_mem; 1616 } 1617 } 1618 1619 if (pad->tail) { 1620 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1621 1622 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1623 ret = bdrv_aligned_preadv( 1624 child, req, 1625 req->overlap_offset + req->overlap_bytes - align, 1626 align, align, &local_qiov, 0, 0); 1627 if (ret < 0) { 1628 return ret; 1629 } 1630 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1631 } 1632 1633 zero_mem: 1634 if (zero_middle) { 1635 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1636 } 1637 1638 return 0; 1639 } 1640 1641 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1642 { 1643 if (pad->buf) { 1644 qemu_vfree(pad->buf); 1645 qemu_iovec_destroy(&pad->local_qiov); 1646 } 1647 } 1648 1649 /* 1650 * bdrv_pad_request 1651 * 1652 * Exchange request parameters with padded request if needed. Don't include RMW 1653 * read of padding, bdrv_padding_rmw_read() should be called separately if 1654 * needed. 1655 * 1656 * All parameters except @bs are in-out: they represent original request at 1657 * function call and padded (if padding needed) at function finish. 1658 * 1659 * Function always succeeds. 1660 */ 1661 static bool bdrv_pad_request(BlockDriverState *bs, 1662 QEMUIOVector **qiov, size_t *qiov_offset, 1663 int64_t *offset, unsigned int *bytes, 1664 BdrvRequestPadding *pad) 1665 { 1666 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1667 return false; 1668 } 1669 1670 qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1671 *qiov, *qiov_offset, *bytes, 1672 pad->buf + pad->buf_len - pad->tail, pad->tail); 1673 *bytes += pad->head + pad->tail; 1674 *offset -= pad->head; 1675 *qiov = &pad->local_qiov; 1676 *qiov_offset = 0; 1677 1678 return true; 1679 } 1680 1681 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1682 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1683 BdrvRequestFlags flags) 1684 { 1685 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1686 } 1687 1688 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1689 int64_t offset, unsigned int bytes, 1690 QEMUIOVector *qiov, size_t qiov_offset, 1691 BdrvRequestFlags flags) 1692 { 1693 BlockDriverState *bs = child->bs; 1694 BdrvTrackedRequest req; 1695 BdrvRequestPadding pad; 1696 int ret; 1697 1698 trace_bdrv_co_preadv(bs, offset, bytes, flags); 1699 1700 if (!bdrv_is_inserted(bs)) { 1701 return -ENOMEDIUM; 1702 } 1703 1704 ret = bdrv_check_request32(offset, bytes); 1705 if (ret < 0) { 1706 return ret; 1707 } 1708 1709 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1710 /* 1711 * Aligning zero request is nonsense. Even if driver has special meaning 1712 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1713 * it to driver due to request_alignment. 1714 * 1715 * Still, no reason to return an error if someone do unaligned 1716 * zero-length read occasionally. 1717 */ 1718 return 0; 1719 } 1720 1721 bdrv_inc_in_flight(bs); 1722 1723 /* Don't do copy-on-read if we read data before write operation */ 1724 if (qatomic_read(&bs->copy_on_read)) { 1725 flags |= BDRV_REQ_COPY_ON_READ; 1726 } 1727 1728 bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad); 1729 1730 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1731 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1732 bs->bl.request_alignment, 1733 qiov, qiov_offset, flags); 1734 tracked_request_end(&req); 1735 bdrv_dec_in_flight(bs); 1736 1737 bdrv_padding_destroy(&pad); 1738 1739 return ret; 1740 } 1741 1742 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1743 int64_t offset, int bytes, BdrvRequestFlags flags) 1744 { 1745 BlockDriver *drv = bs->drv; 1746 QEMUIOVector qiov; 1747 void *buf = NULL; 1748 int ret = 0; 1749 bool need_flush = false; 1750 int head = 0; 1751 int tail = 0; 1752 1753 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1754 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1755 bs->bl.request_alignment); 1756 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1757 1758 if (!drv) { 1759 return -ENOMEDIUM; 1760 } 1761 1762 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1763 return -ENOTSUP; 1764 } 1765 1766 assert(alignment % bs->bl.request_alignment == 0); 1767 head = offset % alignment; 1768 tail = (offset + bytes) % alignment; 1769 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1770 assert(max_write_zeroes >= bs->bl.request_alignment); 1771 1772 while (bytes > 0 && !ret) { 1773 int num = bytes; 1774 1775 /* Align request. Block drivers can expect the "bulk" of the request 1776 * to be aligned, and that unaligned requests do not cross cluster 1777 * boundaries. 1778 */ 1779 if (head) { 1780 /* Make a small request up to the first aligned sector. For 1781 * convenience, limit this request to max_transfer even if 1782 * we don't need to fall back to writes. */ 1783 num = MIN(MIN(bytes, max_transfer), alignment - head); 1784 head = (head + num) % alignment; 1785 assert(num < max_write_zeroes); 1786 } else if (tail && num > alignment) { 1787 /* Shorten the request to the last aligned sector. */ 1788 num -= tail; 1789 } 1790 1791 /* limit request size */ 1792 if (num > max_write_zeroes) { 1793 num = max_write_zeroes; 1794 } 1795 1796 ret = -ENOTSUP; 1797 /* First try the efficient write zeroes operation */ 1798 if (drv->bdrv_co_pwrite_zeroes) { 1799 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1800 flags & bs->supported_zero_flags); 1801 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1802 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1803 need_flush = true; 1804 } 1805 } else { 1806 assert(!bs->supported_zero_flags); 1807 } 1808 1809 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1810 /* Fall back to bounce buffer if write zeroes is unsupported */ 1811 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1812 1813 if ((flags & BDRV_REQ_FUA) && 1814 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1815 /* No need for bdrv_driver_pwrite() to do a fallback 1816 * flush on each chunk; use just one at the end */ 1817 write_flags &= ~BDRV_REQ_FUA; 1818 need_flush = true; 1819 } 1820 num = MIN(num, max_transfer); 1821 if (buf == NULL) { 1822 buf = qemu_try_blockalign0(bs, num); 1823 if (buf == NULL) { 1824 ret = -ENOMEM; 1825 goto fail; 1826 } 1827 } 1828 qemu_iovec_init_buf(&qiov, buf, num); 1829 1830 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1831 1832 /* Keep bounce buffer around if it is big enough for all 1833 * all future requests. 