1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "qemu/cutils.h" 33 #include "qapi/error.h" 34 #include "qemu/error-report.h" 35 #include "qemu/main-loop.h" 36 #include "sysemu/replay.h" 37 38 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 39 40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 42 43 static void bdrv_parent_cb_resize(BlockDriverState *bs); 44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 45 int64_t offset, int bytes, BdrvRequestFlags flags); 46 47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 48 bool ignore_bds_parents) 49 { 50 BdrvChild *c, *next; 51 52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 53 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 54 continue; 55 } 56 bdrv_parent_drained_begin_single(c, false); 57 } 58 } 59 60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 61 int *drained_end_counter) 62 { 63 assert(c->parent_quiesce_counter > 0); 64 c->parent_quiesce_counter--; 65 if (c->role->drained_end) { 66 c->role->drained_end(c, drained_end_counter); 67 } 68 } 69 70 void bdrv_parent_drained_end_single(BdrvChild *c) 71 { 72 int drained_end_counter = 0; 73 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 74 BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0); 75 } 76 77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 78 bool ignore_bds_parents, 79 int *drained_end_counter) 80 { 81 BdrvChild *c; 82 83 QLIST_FOREACH(c, &bs->parents, next_parent) { 84 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 85 continue; 86 } 87 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 88 } 89 } 90 91 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 92 { 93 if (c->role->drained_poll) { 94 return c->role->drained_poll(c); 95 } 96 return false; 97 } 98 99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 100 bool ignore_bds_parents) 101 { 102 BdrvChild *c, *next; 103 bool busy = false; 104 105 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 106 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 107 continue; 108 } 109 busy |= bdrv_parent_drained_poll_single(c); 110 } 111 112 return busy; 113 } 114 115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 116 { 117 c->parent_quiesce_counter++; 118 if (c->role->drained_begin) { 119 c->role->drained_begin(c); 120 } 121 if (poll) { 122 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 123 } 124 } 125 126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 127 { 128 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 129 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 130 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 131 src->opt_mem_alignment); 132 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 133 src->min_mem_alignment); 134 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 135 } 136 137 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 138 { 139 BlockDriver *drv = bs->drv; 140 Error *local_err = NULL; 141 142 memset(&bs->bl, 0, sizeof(bs->bl)); 143 144 if (!drv) { 145 return; 146 } 147 148 /* Default alignment based on whether driver has byte interface */ 149 bs->bl.request_alignment = (drv->bdrv_co_preadv || 150 drv->bdrv_aio_preadv || 151 drv->bdrv_co_preadv_part) ? 1 : 512; 152 153 /* Take some limits from the children as a default */ 154 if (bs->file) { 155 bdrv_refresh_limits(bs->file->bs, &local_err); 156 if (local_err) { 157 error_propagate(errp, local_err); 158 return; 159 } 160 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 161 } else { 162 bs->bl.min_mem_alignment = 512; 163 bs->bl.opt_mem_alignment = qemu_real_host_page_size; 164 165 /* Safe default since most protocols use readv()/writev()/etc */ 166 bs->bl.max_iov = IOV_MAX; 167 } 168 169 if (bs->backing) { 170 bdrv_refresh_limits(bs->backing->bs, &local_err); 171 if (local_err) { 172 error_propagate(errp, local_err); 173 return; 174 } 175 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 176 } 177 178 /* Then let the driver override it */ 179 if (drv->bdrv_refresh_limits) { 180 drv->bdrv_refresh_limits(bs, errp); 181 } 182 } 183 184 /** 185 * The copy-on-read flag is actually a reference count so multiple users may 186 * use the feature without worrying about clobbering its previous state. 187 * Copy-on-read stays enabled until all users have called to disable it. 188 */ 189 void bdrv_enable_copy_on_read(BlockDriverState *bs) 190 { 191 atomic_inc(&bs->copy_on_read); 192 } 193 194 void bdrv_disable_copy_on_read(BlockDriverState *bs) 195 { 196 int old = atomic_fetch_dec(&bs->copy_on_read); 197 assert(old >= 1); 198 } 199 200 typedef struct { 201 Coroutine *co; 202 BlockDriverState *bs; 203 bool done; 204 bool begin; 205 bool recursive; 206 bool poll; 207 BdrvChild *parent; 208 bool ignore_bds_parents; 209 int *drained_end_counter; 210 } BdrvCoDrainData; 211 212 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 213 { 214 BdrvCoDrainData *data = opaque; 215 BlockDriverState *bs = data->bs; 216 217 if (data->begin) { 218 bs->drv->bdrv_co_drain_begin(bs); 219 } else { 220 bs->drv->bdrv_co_drain_end(bs); 221 } 222 223 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 224 atomic_mb_set(&data->done, true); 225 if (!data->begin) { 226 atomic_dec(data->drained_end_counter); 227 } 228 bdrv_dec_in_flight(bs); 229 230 g_free(data); 231 } 232 233 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 234 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 235 int *drained_end_counter) 236 { 237 BdrvCoDrainData *data; 238 239 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 240 (!begin && !bs->drv->bdrv_co_drain_end)) { 241 return; 242 } 243 244 data = g_new(BdrvCoDrainData, 1); 245 *data = (BdrvCoDrainData) { 246 .bs = bs, 247 .done = false, 248 .begin = begin, 249 .drained_end_counter = drained_end_counter, 250 }; 251 252 if (!begin) { 253 atomic_inc(drained_end_counter); 254 } 255 256 /* Make sure the driver callback completes during the polling phase for 257 * drain_begin. */ 258 bdrv_inc_in_flight(bs); 259 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 260 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 261 } 262 263 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 264 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 265 BdrvChild *ignore_parent, bool ignore_bds_parents) 266 { 267 BdrvChild *child, *next; 268 269 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 270 return true; 271 } 272 273 if (atomic_read(&bs->in_flight)) { 274 return true; 275 } 276 277 if (recursive) { 278 assert(!ignore_bds_parents); 279 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 280 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 281 return true; 282 } 283 } 284 } 285 286 return false; 287 } 288 289 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 290 BdrvChild *ignore_parent) 291 { 292 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 293 } 294 295 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 296 BdrvChild *parent, bool ignore_bds_parents, 297 bool poll); 298 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 299 BdrvChild *parent, bool ignore_bds_parents, 300 int *drained_end_counter); 301 302 static void bdrv_co_drain_bh_cb(void *opaque) 303 { 304 BdrvCoDrainData *data = opaque; 305 Coroutine *co = data->co; 306 BlockDriverState *bs = data->bs; 307 308 if (bs) { 309 AioContext *ctx = bdrv_get_aio_context(bs); 310 AioContext *co_ctx = qemu_coroutine_get_aio_context(co); 311 312 /* 313 * When the coroutine yielded, the lock for its home context was 314 * released, so we need to re-acquire it here. If it explicitly 315 * acquired a different context, the lock is still held and we don't 316 * want to lock it a second time (or AIO_WAIT_WHILE() would hang). 317 */ 318 if (ctx == co_ctx) { 319 aio_context_acquire(ctx); 320 } 321 bdrv_dec_in_flight(bs); 322 if (data->begin) { 323 assert(!data->drained_end_counter); 324 bdrv_do_drained_begin(bs, data->recursive, data->parent, 325 data->ignore_bds_parents, data->poll); 326 } else { 327 assert(!data->poll); 328 bdrv_do_drained_end(bs, data->recursive, data->parent, 329 data->ignore_bds_parents, 330 data->drained_end_counter); 331 } 332 if (ctx == co_ctx) { 333 aio_context_release(ctx); 334 } 335 } else { 336 assert(data->begin); 337 bdrv_drain_all_begin(); 338 } 339 340 data->done = true; 341 aio_co_wake(co); 342 } 343 344 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 345 bool begin, bool recursive, 346 BdrvChild *parent, 347 bool ignore_bds_parents, 348 bool poll, 349 int *drained_end_counter) 350 { 351 BdrvCoDrainData data; 352 353 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 354 * other coroutines run if they were queued by aio_co_enter(). */ 355 356 assert(qemu_in_coroutine()); 357 data = (BdrvCoDrainData) { 358 .co = qemu_coroutine_self(), 359 .bs = bs, 360 .done = false, 361 .begin = begin, 362 .recursive = recursive, 363 .parent = parent, 364 .ignore_bds_parents = ignore_bds_parents, 365 .poll = poll, 366 .drained_end_counter = drained_end_counter, 367 }; 368 369 if (bs) { 370 bdrv_inc_in_flight(bs); 371 } 372 replay_bh_schedule_oneshot_event(bdrv_get_aio_context(bs), 373 bdrv_co_drain_bh_cb, &data); 374 375 qemu_coroutine_yield(); 376 /* If we are resumed from some other event (such as an aio completion or a 377 * timer callback), it is a bug in the caller that should be fixed. */ 378 assert(data.done); 379 } 380 381 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 382 BdrvChild *parent, bool ignore_bds_parents) 383 { 384 assert(!qemu_in_coroutine()); 385 386 /* Stop things in parent-to-child order */ 387 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 388 aio_disable_external(bdrv_get_aio_context(bs)); 389 } 390 391 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 392 bdrv_drain_invoke(bs, true, NULL); 393 } 394 395 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 396 BdrvChild *parent, bool ignore_bds_parents, 397 bool poll) 398 { 399 BdrvChild *child, *next; 400 401 if (qemu_in_coroutine()) { 402 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 403 poll, NULL); 404 return; 405 } 406 407 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 408 409 if (recursive) { 410 assert(!ignore_bds_parents); 411 bs->recursive_quiesce_counter++; 412 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 413 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 414 false); 415 } 416 } 417 418 /* 419 * Wait for drained requests to finish. 420 * 421 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 422 * call is needed so things in this AioContext can make progress even 423 * though we don't return to the main AioContext loop - this automatically 424 * includes other nodes in the same AioContext and therefore all child 425 * nodes. 426 */ 427 if (poll) { 428 assert(!ignore_bds_parents); 429 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 430 } 431 } 432 433 void bdrv_drained_begin(BlockDriverState *bs) 434 { 435 bdrv_do_drained_begin(bs, false, NULL, false, true); 436 } 437 438 void bdrv_subtree_drained_begin(BlockDriverState *bs) 439 { 440 bdrv_do_drained_begin(bs, true, NULL, false, true); 441 } 442 443 /** 444 * This function does not poll, nor must any of its recursively called 445 * functions. The *drained_end_counter pointee will be incremented 446 * once for every background operation scheduled, and decremented once 447 * the operation settles. Therefore, the pointer must remain valid 448 * until the pointee reaches 0. That implies that whoever sets up the 449 * pointee has to poll until it is 0. 