1834 */ 1835 if (num < max_transfer) { 1836 qemu_vfree(buf); 1837 buf = NULL; 1838 } 1839 } 1840 1841 offset += num; 1842 bytes -= num; 1843 } 1844 1845 fail: 1846 if (ret == 0 && need_flush) { 1847 ret = bdrv_co_flush(bs); 1848 } 1849 qemu_vfree(buf); 1850 return ret; 1851 } 1852 1853 static inline int coroutine_fn 1854 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes, 1855 BdrvTrackedRequest *req, int flags) 1856 { 1857 BlockDriverState *bs = child->bs; 1858 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1859 1860 if (bs->read_only) { 1861 return -EPERM; 1862 } 1863 1864 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1865 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1866 assert(!(flags & ~BDRV_REQ_MASK)); 1867 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1868 1869 if (flags & BDRV_REQ_SERIALISING) { 1870 QEMU_LOCK_GUARD(&bs->reqs_lock); 1871 1872 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1873 1874 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1875 return -EBUSY; 1876 } 1877 1878 bdrv_wait_serialising_requests_locked(req); 1879 } else { 1880 bdrv_wait_serialising_requests(req); 1881 } 1882 1883 assert(req->overlap_offset <= offset); 1884 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1885 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1886 1887 switch (req->type) { 1888 case BDRV_TRACKED_WRITE: 1889 case BDRV_TRACKED_DISCARD: 1890 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1891 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1892 } else { 1893 assert(child->perm & BLK_PERM_WRITE); 1894 } 1895 return notifier_with_return_list_notify(&bs->before_write_notifiers, 1896 req); 1897 case BDRV_TRACKED_TRUNCATE: 1898 assert(child->perm & BLK_PERM_RESIZE); 1899 return 0; 1900 default: 1901 abort(); 1902 } 1903 } 1904 1905 static inline void coroutine_fn 1906 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes, 1907 BdrvTrackedRequest *req, int ret) 1908 { 1909 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1910 BlockDriverState *bs = child->bs; 1911 1912 qatomic_inc(&bs->write_gen); 1913 1914 /* 1915 * Discard cannot extend the image, but in error handling cases, such as 1916 * when reverting a qcow2 cluster allocation, the discarded range can pass 1917 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1918 * here. Instead, just skip it, since semantically a discard request 1919 * beyond EOF cannot expand the image anyway. 1920 */ 1921 if (ret == 0 && 1922 (req->type == BDRV_TRACKED_TRUNCATE || 1923 end_sector > bs->total_sectors) && 1924 req->type != BDRV_TRACKED_DISCARD) { 1925 bs->total_sectors = end_sector; 1926 bdrv_parent_cb_resize(bs); 1927 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1928 } 1929 if (req->bytes) { 1930 switch (req->type) { 1931 case BDRV_TRACKED_WRITE: 1932 stat64_max(&bs->wr_highest_offset, offset + bytes); 1933 /* fall through, to set dirty bits */ 1934 case BDRV_TRACKED_DISCARD: 1935 bdrv_set_dirty(bs, offset, bytes); 1936 break; 1937 default: 1938 break; 1939 } 1940 } 1941 } 1942 1943 /* 1944 * Forwards an already correctly aligned write request to the BlockDriver, 1945 * after possibly fragmenting it. 1946 */ 1947 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1948 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1949 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1950 { 1951 BlockDriverState *bs = child->bs; 1952 BlockDriver *drv = bs->drv; 1953 int ret; 1954 1955 uint64_t bytes_remaining = bytes; 1956 int max_transfer; 1957 1958 if (!drv) { 1959 return -ENOMEDIUM; 1960 } 1961 1962 if (bdrv_has_readonly_bitmaps(bs)) { 1963 return -EPERM; 1964 } 1965 1966 assert(is_power_of_2(align)); 1967 assert((offset & (align - 1)) == 0); 1968 assert((bytes & (align - 1)) == 0); 1969 assert(!qiov || qiov_offset + bytes <= qiov->size); 1970 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1971 align); 1972 1973 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1974 1975 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1976 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1977 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 1978 flags |= BDRV_REQ_ZERO_WRITE; 1979 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1980 flags |= BDRV_REQ_MAY_UNMAP; 1981 } 1982 } 1983 1984 if (ret < 0) { 1985 /* Do nothing, write notifier decided to fail this request */ 1986 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1987 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1988 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1989 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1990 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 1991 qiov, qiov_offset); 1992 } else if (bytes <= max_transfer) { 1993 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1994 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 1995 } else { 1996 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1997 while (bytes_remaining) { 1998 int num = MIN(bytes_remaining, max_transfer); 1999 int local_flags = flags; 2000 2001 assert(num); 2002 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2003 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2004 /* If FUA is going to be emulated by flush, we only 2005 * need to flush on the last iteration */ 2006 local_flags &= ~BDRV_REQ_FUA; 2007 } 2008 2009 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2010 num, qiov, 2011 qiov_offset + bytes - bytes_remaining, 2012 local_flags); 2013 if (ret < 0) { 2014 break; 2015 } 2016 bytes_remaining -= num; 2017 } 2018 } 2019 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 2020 2021 if (ret >= 0) { 2022 ret = 0; 2023 } 2024 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2025 2026 return ret; 2027 } 2028 2029 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 2030 int64_t offset, 2031 unsigned int bytes, 2032 BdrvRequestFlags flags, 2033 BdrvTrackedRequest *req) 2034 { 2035 BlockDriverState *bs = child->bs; 2036 QEMUIOVector local_qiov; 2037 uint64_t align = bs->bl.request_alignment; 2038 int ret = 0; 2039 bool padding; 2040 BdrvRequestPadding pad; 2041 2042 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2043 if (padding) { 2044 bdrv_make_request_serialising(req, align); 2045 2046 bdrv_padding_rmw_read(child, req, &pad, true); 2047 2048 if (pad.head || pad.merge_reads) { 2049 int64_t aligned_offset = offset & ~(align - 1); 2050 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2051 2052 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2053 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2054 align, &local_qiov, 0, 2055 flags & ~BDRV_REQ_ZERO_WRITE); 2056 if (ret < 0 || pad.merge_reads) { 2057 /* Error or all work is done */ 2058 goto out; 2059 } 2060 offset += write_bytes - pad.head; 2061 bytes -= write_bytes - pad.head; 2062 } 2063 } 2064 2065 assert(!bytes || (offset & (align - 1)) == 0); 2066 if (bytes >= align) { 2067 /* Write the aligned part in the middle. */ 2068 uint64_t aligned_bytes = bytes & ~(align - 1); 2069 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2070 NULL, 0, flags); 2071 if (ret < 0) { 2072 goto out; 2073 } 2074 bytes -= aligned_bytes; 2075 offset += aligned_bytes; 2076 } 2077 2078 assert(!bytes || (offset & (align - 1)) == 0); 2079 if (bytes) { 2080 assert(align == pad.tail + bytes); 2081 2082 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2083 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2084 &local_qiov, 0, 2085 flags & ~BDRV_REQ_ZERO_WRITE); 2086 } 2087 2088 out: 2089 bdrv_padding_destroy(&pad); 2090 2091 return ret; 2092 } 2093 2094 /* 2095 * Handle a write request in coroutine context 2096 */ 2097 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2098 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 2099 BdrvRequestFlags flags) 2100 { 2101 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2102 } 2103 2104 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2105 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset, 2106 BdrvRequestFlags flags) 2107 { 2108 BlockDriverState *bs = child->bs; 2109 BdrvTrackedRequest req; 2110 uint64_t align = bs->bl.request_alignment; 2111 BdrvRequestPadding pad; 2112 int ret; 2113 2114 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 2115 2116 if (!bdrv_is_inserted(bs)) { 2117 return -ENOMEDIUM; 2118 } 2119 2120 ret = bdrv_check_request32(offset, bytes); 2121 if (ret < 0) { 2122 return ret; 2123 } 2124 2125 /* If the request is misaligned then we can't make it efficient */ 2126 if ((flags & BDRV_REQ_NO_FALLBACK) && 2127 !QEMU_IS_ALIGNED(offset | bytes, align)) 2128 { 2129 return -ENOTSUP; 2130 } 2131 2132 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2133 /* 2134 * Aligning zero request is nonsense. Even if driver has special meaning 2135 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2136 * it to driver due to request_alignment. 2137 * 2138 * Still, no reason to return an error if someone do unaligned 2139 * zero-length write occasionally. 2140 */ 2141 return 0; 2142 } 2143 2144 bdrv_inc_in_flight(bs); 2145 /* 2146 * Align write if necessary by performing a read-modify-write cycle. 2147 * Pad qiov with the read parts and be sure to have a tracked request not 2148 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 2149 */ 2150 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2151 2152 if (flags & BDRV_REQ_ZERO_WRITE) { 2153 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2154 goto out; 2155 } 2156 2157 if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) { 2158 bdrv_make_request_serialising(&req, align); 2159 bdrv_padding_rmw_read(child, &req, &pad, false); 2160 } 2161 2162 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2163 qiov, qiov_offset, flags); 2164 2165 bdrv_padding_destroy(&pad); 2166 2167 out: 2168 tracked_request_end(&req); 2169 bdrv_dec_in_flight(bs); 2170 2171 return ret; 2172 } 2173 2174 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2175 int bytes, BdrvRequestFlags flags) 2176 { 2177 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2178 2179 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2180 flags &= ~BDRV_REQ_MAY_UNMAP; 2181 } 2182 2183 return bdrv_co_pwritev(child, offset, bytes, NULL, 2184 BDRV_REQ_ZERO_WRITE | flags); 2185 } 2186 2187 /* 2188 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2189 */ 2190 int bdrv_flush_all(void) 2191 { 2192 BdrvNextIterator it; 2193 BlockDriverState *bs = NULL; 2194 int result = 0; 2195 2196 /* 2197 * bdrv queue is managed by record/replay, 2198 * creating new flush request for stopping 2199 * the VM may break the determinism 2200 */ 2201 if (replay_events_enabled()) { 2202 return result; 2203 } 2204 2205 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2206 AioContext *aio_context = bdrv_get_aio_context(bs); 2207 int ret; 2208 2209 aio_context_acquire(aio_context); 2210 ret = bdrv_flush(bs); 2211 if (ret < 0 && !result) { 2212 result = ret; 2213 } 2214 aio_context_release(aio_context); 2215 } 2216 2217 return result; 2218 } 2219 2220 /* 2221 * Returns the allocation status of the specified sectors. 2222 * Drivers not implementing the functionality are assumed to not support 2223 * backing files, hence all their sectors are reported as allocated. 2224 * 2225 * If 'want_zero' is true, the caller is querying for mapping 2226 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2227 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2228 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2229 * 2230 * If 'offset' is beyond the end of the disk image the return value is 2231 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2232 * 2233 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2234 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2235 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2236 * 2237 * 'pnum' is set to the number of bytes (including and immediately 2238 * following the specified offset) that are easily known to be in the 2239 * same allocated/unallocated state. Note that a second call starting 2240 * at the original offset plus returned pnum may have the same status. 