450 * 451 * We use atomic operations to access *drained_end_counter, because 452 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 453 * @bs may contain nodes in different AioContexts, 454 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 455 * regardless of which AioContext they are in. 456 */ 457 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 458 BdrvChild *parent, bool ignore_bds_parents, 459 int *drained_end_counter) 460 { 461 BdrvChild *child; 462 int old_quiesce_counter; 463 464 assert(drained_end_counter != NULL); 465 466 if (qemu_in_coroutine()) { 467 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 468 false, drained_end_counter); 469 return; 470 } 471 assert(bs->quiesce_counter > 0); 472 473 /* Re-enable things in child-to-parent order */ 474 bdrv_drain_invoke(bs, false, drained_end_counter); 475 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 476 drained_end_counter); 477 478 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter); 479 if (old_quiesce_counter == 1) { 480 aio_enable_external(bdrv_get_aio_context(bs)); 481 } 482 483 if (recursive) { 484 assert(!ignore_bds_parents); 485 bs->recursive_quiesce_counter--; 486 QLIST_FOREACH(child, &bs->children, next) { 487 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 488 drained_end_counter); 489 } 490 } 491 } 492 493 void bdrv_drained_end(BlockDriverState *bs) 494 { 495 int drained_end_counter = 0; 496 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 497 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0); 498 } 499 500 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 501 { 502 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 503 } 504 505 void bdrv_subtree_drained_end(BlockDriverState *bs) 506 { 507 int drained_end_counter = 0; 508 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 509 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0); 510 } 511 512 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 513 { 514 int i; 515 516 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 517 bdrv_do_drained_begin(child->bs, true, child, false, true); 518 } 519 } 520 521 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 522 { 523 int drained_end_counter = 0; 524 int i; 525 526 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 527 bdrv_do_drained_end(child->bs, true, child, false, 528 &drained_end_counter); 529 } 530 531 BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0); 532 } 533 534 /* 535 * Wait for pending requests to complete on a single BlockDriverState subtree, 536 * and suspend block driver's internal I/O until next request arrives. 537 * 538 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 539 * AioContext. 540 */ 541 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 542 { 543 assert(qemu_in_coroutine()); 544 bdrv_drained_begin(bs); 545 bdrv_drained_end(bs); 546 } 547 548 void bdrv_drain(BlockDriverState *bs) 549 { 550 bdrv_drained_begin(bs); 551 bdrv_drained_end(bs); 552 } 553 554 static void bdrv_drain_assert_idle(BlockDriverState *bs) 555 { 556 BdrvChild *child, *next; 557 558 assert(atomic_read(&bs->in_flight) == 0); 559 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 560 bdrv_drain_assert_idle(child->bs); 561 } 562 } 563 564 unsigned int bdrv_drain_all_count = 0; 565 566 static bool bdrv_drain_all_poll(void) 567 { 568 BlockDriverState *bs = NULL; 569 bool result = false; 570 571 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 572 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 573 while ((bs = bdrv_next_all_states(bs))) { 574 AioContext *aio_context = bdrv_get_aio_context(bs); 575 aio_context_acquire(aio_context); 576 result |= bdrv_drain_poll(bs, false, NULL, true); 577 aio_context_release(aio_context); 578 } 579 580 return result; 581 } 582 583 /* 584 * Wait for pending requests to complete across all BlockDriverStates 585 * 586 * This function does not flush data to disk, use bdrv_flush_all() for that 587 * after calling this function. 588 * 589 * This pauses all block jobs and disables external clients. It must 590 * be paired with bdrv_drain_all_end(). 591 * 592 * NOTE: no new block jobs or BlockDriverStates can be created between 593 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 594 */ 595 void bdrv_drain_all_begin(void) 596 { 597 BlockDriverState *bs = NULL; 598 599 if (qemu_in_coroutine()) { 600 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 601 return; 602 } 603 604 /* 605 * bdrv queue is managed by record/replay, 606 * waiting for finishing the I/O requests may 607 * be infinite 608 */ 609 if (replay_events_enabled()) { 610 return; 611 } 612 613 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 614 * loop AioContext, so make sure we're in the main context. */ 615 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 616 assert(bdrv_drain_all_count < INT_MAX); 617 bdrv_drain_all_count++; 618 619 /* Quiesce all nodes, without polling in-flight requests yet. The graph 620 * cannot change during this loop. */ 621 while ((bs = bdrv_next_all_states(bs))) { 622 AioContext *aio_context = bdrv_get_aio_context(bs); 623 624 aio_context_acquire(aio_context); 625 bdrv_do_drained_begin(bs, false, NULL, true, false); 626 aio_context_release(aio_context); 627 } 628 629 /* Now poll the in-flight requests */ 630 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 631 632 while ((bs = bdrv_next_all_states(bs))) { 633 bdrv_drain_assert_idle(bs); 634 } 635 } 636 637 void bdrv_drain_all_end(void) 638 { 639 BlockDriverState *bs = NULL; 640 int drained_end_counter = 0; 641 642 /* 643 * bdrv queue is managed by record/replay, 644 * waiting for finishing the I/O requests may 645 * be endless 646 */ 647 if (replay_events_enabled()) { 648 return; 649 } 650 651 while ((bs = bdrv_next_all_states(bs))) { 652 AioContext *aio_context = bdrv_get_aio_context(bs); 653 654 aio_context_acquire(aio_context); 655 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 656 aio_context_release(aio_context); 657 } 658 659 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 660 AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0); 661 662 assert(bdrv_drain_all_count > 0); 663 bdrv_drain_all_count--; 664 } 665 666 void bdrv_drain_all(void) 667 { 668 bdrv_drain_all_begin(); 669 bdrv_drain_all_end(); 670 } 671 672 /** 673 * Remove an active request from the tracked requests list 674 * 675 * This function should be called when a tracked request is completing. 676 */ 677 static void tracked_request_end(BdrvTrackedRequest *req) 678 { 679 if (req->serialising) { 680 atomic_dec(&req->bs->serialising_in_flight); 681 } 682 683 qemu_co_mutex_lock(&req->bs->reqs_lock); 684 QLIST_REMOVE(req, list); 685 qemu_co_queue_restart_all(&req->wait_queue); 686 qemu_co_mutex_unlock(&req->bs->reqs_lock); 687 } 688 689 /** 690 * Add an active request to the tracked requests list 691 */ 692 static void tracked_request_begin(BdrvTrackedRequest *req, 693 BlockDriverState *bs, 694 int64_t offset, 695 uint64_t bytes, 696 enum BdrvTrackedRequestType type) 697 { 698 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes); 699 700 *req = (BdrvTrackedRequest){ 701 .bs = bs, 702 .offset = offset, 703 .bytes = bytes, 704 .type = type, 705 .co = qemu_coroutine_self(), 706 .serialising = false, 707 .overlap_offset = offset, 708 .overlap_bytes = bytes, 709 }; 710 711 qemu_co_queue_init(&req->wait_queue); 712 713 qemu_co_mutex_lock(&bs->reqs_lock); 714 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 715 qemu_co_mutex_unlock(&bs->reqs_lock); 716 } 717 718 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 719 int64_t offset, uint64_t bytes) 720 { 721 /* aaaa bbbb */ 722 if (offset >= req->overlap_offset + req->overlap_bytes) { 723 return false; 724 } 725 /* bbbb aaaa */ 726 if (req->overlap_offset >= offset + bytes) { 727 return false; 728 } 729 return true; 730 } 731 732 static bool coroutine_fn 733 bdrv_wait_serialising_requests_locked(BlockDriverState *bs, 734 BdrvTrackedRequest *self) 735 { 736 BdrvTrackedRequest *req; 737 bool retry; 738 bool waited = false; 739 740 do { 741 retry = false; 742 QLIST_FOREACH(req, &bs->tracked_requests, list) { 743 if (req == self || (!req->serialising && !self->serialising)) { 744 continue; 745 } 746 if (tracked_request_overlaps(req, self->overlap_offset, 747 self->overlap_bytes)) 748 { 749 /* Hitting this means there was a reentrant request, for 750 * example, a block driver issuing nested requests. This must 751 * never happen since it means deadlock. 752 */ 753 assert(qemu_coroutine_self() != req->co); 754 755 /* If the request is already (indirectly) waiting for us, or 756 * will wait for us as soon as it wakes up, then just go on 757 * (instead of producing a deadlock in the former case). */ 758 if (!req->waiting_for) { 759 self->waiting_for = req; 760 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 761 self->waiting_for = NULL; 762 retry = true; 763 waited = true; 764 break; 765 } 766 } 767 } 768 } while (retry); 769 return waited; 770 } 771 772 bool bdrv_mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 773 { 774 BlockDriverState *bs = req->bs; 775 int64_t overlap_offset = req->offset & ~(align - 1); 776 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 777 - overlap_offset; 778 bool waited; 779 780 qemu_co_mutex_lock(&bs->reqs_lock); 781 if (!req->serialising) { 782 atomic_inc(&req->bs->serialising_in_flight); 783 req->serialising = true; 784 } 785 786 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 787 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 788 waited = bdrv_wait_serialising_requests_locked(bs, req); 789 qemu_co_mutex_unlock(&bs->reqs_lock); 790 return waited; 791 } 792 793 /** 794 * Return the tracked request on @bs for the current coroutine, or 795 * NULL if there is none. 796 */ 797 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 798 { 799 BdrvTrackedRequest *req; 800 Coroutine *self = qemu_coroutine_self(); 801 802 QLIST_FOREACH(req, &bs->tracked_requests, list) { 803 if (req->co == self) { 804 return req; 805 } 806 } 807 808 return NULL; 809 } 810 811 /** 812 * Round a region to cluster boundaries 813 */ 814 void bdrv_round_to_clusters(BlockDriverState *bs, 815 int64_t offset, int64_t bytes, 816 int64_t *cluster_offset, 817 int64_t *cluster_bytes) 818 { 819 BlockDriverInfo bdi; 820 821 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 822 *cluster_offset = offset; 823 *cluster_bytes = bytes; 824 } else { 825 int64_t c = bdi.cluster_size; 826 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 827 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 828 } 829 } 830 831 static int bdrv_get_cluster_size(BlockDriverState *bs) 832 { 833 BlockDriverInfo bdi; 834 int ret; 835 836 ret = bdrv_get_info(bs, &bdi); 837 if (ret < 0 || bdi.cluster_size == 0) { 838 return bs->bl.request_alignment; 839 } else { 840 return bdi.cluster_size; 841 } 842 } 843 844 void bdrv_inc_in_flight(BlockDriverState *bs) 845 { 846 atomic_inc(&bs->in_flight); 847 } 848 849 void bdrv_wakeup(BlockDriverState *bs) 850 { 851 aio_wait_kick(); 852 } 853 854 void bdrv_dec_in_flight(BlockDriverState *bs) 855 { 856 atomic_dec(&bs->in_flight); 857 bdrv_wakeup(bs); 858 } 859 860 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 861 { 862 BlockDriverState *bs = self->bs; 863 bool waited = false; 864 865 if (!atomic_read(&bs->serialising_in_flight)) { 866 return false; 867 } 868 869 qemu_co_mutex_lock(&bs->reqs_lock); 870 waited = bdrv_wait_serialising_requests_locked(bs, self); 871 qemu_co_mutex_unlock(&bs->reqs_lock); 872 873 return waited; 874 } 875 876 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 877 size_t size) 878 { 879 if (size > BDRV_REQUEST_MAX_BYTES) { 880 return -EIO; 881 } 882 883 if (!bdrv_is_inserted(bs)) { 884 return -ENOMEDIUM; 885 } 886 887 if (offset < 0) { 888 return -EIO; 889 } 890 891 return 0; 892 } 893 894 typedef struct RwCo { 895 BdrvChild *child; 896 int64_t offset; 897 QEMUIOVector *qiov; 898 bool is_write; 899 int ret; 900 BdrvRequestFlags flags; 901 } RwCo; 902 903 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 904 { 905 RwCo *rwco = opaque; 906 907 if (!rwco->is_write) { 908 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 909 rwco->qiov->size, rwco->qiov, 910 rwco->flags); 911 } else { 912 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 913 rwco->qiov->size, rwco->qiov, 914 rwco->flags); 915 } 916 aio_wait_kick(); 917 } 918 919 /* 920 * Process a vectored synchronous request using coroutines 921 */ 922 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 923 QEMUIOVector *qiov, bool is_write, 924 BdrvRequestFlags flags) 925 { 926 Coroutine *co; 927 RwCo rwco = { 928 .child = child, 929 .offset = offset, 930 .qiov = qiov, 931 .is_write = is_write, 932 .ret = NOT_DONE, 933 .flags = flags, 934 }; 935 936 if (qemu_in_coroutine()) { 937 /* Fast-path if already in coroutine context */ 938 bdrv_rw_co_entry(&rwco); 939 } else { 940 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 941 bdrv_coroutine_enter(child->bs, co); 942 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 943 } 944 return rwco.ret; 945 } 946 947 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 948 int bytes, BdrvRequestFlags flags) 949 { 950 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes); 951 952 return bdrv_prwv_co(child, offset, &qiov, true, 953 BDRV_REQ_ZERO_WRITE | flags); 954 } 955 956 /* 957 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 958 * The operation is sped up by checking the block status and only writing 959 * zeroes to the device if they currently do not return zeroes. Optional 960 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 961 * BDRV_REQ_FUA). 