2241 * The returned value is non-zero on success except at end-of-file. 2242 * 2243 * Returns negative errno on failure. Otherwise, if the 2244 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2245 * set to the host mapping and BDS corresponding to the guest offset. 2246 */ 2247 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2248 bool want_zero, 2249 int64_t offset, int64_t bytes, 2250 int64_t *pnum, int64_t *map, 2251 BlockDriverState **file) 2252 { 2253 int64_t total_size; 2254 int64_t n; /* bytes */ 2255 int ret; 2256 int64_t local_map = 0; 2257 BlockDriverState *local_file = NULL; 2258 int64_t aligned_offset, aligned_bytes; 2259 uint32_t align; 2260 bool has_filtered_child; 2261 2262 assert(pnum); 2263 *pnum = 0; 2264 total_size = bdrv_getlength(bs); 2265 if (total_size < 0) { 2266 ret = total_size; 2267 goto early_out; 2268 } 2269 2270 if (offset >= total_size) { 2271 ret = BDRV_BLOCK_EOF; 2272 goto early_out; 2273 } 2274 if (!bytes) { 2275 ret = 0; 2276 goto early_out; 2277 } 2278 2279 n = total_size - offset; 2280 if (n < bytes) { 2281 bytes = n; 2282 } 2283 2284 /* Must be non-NULL or bdrv_getlength() would have failed */ 2285 assert(bs->drv); 2286 has_filtered_child = bdrv_filter_child(bs); 2287 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2288 *pnum = bytes; 2289 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2290 if (offset + bytes == total_size) { 2291 ret |= BDRV_BLOCK_EOF; 2292 } 2293 if (bs->drv->protocol_name) { 2294 ret |= BDRV_BLOCK_OFFSET_VALID; 2295 local_map = offset; 2296 local_file = bs; 2297 } 2298 goto early_out; 2299 } 2300 2301 bdrv_inc_in_flight(bs); 2302 2303 /* Round out to request_alignment boundaries */ 2304 align = bs->bl.request_alignment; 2305 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2306 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2307 2308 if (bs->drv->bdrv_co_block_status) { 2309 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2310 aligned_bytes, pnum, &local_map, 2311 &local_file); 2312 } else { 2313 /* Default code for filters */ 2314 2315 local_file = bdrv_filter_bs(bs); 2316 assert(local_file); 2317 2318 *pnum = aligned_bytes; 2319 local_map = aligned_offset; 2320 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2321 } 2322 if (ret < 0) { 2323 *pnum = 0; 2324 goto out; 2325 } 2326 2327 /* 2328 * The driver's result must be a non-zero multiple of request_alignment. 2329 * Clamp pnum and adjust map to original request. 2330 */ 2331 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2332 align > offset - aligned_offset); 2333 if (ret & BDRV_BLOCK_RECURSE) { 2334 assert(ret & BDRV_BLOCK_DATA); 2335 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2336 assert(!(ret & BDRV_BLOCK_ZERO)); 2337 } 2338 2339 *pnum -= offset - aligned_offset; 2340 if (*pnum > bytes) { 2341 *pnum = bytes; 2342 } 2343 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2344 local_map += offset - aligned_offset; 2345 } 2346 2347 if (ret & BDRV_BLOCK_RAW) { 2348 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2349 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2350 *pnum, pnum, &local_map, &local_file); 2351 goto out; 2352 } 2353 2354 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2355 ret |= BDRV_BLOCK_ALLOCATED; 2356 } else if (bs->drv->supports_backing) { 2357 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2358 2359 if (!cow_bs) { 2360 ret |= BDRV_BLOCK_ZERO; 2361 } else if (want_zero) { 2362 int64_t size2 = bdrv_getlength(cow_bs); 2363 2364 if (size2 >= 0 && offset >= size2) { 2365 ret |= BDRV_BLOCK_ZERO; 2366 } 2367 } 2368 } 2369 2370 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2371 local_file && local_file != bs && 2372 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2373 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2374 int64_t file_pnum; 2375 int ret2; 2376 2377 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2378 *pnum, &file_pnum, NULL, NULL); 2379 if (ret2 >= 0) { 2380 /* Ignore errors. This is just providing extra information, it 2381 * is useful but not necessary. 2382 */ 2383 if (ret2 & BDRV_BLOCK_EOF && 2384 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2385 /* 2386 * It is valid for the format block driver to read 2387 * beyond the end of the underlying file's current 2388 * size; such areas read as zero. 2389 */ 2390 ret |= BDRV_BLOCK_ZERO; 2391 } else { 2392 /* Limit request to the range reported by the protocol driver */ 2393 *pnum = file_pnum; 2394 ret |= (ret2 & BDRV_BLOCK_ZERO); 2395 } 2396 } 2397 } 2398 2399 out: 2400 bdrv_dec_in_flight(bs); 2401 if (ret >= 0 && offset + *pnum == total_size) { 2402 ret |= BDRV_BLOCK_EOF; 2403 } 2404 early_out: 2405 if (file) { 2406 *file = local_file; 2407 } 2408 if (map) { 2409 *map = local_map; 2410 } 2411 return ret; 2412 } 2413 2414 int coroutine_fn 2415 bdrv_co_common_block_status_above(BlockDriverState *bs, 2416 BlockDriverState *base, 2417 bool include_base, 2418 bool want_zero, 2419 int64_t offset, 2420 int64_t bytes, 2421 int64_t *pnum, 2422 int64_t *map, 2423 BlockDriverState **file, 2424 int *depth) 2425 { 2426 int ret; 2427 BlockDriverState *p; 2428 int64_t eof = 0; 2429 int dummy; 2430 2431 assert(!include_base || base); /* Can't include NULL base */ 2432 2433 if (!depth) { 2434 depth = &dummy; 2435 } 2436 *depth = 0; 2437 2438 if (!include_base && bs == base) { 2439 *pnum = bytes; 2440 return 0; 2441 } 2442 2443 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2444 ++*depth; 2445 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2446 return ret; 2447 } 2448 2449 if (ret & BDRV_BLOCK_EOF) { 2450 eof = offset + *pnum; 2451 } 2452 2453 assert(*pnum <= bytes); 2454 bytes = *pnum; 2455 2456 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2457 p = bdrv_filter_or_cow_bs(p)) 2458 { 2459 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2460 file); 2461 ++*depth; 2462 if (ret < 0) { 2463 return ret; 2464 } 2465 if (*pnum == 0) { 2466 /* 2467 * The top layer deferred to this layer, and because this layer is 2468 * short, any zeroes that we synthesize beyond EOF behave as if they 2469 * were allocated at this layer. 2470 * 2471 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2472 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2473 * below. 2474 */ 2475 assert(ret & BDRV_BLOCK_EOF); 2476 *pnum = bytes; 2477 if (file) { 2478 *file = p; 2479 } 2480 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2481 break; 2482 } 2483 if (ret & BDRV_BLOCK_ALLOCATED) { 2484 /* 2485 * We've found the node and the status, we must break. 2486 * 2487 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2488 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2489 * below. 2490 */ 2491 ret &= ~BDRV_BLOCK_EOF; 2492 break; 2493 } 2494 2495 if (p == base) { 2496 assert(include_base); 2497 break; 2498 } 2499 2500 /* 2501 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2502 * let's continue the diving. 2503 */ 2504 assert(*pnum <= bytes); 2505 bytes = *pnum; 2506 } 2507 2508 if (offset + *pnum == eof) { 2509 ret |= BDRV_BLOCK_EOF; 2510 } 2511 2512 return ret; 2513 } 2514 2515 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2516 int64_t offset, int64_t bytes, int64_t *pnum, 2517 int64_t *map, BlockDriverState **file) 2518 { 2519 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2520 pnum, map, file, NULL); 2521 } 2522 2523 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2524 int64_t *pnum, int64_t *map, BlockDriverState **file) 2525 { 2526 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2527 offset, bytes, pnum, map, file); 2528 } 2529 2530 /* 2531 * Check @bs (and its backing chain) to see if the range defined 2532 * by @offset and @bytes is known to read as zeroes. 2533 * Return 1 if that is the case, 0 otherwise and -errno on error. 2534 * This test is meant to be fast rather than accurate so returning 0 2535 * does not guarantee non-zero data. 2536 */ 2537 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2538 int64_t bytes) 2539 { 2540 int ret; 2541 int64_t pnum = bytes; 2542 2543 if (!bytes) { 2544 return 1; 2545 } 2546 2547 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset, 2548 bytes, &pnum, NULL, NULL, NULL); 2549 2550 if (ret < 0) { 2551 return ret; 2552 } 2553 2554 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2555 } 2556 2557 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2558 int64_t bytes, int64_t *pnum) 2559 { 2560 int ret; 2561 int64_t dummy; 2562 2563 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2564 bytes, pnum ? pnum : &dummy, NULL, 2565 NULL, NULL); 2566 if (ret < 0) { 2567 return ret; 2568 } 2569 return !!(ret & BDRV_BLOCK_ALLOCATED); 2570 } 2571 2572 /* 2573 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2574 * 2575 * Return a positive depth if (a prefix of) the given range is allocated 2576 * in any image between BASE and TOP (BASE is only included if include_base 2577 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2578 * BASE can be NULL to check if the given offset is allocated in any 2579 * image of the chain. Return 0 otherwise, or negative errno on 2580 * failure. 2581 * 2582 * 'pnum' is set to the number of bytes (including and immediately 2583 * following the specified offset) that are known to be in the same 2584 * allocated/unallocated state. Note that a subsequent call starting 2585 * at 'offset + *pnum' may return the same allocation status (in other 2586 * words, the result is not necessarily the maximum possible range); 2587 * but 'pnum' will only be 0 when end of file is reached. 2588 */ 2589 int bdrv_is_allocated_above(BlockDriverState *top, 2590 BlockDriverState *base, 2591 bool include_base, int64_t offset, 2592 int64_t bytes, int64_t *pnum) 2593 { 2594 int depth; 2595 int ret = bdrv_common_block_status_above(top, base, include_base, false, 2596 offset, bytes, pnum, NULL, NULL, 2597 &depth); 2598 if (ret < 0) { 2599 return ret; 2600 } 2601 2602 if (ret & BDRV_BLOCK_ALLOCATED) { 2603 return depth; 2604 } 2605 return 0; 2606 } 2607 2608 int coroutine_fn 2609 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2610 { 2611 BlockDriver *drv = bs->drv; 2612 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2613 int ret = -ENOTSUP; 2614 2615 if (!drv) { 2616 return -ENOMEDIUM; 2617 } 2618 2619 bdrv_inc_in_flight(bs); 2620 2621 if (drv->bdrv_load_vmstate) { 2622 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2623 } else if (child_bs) { 2624 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2625 } 2626 2627 bdrv_dec_in_flight(bs); 2628 2629 return ret; 2630 } 2631 2632 int coroutine_fn 2633 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2634 { 2635 BlockDriver *drv = bs->drv; 2636 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2637 int ret = -ENOTSUP; 2638 2639 if (!drv) { 2640 return -ENOMEDIUM; 2641 } 2642 2643 bdrv_inc_in_flight(bs); 2644 2645 if (drv->bdrv_save_vmstate) { 2646 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2647 } else if (child_bs) { 2648 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2649 } 2650 2651 bdrv_dec_in_flight(bs); 2652 2653 return ret; 2654 } 2655 2656 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2657 int64_t pos, int size) 2658 { 2659 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2660 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2661 2662 return ret < 0 ? ret : size; 2663 } 2664 2665 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2666 int64_t pos, int size) 2667 { 2668 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2669 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2670 2671 return ret < 0 ? ret : size; 2672 } 2673 2674 /**************************************************************/ 2675 /* async I/Os */ 2676 2677 void bdrv_aio_cancel(BlockAIOCB *acb) 2678 { 2679 qemu_aio_ref(acb); 2680 bdrv_aio_cancel_async(acb); 2681 while (acb->refcnt > 1) { 2682 if (acb->aiocb_info->get_aio_context) { 2683 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2684 } else if (acb->bs) { 2685 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2686 * assert that we're not using an I/O thread. Thread-safe 2687 * code should use bdrv_aio_cancel_async exclusively. 2688 */ 2689 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2690 aio_poll(bdrv_get_aio_context(acb->bs), true); 2691 } else { 2692 abort(); 2693 } 2694 } 2695 qemu_aio_unref(acb); 2696 } 2697 2698 /* Async version of aio cancel. The caller is not blocked if the acb implements 2699 * cancel_async, otherwise we do nothing and let the request normally complete. 