962 * 963 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 964 */ 965 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 966 { 967 int ret; 968 int64_t target_size, bytes, offset = 0; 969 BlockDriverState *bs = child->bs; 970 971 target_size = bdrv_getlength(bs); 972 if (target_size < 0) { 973 return target_size; 974 } 975 976 for (;;) { 977 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 978 if (bytes <= 0) { 979 return 0; 980 } 981 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 982 if (ret < 0) { 983 return ret; 984 } 985 if (ret & BDRV_BLOCK_ZERO) { 986 offset += bytes; 987 continue; 988 } 989 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 990 if (ret < 0) { 991 return ret; 992 } 993 offset += bytes; 994 } 995 } 996 997 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 998 { 999 int ret; 1000 1001 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 1002 if (ret < 0) { 1003 return ret; 1004 } 1005 1006 return qiov->size; 1007 } 1008 1009 /* See bdrv_pwrite() for the return codes */ 1010 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 1011 { 1012 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1013 1014 if (bytes < 0) { 1015 return -EINVAL; 1016 } 1017 1018 return bdrv_preadv(child, offset, &qiov); 1019 } 1020 1021 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 1022 { 1023 int ret; 1024 1025 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 1026 if (ret < 0) { 1027 return ret; 1028 } 1029 1030 return qiov->size; 1031 } 1032 1033 /* Return no. of bytes on success or < 0 on error. Important errors are: 1034 -EIO generic I/O error (may happen for all errors) 1035 -ENOMEDIUM No media inserted. 1036 -EINVAL Invalid offset or number of bytes 1037 -EACCES Trying to write a read-only device 1038 */ 1039 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 1040 { 1041 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1042 1043 if (bytes < 0) { 1044 return -EINVAL; 1045 } 1046 1047 return bdrv_pwritev(child, offset, &qiov); 1048 } 1049 1050 /* 1051 * Writes to the file and ensures that no writes are reordered across this 1052 * request (acts as a barrier) 1053 * 1054 * Returns 0 on success, -errno in error cases. 1055 */ 1056 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1057 const void *buf, int count) 1058 { 1059 int ret; 1060 1061 ret = bdrv_pwrite(child, offset, buf, count); 1062 if (ret < 0) { 1063 return ret; 1064 } 1065 1066 ret = bdrv_flush(child->bs); 1067 if (ret < 0) { 1068 return ret; 1069 } 1070 1071 return 0; 1072 } 1073 1074 typedef struct CoroutineIOCompletion { 1075 Coroutine *coroutine; 1076 int ret; 1077 } CoroutineIOCompletion; 1078 1079 static void bdrv_co_io_em_complete(void *opaque, int ret) 1080 { 1081 CoroutineIOCompletion *co = opaque; 1082 1083 co->ret = ret; 1084 aio_co_wake(co->coroutine); 1085 } 1086 1087 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1088 uint64_t offset, uint64_t bytes, 1089 QEMUIOVector *qiov, 1090 size_t qiov_offset, int flags) 1091 { 1092 BlockDriver *drv = bs->drv; 1093 int64_t sector_num; 1094 unsigned int nb_sectors; 1095 QEMUIOVector local_qiov; 1096 int ret; 1097 1098 assert(!(flags & ~BDRV_REQ_MASK)); 1099 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1100 1101 if (!drv) { 1102 return -ENOMEDIUM; 1103 } 1104 1105 if (drv->bdrv_co_preadv_part) { 1106 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1107 flags); 1108 } 1109 1110 if (qiov_offset > 0 || bytes != qiov->size) { 1111 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1112 qiov = &local_qiov; 1113 } 1114 1115 if (drv->bdrv_co_preadv) { 1116 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1117 goto out; 1118 } 1119 1120 if (drv->bdrv_aio_preadv) { 1121 BlockAIOCB *acb; 1122 CoroutineIOCompletion co = { 1123 .coroutine = qemu_coroutine_self(), 1124 }; 1125 1126 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1127 bdrv_co_io_em_complete, &co); 1128 if (acb == NULL) { 1129 ret = -EIO; 1130 goto out; 1131 } else { 1132 qemu_coroutine_yield(); 1133 ret = co.ret; 1134 goto out; 1135 } 1136 } 1137 1138 sector_num = offset >> BDRV_SECTOR_BITS; 1139 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1140 1141 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1142 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1143 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1144 assert(drv->bdrv_co_readv); 1145 1146 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1147 1148 out: 1149 if (qiov == &local_qiov) { 1150 qemu_iovec_destroy(&local_qiov); 1151 } 1152 1153 return ret; 1154 } 1155 1156 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1157 uint64_t offset, uint64_t bytes, 1158 QEMUIOVector *qiov, 1159 size_t qiov_offset, int flags) 1160 { 1161 BlockDriver *drv = bs->drv; 1162 int64_t sector_num; 1163 unsigned int nb_sectors; 1164 QEMUIOVector local_qiov; 1165 int ret; 1166 1167 assert(!(flags & ~BDRV_REQ_MASK)); 1168 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1169 1170 if (!drv) { 1171 return -ENOMEDIUM; 1172 } 1173 1174 if (drv->bdrv_co_pwritev_part) { 1175 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1176 flags & bs->supported_write_flags); 1177 flags &= ~bs->supported_write_flags; 1178 goto emulate_flags; 1179 } 1180 1181 if (qiov_offset > 0 || bytes != qiov->size) { 1182 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1183 qiov = &local_qiov; 1184 } 1185 1186 if (drv->bdrv_co_pwritev) { 1187 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1188 flags & bs->supported_write_flags); 1189 flags &= ~bs->supported_write_flags; 1190 goto emulate_flags; 1191 } 1192 1193 if (drv->bdrv_aio_pwritev) { 1194 BlockAIOCB *acb; 1195 CoroutineIOCompletion co = { 1196 .coroutine = qemu_coroutine_self(), 1197 }; 1198 1199 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1200 flags & bs->supported_write_flags, 1201 bdrv_co_io_em_complete, &co); 1202 flags &= ~bs->supported_write_flags; 1203 if (acb == NULL) { 1204 ret = -EIO; 1205 } else { 1206 qemu_coroutine_yield(); 1207 ret = co.ret; 1208 } 1209 goto emulate_flags; 1210 } 1211 1212 sector_num = offset >> BDRV_SECTOR_BITS; 1213 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1214 1215 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1216 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1217 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1218 1219 assert(drv->bdrv_co_writev); 1220 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1221 flags & bs->supported_write_flags); 1222 flags &= ~bs->supported_write_flags; 1223 1224 emulate_flags: 1225 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1226 ret = bdrv_co_flush(bs); 1227 } 1228 1229 if (qiov == &local_qiov) { 1230 qemu_iovec_destroy(&local_qiov); 1231 } 1232 1233 return ret; 1234 } 1235 1236 static int coroutine_fn 1237 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 1238 uint64_t bytes, QEMUIOVector *qiov, 1239 size_t qiov_offset) 1240 { 1241 BlockDriver *drv = bs->drv; 1242 QEMUIOVector local_qiov; 1243 int ret; 1244 1245 if (!drv) { 1246 return -ENOMEDIUM; 1247 } 1248 1249 if (!block_driver_can_compress(drv)) { 1250 return -ENOTSUP; 1251 } 1252 1253 if (drv->bdrv_co_pwritev_compressed_part) { 1254 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1255 qiov, qiov_offset); 1256 } 1257 1258 if (qiov_offset == 0) { 1259 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1260 } 1261 1262 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1263 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1264 qemu_iovec_destroy(&local_qiov); 1265 1266 return ret; 1267 } 1268 1269 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1270 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1271 size_t qiov_offset, int flags) 1272 { 1273 BlockDriverState *bs = child->bs; 1274 1275 /* Perform I/O through a temporary buffer so that users who scribble over 1276 * their read buffer while the operation is in progress do not end up 1277 * modifying the image file. This is critical for zero-copy guest I/O 1278 * where anything might happen inside guest memory. 1279 */ 1280 void *bounce_buffer = NULL; 1281 1282 BlockDriver *drv = bs->drv; 1283 int64_t cluster_offset; 1284 int64_t cluster_bytes; 1285 size_t skip_bytes; 1286 int ret; 1287 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1288 BDRV_REQUEST_MAX_BYTES); 1289 unsigned int progress = 0; 1290 bool skip_write; 1291 1292 if (!drv) { 1293 return -ENOMEDIUM; 1294 } 1295 1296 /* 1297 * Do not write anything when the BDS is inactive. That is not 1298 * allowed, and it would not help. 1299 */ 1300 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1301 1302 /* FIXME We cannot require callers to have write permissions when all they 1303 * are doing is a read request. If we did things right, write permissions 1304 * would be obtained anyway, but internally by the copy-on-read code. As 1305 * long as it is implemented here rather than in a separate filter driver, 1306 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1307 * it could request permissions. Therefore we have to bypass the permission 1308 * system for the moment. */ 1309 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1310 1311 /* Cover entire cluster so no additional backing file I/O is required when 1312 * allocating cluster in the image file. Note that this value may exceed 1313 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1314 * is one reason we loop rather than doing it all at once. 1315 */ 1316 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1317 skip_bytes = offset - cluster_offset; 1318 1319 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1320 cluster_offset, cluster_bytes); 1321 1322 while (cluster_bytes) { 1323 int64_t pnum; 1324 1325 if (skip_write) { 1326 ret = 1; /* "already allocated", so nothing will be copied */ 1327 pnum = MIN(cluster_bytes, max_transfer); 1328 } else { 1329 ret = bdrv_is_allocated(bs, cluster_offset, 1330 MIN(cluster_bytes, max_transfer), &pnum); 1331 if (ret < 0) { 1332 /* 1333 * Safe to treat errors in querying allocation as if 1334 * unallocated; we'll probably fail again soon on the 1335 * read, but at least that will set a decent errno. 