2700 * In either case the completion callback must be called. */ 2701 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2702 { 2703 if (acb->aiocb_info->cancel_async) { 2704 acb->aiocb_info->cancel_async(acb); 2705 } 2706 } 2707 2708 /**************************************************************/ 2709 /* Coroutine block device emulation */ 2710 2711 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2712 { 2713 BdrvChild *primary_child = bdrv_primary_child(bs); 2714 BdrvChild *child; 2715 int current_gen; 2716 int ret = 0; 2717 2718 bdrv_inc_in_flight(bs); 2719 2720 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2721 bdrv_is_sg(bs)) { 2722 goto early_exit; 2723 } 2724 2725 qemu_co_mutex_lock(&bs->reqs_lock); 2726 current_gen = qatomic_read(&bs->write_gen); 2727 2728 /* Wait until any previous flushes are completed */ 2729 while (bs->active_flush_req) { 2730 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2731 } 2732 2733 /* Flushes reach this point in nondecreasing current_gen order. */ 2734 bs->active_flush_req = true; 2735 qemu_co_mutex_unlock(&bs->reqs_lock); 2736 2737 /* Write back all layers by calling one driver function */ 2738 if (bs->drv->bdrv_co_flush) { 2739 ret = bs->drv->bdrv_co_flush(bs); 2740 goto out; 2741 } 2742 2743 /* Write back cached data to the OS even with cache=unsafe */ 2744 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 2745 if (bs->drv->bdrv_co_flush_to_os) { 2746 ret = bs->drv->bdrv_co_flush_to_os(bs); 2747 if (ret < 0) { 2748 goto out; 2749 } 2750 } 2751 2752 /* But don't actually force it to the disk with cache=unsafe */ 2753 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2754 goto flush_children; 2755 } 2756 2757 /* Check if we really need to flush anything */ 2758 if (bs->flushed_gen == current_gen) { 2759 goto flush_children; 2760 } 2761 2762 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 2763 if (!bs->drv) { 2764 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2765 * (even in case of apparent success) */ 2766 ret = -ENOMEDIUM; 2767 goto out; 2768 } 2769 if (bs->drv->bdrv_co_flush_to_disk) { 2770 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2771 } else if (bs->drv->bdrv_aio_flush) { 2772 BlockAIOCB *acb; 2773 CoroutineIOCompletion co = { 2774 .coroutine = qemu_coroutine_self(), 2775 }; 2776 2777 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2778 if (acb == NULL) { 2779 ret = -EIO; 2780 } else { 2781 qemu_coroutine_yield(); 2782 ret = co.ret; 2783 } 2784 } else { 2785 /* 2786 * Some block drivers always operate in either writethrough or unsafe 2787 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2788 * know how the server works (because the behaviour is hardcoded or 2789 * depends on server-side configuration), so we can't ensure that 2790 * everything is safe on disk. Returning an error doesn't work because 2791 * that would break guests even if the server operates in writethrough 2792 * mode. 2793 * 2794 * Let's hope the user knows what he's doing. 2795 */ 2796 ret = 0; 2797 } 2798 2799 if (ret < 0) { 2800 goto out; 2801 } 2802 2803 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2804 * in the case of cache=unsafe, so there are no useless flushes. 2805 */ 2806 flush_children: 2807 ret = 0; 2808 QLIST_FOREACH(child, &bs->children, next) { 2809 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 2810 int this_child_ret = bdrv_co_flush(child->bs); 2811 if (!ret) { 2812 ret = this_child_ret; 2813 } 2814 } 2815 } 2816 2817 out: 2818 /* Notify any pending flushes that we have completed */ 2819 if (ret == 0) { 2820 bs->flushed_gen = current_gen; 2821 } 2822 2823 qemu_co_mutex_lock(&bs->reqs_lock); 2824 bs->active_flush_req = false; 2825 /* Return value is ignored - it's ok if wait queue is empty */ 2826 qemu_co_queue_next(&bs->flush_queue); 2827 qemu_co_mutex_unlock(&bs->reqs_lock); 2828 2829 early_exit: 2830 bdrv_dec_in_flight(bs); 2831 return ret; 2832 } 2833 2834 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 2835 int64_t bytes) 2836 { 2837 BdrvTrackedRequest req; 2838 int max_pdiscard, ret; 2839 int head, tail, align; 2840 BlockDriverState *bs = child->bs; 2841 2842 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 2843 return -ENOMEDIUM; 2844 } 2845 2846 if (bdrv_has_readonly_bitmaps(bs)) { 2847 return -EPERM; 2848 } 2849 2850 ret = bdrv_check_request(offset, bytes); 2851 if (ret < 0) { 2852 return ret; 2853 } 2854 2855 /* Do nothing if disabled. */ 2856 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2857 return 0; 2858 } 2859 2860 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2861 return 0; 2862 } 2863 2864 /* Discard is advisory, but some devices track and coalesce 2865 * unaligned requests, so we must pass everything down rather than 2866 * round here. Still, most devices will just silently ignore 2867 * unaligned requests (by returning -ENOTSUP), so we must fragment 2868 * the request accordingly. */ 2869 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2870 assert(align % bs->bl.request_alignment == 0); 2871 head = offset % align; 2872 tail = (offset + bytes) % align; 2873 2874 bdrv_inc_in_flight(bs); 2875 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2876 2877 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 2878 if (ret < 0) { 2879 goto out; 2880 } 2881 2882 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2883 align); 2884 assert(max_pdiscard >= bs->bl.request_alignment); 2885 2886 while (bytes > 0) { 2887 int64_t num = bytes; 2888 2889 if (head) { 2890 /* Make small requests to get to alignment boundaries. */ 2891 num = MIN(bytes, align - head); 2892 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2893 num %= bs->bl.request_alignment; 2894 } 2895 head = (head + num) % align; 2896 assert(num < max_pdiscard); 2897 } else if (tail) { 2898 if (num > align) { 2899 /* Shorten the request to the last aligned cluster. */ 2900 num -= tail; 2901 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2902 tail > bs->bl.request_alignment) { 2903 tail %= bs->bl.request_alignment; 2904 num -= tail; 2905 } 2906 } 2907 /* limit request size */ 2908 if (num > max_pdiscard) { 2909 num = max_pdiscard; 2910 } 2911 2912 if (!bs->drv) { 2913 ret = -ENOMEDIUM; 2914 goto out; 2915 } 2916 if (bs->drv->bdrv_co_pdiscard) { 2917 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2918 } else { 2919 BlockAIOCB *acb; 2920 CoroutineIOCompletion co = { 2921 .coroutine = qemu_coroutine_self(), 2922 }; 2923 2924 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2925 bdrv_co_io_em_complete, &co); 2926 if (acb == NULL) { 2927 ret = -EIO; 2928 goto out; 2929 } else { 2930 qemu_coroutine_yield(); 2931 ret = co.ret; 2932 } 2933 } 2934 if (ret && ret != -ENOTSUP) { 2935 goto out; 2936 } 2937 2938 offset += num; 2939 bytes -= num; 2940 } 2941 ret = 0; 2942 out: 2943 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 2944 tracked_request_end(&req); 2945 bdrv_dec_in_flight(bs); 2946 return ret; 2947 } 2948 2949 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2950 { 2951 BlockDriver *drv = bs->drv; 2952 CoroutineIOCompletion co = { 2953 .coroutine = qemu_coroutine_self(), 2954 }; 2955 BlockAIOCB *acb; 2956 2957 bdrv_inc_in_flight(bs); 2958 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2959 co.ret = -ENOTSUP; 2960 goto out; 2961 } 2962 2963 if (drv->bdrv_co_ioctl) { 2964 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2965 } else { 2966 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2967 if (!acb) { 2968 co.ret = -ENOTSUP; 2969 goto out; 2970 } 2971 qemu_coroutine_yield(); 2972 } 2973 out: 2974 bdrv_dec_in_flight(bs); 2975 return co.ret; 2976 } 2977 2978 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2979 { 2980 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2981 } 2982 2983 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2984 { 2985 return memset(qemu_blockalign(bs, size), 0, size); 2986 } 2987 2988 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2989 { 2990 size_t align = bdrv_opt_mem_align(bs); 2991 2992 /* Ensure that NULL is never returned on success */ 2993 assert(align > 0); 2994 if (size == 0) { 2995 size = align; 2996 } 2997 2998 return qemu_try_memalign(align, size); 2999 } 3000 3001 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3002 { 3003 void *mem = qemu_try_blockalign(bs, size); 3004 3005 if (mem) { 3006 memset(mem, 0, size); 3007 } 3008 3009 return mem; 3010 } 3011 3012 /* 3013 * Check if all memory in this vector is sector aligned. 3014 */ 3015 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 3016 { 3017 int i; 3018 size_t alignment = bdrv_min_mem_align(bs); 3019 3020 for (i = 0; i < qiov->niov; i++) { 3021 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 3022 return false; 3023 } 3024 if (qiov->iov[i].iov_len % alignment) { 3025 return false; 3026 } 3027 } 3028 3029 return true; 3030 } 3031 3032 void bdrv_add_before_write_notifier(BlockDriverState *bs, 3033 NotifierWithReturn *notifier) 3034 { 3035 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 3036 } 3037 3038 void bdrv_io_plug(BlockDriverState *bs) 3039 { 3040 BdrvChild *child; 3041 3042 QLIST_FOREACH(child, &bs->children, next) { 3043 bdrv_io_plug(child->bs); 3044 } 3045 3046 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3047 BlockDriver *drv = bs->drv; 3048 if (drv && drv->bdrv_io_plug) { 3049 drv->bdrv_io_plug(bs); 3050 } 3051 } 3052 } 3053 3054 void bdrv_io_unplug(BlockDriverState *bs) 3055 { 3056 BdrvChild *child; 3057 3058 assert(bs->io_plugged); 3059 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3060 BlockDriver *drv = bs->drv; 3061 if (drv && drv->bdrv_io_unplug) { 3062 drv->bdrv_io_unplug(bs); 3063 } 3064 } 3065 3066 QLIST_FOREACH(child, &bs->children, next) { 3067 bdrv_io_unplug(child->bs); 3068 } 3069 } 3070 3071 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 3072 { 3073 BdrvChild *child; 3074 3075 if (bs->drv && bs->drv->bdrv_register_buf) { 3076 bs->drv->bdrv_register_buf(bs, host, size); 3077 } 3078 QLIST_FOREACH(child, &bs->children, next) { 3079 bdrv_register_buf(child->bs, host, size); 3080 } 3081 } 3082 3083 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 3084 { 3085 BdrvChild *child; 3086 3087 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3088 bs->drv->bdrv_unregister_buf(bs, host); 3089 } 3090 QLIST_FOREACH(child, &bs->children, next) { 3091 bdrv_unregister_buf(child->bs, host); 3092 } 3093 } 3094 3095 static int coroutine_fn bdrv_co_copy_range_internal( 3096 BdrvChild *src, uint64_t src_offset, BdrvChild *dst, 3097 uint64_t dst_offset, uint64_t bytes, 3098 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3099 bool recurse_src) 3100 { 3101 BdrvTrackedRequest req; 3102 int ret; 3103 3104 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3105 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3106 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3107 3108 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) { 3109 return -ENOMEDIUM; 3110 } 3111 ret = bdrv_check_request32(dst_offset, bytes); 3112 if (ret) { 3113 return ret; 3114 } 3115 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3116 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3117 } 3118 3119 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) { 3120 return -ENOMEDIUM; 3121 } 3122 ret = bdrv_check_request32(src_offset, bytes); 3123 if (ret) { 3124 return ret; 3125 } 3126 3127 if (!src->bs->drv->bdrv_co_copy_range_from 3128 || !dst->bs->drv->bdrv_co_copy_range_to 3129 || src->bs->encrypted || dst->bs->encrypted) { 3130 return -ENOTSUP; 3131 } 3132 3133 if (recurse_src) { 3134 bdrv_inc_in_flight(src->bs); 3135 tracked_request_begin(&req, src->bs, src_offset, bytes, 3136 BDRV_TRACKED_READ); 3137 3138 /* BDRV_REQ_SERIALISING is only for write operation */ 3139 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3140 bdrv_wait_serialising_requests(&req); 3141 3142 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3143 src, src_offset, 3144 dst, dst_offset, 3145 bytes, 3146 read_flags, write_flags); 3147 3148 tracked_request_end(&req); 3149 bdrv_dec_in_flight(src->bs); 3150 } else { 3151 bdrv_inc_in_flight(dst->bs); 3152 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3153 