1336 */ 1337 pnum = MIN(cluster_bytes, max_transfer); 1338 } 1339 1340 /* Stop at EOF if the image ends in the middle of the cluster */ 1341 if (ret == 0 && pnum == 0) { 1342 assert(progress >= bytes); 1343 break; 1344 } 1345 1346 assert(skip_bytes < pnum); 1347 } 1348 1349 if (ret <= 0) { 1350 QEMUIOVector local_qiov; 1351 1352 /* Must copy-on-read; use the bounce buffer */ 1353 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1354 if (!bounce_buffer) { 1355 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1356 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1357 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1358 1359 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1360 if (!bounce_buffer) { 1361 ret = -ENOMEM; 1362 goto err; 1363 } 1364 } 1365 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1366 1367 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1368 &local_qiov, 0, 0); 1369 if (ret < 0) { 1370 goto err; 1371 } 1372 1373 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1374 if (drv->bdrv_co_pwrite_zeroes && 1375 buffer_is_zero(bounce_buffer, pnum)) { 1376 /* FIXME: Should we (perhaps conditionally) be setting 1377 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1378 * that still correctly reads as zero? */ 1379 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1380 BDRV_REQ_WRITE_UNCHANGED); 1381 } else { 1382 /* This does not change the data on the disk, it is not 1383 * necessary to flush even in cache=writethrough mode. 1384 */ 1385 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1386 &local_qiov, 0, 1387 BDRV_REQ_WRITE_UNCHANGED); 1388 } 1389 1390 if (ret < 0) { 1391 /* It might be okay to ignore write errors for guest 1392 * requests. If this is a deliberate copy-on-read 1393 * then we don't want to ignore the error. Simply 1394 * report it in all cases. 1395 */ 1396 goto err; 1397 } 1398 1399 if (!(flags & BDRV_REQ_PREFETCH)) { 1400 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1401 bounce_buffer + skip_bytes, 1402 pnum - skip_bytes); 1403 } 1404 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1405 /* Read directly into the destination */ 1406 ret = bdrv_driver_preadv(bs, offset + progress, 1407 MIN(pnum - skip_bytes, bytes - progress), 1408 qiov, qiov_offset + progress, 0); 1409 if (ret < 0) { 1410 goto err; 1411 } 1412 } 1413 1414 cluster_offset += pnum; 1415 cluster_bytes -= pnum; 1416 progress += pnum - skip_bytes; 1417 skip_bytes = 0; 1418 } 1419 ret = 0; 1420 1421 err: 1422 qemu_vfree(bounce_buffer); 1423 return ret; 1424 } 1425 1426 /* 1427 * Forwards an already correctly aligned request to the BlockDriver. This 1428 * handles copy on read, zeroing after EOF, and fragmentation of large 1429 * reads; any other features must be implemented by the caller. 1430 */ 1431 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1432 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1433 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1434 { 1435 BlockDriverState *bs = child->bs; 1436 int64_t total_bytes, max_bytes; 1437 int ret = 0; 1438 uint64_t bytes_remaining = bytes; 1439 int max_transfer; 1440 1441 assert(is_power_of_2(align)); 1442 assert((offset & (align - 1)) == 0); 1443 assert((bytes & (align - 1)) == 0); 1444 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1445 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1446 align); 1447 1448 /* TODO: We would need a per-BDS .supported_read_flags and 1449 * potential fallback support, if we ever implement any read flags 1450 * to pass through to drivers. For now, there aren't any 1451 * passthrough flags. */ 1452 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH))); 1453 1454 /* Handle Copy on Read and associated serialisation */ 1455 if (flags & BDRV_REQ_COPY_ON_READ) { 1456 /* If we touch the same cluster it counts as an overlap. This 1457 * guarantees that allocating writes will be serialized and not race 1458 * with each other for the same cluster. For example, in copy-on-read 1459 * it ensures that the CoR read and write operations are atomic and 1460 * guest writes cannot interleave between them. */ 1461 bdrv_mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1462 } else { 1463 bdrv_wait_serialising_requests(req); 1464 } 1465 1466 if (flags & BDRV_REQ_COPY_ON_READ) { 1467 int64_t pnum; 1468 1469 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1470 if (ret < 0) { 1471 goto out; 1472 } 1473 1474 if (!ret || pnum != bytes) { 1475 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1476 qiov, qiov_offset, flags); 1477 goto out; 1478 } else if (flags & BDRV_REQ_PREFETCH) { 1479 goto out; 1480 } 1481 } 1482 1483 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1484 total_bytes = bdrv_getlength(bs); 1485 if (total_bytes < 0) { 1486 ret = total_bytes; 1487 goto out; 1488 } 1489 1490 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1491 if (bytes <= max_bytes && bytes <= max_transfer) { 1492 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, 0); 1493 goto out; 1494 } 1495 1496 while (bytes_remaining) { 1497 int num; 1498 1499 if (max_bytes) { 1500 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1501 assert(num); 1502 1503 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1504 num, qiov, bytes - bytes_remaining, 0); 1505 max_bytes -= num; 1506 } else { 1507 num = bytes_remaining; 1508 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1509 bytes_remaining); 1510 } 1511 if (ret < 0) { 1512 goto out; 1513 } 1514 bytes_remaining -= num; 1515 } 1516 1517 out: 1518 return ret < 0 ? ret : 0; 1519 } 1520 1521 /* 1522 * Request padding 1523 * 1524 * |<---- align ----->| |<----- align ---->| 1525 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1526 * | | | | | | 1527 * -*----------$-------*-------- ... --------*-----$------------*--- 1528 * | | | | | | 1529 * | offset | | end | 1530 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1531 * [buf ... ) [tail_buf ) 1532 * 1533 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1534 * is placed at the beginning of @buf and @tail at the @end. 1535 * 1536 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1537 * around tail, if tail exists. 1538 * 1539 * @merge_reads is true for small requests, 1540 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1541 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1542 */ 1543 typedef struct BdrvRequestPadding { 1544 uint8_t *buf; 1545 size_t buf_len; 1546 uint8_t *tail_buf; 1547 size_t head; 1548 size_t tail; 1549 bool merge_reads; 1550 QEMUIOVector local_qiov; 1551 } BdrvRequestPadding; 1552 1553 static bool bdrv_init_padding(BlockDriverState *bs, 1554 int64_t offset, int64_t bytes, 1555 BdrvRequestPadding *pad) 1556 { 1557 uint64_t align = bs->bl.request_alignment; 1558 size_t sum; 1559 1560 memset(pad, 0, sizeof(*pad)); 1561 1562 pad->head = offset & (align - 1); 1563 pad->tail = ((offset + bytes) & (align - 1)); 1564 if (pad->tail) { 1565 pad->tail = align - pad->tail; 1566 } 1567 1568 if (!pad->head && !pad->tail) { 1569 return false; 1570 } 1571 1572 assert(bytes); /* Nothing good in aligning zero-length requests */ 1573 1574 sum = pad->head + bytes + pad->tail; 1575 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1576 pad->buf = qemu_blockalign(bs, pad->buf_len); 1577 pad->merge_reads = sum == pad->buf_len; 1578 if (pad->tail) { 1579 pad->tail_buf = pad->buf + pad->buf_len - align; 1580 } 1581 1582 return true; 1583 } 1584 1585 static int bdrv_padding_rmw_read(BdrvChild *child, 1586 BdrvTrackedRequest *req, 1587 BdrvRequestPadding *pad, 1588 bool zero_middle) 1589 { 1590 QEMUIOVector local_qiov; 1591 BlockDriverState *bs = child->bs; 1592 uint64_t align = bs->bl.request_alignment; 1593 int ret; 1594 1595 assert(req->serialising && pad->buf); 1596 1597 if (pad->head || pad->merge_reads) { 1598 uint64_t bytes = pad->merge_reads ? pad->buf_len : align; 1599 1600 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1601 1602 if (pad->head) { 1603 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1604 } 1605 if (pad->merge_reads && pad->tail) { 1606 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1607 } 1608 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1609 align, &local_qiov, 0, 0); 1610 if (ret < 0) { 1611 return ret; 1612 } 1613 if (pad->head) { 1614 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1615 } 1616 if (pad->merge_reads && pad->tail) { 1617 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1618 } 1619 1620 if (pad->merge_reads) { 1621 goto zero_mem; 1622 } 1623 } 1624 1625 if (pad->tail) { 1626 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1627 1628 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1629 ret = bdrv_aligned_preadv( 1630 child, req, 1631 req->overlap_offset + req->overlap_bytes - align, 1632 align, align, &local_qiov, 0, 0); 1633 if (ret < 0) { 1634 return ret; 1635 } 1636 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1637 } 1638 1639 zero_mem: 1640 if (zero_middle) { 1641 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1642 } 1643 1644 return 0; 1645 } 1646 1647 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1648 { 1649 if (pad->buf) { 1650 qemu_vfree(pad->buf); 1651 qemu_iovec_destroy(&pad->local_qiov); 1652 } 1653 } 1654 1655 /* 1656 * bdrv_pad_request 1657 * 1658 * Exchange request parameters with padded request if needed. Don't include RMW 1659 * read of padding, bdrv_padding_rmw_read() should be called separately if 1660 * needed. 1661 * 1662 * All parameters except @bs are in-out: they represent original request at 1663 * function call and padded (if padding needed) at function finish. 1664 * 1665 * Function always succeeds. 1666 */ 1667 static bool bdrv_pad_request(BlockDriverState *bs, 1668 QEMUIOVector **qiov, size_t *qiov_offset, 1669 int64_t *offset, unsigned int *bytes, 1670 BdrvRequestPadding *pad) 1671 { 1672 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1673 return false; 1674 } 1675 1676 qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1677 *qiov, *qiov_offset, *bytes, 1678 pad->buf + pad->buf_len - pad->tail, pad->tail); 1679 *bytes += pad->head + pad->tail; 1680 *offset -= pad->head; 1681 *qiov = &pad->local_qiov; 1682 *qiov_offset = 0; 1683 1684 return true; 1685 } 1686 1687 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1688 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1689 BdrvRequestFlags flags) 1690 { 1691 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1692 } 1693 1694 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1695 int64_t offset, unsigned int bytes, 1696 QEMUIOVector *qiov, size_t qiov_offset, 1697 BdrvRequestFlags flags) 1698 { 1699 BlockDriverState *bs = child->bs; 1700 BdrvTrackedRequest req; 1701 BdrvRequestPadding pad; 1702 int ret; 1703 1704 trace_bdrv_co_preadv(bs, offset, bytes, flags); 1705 1706 ret = bdrv_check_byte_request(bs, offset, bytes); 1707 if (ret < 0) { 1708 return ret; 1709 } 1710 1711 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1712 /* 1713 * Aligning zero request is nonsense. Even if driver has special meaning 1714 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1715 * it to driver due to request_alignment. 1716 * 1717 * Still, no reason to return an error if someone do unaligned 1718 * zero-length read occasionally. 1719 */ 1720 return 0; 1721 } 1722 1723 bdrv_inc_in_flight(bs); 1724 1725 /* Don't do copy-on-read if we read data before write operation */ 1726 if (atomic_read(&bs->copy_on_read)) { 1727 flags |= BDRV_REQ_COPY_ON_READ; 1728 } 1729 1730 bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad); 1731 1732 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1733 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1734 bs->bl.request_alignment, 1735 qiov, qiov_offset, flags); 1736 tracked_request_end(&req); 1737 bdrv_dec_in_flight(bs); 1738 1739 bdrv_padding_destroy(&pad); 1740 1741 return ret; 1742 } 1743 1744 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1745 int64_t offset, int bytes, BdrvRequestFlags flags) 1746 { 1747 BlockDriver *drv = bs->drv; 1748 QEMUIOVector qiov; 1749 void *buf = NULL; 1750 int ret = 0; 1751 bool need_flush = false; 1752 int head = 0; 1753 int tail = 0; 1754 1755 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1756 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1757 bs->bl.request_alignment); 1758 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1759 1760 if (!drv) { 1761 return -ENOMEDIUM; 1762 } 1763 1764 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1765 return -ENOTSUP; 1766 } 1767 1768 assert(alignment % bs->bl.request_alignment == 0); 1769 head = offset % alignment; 1770 tail = (offset + bytes) % alignment; 1771 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1772 assert(max_write_zeroes >= bs->bl.request_alignment); 1773 1774 while (bytes > 0 && !ret) { 1775 int num = bytes; 1776 1777 /* Align request. Block drivers can expect the "bulk" of the request 1778 * to be aligned, and that unaligned requests do not cross cluster 1779 * boundaries. 1780 */ 1781 if (head) { 1782 /* Make a small request up to the first aligned sector. For 1783 * convenience, limit this request to max_transfer even if 1784 * we don't need to fall back to writes. */ 1785 num = MIN(MIN(bytes, max_transfer), alignment - head); 1786 head = (head + num) % alignment; 1787 assert(num < max_write_zeroes); 1788 } else if (tail && num > alignment) { 1789 /* Shorten the request to the last aligned sector. */ 1790 num -= tail; 1791 } 1792 1793 /* limit request size */ 1794 if (num > max_write_zeroes) { 1795 num = max_write_zeroes; 1796 } 1797 1798 ret = -ENOTSUP; 1799 /* First try the efficient write zeroes operation */ 1800 if (drv->bdrv_co_pwrite_zeroes) { 1801 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1802 flags & bs->supported_zero_flags); 1803 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1804 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1805 need_flush = true; 1806 } 1807 } else { 1808 assert(!bs->supported_zero_flags); 1809 } 1810 1811 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1812 /* Fall back to bounce buffer if write zeroes is unsupported */ 1813 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1814 1815 if ((flags & BDRV_REQ_FUA) && 1816 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1817 /* No need for bdrv_driver_pwrite() to do a fallback 1818 * flush on each chunk; use just one at the end */ 1819 write_flags &= ~BDRV_REQ_FUA; 1820 need_flush = true; 1821 } 1822 num = MIN(num, max_transfer); 1823 if (buf == NULL) { 1824 buf = qemu_try_blockalign0(bs, num); 1825 if (buf == NULL) { 1826 ret = -ENOMEM; 1827 goto fail; 1828 } 1829 } 1830 qemu_iovec_init_buf(&qiov, buf, num); 1831 1832 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1833 1834 /* Keep bounce buffer around if it is big enough for all 1835 * all future requests. 1836 */ 1837 if (num < max_transfer) { 1838 qemu_vfree(buf); 1839 buf = NULL; 1840 } 1841 } 1842 1843 offset += num; 1844 bytes -= num; 1845 } 1846 1847 fail: 1848 if (ret == 0 && need_flush) { 1849 ret = bdrv_co_flush(bs); 1850 } 1851 qemu_vfree(buf); 1852 return ret; 1853 } 1854 1855 static inline int coroutine_fn 1856 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes, 1857 BdrvTrackedRequest *req, int flags) 1858 { 1859 BlockDriverState *bs = child->bs; 1860 bool waited; 1861 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1862 1863 if (bs->read_only) { 1864 return -EPERM; 1865 } 1866 1867 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1868 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1869 assert(!(flags & ~BDRV_REQ_MASK)); 1870 1871 if (flags & BDRV_REQ_SERIALISING) { 1872 waited = bdrv_mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1873 /* 1874 * For a misaligned request we should have already waited earlier, 1875 * because we come after bdrv_padding_rmw_read which must be called 1876 * with the request already marked as serialising. 1877 */ 1878 assert(!waited || 1879 (req->offset == req->overlap_offset && 1880 req->bytes == req->overlap_bytes)); 1881 } else { 1882 bdrv_wait_serialising_requests(req); 1883 } 1884 1885 assert(req->overlap_offset <= offset); 1886 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1887 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1888 1889 switch (req->type) { 1890 case BDRV_TRACKED_WRITE: 1891 case BDRV_TRACKED_DISCARD: 1892 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1893 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1894 } else { 1895 assert(child->perm & BLK_PERM_WRITE); 1896 } 1897 return notifier_with_return_list_notify(&bs->before_write_notifiers, 1898 req); 1899 case BDRV_TRACKED_TRUNCATE: 1900 assert(child->perm & BLK_PERM_RESIZE); 1901 return 0; 1902 default: 1903 abort(); 1904 } 1905 } 1906 1907 static inline void coroutine_fn 1908 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes, 1909 BdrvTrackedRequest *req, int ret) 1910 { 1911 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1912 BlockDriverState *bs = child->bs; 1913 1914 atomic_inc(&bs->write_gen); 1915 1916 /* 1917 * Discard cannot extend the image, but in error handling cases, such as 1918 * when reverting a qcow2 cluster allocation, the discarded range can pass 1919 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1920 * here. Instead, just skip it, since semantically a discard request 1921 * beyond EOF cannot expand the image anyway. 1922 */ 1923 if (ret == 0 && 1924 (req->type == BDRV_TRACKED_TRUNCATE || 1925 end_sector > bs->total_sectors) && 1926 req->type != BDRV_TRACKED_DISCARD) { 1927 bs->total_sectors = end_sector; 1928 bdrv_parent_cb_resize(bs); 1929 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1930 } 1931 if (req->bytes) { 1932 switch (req->type) { 1933 case BDRV_TRACKED_WRITE: 1934 stat64_max(&bs->wr_highest_offset, offset + bytes); 1935 /* fall through, to set dirty bits */ 1936 case BDRV_TRACKED_DISCARD: 1937 bdrv_set_dirty(bs, offset, bytes); 1938 break; 1939 default: 1940 break; 1941 } 1942 } 1943 } 1944 1945 /* 1946 * Forwards an already correctly aligned write request to the BlockDriver, 1947 * after possibly fragmenting it. 1948 */ 1949 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1950 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1951 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1952 { 1953 BlockDriverState *bs = child->bs; 1954 BlockDriver *drv = bs->drv; 1955 int ret; 1956 1957 uint64_t bytes_remaining = bytes; 1958 int max_transfer; 1959 1960 if (!drv) { 1961 return -ENOMEDIUM; 1962 } 1963 1964 if (bdrv_has_readonly_bitmaps(bs)) { 1965 return -EPERM; 1966 } 1967 1968 assert(is_power_of_2(align)); 1969 assert((offset & (align - 1)) == 0); 1970 assert((bytes & (align - 1)) == 0); 1971 assert(!qiov || qiov_offset + bytes <= qiov->size); 1972 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1973 align); 1974 1975 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1976 1977 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1978 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1979 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 1980 flags |= BDRV_REQ_ZERO_WRITE; 1981 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1982 flags |= BDRV_REQ_MAY_UNMAP; 1983 } 1984 } 1985 1986 if (ret < 0) { 1987 /* Do nothing, write notifier decided to fail this request */ 1988 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1989 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1990 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1991 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1992 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 1993 qiov, qiov_offset); 1994 } else if (bytes <= max_transfer) { 1995 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1996 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 1997 } else { 1998 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1999 while (bytes_remaining) { 2000 int num = MIN(bytes_remaining, max_transfer); 2001 int local_flags = flags; 2002 2003 assert(num); 2004 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2005 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2006 /* If FUA is going to be emulated by flush, we only 2007 * need to flush on the last iteration */ 2008 local_flags &= ~BDRV_REQ_FUA; 2009 } 2010 2011 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2012 num, qiov, bytes - bytes_remaining, 2013 local_flags); 2014 if (ret < 0) { 2015 break; 2016 } 2017 bytes_remaining -= num; 2018 } 2019 } 2020 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 2021 2022 if (ret >= 0) { 2023 ret = 0; 2024 } 2025 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2026 2027 return ret; 2028 } 2029 2030 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 2031 int64_t offset, 2032 unsigned int bytes, 2033 BdrvRequestFlags flags, 2034 BdrvTrackedRequest *req) 2035 { 2036 BlockDriverState *bs = child->bs; 2037 QEMUIOVector local_qiov; 2038 uint64_t align = bs->bl.request_alignment; 2039 int ret = 0; 2040 bool padding; 2041 BdrvRequestPadding pad; 2042 2043 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2044 if (padding) { 2045 bdrv_mark_request_serialising(req, align); 2046 2047 bdrv_padding_rmw_read(child, req, &pad, true); 2048 2049 if (pad.head || pad.merge_reads) { 2050 int64_t aligned_offset = offset & ~(align - 1); 2051 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2052 2053 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2054 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2055 align, &local_qiov, 0, 2056 flags & ~BDRV_REQ_ZERO_WRITE); 2057 if (ret < 0 || pad.merge_reads) { 2058 /* Error or all work is done */ 2059 goto out; 2060 } 2061 offset += write_bytes - pad.head; 2062 bytes -= write_bytes - pad.head; 2063 } 2064 } 2065 2066 assert(!bytes || (offset & (align - 1)) == 0); 2067 if (bytes >= align) { 2068 /* Write the aligned part in the middle. */ 2069 uint64_t aligned_bytes = bytes & ~(align - 1); 2070 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2071 NULL, 0, flags); 2072 if (ret < 0) { 2073 goto out; 2074 } 2075 bytes -= aligned_bytes; 2076 offset += aligned_bytes; 2077 } 2078 2079 assert(!bytes || (offset & (align - 1)) == 0); 2080 if (bytes) { 2081 assert(align == pad.tail + bytes); 2082 2083 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2084 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2085 &local_qiov, 0, 2086 flags & ~BDRV_REQ_ZERO_WRITE); 2087 } 2088 2089 out: 2090 bdrv_padding_destroy(&pad); 2091 2092 return ret; 2093 } 2094 2095 /* 2096 * Handle a write request in coroutine context 2097 */ 2098 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2099 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 2100 BdrvRequestFlags flags) 2101 { 2102 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2103 } 2104 2105 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2106 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset, 2107 BdrvRequestFlags flags) 2108 { 2109 BlockDriverState *bs = child->bs; 2110 BdrvTrackedRequest req; 2111 uint64_t align = bs->bl.request_alignment; 2112 BdrvRequestPadding pad; 2113 int ret; 2114 2115 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 2116 2117 if (!bs->drv) { 2118 return -ENOMEDIUM; 2119 } 2120 2121 ret = bdrv_check_byte_request(bs, offset, bytes); 2122 if (ret < 0) { 2123 return ret; 2124 } 2125 2126 /* If the request is misaligned then we can't make it efficient */ 2127 if ((flags & BDRV_REQ_NO_FALLBACK) && 2128 !QEMU_IS_ALIGNED(offset | bytes, align)) 2129 { 2130 return -ENOTSUP; 2131 } 2132 2133 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2134 /* 2135 * Aligning zero request is nonsense. Even if driver has special meaning 2136 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2137 * it to driver due to request_alignment. 2138 * 2139 * Still, no reason to return an error if someone do unaligned 2140 * zero-length write occasionally. 2141 */ 2142 return 0; 2143 } 2144 2145 bdrv_inc_in_flight(bs); 2146 /* 2147 * Align write if necessary by performing a read-modify-write cycle. 