BDRV_TRACKED_WRITE); 3154 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3155 write_flags); 3156 if (!ret) { 3157 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3158 src, src_offset, 3159 dst, dst_offset, 3160 bytes, 3161 read_flags, write_flags); 3162 } 3163 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3164 tracked_request_end(&req); 3165 bdrv_dec_in_flight(dst->bs); 3166 } 3167 3168 return ret; 3169 } 3170 3171 /* Copy range from @src to @dst. 3172 * 3173 * See the comment of bdrv_co_copy_range for the parameter and return value 3174 * semantics. */ 3175 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset, 3176 BdrvChild *dst, uint64_t dst_offset, 3177 uint64_t bytes, 3178 BdrvRequestFlags read_flags, 3179 BdrvRequestFlags write_flags) 3180 { 3181 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3182 read_flags, write_flags); 3183 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3184 bytes, read_flags, write_flags, true); 3185 } 3186 3187 /* Copy range from @src to @dst. 3188 * 3189 * See the comment of bdrv_co_copy_range for the parameter and return value 3190 * semantics. */ 3191 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset, 3192 BdrvChild *dst, uint64_t dst_offset, 3193 uint64_t bytes, 3194 BdrvRequestFlags read_flags, 3195 BdrvRequestFlags write_flags) 3196 { 3197 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3198 read_flags, write_flags); 3199 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3200 bytes, read_flags, write_flags, false); 3201 } 3202 3203 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset, 3204 BdrvChild *dst, uint64_t dst_offset, 3205 uint64_t bytes, BdrvRequestFlags read_flags, 3206 BdrvRequestFlags write_flags) 3207 { 3208 return bdrv_co_copy_range_from(src, src_offset, 3209 dst, dst_offset, 3210 bytes, read_flags, write_flags); 3211 } 3212 3213 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3214 { 3215 BdrvChild *c; 3216 QLIST_FOREACH(c, &bs->parents, next_parent) { 3217 if (c->klass->resize) { 3218 c->klass->resize(c); 3219 } 3220 } 3221 } 3222 3223 /** 3224 * Truncate file to 'offset' bytes (needed only for file protocols) 3225 * 3226 * If 'exact' is true, the file must be resized to exactly the given 3227 * 'offset'. Otherwise, it is sufficient for the node to be at least 3228 * 'offset' bytes in length. 3229 */ 3230 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3231 PreallocMode prealloc, BdrvRequestFlags flags, 3232 Error **errp) 3233 { 3234 BlockDriverState *bs = child->bs; 3235 BdrvChild *filtered, *backing; 3236 BlockDriver *drv = bs->drv; 3237 BdrvTrackedRequest req; 3238 int64_t old_size, new_bytes; 3239 int ret; 3240 3241 3242 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3243 if (!drv) { 3244 error_setg(errp, "No medium inserted"); 3245 return -ENOMEDIUM; 3246 } 3247 if (offset < 0) { 3248 error_setg(errp, "Image size cannot be negative"); 3249 return -EINVAL; 3250 } 3251 3252 ret = bdrv_check_request(offset, 0); 3253 if (ret < 0) { 3254 error_setg(errp, "Required too big image size, it must be not greater " 3255 "than %" PRId64, BDRV_MAX_LENGTH); 3256 return ret; 3257 } 3258 3259 old_size = bdrv_getlength(bs); 3260 if (old_size < 0) { 3261 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3262 return old_size; 3263 } 3264 3265 if (offset > old_size) { 3266 new_bytes = offset - old_size; 3267 } else { 3268 new_bytes = 0; 3269 } 3270 3271 bdrv_inc_in_flight(bs); 3272 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3273 BDRV_TRACKED_TRUNCATE); 3274 3275 /* If we are growing the image and potentially using preallocation for the 3276 * new area, we need to make sure that no write requests are made to it 3277 * concurrently or they might be overwritten by preallocation. */ 3278 if (new_bytes) { 3279 bdrv_make_request_serialising(&req, 1); 3280 } 3281 if (bs->read_only) { 3282 error_setg(errp, "Image is read-only"); 3283 ret = -EACCES; 3284 goto out; 3285 } 3286 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3287 0); 3288 if (ret < 0) { 3289 error_setg_errno(errp, -ret, 3290 "Failed to prepare request for truncation"); 3291 goto out; 3292 } 3293 3294 filtered = bdrv_filter_child(bs); 3295 backing = bdrv_cow_child(bs); 3296 3297 /* 3298 * If the image has a backing file that is large enough that it would 3299 * provide data for the new area, we cannot leave it unallocated because 3300 * then the backing file content would become visible. Instead, zero-fill 3301 * the new area. 3302 * 3303 * Note that if the image has a backing file, but was opened without the 3304 * backing file, taking care of keeping things consistent with that backing 3305 * file is the user's responsibility. 3306 */ 3307 if (new_bytes && backing) { 3308 int64_t backing_len; 3309 3310 backing_len = bdrv_getlength(backing->bs); 3311 if (backing_len < 0) { 3312 ret = backing_len; 3313 error_setg_errno(errp, -ret, "Could not get backing file size"); 3314 goto out; 3315 } 3316 3317 if (backing_len > old_size) { 3318 flags |= BDRV_REQ_ZERO_WRITE; 3319 } 3320 } 3321 3322 if (drv->bdrv_co_truncate) { 3323 if (flags & ~bs->supported_truncate_flags) { 3324 error_setg(errp, "Block driver does not support requested flags"); 3325 ret = -ENOTSUP; 3326 goto out; 3327 } 3328 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3329 } else if (filtered) { 3330 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3331 } else { 3332 error_setg(errp, "Image format driver does not support resize"); 3333 ret = -ENOTSUP; 3334 goto out; 3335 } 3336 if (ret < 0) { 3337 goto out; 3338 } 3339 3340 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3341 if (ret < 0) { 3342 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3343 } else { 3344 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3345 } 3346 /* It's possible that truncation succeeded but refresh_total_sectors 3347 * failed, but the latter doesn't affect how we should finish the request. 3348 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3349 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3350 3351 out: 3352 tracked_request_end(&req); 3353 bdrv_dec_in_flight(bs); 3354 3355 return ret; 3356 } 3357