2148 * Pad qiov with the read parts and be sure to have a tracked request not 2149 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 2150 */ 2151 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2152 2153 if (flags & BDRV_REQ_ZERO_WRITE) { 2154 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2155 goto out; 2156 } 2157 2158 if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) { 2159 bdrv_mark_request_serialising(&req, align); 2160 bdrv_padding_rmw_read(child, &req, &pad, false); 2161 } 2162 2163 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2164 qiov, qiov_offset, flags); 2165 2166 bdrv_padding_destroy(&pad); 2167 2168 out: 2169 tracked_request_end(&req); 2170 bdrv_dec_in_flight(bs); 2171 2172 return ret; 2173 } 2174 2175 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2176 int bytes, BdrvRequestFlags flags) 2177 { 2178 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2179 2180 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2181 flags &= ~BDRV_REQ_MAY_UNMAP; 2182 } 2183 2184 return bdrv_co_pwritev(child, offset, bytes, NULL, 2185 BDRV_REQ_ZERO_WRITE | flags); 2186 } 2187 2188 /* 2189 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2190 */ 2191 int bdrv_flush_all(void) 2192 { 2193 BdrvNextIterator it; 2194 BlockDriverState *bs = NULL; 2195 int result = 0; 2196 2197 /* 2198 * bdrv queue is managed by record/replay, 2199 * creating new flush request for stopping 2200 * the VM may break the determinism 2201 */ 2202 if (replay_events_enabled()) { 2203 return result; 2204 } 2205 2206 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2207 AioContext *aio_context = bdrv_get_aio_context(bs); 2208 int ret; 2209 2210 aio_context_acquire(aio_context); 2211 ret = bdrv_flush(bs); 2212 if (ret < 0 && !result) { 2213 result = ret; 2214 } 2215 aio_context_release(aio_context); 2216 } 2217 2218 return result; 2219 } 2220 2221 2222 typedef struct BdrvCoBlockStatusData { 2223 BlockDriverState *bs; 2224 BlockDriverState *base; 2225 bool want_zero; 2226 int64_t offset; 2227 int64_t bytes; 2228 int64_t *pnum; 2229 int64_t *map; 2230 BlockDriverState **file; 2231 int ret; 2232 bool done; 2233 } BdrvCoBlockStatusData; 2234 2235 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs, 2236 bool want_zero, 2237 int64_t offset, 2238 int64_t bytes, 2239 int64_t *pnum, 2240 int64_t *map, 2241 BlockDriverState **file) 2242 { 2243 assert(bs->file && bs->file->bs); 2244 *pnum = bytes; 2245 *map = offset; 2246 *file = bs->file->bs; 2247 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2248 } 2249 2250 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs, 2251 bool want_zero, 2252 int64_t offset, 2253 int64_t bytes, 2254 int64_t *pnum, 2255 int64_t *map, 2256 BlockDriverState **file) 2257 { 2258 assert(bs->backing && bs->backing->bs); 2259 *pnum = bytes; 2260 *map = offset; 2261 *file = bs->backing->bs; 2262 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2263 } 2264 2265 /* 2266 * Returns the allocation status of the specified sectors. 2267 * Drivers not implementing the functionality are assumed to not support 2268 * backing files, hence all their sectors are reported as allocated. 2269 * 2270 * If 'want_zero' is true, the caller is querying for mapping 2271 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2272 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2273 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2274 * 2275 * If 'offset' is beyond the end of the disk image the return value is 2276 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2277 * 2278 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2279 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2280 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2281 * 2282 * 'pnum' is set to the number of bytes (including and immediately 2283 * following the specified offset) that are easily known to be in the 2284 * same allocated/unallocated state. Note that a second call starting 2285 * at the original offset plus returned pnum may have the same status. 2286 * The returned value is non-zero on success except at end-of-file. 2287 * 2288 * Returns negative errno on failure. Otherwise, if the 2289 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2290 * set to the host mapping and BDS corresponding to the guest offset. 2291 */ 2292 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2293 bool want_zero, 2294 int64_t offset, int64_t bytes, 2295 int64_t *pnum, int64_t *map, 2296 BlockDriverState **file) 2297 { 2298 int64_t total_size; 2299 int64_t n; /* bytes */ 2300 int ret; 2301 int64_t local_map = 0; 2302 BlockDriverState *local_file = NULL; 2303 int64_t aligned_offset, aligned_bytes; 2304 uint32_t align; 2305 2306 assert(pnum); 2307 *pnum = 0; 2308 total_size = bdrv_getlength(bs); 2309 if (total_size < 0) { 2310 ret = total_size; 2311 goto early_out; 2312 } 2313 2314 if (offset >= total_size) { 2315 ret = BDRV_BLOCK_EOF; 2316 goto early_out; 2317 } 2318 if (!bytes) { 2319 ret = 0; 2320 goto early_out; 2321 } 2322 2323 n = total_size - offset; 2324 if (n < bytes) { 2325 bytes = n; 2326 } 2327 2328 /* Must be non-NULL or bdrv_getlength() would have failed */ 2329 assert(bs->drv); 2330 if (!bs->drv->bdrv_co_block_status) { 2331 *pnum = bytes; 2332 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2333 if (offset + bytes == total_size) { 2334 ret |= BDRV_BLOCK_EOF; 2335 } 2336 if (bs->drv->protocol_name) { 2337 ret |= BDRV_BLOCK_OFFSET_VALID; 2338 local_map = offset; 2339 local_file = bs; 2340 } 2341 goto early_out; 2342 } 2343 2344 bdrv_inc_in_flight(bs); 2345 2346 /* Round out to request_alignment boundaries */ 2347 align = bs->bl.request_alignment; 2348 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2349 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2350 2351 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2352 aligned_bytes, pnum, &local_map, 2353 &local_file); 2354 if (ret < 0) { 2355 *pnum = 0; 2356 goto out; 2357 } 2358 2359 /* 2360 * The driver's result must be a non-zero multiple of request_alignment. 2361 * Clamp pnum and adjust map to original request. 2362 */ 2363 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2364 align > offset - aligned_offset); 2365 if (ret & BDRV_BLOCK_RECURSE) { 2366 assert(ret & BDRV_BLOCK_DATA); 2367 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2368 assert(!(ret & BDRV_BLOCK_ZERO)); 2369 } 2370 2371 *pnum -= offset - aligned_offset; 2372 if (*pnum > bytes) { 2373 *pnum = bytes; 2374 } 2375 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2376 local_map += offset - aligned_offset; 2377 } 2378 2379 if (ret & BDRV_BLOCK_RAW) { 2380 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2381 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2382 *pnum, pnum, &local_map, &local_file); 2383 goto out; 2384 } 2385 2386 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2387 ret |= BDRV_BLOCK_ALLOCATED; 2388 } else if (want_zero) { 2389 if (bdrv_unallocated_blocks_are_zero(bs)) { 2390 ret |= BDRV_BLOCK_ZERO; 2391 } else if (bs->backing) { 2392 BlockDriverState *bs2 = bs->backing->bs; 2393 int64_t size2 = bdrv_getlength(bs2); 2394 2395 if (size2 >= 0 && offset >= size2) { 2396 ret |= BDRV_BLOCK_ZERO; 2397 } 2398 } 2399 } 2400 2401 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2402 local_file && local_file != bs && 2403 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2404 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2405 int64_t file_pnum; 2406 int ret2; 2407 2408 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2409 *pnum, &file_pnum, NULL, NULL); 2410 if (ret2 >= 0) { 2411 /* Ignore errors. This is just providing extra information, it 2412 * is useful but not necessary. 2413 */ 2414 if (ret2 & BDRV_BLOCK_EOF && 2415 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2416 /* 2417 * It is valid for the format block driver to read 2418 * beyond the end of the underlying file's current 2419 * size; such areas read as zero. 2420 */ 2421 ret |= BDRV_BLOCK_ZERO; 2422 } else { 2423 /* Limit request to the range reported by the protocol driver */ 2424 *pnum = file_pnum; 2425 ret |= (ret2 & BDRV_BLOCK_ZERO); 2426 } 2427 } 2428 } 2429 2430 out: 2431 bdrv_dec_in_flight(bs); 2432 if (ret >= 0 && offset + *pnum == total_size) { 2433 ret |= BDRV_BLOCK_EOF; 2434 } 2435 early_out: 2436 if (file) { 2437 *file = local_file; 2438 } 2439 if (map) { 2440 *map = local_map; 2441 } 2442 return ret; 2443 } 2444 2445 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2446 BlockDriverState *base, 2447 bool want_zero, 2448 int64_t offset, 2449 int64_t bytes, 2450 int64_t *pnum, 2451 int64_t *map, 2452 BlockDriverState **file) 2453 { 2454 BlockDriverState *p; 2455 int ret = 0; 2456 bool first = true; 2457 2458 assert(bs != base); 2459 for (p = bs; p != base; p = backing_bs(p)) { 2460 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2461 file); 2462 if (ret < 0) { 2463 break; 2464 } 2465 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 2466 /* 2467 * Reading beyond the end of the file continues to read 2468 * zeroes, but we can only widen the result to the 2469 * unallocated length we learned from an earlier 2470 * iteration. 2471 */ 2472 *pnum = bytes; 2473 } 2474 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 2475 break; 2476 } 2477 /* [offset, pnum] unallocated on this layer, which could be only 2478 * the first part of [offset, bytes]. */ 2479 bytes = MIN(bytes, *pnum); 2480 first = false; 2481 } 2482 return ret; 2483 } 2484 2485 /* Coroutine wrapper for bdrv_block_status_above() */ 2486 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque) 2487 { 2488 BdrvCoBlockStatusData *data = opaque; 2489 2490 data->ret = bdrv_co_block_status_above(data->bs, data->base, 2491 data->want_zero, 2492 data->offset, data->bytes, 2493 data->pnum, data->map, data->file); 2494 data->done = true; 2495 aio_wait_kick(); 2496 } 2497 2498 /* 2499 * Synchronous wrapper around bdrv_co_block_status_above(). 2500 * 2501 * See bdrv_co_block_status_above() for details. 2502 */ 2503 static int bdrv_common_block_status_above(BlockDriverState *bs, 2504 BlockDriverState *base, 2505 bool want_zero, int64_t offset, 2506 int64_t bytes, int64_t *pnum, 2507 int64_t *map, 2508 BlockDriverState **file) 2509 { 2510 Coroutine *co; 2511 BdrvCoBlockStatusData data = { 2512 .bs = bs, 2513 .base = base, 2514 .want_zero = want_zero, 2515 .offset = offset, 2516 .bytes = bytes, 2517 .pnum = pnum, 2518 .map = map, 2519 .file = file, 2520 .done = false, 2521 }; 2522 2523 if (qemu_in_coroutine()) { 2524 /* Fast-path if already in coroutine context */ 2525 bdrv_block_status_above_co_entry(&data); 2526 } else { 2527 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data); 2528 bdrv_coroutine_enter(bs, co); 2529 BDRV_POLL_WHILE(bs, !data.done); 2530 } 2531 return data.ret; 2532 } 2533 2534 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2535 int64_t offset, int64_t bytes, int64_t *pnum, 2536 int64_t *map, BlockDriverState **file) 2537 { 2538 return bdrv_common_block_status_above(bs, base, true, offset, bytes, 2539 pnum, map, file); 2540 } 2541 2542 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2543 int64_t *pnum, int64_t *map, BlockDriverState **file) 2544 { 2545 return bdrv_block_status_above(bs, backing_bs(bs), 2546 offset, bytes, pnum, map, file); 2547 } 2548 2549 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2550 int64_t bytes, int64_t *pnum) 2551 { 2552 int ret; 2553 int64_t dummy; 2554 2555 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset, 2556 bytes, pnum ? pnum : &dummy, NULL, 2557 NULL); 2558 if (ret < 0) { 2559 return ret; 2560 } 2561 return !!(ret & BDRV_BLOCK_ALLOCATED); 2562 } 2563 2564 /* 2565 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2566 * 2567 * Return 1 if (a prefix of) the given range is allocated in any image 2568 * between BASE and TOP (BASE is only included if include_base is set). 2569 * BASE can be NULL to check if the given offset is allocated in any 2570 * image of the chain. Return 0 otherwise, or negative errno on 2571 * failure. 2572 * 2573 * 'pnum' is set to the number of bytes (including and immediately 2574 * following the specified offset) that are known to be in the same 2575 * allocated/unallocated state. Note that a subsequent call starting 2576 * at 'offset + *pnum' may return the same allocation status (in other 2577 * words, the result is not necessarily the maximum possible range); 2578 * but 'pnum' will only be 0 when end of file is reached. 2579 * 2580 */ 2581 int bdrv_is_allocated_above(BlockDriverState *top, 2582 BlockDriverState *base, 2583 bool include_base, int64_t offset, 2584 int64_t bytes, int64_t *pnum) 2585 { 2586 BlockDriverState *intermediate; 2587 int ret; 2588 int64_t n = bytes; 2589 2590 assert(base || !include_base); 2591 2592 intermediate = top; 2593 while (include_base || intermediate != base) { 2594 int64_t pnum_inter; 2595 int64_t size_inter; 2596 2597 assert(intermediate); 2598 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2599 if (ret < 0) { 2600 return ret; 2601 } 2602 if (ret) { 2603 *pnum = pnum_inter; 2604 return 1; 2605 } 2606 2607 size_inter = bdrv_getlength(intermediate); 2608 if (size_inter < 0) { 2609 return size_inter; 2610 } 2611 if (n > pnum_inter && 2612 (intermediate == top || offset + pnum_inter < size_inter)) { 2613 n = pnum_inter; 2614 } 2615 2616 if (intermediate == base) { 2617 break; 2618 } 2619 2620 intermediate = backing_bs(intermediate); 2621 } 2622 2623 *pnum = n; 2624 return 0; 2625 } 2626 2627 typedef struct BdrvVmstateCo { 2628 BlockDriverState *bs; 2629 QEMUIOVector *qiov; 2630 int64_t pos; 2631 bool is_read; 2632 int ret; 2633 } BdrvVmstateCo; 2634 2635 static int coroutine_fn 2636 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2637 bool is_read) 2638 { 2639 BlockDriver *drv = bs->drv; 2640 int ret = -ENOTSUP; 2641 2642 bdrv_inc_in_flight(bs); 2643 2644 if (!drv) { 2645 ret = -ENOMEDIUM; 2646 } else if (drv->bdrv_load_vmstate) { 2647 if (is_read) { 2648 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2649 } else { 2650 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2651 } 2652 } else if (bs->file) { 2653 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2654 } 2655 2656 bdrv_dec_in_flight(bs); 2657 return ret; 2658 } 2659 2660 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2661 { 2662 BdrvVmstateCo *co = opaque; 2663 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2664 aio_wait_kick(); 2665 } 2666 2667 static inline int 2668 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2669 bool is_read) 2670 { 2671 if (qemu_in_coroutine()) { 2672 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2673 } else { 2674 BdrvVmstateCo data = { 2675 .bs = bs, 2676 .qiov = qiov, 2677 .pos = pos, 2678 .is_read = is_read, 2679 .ret = -EINPROGRESS, 2680 }; 2681 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2682 2683 bdrv_coroutine_enter(bs, co); 2684 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2685 return data.ret; 2686 } 2687 } 2688 2689 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2690 int64_t pos, int size) 2691 { 2692 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2693 int ret; 2694 2695 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2696 if (ret < 0) { 2697 return ret; 2698 } 2699 2700 return size; 2701 } 2702 2703 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2704 { 2705 return bdrv_rw_vmstate(bs, qiov, pos, false); 2706 } 2707 2708 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2709 int64_t pos, int size) 2710 { 2711 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2712 int ret; 2713 2714 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2715 if (ret < 0) { 2716 return ret; 2717 } 2718 2719 return size; 2720 } 2721 2722 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2723 { 2724 return bdrv_rw_vmstate(bs, qiov, pos, true); 2725 } 2726 2727 /**************************************************************/ 2728 /* async I/Os */ 2729 2730 void bdrv_aio_cancel(BlockAIOCB *acb) 2731 { 2732 qemu_aio_ref(acb); 2733 bdrv_aio_cancel_async(acb); 2734 while (acb->refcnt > 1) { 2735 if (acb->aiocb_info->get_aio_context) { 2736 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2737 } else if (acb->bs) { 2738 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2739 * assert that we're not using an I/O thread. Thread-safe 2740 * code should use bdrv_aio_cancel_async exclusively. 2741 */ 2742 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2743 aio_poll(bdrv_get_aio_context(acb->bs), true); 2744 } else { 2745 abort(); 2746 } 2747 } 2748 qemu_aio_unref(acb); 2749 } 2750 2751 /* Async version of aio cancel. The caller is not blocked if the acb implements 2752 * cancel_async, otherwise we do nothing and let the request normally complete. 2753 * In either case the completion callback must be called. */ 2754 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2755 { 2756 if (acb->aiocb_info->cancel_async) { 2757 acb->aiocb_info->cancel_async(acb); 2758 } 2759 } 2760 2761 /**************************************************************/ 2762 /* Coroutine block device emulation */ 2763 2764 typedef struct FlushCo { 2765 BlockDriverState *bs; 2766 int ret; 2767 } FlushCo; 2768 2769 2770 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2771 { 2772 FlushCo *rwco = opaque; 2773 2774 rwco->ret = bdrv_co_flush(rwco->bs); 2775 aio_wait_kick(); 2776 } 2777 2778 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2779 { 2780 int current_gen; 2781 int ret = 0; 2782 2783 bdrv_inc_in_flight(bs); 2784 2785 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2786 bdrv_is_sg(bs)) { 2787 goto early_exit; 2788 } 2789 2790 qemu_co_mutex_lock(&bs->reqs_lock); 2791 current_gen = atomic_read(&bs->write_gen); 2792 2793 /* Wait until any previous flushes are completed */ 2794 while (bs->active_flush_req) { 2795 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2796 } 2797 2798 /* Flushes reach this point in nondecreasing current_gen order. */ 2799 bs->active_flush_req = true; 2800 qemu_co_mutex_unlock(&bs->reqs_lock); 2801 2802 /* Write back all layers by calling one driver function */ 2803 if (bs->drv->bdrv_co_flush) { 2804 ret = bs->drv->bdrv_co_flush(bs); 2805 goto out; 2806 } 2807 2808 /* Write back cached data to the OS even with cache=unsafe */ 2809 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2810 if (bs->drv->bdrv_co_flush_to_os) { 2811 ret = bs->drv->bdrv_co_flush_to_os(bs); 2812 if (ret < 0) { 2813 goto out; 2814 } 2815 } 2816 2817 /* But don't actually force it to the disk with cache=unsafe */ 2818 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2819 goto flush_parent; 2820 } 2821 2822 /* Check if we really need to flush anything */ 2823 if (bs->flushed_gen == current_gen) { 2824 goto flush_parent; 2825 } 2826 2827 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2828 if (!bs->drv) { 2829 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2830 * (even in case of apparent success) */ 2831 ret = -ENOMEDIUM; 2832 goto out; 2833 } 2834 if (bs->drv->bdrv_co_flush_to_disk) { 2835 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2836 } else if (bs->drv->bdrv_aio_flush) { 2837 BlockAIOCB *acb; 2838 CoroutineIOCompletion co = { 2839 .coroutine = qemu_coroutine_self(), 2840 }; 2841 2842 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2843 if (acb == NULL) { 2844 ret = -EIO; 2845 } else { 2846 qemu_coroutine_yield(); 2847 ret = co.ret; 2848 } 2849 } else { 2850 /* 2851 * Some block drivers always operate in either writethrough or unsafe 2852 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2853 * know how the server works (because the behaviour is hardcoded or 2854 * depends on server-side configuration), so we can't ensure that 2855 * everything is safe on disk. Returning an error doesn't work because 2856 * that would break guests even if the server operates in writethrough 2857 * mode. 2858 * 2859 * Let's hope the user knows what he's doing. 2860 */ 2861 ret = 0; 2862 } 2863 2864 if (ret < 0) { 2865 goto out; 2866 } 2867 2868 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2869 * in the case of cache=unsafe, so there are no useless flushes. 2870 */ 2871 flush_parent: 2872 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2873 out: 2874 /* Notify any pending flushes that we have completed */ 2875 if (ret == 0) { 2876 bs->flushed_gen = current_gen; 2877 } 2878 2879 qemu_co_mutex_lock(&bs->reqs_lock); 2880 bs->active_flush_req = false; 2881 /* Return value is ignored - it's ok if wait queue is empty */ 2882 qemu_co_queue_next(&bs->flush_queue); 2883 qemu_co_mutex_unlock(&bs->reqs_lock); 2884 2885 early_exit: 2886 bdrv_dec_in_flight(bs); 2887 return ret; 2888 } 2889 2890 int bdrv_flush(BlockDriverState *bs) 2891 { 2892 Coroutine *co; 2893 FlushCo flush_co = { 2894 .bs = bs, 2895 .ret = NOT_DONE, 2896 }; 2897 2898 if (qemu_in_coroutine()) { 2899 /* Fast-path if already in coroutine context */ 2900 bdrv_flush_co_entry(&flush_co); 2901 } else { 2902 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2903 bdrv_coroutine_enter(bs, co); 2904 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2905 } 2906 2907 return flush_co.ret; 2908 } 2909 2910 typedef struct DiscardCo { 2911 BdrvChild *child; 2912 int64_t offset; 2913 int64_t bytes; 2914 int ret; 2915 } DiscardCo; 2916 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2917 { 2918 DiscardCo *rwco = opaque; 2919 2920 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes); 2921 aio_wait_kick(); 2922 } 2923 2924 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 2925 int64_t bytes) 2926 { 2927 BdrvTrackedRequest req; 2928 int max_pdiscard, ret; 2929 int head, tail, align; 2930 BlockDriverState *bs = child->bs; 2931 2932 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 2933 return -ENOMEDIUM; 2934 } 2935 2936 if (bdrv_has_readonly_bitmaps(bs)) { 2937 return -EPERM; 2938 } 2939 2940 if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) { 2941 return -EIO; 2942 } 2943 2944 /* Do nothing if disabled. */ 2945 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2946 return 0; 2947 } 2948 2949 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2950 return 0; 2951 } 2952 2953 /* Discard is advisory, but some devices track and coalesce 2954 * unaligned requests, so we must pass everything down rather than 2955 * round here. Still, most devices will just silently ignore 2956 * unaligned requests (by returning -ENOTSUP), so we must fragment 2957 * the request accordingly. */ 2958 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2959 assert(align % bs->bl.request_alignment == 0); 2960 head = offset % align; 2961 tail = (offset + bytes) % align; 2962 2963 bdrv_inc_in_flight(bs); 2964 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2965 2966 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 2967 if (ret < 0) { 2968 goto out; 2969 } 2970 2971 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2972 align); 2973 assert(max_pdiscard >= bs->bl.request_alignment); 2974 2975 while (bytes > 0) { 2976 int64_t num = bytes; 2977 2978 if (head) { 2979 /* Make small requests to get to alignment boundaries. */ 2980 num = MIN(bytes, align - head); 2981 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2982 num %= bs->bl.request_alignment; 2983 } 2984 head = (head + num) % align; 2985 assert(num < max_pdiscard); 2986 } else if (tail) { 2987 if (num > align) { 2988 /* Shorten the request to the last aligned cluster. */ 2989 num -= tail; 2990 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2991 tail > bs->bl.request_alignment) { 2992 tail %= bs->bl.request_alignment; 2993 num -= tail; 2994 } 2995 } 2996 /* limit request size */ 2997 if (num > max_pdiscard) { 2998 num = max_pdiscard; 2999 } 3000 3001 if (!bs->drv) { 3002 ret = -ENOMEDIUM; 3003 goto out; 3004 } 3005 if (bs->drv->bdrv_co_pdiscard) { 3006 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3007 } else { 3008 BlockAIOCB *acb; 3009 CoroutineIOCompletion co = { 3010 .coroutine = qemu_coroutine_self(), 3011 }; 3012 3013 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3014 bdrv_co_io_em_complete, &co); 3015 if (acb == NULL) { 3016 ret = -EIO; 3017 goto out; 3018 } else { 3019 qemu_coroutine_yield(); 3020 ret = co.ret; 3021 } 3022 } 3023 if (ret && ret != -ENOTSUP) { 3024 goto out; 3025 } 3026 3027 offset += num; 3028 bytes -= num; 3029 } 3030 ret = 0; 3031 out: 3032 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3033 tracked_request_end(&req); 3034 bdrv_dec_in_flight(bs); 3035 return ret; 3036 } 3037 3038 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes) 3039 { 3040 Coroutine *co; 3041 DiscardCo rwco = { 3042 .child = child, 3043 .offset = offset, 3044 .bytes = bytes, 3045 .ret = NOT_DONE, 3046 }; 3047 3048 if (qemu_in_coroutine()) { 3049 /* Fast-path if already in coroutine context */ 3050 bdrv_pdiscard_co_entry(&rwco); 3051 } else { 3052 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 3053 bdrv_coroutine_enter(child->bs, co); 3054 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 3055 } 3056 3057 return rwco.ret; 3058 } 3059 3060 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3061 { 3062 BlockDriver *drv = bs->drv; 3063 CoroutineIOCompletion co = { 3064 .coroutine = qemu_coroutine_self(), 3065 }; 3066 BlockAIOCB *acb; 3067 3068 bdrv_inc_in_flight(bs); 3069 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3070 co.ret = -ENOTSUP; 3071 goto out; 3072 } 3073 3074 if (drv->bdrv_co_ioctl) { 3075 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3076 } else { 3077 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3078 if (!acb) { 3079 co.ret = -ENOTSUP; 3080 goto out; 3081 } 3082 qemu_coroutine_yield(); 3083 } 3084 out: 3085 bdrv_dec_in_flight(bs); 3086 return co.ret; 3087 } 3088 3089 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3090 { 3091 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3092 } 3093 3094 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3095 { 3096 return memset(qemu_blockalign(bs, size), 0, size); 3097 } 3098 3099 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3100 { 3101 size_t align = bdrv_opt_mem_align(bs); 3102 3103 /* Ensure that NULL is never returned on success */ 3104 assert(align > 0); 3105 if (size == 0) { 3106 size = align; 3107 } 3108 3109 return qemu_try_memalign(align, size); 3110 } 3111 3112 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3113 { 3114 void *mem = qemu_try_blockalign(bs, size); 3115 3116 if (mem) { 3117 memset(mem, 0, size); 3118 } 3119 3120 return mem; 3121 } 3122 3123 /* 3124 * Check if all memory in this vector is sector aligned. 3125 */ 3126 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 3127 { 3128 int i; 3129 size_t alignment = bdrv_min_mem_align(bs); 3130 3131 for (i = 0; i < qiov->niov; i++) { 3132 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 3133 return false; 3134 } 3135 if (qiov->iov[i].iov_len % alignment) { 3136 return false; 3137 } 3138 } 3139 3140 return true; 3141 } 3142 3143 void bdrv_add_before_write_notifier(BlockDriverState *bs, 3144 NotifierWithReturn *notifier) 3145 { 3146 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 3147 } 3148 3149 void bdrv_io_plug(BlockDriverState *bs) 3150 { 3151 BdrvChild *child; 3152 3153 QLIST_FOREACH(child, &bs->children, next) { 3154 bdrv_io_plug(child->bs); 3155 } 3156 3157 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 3158 BlockDriver *drv = bs->drv; 3159 if (drv && drv->bdrv_io_plug) { 3160 drv->bdrv_io_plug(bs); 3161 } 3162 } 3163 } 3164 3165 void bdrv_io_unplug(BlockDriverState *bs) 3166 { 3167 BdrvChild *child; 3168 3169 assert(bs->io_plugged); 3170 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 3171 BlockDriver *drv = bs->drv; 3172 if (drv && drv->bdrv_io_unplug) { 3173 drv->bdrv_io_unplug(bs); 3174 } 3175 } 3176 3177 QLIST_FOREACH(child, &bs->children, next) { 3178 bdrv_io_unplug(child->bs); 3179 } 3180 } 3181 3182 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 3183 { 3184 BdrvChild *child; 3185 3186 if (bs->drv && bs->drv->bdrv_register_buf) { 3187 bs->drv->bdrv_register_buf(bs, host, size); 3188 } 3189 QLIST_FOREACH(child, &bs->children, next) { 3190 bdrv_register_buf(child->bs, host, size); 3191 } 3192 } 3193 3194 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 3195 { 3196 BdrvChild *child; 3197 3198 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3199 bs->drv->bdrv_unregister_buf(bs, host); 3200 } 3201 QLIST_FOREACH(child, &bs->children, next) { 3202 bdrv_unregister_buf(child->bs, host); 3203 } 3204 } 3205 3206 static int coroutine_fn bdrv_co_copy_range_internal( 3207 BdrvChild *src, uint64_t src_offset, BdrvChild *dst, 3208 uint64_t dst_offset, uint64_t bytes, 3209 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3210 bool recurse_src) 3211 { 3212 BdrvTrackedRequest req; 3213 int ret; 3214 3215 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3216 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3217 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3218 3219 if (!dst || !dst->bs) { 3220 return -ENOMEDIUM; 3221 } 3222 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes); 3223 if (ret) { 3224 return ret; 3225 } 3226 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3227 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3228 } 3229 3230 if (!src || !src->bs) { 3231 return -ENOMEDIUM; 3232 } 3233 ret = bdrv_check_byte_request(src->bs, src_offset, bytes); 3234 if (ret) { 3235 return ret; 3236 } 3237 3238 if (!src->bs->drv->bdrv_co_copy_range_from 3239 || !dst->bs->drv->bdrv_co_copy_range_to 3240 || src->bs->encrypted || dst->bs->encrypted) { 3241 return -ENOTSUP; 3242 } 3243 3244 if (recurse_src) { 3245 bdrv_inc_in_flight(src->bs); 3246 tracked_request_begin(&req, src->bs, src_offset, bytes, 3247 BDRV_TRACKED_READ); 3248 3249 /* BDRV_REQ_SERIALISING is only for write operation */ 3250 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3251 bdrv_wait_serialising_requests(&req); 3252 3253 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3254 src, src_offset, 3255 dst, dst_offset, 3256 bytes, 3257 read_flags, write_flags); 3258 3259 tracked_request_end(&req); 3260 bdrv_dec_in_flight(src->bs); 3261 } else { 3262 bdrv_inc_in_flight(dst->bs); 3263 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3264 BDRV_TRACKED_WRITE); 3265 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3266 write_flags); 3267 if (!ret) { 3268 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3269 src, src_offset, 3270 dst, dst_offset, 3271 bytes, 3272 read_flags, write_flags); 3273 } 3274 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3275 tracked_request_end(&req); 3276 bdrv_dec_in_flight(dst->bs); 3277 } 3278 3279 return ret; 3280 } 3281 3282 /* Copy range from @src to @dst. 3283 * 3284 * See the comment of bdrv_co_copy_range for the parameter and return value 3285 * semantics. */ 3286 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset, 3287 BdrvChild *dst, uint64_t dst_offset, 3288 uint64_t bytes, 3289 BdrvRequestFlags read_flags, 3290 BdrvRequestFlags write_flags) 3291 { 3292 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3293 read_flags, write_flags); 3294 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3295 bytes, read_flags, write_flags, true); 3296 } 3297 3298 /* Copy range from @src to @dst. 3299 * 3300 * See the comment of bdrv_co_copy_range for the parameter and return value 3301 * semantics. */ 3302 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset, 3303 BdrvChild *dst, uint64_t dst_offset, 3304 uint64_t bytes, 3305 BdrvRequestFlags read_flags, 3306 BdrvRequestFlags write_flags) 3307 { 3308 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3309 read_flags, write_flags); 3310 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3311 bytes, read_flags, write_flags, false); 3312 } 3313 3314 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset, 3315 BdrvChild *dst, uint64_t dst_offset, 3316 uint64_t bytes, BdrvRequestFlags read_flags, 3317 BdrvRequestFlags write_flags) 3318 { 3319 return bdrv_co_copy_range_from(src, src_offset, 3320 dst, dst_offset, 3321 bytes, read_flags, write_flags); 3322 } 3323 3324 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3325 { 3326 BdrvChild *c; 3327 QLIST_FOREACH(c, &bs->parents, next_parent) { 3328 if (c->role->resize) { 3329 c->role->resize(c); 3330 } 3331 } 3332 } 3333 3334 /** 3335 * Truncate file to 'offset' bytes (needed only for file protocols) 3336 * 3337 * If 'exact' is true, the file must be resized to exactly the given 3338 * 'offset'. Otherwise, it is sufficient for the node to be at least 3339 * 'offset' bytes in length. 3340 */ 3341 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3342 PreallocMode prealloc, Error **errp) 3343 { 3344 BlockDriverState *bs = child->bs; 3345 BlockDriver *drv = bs->drv; 3346 BdrvTrackedRequest req; 3347 int64_t old_size, new_bytes; 3348 int ret; 3349 3350 3351 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3352 if (!drv) { 3353 error_setg(errp, "No medium inserted"); 3354 return -ENOMEDIUM; 3355 } 3356 if (offset < 0) { 3357 error_setg(errp, "Image size cannot be negative"); 3358 return -EINVAL; 3359 } 3360 3361 old_size = bdrv_getlength(bs); 3362 if (old_size < 0) { 3363 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3364 return old_size; 3365 } 3366 3367 if (offset > old_size) { 3368 new_bytes = offset - old_size; 3369 } else { 3370 new_bytes = 0; 3371 } 3372 3373 bdrv_inc_in_flight(bs); 3374 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3375 BDRV_TRACKED_TRUNCATE); 3376 3377 /* If we are growing the image and potentially using preallocation for the 3378 * new area, we need to make sure that no write requests are made to it 3379 * concurrently or they might be overwritten by preallocation. */ 3380 if (new_bytes) { 3381 bdrv_mark_request_serialising(&req, 1); 3382 } 3383 if (bs->read_only) { 3384 error_setg(errp, "Image is read-only"); 3385 ret = -EACCES; 3386 goto out; 3387 } 3388 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3389 0); 3390 if (ret < 0) { 3391 error_setg_errno(errp, -ret, 3392 "Failed to prepare request for truncation"); 3393 goto out; 3394 } 3395 3396 if (drv->bdrv_co_truncate) { 3397 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, errp); 3398 } else if (bs->file && drv->is_filter) { 3399 ret = bdrv_co_truncate(bs->file, offset, exact, prealloc, errp); 3400 } else { 3401 error_setg(errp, "Image format driver does not support resize"); 3402 ret = -ENOTSUP; 3403 goto out; 3404 } 3405 if (ret < 0) { 3406 goto out; 3407 } 3408 3409 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3410 if (ret < 0) { 3411 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3412 } else { 3413 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3414 } 3415 /* It's possible that truncation succeeded but refresh_total_sectors 3416 * failed, but the latter doesn't affect how we should finish the request. 3417 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3418 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3419 3420 out: 3421 tracked_request_end(&req); 3422 bdrv_dec_in_flight(bs); 3423 3424 return ret; 3425 } 3426 3427 typedef struct TruncateCo { 3428 BdrvChild *child; 3429 int64_t offset; 3430 bool exact; 3431 PreallocMode prealloc; 3432 Error **errp; 3433 int ret; 3434 } TruncateCo; 3435 3436 static void coroutine_fn bdrv_truncate_co_entry(void *opaque) 3437 { 3438 TruncateCo *tco = opaque; 3439 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->exact, 3440 tco->prealloc, tco->errp); 3441 aio_wait_kick(); 3442 } 3443 3444 int bdrv_truncate(BdrvChild *child, int64_t offset, bool exact, 3445 PreallocMode prealloc, Error **errp) 3446 { 3447 Coroutine *co; 3448 TruncateCo tco = { 3449 .child = child, 3450 .offset = offset, 3451 .exact = exact, 3452 .prealloc = prealloc, 3453 .errp = errp, 3454 .ret = NOT_DONE, 3455 }; 3456 3457 if (qemu_in_coroutine()) { 3458 /* Fast-path if already in coroutine context */ 3459 bdrv_truncate_co_entry(&tco); 3460 } else { 3461 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco); 3462 bdrv_coroutine_enter(child->bs, co); 3463 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE); 3464 } 3465 3466 return tco.ret; 3467 } 3468